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Abstract

Automated segmentation of micro-CT images by deep learning

and its application to comparative morphology

Image segmentation is one of the most fascinating challenges of computer vision. A
field of potential application is organismal biology, where researchers are increasingly
using three-dimensional (3D) scanning which produces data-rich volumetric images for
precise and comprehensive anatomical characterization. To date, the segmentation of
anatomical structures remains a bottleneck to research, as it is commonly performed
with highly tedious and time-consuming manual work. During recent years, however,
machine learning methods are an emerging approach to overcoming this limitation, es-
pecially with the use of deep learning techniques such as convolutional neural networks
(CNNs), which proved to be very efficient and, as such, promising candidates for image
segmentation. The main objective of this PhD project was to develop a pipeline for
the fully-automated segmentation of anatomical structures in micro-computed tomog-
raphy (micro-CT) images of insects using state-of-the-art deep learning methods. The
restricted number of available high-resolution 3D labeled images necessitated the use of
a CNN architecture that performs segmentation satisfactorily even with limited data;
the U-Net architecture is such a CNN that has shown good performance in medical
images using few annotated images. Ant brains were selected as the test case. Since
no dataset of micro-CT images of ant brains existed for the current case study, a new
extensive dataset was created across a wide variation of 94 ant species. Its existence
can be of importance, as brain images of ants are similar to those of other insects;
therefore, our dataset can act as a starting point for the development of a substantial
library of micro-CT images of insects, and work as a pre-training dataset for future
CNNs. Also, our network is generalizable for segmenting the whole neural system in
full-body scans, and works in tests of distantly related and morphologically divergent
insects (e.g., fruit flies). The latter suggests that algorithms such as our network can
be applied generally across diverse taxa. The chosen species set was designed to be
interesting for further evolutionary morphology analysis. Therefore, we used it to test
the social brain hypothesis for ants, i.e., whether there is a connection between the
brain investment and the sociality of each species. Volumetric statistical analysis was
performed, also considering phylogenetic data; its results, however, did not validate
the hypothesis.
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Chapter 1

Introduction

“in biology. . . we are drowning in a sea of data and
starving for knowledge”

Sydney Brenner

Artificial intelligence (AI) and machine learning have become very popular concepts not
only in computer science but in almost every scientific field over the past two decades
[1], even though they were conceptualized more than half a century ago. Having gone
through two dark ages (or “AI winters” as they came to be known, alluding to a decline
in popularity and stagnation), AI has been experiencing a spring of rapid growth since
the 1990s, after IBM’s Deep Blue supercomputer beat Soviet chess grand-master Gary
Kasparov at a six-game match, as shown in Figure 1.1. Even though there have been
difficulties since then, the field of AI is currently growing faster than ever before. The
reasons behind this paradigm shift are the availability of massive experimental data that
cannot be appreciated by human eye or conventional statistics, and the development
of increasingly powerful computers and fast hardware that are both easier to use and
more accessible to everyone.

Computers are harnessed to build AI by simulating the real world; however, despite
the progress in understanding how the human brain works and comprehends the world,
the development of learning algorithms that enable AI to recognize semantic concepts,
as brains do, still remains challenging [3]. Yet, under the machine learning general
umbrella term, deep learning emerged, utilizing artificial neural networks with multiple
layers (some of which are hidden), as shown in Figure 1.2. Inspired by the human brain,
deep learning methods gained more interest in recent years, especially with the advent
of the 4th scientific paradigm and the rise of the big-data era.

Big datasets are essential for deep learning methods to perform sufficiently. How-
ever, for many biological studies either the required massive datasets needed for training
are not attainable or the tools to analyze them are not sufficient. This comes as a result
of the inherent complexity of biological datasets, which need to capture a multitude
of variable facets of biological systems. Moreover, through misevaluation of the needs
and/or tools provided by different fields, biological datasets are often orders of mag-
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2 Introduction

Figure 1.1: The boom and bust cycle of AI research. Reproduced from [2]

Figure 1.2: Specialization of AI algorithms. Reproduced from [4]
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nitude too small for training deep learning networks. Considering that annotation of
the raw data, although essential, can also be extremely time consuming, it comes as
no surprise that usable biological datasets are being developed only during the last
decade.

Deep learning based segmentation methods mostly use supervised learning; there-
fore, the unavailability of large amounts of labeled training data for medical images has
been a major bottleneck for research. Indeed, for classification projects most invest-
ment has been made on natural image datasets instead, simply because they are easier
to annotate. Moreover, the old computer science motto “garbage in, garbage out” holds
undeniably true when we talk about deep learning methods. The performance of any
deep learning technique depends on the training data as much as on the model itself;
therefore, the quality of the data, as well as their quantity, can change the prediction
process dramatically. As a result, proper pre-processing is a critical step in addition
to the collection of high-quality images. Investing in the creation of well-annotated,
large, and clear datasets can lead to state-of-the-art studies, also producing specifically
designed deep learning algorithms.

In addition to an increase in the number of useable datasets during recent years,
there has also been a significant boost in the number and efficiency of deep learning
methods used for the analysis of biological data, as shown in Figure 1.3. As the
number of studies focused on classification and segmentation of medical images keeps
increasing, more datasets and deep learning methods emerge; from a simple literature
search on Scopus, only in the last two years the number of Computer Vision and
Pattern Recognition (CVPR) conference papers doubled from ⇠2,000 to ⇠4,000,
while the number of Medical Image analysis studies in 2021 have exceeded the total
number of the studies in the field over the previous three years. From these simple
considerations, it is clear that the fields of computer vision and medical imaging are
growing, attracting thousands of scientists from various fields and getting funded for
interdisciplinary projects.

However, this is not the case for studies focusing on ecological data and, more specif-
ically, on the segmentation of vertebrate and insect images. Although digitalization
of most physical specimens with the use of micro-computed tomography (micro-CT)
has led to an explosion of imaging data in ecology, neither a dataset of annotated pre-
processed images existed, nor any other study had focused on the automatic analysis
of the data prior to this study.

1.1 Ants as model organisms

Ants are well-known for their significance in ecology as they are extraordinarily diverse
and combine both collective behavior and division of labor [6]. Though numerous
studies have focused on their behavior and anatomy, their evolution leading to both
still remains largely unclear. Micro-CT scanning of ants has enabled a more thorough
view of their morphological and anatomical characteristics, which has led to the dis-
covery and definition of new ant species [7] and the analysis of their evolution. The
creation of a 3D, bias-free atlas of ants will provide a major boost to evolutionary stud-
ies. As such, ants were chosen as the case study for the present segmentation neural
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Figure 1.3: Timeline of deep learning. Reproduced from [5]
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network. Furthermore, one of the most interesting questions in ecology is the evolution
of the brain [8], especially in social insects, and its relationship to their behavior. It is
commonly formulated as the “social brain hypothesis”, which postulates that the social
behavior of animals adapts to changes in their ecosystem and/or social structure with
modifications in their brain investment. Thus, the exploration of a potential connec-
tion between the ant brain size variation and the colony size and structure is a problem
of high importance, since it may elucidate how the environment affects the organism’s
most important organ, the brain.

1.2 Objectives

The current PhD study focused on two main questions:

• Does brain size change with colony size across ant species as predicted by the
social brain hypothesis?

• How can we automate the segmentation of micro-CT images of insects, using ants
as a test case?

To tackle both problems, a database of manually segmented micro-CT head images
of ants was created, which was used as morphological set for the first part of the study
and as a training set for the second part. As a next step, after the volumes of all brains
and bodies of the tested ants were calculated, their morphological and ecological data
were statistically analyzed, providing an answer to the first question. Finally, using
deep learning methods, a convolutional neural network (CNN) [9] was created, which
was trained and tested with the aforementioned dataset, and which could segment
automatically the brain area of the micro-CT images of ants.

1.3 Thesis structure

The thesis is structured as follows:
Chapter 2 summarizes the methodology and theoretical foundation needed to appre-

ciate the main body of work. Starting with an introduction to micro-CT and statistical
analysis used in ecology, the main focus of Chapter 2 is on deep learning methods for
biomedical image analysis.

Chapters 3, 4 and 5 constitute the main body of this research work. All chapters are
heavily based on publications under preparation, with Chapter 5 having already been
uploaded to BioRxiv; as a result, some degree of redundancy is expected. Chapter
3 focuses on the creation of the dataset that was used in both Chapters 4 and 5,
providing details for the ant species that were used in this study. Chapter 4 focuses
on the morphological study of the ant brain and explores how its evolution may be
connected with the social structure/complexity of the colony. After the said connection
is hypothesized, the results of its statistical evaluation are investigated. Chapter 5
focuses on the development of an automatic segmentation framework for the analysis
of micro-CT images of ants.
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Chapter 6 concludes this thesis by summarizing the key points of the whole work
and projecting into the future.



Chapter 2

Technichal and Theoretical

Background

2.1 Introduction

In this chapter the experimental technicalities and theoretical concepts used in later
chapters are introduced. Moreover, a brief review of related literature is presented;
although by no means exhaustive (especially considering the overwhelming amount of
new publications reported practically every day), it aims to outline a main body of
knowledge that formed the basis for the research of the current PhD project.

To present the methodologies employed for this study in the most intuitive way,
we opted for a rather chronological approach reflecting each individual aspect of the
project. For this reason, micro-CT scanning is introduced first, as it was a necessary
prerequisite for both main research investigations (elaborated in Chapters 4 and 5).
Subsequently, statistical methods pertinent to ecology are touched upon, as the first re-
search investigation analyzed the acquired micro-CT scans to focus on the morphology
and evolution of the ant brain (Chapter 4), followed by specific reference on the social
brain hypothesis and its applicability on ants. The main body of the current PhD
project, however, revolved around automating the segmentation of the brain area in
ant micro-CT images (Chapter 5); therefore, fundamental concepts of machine learning
are introduced last, with a special focus on the specific deep learning techniques and
architectures used here.

Our aspiration is that the utilization of two primarily different statistical and com-
putational tools (or families of tools) combined with hands-on sample preparation and
imaging provide a broad view of how mathematics can be applied in evolutionary bi-
ology and a roadmap for the conduct of cross-disciplinary research in the field.

2.2 Micro-CT scanning

X-ray computed tomography (CT) is a non-invasive biomedical imaging technique that
can accurately and efficiently provide detailed structural information from a series of
projections of an X-ray beam passing through a specimen. More specifically relevant
to the current PhD project is micro-CT, i.e., high-resolution CT that can provide phe-
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notypic data of small specimens such as insects [10, 11]. Due to its non-invasiveness
and high-resolution 3D imaging of small features the technique quickly gained popular-
ity with evolutionary biologists, availing new opportunities for in-depth morphological
studies [12]. As a result, micro-CT imaging enabled the development of extensive
libraries of 3D scans of vertebrates and insects [13]. Recently, modern synchrotron
facilities provide high-flux beams, high brilliance, and superb stability, and allow the
user to select the wavelength of the emitted radiation; they can, thus, yield micro-CT
imaging data at higher resolution and fewer artifacts than conventional CT scanners.
As the need for such high-resolution imaging keeps rising, the number of facilities
around the world that can provide micro-CT imaging (including synchrotron facilities)
is growing at a fast pace, too [14].

All micro-CT systems consist of an X-ray source formed as a small-sized microfo-
cus tube, a detector or camera, and a holder for the specimen being imaged. Scanner
functions can range from extremely simple to very complex depending on the scanner
geometry [11]. Using micro-CT requires accuracy and precision in positioning the ob-
ject at the right distance from both the detector and the source, rotating the specimen
about the central axis of view, or choosing vertical stitch (i.e., translating the object
vertically) to spread the slices when the specimen is larger than a certain threshold
size. Moreover, the user chooses the maximum energy and the tube current for each
scan, depending on the absorption of the material. Specimen preparation also requires
meticulousness since good stability is imperative for high quality image acquisition.
Holders are typically provided by the instrument developer, but in the present case a
new customized holder was commissioned and fabricated by OIST’s imaging section,
since ants can be quite small and fragile, which minimized the shifting and trembling
of the specimen during scanning. Compensatory algorithms can, in principle, further
minimize mechanical motion control errors, but were avoided as they are not always
reliable. Ultimately, the utility of a micro-CT scan is judged by the possibility to dis-
cern the features of interest (e.g., the surface of dry specimens or the inner parts of
wet specimens), which is determined both by technical specifications of the instrument
and the expertise and diligence of the user.

For the current PhD project, scans were performed using a ZEISS Xradia 510 Versa
3D X-ray microscope, schematically shown in Figure 2.1, and ZEISS Scout and Scan
Control System software (version 10.7.2936) at OIST. Scan settings were determined
by (either dry or wet) specimen size with a view to optimizing scan quality. In order
to assess the importance of individual setting values, it was essential to systemati-
cally scrutinize how scanning parameters affect the quality, resolution, and contrast of
output images during the acquisition process. For the 3D image to be used for both
manual (Chapter 4) and automated segmentation (Chapter 5), the output required
the highest possible resolution and contrast. 3D reconstruction of the resultant scans
was performed with XMReconstructor (version 10.7.2936) and saved in DICOM file
format (default settings; USHORT 16-bit output data type). These were processed
with Amira software (version 6.0) and ITK- SNAP (version 3.6.0) in order to be used
for manual segmentation and shape analysis.
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Figure 2.1: Schematic of OIST’s ZEISS Xradia 510 Versa 3D X-ray mi-
croscope micro-CT scanner. The pipette containing a wet specimen and resultant
head scan are shown as insets.

2.2.1 Micro-CT scanning of dry specimens

Before starting work on the more demanding scans of wet specimens, it was deemed
expedient to obtain experience by scanning dry ant specimens first. Dry specimens were
initially glued to their paper point. Eighty different species of various sizes belonging to
the ant genus Malagasy Stumigenys were subsequently scanned; this provided enough
data to contribute to the analysis of the morphological evolution of adaptive radiation
of five different genera in Okinawa. The scans were processed for surface rendering
using Amira software; 42 landmarks were placed in the body using MeshLab and
Stratovan Checkpoint software. The morphological diversity of their mandibles was
thus readily identifiable from their 3D images, paving the way toward understanding
mandible evolution (ongoing investigation, in parallel to current PhD project).

2.2.2 Micro-CT scanning of wet specimens

Wet specimens were first stained with iodine and then placed in pipettes of variable
sizes. More than 100 ant heads and 80 bodies were scanned. An average head scan
lasted for ⇠ 10 hours, in addition to an average of ⇠3 hours per body scan. Subse-
quently, all head scans were manually or semi-automatically segmented with the use of
Amira software, and ⇠50,000 raw images of heads were created, with masks annotating
the brain areas. More details on scanning and processing of wet specimens, which were
at the core of this PhD project, can be found in Chapters 4 and 5.
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2.3 Statistical analysis models for phylogenetic signal

Whether phenotype is shaped by phylogenetic history is one of the quintessential ques-
tions in ecology and evolutionary biology [15–17]. The fact that closely related species
and taxa are biologically and statistically dependent often leads to the assumption
that ecological data are phylogenetically connected [18]. Nevertheless, when we are
comparing traits across taxa the assumption of phylogenetic dependence should first
be scrutinized. Since residual errors in ordinary least squares (OLS) regression are
assumed to be independent among observations, results of naive OLS analysis of trait
data are error prone. To overcome this obstacle, several statistical methods have been
developed that take phylogeny into account for the statistical analysis of traits among
taxa, with the most common being the phylogenetic generalized least squares (PGLS)
regression [16, 19].

As a first step, before the analysis of any ecological data one needs to evaluate
which model the evolution traits follow. Within the framework of this PhD project,
we tested three different models designed for ecological data. Which model best fitted
our data was ultimately determined with the use of the Maximum Likelihood (ML)
test [20] and the Akaike Information Criterion (AIC) [21], two of the most commonly
used mathematical methods for model evaluation.

The simplest way to describe evolution is by assuming it follows a trajectory of
Brownian motion (BM), i.e., a random walk [22, 23]. Under Brownian evolution, trait
values change randomly due to genetic drift. Although Brownian evolution is a popular
model due to its simplicity and convenience for calculations, trait values can in fact
evolve under various scenarios. To include these variations in trait evolution, Pagel
introduced a statistical model [24, 25] that can be determined by three branch length
transformations (i.e., lambda, �; delta, �; and kappa, ) of the phylogenetic tree, with
the most common being lambda. Lambda values range between 0 and 1, measuring
the phylogenetic signal: when � equals 1, Pagel’s model is equivalent to the Brownian
model; when lambda equals 0, the species are statistically independent, i.e., they lack
phylogenetic signal. Additionally, to include the effect rates of evolution changing over
time, Pagel designed the � transformation. Finally, the  transformation is focused on
speciation events of the phylogenetic tree: when  = 0, all change is associated with
speciation events and there is no anagenetic change. Most ecological studies restrict
themselves to exploring the effects of the lambda parameter. Finally, an improved
Brownian model is the Ornstein-Uhlenbeck (OU) model, which describes the pattern
of traits that evolve under stabilizing selection but with constant optimum [26].

After identifying the phylogenetic model that best fits the pattern of trait evolu-
tion, PGLS can be performed to judge whether there is an association between the
dependent/response variable/trait and the predictor variables/traits over evolutionary
time. In practice, it applies the correlation structure determined by the phylogeny and
the model of character evolution to a generalized least square regression; thus, if there
is no phylogenetic signal in the data, the PGLS will return the same result as OLS.
Therefore, identifying the evolutionary model of the traits is important, as it can lead
to statistical errors if misclassified.

Logarithmic transformation is commonly used in continuous traits and comparative
data in ecology before any analysis is performed, since values typically follow distri-
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butions that are skewed to the right. This transformation often results in variables
with normal error distributions, which helps to meet the assumptions of many statis-
tical methods. As an additional advantage, the distance between trait values can be
measured more easily, as taking logarithms improves linearity. In ecological data, log-
arithmic transformations can equalize the relative weights of common and rare species
in addition to highlighting the informative species [27].

2.4 Social brain hypothesis for ants

The brain is one of the most expensive investments in every animal’s body [28]; as a
result, investing in a larger brain can have a pronounced impact on other physiological
traits [29]. More importantly, when we discuss the ant brain we need to distinguish
whether we are referring to the investment of individual ants or of the entire colony.
Individual workers in ant societies have often been thought of as sensory units of a
“collective brain” [30]. Ant colonies, on the other hand, have been described as su-
perorganisms which represent societies varying from simple-structured (one queen and
few workers) to more complex (multiple queens and thousands of workers) [31]. For
more complex structures, each member has a single task, although this can be modified
according to the dynamic needs of the colony [32]. In simpler colonies, each member
performs numerous tasks to ensure survival and growth of the society [33]. In small
colonies, ants are obliged to rely on centralized control, adapt to changes in colony
structure and size, and perform tasks correctly and efficiently. Moreover, individual
workers of small colonies need to coordinate their behavior with that of other individu-
als more efficiently than in large colonies, which are more homeostatic [34]. In contrast,
in large colonies there is always redundancy through parallel operation: more ants are
responsible for the same task, and thus the probability of success in the collective task
is high even if some individuals are less competent. It is therefore reasonable to assume
behavioral routines are connected to social structure. Moreover, brain size, neurophys-
iology, and body size are correlated with behavioral routines especially in polymorphic
ant colonies [35]. However, it is currently unknown whether brain evolution responds
to the social complexity of ant colonies. The great number and diversity of different
ant species provide an excellent opportunity to address these questions statistically.

The social brain hypothesis [36] connects the adaptability of the social behavior of
animals to modifications in their ecology and social structure with changes in brain
investment [37]. This hypothesis implies that selection pressures associated with social
living favor larger brains to navigate social interactions [38]. Originally it was proposed
for mammals, where the community (family, herd, pride, etc.) is formed by members
who need to gain individual recognition, understand social hierarchy, cooperate and/or
compete for social rank, etc. As a result, most studies on brain size and sociality have
been performed on vertebrates [39]. However, in social insects, societies are gigantic
families formed by clones or siblings, whose well-developed communication systems are
based on chemical mechanisms; these societies function through division of labor and
cooperation. Because of these marked differences from mammal societies, in recent
years there is an increasing number of studies on social insects, and more specifically
on how their neuropils (i.e., the parts of the brain responsible for memory, learning, and
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sensory functions) and their cognitive capacities are connected to ecological traits [40].
Neuroethological studies have shown that simple recognition of colony mates is

connected to simple cognitive operations, and there is no need for higher integration
centers or acquisition of a long-term memory [41]. Thus, ants’ mushroom bodies (i.e.,
their neuropils responsible for memory) do not show any change. However, ants can
overcome limitations in information processing through communication, with their eyes
and antennas playing a significant role in their adaptation and survival. This can lead
to changes in their optical or antennal lobes (i.e., the neuropils that receive environ-
mental information through eyes or antennas) and to their overall brain size [42]. In
small ant colonies, the cognitive demands that individuals face differ from those in large
colonies. The need for larger eyes (for example to identify other members of the colony
or to enable more efficient foraging) is imperative in small colonies. Moreover, workers
are responsible for different social roles and experience their environment differently,
and as a result their sensory processing ability and eye structure have evolved in dif-
ferent ways. As an example of how the environment can affect their morphology, bull
ants Myrmecia pyriformis are active mainly during the dawn and dusk twilight and
their eyes are extremely large so as to collect the most possible information for their
navigation. Moreover, as colonies can be considered organisms themselves with indi-
vidual workers behaving as organs, investment in individual brain and eye size rather
than overall colony size can benefit the functionality of the colony as a whole. As
the social brain hypothesis suggests, behavioral problems such as foraging are solved
socially rather than at the level of single individuals, which may impact brain size evo-
lution. Most of the studies find a connection between brain and body sizes, as well as
a connection between the environmental changes and the brain investment in different
neuropils [40, 43]. Support for the social brain hypothesis is still mixed, however; there
are a number of studies that come to contradictory conclusions, and the majority of
such studies present data from only a few ant species each time [44, 45]. The connec-
tion between brain size and sociality in ants is complex and requires a broad approach,
since each colony is unique in structure and adaptable to environmental changes. Addi-
tionally, brain plasticity in queens and the size difference between soldiers and workers
in polymorphic colonies should be considered in choosing study species.

2.5 Computational methods for automated image seg-

mentation

2.5.1 Computer Vision

While strongly connected with AI, computer vision is a distinct, interdisciplinary sci-
entific field that focuses on understanding how computers can learn several concepts
from digital images or videos. The three main steps to simulate human vision are (i)
image acquisition, (ii) image processing, and (iii) image analysis/understanding. Re-
cent technological accomplishments have rendered the first step an easy task, resulting
in the acquisition of high-quality images and video [46]. Image processing algorithms,
on the other hand, keep increasing and, by taking advantage of new available software
and hardware, improving [47]. The general term “image analysis” includes segmenta-
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tion, semantic segmentation, classification, and object detection, the most challenging
one being the latter, as object recognition and tracking are the most complicated tasks.
Noisy or scarce data, real-time processing, and limited machine power are some of the
challenges computer vision needs to overcome. In recent years CNNs [9] have gained
popularity by solving computer vision problems like object recognition and semantic
segmentation [48]. The term semantic segmentation designates the segmentation of an
image in non-overlapping pixelwise common areas belonging to the same objects, such
as cars or humans in scene analysis, and cells or organs in biomedical image analysis.
This means that after semantic segmentation, an image is divided into areas similar to
those identified by the human eye.

2.5.2 Machine Learning

Machine learning is a research area which deals with the computer learning process.
Learning is built on statistical and mathematical rules with a view to developing pre-
dictive models based on the statistical associations among features of a given dataset.
The learned model can be used to predict categorical labels, continuous values and
binary responses. As amounts of data are accumulating fast due to the increasing
computer power available, machine learning aims to make their processing automated.
Mapping input data or hand-designed features with new, unlabeled output data is its
basic rule; therefore, depending on how much feedback the user gives to the computer,
machine learning classes can be categorized as [49]:

a. Supervised learning. In supervised learning the input/training data are
paired with target output. From them the machine learns how to predict the output for
any new, testing data. There are two main categories of supervised learning problems:
classification, where the machine tries to identify to which category the testing data
belong, and regression, where the machine tries to predict a continuous output value
for the given input data.

b. Unsupervised learning. In unsupervised learning all data are unlabeled. The
machine discovers the structure in the data distribution and creates a low-dimensional
representation; the most common approach is clustering. Since no annotated data are
needed, unsupervised learning can be applied even when sample labels are incorrect or
missing. At the end of the learning/clustering process it is hard to evaluate the result,
as the data are all unlabeled.

c. Human in the loop – semi-supervised learning. Semi-supervised learning
is a combination of supervised and unsupervised learning, as the training data are
divided into labeled and unlabeled. Labeled data are used to identify the data classes,
and unlabeled data give additional information from the overall data distribution. In
the “human in the loop” scenario unlabeled data that are hard to classify are presented
to human experts for improvement of the boundaries between classes.

2.5.3 Machine learning techniques for image segmentation

Image segmentation algorithms divide a given image into non-overlapping homogeneous
and uniform areas, each having the same features. Semantic segmentation algorithms
have evolved over the past decades from split-and-merge [50], and region growing [51]
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in the 1970s, to clustering algorithms in the 1980s [52, 53], and to Markov Random
Fields [54, 55] and other models eventually [56]. Grayscale and color images have
been processed with the most commonly used clustering algorithms such as K-Means
clustering [57, 58], watershed segmentation [59], and Expectation-Maximization (EM)
clustering [60]. As image data increased and images became more detailed, the ne-
cessity for new algorithms emerged. Machine learning techniques were soon adopted
by computer vision in order to make segmentation more efficient. Supervised learning
by Support Vector Machines (SVMs) is one of the most common image segmentation
machine learning architectures [61]. Two main learning approaches have gained atten-
tion in the past decades: probabilistic graphical models [62] and neural networks [63];
their difference lies in their use of either probabilistic graphical models or computation
graphs, respectively. Data features are the determining factor for the performance of
each method. Therefore, pre-processing pipelines and data transformations are very
important and lead to more effective learning. On the other hand, the effort required
for such “feature engineering” is often too costly, and, as such, it is the biggest drawback
of conventional machine learning techniques. An AI that can learn fast and also un-
derstand the world is the desirable outcome which forced novel applications to emerge
[64].

2.5.4 Deep Learning

Deep learning belongs to the machine learning family of methods. The method is quite
old, though it became trendy only during the past decades. The architecture of deep
learning algorithms is similar to that of the human brain (cerebral cortex) in that it is
built in layers. In deep learning the computer combines simple concepts to create more
complex ones that can help solve complicated representation learning problems. The
term “representation learning” describes the machine learning methods that use raw
data as input and let the machine find the representations required for classification or
detection [65]. The machine extracts from these data the important features and cre-
ates learning layers for each of them. Complicated structures of high-dimensional data
can be thus simplified with the use of deep learning architectures. Like their machine
learning counterparts, deep learning algorithms can also be supervised, unsupervised,
or semi-supervised. Deep supervised learning outperforms simple supervised learning,
as non-linearity between input and output is not a concern. The loss function, i.e., the
function that measures the error between machine output and expected output, has
real numbers as parameters (called weights) which adjust during learning, and depends
on the features of input. Backpropagation [66], a quite old method which uses the
chain rule to calculate the gradient descent of the loss function in every layer, identifies
the optimal values of weights for minimum error, thus accelerating the procedure of
learning. Backpropagation is commonly used for training multi-layer artificial neural
networks in various fields like computer vision [67], speech recognition [68], video
games [69], and medical diagnosis [70]. As most deep learning methods construct
hidden layers, they can recognize patterns missed by other techniques. Thus, their
prediction is the best, compared with those of other methods, making them a very
powerful tool especially when the task at hand is feature extraction from complex bi-
ological datasets. However, because of these hidden layers deep learning models are
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often regarded as “black boxes” whose results are impenetrable for interpretation from
a biological perspective. Though this is not always the case, great attention is currently
being paid on how models understand the input features, how they determine the im-
portant ones, and how they correlate them, positively or negatively, with the output.
The development of new means to transform the “black boxes” to open, “white boxes”
and the interpretation of their results from a biological perspective form a new ap-
proach for the future of deep learning. Among various families of neural networks, the
most commonly used are CNNs and Recurrent Neural Networks (RNNs) [71]. Their
difference lies mainly in the format of the processed data, as RNNs are focused on
sequential data whereas CNNs are specialized for grid values such as those comprising
images. It should then come as no surprise that CNNs were deemed more suitable
and were utilized in this work; as a result, henceforth we will focus solely on CNNs, as
RNNs are out of the scope of this thesis.

Convolutional Neural Networks

CNNs were first introduced by LeCun et al. in 1989 [56]. Their structure is based
on the organization found in neurons located in visual cortexes [72, 73]. They are
easy to train, although they process multiple-array data. As a result of their simplicity
and efficiency they have become the most common network architecture for image
processing and analysis. They consist of convolutional transformations, as well as
pooling and non-linear operations (Figure 2.2).

More specifically, their building blocks are:

• Convolutional layers: CNNs consist of sets of convolutional layers, i.e., in each
layer unstructured filters (kernels) which create convolutional transforms are ap-
plied in the input data, x, and produce an output usually referred to as feature
map, activation map, or convolved feature. Moreover, each kernel’s values repre-
sent the weights. The number of kernels and their size are two hyperparameters
of the CNN. Additionally, before applying the convolution, two more hyperpa-
rameters need to be decided: stride and padding. Stride is the number of shifting
over pixels during the convolution, and padding refers to the number of pixels
that can be considered as borders around the image. If we assume that x is the
input and W the kernel, the feature map s is:

s(t) = (x ⇤W )(t) + b(t)

where b is the bias of the kernel in layer t.

• Pooling layers: The pooling layers are similar to convolutional layers as they are
applied in each layer to reduce spatial size in the individual network layers. The
input of the pooling layer is the feature map of the convolutional layer. The
feature map is divided in patches and each operation is applied to each patch. If
we assume that the patches snxn(i,j) are the nxn squares centered in (i, j) location
of the input feature map, some examples of pooling operations are:

1. Sub-sampling: Z = �
P

(snxnij ) + b
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Figure 2.2: CNN operations. In a convolution layer, an input patch is multiplied
by kernels, producing feature maps. Pooling layer results in the max value of the
convolution layer moving to the next layer.



2.5 Computational methods for automated image segmentation 17

2. Average pooling: when b = 0 and � = 1
nxn

3. Max pooling: Z = max(snxnij )

• Activation functions: Non-linear layers in all deep learning frameworks are formed
by activation functions and are combined with other layers. As they simulate the
non-linear transformation from input to output, it is important to select the
appropriate one for better feature extraction. Some commonly used activation
functions are:

1. Sigmoid function: 1
1+e�1 2 [0, 1]

2. Hyperbolic tangent: 1�e�2x

1�e�2x 2 [�1, 1]

3. Softmax: exP
ex

4. Rectified linear unit (ReLU): max(0, x) 2 [0,1]

Training
The goal is to find the parameters that minimize the loss function of the network.

The loss function measures the fit between the output and the true observations. One
of the most commonly used loss function for regression tasks is cross-entropy [74].
However, a good network performs as satisfactorily on the test data as on the training
data. To achieve this, regularization terms apply penalties to avoid overfitting. A
recent regularization method is Dropout, that adds noise in the hidden layers of the
CNN. This is achieved by multiplying each hidden layer with a certain probability [75].
Moreover, the L2 regularization method is often used. L2 adds a squared magnitude
of coefficient penalty to the loss function [76].

Optimization
Optimization is an important step to achieve the least loss, i.e., to maximize the

performance of the network. Before introducing some of the optimization algorithms
that are commonly used, three hyperparameters of the network should be defined:

• Learning rate: determines the step size at each iteration, i.e., each pass while
minimizing the loss function

• Batch size: the number of the group of examples that are used during training

• Epoch: one forward and backward pass of the full training set

Optimization algorithms

• Stochastic gradient descent (SGD): one of the most commonly used optimiza-
tion algorithm. It is a variant of gradient descent but it updates the network’s
parameters after computation of loss on each example. [77, 78]

• Momentum: accelerates the convergence to minimum by introducing one more
hyperparameter, which is considered velocity [79].
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Another simple way to increase the size of the dataset and to avoid overfitting of
the model is by data augmentation. Image augmentation usually consists of (i) random
translation, (ii) rotation, and (iii) deformation. [80] Increasing the diversity across the
dataset helps generalize the model toward unseen features. More specifically, for the
micro-CT images of ants we used crop, resize, and histogram equalization to focus on
the head area of interest and to enhance the contrast of the image.

CNN architectures for medical image segmentation

Over the past decade the number of highly complex datasets generated by biological
experiments has increased dramatically. For the raw biological data to provide an-
swers that lead to better understanding of biological systems they need to be analyzed
and interpreted with tools and techniques specifically tailored for complex systems.
Image segmentation has been one of the most useful tasks in medical image analy-
sis because it can provide valuable information in various applications. Depending
on the application and the data, many CNN architectures have been (and are still
being) developed. Regardless of architecture, hyperparameter (i.e., number of layers,
dropout rate, regularization coefficient) tuning is an important task required for all
deep learning methods. Even though the weights are determined by back propagation,
hyperparameters are often empirically chosen. This can lead to potential limitations of
the models, as small changes in hyperparameter values can lead to drastic changes in
a network’s performance. Some of the most well-known architectures are AlexNet [81],
ResNet [82] and GoogleLeNet [83]. Next, the CNN architectures most commonly used
in medical imaging are briefly summarized. For a more comprehensive review, the
interested reader may wish to refer to [84].

Fully Convolutional Network (FCN)

First introduced in 2015 by Long et al. [85], the Fully Convolutional Network (FCN)
is a CNN architecture that contains convolutional layers and fully connected layers. As
its connections are local, the network can segment images of variable sizes. Moreover,
using convolutional layers in addition to fully connected layers, it is faster to train
and requires fewer parameters. The FCN consists of two parts: convolution (encoder)
and deconvolution (decoder). During convolution it outputs a heatmap similar to that
of classification nets, which is subsequently used as input for decoder. In the latter
part, it obtains information about the location of different classes using unpooling by
targeting maximum activations, thus resulting in a high-resolution segmentation map.

U-Net

One superior extension of FCNs is U-Net, first applied for biological microscopy image
segmentation [86]. It consists of a conventional FCN but also includes skip connec-
tions between the encoder and decoder parts, transferring information of locality. The
encoder part (or down-sampling), consists of 3×3 convolutions. The decoder part (or
up-sampling, deconvolution) uses up-convolution increasing the image resolution. As a
last step, a 1×1 convolution is applied to generate the final segmentation map. Since
there is no fully connected layer, the parameters of the network are reduced, making
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Figure 2.3: Fully convolutional networks. FCNs can be efficiently trained to
perform pixelwise predictions such as image segmentation. Reproduced from [85]

the network easy to train with only a small dataset. The performance of the network
in medical image segmentation has been outstanding, winning two ISBI challenges in
2015 [87], and leading to the development of more architectures built on top of U-Net,
such as the 3D U-Net (which processes volumes) [88] and the V-Net (for 3D MRI
volumes) [89].

Other methods

The Mask R-CNN model, winner of COCO Challenges in 2017 for object detection [90],
is an extension of Faster R-CNN [91] architecture. Used for a semantic segmentation
and classification, Mask R-CNN is a combination of an FCN (such as ResNet [82])
that extracts features and a Region Proposal Network (RPN) that proposes object
bounding boxes, i.e., Regions of Interest (ROI) where the object might be located
within the image. In both Faster and Mask R-CNN their RPN part uses a specific
layer type called ROIPool to put bounding boxes around the potential objects. Later,
the FCN part classifies these objects to the corresponding classes. As it combines two
different networks, it results in classification and segmentation of the image, making it
ideal for complex images.

Since the application of CNNs in medical imaging segmentation becomes more
popular, more architectures are currently being developed such as the Feature Pyramid
Network (FPN) [92], DeepLabv3 [93] and Path Aggregation Network (PaNet) [90],
to name some. Moreover, combining CNNs and RNNs is an alternative method for
achieving higher quality classification.

Methods employed in the current project

For the current PhD project, we opted for U-Net [86] as the most suitable CNN
architecture. As the images have diffused edges between the inner parts of the head,
and the annotated dataset was small compared with other biological datasets (refer
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Figure 2.4: U-Net architecture. U-Net consists of two parts: encoder and de-
coder, with skip connections transferring locality information from encoder layers to
the decoder layers. Reproduced from [86].

Figure 2.5: Mask R-CNN architecture. Mask R-CNN uses a convolutional net-
work, usually ResNet, to extract features from the input, and then process them using
a PRN and a mask classifier to result in both object detection and segmentation of the
image. Reproduced from [90].
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to paragraph 2.5.7 for more details), U-Net was the ideal architecture since it kept
information about locality (thus, the ages where identified without loss) and moreover
could produce excellent results even with limited datasets. Specific details about its
implementation for the automated segmentation of micro-CT images of ants with their
brain as the target area are elaborated in Chapter 5. Moving to full head segmentation
as a future direction stemming from this study, Mask R-CNN [90] would make a great
candidate since it combines segmentation and classification, both needed for multi-
organ segmentation (even by non-experts) in ant biology.

2.5.5 Deep learning frameworks and libraries

With an increasing number of deep learning networks continuously being developed,
the need for dedicated software frameworks and libraries has become more apparent
during recent years. As a response to this emergent need their number has also grown
remarkably. Below, the most well-known and commonly used open source frameworks
and libraries are listed:

• TensorFlow is one of the most broadly used frameworks, developed by Google
Brain based on Python language [94].

• Caffe, developed by Berkeley Vision and Learning Center, is one of the first
frameworks, written in C++ with Python and MATLAB bindings [95].

• Pytorch, based on Torch framework, is an extension for Python language devel-
oped by Facebook AI [96].

• Keras is one of the most developed and used open-source libraries. It is written
in Python and is mostly used in combination with different frameworks such as
TensorFlow [97].

For this study, TensorFlow and Keras were the two frameworks utilized for building
our segmentation CNN, and also for the pre-possessing and post-processing steps. The
language used was Python in Jupyter environment.

2.5.6 Evaluation methods

To assess whether a CNN is accurate in segmenting a given set of images, some form(s)
of reliable evaluation criteria are necessary. Since the input images may be numerous,
complex, and dissimilar from one another, there is no one-size-fits-all solution to this
task, and more than one evaluation metrics are routinely employed to validate or detect
potential flaws in the segmentation model. Two of the most intuitive and widely used
evaluation metrics for segmentation (also used in the current study, see Chapter 5)
are the Intersection-over-Union (IoU, also known as the Jaccard Index) and the Dice
Coefficient (F1 Score) [98].

IoU is defined as the area of overlap between the predicted segmentation and the
ground truth divided by the area of union between them. Its values range between
0-100%, where zero indicates no overlap and 100 indicates full overlap.
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IoU =
TP

TP + FN + FP

F1 Score, on the other hand, is defined as twice the area of overlap between the
predicted segmentation and the ground truth divided by the sum total of the areas (in
number of pixels) of both images:

F1 =
2TP

2TP + FN + FP

where:

• True Positive (TP): Correct annotations

• True Negative (TN): Correct not annotated

• False Negative (FN): Missing annotations

• False Positive (FP): Incorrect annotations

2.5.7 Deep learning databases

Many datasets of images (such as MNIST [99], CIFAR10 [100], COCO [101] and Ima-
geNet [102]) have been developed over the past decades, giving scientists the opportu-
nity to test their learning methods. Around the mid-2000s deep learning methods were
applied on the MNIST database digital image classification problem [103] showing bet-
ter results than the hitherto leading SVMs, kept improving [104], and moved from the
digital image classification problem to that of natural images. The main breakthrough
came with the application of Deep CNNs in the ImageNet dataset in 2012 [81], even
though the concept of CNNs had been developed many years earlier [9]. Moreover,
the increasing amount of data led to the creation of huge voxel-based datasets that
are used in volumetric models. Several publicly available biological datasets are widely
used for biomedical image segmentation, such as Brain Tumor Segmentation (BRATS)
[105], ischemic stroke lesion segmentation (ISLES) [106], and Fetal Tissue Annotation
Dataset [107], to name a few. Yet, to the best of our knowledge no database for eco-
logical data exists, since prior to this work no other project was focused on segmenting
inner parts in micro-CT images of insects. A major obstacle for the use of micro-CT
lies in the analysis of these data, since even with powerful state-of-the-art hardware
and the corresponding software packages data exploration is extremely tedious work.

The invention of new medical imaging methods marked the beginning of more mor-
phological and anatomical research on microscopically small animals. It should be em-
phasized that most insect images have low contrast and segments with the same pixel
intensity which are separated by diffused edges. As a result, the most common segmen-
tation method to date is by manual processing, which is extremely time-consuming,
with the existing software that is used for the segmentation of micro-CT images using
statistical methods to semi-automate the process [108].

As a way to overcome this obstacle the networks are often pre-trained on different
but related datasets; their weights are transferred and they are fine-tuned while the
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classifier is retained. Though transfer learning has shown good results in the past few
years [109, 110], it is still an active area that needs to be explored. Another way
to generate data that is becoming dominant in the deep learning field (which can be
successfully extended to the multi-omics datasets) is by using Generative Adversarial
Networks (GANs) [111], which create synthesized datasets similar to the training ones.
GANs are a deep learning model that has opened the way to new approaches for the
required large amounts of manually segmented data.

2.5.8 Deep Learning in medical imaging

One of the first applications of deep learning in medical image analysis was image
classification [112]. Through image classification one gives images as input and expects
a diagnostic variable as output, such as whether a disease is present or not. The most
commonly used networks for classification problems are CNNs. During recent years,
networks have reached such a great accuracy that they are challenging even human
experts. Among the most researched classification problems is the lesion classification
and lesion detection [113]. Additionally, there exist a great number of studies in
organ localization and segmentation, cell segmentation, protein structure, and gene
sequencing [114].

Nevertheless, practically all existing studies are focused on CT images of human
parts and organs, with only a handful of studies applying deep learning methods on
animal and insect datasets for their posture quantification and behavior. Thus, no
previous studies on segmentation of micro-CT images of insects or small animals exist,
making this PhD study unique and the produced dataset presented here first of its
kind.
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Chapter 3

Creation of Manually Annotated

Dataset

“Data is food for AI”
Andrew Ng

3.1 Introduction

Nowadays information is being constantly created at unprecedented, staggering rates.
In fact, it was recently estimated that every two days the production of new data
reaches more than five exabytes; to put this into perspective, it corresponds roughly to
the information humanity generated between the beginning of time and 2003! However,
to fill the “black hole between data and knowledge” in what came to be called information
hierarchy (or DIKW pyramid, the acronym standing for data, information, knowledge,
and wisdom), data need to be organized, labeled, and given shape [115]. Creating
structured databases of images has been the focus of many studies, since over the past
decade the rise of large-scale datasets has been the driving force for the development
of the field of computer vision.

The continuous emergence of new deep learning methods that show great perfor-
mance in image classification and segmentation necessitates the creation of more and
better datasets in order to push forward their development. ImageNet is famously the
first such dataset to enable breakthroughs in object classification [102], paving the way
for numerous other available datasets of objects, faces, animals, and sceneries, with mil-
lions of annotated instances in hundreds of images [101]. With respect to biomedical
imaging, digitalization of MRI data has led to an explosion in biomedical data where
deep learning techniques have been successfully applied for image segmentation and
classification, enabling faster and more accurate diagnosis of almost all types of cancer
[116]. Moreover, new segmentation architectures have recently been developed based
on tissue, organ, and nuclei image datasets [117].

However, this is not necessarily the case when it comes to ecological data. To the
best of our knowledge, there is no large-scale dataset available of micro-CT images
of inner parts of any insect species. Even though there exist platforms that enable
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the semi-automated segmentation of inner parts of micro-CT images, typically the
annotated data are not publicly accessible but restricted to the actual user. As a result,
the first step of this study involved the development of a new dataset of annotated
micro-CT images which was used in both research projects discussed in Chapters 4
and 5. The dataset consists of more than 50,000 annotated micro-CT images of ant
heads, created from 76 different ant scans, each from a different species, making it the
largest dataset of micro-CT images of insects available to date.

Selecting a wide spectrum of diverse species across their phylogeny was a neces-
sary prerequisite for performing an in-depth comparative study, following ecological
traits, and testing the social brain hypothesis in ants (Chapter 4). On the other
hand, the great variety in specimen morphologies posed a great challenge regarding the
consistency of the acquired images, as it required tedious manual or semi-automated
pre-processing and post-processing. How this challenge was addressed to produce a
database of high-quality annotated images is the subject of the current Chapter.

3.2 Construction

3.2.1 Specimen selection

One worker from each of the 76 different species was collected from various locations
across the USA and Asia. The species were chosen to maximize phylogenetic coverage.
Moreover, the species were selected as pairs from the same genus but with different
colony size (small or large) allowing us to isolate social complexity as the primary dif-
ferentiating parameter between the species in each pair. All specimens were preserved
in 97% ethanol solution to avoid shrinkage of their inner parts.

3.2.2 Collection/Scanning

The collection of a highly accurate micro-CT based dataset relies on the expertise and
meticulousness of the users during manual segmentation; to this end, acquiring expe-
rience with practice samples in advance proved beneficial. Eventually, all available ant
specimens were scanned using ZEISS Xradia 510 Versa 3D X-ray microscope and ZEISS
Scout and Scan Control System software (version 10.7.2936) after at least two weeks
of staining in iodine solution. 3D scans were reconstructed using XMReconstructor
(version 10.7.2936) and saved in DICOM file format (default settings; USHORT 16-bit
output data type). Scanner parameters were selected based on the size and condition
of each specimen. Table 3.1 shows the genera and species of used ants as well as the
number of slices and voxel sizes of their respective scans. Micro-CT scanning method-
ology and details on its specific implementation for the current project can be found
in Chapters 2 and 4, respectively.
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Table 3.1: Taxon names of all species that were used for this study. brain vol., body vol., and eye size columns show the brain
and body volumes, and the size of eye area of each specimen, calculated based on their micro-CT scans. Colony size data were
provided by their collectors. The last four columns indicate the number of slices per direction that were used from each specimen’s
scan and the corresponding voxel size of the scan.

Taxon code brain vol. (µm3
) body vol. (µm3

) eye area (µm2
) colony size xy slices xz slices yz slices voxel size

Acanthomyrmex_glabfemoralis 36648258.71 1739308306 25882.02050 small 300 150 100 1.84105

Acromyrmex_versicolor 78176936.82 7772172863 94817.08320 large 130 200 330 3.21392

Aenictus_paradentatus 35026151.08 1353925732 0.00000 large 250 200 140 1.09831

Anoplolepis_gracilipes 32152348.62 794729496.6 48087.31500 large 370 220 180 1.00562

Atta_texana 36983510.58 1919327575 38930.04660 large 250 300 200 1.51302

Camponotus_nearcticus 96305181.09 3997122934 107480.46790 small 500 300 500 1.62596

Camponotus_hyatti 62220147.58 5471886110 105785.61600 small 300 250 230 1.84968

Camponotus_modoc 177584966.1 1.67E+10 199156.07690 large 200 400 300 2.53308

Camponotus_vicinus 155978090.9 1.34E+10 183008.71120 large 350 350 200 2.25045

Carebara_affinis 14306858.12 261688278 1865.70000 large 300 250 330 0.914802

Carebara_atoma 2045403.622 21237672.11 149.08720 small 300 200 200 0.51953

Carebara_diversa 10344835.94 425755012.7 11975.04000 large 270 100 130 0.990045

Cephalotes_atratus 162318862.1 1.30E+10 111285.37360 large 200 450 450 2.18409

Cephalotes_minutus 41622884.79 1486331971 96651.81400 small 400 250 400 1.38875

Crematogaster_lineolata 29154497.66 758527756.4 25328.90250 small 280 400 350 1.06144

Crematogaster_pinicola 24970928.93 929717003.6 32894.45260 large 320 400 430 1.01303

Daceton_armigerum 167114492.9 1.96E+10 373322.37940 large 200 250 3.52417

Dolichoderus_pustulatus 28379616.07 1076489651 36940.37120 small 400 350 420 0.93929

Dorylus_kohli 28876169.1 648968585.8 0.00000 large 400 400 400 1.05723

Dorymyrmex_insanus_small 29148510.25 836705696.3 68450.35860 small 400 300 400 1.12528

Dorymyrmex_insanus_large 23057672.69 974085009.5 41134.84830 large 250 250 250 1.30802

Eciton_burchellii 108266654.1 4853084680 21821.31210 large 300 300 300 2.67454

Formica_pallidefulva 82405544.62 7572850857 143386.76100 small 300 400 200 1.82821

Formica_exsectoides 79959436.59 4945148572 143716.49600 large 300 200 400 2.04899

Formica_gnava 106269566.9 4277058266 142072.02150 250 350 380 1.62671

Formica_neogagates 54211673.18 1671037590 69960.76790 small 150 50 150 2.43199

Formica_obscuripes 139845748.6 1.05E+10 190131.30800 large 320 300 280 2.3236

Formica_polyctena 120522711.8 5524471586 140312.98710 large 450 300 400 1.79283

Formica_rufa 79610745.29 5857953172 171070.48200 large 230 450 400 1.52425
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Gesomyrmex_howardi 33522278.78 648618857.7 102600.39630 small 430 400 200 1.03468

Gnamptogenys_sp 61245456.78 2422913708 84902.96360 small 300 1.94183

Labidus_praedator 44583433.33 1090357104 2107.00000 large 300 300 300 1.38717

Lasius_fuliginosus 66816296.05 3523012974 72445.41590 large 400 200 150 2.18947

Leptogenys_peuqueti 60923038.8 3569816364 75353.09600 small 250 100 100 3.0069

Leptomyrmex_darlingtoni 96878058.05 5985781446 104531.48950 small 430 230 300 1.55856

Linepithema_humile 18471779.96 341297591.3 25059.07040 large 430 250 300 0.892673

Liometopum_apiculatum 60706911.91 5184338441 53831.02670 large 200 350 330 1.66387

Monomorium_floricola 4954962.296 52479065.71 3201.40500 small 250 100 200 0.613733

Monomorium_pharaonis 7835526.897 209168110 7272.11800 large 350 350 380 0.673107

Myrmelachista_ramulorum 13654481.02 653636138.7 13169.13180 large 1.35418

Mystrium_camillae 26484392.42 963663559.8 0.00000 small 220 1.79928

Neivamyrmex_nigrescens 39905346.27 1824483127 6049.26980 large 1.55809

Nylanderia_parvula 12280979.82 247021584.5 13950.84320 small 1.35025

Ooceraea_biroi 9388855.466 230714491.7 0.00000 small 300 200 200 0.870043

Orectognathus_versicolor 29870071.36 685552517.5 42488.15400 small 350 150 200 1.35041

Parasyscia_cribrinobis 25619325.57 1141417199 34367.27480 small 310 310 350 1.15305

Patagonomyrmex_angustus 37148238.99 1690960005 45030.36640 small 250 350 350 1.38728

Pheidole_bicarinata 12317993.28 307433835.8 10923.31500 small 460 0.783321

Pheidole_rhea 26912463.58 901055690.2 22703.82310 large 300 250 300 1.11148

Pogonomyrmex_badius 72786171.02 9177575546 108845.15850 large 250 150 300 2.24449

Pogonomyrmex_brevispinosus 45244375.72 4167972840 92423.27640 small 250 250 250 1.941

Pogonomyrmex_desertorum 87526556.69 4169870326 88771.96590 small 250 150 250 2.19439

Pogonomyrmex_magnacanthus 47707336.38 3642140540 148115.29060 small 150 200 230 1.82453

Pogonomyrmex_occidentalis 64005886.94 8041478490 110467.31010 medium 2.59613

Pogonomyrmex_pima 36145908.05 1298855487 36843.43320 small 350 350 200 1.36688

Pogonomyrmex_rugosus 77760055.2 9093456012 145375.79520 large 200 300 350 2.30809

Pogonomyrmex_schmitti 25125098.41 1249934595 28252.07100 small 300 300 300 1.34886

Pogonomyrmex_subdentatus 91962754.7 4578092547 102300.59400 small 1.92925

Polyrhachis_bihamata 343336805.1 3.40E+10 265188.82240 small 3.81426

Pristomyrmex_profundus 1.13E+07 209607952.7 10908.00000 small 480 0.742557

Pseudomyrmex_ejectus 28958446.55 753676719 119739.11040 small 350 300 330 1.11057

Pseudomyrmex_ferrugineus 63707531.22 1895670612 148780.50480 large 400 1.29843

Pseudomyrmex_gracilis 170939920.1 7857841605 555020.79240 small 300 1.82826

Pseudomyrmex_triplarinus 80923055.22 3175493676 187264.92960 large 300 300 1.61201

Solenopsis_geminata 20595232.03 1192929865 15844.54440 large 250 250 270 1.34886
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Stenamma_heathi 3.29E+07 817607982 7181.16000 small 390 250 350 1.27715

Stigmatomma_sp 80653212.46 7646731977 40198.72530 small 230 2.44965

Syscia_augustae 19092311.06 555952712.7 0.00000 small 420 0.787728

Temnothorax_curvispinosus 11182082.53 170521049.5 12687.87520 small 450 350 400 0.656251

Tetramorium_hispidum 26775740.47 1119204030 49727.32080 small 250 200 150 1.31344

Tetramorium_pacificum 21648982 809933620.3 26384.89600 small 430 1.37859

Tetraponera_sp 34786266.18 804806566.6 114633.83640 small 310 1.12522

Trachymyrmex_carinatus 38696589.11 1800962450 36085.86170 small 100 100 220 2.04899

Veromessor_andrei 87046838.15 6786375486 93062.63040 medium 200 200 200 2.25027

Veromessor_lariversi 42534464.98 2554671888 102225.73050 small 250 250 100 1.70412

Veromessor_pergandei 41428810.18 1144110538 57887.27340 large 100 1.67449

Veromessor_smithi 54155021.2 3497873175 145753.54650 small 200 250 200 1.99029

Brachymyrmex_depilis 5307189.444 36164609.13 small 380 380 405 0.621502

Cyphomyrmex_flavidus 36259857.87 543562964.6 small 350 300 300 1.02553

Pseudomyrmex_veneficus 56915813.79 1001114276 large 370 1.2192

Dolichoderus.mariae 20788310.74 609267428.1 4564.98250 large 300 200 300 1.20906

Tetramorium.immigrans 33973982.67 1085211149 44649.70800 large 290 240 200 1.35523

Myrmelachista_nodigera 6386479.863 missing body scan 144269.47250 small 330 0.708583
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3.2.3 Semi-automated segmentation

Next, the brain area in each scan was segmented using the seed-based watershed method
[59] within the Amira [118] software environment. For better results three or four 2D
slices of each plane were manually segmented before applying the method; however,
in most cases, the software overpredicted brain areas. As the prediction depends on
the number and the suitable selection of seed positions, more precise manual process-
ing of more slices in all three planes resulted in more accurate segmentation. Even
then, however, the nerves connected to the brain were still misidentified as brain. Ex-
emplar results of semi-automated segmentation are shown in Figure 3.1(A-C), clearly
indicating falsely identified parts of the head as well as rough borders of selected areas.

3.2.4 Manual processing/cleaning

As a result, it became obvious that thorough cleaning of the data was imperative.
Smoothing and deleting of wrongly annotated pixels was performed manually, pixel by
pixel, in each slice, for each plane, leading to more accurate brain segmentation. Results
of this manual processing are shown in Figure 3.1 (D-F), for comparison with those
of semi-automated segmentation. To readily identify the regions which were removed
during this process, Figure 3.1(G-I) shows an ensuing 3D brain reconstruction (seen
along three different directions) before and after smoothing; cleared-out regions are
shown in blue, whereas correctly identified brain areas are depicted red. The resultant
brain volume of each specimen was calculated with Amira, also shown in Table 3.1.
Moreover, after reconstructing the surface of each specimen, each body was measured
using its voxel size and the eye area was measured using Amira software.

3.2.5 Data processing and consistency

To be able to train a CNN efficiently with as limited a dataset as possible, the con-
sistency of the data is of paramount importance. Following the brain segmentation
of each specimen, we extracted the 2D tiff raw images of each head as well as their
binary masks using an in-house built Python script in Jupyter notebook. Every scan
was unique and the species were purposefully selected to show great diversity in head
and brain volume; as a result, the numbers of extracted slices were vastly different and
had to be input manually. Moreover, to significantly boost the number of images and
to maintain the information on the locality of the brain, we extracted images from all
three plane normals by rotating the scan along with its labels. The number of brain
images per specimen for each plane normals is also tabulated in Table 3.2.2. In every
scan, the void area of the vial containing the specimen generated totally empty images.
These images were manually removed after regular dataset quality checks. To enhance
the contrast of each image and to remove areas of no interest, the ‘imaug’ library in
Python was used, performing histogram equalization and zoom. By enhancing the
contrast, the texture and inner parts of the dense brain area were easily recognized.
The resulting images were of 520 × 520 pixels. Figure 3.2 shows the pixel histograms
of the images of one specimen, before and after equalization, clearly indicating the ho-
mogenization of the image. As a final step, all images were reevaluated and compared
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Figure 3.1: Segmentation of brain area of Atta texana micro-CT images.
Panels A, B, and C show segmentation results with the watershed method in Amira,
along three perpendicular directions. The red outline in each figure indicates the
identified brain area. Panels D, E, and F show the corresponding segmentation results
after smoothing and "clearing". In the bottom row, panels G, H, and I show the
resultant 3D images of the segmented brain, with areas depicted red indicating the
brain after smoothing, and blue indicating the pixels that were removed.
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Figure 3.2: Exemplar Pixel Histograms before and after equalization for Atta
texana ant. Different colors correspond to different images. The image processing
resulted in a more homogeneous histogram, which enhanced their contrast.

with their masks, and named according to the specimen’s species.

3.3 Applications

The created dataset was used as training and testing set of U-Net to automate the
segmentation process. More details about the network and the project are given in
Chapter 5. Moreover, the same dataset was used for the morphological study of the
ant brain, which is detailed in Chapter 4.

As pre-training has become a first step in most deep learning segmentation methods
and the use of a different but related network is a requirement, an extended dataset of
micro-CT images of ants can become a key aspect. Moreover, our dataset can become
the first step for the creation of a bigger dataset of micro-CT images of insects, in
general, as digitalization of specimens becomes a fact.



Chapter 4

Ant Brain Evolution

“The brain of an ant is one of the most marvelous
atoms of matter in the world . . . perhaps more so

than the brain of man”
Charles Darwin

4.1 Introduction

Due to the complex relationships between the animal brain and the biology, ecology, and
behavior of the individual, it is important to explore the parameters that have effects
on its evolution. A particularly interesting question in ecology is how social structures
and brain evolution are related. Studies focused on this question can shed light on
mechanisms relevant to understanding how intelligence and cognition evolve. Ants
(family Formicidae) are social insects that form rich, complex societies and have outsize
ecological importance in the diverse environments in which they are found. Therefore,
they are an ideal candidate taxon among other insects to investigate the connection
between social structure and colony complexity, as well as the morphological evolution
of the ant brain [119]. Here we investigate this question by using micro-CT imaging of
ant brains to quantify the relationship between social complexity and the morphology
of the brain and assess the validity of the social brain hypothesis on a representative
taxon of social insect. We conduct the first comparative study of the brains of ant
species which form societies of different structural complexities (also considering their
phenotypic variation) using a large number of species (n = 76) across their phylogeny
in order to test the social brain hypothesis. This analysis formed the first part of
the current PhD project and involved (i) a good understanding of the morphology of
ant brains; (ii) hands-on experience with micro-CT imaging (also necessary for the
segmentation automation project presented in Chapter 5), and (iii) a main focus on
the application of classical statistical methods and analysis (as elaborated in Chapter
2).

33
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Figure 4.1: Atta texana head scan viewed along all directions with the segmented
brain depicted red. The three views are to scale.

4.2 Methods

As a first step, we generated a unique dataset of micro-CT scans of ant workers of
these 76 species, calculated their body and brain volumes (Figure 4.1) and eye sizes,
and combined the morphological results with ecological data. We used these data to
determine how social structure and ecological traits affect the evolution of the ant
brain. More details about the construction of the dataset are provided in Chapter 3.

4.2.1 Sociality trait and phylogenetic tree

The phylogenetic tree of our specimens was constructed within the framework of a
collaborative project focused on the genome analysis of the specific species (publication
in preparation by Tong et al.) and the status of their colonies was defined to be
used in the current statistical analysis. A threshold value of 3000 individuals per
colony was selected to distinguish between small and large colonies, creating two sets
of almost equal number of species. Both higher and lower values were also tested
indicating insignificant sensitivity of the results below to the exact threshold value. As
shown in Figure 4.2, species that are closely related to each other form sets of small
(regular typeface) and large (bold typeface) colonies (i.e., showing similar morphology
but different social structure). As an example, a pair of ants from the same genus
(Pseudomyrmex ) but from colonies of different size is shown in Figure 4.3. Moreover,
our specimens were diverse regarding their eye size. Figure 4.4 shows images of 3
different ant head scans, each with different eye size. In some cases, eyes can cover a
substantial part of the head, along with the presence of ocelli, whose function is akin to
that of a compass, facilitating the ants’ navigation [120]. Eyes and ocelli are connected
with the optic lobes, the part of the brain where visual information is being processed.
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Figure 4.2: Phylogenetic tree of 76 ant species used for this study. Different
colors correspond to different ant subfamilies. Species from large colonies are in bold
typeface. Specimens of species Pseudomyrmex triplarinus and Pseudomyrmex gracilis,
denoted with single and double asterisks, respectively, are shown in Figure 4.3.
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Figure 4.3: Body scans. A. Pseudomyrmex gracilis (small colony), and B. Pseu-
domyrmex triplarinus(large colony). Despite being congeners and sharing many similar
characteristics, the species also exhibit significant differences, most remarkably in eye
size.

Figure 4.4: Head scan images. A. Aenictus paradentatus, B. Carebara affinis,
and C. Pseudomyrmex gracilis ants. Heads are to scale. The three different species
are exemplary cases exhibiting eyes which are: A. absent, B. small, and C. large (as
indicated by the orange ovals).
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Table 4.1: AIC and ML rates. AIC and ML rates for different models fitted to the
residuals of the regression analysis of brain-size modifications. As the lambda model
is maximizing ML and has the lower AIC, it is the best fitted model to our data.

OU model BM model lambda model (� ⇠ 0.26)
AIC 11.88 96.28 5.78
ML -2.76 -46.05 0.28

4.2.2 Phylogenetic analysis/statistics

We statistically analyzed and evaluated the correlation between brain volume and body
volume, eye size, and colony size to determine which of these traits affect the brain size.
As a first step, we fitted three different evolutionary models, Brownian, OU, and Pagel’s
to the residuals of the linear regression of brain and body volume to test the effect of
the phylogeny in brain changes. The model that best describes brain-size modifications
(while considering the phylogenetic factors) is Pagel’s � [24, 25]. Lambda was calculated
so as to maximize the likelihood and minimize the AIC value [21], as shown in Table 4.1.
As a next step, we performed both linear regression and PGLS regression between the
relative brain size (response variable) and the sociality and eye size traits (predictors).
All statistical analyses were conducted in R (R Core Group 2021) using the ‘lm’ function
of stats (version 3.6) package for linear least squares regression and ‘pgls’ function
of Comparative Analyses of Phylogenetics and Evolution (CAPER) (version 1.0.1)
package for PGLS regression [121]. Body volume was included in all calculations as a
covariate to correct for allometric effects [27]. Finally, we examined direct and indirect
correlations between all traits using the ‘phylopath’ package (version 1.1.2) in R [122–
124].

4.3 Results

Consistent with previous studies [125], the brain size of each species was positively
correlated with body size, as shown in Figure 4.5. The linear regression between log
brain and log body volume shows their strong correlation (R2 ⇠ 0.9) for both small
and large colonies.

The performed OLS and PGLS regression between all four traits indicates that
body volume is the strongest predictor of brain volume, but highlights two additional
factors that may affect brain size: namely, eye size or the potential absence of eyes. Of
the 76 species analyzed, 5 were eyeless; these species were considered extreme cases,
and as such were excluded from subsequent analyses. Additionally, both linear and
PGLS regression revealed no correlation between brain volume and colony size or eye
size, as shown in Table 4.2. However, excluding the extreme cases of eyeless species led
to a clear correlation between brain size and eye area. The results of linear regression
and PGLS analysis of brain volume and eye size are shown in Table 4.3. The analysis
indicates that ants with larger eyes have greater brain volume. Brain size may be
positively correlated with eye size in ants because species with larger eyes have the
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Figure 4.5: Linear correlation of log brain and log body volumes. The linear
relationship between the log volumes indicates that a definite power relationship exists.
Full symbols indicate eyeless species from both large and small colony sets.
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Table 4.2: Results of linear and phylogenetic linear regression of brain volume, eye
size and colony size for all our dataset. There is no significant correlation, as verified
by the p-values.

Brain volume -
Eye size - Colony Size F-statistic p-value for Eye/Colony size R2

Linear Regression 285.2 0.533/0.452 0.919
PGLS 255.8 0.427/0.2545 0.9107

Table 4.3: Results of linear and phylogenetic linear regression of brain volume and eye
size for ants which have eyes. The correlation is significant, as verified by the p-value.

Brain volume - Eye size F-statistic p-value R2

Linear Regression 416.8 0.021 0.9213
PGLS 366.7 0.05 0.9115

need to process more visual information and thus require larger optic lobes and/or
mushroom bodies (i.e., neuropils responsible for memory).

Next, using a least-squares linear regression we found evidence that eye size and
sociality influenced brain evolution, and we investigated the connection between eye size
and sociality of each species. The PGLS and linear regression analyses both show strong
correlation between the eye size and sociality traits (once more when we excluded the
species without eyes), as shown in Table 4.4. To sum up, small colonies were correlated
with larger eyes in ant workers.

As eye size is correlated with both brain volume and sociality, we investigated the
connection between brain volume and sociality using graph theory (‘phylopath’ package
in R) that can reveal weak connections between traits (which can be overlooked when
stronger traits interfere). The relationship between all traits was examined for eyeless
ants, as shown in Figure 4.6. As expected, the very weak correlation between sociality
and brain investment was ignored when using linear regression, as the correlation with
the other traits is stronger, leading to a hardly detectable connection.

Table 4.4: Linear and phylogenetic analysis of eye size and colony size in non-eyeless
ants. The results show correlation between the two traits. Log body volume was also
included in the calculations.

Eye size - Colony size F-statistic p-value R2

Linear Regression 69.62 0.0237 0.6622
PGLS 55.04 0.020934 0.6069
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Figure 4.6: Results of phylogenetic path analysis for all traits for non-
blind ants including the standardized regression coefficient ± CI. Low values of beta
coefficients between colony size and brain volume show that the correlation between
the two traits is weak.
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4.4 Discussion

We found no support for the social brain hypothesis in ants, as there was practically
no evidence that colony size is correlated with brain size. We did recover a strong
brain-volume / body-volume allometry with power exponents (⇠ 0.6) comparable to
previous studies. After correcting for body size scaling there were still strong correla-
tions between eye area and brain volume, and between eye area and sociality.

The lack of correlation between brain volume and colony size found in this study,
aligns with most previous studies on the social brain hypothesis on insects [126]. Totally
social and totally non-social species should be included, however, to maximize their
potential to highlight any relationships that might exist. Nevertheless, the connection
between eye area and sociality is revealed as quite significant. Eye presence and size
depends on many factors; a prevalent one being the interaction between individuals
(e.g., for the protection of the colony from other species). Thus, the correlation between
larger eyes and smaller colonies may suggest that in such colonies the superorganism
(i.e., the colony) can invest in individual ants’ traits to protect itself from outsiders.
Of course, we cannot exclude other environmental and ecological factors, like habitat
type and nocturnal foraging, as they were out of the scope of this study. The need for
primary visual information processing, though, is connected with larger brain size, and
is task related [127]. It is possible that ecological factors such as labor division may
be related with brain development because of their connection to eye size and social
structure.

The indirect weak connection of sociality and brain volume might also be a result
of other ecological factors that drive the brain size evolution, whose strong connections
swamp any social effects. These ecological factors need to be tested as future work.
Moreover, what remains to be answered in a future study is whether the morphological
adaptation is a preadaptation or an outcome of sociality.

4.5 Conclusion

Connecting ant brain investment with the social structure of the colony has frequently
been investigated with consideration of both the ant nervous system and foraging and
diet routines [126, 128]. However, most past studies have been limited to only a few
species, and as a result it is difficult to make a general conclusion about the drivers of
brain evolution across the ant phylogeny. In the current study we explored 76 different
ant species spread across this phylogeny and analyzed this connection with the largest
such dataset to date. In our study we found that the eye size of ant workers is cor-
related with the social structure of their colony. Moreover, their brain size is affected
by the changes in eye size or presence. However, the connection between sociality
and brain size remains unclear as the analysis showed only a weak correlation between
them. Naturally, there are topics that warrant further investigation, including addi-
tional relevant physiological traits such as brain density and nervous system structure,
as well as exploration of changes in neuropils, especially those which process visual and
olfactory information. Nevertheless, this study helps provide a foundation for investi-
gating variation of ant brain size. Our findings are important not only for evolutionary
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biology, but also because they help propose a preliminary (if yet inconclusive) answer
to the social brain hypothesis for ants.



Chapter 5

Automated Segmentation of Micro-CT

Images of Ants

“Easy things are hard (especially in vision)”
Artificial Intelligence: A guide for thinking humans

5.1 Introduction

As micro-CT imaging is becoming readily accessible for morphological biology studies,
the amount of generated data is piling higher than ever before at an overwhelming
rate. However, in order to have significant ecological discoveries, 3D images of animals
produced by micro-CT scanning need to be processed and analyzed efficiently. One of
the most time-consuming processes along this line of investigation is the segmentation
of the inner parts of the scanned specimens. To overcome this hindrance, automation
of the process by deep learning techniques is proposed as an ideal candidate for an easy
and efficient solution.

In this Chapter, the general segmentation problem of micro-CT images of insects is
introduced, and a proposed pipeline for its automation using ants as model organisms is
described. The following sections are currently deposited as a pre-print in the BioRxiv
repository. As this chapter is based on this pre-print, it concludes with an explicit
statement of the author’s own contribution in this project.

5.2 Automated brain segmentation of ant micro-CT

images

Three-dimensional (3D) imaging of animals by micro-CT has become popular in mor-
phological biology as a non-destructive method to acquire high-precision data on or-
ganismal anatomy [10, 129–132]. The high-resolution 3D data enable the users to
visualize and quantify internal and external structures, forming the basis for a wide
range of biological applications.

43
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A key challenge for the use of micro-CT lies in the analysis of huge amounts of
acquired data. In particular, while 3D images are reconstructed shortly after scan-
ning, segmentation of the images into specific body parts is often a necessary step for
quantification and visualization of particular structures.

The most common segmentation method to date is manual processing, which is ex-
tremely time-consuming and compromises reproducibility [12]. This limits the number
of samples that can be included in a given study, and thus the scientific applications
of 3D scanning. For example, developmental biologists may want to analyze large
numbers of experimental treatments and replicates. Or, in comparative biology, we
may seek to analyze the evolution of a body part across hundreds or thousands of
species. The recent emergence of large databases and coordinated projects to scan
many species in specific taxonomic groups offers rich opportunities for new research
directions if limitations on segmentation can be overcome.

In the medical literature, image segmentation methods have recently become more
powerful and efficient due to significant developments in machine learning algorithms.
To date, the main focus of automated segmentation methods has been on cells and
human organs (e.g., human CT or MRI image segmentation for cancer detection [133,
134]). However, there is broad potential for automated segmentation to accelerate
biological research on organisms across the tree of life [7, 135, 136].

New software for biomedical image analysis has steadily progressed during recent
years, with the capability for analysis and segmentation of 2D or 3D biological images
and the capability to build one’s own data processing pipelines [137]. However, despite
the unconstrained accessibility to free general-purpose software tools, the development
of specific segmentation algorithms is essential to achieve high accuracy, objectivity,
and reproducibility. Recently, deep learning methods like CNNs have been successfully
applied in numerous image classification and semantic segmentation problems [67, 75].

CNNs have recently become widely used in image processing due to their high
performance, the efficiency of GPUs, and the availablity of free software platforms
and pre-trained networks [138]. Toolsets and pipelines that use classical statistical
methods such as ANTs [139], Biomedisa [140], and Freesurfer [141] are accessible and
accurate for the segmentation of high-resolution images. However, these are either not
fully automated and still require an expert user and considerable amounts of time and
effort [142], and/or require training examples within the same scan, and/or are not
adaptable to diversity and complexity in the target set. On the other hand, accurate
and general toolkits and application frameworks that use machine learning techniques
such as SlideCam have been successfully used for medical image segmentation as well
as computer-aided diagnosis and analysis of images spanning from human brain seg-
mentation to cancer detection [143]. However, to date no toolkit has been designed
to recognize homologous parts across a wide diversity of animal species, which would
require an appropriate choice of network architecture, fine-tuning of hyperparameters,
and the production and curation of substantial, high-quality datasets. When it comes
to analyzing such images, segmentation remains a most challenging task, and often
manual or semi-automated- segmentation is still the only way.

U-Net is a CNN architecture that has shown high accuracy and robustness for
biomedical image segmentation [86]. It uses relatively small number of training images
to accurately segment areas even with unclear borders. The simple architecture of U-
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Net makes it easy to develop and very fast to train. Once a U-Net is trained, the
acceleration of the segmentation is extreme: for example, the segmentation time for
one ant brain, which may be up to a whole day’s work if performed manually, is reduced
to merely 1-2 minutes by automatic segmentation.

In this Chapter we present an automated pipeline for segmentation of different inner
parts of insects in volumetric data using micro-CT scans, and specifically ant brains
across a diverse set of different ant species, as a test case. A basic question for such
studies is how general algorithms can be applied across the tree of life. Can an algorithm
trained to recognize a part in one type of organism be used on more distant relatives,
or do they break down once applied outside the group for which they were developed?
Ants are a well defined clade following a similar overall body plan, but reflect > 100
million years of diversification and a large range in ecological, sensory, and behavioral
modes [6, 144]. We expect ant brains to have an intermediate level of diversity and thus
be a reasonable test case: they will change in size and shape across species, while the
general organization and tissue composition should be conserved [145]. As a secondary
experiment, we assess whether the ant brain segmenting algorithm we developed can
be applied with minimal modification to recognize brains in distantly related insects.

Overview of the segmentation pipeline

Our micro-CT image segmentation pipeline is composed of multiple modules, as illus-
trated in Fig 5.1.

• Sample preparation: Before scanning, specimens were stained in iodine for an
average of two weeks to enhance tissue contrast in the raw images.

• Image acquisition and reconstruction: An X-ray micro-CT image dataset
was acquired from 76 species of ants. The acquired images were reconstructed
along all three perpendicular directions that comprise a Cartesian system forming
a detailed cross-section dataset.

• Volume rendering: The reconstructed raw images were used for creating a 3D
model for volume rendering, to be used for visual inspection and future morpho-
logical studies.

• Semi-automated segmentation: Raw images of heads were segmented semi-
automatically using the seed-based watershed tool of the Amira software. Labels
were assigned to areas of interest, starting with the brain. The output of this
process was used as an input for the study of Chapter 4. The databases of both
raw and labeled images were then pre-processed to enhance their homogeneity
and used as training and validation data.

• CNN development: An implementation of the U-Net architecture was built
for automated segmentation.

• Training: 60% of the acquired segmented brain images (46 species) were used
for network training; the remaining 40% (30 species) was reserved for testing.
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• Pixel island detection and post-processing: After segmentation by U-Net,
pixel island detection was used to identify the largest continuous areas and to
remove isolated segments.

5.3 Materials and methods

5.3.1 Image acquisition

In total, we collected one head scan per species from 76 different ant species using a
ZEISS Xradia 510 Versa 3D X-ray micro-CT microscope, and ZEISS Scout and Scan
Control System software (version 10.7.2936). The scanner settings were determined by
the specimen size (e.g., voltage: 30 keV and exposure time: 3-10 s) resulting in 5- to
20-hour scans (12 hours on average).

With a view to expanding our dataset in order to eventually enhance robustness
and suppress overfitting during network training (see below), we used 2D cross-sections
of planes along all three directions of our 3D brain scans. To highlight the morpho-
logical diversity of the scanned specimens, we also performed 3D reconstruction of the
resulting scans with XMReconstructor (version 10.7.2936). The output images com-
prised 1000×1000×1000 px, on average, with resolution down to 1 µm. Exemplaries
raw images of full-body scans from different ant species are shown in Fig 5.2.

5.3.2 Image processing

Generation of data for training and validation

We processed the data with the Amira software (version 6.0), and semi-automatically
segmented the brain areas (on average, 300×400×600 px per brain) using the seed-
based watershed method [146] in the volumetric data, as shown in Fig 5.3. Each
semi-automatically segmented 3D brain was dissected into 2D slices on planes along all
three directions. To eliminate the empty space of the image and zoom in on the region
of interest, the image was cropped and rescaled into 520×520 px to show only the brain
area and its adjacent muscles and fibers. The texture of the brain is unique within the
whole image of the head, which facilitates its identification. However, the borders are
more challenging to classify as numerous nerves branch out from the brain connecting
it with the rest of the ant’s body; these nerves had to be removed manually, as Amira’s
watershed tool typically mistakes them for brain areas. This makes semi-automated
segmentation challenging and considerably time-consuming. Eventually, this process
resulted in an average of 1000 2D brain images per specimen at an estimated average
time cost of 5 hours per specimen.

Data pre-processing

As a pre-processing method, we chose histogram equalization [147] using the "imaug"
library [148] in Python. Since the images were collected from different samples and
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Figure 5.1: Segmentation pipeline overview. (A) Specimens are placed in iodine
for staining for two weeks and then placed in small vials containing 99% ethanol to
prevent them from moving during scanning. (B) The scanner acquires images along
all three axes, and, using a user-defined reference image, automatically reconstructs
the whole volume of the scanned specimen. (C) Volume rendering for future morpho-
logical studies is performed using Amira software. (D) Semi-automated segmentation
of the brain volume of each scan (in orange) using the watershed method in Amira.
(E) Schematic representation of the U-Net architecture used as the core of the pipeline
for the development of a fully automated brain segmentation method. (F) The ac-
quired brain images are used for training after pre-processing augmentation and man-
ual creation of masks. (G) The network’s prediction (in yellow) is post-processed for
smoothing out over-predicted areas (in red).
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Figure 5.2: Exemplar raw images of full-body scans from different ant
species. 3D reconstructed micro-CT image of (A) Acromyrmex versicolor and (B)
Atta texana worker specimens, using volume rendering in Amira. (C) 2D micro-CT
full body image of Atta texana specimen. The brain area is the densest, most uniform
area in the whole body, which makes it easy to recognize in most high-quality scans.
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Figure 5.3: Example of semi-automated brain image segmentation. The brain
area (in orange) of an Atta texana ant specimen was segmented using the watershed
method in Amira; the image was manually post-processed by smoothing and cropping
over-segmented areas.

scans, and their contrast was not optimized during scanning, pixel density equalization
improved the network’s performance remarkably. After histogram equalization, the
contrast was improved, accentuating the texture of the brain and, thus, making it
easier to identify. An exemplar result of data pre-processing is shown in Fig 5.4.

U-Net structure

We chose the U-Net architecture because it has been the most successful CNN for CT
image segmentation to date. The U-Net is not a conventional CNN architecture, in the
sense that it extends the contracting path of a typical CNN by a symmetrical expansive
path [86]. For optimal efficiency, our code uses the open source GPU-TensorFlow
library [111] and the TensorFlow U-Net implementation, as described in Akeret et
al. [149], utilizing Jupyter notebook and Python. Our network consists of a five-fold
repetition of two 3×3 convolutions followed by a rectifier linear unit (ReLU) and a 2×2
max pooling. Starting with 64 features, each layer doubles their number resulting in
256 features before starting the expansive path which consists of two 3×3 convolutions
followed by ReLU and 2×2 up-convolutions. The number of features is halved with
each up-convolution but the result is concatenated with the features from the matching
down-sampling layer. Finally, 1×1 convolution is applied to map each feature to the
number of classes, i.e., two. The batch size used is 1⇠4, the stride is 1, and zero
padding is used for the max pool (Figure 5.5).

Training

To assess the effect of various parameters on the performance and the processing time,
different batch sizes, numbers of initial features, epochs, and iterations were tested.
We selected a random 60% of data (46 species) for training and used the rest (30
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Figure 5.4: Data augmentation. (A) Initial 2D image of a full head scan of an
Atta texana ant specimen. Pre-processing is performed in two steps: (B) The image
is cropped around the brain area, keeping some of the muscles, nerves, and fibers that
are close (or even attached) to the brain. The manual segmentation of the brain is
indicated in blue. (C) Histogram equalization is used for additional augmentation,
which enhances the contrast and projects the inner parts of the brain more clearly.

species) for testing. The optimal parameter values were chosen on grounds of low
computational cost and high classification accuracy for training data. We trained the
network by optimizing the binary cross-entropy function with L2 regularization using
stochastic gradient descent with the momentum of 0.8. The initial weights were selected
by using a Gaussian distribution, in agreement with Ronneberger et al. [86]. Batch
normalization was added in the first 3 layers to avoid overfitting as well as to accelerate
training [49]. Finally, we added dropout equal to 0.5 in the first 3 layers also to avoid
overfitting. We trained our network for 10 epochs, with mini-batch 32 on a 520×520
pixel image, costing 120 hours in our workstation using a GeForce GTX TITAN Xp
and a GeForce GTX 1080 graphics cards.

Post-processing

We post-processed our network’s prediction by using pixel island identification and
isolation [150]. After predicting the brain area along all three planes, the biggest pixel
island was chosen as the brain area. This process boosted by almost 10% on average
our prediction success rate of both the Jaccard Index (IoU) and Dice Coefficient (F1
score) [98].

5.4 Results

5.4.1 Segmentation of ant brains

First, we applied our method to our primary taxonomy group of choice, i.e., ants, and
trained our network to segment the brain areas in micro-CT scans from different ant
species.

Our processed data of 38,000 of the size of 520×520 pixel images from 46 species
were used for training and validation (randomly split into 80% for training and 20%



5.4 Results 51

Figure 5.5: U-Net implementation. The architecture of the used CNN is an
implementation of U-Net. It consists of two parts: a. two 3×3 convolutions followed
by 2×2 max pooling and b. two 3×3 convolutions followed by 2×2 up-convolutions.
Dropout was added to avoid ovefitting. As a final step, a 1×1 convolution is applied,
resulting in an output map with two classes.
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Table 5.1: Accuracy scores. Performance evaluation of our proposed pipeline. Both
performance descriptors studied (IoU and F1 scores) increase steadily with increasing
number of images and post-processing.

Number of images of training set IoU F1
3,500 - xy plane 50% 62%
10,000 - xy plane 63% 71%

38,000 - along all three directions - no post-processing 72% 80%
38,000 - along all three directions - after post-processing 80% 90%

for validation) and the remaining 20,000 of the same size images from 30 species were
used for testing.

As shown in Table 5.1, both IoU and F1 scores were steadily increased as we added
more 2D images from planes along the same xy directions of different species, and
even more so after we included reconstructed 2D images from planes along all three
directions of our 3D brain scans. To estimate the generalized performance of our
network, we calculated the true positive rate (TPR) and false positive rate (FPR)
values of our images by changing the discrimination threshold of our network [58],
shown in Fig 5.6. All values are close to 1 for both training and testing sets while the
FPR values remain less than 0.4 for most cases, indicating that our network predicted
the brain region and its border accurately and without over-predicting. Results for
test and training images are similar, suggesting good generalization capabilities for the
optimized hyperparameters of our network.

Finally, a post-processing step also boosted the performance of our network, yield-
ing even more satisfactory results. Example results of our network’s performance on
validation and testing data are shown in Fig 5.7 demonstrating a predicted area in good
agreement with the ground truth; our automated segmentation pipeline achieves an ap-
proximate maximum of 80% IoU and 90% F1 score. Prediction times were in the order
of only a few minutes, significantly lower than for the semi-automated segmentation
commonly used to this day.

5.4.2 3D volume rendering

After segmenting the 2D slices, the 3D brain volume was readily computed by loading
the stack of images in Amira or ITK-snap. Thus, using a 2D network allowed us to
maintain high accuracy, performing 3D segmentation in a faster and easier to train way.
An exemplar predicted brain area is shown in Fig 5.8; 3D volume was reconstructed
from the 2D predicted images with Amira software. The switch from 2D to 3D is
straightforward, giving the user of our pipeline the ability to adapt it to their own
dataset circumventing the complications of using an actual 3D CNN.
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Figure 5.6: Network performance evaluation. High TPR and low FPR values
for training (red) and testing data (blue) indicate the network’s high generalizability.
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Figure 5.7: Pipeline performance calculated both for validation (top row)
and testing (bottom row) sets. (A, D) Raw images of head of Atta texana ant
and Carebara atoma specimens, cropped along the x-y axes. The manually segmented
brain areas are indicated in blue. (B, E) Network predictions before post-processing
(in yellow). Areas in yellow dotted circles are pixel islands not connected to the brain
area that were overpredicted. (C, F) Predictions after post-processing (in red). The
borders of the predicted areas show good agreement with the manual segmentation in
both sets. Note that in overlapping manually and automatically segmented areas in B,
C, E, and F, colors appear green or purple.
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Figure 5.8: 3D volume of ant brain reconstructed from 2D images predicted
from the algorithm. 3D reconstructed brain prediction of an Atta texana worker.

5.4.3 Generalization to other neural systems and other insects

The U-Net step appears to be largely driven by textures, with the pixel island detection
step used to isolate the brain. Even though our customized U-Net was designed for
the segmentation of ant brains, it was also successfully applied for the segmentation of
neural tissue in other parts of ants and works on distantly related species. Our network
was able to predict the whole neural system in full-body scans of ants, as shown in
Fig 5.9, being able to predict the same texture as the brain in different ganglia in the
thorax (called mesosoma in ants).

Our network also gave good prediction for the brain area in scans of various different
distantly related insect species. We used our pre-trained (on ant brains) network to seg-
ment the brain areas of micro-CT scans of model organisms such as flies (Drosophila)
and honey bees (Apis mellifera) as well as closely related insects such as praying man-
tises (Leptomantella) and termites. Since its prediction capability relies mainly on
identifying the texture of the brain area, which does not differ significantly among dif-
ferent insect species, our pre-trained network was able to perform satisfactorily without
further adaptation on the data. Exemplar results are shown in Fig 5.10 for (A-B) wasp
and (C-D) praying mantis brain prediction, respectively: remarkably, our network was
successful in segmenting the brains of different insects without any prediction accuracy
losses (when compared to predictions for ants), indicating its flexibility and its lack of
necessity for training on each specific distinct species.
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Figure 5.9: Prediction of ganglia in the thorax. As the tissue texture in the
image is similar with that of the brain, the network accurately predicts other areas of
nervous tissue in the organism. The pixel island detection step isolates the brain, but
without this step neural tissue can be isolated.

5.5 Discussion

To bring morphology fully into the big data era, we need automated methods to retrieve
biological meaning from large volumes of images. The proposed automated pipeline
is a step in this direction, presenting considerable advantages over other standard
methodologies. First of all, automated segmentation is achievable within a few minutes
for each specimen, producing faster and more accurate results than semi-automated or
manual segmentation. A noteworthy additional advantage is that once algorithms have
been trained, advanced expertise in morphology is not required, while manual and semi-
automated segmentation usually require advanced knowledge [151]. In fact, during
testing our network often outperformed even experienced users and compensated for
their oversights or misjudgments, predicting correctly brain areas that were accidentally
missed out during manual segmentation.

The two approaches in our method, U-Net and pixel-island detection, represent
two complementary steps which suggest a path forward for automated segmentation of
structures in complex organisms. U-Net was efficient at retrieving tissue with similar
properties in the image, but in our implementation did not make use of shape and
position. Thus, we found it retrieved all the structures of neural tissue across the
body, even though it was trained on the brain alone. The brain was then isolated with
the pixel-island detection, which isolated the largest structure in the head. In general,
we expect a combination of tissue-level identification followed by other methods that
make use of size and spatial organization to be a powerful combination that should
generalize to a wide range of anatomical tissues and parts.

During testing with other insect species, we used both high and low resolution/quality
images acquired from different laboratory and synchrotron-based micro-CT scanners.
Our results showed that our segmentation pipeline can perform without losing its ac-
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Figure 5.10: Application of pipeline for other insect species. The brain
textures of various insect species can be very similar with those of ants, facilitating
the prediction by the network even without pre-training on specific insect brain scans.
(A) Raw image of wasp head and (B) its prediction without post-processing, indi-
cating satisfactory identification of the borders of the brain area. (C) 2D image of
praying mantis head and (D) the prediction of its brain area without post-processing.
Even though the network over-predicts some small pixel islands, it excludes from its
prediction areas of the muscles, fibers and cuticle.
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curacy to predict the brain area across highly divergent arthropod species and across
scanning methods. Finally, the prediction performance of low-resolution images in-
dicates that there is a threshold in the image resolution below which our network is
not performing well. Our network’s generalizability is high and it can be widely used
not only for head but also for whole-body scans of ants and other insects. More im-
portantly, it shows that a similar approach could be used to build a suite of trained
networks that can segment anatomy across a wide variety of organisms.

Last, it should be noted that both automated classification and segmentation tasks
typically require big datasets for training and validation, which can be a challenge for
researchers to produce for any given application. Since no publicly available dataset of
micro-CT images of ant brains existed for our case study, we created a new, extensive
dataset across a wide variety of ant species. Since neural anatomy across insects share
features that make them targets for segmentation, our dataset can act as a starting
point for the development of an even bigger library of micro-CT images of insects, and
work as a pre-training dataset for future CNNs [152].

5.6 Conclusion

In this Chapter, we employed the U-Net based CNN for the fully-automated segmen-
tation of micro-CT images of insects. We also present an extensive dataset of manually
segmented brain images that can be used to pre-train other networks of interest. Our
trained network predicted the brain area in ant images fast and with high accuracy.
Further, our network was able to generalize and predict the whole neural system in
full-body scans, as well as to predict ganglion areas that were missed by manual segmen-
tation. After training, the network’s performance was tested on training and testing
data showing good agreement between prediction and mask scoring 90% F1 and 80%
IoU. Our pipeline allows successful segmentation in only a few minutes instead of hours
which are typically required for manual segmentation.

One of the most important features of the framework described here is that it can
be applicable to other anatomical features. Preliminary results on other organs have
shown that it can be easily tuned and trained to predict muscles as well as the cuticle
of the insect bodies. Moreover, for future studies, segmenting sub-components of the
brain will also be tested as it is of great importance. Specific attention was paid so that
the application of the pre-trained network is straightforward and user-friendly, which
we aspire will enable the community to adopt it as a valuable resource.

The development of large-scale 3D datasets across phylogenetically diverse taxa
(e.g., OVert [13]) opens up new vistas for comparative research. Likewise, develop-
mental biologists may want to use high-throughput scanning to image hundreds or
thousands of specimens as part of an experiment. However, just as DNA sequence
data needs bioinformatic algorithms to process massive datasets, large scale image
collections require algorithms to digest and extract biologically meaningful data. Al-
gorithms such as this one offer a way forward for powering a "big data" approach to
organismal morphology.
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5.7 Contributions

For this project the author (i) scanned the specimens used as training and testing
data; (ii) manually segmented the brains of all specimens; (iii) created the training
and testing sets; and (iv) wrote the code for the pre-processing, training network,
and post-processing. Additionally, the author prepared a GitHub page for the code,
and wrote the first draft (and contributed to the editing of subsequent drafts) of an
article currently deposited as pre-print at bioRxiv (to be submitted for publication in
an international peer-reviewed journal soon).
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Chapter 6

Conclusion

"...at a speed of three hundred million facts per second, and
mile after mile of tape coiled out and gradually buried the

Ph.D. pirate beneath its windings, wrapping him, as it were,
in a paper web...”

Cyberiad

This Chapter summarizes the challenges that defined the body of research that com-
prises this PhD project. The main findings and output (presented in Chapters 3, 4
and 5) are also reviewed and put into a broader context, with a few remarks about
their novelty and potential significance for future research. This chapter, and the whole
thesis, concludes with a short, slightly more personal, epilogue.

6.1 Premise

Ants hold a prominent position in ecological studies. They are eusocial insects, forming
colonies which display an excessive size range (from few dozen to millions of individuals)
with the resultant variability in division of labor, level of communication, and problem-
solving protocols. Indigenous ant species are found in most part of the world, thriving
in diverse ecosystems, and providing ample information for numerous behavioral and
anatomical studies. However, various aspects of their evolution still remain unclear.

Micro-CT scanning, on the other hand, is a non-invasive technique which can pro-
duce data-rich volumetric images of insects. As such, it has availed a detailed view
on the morphology and anatomy of ants, leading to the discovery of new species and
helping decipher their evolution. Supported by phylogenetic considerations, morpho-
logical comparison between species enables the investigation of fundamental biological
questions, such as the social brain hypothesis which connects the adaptability of the
social behavior of animals to modifications in their ecosystem and social structure with
changes in their brain investment.

However, a key challenge for the use of micro-CT lies in the analysis of the exten-
sive amounts of 3D data it produces: indeed, the most common segmentation method
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to date is still by manual processing, which is extremely time-consuming and often
inaccurate. This work proposed a novel, cross-disciplinary approach to solve this prob-
lem: the goal was to create new, deep-learning based software tools that automate
the segmentation of micro-CT images of ants, making morphological quantification
and comparison easier and more efficient, and paving the way for new discoveries in
evolutionary studies.

6.2 Main results

Within the framework of this PhD project:

1. A dataset of manually segmented micro-CT scans of ant heads and bodies was
created and used in both main research directions (points 2 and 3, below). Both
scanning and manual segmentation of the resulting scans were time-consuming
and required expertise, which was gained with time.

2. A potential connection was investigated between the brain size evolution and the
sociality of ants via detailed statistical analysis of corresponding traits.

3. A workflow was developed to automate the brain segmentation of micro-CT im-
ages of ants (that can be generalized for other insects or body parts).

6.2.1 Correlation of brain size and sociality trait in ants

In Chapter 4, we conducted detailed statistical analysis to investigate potential cor-
relations between the brain size of ants and the social structure/complexity of their
colonies. To conclude in a relationship between traits as general as possible, species of
numerous genera and subfamilies were included in our study; yet, no direct correlation
was found. However, a connection was actually indicated between the sociality and the
size of the eyes, instead, in concord with previous studies utilizing different approaches
[37]. Our unprecedentedly diverse dataset created more robust results, paving the way
for a general resolution of the social brain hypothesis debate for insects.

6.2.2 Automation of micro-CT image segmentation

In Chapter 5, we acquired micro-CT scans using ant brains as a target area; our data
were both high-resolution and 3D, thus enabling us to visualize both the morphology
and the anatomy of each specimen. We created an automated segmentation workflow
for the micro-CT images using a U-Net based CNN as the main building block (in
addition to pre-processing and post-processing steps). The training set consisted of
38,000 annotated images, making it the largest dataset of micro-CT images of insects
available to date. Our workflow achieved high accuracy in ant images but also in
images of other insects, making it more general and robust than any other existing
segmentation method in the field.
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6.3 Outlook

Future research directly at the wake of the results of the current PhD project can
include:

1. A generalization of the automated segmentation workflow: The generalizability
of our network, which was developed specifically with ants’ brains in mind, was
tested on images of different insects and body parts, and on images of ants pro-
duced by a different type of source (i.e., synchrotron). In both cases, the results
were of high accuracy; however, admittedly, the numbers of tested samples were
quite limited, so further testing would be expedient for the network to be adopted
as an indispensable tool by the relevant scientific community.

2. Application to additional datasets: The scarcity of annotated datasets (and the
time required to produce them) meant we could only apply our CNN to a single
dataset. This however is likely to change in the near future, as the possibility
to produce literally thousands of scans of different species using synchrotron
facilities is realized. Our aspiration is for our trained network to be used for
the segmentation of the brains of these species as soon as such datasets become
available, promoting a big-data approach to organismal anatomy.

3. The generalization of the social brain hypothesis investigation: Even though
a diverse dataset of ants was used for the analysis of the connection between
brain size and sociality, species demonstrating totally social or totally non-social
features were not included in the current study. The influence of these two
extreme edges should be considered closely in future studies. Further, as a ripple
effect of points 1 and 2, above, the statistical analysis performed in a relatively
limited dataset here can be applied to the massive new datasets, shedding light
on the brain size evolution more conclusively.

4. Finally, our dataset can be used as a pre-training set for the brain segmentation
of micro-CT images of other insects. As the number of projects focused on the
digitalization of specimens is rising, a training dataset and a tested CNN can be
of great value to ecologists.

Looking further into the future, we aspire that the outcome of our current project can
be of importance, as no similar software exists that uses deep learning techniques to
segment micro-CT images of any taxa. Exploration of features of the U-Net CNN and
modifications in various parameters can lead to the expansion of the developed software
toward fast, automated segmentation of images of numerous species. Therefore, the
proposed software could also be used for segmentation of any micro-CT images with
similar patterns.

6.4 Epilogue

To conclude this thesis, it might be appropriate to zoom out of the specific research sub-
ject and consider the role of AI and deep learning in the broader domain of organismal
anatomy or ecology as a whole.
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There is no doubt that the trending paradigm in current scientific research is AI-
driven. Following rapid advances in computer science and the expansion of computa-
tional power over the last decades, scientists across various disciplines now have the
unprecedented possibility to apply brute force approaches, producing and digging into
such huge loads of data which would have been prohibitive even in the near past. The
crucial point here is that efficient AI systems need not run the risk of being buried un-
der endless rolls of tape, like the literary interstellar pirate Pugg from Stanislaw Lem’s
“Cyberiad”, or getting forever lost in Jorge Luis Borges’ “Library of Babel”. Instead,
AI can filter, sort, and scan the data for patterns. Therefore, AI is an indispensable
tool for the manipulation and analysis of big data, with new mathematical and compu-
tational tools (machine and deep learning included) enabling it to overcome obstacles
of previous years. Simultaneously, improvements in software and hardware are cur-
rently being combined, as there is a trend for the fabrication of integrated circuits
that can perform logical functions on the device level, further boosting computational
speed. The driving force for such a development is the new, holistic approach to various
scientific disciplines, biology being a characteristic example.

As such, it may be interesting to note that the evolutionary debate of interest
in this project, i.e., the social brain hypothesis in insects, is not new. In fact, the
first association of the social behavior of some apocritan Hymenoptera species with
their mushroom body calyx sizes was proposed in the mid-19th century [153]. From
an applied mathematician’s point of view, it only feels appropriate that 21st century
tools are employed to resolve such age-old debates, underlying the maturity biology
has reached through inoculation with computer science. Amusingly, computer science
also draws inspiration from biology and the ultimate optimizer which is Nature; as an
example, the ant colony optimization, ACO, algorithm springs to mind: a probabilistic
problem-solving method via finding optimized paths through graphs, which models the
pheromone-based communication of real, biological ants.
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