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The discovery by Kane and Mele of a model of spinful electrons characterized by a Z2 topological invariant
had a lasting effect on the study of electronic band structures. Given this, it is natural to ask whether similar
topology can be found in the bandlike excitations of magnetic insulators, and recently models supporting Z2

topological invariants have been proposed for both magnon [H. Kondo et al., Phys. Rev. B 99, 041110(R) (2019)]
and triplet [D. G. Joshi and A. P. Schnyder, Phys. Rev. B 100, 020407(R) (2019)] excitations. In both cases,
magnetic excitations form time-reversal (TR) partners, which mimic the Kramers pairs of electrons in the Kane-
Mele model but do not enjoy the same type of symmetry protection. In this paper, we revisit this problem in the
context of the triplet excitations of a spin model on the bilayer kagome lattice. Here the triplet excitations provide
a faithful analog of the Kane-Mele model as long as the Hamiltonian preserves the TR × U(1) symmetry. We find
that exchange anisotropies, allowed by the point group and typical in realistic models, break the required TR ×
U(1) symmetry and instantly destroy the Z2 band topology. We further consider the effects of TR breaking by an
applied magnetic field. In this case, the lifting of spin degeneracy leads to a triplet Chern insulator, which is stable
against the breaking of TR × U(1) symmetry. Kagome bands realize both a quadratic and a linear band touching,
and we provide a thorough characterization of the Berry curvature associated with both cases. We also calculate
the triplet-mediated spin Nernst and thermal Hall signals which could be measured in experiments. These results
suggest that the Z2 topology of bandlike excitations in magnets may be intrinsically fragile compared to their
electronic counterparts.

DOI: 10.1103/PhysRevB.104.104412

I. INTRODUCTION

The discovery, in 1980, of an integer quantization in the
Hall response of a two-dimensional electron gas in high
magnetic field [1] marked a new beginning for condensed
matter physics. It was quickly realized that this quantization
implied a new form of universality [2], enjoying protection
against both interactions and disorder, with the quantized Hall
response reflecting the integer values of the Chern indices
characterizing the topology of the underlying electron bands
[3–5]. In a celebrated paper, Haldane noted that these condi-
tions could also be met in a simple model of spinless electrons
on a honeycomb lattice, with time-reversal symmetry broken
by complex hoping integrals, but no magnetic field [6]. And
the generalization of Haldane’s model to spinful electrons, by
Kane and Mele [7,8], set the stage for the burgeoning field of
topological insulators (TI’s) and superconductors [9,10], with
current estimates suggesting that as many as 27% of materials
may have a topological band structure [11]. Moreover, since
the exotic properties of TI’s follow from the single-particle
properties of a band, analogous effects can also be found in
a wide range of other systems, including photonic metastruc-
tures [12,13], electronic circuits [14], and both accoustic [15]
and mechanical lattices [16].

Another natural place to look for nontrivial topology is in
the bandlike integer spin excitations of insulating magnets.

These may take the form of magnon (spin-wave) excitations of
ordered phases, or triplet excitations of quantum paramagnets.
Such excitations are bosonic, and acquire Berry phases as
a consequence of spin-orbit coupling, usually in the form
of Dzyaloshniski-Moriya interactions [17]. As a result, both
magnon [18–30] and triplon [31–33] bands can exhibit non-
trivial Chern indices, in direct analog with TI’s [34]. These
systems exhibit exactly the same topologically protected edge
modes as their electronic counterparts [18,20,25,31], and can
be indexed in the same way, even in the presence of disorder
[35,36]. They also support thermal Hall [19,21,25,31] and
spin Nernst [21,23–25,27,37] effects, in correspondence to the
Hall [6] and spin Hall effects seen in electronic systems [7,8].

However, since these topological bands are a feature of
excitations, rather than of a ground state, the quantized Hall
effect found in Chernful band of electrons [3–5] is superseded
by a noninteger, temperature-dependent response, coming
from thermally excited bosons [38,39]. Moreover, the fact
that interactions between bosons can be relevant [22,40] also
creates a new opportunities to study non-Hermitian aspects of
their dynamics [28,29]. For a recent review of this, and other
related issues, see [30].

Given the seminal role of the models of Haldane [6], and
Kane and Mele [7,8] in the understanding of electronic TI’s,
it is natural to look for corresponding systems in magnets.
The route to a Haldane model for magnons turns out to be
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both simple and elegant: the Heisenberg ferromagnet (FM)
on a honeycomb lattice realizes magnons with a graphene-
like dispersion [41], and the symmetry of this lattice permits
DM interactions on second-neighbor bonds. These supply
the complex hopping integral invoked by Haldane, opening
a gap in the magnon dispersion, and endowing the bands with
Chern numbers [24,42]. By extension, an exact analog of the
Kane-Mele model can be realized in a bilayer honeycomb
magnet, with interlayer interactions chosen such that it forms
two copies of a Haldane model, with magnon bands related
by time-reversal symmetry [27], an approach which can be
extended to the Fu-Kane-Mele model in three dimensions
[43]. It is also possible to achieve triplon bands which mirror
the Kane-Mele model in a quantum paramagnet on a bilayer
honeycomb lattice [33].

While the route to topological bands in magnets is now
well established, a number of important questions remain.
In particular, most work to date has taken a “top-down”
approach, emphasizing how topological effects found in elec-
tronic systems can be recreated within the bandlike excitations
of magnets. Less attention has been paid to features which
may be unique to magnets, or to building models of topolog-
ical phases in magnets from the “ground up,” starting from
the most general spin interactions allowed by symmetry of a
given lattice. One risk inherent in the “top-down” approach is
that the symmetries which protect topological phases formed
by electrons need not protect those formed by spins. For
example, while the Sz = ±1 triplet excitations of a quantum
paramagnet form a doublet under time-reversal symmetry,
they do not satisfy Kramer’s theorem. This means that the
Sz = ±1 doublets are much more “fragile” than the electronic
doublets considered by Kane and Mele, and the consequences
of any symmetry-allowed terms in the Hamiltonian which
mix triplets with Sz = ±1, therefore, need to be considered
explicitly. It is also of interest to ask what such a topological
quantum paramagnet would look like in experiment, and how
this physics might generalize to structures more complicated
than the honeycomb lattice.

In this paper, we address these questions in the context
of a model a spin- 1

2 kagome bilayer, which provides an ana-
log to the Z2 topological insulators considered by Kane and
Mele [7,8,44]. We take a limit in which the ground state is
a quantum paramagnet, formed by interlayer dimers, with
nine distinct bands of triplet excitations. We consider first the
case where the spin of triplet excitations is conserved, and
show that in zero magnetic field the Sz = ±1 triplet bands
can realize an analog to the quantum spin Hall insulator
[7,44–46]. In this case, triplon bands are characterized by a
nonzero Z2 invariant, and in open geometries we find corre-
sponding helical triplet edge modes. Furthermore, when the
time-reversal symmetry is broken by applied magnetic field,
the system evolves into a Chern insulator [6] characterized by
chiral triplon edge modes appearing in a finite sample. We
compute the spin Nernst and thermal Hall responses marking
the nontrivial topology in these phases.

We explore the consequences of the spin-mixing terms
allowed by the symmetry of the lattice, and discuss their
effect on the Z2 and Chern bands. Such spin-mixing terms are
also present in the original model of Kane and Mele, in the
form of the Rashba coupling [7,8]. In that case, the “up-” and

“down-”spin states of an electron form a Kramers pair, enforc-
ing the twofold degeneracy of the bands at certain points in
the Brillouin zone. This guarantees the perturbative stability
of spin Hall state against small values of Rashba coupling.
However, such a protection is not guaranteed by time-reversal
symmetry in the case of the triplons, where the representation
of the time-reversal operator squares to one. We examine this
difference closely, and find that even infinitesimal nematic in-
teractions can eliminate the Z2 topological invariant, opening
a gap to the associated helical edge modes.

We further identify an operator � = TR × U(1) which,
within a Bogoliubov–de Gennes approach, encodes the sym-
metry needed to protect a Z2 topological phase in either a
quantum paramagnet or an ordered phase with topological
magnon bands. We give a detailed analysis on the commu-
tation of the various terms in the triplet Hamiltonian with �,
confirming that the nematic interaction breaks this symmetry,
compromising the Z2 band topology. We also discuss the im-
plications of these results for the bilayer models considered in
Refs. [27,33], where identical symmetry considerations apply.

The remainder of the paper is organized as follows. In
Sec. II we give a detailed analysis on the symmetry-allowed
intradimer and first-neighbor interdimer interactions and in-
troduce the bilayer kagome model. Section III is devoted
to the Bogoliubov–de Gennes Hamiltonian describing the
triplet dynamics and provides a detailed discussion on the
bond-wave spectrum of the isotropic model. We discuss the
consequences of the DM interaction for the triplet bands in
Sec. IV and give a detailed analysis of the linear and quadratic
band touching transitions in Sec. V. In Sec. VI we show that
the triplet excitations can provide an analog to the Kane and
Mele model [7], characterized by nonzero Z2 topological in-
variant. We calculate the Nernst effect of triplets, a transverse
spin current arising as a response to a temperature gradient.
Section VII is devoted to the protection of the Z2 topology.
We show that the TR × U(1) symmetry corresponds to a
pseudo-time-reversal operation, which, if present, protects the
Z2 bands. However, symmetric exchange anisotropies, arising
in the form of nematic interactions, break this symmetry,
together with the fragile Z2 phase of a non-Kramers pairs. In
Sec. VIII we consider the time-reversal symmetry-breaking
case in the presence of magnetic field. We examine the stabil-
ity of the triplet Chern bands. Additionally, we compute the
thermal Hall signal of the Chern-ful triplon bands. Section IX
provides a brief summary of our results.

II. SYMMETRY-ALLOWED HAMILTONIAN

The model we consider is the spin- 1
2 magnet on the bi-

layer kagome lattice, shown in Fig. 1(a). We first establish
the most general form of first-neighbor and second-neighbor
interactions allowed by the D6h symmetry of this lattice. The
resulting model

H1,2
D6h

= HXXZ + HDM + HNematic (1)

has 15 adjustable parameters, and contains terms which we
can group as symmetric XXZ exchanges HXXZ; antisym-
metric Dzyaloshinskii-Moriya (DM) interactions HDM; and
symmetric diagonal and off-diagonal exchange anisotropies,
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FIG. 1. (a) Top view of the bilayer kagome lattice with
the translation vectors δ1 = (1/2,

√
3/2), δ2 = (−1, 0), and δ3 =

(1/2, −√
3/2). Bottom panel: hexagonal Brillouin zone with time-

reversal-invariant momenta (TRIM) �, M1, M2, and M3 (red), as
well as the Dirac points K and K ′ (blue). (b) Symmetry operations
of the bilayer-kagome lattice. The smallest unit exhibiting the full
symmetry of the bilayer kagome lattice is a bilayer hexagon with six
interlayer dimers. The indices A, B, and C and following the notation
of the main text corresponding to the sublattice flavor, while the A′

denotes the dimer A shifted with the lattice translation vector δ3, B′

is dimer B shifted with δ1, and C′ corresponds to dimer C translated
by δ2.

which we name the “bond-nematic” interactions (defined be-
low) HNematic.

To determine the different contributions to Eq. (1), we
consider the hexagonal prism formed by six interlayer spin
dimers [Fig. 1(b)], which forms the smallest building block
with the full symmetry of lattice. In what follows, we refer
to these interlayer dimers simply as “dimers,” and we will
ultimately build topological bands from the triplet excitations
of a quantum paramagnet formed by singlets on these dimer
bonds. The bilayer hexagon contains three such dimers A,
B, and C that lie within the kagome unit cell, as well as
three more, A′, B′, and C′, which correspond to neighboring
dimers translated by δ3, δ1, and δ2 lattice vectors, respectively
[Fig. 1(a)].

We proceed by analyzing all possible interactions bilinear
in spins, starting from the transformation properties of in-
dividual spin components under three generators of the D6h

point group, C6, C′
2, and σh (Table I). All remaining group

elements can be constructed as a combination of these three
operations. The different types of term which arise are con-
sidered, bond by bond, below.

A. Intradimer interactions

The symmetry classification of the intradimer interactions
according to the D6h symmetry group yields three invariant
terms. Two correspond to the Heisenberg exchange anisotropy
distinguishing the in-plane and out-of-plane components

HXXZ = J‖
∑

j

(
Sx

j1 Sx
j2 + Sy

j1
Sy

j2

) + J⊥
∑

j

Sz
j1

Sz
j2
. (2)

TABLE I. Transformation of the spin (axial vector) components,
the dimers, and the site indices under the generators of the D6h point
group.

Generators E C6 C′
2 σh

Spin component Sx 1
2 Sx +

√
3

2 Sy Sx −Sx

Sy −
√

3
2 Sx + 1

2 Sy −Sy −Sy

Sz Sz −Sz Sz

Dimer label A C′ B A
B A′ A B
C B′ C C
A′ C B′ A′

B′ A A′ B′

C′ B C′ C′

Layer index 1 1 2 2
2 2 1 1

The third intradimer term is a symmetric exchange anisotropy,
which we refer to as the bond-nematic interaction:

HNematic = K‖
∑

j

n j · Q‖
j1, j2

. (3)

The index j runs over the dimers, and 1 and 2 denote the layer
indices of dimer j. The vectors n j appearing in the nematic

term have the form nA = ( 1
2 ,

√
3

2 ), nB = ( 1
2 ,−

√
3

2 ), and nC =
(−1, 0), and Q‖

j1, j2
denotes the vector (Qx2−y2

j1, j2
, Qxy

j1, j2
) made of

the nematic interactions

Qx2−y2

i, j = Sx
i Sx

j − Sy
i Sy

j , (4a)

Qxy
i, j = Sx

i Sy
j + Sy

i Sx
j . (4b)

We illustrate the nematic operators Qx2−y2
and Qxy in the

fashion of the d orbitals, dx2−y2
and dxy, as they transform in

the same way. Figure 2 introduces our schematic illustration
of the in-plane nematic operators Qx2−y2

and Qxy and their
linear combinations as appear in the intradimer interactions,
together with the directions of the n vectors.

Due to the bond inversion, the antisymmetric exchange
anisotropy, i.e., the Dzyaloshinskii-Moriya interaction, is not
allowed on the dimers.

B. First-neighbor interdimer interactions

Classifying the first-neighbor interdimer interactions, we
find six independent operators that transform as the fully sym-
metric irreducible representation. Aside from the anisotropy
in the Heisenberg exchange, distinguishing the in-plane and
out-of-plane components

H1st
XXZ = J ′

‖
∑
〈i, j〉

l=1,2

(
Sx

il S
x
jl + Sy

il
Sy

jl

) + J ′
⊥

∑
〈i, j〉

l=1,2

Sz
il
Sz

jl
, (5)

there are additional four operators, namely, the in-plane and
out-of-plane components of the nematic and DM interactions.
The DM interaction has the form

H1st
DM =

∑
〈i, j〉

D′ · (Si × S j ), (6)
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FIG. 2. (a) Illustration of the components Qx2−y2
and Qxy of

the intradimer nematic interactions. The pink arrows indicate the
direction in the two-dimensional vector spaces Q‖ = (Qx2−y2

, Qxy ).
(b) The linear combinations appearing in the intradimer in-plane
nematic terms. We plot the vectors n and the schematic representation
of the operators in the same figure. The sketches in the top right
corner show the simplified illustration for a given linear combination.
(c) Intradimer nematic operators on the bonds, and (d) the vectors nA,
nB, and nC , corresponding to the linear combination on each dimer.

and the in-plane (D′
‖) and out-of-plane (D′

⊥) components of
the vector D′ are shown in Fig. 3.

D′
⊥ is uniform in the top and bottom layers, but the D′

‖
components change sign under exchanging the layers. As
discussed in Sec. III, only the uniform out-of-plane DM com-
ponent D′

⊥ appears in Bogoliubov–de Gennes Hamiltonian
describing the triplet dynamics.

FIG. 3. (a), (b) DM vector components on the first-neighbor and
(c), (d) on the second-neighbor interdimer bonds in the top and
bottom layers, respectively. For both the first- and second-neighbor
DM interactions the in-plane components have opposite signs in the
top and bottom layer, while the out-of-plane components are the
same.

FIG. 4. (a) Interdimer in-plane symmetric exchange anisotropy
Q‖

i, j in the top (left) and bottom (right) layers. (b) Components of the
interdimer nematic operators between the first-neighbor bonds.

In addition, there are in-plane and out-of-plane bond-
nematic terms. The in-plane component has the form of

H1st
‖ = K ′

‖
∑
〈i, j〉

∑
l=1,2

ni j · Q‖
il, jl , (7)

where Q‖
il, jl is defined the same way as in Eq. (4), the index l

takes the value 1 for the top and 2 for the bottom layer, while i
and j denote first-neighbor sites within the layers. The vectors
ni j have the form

nA′B = nAB′ = (−1, 0), (8)

nB′C = nBC′ =
(

1

2
,

√
3

2

)
, (9)

nC′A = nCA′ =
(

1

2
,−

√
3

2

)
. (10)

The in-plane component of the interdimer nematic interac-
tions on the first neighbors are shown in Fig. 4, where we use
the same notation introduced in Figs. 2(a) and 2(b).

As with the out-of-plane DM components, the in-plane
nematic terms are uniform in the top and bottom layers, and
so will give a finite contribution to a Hamiltonian for triplets.

The first-neighbor out-of-plane bond-nematic interaction is

H1st
⊥ = K ′

⊥
∑
〈i, j〉

n⊥
i j · Q⊥

il, jl , (11)

where the vectors n⊥
i j are shown in Fig. 5(b), and the com-

ponents of Q⊥
i, j = (Qzx

i, j, Qyz
i, j ) correspond to the bond-nematic

operators

Qxz
i, j = Sz

i Sx
j + Sx

i Sz
j, (12a)

Qyz
i, j = Sy

i Sz
j + Sz

i Sy
j . (12b)

We utilize the representation of the dyz and dzx orbitals
to illustrate the out-of-plane bond-nematic terms as shown in
Fig. 5.

Once again, the out-of-plane interdimer symmetric ex-
change anisotropy term is the opposite in the top and bottom
layers. For this reason, as with the in-plane DM vectors, it will
cancel in the triplet hopping Hamiltonian discussed in Sec. III.

C. Second-neighbor interdimer interactions

We also consider the effect of second-neighbor inter-
actions within the planes of the kagome lattice. As with
the first-neighbor interactions, there are six different terms:
XXZ exchange J ′′

‖ and J ′′
⊥; in-plane and out-of-plane DM
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FIG. 5. (a) Illustration of the out-of-plane nematic interaction
components Qzx and Qyz. The panels on the right show the top view.
(b) Some representative out-of-plane nematic terms and the corre-
sponding n⊥

i j vectors (pink arrow), defining the linear combination
of Qzx and Qyz. (c) Interdimer out-of-plane symmetric exchange
anisotropy in the top (left) and bottom layer (right). (d) Directions
of the first-neighbor out-of-plane nematic vectors in the top layer.
The directions in the bottom layer are the opposite.

interactions D′′
‖ and D′′

⊥; and the in-plane and out-of-plane
bond-nematic terms K ′′

‖ and K ′′
⊥. XXZ interactions are defined

through

H2nd
XXZ = J ′′

‖
∑
〈〈i, j〉〉

∑
l=1,2

Sx
il S

x
jl + Sy

il
Sy

jl

+ J ′′
⊥

∑
〈〈i, j〉〉

∑
l=1,2

Sz
il
Sz

jl
, (13)

where the sum 〈〈i, j〉〉 runs over second-neighbor bonds
within the kagome layers. Similarly, DM interactions are de-
fined through

H2nd
DM =

∑
〈〈i, j〉〉

D′′ · (Si × S j ), (14)

where the components of the associated DM vectors in the
top and bottom layers are shown in Figs. 3(d) and 3(e), re-
spectively.

The additional bond-nematic-type interactions have the
form

H2nd
‖ = K ′′

‖
∑
〈〈i, j〉〉

∑
l=1,2

ni j · Q‖
il, jl , (15)

where the vector operator Q‖
il, jl is defined in Eq. (4); l takes

the values 1 and 2 for top and bottom layers, respectively, and
the vectors ni j have the form

nAB = nA′B′ = (1, 0), (16)

nBC = nB′C′ =
(

−1

2
,−

√
3

2

)
, (17)

nCA = nC′A′ =
(

−1

2
,

√
3

2

)
. (18)

Components of the second neighbor in-plane nematic interac-
tions are shown in Fig. 6, along with the ni j vectors.

FIG. 6. (a) Interdimer in-plane nematic interaction Q‖
i, j between

the second neighbors in the top (left) and bottom (right) layers.
(b) Components of the interdimer nematic operators.

The out-of-plane bond-nematic term is

H2nd
⊥ = K ′′

⊥
∑
〈〈i, j〉〉

∑
l=1,2

n⊥
i j · Q⊥

il, jl , (19)

where the components of Q⊥
i, j = (Qzx

il, jl , Qyz
il, jl ) are introduced

in Eqs. (12) and are shown in Fig. 7 together with the associ-
ated vectors n⊥

i j .

III. MODEL OF TRIPLON BANDS

Having established the most general form of interactions
allowed by symmetry, we now show how this determines the
Hamiltonian for triplet excitations of a quantum paramagnet
on the bilayer kagome lattice. We begin by defining the model
(Sec. III A), before proceeding to a Hamiltonian expressed in
terms of a bond-wave formalism, with explicit Bogoliubov–de
Gennes form (Sec. III B). Finally, we set up the framework for
subsequent discussion of topological bands, by solving for the
(topologically trivial) triplon bands in the limit of vanishing
anisotropic exchange (Sec. III C). Throughout this paper, we
work with the full Bogoliubov–de Gennes Hamiltonian for
triplet excitations, except where otherwise stated.

A. Microscopic model

We start from a model defined by

H = H1,2
D6h

+ HZeeman (20)

= HXXZ + HDM + HNematic + HZeeman, (21)

where H1,2
D6h

[Eq. (1)] is the most general Hamiltonian for
a spin- 1

2 magnet on a bilayer kagome lattice with first- and

FIG. 7. (a) Interdimer out-of-plane symmetric exchange
anisotropy on the second-neighbor bonds in the top (left) and bottom
layer (right). We use the notation for the linear combinations of Qzx

and Qyz bond-nematic operators as shown in Fig. 5. (b) Directions
of the second-neighbor out-of-plane nematic vectors in the top layer.
The directions in the bottom layer are the opposite.
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second-neighbor interactions (cf. Sec. II), and

HZeeman = −gzh
z
∑

i

Sz
i (22)

encodes the effect of a magnetic field perpendicular to the
plane of the kagome lattice.

The largest term in this model is taken to be (approxi-
mately) Heisenberg exchange J‖ ≈ J⊥ on intradimer bonds
(Sec. II A). Where these interactions are antiferromagnetic,
and sufficiently large compared with other terms, the ground
state of HXXZ is a quantum paramagnet formed by a product
of singlets on all dimer bonds

|�0〉 =
∏
j∈

|s〉 j, (23)

where

|s〉 j = 1√
2

(|↑1↓2〉 − |↓1↑2〉) j . (24)

The low-lying excitations of this quantum paramagnet will
be spin-1 triplet excitations

|t1〉 j = |↑1↑2〉 j, (25a)

|t0〉 j = 1√
2

(|↑1↓2〉 + |↓1↑2) j, (25b)

|t−1〉 j = |↓1↓2〉 j, (25c)

where the indices 1 and 2 denote the top and bottom sites
of the dimer, and j labels the dimer. In the presence of
terms connecting different dimers, these triplet excitations
will form dispersing bands of excitations, usually referred to
as “triplons.”

The spin operators can be expressed using the singlet-
triplet basis

S+
j1

= 1√
2

(
t†
1, jt0, j −t†

1, j s j + t†
0, jt−1, j +s†

j t−1, j

)
, (26a)

Sz
j1

= 1

2

(
t†
1, jt1, j + t†

0, j s j + s†
j t0, j − t†

−1, jt−1, j

)
, (26b)

S−
j1

= 1√
2

(
t†
0, jt1, j −s†

j t1, j + t†
−1, jt0, j +t†

−1, j s j

)
, (26c)

S+
j2

= 1√
2

(
t†
1, jt0, j +t†

1, j s j + t†
0, jt−1, j −s†

j t−1, j

)
, (26d)

Sz
j2

= 1

2

(
t†
1, jt1, j − t†

0, j s j − s†
j t0, j − t†

−1, jt−1, j

)
(26e)

S−
j2

= 1√
2

(
t†
0, jt1, j +s†

j t1, j + t†
−1, jt0, j −t†

−1, j s j

)
, (26f)

where the indices 1 and 2 denote the top and bottom sites
(layer) of the vertical dimer, t†

m, j |0〉 = |tm〉 j , s†
j |0〉 = |s〉 j with

m = −1, 0, 1 and the x and y components of the spin operators
are Sx

j = 1
2 (S+

j + S−
j ) and Sy

j = − i
2 (S+

j − S−
j ).

In general, all components of the different exchange in-
teractions within the kagome planes will contribute to triplon
dispersion. For small to moderate spin-orbit coupling, the
largest contributions will come from (approximately) Heisen-
berg interactions on first-neighbor bonds J ′

‖ ≈ J ′
⊥. However,

the Berry phase underpinning a topological band structure
originates in the DM interactions HDM. And the fate of these
topological bands will in turn depend on the nematic inter-
actions HNematic. A few comments are therefore due on how
these enter the problem.

Our model allows for DM interactions on first-neighbor
bonds D′ [Eq. (6)] and second-neighbour bonds D′′ [Eq. (14)],
illustrated in Fig. 3. The interlayer bond-inversion symmetry
precludes any DM interaction acting on the local dimers,
and consequently the mixing between the odd singlet and
even triplet states. Furthermore, as long as the σh mirror
symmetry is preserved, only the uniform out-of-plane DM
components D′ = (0, 0, D′) and D′′ = (0, 0, D′′) survive in
the triplet Hamiltonian to linear order.

Similar considerations apply to nematic interactions
HNematic. In this case, the sign of the out-of-plane nematic
terms is opposite in the layers, leaving only the in-plane com-
ponents in the triplet Hamiltonian. HNematic thus simplifies to
only the intradimer and interdimer in-plane nematic interac-
tions, introduced in Eqs. (3), (7), and (15).

Without loss of generality, we consider only the first-
neighbor interactions. The further neighbor terms do not
change the overall shape (and generality) of the triplet
Hamiltonian, only add to the complexity of the coefficients.
Although, we keep the second-neighbor DM interaction (D′′)
to discuss band-touching topological transitions as the func-
tions of D′ and D′′.

In the remainder of this paper we will slowly build up
a complete picture of the topological physics of a quantum
paramagnet described by Eq. (21), starting in Sec. IV from
a simplified model with only Heisenberg and DM interac-
tions before progressively restoring the complexity of the full
Hamiltonian, including nematic terms. Before doing so, in
what follows, we set up the necessary technical framework
for evaluating triplon bands.

B. Bond-wave Hamiltonian

To describe the dynamics of the triplet excitations at mo-
mentum k, we rely on the conventional bond-wave theory
[47,48] resulting in the Bogoliubov–de Gennes Hamiltonian

Hk =
(

t̃†
k

t̃−k

)T (
M̃k Ñk

Ñ†
−k M̃†

−k

)(
t̃k

t̃†
−k

)
. (27)

The vector t̃†
k contains the nine different triplet excitations,

corresponding to the three spin states and the three sublattices:

t̃†
k = (

t†
1,k, t†

0,k, t†
−1,k

)
, (28)

where t†
m,k (m = −1, 0, 1) is

t†
m,k = (t†

A,m,k, t†
B,m,k, t†

C,m,k ). (29)

Mk and Nk are 9 × 9 matrices, corresponding to the hopping
Hamiltonian and the pairing terms, respectively. As it will
turn out below, the matrices M̃k and Ñk are Hermitian and
contain only cosines of the wave vector, so they are even in
k: M̃k = M̃†

k = M̃−k and Ñk = Ñ†
k = Ñ−k. This will simplify

the formulas, also the action of the time-reversal operator.
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In the presence of the σh mirror plane, the |t0〉 triplet de-
couples from the time-reversal pair |t1〉 and |t−1〉 and the most
general form of the Bogoliubov–de Gennes Hamiltonian, de-
scribing the triplet dynamics, decomposes into two blocks:

H(1,−1)
k =

(
t†
k

t−k

)T (
Mk+MZeeman

k Nk

Nk Mk−MZeeman
k

)(
tk

t†
−k

)
,

(30a)

H(0)
k =

(
t†
0,k

t0,−k

)T (
M0,k N0,k

N0,k M0,k

)(
t0,k

t†
0,−k

)
, (30b)

where the Mk and Nk are 6 × 6 and M0,k and N0,k are 3 × 3
matrices. The spinful subspace in Eq. (30a) is spanned by

tk =
(

t1,k

t−1,k

)
and t†

−k =
(

t†
−1,−k

t†
1,−k

)
. (31)

Using this basis, both the diagonal and off-diagonal matrices
are Hermitian, M†

k = Mk , M†
0,k = M0,k, N†

k = Nk , and N†
0,k =

N0,k. The σh acts on the individual S = 1
2 spins as C2 = C3

6
combined with swapping the layer indices. As a consequence,
the |t0〉 transforms differently from the |t±1〉 and |s〉 under the
σh operation: while |t0〉 → −|t0〉, the |t±1〉 → |t±1〉 and |s〉 →
|s〉. This happens, for example, in the terms containing Sx

i Sz
j

or Sy
i Sz

j . Such terms are present in the in-plane DM and in

the out-of-plane nematic interactions, resulting in t (†)
0,i t (†)

±1, j and

t (†)
±1,it

(†)
0, j terms. These terms are odd under the σh reflection,

and therefore cancel in the triplet Hamiltonian.1 Due to the
cancellation of the in-plane DM terms in the Hamiltonian, the
only terms that do not conserve the total Sz

T are the in-plane
nematic interactions, which change the Sz

T by ±2 by creating
an |t1〉 from |t−1〉 and vice versa.

We use the eight Gell-Mann matrices as the basis for
the sublattice degrees of freedom, corresponding to the three
dimers A, B, and C in the unit cell:

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠,

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠, λ5 =

⎛
⎝ 0 0 i

0 0 0
−i 0 0

⎞
⎠, λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠,

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (32)

The Gell-Mann matrices and the 3 × 3 identity matrix I3 suffi-
ciently characterize the spinless m = 0 subspace. The hopping

1Let us mention, however, that a magnetic field applied in the xy
plane induces mixing between the spinful (|t1〉 and |t−1〉) and the
spinless (|t0〉) subspaces.

Hamiltonian has the form

M0,k = MXXZ
0,k

= J‖I3 + J ′
⊥

[
cos

δ1k
2

λ4 + cos
δ2k
2

λ1 + cos
δ3k
2

λ6

]
,

(33)

and the pairing terms are the same as M0,k without the diago-
nal elements:

N0,k = M0,k − J‖I3. (34)

Note that the Hamiltonian in the m = 0 subspace contains
only the Heisenberg terms, the symmetric nematic exchange,
and the antisymmetric DM interaction do not affect the |t0〉
triplet.

The triplet hopping of the spinful subspace

Mk = MXXZ
k + MDM

k + MNematic
k (35)

in Eq. (30a) is a 6 × 6 matrix. The spin degree of freedom
provided by the Sz

T = ±1 triplets is represented by the spin
operators sx, sy, and sz, corresponding to the Pauli matrices
times 1

2 . The six-dimensional local Hilbert space for the spin-
ful triplets is constructed as the tensor product of the 2 × 2
matrices {I2, sx, sy, sz} acting on the spin space, and the 3 × 3
Gell-Mann matrices extended with the identity I3, acting in
the sublattice space. We discuss the various contributions sep-
arately. The Heisenberg interaction only contains the identity
operator I2 in the spin space, i.e., it does not affect the spin
degrees of freedom, and is the same for the |t1〉 and |t−1〉
triplets:

MXXZ
k = J‖+J⊥

2
I2⊗I3 + J ′

‖ cos
δ1 · k

2
I2⊗λ4

+J ′
‖ cos

δ2 · k
2

I2⊗λ1 + J ′
‖ cos

δ3 · k
2

I2⊗λ6. (36)

The pairing terms from the Heisenberg interaction are similar
to MXXZ

k , but have opposite sign and no diagonal elements

NXXZ
k = −MXXZ

k + J‖ + J⊥
2

I2 ⊗ I3. (37)

The DM interaction has the form

MDM
k =

[
D′ cos

δ1 · k
2

+ D′′ cos
(δ2 − δ3) · k

2

]
sz ⊗ λ5

+
[

D′ cos
δ2 · k

2
+ D′′ cos

(δ3 − δ1) · k
2

]
sz ⊗ λ2

+
[

D′ cos
δ3 · k

2
+ D′′ cos

(δ1 − δ2) · k
2

]
sz ⊗ λ7.

(38)

The intradimer DM interaction is forbidden by the bond in-
version of the dimers, thus there are no diagonal elements in
MDM

k and the form of the pairing terms simply correspond to

NDM
k = −MDM

k . (39)

Here, the only operator acting in the spin space is sz, leaving
the spin degrees of freedom unchanged, and introducing a sign
difference for the DM interaction in the up-spin (Sz

T = 1) and
down-spin (Sz

T = 1) sectors.
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Let us make some comments on the time-reversal (TR)
properties of the Gell-Mann matrices and the pseudo-spin-half
operators. The Gell-Mann matrices act in the sublattice space,
i.e., account for changing the dimer indices A, B, and C. Time-
reversal symmetry leaves such indices invariant, therefore, the
real Gell-Mann matrices are TR invariant. As TR symmetry
contains a complex conjugation, the imaginary Gell-Mann
matrices are TR breaking, changing sign under TR. A com-
plete analysis on the TR symmetry of the pseudo-spin-half op-
erators is provided in Appendix A, where we show that while
the sz is TR breaking, as one would expect from a spin opera-
tor, the sx and sy components are TR invariant operators. This
is a consequential difference with respect to the original Kane
and Mele model, where the Pauli matrices describe a physical
spin-half Kramers doublet and, thus, all break TR symmetry.

Coming back to the DM terms in our triplet hopping
Hamiltonian in Eq. (38), the appearing cross-product opera-
tors are all TR invariant, as both the sz spin operator and the
λ5, λ2, and λ7 complex Gell-Mann matrices are odd under TR
symmetry.

The nematic interactions couple the subspaces of the dif-
ferent m subspaces. They have the form

MNematic
k =

√
3K‖
4

[sx ⊗ λ8 − sy ⊗ λ3]

+ K ′
‖ cos

δ3 · k
2

(
−1

2
sx −

√
3

2
sy

)
⊗ λ6

+ K ′
‖ cos

δ1 · k
2

(
−1

2
sx +

√
3

2
sy

)
⊗ λ4

+ K ′
‖ cos

δ2 · k
2

· sx ⊗ λ1. (40)

The Gell-Mann matrices in the nematic interaction are the
real ones, preserving TR symmetry. The nematic interactions
exclusively consist of spin-mixing operators sx and sy that
are TR-invariant terms themselves. (For details see Appendix
A.) When the nematic terms are present, the total Sz

T ceases
to be a good quantum number, and the spin-up and -down
components mix.

Such spin-mixing term is present in the Kane and Mele
model too, in the form of a Rashba spin-orbit coupling, per-
mitted by the breaking of the mirror symmetry σh. Here, the
spin-mixing nematic terms are allowed without breaking σh.
The TR symmetry does not protect the degeneracy of the
spin-up and -down triplets at the TR-invariant points in the
momentum space, as it would for the Kramers pair electron
spins. Therefore, the nematic term hybridizes the spins, end-
ing the fragile Z2 topology of the bands, as discussed in
Sec. VII.

The nematic interaction is allowed on the dimers too. Note
that the operators λ8 and λ3 are diagonal in the sublattice
space. The sx and sy operators, however, mix the spins, placing
the intradimer nematic interaction K‖ in the diagonal of the
block connecting the +1 and −1 triplets. The NNematic

1,k matrix
of the pairing terms corresponds again to the −MNematic

1,k minus
the “diagonal” elements

NNematic
k = −MNematic

k +
√

3K‖
4

[sx ⊗ λ8 − sy ⊗ λ3]. (41)

Lastly, the out-of plane magnetic field appears in the diagonal
of the Hamiltonian as

MZeeman
k = −gzhz2sz ⊗ I3. (42)

We conclude this tour of the terms in the quadratic
Bogoliubov–de Gennes Hamiltonian with a brief comment
on what it neglects, namely, interactions between triplon
modes occurring at higher order in bond operators. The ef-
fect of electron-electron interactions on topological insulators
and superconductors remains an open problem. The effect
of triplon-triplon interactions on band topology in quantum
paramagnets is even less explored.

Nonetheless, some work has been done to characterize
the effect of magnon-magnon interactions in magnetically or-
dered systems with topological bands [22,26,28–30,40]. One
example which has been been quite well characterized in the
Kitaev model in high magnetic field, where the noninteracting
theory of topological magnon bands can be compared with
both interacting spin-wave calculations and DMRG results
[26]. And here the effect of interactions is relatively benign,
being chiefly limited to a finite broadening of magnon modes,
and renormalization of their band dispersion.

Its is reasonable to expect the same will be true in quan-
tum paramagnets since the form of Bogoliubov–de Gennes
Hamiltonian is identical. And this is particularly true where
the potential for triplon decay is restricted by a substantial
band gap. It is also plausible that the topological excitations
of quantum paramagnets will exhibit some of the same in-
teresting, non-Hermitian features, as topological magnons, a
topic reviewed in [30]. The role of interactions within a Z2

topological phase of a magnetic insulator is clearly worthy of
further investigation. However, this lies outside the scope of
this paper, which has the more limited goal of characterizing
band topology in the noninteracting limit.

C. Bond-wave dispersions in the absence of anisotropies

Let us start with the time-reversal-symmetric case, when
the magnetic field is zero. In the isotropic Heisenberg limit
J⊥ = J‖ = J , J ′

⊥ = J ′
‖ = J ′, D′ = 0, D′′ = 0, K‖ = 0, and

K ′
‖ = 0, the model has SU(2) symmetry, the Mk and Nk matrix

in Eq. (30a) becomes block diagonal,

Mk =
(

M1,k 0
0 M−1,k

)
, Nk =

(
N1,k 0

0 N−1,k

)
, (43)

and the Hamiltonians are identical in each of the m = −1, 0, 1
subspaces [see Eqs. (30a) and (30b)] so that Mm,k = MSU(2)

m,k

and Nm,k = NSU(2)
m,k , with m independent

MSU(2)
m,k = JI3+ J ′

[
cos

δ1 · k
2

λ4+ cos
δ2 · k

2
λ1+ cos

δ3 · k
2

λ6

]
,

NSU(2)
m,k = JI3 − MSU(2)

k (44)

matrices (we keep the m index only for bookkeeping pur-
poses). The m subspaces are spanned by the basis

(t†
m,k, t−m,−k ), (45)

defined in Eq. (28). Each of these operators is going to change
the total Sz

T by m, either by creating an m triplon with t†
m,k or

by annihilating a −m triplon with t−m,−k. A rotation e−iϕSz
T by
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FIG. 8. (a) Triplet bands in the SU(2)-symmetric case J = 1,
J ′ = 0.2, h = 0, and the DM and nematic terms are zero. All three
bands are threefold degenerate due to the spin-rotation symmetry.
(b) Triplet band structure for finite second-neighbor DM interaction
D′′ = 0.01. (c) The m = ±1 bands omitting the trivial m = 0. All
three bands are twofold degenerate, corresponding to the +1 and −1
spins of the triplets.

an angle ϕ about the z axis in the spin space manifests in a
phase factor

(t†
m,k, t−m,−k ) → e−imϕ (t†

m,k, t−m,−k ). (46)

Thereby in the Hamiltonian we encounter normal terms of
the form t†

m,kMm,ktm,k and t−m,−kMm,kt†
−m,−k, and anoma-

lous terms in the form of t†
m,kNm,kt†

−m,−k and t−m,kNm,ktm,−k
which are invariant with respect to the phase transformation
of Eq. (46). These all commute with the

Sz
T = t†

1,kt1,k − t†
−1,−kt−1,−k, (47)

so that the total Sz
T is conserved, generating a U(1) symmetry.

The higher SU(2) symmetry is exemplified by the matrices
being independent from m.

In this case, each of the three bands, coming from the three
sublattices, are threefold degenerate, as the m = 1, 0,−1 have
the same energies in the entire Brillouin zone. The dispersion
computed from the SU(2)-symmetric Bogoliubov–de Gennes
Hamiltonian has the form

ω1,m =
√

J (J − 2J ′), (48a)

ω2,m =
√

J (J + J ′) − J̃ (k), (48b)

ω3,m =
√

J (J + J ′) + J̃ (k) (48c)

with J̃ (k) = JJ ′√3 + 2
∑

α cos δα · k. We show these bands
in Fig. 8(a). Additionally, discrete lattice symmetries give rise
to degeneracies between the sublattice bands in the form of a
linear band touching at the K and K ′ points, and a quadratic
band touching at the zone center �.

The intradimer Heisenberg coupling term J is nothing but
the singlet-triplet gap, separating the triplet bands from the
ground state, while the interdimer Heisenberg interaction J ′
gives dispersion to the triplets. The form of dispersion is
immediately familiar from studies of graphene [6,7], with the
additional feature of a flat band just above the singlet-triplet
gap, reflecting the frustration of the kagome lattice.

From the band dispersion (48) we can also read off the in-
stabilities of the quantum paramagnet. For the ferromagnetic

J ′ =−J/4, the ω3,m softens at the � point, signaling a transi-
tion to a long-range-ordered time-reversal symmetry-breaking
state, where the spins on each layer are aligned ferromagnet-
ically, while the two layers are aligned antiferromagnetically.
Similarly, we may notice that the energy of the ω1,m flat
band becomes 0 for antiferromagnetic J ′ = J/2, indicating a
transition to a time-reversal symmetry-breaking state, where
the ordering is selected by the DM interactions or quantum
fluctuations.

IV. DM INTERACTION INDUCED BAND TOPOLOGY

In this section, we explore the topologically nontrivial
triplon bands which arise as result of DM interactions in a
quantum paramagnet described by Eq. (21), setting both the
nematic terms and the magnetic field to zero. For simplicity,
we will also set J‖ = J⊥ = J in XXZ terms, such that they
reduce to isotropic Heisenberg interactions. The analysis is
further simplified by the fact that only the z component of
the DM interaction survives (up to first order). It follows that
total Sz

T remains a good quantum number, and excitations with
different m = 1, 0,−1 decouple from one another.

The out-of-plane DM interaction lowers the SU(2) sym-
metry to U(1), and splits the degeneracy at the corners and
center of the BZ for the m = ±1 triplets, as shown in Fig. 8(c).
While J ′ provides a real hopping amplitude, the interdimer
DM interactions D′ and D′′ couple to the complex Gell-Mann
matrices, and are responsible for the nontrivial topology, gen-
erating finite Berry curvature via the complex triplet hopping
amplitude. The m-independent Heisenberg Hamiltonian (44)
is extended with the DM interaction (38). As the DM is diag-
onal with respect to the spin degrees of freedom, we can write
the U(1)-symmetric Hamiltonian in a block-diagonal form,
with decoupled m = 1, 0,−1 subspaces. We account for the
sz operator in the DM interaction (38) with the factor m:

MU(1)
m,k = MSU(2)

m,k + m

[
D′ cos

δ1 · k
2

+ D′′ cos
(δ2 − δ3) · k

2

]
λ5

+ m

[
D′ cos

δ2 · k
2

+ D′′ cos
(δ3 − δ1) · k

2

]
λ2

+ m

[
D′ cos

δ3 · k
2

+ D′′ cos
(δ1 − δ2) · k

2

]
λ7,

NU(1)
m,k = JI3 − MU(1)

m,k . (49)

To determine the DM gap, we compute the energies at the
�, K , and K ′ points from the full Bogoliubov–de Gennes
equations.

At the � point the bands have the energies

ω1,m(�) =
√

J (J − 2J ′ − m
� ), (50a)

ω2,m(�) =
√

J (J − 2J ′ + m
� ), (50b)

ω3,m(�) =
√

J (J + 4J ′), (50c)

where 
� = 2
√

3(D′ + D′′). A finite 
� opens a gap√
J (J − 2J ′ + 
� ) − √

J (J − 2J ′ − 
� ) between the bands
1 and 2 at the � point. For 
� � J, J ′, the gap becomes
≈√

J/(J − 2J ′)
� , thus proportional to the DM interactions.
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At the K and K ′ points the bands have energies

ω1,m(K ) =
√

J (J − 2J ′), (51a)

ω2,m(K ) =
√

J (J + J ′ + m
K ), (51b)

ω3,m(K ) =
√

J (J + J ′ − m
K ), (51c)

where 
K = √
3J (D′ − 2D′′). This results in a gap of√

J (J + J ′ + 
K ) − √
J (J + J ′ − 
K ) at the K (and K ′)

point between the top bands with nonzero m. Note that the
m = 0 triplet band is not affected by the DM interaction, re-
taining their degeneracies at K , K ′, and � points. Furthermore,
the m = ±1 triplets experience an opposite effect, reflecting
the action of the spin-orbit coupling on the up and down spins,
lending them an opposite torque.

The three triplet bands within the m = 1 (or m = −1)
subspace become fully gapped. Although the bands of m = 1
are overlapping with the bands of m = −1 everywhere in the
BZ, there are no matrix elements between the two, and (their
canceling) Chern numbers can be computed independently
for them [5,49–51]. The triplet bands in the case of a finite
DM interaction are plotted in Figs. 8(b) and 8(c). The Chern
number of the nth band of triplet m,

Cn,m = 1

2π i

∫
BZ

dkxdkyF xy
n,m, (52)

is the integral of the Berry curvature

F xy
n,m(k) = 〈

∂kx n(k)
∣∣z∂ky n(k)

〉 − 〈
∂ky n(k)

∣∣z∂kx n(k)
〉

(53)

over the Brillouin zone [18,19]. The |n(k)〉 eigenfunctions are
the solutions of the Bogoliubov–de Gennes equations(

MU(1)
m,k NU(1)

m,k

NU(1)
m,k MU(1)

m,k

)
|n(k)〉 = ωn,m(k)z|n(k)〉, (54)

with

z =
(

I3 0
0 −I3

)
. (55)

To map out a band-touching phase diagram, we compute
the Chern numbers as the function of the first- and second-
neighbor DM interactions D′ and D′′ in Fig. 9. The numbers in
Fig. 9 represent the Chern numbers in the m subspace, going
from the bottom band to the top band. The m = 1 and −1
triplet bands have opposite Chern numbers, reflecting their
opposite chirality.

As the Chern number can only be changed via closing the
gap, we can analytically determine the phase boundaries by
examining when 
� or 
K become zero.

When D′ = 2D′′, the 
K is zero closing the gap between
the upper two bands at the K and K ′ points in a linear Dirac-
cone-like touching. At each corner point, the Chern number
of the bands is changed locally by one as the gap closes and
reopens. The contribution from K and K ′ adds up to a +2
and −2 change in the Chern numbers of the upper and middle
bands (see Fig. 9). The lowest band remains unaltered.


� becomes zero for D′ = −D′′, closing the gap between
the lower two bands in a quadratic touching at the zone center.

FIG. 9. Chern numbers as the function of first- (D′) and second-
(D′′) neighbor interdimer DM interaction, listed in order of ascending
band energy for a given m subspace. The lines D′ = 2D′′ and D′ =
−D′′ denote the boundaries of the band-touching topological transi-
tions. For D′ = 2D′′ the gap between the upper two bands closes at
the corners in the form of Dirac cones. Crossing the D′ = −D′′ line,
the lower bands go through a quadratic touching at the � point.

The Chern numbers of the lower and middle bands change by
±2. The topmost band is unaffected.

To illustrate the exchange of topological charge across
the band-touching transitions, we plotted the Berry curva-
ture distribution on the m = 1 triplet bands in the vicinity of
D′ = −D′′ and D′ = 2D′′ in Fig. 10. The Berry curvature has
opposite sign for the m = −1 triplet bands.

When computing the Chern numbers shown in Fig. 9,
and the distribution of the Berry curvature in Fig. 10, we
use the numerical method introduced in Ref. [51] equipped
with the structure for particle-particle terms present in the
Bogoliubov–de Gennes type of Hamiltonians. The numer-
ical computation, however, does not provide us a deeper
insight. Therefore, in Sec. V, we give a detailed discussion
on the topological transitions and the changing of the Chern
numbers at the linear and quadratic touching points, restrict-
ing our analysis to the hopping part of the Bogoliubov–de
Gennes Hamiltonian. The topological properties of the re-
duced hopping Hamiltonian and the Bogoliubov–de Gennes
Hamiltonian are the same, as the M and N matrices are similar,
i.e., they only differ in their diagonal.

V. LINEAR VERSUS QUADRATIC BAND TOUCHINGS

The transitions between bands with different Chern in-
dices, shown in the phase diagram Fig. 9, occur where the
gap between bands closes. The point where bands touch may
have a linear or quadratic form, which we characterize in
detail in this section. We provide analytic expressions for both
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FIG. 10. Distribution of Berry curvature in the vicinity of the transition points for the m = 1 bands. The Berry curvature for m = −1 is
reversed, and ill-defined for m = 0. We choose the values J = 1, J ′ = 0.2, D′ = 0.01, and vary D′′. At D′ = −D′′ the gap closes at the � point
between the middle and lower bands, we show the Berry curvature before and after the band touching, for D′′ = −D′ − ε (a) and D′′ = −D′ + ε

(b). At D′ = 2D′′ the gap closes at K and K ′ and we plot the Berry curvature for D′′ = D′/2 − ε (c) and D′′ = D′/2 + ε (d). ε is 0.0025.

the Berry curvature and the associated Chern numbers, before
and after the transitions, where they are well defined [52]. We
focus on how topological charge is exchanged between bands.
In both cases, two units of Chern number are exchanged. For
linear band touching this occurs through the exchange of a
single unit at two different points in the BZ, K and K ′, while
for quadratic band touchings two units are exchanged at the �

point.
We continue with the U(1)-symmetric model of Eq. (49)

including the isotropic Heisenberg interaction and the DM
interactions, but keeping the nematic terms zero.

Our approach will be to reduce the description of each
touching point to a 2 × 2 matrix describing only those bands
which touch

Meff
k = d0(k)I2 + d(k) · σ, (56)

where σ is a vector of Pauli matrices, and the linear or
quadratic form of the band touching is encoded in the coef-
ficients d0(k) and d(k). These coefficients can be expanded
about the relevant wave vector, thereby allowing the analytic
calculation of the Chern number

C = 1

2π

∫
BZ

�(kx, ky)dkxdky (57)

through the associated Berry curvature

�(kx, ky) = 1

2

d · (
∂d
∂kx

× ∂d
∂ky

)
(d · d)3/2

, (58)

which, in this case, has the interpretation of a skyrmion
density of the vector d in momentum space.

For simplicity, the derivation we present is restricted to
the hopping matrix MU(1)

m,k , and neglects the effect of the pair
creation and annihilation terms. This restriction can, however,
be relaxed, at the expense of more lengthly expressions. If
we were to consider the full Hamiltonian, the unitary trans-
formations would correspond to I2 ⊗ U� (� = K, K ′, �), and
instead of the 2 × 2 matrix describing the bands in question,

we would get a 4 × 4 problem that can be solved using the
Bogoliubov transformation. The topological properties of the
bands are generally not affected by the pairing terms [an
exception is provided in Ref. [26], where the diagonal (M)
and off-diagonal (N) matrices were not similar]. The equiva-
lency of the topology of M and the full Hamiltonian has been
discussed in Ref. [53].

Ultimately, our goal is to project the three-level problem
(of each m separately) onto a two-level one, involving the
bands that touch at the corners and the center of the hexagonal
Brillouin zone. To do this, we introduce unitary transforma-
tions UK and U� that diagonalize MSU(2)

k (and NSU(2)
k too) at the

band-touching points. Naturally, we can perform the expan-
sion about the touching point without projecting onto the two
levels involved. Nonetheless, we restrict ourselves to a two-
level problem to be able to represent the sublattice degrees
of freedom with only three Pauli matrices instead of eight
Gell-Mann matrices, which would give an eight-dimensional
d vector.

A. Linear band touching at K

We begin with discussing the linear touchings that occur at
the corners kK = ( 4π

3 , 0) and kK ′ = (− 4π
3 , 0) of the Brillouin

zone for D′ = 2D′′. The matrix UK that diagonalizes MSU(2)
k at

both K points is

UK =

⎛
⎜⎜⎝

− 1√
3

1√
2

1√
6

− 1√
3

− 1√
2

1√
6

1√
3

0 2√
6

⎞
⎟⎟⎠. (59)

The column vectors in UK correspond to the eigenvectors
at K and also form a basis for a one- and two-dimensional
irreducible representation of the threefold symmetry at these
points in the absence of the DM interactions. The band that
belongs to the symmetric representation is the bottom band,
which is well separated from the upper two bands in the vicin-
ity of the zone corners. The double representation stretches
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the subspace that we keep in the linearization. Using UK , we transform MU(1)
m,k into the form

U †
K MU(1)

m,k UK =

⎛
⎜⎜⎜⎜⎝

J − J ′ − 1
4

√
3
2 J ′ky + im 3

4
√

2
D′kx

1
4

√
3
2 J ′kx + im 3

4
√

2
D′ky

− 1
4

√
3
2 J ′ky − im 3

4
√

2
D′kx J + J ′

2 +
√

3
4 J ′kx −

√
3

4 J ′ky + im
√

3
(

D′
2 − D′′)

1
4

√
3
2 J ′kx − im 3

4
√

2
D′ky −

√
3

4 J ′ky − im
√

3
(

D′
2 − D′′) J + J ′

2 −
√

3
4 J ′kx

⎞
⎟⎟⎟⎟⎠, (60)

where m is the spin index of the triplets taking the values
−1, 0, 1, and kx and ky are measured from the K point, i.e.,
K corresponds to kx = ky = 0. At the corners of the Brillouin
zone, this matrix is block diagonal and has eigenenergies J −
J ′ and J + J ′/2 ± m

√
3(D′′ − D′/2). As we go away from the

K points, small off-diagonal matrix elements appear that are
linear in momentum. Projecting (60) on the relevant subspace,
we can write the two-band matrix as

Hlin
K =

(
J + J ′

2

)
I2 + dK · σ. (61)

The vector dK has the form

dx
K = −

√
3

4
J ′ky, (62a)

dy
K = −m

√
3

2
(D′ − 2D′′), (62b)

dz
K =

√
3

4
J ′kx. (62c)

The dK ′ vector for the K ′ point is given by (dx
K ′, dy

K ′ , dz
K ′ ) =

(−dx
K , dy

K ,−dz
K ). Using Eq. (58) we get

�K (k) = mJ ′2(D′ − 2D′′)
[J ′2k2 + 4(D′ − 2D′′)2]3/2

, (63)

where we substituted k2
x + k2

y = k2. We note that the Berry
curvature does not depend on the valley index, i.e., it is the
same at the K and K ′ points. To obtain a simpler form for
�(k), we introduce the dimensionless parameter

k0 = 2(D′ − 2D′′)
J ′ , (64)

so that

�K (k) = m
k0

2
(
k2 + k2

0

)3/2 . (65)

�(k) has maximum at k = 0, i.e., the Berry curvature is con-
centrated at the K and K ′ points, as shown in Figs. 10 and
11. Then �K = m sgn(k0 )

2k2
0

∝ m sgn(D′ − 2D′′) J ′2
(D′−2D′′ )2 , which

diverges as the D′ → 2D′′. The D′ = 2D′′ line marks the band-
touching transition at the two K points as shown in Fig. 9. At
this point the dy

K = 0 and the dK vectors are restricted to the
x-z plane. When we go around the K point in the (kx, ky) plane,
the vector (dx

K , dz
K ) winds once around the origin.

Using Eq. (57), we integrate the Berry curvature (65) in a
disk around the K and K ′ points that has radius k:

CK (k) = 1

2π

∫ k

0
�K (k′)2πk′dk′

= m

2
sgn(k0)

⎛
⎝1 − |k0|√

k2
0 + k2

⎞
⎠. (66)

In the vicinity of the transition point the second term goes to
zero, and the K and K ′ points both contribute m

2 to the total
Chern number of the bands. As we cross the transition line
D′ = 2D′′, i.e., as the k0 changes sign, the m

2 Berry charge is
exchanged and the Chern number is changed by ±1 both at K
and K ′: the transferred charge is determined by the winding
number at the touching point. The total change of the Chern
number through the linear touching at the zone corners is the
sum of the contribution of K and K ′, corresponding to ±2, as
indicated in Fig. 9.

Let us note that CK does not give the total Chern number
of the band calculated numerically in Fig. 9. CK only accounts
for the Berry curvature concentrated around the K (and K ′)
points, and does not include the contribution from the vicinity
of the � point, which is significant for the middle band as

FIG. 11. The radial distribution of the Berry curvature �(k)
(solid lines) and the contribution to the Chern number C(k) (dashed
lines) for the linear band touching around the K points [Eqs. (65)
and (66)] and for the quadratic band touching around the � point
[Eqs. (73) and (77)] in the Brillouin zone. The Berry curvature is
maximal at the K point for linear band touching, while in the case of
the quadratic band touching it forms a ringlike structure around the
� point. In both cases, their integrals over a disk of radius k centered
at the touching points saturates quickly at the 1

2 and 1 values [C(k)].
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shown in Fig. 10. We use CK to discuss the exchange of
topological charges through the band-touching transition at
the corners of the BZ. For obtaining the total Chern number,
one needs to consider the contribution of the Berry curvature
at the zone corner too, which we discuss next.

B. Quadratic band touching at �

The quadratic touching is a little different. In the following,
we will show that the total Berry charge is exchanged at a
single point, where the Chern number changes by ±2. Thus,
at the quadratic touching the bands have twice as much Berry
charge as at the linear touching point. Furthermore, the Berry
curvature in the case of the quadratic touching is not centered
at a single point, as was the case with the linear touching.
Instead, it is concentrated on a ring around the touching

point. As the bands approach each other, the radius of the
ring decreases, shrinking into a point when the bands touch.
To see how this happens, we follow the procedure described
above, expanding the rotated MU(1)

m,k about the � point. The
transformation matrix that diagonalizes the Heisenberg model
MSU(2)

m,k at the zone center has the form

U� =

⎛
⎜⎜⎝

1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 − 2√
6

⎞
⎟⎟⎠. (67)

Rotating MU(1)
m,k with U� , it becomes block diagonal at the

� point, decoupling the touching bands from the top band.
Moving away from the zone center, additional small matrix
elements appear between the subspaces,

U †
�Mm

� U� =

⎛
⎜⎜⎝

J − J ′
8 k2 + 2J ′ − J ′

8
√

2
kxky − J ′

16
√

2

(
k2

x − k2
y

)
− J ′

8
√

2
kxky J − J ′ + J ′

8 k2
x −im

√
3(D′ + D′′) + J ′

8 kxky

− J ′

16
√

2

(
k2

x − k2
y

)
im

√
3(D′ + D′′) + J ′

8 kxky J − J ′ + J ′
8 k2

y

⎞
⎟⎟⎠, (68)

where k2
x + k2

y = k2. We keep only the leading terms, taking
D′, D′′ � J ′ we neglect terms as D′k2 and D′′k2. Diagonaliz-
ing this matrix at the � point we find the energies ω1 = J +
2J ′ for the upper band and ω2,3 = J − J ′ ± m

√
3(D′ + D′′)

for the lower bands split by the DM interactions [cf. Eq. (50)].
The effective 2 × 2 Hamiltonian describing the splitting in the
vicinity of the � point is the bottom right corner of the matrix
(68),

H eff
� = J − J ′

(
1 − k2

16

)
I2 + d� · σ, (69)

where the first term is an energy shift, and the d� reads as

dx
� = 1

16
J ′2kxky, (70a)

dy
� = m

√
3(D′ + D′′), (70b)

dz
� = 1

16
J ′(k2

x − k2
y

)
. (70c)

In the absence of the DM interactions dy
� = 0, and we can

recognize the mark of the quadratic band touching: as we go
around the � point in the (kx, ky) plane, the vector (dx

�, dz
� )

winds twice around the origin [54]. Turning on the D′ and/or
the D′′, a gap 
̃� (k) = 2

√
d� · d� opens between the two

bands of the size


̃� (k) =
√

12(D′ + D′′)2 + 1

64
J ′2k4 (71)

[cf. Eq. (50)]. Inserting d� (k) into Eq. (58) for the Berry
curvature of the lower band, we get

�� (k) = 4m
√

3(D′ + D′′)
(

J ′k
8

)2

[
12(D′ + D′′)2 + (

J ′k2

8

)2
]3/2 , (72)

while �� (k) changes sign for the upper band. It is convenient
to rewrite the curvature as

�� (k) = m
2k2k2

0(
k4

0 + k4
)3/2 sgn(D′ + D′′), (73)

where

k2
0 = 16

√
3
|D′ + D′′|

J ′ . (74)

�� (k) has a maximum for k = 2−1/4k0, where it diverges as

�� (2−1/4k0) ∝ m

k2
0

sgn(D′ + D′′) ∝ m
J ′

D′ + D′′ (75)

for D′ + D′′ → 0. Furthermore, the �� (k) vanishes for both
k � k0 and k � k0:

�� (k) =
{

m sgn(D′ + D′′) 2k2

k4
0

+ · · · , if k � k0;

m sgn(D′ + D′′) 2k2
0

k4 + · · · , if k � k0.
(76)

The maximum of the Berry curvature forms a ring around
the � point. The ring is nicely seen for the lowest two bands
in Fig. 10. This behavior is unlike the linear band touching,
where the Berry curvature is concentrated at the touching K
points.

Using Eq. (57) and integrating the curvature around the �

point within a disk of radius k, we can check that the ring has
enough curvature to collect a contribution ±1 to the Chern
number of the bands:

C� (k) = m sgn(D′ + D′′)

⎛
⎝1 − k2

0√
k4

0 + k4

⎞
⎠ (77)

≈ m sgn(D′ + D′′)
(

1 − k2
0

k2

)
, if k � k0. (78)
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Here, m = −1, 0, 1, and the sign depends on the band as well
as the sign of the DM interaction. As the DM is continuously
tuned across the quadratic band-touching transition, the +1
and −1 Berry charges are exchanged between the two bands,
leading to the 
C = 2 transition for the two lowest bands, as
seen along the D′ = −D′′ line in Figs. 9 and 10.

Again, we emphasize that investigating C� characterizes
how much the topological charge changes through band-
touching transition, and cannot produce the total Chern
number of the band. For example, the middle band would have
Berry curvature contribution from the corners of the BZ too;
this, however, does not change when the gap closes at the �

point.

VI. TRIPLET Z2 TOPOLOGICAL INSULATOR

We now turn to the problem of classifying the topological
phases of the model, and characterizing their experimental
characteristics. We start with the gapped, topological phase
found in the simplified model of Sec. IV, which we show to be
a spin Hall state characterized by a Z2 topological invariant,
in direct analog with the model of Kane and Mele [7].

Within each m subspace, we can think about the DM inter-
action term as an effective magnetic field in momentum space
that acts on a pseudospin 1 corresponding to the sublattice
degree of freedom. The m = 0 subspace is clearly not subject
to any kind of magnetic field, while the spinful m = 1 and
−1 triples are affected in the opposite way, the effective field
(DM) splits the “spin 1,” both m = 1 and −1 corresponding
to the Haldane model [6] with opposite chirality. Therefore,
the time-reversal pair m = 1 and −1 together realize an ana-
log of the Kane and Mele model. Let us emphasize that the
triplets, being components of an integer spin, do not form
Kramers pairs, and their degeneracy may be lifted even when
the TR symmetry is preserved. When the nematic exchange
anisotropies are present, for example, the Sz

T ceases to be
a good quantum number, and the m = 1 and −1 subspaces
hybridize, destroying the Z2 phase. We discuss this scenario
in Sec. VII.

In the case when the nematic terms are zero, the complete
overlap between the m = 1 and −1 bands renders the net
Chern number zero. The m = ±1 triplets realize an analog
of the spin Hall insulator state and are characterized by a Z2

invariant [7–10].
As shown in Sec. IV, the Chern numbers are multiples of

m (see Fig: 9), and the bands with opposite spin have opposite
Chern number. Therefore, the total Chern number of each de-
generate band, formed by the time-reversal partners m = ±1,
vanishes: Cn,1 + Cn,−1 = 0. Similar to electronic systems with
conserved Sz

T , the Z2 index can be understood as the “spin
Chern number” [27] and computed as the staggered quantity
1
2 (Cn,1 − Cn,−1) mod 2.

For the bottom and top bands the Chern numbers in each
phase are ±m, thus the spin Chern number is ± 2

2 mod 2 = 1.
The middle band has either Chern number 0 or ±2m, resulting
in a trivial 0 Z2 index. This also shows that the Z2 topological
invariant does not depend on the DM anisotropy, but only on
the conservation of Sz

T . Even when we close the band gaps at
the band-touching transitions, the Z2 indices will not change.

FIG. 12. (a)–(c) Schematic figures representing periodic bound-
aries along the x direction and a finite size in the y direction with
various edges. (d)–(f) The projected m = ±1 triplet bands and he-
lical triplet edge modes for finite second-neighbor DM interaction
D′′ = 0.01 in the open geometries shown in (a)–(c), respectively. The
edge modes are colored according to the spin degrees of freedom and
the edges, with red colors representing the up spin and the blue colors
denoting the down spin. The open arrows correspond to the bottom
edge, and the filled ones to the top edge.

The Z2 index can be computed using the eigenvalues of the
parity operator too, which we discuss in detail in Appendix B.

As a consequence of the Z2 topology, the system with
open boundaries has helical triplet edge modes, as shown
in Fig. 12. Note that one helical edge state is made of two
chiral edge states going in opposite directions. We chose three
different edge geometries, illustrated in Figs. 12(a)–12(c), and
computed the bands for each of those [see Figs. 12(d)–12(f)].
The spin degree of freedom of the edge modes is denoted
with red and blue colors, while the filled and open arrows
correspond to the top and bottom edges, respectively.

A. Triplet Nernst effect

To obtain an experimentally detectable signature of the
Z2 triplet bands, we compute the boson analog of the spin
Hall effect. Applying a temperature gradient on the sample
induces an energy current of triplet excitations. The m = 1
and −1 triplets are affected in an opposite way by the DM
interaction, due to their opposite chirality, and deflect into
opposite directions. The triplet spin separation perpendicular
to the temperature gradient leads to the cancellation of the
transverse triplet heat current, but gives a finite transverse spin
current. The transverse spin current arising in response to an
applied temperature gradient is called the Nernst effect. We
directly apply the formula of magnon-mediated spin Nernst
effect [23,25,37,55,56] for the triplet excitations

jSN = αxyẑ × ∇T, (79)
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FIG. 13. (a) The spin Nernst coefficient αxy along the blue dashed line of Fig. 9 as a function of temperature and D′′ (J ′/J = 0.2, D′/J =
0.1). The white dashed lines indicate the boundaries of the band-touching topological transitions, where the Berry curvatures of the touching
bands are exchanged. This change in the topological charge is also signaled by the anomaly of spin Nernst effect at the transition lines.
(b) The contributions of the Sz = +1 and −1 triplet bands to the Nernst coefficient as the function of D′′ at given temperatures. The αxy has
the same size and an opposite sign for the up and down spins, corresponding to their degenerate energies but opposite chirality. (c) The total
αxy = α1,xy − α−1,xy Nernst coefficient as the function of D′′ at various temperature values.

where the spin Nernst coefficient αxy can be expressed as

αxy = −i
kB

h̄

∑
m,n

∫
BZ

mc1(ρn,m)F xy
n,m(k)d2k, (80)

where F xy
n,m(k) is the Berry curvature of the nth band of triplet

m defined in Eq. (53),

c1(ρ) =
∫ ρ

0
ln(1 + t−1)dt = (1 + ρ) ln(1 + ρ) − ρ ln ρ,

(81)
and

ρn,m = (eωn,mβ − 1)−1 (82)

is the Bose-Einstein distribution function.
A density plot of the numerically computed triplet me-

diated spin Nernst coefficient αxy is shown in Fig. 13 as
function of temperature and D′′. We calculated αxy along the
blue dashed line in Fig. 9, using the complete Bogoliubov–de
Gennes Hamiltonian. At the topological band-touching lines
D′′ = −D′ and D′′ = 2D′, the spin Nernst effect has inflection
points, corresponding to the exchange of topological charge
between the touching bands.

As long as the magnetic field hz is zero and the time-
reversal symmetry is preserved, αxy,1 = −αxy,−1, and the
transverse spin Nernst current jSN = jSN,1 − jSN,−1 can be
written as 2 jSN,1. An applied magnetic field Zeeman splits
the triplets, pushing the m = 1 and −1 bands in opposite
directions (see Sec. VIII). As a consequence, the thermal
filling of m = 1 and −1 becomes different, leading to an
imbalanced contribution from the up and down spins but still
providing a finite spin Nernst effect. Note that we consider
an out-of-plane field direction, that does not harm the U(1)
symmetry, preserving Sz

T as good quantum number.

VII. NEMATIC INTERACTION AND THE FATE
OF THE Z2 PHASE

We now explore the consequences of the terms which mix
the triplets with m = ±1, namely, the nematic interactions

introduced in Sec. II. Symmetric exchange anisotropies of this
type are naturally present in many spin systems, and arise in
both the single and bilayer kagome and honeycomb models,
widely discussed as candidates for topological magnon and
triplon phases.

In the original Kane and Mele model [7], analagous spin-
mixing terms, such as the Rashba spin-orbit coupling, can be
present (when the σh reflection is broken). Although such a
term hybridizes the bands with up and down spins, the spin
degeneracy at the time-reversal-invariant momenta (TRIM)
remains protected by Kramer’s theorem. As a consequence,
the Z2 topological phase considered by Kane and Mele is
perturbatively stable against the introduction of Rashba inter-
actions.

To explicitly see the difference from the Kane-Mele model,
we consider the subspace of the pseudo-spin-half formed by
the +1 and −1 triplets, and investigate the fate of the Z2

band topology when the spin-mixing nematic interactions are
finite. We first examine their effect on the spin degeneracy at
the TRIM (Sec. VII A). Then, taking an open geometry, we
examine the consequence of the nematic interactions for the
nontrivial edge modes (Sec. VII B). To formalize our findings,
in Sec. VII C, we show that the TR × U(1) symmetry corre-
sponds to a pseudo-time-reversal operator �, which squares
to −1 and can protect the Z2 band topology. We identify
the terms in our model that possess this symmetry and those
which break it.

A. Gap opening at the TRIM

We consider first the effect of nematic interactions
on triplon dispersion at time-reversal-invariant momenta
(TRIM). The Bogoliubov–de Gennes Hamiltonian of the TR
pair m = ±1 triplets corresponds to the Hamiltonian (30a):

H (1,−1)
k =

(
Mk Nk
Nk Mk

)
. (83)
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We compute the energies of the bands at the TRIM, namely,

� = (0, 0), M1 =
(

π,
π√

3

)
,

M2 =
(

0,
2π√

3

)
, M3 =

(
−π,

π√
3

)
(84)

shown in the bottom panel of Fig. 1(a). Including the nematic
terms, the energies at the � point become

ω1,2(�) = J + J ′

2
−

√
3

2
(D′ + D′′) − �, (85a)

ω3,4(�) = J − J ′ +
√

3(D′ + D′′) ± 1

2
(K‖ − 4K ′

‖), (85b)

ω5,6(�) = J + J ′

2
−

√
3

2
(D′ + D′′) + �, (85c)

where

� = 1

2

√
3(D′ + D′′ +

√
3J ′)2 + (K‖ + 2K ′

‖)2. (86)

At the zone center, the top and bottom bands remain degener-
ate, while the middle two bands split as a result of the nematic
interaction.

The effect of the nematic term is more drastic at the less
symmetric M points, where the energies of the six triplets are
all nondegenerate:

ω1,2(�) = J ∓ K ′
‖ − �±, (87a)

ω3,4(�) = J ∓ K‖
2

, (87b)

ω5,6(�) = J ∓ K ′
‖ + �±, (87c)

with

�± = 1

2

√(
2J ′ − K‖

2

)2

+
(

2(D′ − D′′) ±
√

3

2
K‖

)2

. (88)

The opening of a gap 
 ∼ K at these TRIM implies that even
infinitesimal nematic interactions are effective in destroying
the Z2 band topology.

We note that, for simplicity, the eigenvalues and band gaps
above have been calculated considering the Mk matrix and not
the entire Bogoliubov–de Gennes Hamiltonian. Solving the
Bogoliubov–de Gennes problem denies us a simple analytical
form, however, the physics remains the same: the infinitesi-
mal nematic terms break spin degeneracy, opening a gap at
the TRIM. This contrasts with the Kane-Mele model, where
Rashba coupling does not break the time-reversal symmetry
protecting the degeneracy at the TRIM [8]. And it follows that
infinitesimal Rashba interaction cannot lift the degeneracy of
Kramers doublets at TRIM.

We return to this point in Sec. VII C, where we analyze
the symmetry-protecting Z2 band topology in our model, and
show that nematic interactions break this symmetry. Before
that, we examine another consequence of the loss of Z2 band
topology, namely, the hybridization of the edge states.

B. Hybridization of the edge states

The band splitting at the TRIM already indicates that the
degeneracy at these points is not protected by a symmetry

FIG. 14. The effect of the nematic interaction on the edge modes
and the topology of the bands. (a)–(c) Show the case when J ′ = 0.1J ,
D′′ = 0.01J , and K‖ = 0.02J , for the spiky, flat, and mixed geome-
tries, respectively [see Figs. 12(a)–12(c)]. The K ′

‖ is zero. The finite
intradimer nematic term (K) leads to the hybridization of the helical
edge modes with up and down spin, and a gap is opened at k = π

between the boundary modes on the spiky edges, rendering them
topologically trivial. The boundary modes at the flat edges do not
merge with the middle band at k = π , but avoid that and become
trivial as well as shown in the insets of (b) and (c). (d)–(f) Represent
the case when the interdimer nematic interaction is finite, K ′

‖ = 0.01J
and J ′ = 0.1J , D′′ = 0.01J but K‖ = 0. Here too the edge modes
with up and down spins hybridize and become gapped at π . In the
case of the mixed boundaries, the edge modes merge hybridization
within the gap [see inset of (f)], and thus cannot collapse the band
gap, signaling topologically trivial bands.

corresponding to the time reversal in the Kane-Mele model.
To elaborate on the effect of the nematic terms on the Z2

topology, we compute the bands of the bilayer kagome stripes
for the three different edge types shown in Figs. 12(a)–12(c).
In an open system, the time-reversal-invariant point is k =
π . The spin degeneracy at this point will not necessarily
be protected by TR symmetry, as it were for a Kramer’s
pair. To illustrate this, in Fig. 14, we plot the spinful triplet
bands for the various edge geometries for finite intradimer
[Figs. 14(a)–14(c)] and finite interdimer nematic interactions
[Figs. 14(d)–14(f)]. We find that in each case the edge modes
hybridize, becoming trivial via an avoided crossing, i.e., they
no longer connect the bands and close the gap. This is a
clear indication that the fragile Z2 topology is quashed by the
nematic terms.

We note that the vanishing of Z2 topology is not the
consequence of a band-touching transition, which happens
in the original Kane and Mele model, where increasing the
Rashba term will close the band gap and induce a topological
transition from a spin Hall state to a trivial one. The values of
the nematic terms were carefully chosen to be smaller than the
critical values at which the band gaps close (see Appendix C).
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C. Pseudo-TR symmetry of the Hamiltonian

In what follows, we give a more formal proof for the
instability of the Z2 band topology against an arbitrary small
nematic interaction. For this, we will express the TR × U(1)
symmetry as a tensor product of 2 × 2 and a 3 × 3 matrix
comprising the spin and sublattice degrees of freedom, re-
spectively. The TR is an antiunitary operator and in the basis
(t†

k, t−k ) defined in Eqs. (31) has the form

T = (I2 ⊗ 2sx ⊗ I3)K, (89)

where the two-dimensional identity matrix I2 accounts for the
particle-hole space, 2sx = σ x acts on the spin space spanned
by m = ±1, I3 acts on the A, B, C sublattice degrees of
freedom, and K is the complex conjugation. For details on the
action of T on the +1 and −1 triplets, see Appendix A. We
note that since the +1 and −1 triplets have integer spins, the
square of the TR is T 2 = 1, and it cannot ensure the Kramers
degeneracy.

From our numerics it appears that the U(1) symmetry,
the conservation of the Sz

T , is needed for the Z2 topology. In
the 2 × 2 spin subspace the U(1) rotation is described by the
e−iϕ2sz ∝ cos(ϕ)I2 − i sin(ϕ)2sz, so the commutation of the
bond wave Hamiltonian with the

R = I2 ⊗ 2sz ⊗ I3 (90)

unitary matrix ensures the U(1) symmetry. It commutes with
the MXXZ

k , MDM
k , and MZeeman

k bond-wave Hamiltonian matri-
ces in Eq. (35): RzMXXZ

k − zMXXZ
k R = 0, and so on, where

we defined the pseudoidentity for the Bogoliubov–de Gennes
formalism

z = 2sz ⊗ I2 ⊗ I3. (91)

The composition of the TR and U(1) symmetry gives the

� = (I2 ⊗ 2isy ⊗ I3)K (92)

antiunitary operator. Since

�2 = −1, (93)

� is the desired pseudo-time-reversal operator, assuming the
role of the TR symmetry and ensuring the protection of the Z2

topology. We note that an analogous pseudo-TR operator was
previously introduced in Ref. [27] for magnetically ordered
spins. However, this operator was associated with the combi-
nation of TR and mirror symmetries, which squares to +1 in
the present case.

In what follows, we explicitly show that the Hamiltonian
containing only the XXZ and DM anisotropies MXXZ

k and
MDM

k in Eq. (35) commutes with � and will possess the
Z2 topology. The nematic interactions, defined by Eq. (40),
however, do not commute either with Sz

T or with �. As a
consequence, the Z2 bands will no longer be protected when
either of the nematic interactions are finite.

For this purpose we introduce the antiunitary operator

T = (i2sy ⊗ I3)K, (94)

TABLE II. Invariance of the various terms appearing in the
Hamiltonian for the m = ±1 triplets under the pseudo-time-reversal
operator, the physical time-reversal symmetry, and the U(1) symme-
try. Note that the pseudo-TR symmetry corresponds to TR × U(1).

Pseudo TR Physical TR U(1)
(i2sy⊗I3)K (2sx ⊗I3)K 2sz ⊗ I3

XXZ I2 ⊗ I3 � � �
I2 ⊗ λn � � �

(for real λn)

DM sz ⊗ λn � � �
(for imaginary λn)

Nematic sx ⊗ λn �
(for real λn)

sy ⊗ λn �
(for real λn)

Zeeman sz ⊗ I3 �

which acts as a pseudo-TR operator within the particle (hole)
subspace:

� = I2 ⊗ T =
(
T 0
0 T

)
. (95)

The � antiunitary operator is a symmetry of H (1,−1)
k if [27]

�zH (1,−1)
k − zH (1,−1)

k � = 0. (96)

Using Eq. (94), this can be expressed as commutations be-
tween T and the diagonal Mk and the off-diagonal Nk:

�zH (1,−1)
k − zH (1,−1)

k � = z

(
[T , Mk] [T , Nk]
[T , Nk] [T , Mk]

)
.

(97)

Since the matrices Mk and Nk only differ in their diagonal,
it is sufficient to consider the commutation of T and Mk.
The various terms in Mk are expressed in the same basis
as T in terms of I2 ⊗ I3, sα ⊗ I3, I2 ⊗ λn, and sα ⊗ λn, with
α = x, y, z, and n = 1, . . . , 8, as introduced in Sec. III B. Let
us note that the coefficients of these operators only contain
even functions of k, therefore, T does not affect those.

The effect of the T operator on a general term can be
written as

T (sα ⊗ λn)T † = (i2sy ⊗ I3)(sα ⊗ λn)∗(i2sy ⊗ I3)†

= (i2sy)(sα )∗(i2sy)† ⊗ (I3)(λn)∗(I3)†

= (−sα ) ⊗ λ∗
n, (98a)

T (I2 ⊗ λn)T † = I2 ⊗ λ∗
n, (98b)

T (sα ⊗ I3)T † = −sα ⊗ I3, (98c)

where the asterisk stands for complex conjugation. The I2 ⊗
I3 is trivially invariant. Furthermore, the operators I2 ⊗ λn

preserve (break) the pseudo-TR symmetry when the λn Gell-
Mann matrices are real (imaginary), while the terms sα ⊗ λn

are invariant if λn is imaginary and break T for λn ∈ R.
Table II contains the transformation of the different terms

appearing in the triplet Hamiltonian under the pseudo- and
real-TR operators and the U(1) symmetry. We can readily
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FIG. 15. The finite magnetic field (h = 0.2J , gz = 2) splits the triplets according to their spin degree of freedom m. (a) Triplet bands for the
D′ = D′′ = 0 isotropic case. The bands of each m sector have the same dispersion shifted by the Zeeman energy (b) D′ = 0, D′′ = 0.01J . The
m = ±1 bands become fully gapped with well-defined and finite Chern numbers, while the m = 0 modes remain unaffected. (c) 1D dispersion
in the open geometry [corresponding to Fig. 12(a)] for the D′ = 0, D′′ = 0.01J case. Nontrivial edge states collapse the anisotropy gaps for
m = ±1, signaling nontrivial band topology.

see that the nematic interactions break the U(1) symmetry
and, consequently, the pseudo-TR symmetry too that would
guarantee the protection of the Z2 topology. The Zeeman term
breaks both the pseudo-TR and the physical TR symmetries.

VIII. TIME-REVERSAL SYMMETRY-BREAKING
AND THERMAL HALL EFFECT

So far, we have only considered states found in the
absence of magnetic field. However, the breaking of time-
reversal symmetry by magnetic field also has interesting
consequences. In Fig. 15, we show how the triplon band
structure of a model with Heisenberg and DM interactions
changes as a function of magnetic field.

An immediate consequence of magnetic field is that the
time-reversal pairs m = ±1 split, and their Chern numbers no
longer cancel. As a result, we end up with an analog of a Chern
insulator state, but realized by the triplets.

A second consequence of the Zeeman splitting of triplets
is that the thermal filling of m = 1 and −1 becomes different,

and the imbalance of the up- and down-spin current produces
a finite thermal Hall coefficient. The thermal Hall signal is
the transverse energy current in response to an applied tem-
perature gradient (and perpendicular magnetic field). In the
TR-symmetric case the up- and down-spin triplets had over-
lapping energies and consequently identical thermal filling,
providing the same number of excitations moving in opposite
directions and giving a zero net thermal Hall response. As
the degeneracy is lifted, the up- and down-spin contributions
become different, giving a finite net transverse energy current.
The thermal Hall coefficient can be written as [39]

κxy = −i
1

β

∑
n,m

∫
BZ

c2(ρn,m)F xy
n,m(k)d2k, (99)

where F xy
n,m(k) is the Berry’s curvature, c2(ρ) = ∫ ρ

0 ln2(1 +
t−1)dt , and ρn,m is the Bose-Einstein distribution.

We computed the thermal Hall coefficient κxy along the
blue dashed line indicated in Fig. 9 as the function of
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FIG. 16. (a) The thermal Hall coefficient for h = 0.2J along the blue dashed line depicted in the phase diagram of Fig. 9 using the same
parameters as in Fig. 13. (b) We show the contributions from the +1 and −1 triplets separately. The Sz = −1 triplet moves up in energy,
due to the Zeeman splitting, and thus at low temperatures these bands are less filled than those with Sz = 1, giving a smaller contribution. At
higher temperature this difference shrinks, and the sum of the signals, having opposite sign, cancels as T → ∞. (c) Thermal Hall coefficient at
various temperatures as the function of D′′. The dashed vertical lines indicate the phase transitions at D′′ = −D′ and D′′ = D′/2, respectively,
where the thermal Hall coefficient has an inflection point.

temperature and using the entire Bogoliubov–de Gennes
Hamiltonian. κxy is plotted in Fig. 16.

In summary, the parameters D′ and D′′ together with the
Chern numbers define a topological phase diagram as seen on
Fig. 9. The different phases can be clearly distinguished by
the thermal Hall coefficient which is largest in the (m, 0,−m)
phase, as can be seen on Fig. 16. The effect is equally large in
the (−m, 0, m) phase, but of opposite sign, as this phase can
be reached simply by inverting the sign of D′ and D′′, thereby
negating the sign of the m-dependent term in the Hamiltonian.

Let us point out that including the nematic terms has no
effect on the Chern bands, unlike the case of the Z2 bands. As
long as the nematic interactions are small enough for the band
gap to remain open, the topology of the triplet bands does not
change.

IX. CONCLUSIONS

In this paper, we investigate some of the features which
arise in the topology of the triplon bands found in spin-
1
2 quantum paramagnet on the bilayer kagome lattice. We
go beyond the XXZ model extended with the DM interac-
tions, the archetypal analog of the electronic tight-binding
hopping Hamiltonian with spin-orbit coupling. Deriving the
most general form of the Hamiltonian allowed by the sym-
metry of the lattice (Sec. II) we explore the ramifications of
each symmetry-allowed term. Reducing the Hamiltonian to
a model for triplon excitations of the quantum paramagnet
(Sec. III), we characterize these bands for models of increas-
ing complexity by lowering the symmetries.

The simplest case is when the Hamiltonian is the pure
SU(2)-symmetric Heisenberg model, discussed in Sec. III C.
In this case, the band structure is trivial, with threefold de-
generate bands, exhibiting a quadratic band touching at the �

point and linear band touchings at the K and K ′ points in the
Brillouin zone.

In the [TR × U(1)]-symmetric case, we find that the
triplets provide an analog to the Z2 topological insulator con-
sidered by Kane and Mele [7,8], with helical triplet modes on

open edges (Sec. IV). This model supports topological phases
with bands having different Chern numbers. We give a de-
tailed description of the exchanged topological charges at the
phase transitions, for both the linear and quadratic touchings
(Sec. V). The behavior of the Z2 topological phase is also
characterized through calculations of its topological invariant,
and the associated triplet Nernst effect (Sec. VI).

Finally, we explore two different mechanisms which can
eliminate the Z2 topology of the triplon bands by breaking
either the pseudo-TR symmetry with the inclusion of nematic
interactions, or by breaking the physical TR symmetry with
applied magnetic field. The first route to remove the Z2 phase
is the breaking of time-reversal symmetry. In applied mag-
netic field the triplon bands split and the system becomes a
Chern insulator, exhibiting finite thermal Hall response and
chiral modes on open edges (Sec. VIII), in a straightforward
analogy with the Kane and Mele model [7,8]. The second,
less trivial route, is the inclusion of bond-nematic interactions,
permitted by the symmetry of the lattice, which breaks a
pseudo-TR symmetry introduced in Sec. VII.

In contrast to the electronic model of Kane and Mele,
where the mixing of states with Sz = ± 1

2 by (weak) Rashba
interactions is compatible with a spin Hall state, these terms
have a singular effect, immediately changing the topology of
the triplon bands. Such bond-nematic interactions, typically
referred to as symmetric exchange anisotropies, are naturally
present in other spin models too, proposed to exhibit Z2 bands
realized by magnetic excitations. Although one can introduce
a pseudo-TR symmetry that squares to −1, in analogy to the
physical TR symmetry present in the Kane and Mele model,
this symmetry does not prevail in a general model.

The nematic terms and in-plane DM interactions that mix
the spins and also break the pseudo-TR symmetry (�) can also
be present in other models proposed as bosonic analogs of Z2

bands, including bilayer ordered magnets [27] and paramag-
nets [33]. Our results call for detailed investigations of the
consequences of the various � symmetry-breaking terms in
bosonic systems in general.
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APPENDIX A: TIME-REVERSAL SYMMETRY

The TR operator for a dimer has the from

T = eiπ (Sy
1+Sy

2 )K =

⎛
⎜⎝

1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

⎞
⎟⎠K, (A1)

where the basis is (|s〉, |t−1〉, |t0〉, |t1〉) and K denotes a com-
plex conjugation. Thus, the TR operator for the spin 1 formed
by the triplets is

T =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠K. (A2)

The state |t0〉 changes sign, while the |t1〉 and |t−1〉 trans-
form into each other. This can also be shown writing the
triplets in their usual form |t1〉 = |↑↑〉, |t−1〉 = |↓↓〉, and
|t0〉 = 1√

2
(|↑↓〉 + |↓↑〉), and using that the TR acts on the

spin-half as T : |↑〉 → |↓〉 and T : |↓〉 → −|↑〉.
Restricting ourselves to the up and down triplet states, and

considering them as the components of a pseudo-spin-half,
the Pauli matrices formed by them will transform differently
under TR than those of a real spin-half (where all of them
break TR). The TR acts on the pseudo up and down spins as
T : |1〉 → | − 1〉 and T : | − 1〉 → |1〉. Therefore, among the
Pauli matrices

σ x = |1〉〈−1| + |−1〉〈1|, (A3a)

σ y = −i|1〉〈−1| + i|−1〉〈1|, (A3b)

σ z = |1〉〈1| − |−1〉〈−1|, (A3c)

the σ x and σ y are invariant under TR, and σ z remains the only
TR breaking operator. This is an important difference between
the pseudo-spin-half formed by the triplets |1〉 and | − 1〉, and
the real spin-half of an electron, for example.

We now write the T operator in the basis of Eqs. (31):
First, we represent the action of T on the |1〉 and | − 1〉 triplets
with the σx = 2sx operator, then we account for the particle-
hole space of the Bogoliubov–de Gennes equation by a 2 × 2
identity matrix I2, and the three sublattice flavors by a 3 × 3
identity matrix I3 since the TR operator leaves the sublattices
intact. The TR operator becomes T = (I3 ⊗ 2sx ⊗ I3)K where
K is the complex conjugation. In the sublattice subspace
represented by the Gell-Mann matrices, the real λ’s are TR in-
variant, while the imaginary λ2, λ5, and λ7 break time-reversal
symmetry.

TABLE III. Parity eigenvalues of the bottom (black), middle
(purple), and top (red) bands for each spin degree of freedom m at
the time-reversal-invariant momenta �i.

Band Bottom Middle Top

Parity eigenvalue ξm(�) 1 1 1
ξm(M1) −1 1 −1

ξm(M2) 1 −1 1

ξm(M3) 1 −1 1

Z2 index ν 1 0 1

In the main text we discuss the U(1) symmetry operator
written in the same basis as T , as well as the TR × U(1)
symmetry corresponding to a pseudo-TR operator �. We
show that to see the commutation relation of the various terms
in the Bogoliubov–de Gennes Hamiltonian it is sufficient to
consider the particle (hole) subspace. In Table II, we collect
the transformation of the different terms entering the triplet
Hamiltonian Mk.

APPENDIX B: Z2 INVARIANT FROM THE PARITY
EIGENVALUES

In an inversion-symmetric system, the Z2 can be easily
calculated using the parity eigenvalues at the four time-
reversal-invariant momenta (TRIM) [44]

4∏
i=1

ξ (�i) = (−1)ν . (B1)

The TRIM �i corresponds to �, M1, M2, and M3 shown
in Fig. 1(a) of the main text. When the product is −1, the
exponent ν is odd and the system is topologically nontrivial.
For even ν values the system is trivial.

We define the parity operator (P) as the inversion through
the center of the dimer A. Consequently, the effect of P on
dimer A is the exchange of its sites 1 and 2, while dimer B
will also be shifted by δy and dimer C by δx from their original
positions beside exchanging their sites (see Fig. 1 in the main
text).

Changing the site indices 1 and 2 does not affect the
triplets, which are even under permutation, nor has the in-
version any effect on the spin degrees of freedom. Thus, P
will not mix different m bands and we can treat each sector
separately again. In momentum space Pm becomes diagonal,

Pm =
(

t†
m(k)

t−m(−k)

)(
Pk 0
0 Pk

)(
tm(k)

t†
−m(−k)

)
, (B2)

where

Pk = diag
(
1, eiδy·k, eiδx ·k). (B3)

We compute the eigenvectors of Hm numerically at each
TRIM, �i = (�, M1, M2, M3), and determine their eigenvalue
ξm(�i) with Pm defined in Eq. (B2). When inversion symmetry
is present, the Pm commutes with Hm at the TRIM. The parity
eigenvalues of the bands are collected in Table III. The Z2

indices of the bottom and top bands are 1, while it is 0 for the
middle band. Let us note that if we chose dimer B as the center
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of inversion, the parity eigenvalues for the point M2 would
become −1, 1, and −1, while ξm(M1) and ξm(M3) would
be 1, −1, and 1. Similarly, setting dimer C as the inversion
center results in a further cyclic permutation of the rows of
Table III. This corresponds to the threefold symmetry of the
ABC triangles.

APPENDIX C: ESTIMATES OF THE GAP-CLOSING
TRANSITION INDUCED BY THE NEMATIC TERMS

In the K ′
‖ = 0 case, corresponding to Figs. 14(a)–14(c),

the critical value of the intradimer nematic interaction at
which the band touching occurs is Kcrit

‖ = 4(D̃2−√
3D̃J̃ ′ )√

3D̃−J̃ ′ . The

parameters D̃ and J̃ ′ depend on where the gap closes in
the Brillouin zone: The gap between two low-lying bands
closes at the � point for D̃ ≈ (D′ + D′′)( J ′

J + 1) and J̃ ′ ≈

J ′ − J ′2
2J + (D′+D′′ )2

2J , while the gap between the top bands col-
lapses at the K (K ′) point for D̃ ≈ (D′ − 2D′′)( J ′

4J − 1
2 ) and

J̃ ′ ≈ − J ′
2 − J ′2

8J + (D′−2D′′ )2

8J . The values of D̃ and J̃ ′ were de-
termined perturbatively, assuming that J is the leading term.
Inserting the parameter values used in Figs. 14(a)–14(c),
we get Kcrit

‖ (�) ≈ ±0.0889 and Kcrit
‖ (K ) ≈ ±0.0551. Both of

these values are larger than the K = 0.02, which we chose to
show the hybridization of the edge modes.

For K‖ = 0, the critical value of the interdimer nematic in-

teraction is K ′crit
‖ = ∓J̃ ′ ± √

3D̃ ±
√

D̃2 + J̃ ′2. The lower gap

closes at the � point when D̃ ≈ (D′ + D′′)( J ′
J + 1) and J̃ ′ ≈

J ′ − J ′2
2J + (D′+D′′ )2

2J and the gap between the top bands closes
at the K (K ′) point when D̃ ≈ (D′ − 2D′′)(1 − J ′

2J ) and J̃ ′ ≈
J ′ + J ′2

4J − (D′−2D′′ )2

4J . For the parameter values of Figs. 14(d)
and 14(e), the K ′crit

‖ (�) ≈ ±0.0197 and K ′crit
‖ (K ) ≈ ±0.0312,

both of which are exceeding K ′ = 0.01 that we chose.

[1] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[2] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[3] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den

Nijs, Phys. Rev. Lett. 49, 405 (1982).
[4] J. E. Avron, R. Seiler, and B. Simon, Phys. Rev. Lett. 51, 51

(1983).
[5] M. Kohmoto, Ann. Phys. 160, 343 (1985).
[6] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[7] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[8] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802

(2005).
[9] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045

(2010).
[10] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[11] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.

Bernevig, and Z. Wang, Nature (London) 566, 480 (2019).
[12] M. Onoda, S. Murakami, and N. Nagaosa, Phys. Rev. Lett. 93,

083901 (2004).
[13] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,

M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Rev. Mod. Phys. 91, 015006 (2019).

[14] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.
Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys. 1,
39 (2018).

[15] V. Peri, M. Serra-Garcia, R. Ilan, and S. D. Huber, Nat. Phys.
15, 357 (2019).

[16] M. Fruchart, Y. Zhou, and V. Vitelli, Nature (London) 577, 636
(2020).

[17] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and Y.
Tokura, Science 329, 297 (2010).

[18] R. Shindou, R. Matsumoto, S. Murakami, and J.-i. Ohe, Phys.
Rev. B 87, 174427 (2013).

[19] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 89, 134409
(2014).

[20] A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 90, 024412
(2014).

[21] S. Owerre, J. Phys.: Condens. Matter 28, 386001 (2016).

[22] A. L. Chernyshev and P. A. Maksimov, Phys. Rev. Lett. 117,
187203 (2016).

[23] V. A. Zyuzin and A. A. Kovalev, Phys. Rev. Lett. 117, 217203
(2016).

[24] S. K. Kim, H. Ochoa, R. Zarzuela, and Y. Tserkovnyak, Phys.
Rev. Lett. 117, 227201 (2016).

[25] K. Nakata, J. Klinovaja, and D. Loss, Phys. Rev. B 95, 125429
(2017).

[26] P. A. McClarty, X.-Y. Dong, M. Gohlke, J. G. Rau, F. Pollmann,
R. Moessner, and K. Penc, Phys. Rev. B 98, 060404(R) (2018).

[27] H. Kondo, Y. Akagi, and H. Katsura, Phys. Rev. B 99,
041110(R) (2019).

[28] P. A. McClarty and J. G. Rau, Phys. Rev. B 100, 100405(R)
(2019).

[29] H. Kondo, Y. Akagi, and H. Katsura, Prog. Theor. Exp. Phys.
2020, 12A104 (2020).

[30] P. McClarty, arXiv:2106.01430.
[31] J. Romhányi, K. Penc, and R. Ganesh, Nat. Commun. 6, 6805

EP (2015).
[32] P. A. McClarty, F. Krüger, T. Guidi, S. F. Parker, K. Refson,

A. W. Parker, D. Prabhakaran, and R. Coldea, Nat. Phys. 13,
736 (2017).

[33] D. G. Joshi and A. P. Schnyder, Phys. Rev. B 100, 020407(R)
(2019).

[34] P. S. Kumar, I. F. Herbut, and R. Ganesh, Phys. Rev. Research
2, 033035 (2020).

[35] Y. Akagi, H. Katsura, and T. Koma, J. Phys. Soc. Jpn. 86,
123710 (2017).

[36] N. Yoshioka, Y. Akagi, and H. Katsura, Phys. Rev. B 97, 205110
(2018).

[37] R. Cheng, S. Okamoto, and D. Xiao, Phys. Rev. Lett. 117,
217202 (2016).

[38] H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104,
066403 (2010).

[39] R. Matsumoto and S. Murakami, Phys. Rev. B 84, 184406
(2011).

[40] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 92,
144415 (2015).

104412-21

https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.51.51
https://doi.org/10.1016/0003-4916(85)90148-4
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1103/PhysRevLett.93.083901
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1038/s42005-018-0035-2
https://doi.org/10.1038/s41567-019-0415-x
https://doi.org/10.1038/s41586-020-1932-6
https://doi.org/10.1126/science.1188260
https://doi.org/10.1103/PhysRevB.87.174427
https://doi.org/10.1103/PhysRevB.89.134409
https://doi.org/10.1103/PhysRevB.90.024412
https://doi.org/10.1088/0953-8984/28/38/386001
https://doi.org/10.1103/PhysRevLett.117.187203
https://doi.org/10.1103/PhysRevLett.117.217203
https://doi.org/10.1103/PhysRevLett.117.227201
https://doi.org/10.1103/PhysRevB.95.125429
https://doi.org/10.1103/PhysRevB.98.060404
https://doi.org/10.1103/PhysRevB.99.041110
https://doi.org/10.1103/PhysRevB.100.100405
https://doi.org/10.1093/ptep/ptaa151
http://arxiv.org/abs/arXiv:2106.01430
https://doi.org/10.1038/ncomms7805
https://doi.org/10.1038/nphys4117
https://doi.org/10.1103/PhysRevB.100.020407
https://doi.org/10.1103/PhysRevResearch.2.033035
https://doi.org/10.7566/JPSJ.86.123710
https://doi.org/10.1103/PhysRevB.97.205110
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1103/PhysRevB.84.184406
https://doi.org/10.1103/PhysRevB.92.144415


THOMASEN, PENC, SHANNON, AND ROMHÁNYI PHYSICAL REVIEW B 104, 104412 (2021)

[41] J. Fransson, A. M. Black-Schaffer, and A. V. Balatsky, Phys.
Rev. B 94, 075401 (2016).

[42] H.-S. Kim and H.-Y. Kee, npj Quantum Mater. 2, 20 (2017).
[43] H. Kondo, Y. Akagi, and H. Katsura, Phys. Rev. B 100, 144401

(2019).
[44] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[45] J. E. Moore and L. Balents, Phys. Rev. B 75, 121306(R)

(2007).
[46] R. Roy, Phys. Rev. B 79, 195321 (2009).
[47] S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 (1990).
[48] A. Collins, C. J. Hamer, and Z. Weihong, Phys. Rev. B 74,

144414 (2006).
[49] B. Simon, Phys. Rev. Lett. 51, 2167 (1983).

[50] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[51] T. Fukui, Y. Hatsugai, and H. Suzuki, J. Phys. Soc. Jpn. 74, 1674

(2005).
[52] M. Oshikawa, Phys. Rev. B 50, 17357 (1994).
[53] K. Nawa, K. Tanaka, N. Kurita, T. J. Sato, H. Sugiyama, H.

Uekusa, S. Ohira-Kawamura, K. Nakajima, and H. Tanaka,
Nat. Commun. 10, 2096 (2019).

[54] Y. D. Chong, X.-G. Wen, and M. Soljačić, Phys. Rev. B 77,
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