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Abstract 
Effective adaptation of neural circuit function to a changing environment requires 
many forms of plasticity.  Among these, structural plasticity is one of the most durable, 
and is also an intrinsic part of the developmental logic for the formation and 
refinement of synaptic connectivity.  Structural plasticity of presynaptic sites can 
involve the addition, remodeling, or removal of pre- and post-synaptic elements.  
However, this requires coordination of morphogenesis and assembly of the 
subcellular machinery for neurotransmitter release within the presynaptic neurons, as 
well as coordination of these events with the postsynaptic cell. While much progress 
has been made in revealing the cell biological mechanisms of postsynaptic structural 
plasticity, our understanding of presynaptic mechanisms is less complete. 
 
Introduction 
The chemical synapse is the fundamental building block of nervous system connectivity. 

Each site of neurotransmitter release (active zone) requires coordinated assembly and 

maintenance of multiple protein complexes on both sides of this highly specialized 

intercellular junction. In addition, cellular morphogenesis is required to build the nerve 

terminal that houses active zones in precise register with corresponding postsynaptic 

structures.  However, as the organism encounters new or changing information, neural 

networks must adapt to modulate their output. One key adaptive response of the synapse is 

structural plasticity, allowing synaptic sites to be added or remodeled in order to change their 

functional properties. Yet the complexity of synapse architecture demands that many cell 

biological processes are orchestrated in concert by neurons, target cells and neighboring glia, 

in order to accomplish such change. Although much has been learned about mechanisms 

that achieve postsynaptic morphogenesis and assembly in response to patterns of neural 

activity using vertebrate models, we know considerably less about the corresponding process 

of presynaptic structural plasticity. In this brief review, we will highlight recent advances made 

in a model excitatory glutamatergic synapse that has offered a useful in vivo platform to 

discover the machinery that regulates and executes presynaptic development and plasticity: 

the neuromuscular junction (NMJ) of Drosophila melanogaster. The fabric of discoveries from 

many laboratories reveals that structural plasticity at this synapse is controlled by a complex 

sequence of factors and communication between the motor neuron and its cellular partners. 
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The Organization of the Drosophila Neuromuscular Junction  
 The Drosophila larval neuromuscular junction (NMJ) is accessible to a powerful 

combination of sophisticated genetic tools, in vivo electrophysiology and imaging [1-4]. In this 

system, motor axons extend to make synaptic connections in the late embryo; however, due 

to the rapid growth of the larval stages (“instars”), the NMJ must continue to expand as part 

of its normal developmental program. During this developmental process, NMJ growth adapts 

to patterns of neural activity [5, 6].  In the so-called third instar stage, after a period of 

morphogenetic growth, mature motor terminals branch across their target muscles and form 

many presynaptic boutons that each house many active zones closely apposed to 

neurotransmitter receptors (Figure 1A & B). The largest class of boutons (type 1b &1s) are 

surrounded by a complex in-folded subsynaptic reticulum (SSR) of muscle membranes that 

extend endfeet rich in ionotropic glutamate receptors (iGluR) juxtaposed to active zones 

(AZs; Figure 1B). AZs cluster and dock synaptic vesicles (SVs) for evoked or spontaneous 

release to trigger postsynaptic currents (Figure 2). Interestingly, recent studies suggest that a 

subpopulation of AZs produce most of the spontaneous or “miniature” excitatory junctional 

potentials (mEJPs) [7]**, and that mEJPs are the principal drivers of developmental NMJ 

growth [8]**, however, such release sites may simply reflect different states of AZ maturation 

or differences in release machinery stoichiometry that could change over time  [9]. 

 Structural growth of the larval NMJ involves budding of new boutons, either within or at 

the termini of the axonal arbor (Figure 1C) [10].  Nascent 1b boutons bud at the SSR 

perimeter and fill with SVs within minutes of increased stimulation using pulses of high 

potassium [11-13]**; however, bouton maturation requires subsequent assembly of 

presynaptic AZs and postsynaptic specializations before boutons can become functional, 

stable and reach full size (Figure 1D). Postsynaptic multi-subunit iGluR clusters (GluRIIA/B 

plus GluRIIC-E) are initially populated by GluRIIA containing complexes that desensitize 

slowly and promote structural synaptic plasticity; over time, GluRIIB subunits compete for 

occupancy with GluRIIA, and shift the response properties of each synaptic site through 

regulatory mechanisms local to each site [14].  Bouton retraction and engulfment by muscle 

or adjacent glia can also prune boutons that fail to stabilize [15].  

 When an action potential (AP) depolarizes the presynaptic plasma membrane, Ca2+-

channels open and Ca2+ flows into the nerve terminal to evoke the exocytosis of synaptic 
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vesicles (SVs). Prior reactions, including docking, priming and fusion of SVs (see below), 

need to take place for the AZ to attain release competence. To establish tight temporal and 

spatial control, the release of SVs occurs exclusively at a restricted and highly specialized 

area of the presynaptic plasma, the above mentioned AZ [16],[17] that is closely and 

precisely aligned with the post-synaptic density. The AZ membrane confines and clusters 

Ca2+-channels, function supported by a proteinaceous scaffold (or cytomatrix) decorating this 
specialized membrane [34, 35] (Figure 2).  

	
Activity Induced Budding of Presynaptic Terminals 
 The NMJ system has been ideal for systematic identification and analysis of mutations 

altering synaptic growth and architecture. In fact, mutations in many different synaptic 

signaling pathways and effector genes have been identified by genetic screens, revealing 

that synapse morphogenesis requires a complex conversation between motor neurons and 

muscle that requires a combination of secreted factors (particularly important BMP and Wnt-

family members [18, 19]), synaptic adhesion molecule (e.g. FasiclinII, Neurexin and 

Neuroligan, Teneurins [20-22]), and extracellular matrix [23]. Although activity-dependent 

control of NMJ morphogenesis was discovered decades ago [5], the advent of a simple acute 

stimulation paradigm [11]** created an opportunity to study mechanisms required to initiate 

bouton formation. Moreover, fluorescent imaging of living dissections or intact larvae now 

provide an increasingly dynamic view of NMJ morphogenesis and the role and nature of cell 

biological regulations involved, opening a new chapter in investigation of plasticity 

mechanisms using this model synapse.  

 Spaced stimulation of the NMJ with pulses of high potassium induces the formation of 

presynaptic filopodia-like extensions (“synaptopods”) and immature boutons lacking AZs 

(“ghost boutons” shown during budding in Figure 1D). This growth response requires activity-

dependent neuronal exosome release of the Wnt family member wingless (wg) [11**, 24]. Wg 

triggers distinct canonical and non-canonical signaling responses on both sides of the 

synapse to promote synapse growth and maturation [11**, 25], with a major effector output of 

changes in the microtubule cytoskeleton [e.g. [26]]. Interestingly, glial release of Wg into the 

NMJ is also important, but appears selective to synapse maturation [27].  However, the 

precise intracellular events that couple synaptic transmission to structural growth are just 

coming into focus. 
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Presynaptic Calcium and Bouton Initiation 
 Calcium and cyclic nucleotide-gated kinases were identified in pioneering studies of the 

events that trigger synapse plasticity [28]. Consistent with a conserved molecular logic [1,28], 

protein kinase A (PKA) was recently shown to mediate acute bouton budding in Drosophila 

through the SV-associated substrate protein Synapsin [13]. Synapsin clusters rapidly 

accumulate at sites of new bouton initiation and are thought to play a key role in trafficking of 

SVs into nascent boutons before the assembly of AZs. In parallel, PKA phosphorylation of the 

synaptic vesicle fusion clamp Complexin controls the rate of spontaneous glutamate release, 

providing an important link between synapse activity and structural expansion of the NMJ [29]. 

Importantly, the spatial resolution of PKA activation at the NMJ is highly localized even to 

individual boutons, likely the result of the patterned distribution of phosphodiesterase (PDE) 

proteins [30]. PKA is also important in the early pruning of exuberant synaptic contacts [31], 

highlighting the multifunctional impact of synaptic activity.   

 In addition to PKA, the Camodulin-dependent kinase II (CaMKII), known for some time to 

regulate postsynaptic NMJ development [32], is also necessary for efficient bouton formation 

induced by acute stimulation [33]. Although it is not yet clear if this presynaptic function for 

CaMKII depends on its shared substrate Synapsin, local accumulation of CaMKII in motor 

terminals after stimulation does require rapid protein synthesis, as observed in mammalian 

systems [34]. Indeed, CaMKII local translation was shown some time ago to be necessary for 

memory formation in the Drosophila CNS [35], implicating the RNA Interference Silencing 

Complex (RISC) that mediates microRNA function. More recently, microRNA miR-289 was 

shown to block CaMKII-dependent bouton budding [33], and is altered in expression in the 

larval CNS subjected to acute stimulation [36]. In addition to non-coding RNAs, trans-synaptic 

signaling pathways required for activity-dependent NMJ plasticity are also under translational 

control of presynaptic RNA binding proteins such as Cup and eIF4E [37]. Cup is thought to 

restrict presynaptic BMP signaling by repressing translation of BMP modulators such as 

Endophillin. The BMP pathway can have multiple effects on synaptic development given the 

many roles of this trans-synaptic pathway (see below).  Thus, multiple factors could converge 

on key mRNAs to tune gene expression in response to changes in neural activity.  

 

Retrograde BMP Signaling Coordinates Presynaptic Structure and Function 
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 Although retrograde synaptic BMP signaling was initially discovered based on static 

analysis of NMJ and AZ morphology defects [18], recent analysis using acute stimulation 

revealed that this pathway is essential for initial bouton budding acting largely through the 

actin cytoskeleton [12]. Bouton initiation also relies on non-canonical LIM-kinase (LIMK) that 

also controls the ongoing stability of mature boutons [12, 38].  LIMK appears to induce actin 

remodeling via its substrate Cofilin in concert with the guanine-nucleotide exchange factor 

(GEF) Trio known to be a downstream output of the canonical BMP signaling pathway [12, 

39]. Although during an early (embryonic and first instar) developmental window canonical 

BMP signaling is required for neurotransmission and later competence for plasticity [40], 

acute postsynaptic responses govern subsequent release of the BMP-family ligand Glass-

bottom boat (Gbb) from muscles, thus linking plasticity to synapse output in space and time. 

While Gbb is also released via dense core vesicles by nerve terminals, the Gbb co-factor 

Crimpy (Cmpy) has been shown to keep presynaptic information distinct from the 

postsynaptic signal [41]**. 

 To be fully functional, nascent boutons must rapidly mature via assembly of AZs and 

tightly apposed GluR clusters.  Interestingly, a novel form of non-canonical and Gbb-

independent BMP signaling appears to drive NMJ maturation by linking local synaptic 

accumulation and function of the SMAD mothers against Dpp (Mad) directly to the GluRIIA 

subunit, presumably via direct binding to the type II receptor Wishful thinking (Wit) [42]*. 

Although the mechanism by which phospho-Mad at the AZ stabilizes expression and 

clustering of GluRIIA subunits is an open question, the process appears to integrate glial 

input from the transforming growth factor beta/BMP-family factor Maverick [42**, 43], 

highlighting the complexity of intercellular interaction to control synapse formation and 

maturation. As in the case of presynaptic BMP signal transduction, retrograde BMP signaling 

is also regulated by postsynaptic RNA-binding proteins (RNABP), such as Syncrip/hnRNP Q 

[44], that offer a means to coordinately tune levels of multiple synaptic effector genes. 

Interestingly, a notorious translational inhibitory RNABP, the Fragile X Mental Retardation 

Protein (FMRP), was recently shown act on Wit/BMPR2 receptor expression to regulate 

signaling via LIMK1, thus suggesting a role of local translation in a conserved link between 

activity-dependent structural plasticity and disease [45]. 

 New intracellular and extracellular modulators of BMP signaling have been recently 

defined, raising the question of whether additional components will be essential for acute 
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activity-dependent NMJ plasticity. For example, immunoglobulin superfamily proteins in the 

Defective proboscis extension response (Dpr) and Dpr-interacting protein (DIP) families have 

recently been shown to interact antagonistically with synaptic BMP signaling at the NMJ 

[46]**.  This raises the possibility that NMJ synaptogenesis and plasticity are also sculpted by 

factors that control target specificity.  Moreover, novel intracellular modulators of BMP 

signaling, such as the Thickvein (Tkv) type I BMP receptor regulators Ube3a (Angelmen 

Syndrome ubiquitin ligase) and S6 Kinase Like (S6KL) [47, 48], as well as the inner nuclear 

membrane protein MAN1 [49], may help set presynaptic sensitivity to plasticity signals.  

 

Additional Retrograde Signaling via Syt4 Modulates Synaptic Adhesion 
 To tightly couple presynaptic remodeling with synaptic transmission, retrograde signals 

need to be regulated by activity-dependent events such as calcium flux. Much as presynaptic 

calcium sensors regulate release of neurotransmitters, it turns out that Synaptotagmin 4 

(Syt4) functions as a postsynaptic calcium sensor to trigger release of a signal essential for 

activity-dependent NMJ growth [50].  Although Syt4 is neuronally expressed, the protein is 

exported to muscle via exosomes [51].  Recent work reveals that Syt4 collaborates with 

Syntaxin 4 (Syx4) supplied by the postsynaptic cell in order to achieve calcium-dependent 

retrograde release of the synaptic adhesion molecule Neuroligin 1 (Nlg1) that binds to 

presynaptic Neurexin 1 [52]. Like Syt4, Nlg1 is required for acute potassium-induced bouton 

budding, however, Ngl1 released by the Syt4 retrograde pathway triggers only addition of 

boutons [50], despite the fact that Nlg1 is also known to control AZ assembly [53]. This 

finding suggests that bouton initiation and subsequent formation of stable sites of AZ and 

GluR apposition require distinct phases of signaling. However, the precise relationship of 

Syt4-triggered retrograde vesicular release and Gbb delivery is not yet known. 

 Although NMJ arbor and bouton architecture is clearly important, these structures as such 

cannot contribute to synaptic output without AZs and associated GluR clusters. Along with 

Teneurins and receptor phosphatases [21, 54], Neurexins are key regulators of AZ form and 

function [55]*. These different classes of cell surface receptors all appear to connect to 

scaffolding and structural proteins linked to the presynaptic cytomatrix that forms part of the 

AZ or surrounding structure. Ultimately, progress in understanding structural plasticity 

executed via AZs is tightly linked to how well we understand the functional organization of 

AZs per se. 
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General molecular organization of AZ scaffolds 

In fact, the cytoplasm of the presynaptic bouton is populated with several hundred protein 

species in copy numbers ranging over several orders of magnitude [56]**. Despite this 

complexity, invertebrate genetic analysis and biochemical analysis predominantly from rodent 

brains has now converged into the identification of a rather small conserved set of large 

scaffold proteins that form the core of the AZ scaffold. These canonical protein families are: 

ELKS/CAST family, RIM-superfamily including the mammalian Piccolo, Bassoon, RIM-BP, 

(M)UNC-13, Liprin-a and SYD-1 [9, 57-59]. A multitude of techniques, particularly conditional 

genetics, electron and super-resolution light microscopy have been combined with 

electrophysiological/biophysical analysis to elucidate the organizational principle of these 

structures. Analysis is complicated by multiple potentially parallel interactions, a situation 

which when analysed with loss-of-function genetics results in at least partial functional 

‘redundancy’ between AZ scaffold components thus complicating stringent functional analysis 

and necessitating the simultaneous manipulations of several genetic loci. Nonetheless, 

analyses and results from invertebrate [60, 61] and rodent preparations [62]* have 

increasingly converged into a coherent picture concerning the roles of scaffold proteins. It 

appears that RIM, RBP and ELKS structurally and functionally interact at AZs, with double 

mutants between these factors leading to a large absence of active zone organization, in both 

structural and functional terms [63-65]**. Thus, these large scaffold proteins collectively 

organize active zones. A major challenge now is to in detail decipher how different domains 

of these large scaffold proteins intersect and organize the “functionalities” of the SV cycle, 
including docking, priming and SV fusion. 

 

AZ scaffolds in the control of SV release that couple structural and functional 
properties 

 Notably, a novel assay [66]** in which a transgenic Ca2+ sensor (GCamp5.0) is positioned 

just opposite presynaptic AZs now allows the measurement of the likelihood of evoked and 

spontaneous release at individual AZs of neuromuscular synapses of Drosophila larvae [7, 9, 

67, 68]. Using this approach, it was found that the probability of evoked release (in response 

to a single action potential) directly scales with the levels of the AZ scaffold protein Bruchpilot 
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(BRP, a member of the ELKS family), and thus also with the ultrastructural size at a single 

individual AZ level. Thereby, increasing AZ component BRP favored evoked over 

spontaneous transmission [68]. Similarly, in rat hippocampal neurons, evoked release per AZ 

scales with the ultrastructural AZ area and the local amounts Ca2+ channels as well as the 

scaffold proteins RIM1/2 and Bassoon [69, 70]. Very recent analysis has further elucidated 

the underpinnings of why AZ scaffold size controls evoked release. Docking, the targeted SV 

localization to the AZ plasma membrane, and priming, the maturation of SVs into a readily 

releasable pool (RRP), were shown to require the neuronal SNAREs Syntaxin, SNAP25 and 

VAMP2 [71-73]. A conformational change from closed to open Syntaxin required to engage 

all 3 neuronal SNAREs, is thought to be catalyzed by the essential priming factor 

Munc/Unc13, thus establishing a RRP and enhancing SV replenishment following exocytosis 

[72, 74-77]*. To couple SV release to electrical stimulation by APs, Ca2+ ions entering the cell 

through voltage gated Ca2+ channels activate the Ca2+ sensor Synaptotagmin on the SV to 

trigger fusion [71]. The efficacy of synaptic transmission largely depends on the distance 

between SVs and voltage gated Ca2+ channels. Close proximity is required for fast and 

immediate responses, which may require active localization of RRP SVs, a process referred 

to as positional priming [78-80]. Previous work showed that ELKS/BRP-family proteins, RIMs 

and RBPs are required to ensure proper Ca2+ channel-SV topology, RIM determines Ca2+ 

channel density, and the levels of these proteins predict release at single AZs [60-62, 69, 81, 

82]. Recent findings also reveal that a presynaptic pool of the PSD-95 ortholog Discs Large 

(Dlg) contribute to Ca2+ channel localization and the spatial gradient of AZ size [83]. In 

addition, Liprin-ɑ was shown to organize AZ composition [84-86]. Intravital imaging of the AZ 

assembly-trajectory of the Drosophila neuromuscular junction (NMJ) showed that an early 

Syd-1/Liprin-ɑ scaffold protein complex initiates AZ-assembly. This protein complex precedes 
a second one containing BRP and RBP by hours in the assembly process [84, 87].  

 Recent analysis [65] showed that two distinct scaffold protein complexes define the 

spatio-temporal organization of two Unc13 isoforms during AZ maturation. Unc13B appears 

together with the “early” Liprin-ɑ/Syd-1 scaffold and its AZ accumulation is specifically 

dependent on this scaffold. At mature AZs, Unc13B remains clustered at larger distances 

from Ca2+ channels (>100 nm). Later during the assembly process, Unc13A is positioned and 

stabilized in discrete clusters via the ELKS/BRP/RBP scaffold in a close proximity to the 

presynaptic Ca2+ channels (<100 nm). In line with a function in molecular priming and vesicle 
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positioning, we find that Unc13A dominates release not only by enhancing the number of 

docked and primed vesicles, but also by regulating release probability, latency and sensitivity 

to Ca2+ buffers. These results [65] are in line with two coexisting functional exocytosis 

pathways with identical Ca2+ sensing and fusion mechanism at mature AZs, differentially 

controlled by two Unc13 isoforms whose precise spatio-temporal positioning within AZ 

scaffold slots [88] determines AZ maturation and function. Notably, subsequent analysis from 

rodent synapses also showed that ELKS/BRP-family proteins, RIMs and RBPs collectively 

organize the localization of the critical munc13 isoform Munc13-1 [63, 64, 89], again 

emphasizing fundamental conservation of AZ scaffold mechanisms coupling release function 

with molecular organization. What might the mechanistic rationale in behind the close relation 

in between scaffold size and function? On the one hand, the AZ scaffold might provide ‘SV 

fusion slots’ where close proximity between Ca2+ channels and the SVs fusion machinery is 

established [88, 90, 91]. Additionally, as AZ scaffold components BRP, RIM-BP and RIMs 

promote Ca2+ channels clustering at AZs, the correlation between an AZ scaffold size and 

evoked release probability might also result from increased Ca2+ channels density and thus 

increased Ca2+ influx at larger AZs. 

 The AZ scaffold most likely takes active roles in recruiting SVs to the release process, as 

well as to couple exo- with endocytic activity and thereby to close the SV cycle [92]. Notably, 

the presynaptic terminal is filled with filamentous material that would appear to limit vesicular 

diffusion. A recent systematic electron-tomographic analysis [93] started to illustrate how the 

cooperative attachment and release of three distinct filament types facilitate the movement of 

SVs to the AZs to become docked in preparation for release. Consistent with direct contacts 

in between AZ components, a hypomorphic allele of BRP lacking merely the last 1% of the C-

terminal amino acids (17 of 1740) still allowed for the formation of AZ scaffolds that were 

largely bare of SVs [94]. While basal glutamate release was unchanged, paired-pulse and 

sustained stimulation provoked depression, indicating that the tethering of SVs at the AZ 

scaffold is important also in functional terms. Interestingly, SVs contacting AZ scaffolds (in 

this case large ribbon-type AZ scaffolds) could be recently imaged directly [95]. Indeed, using 

EM tomography, the Piccolo-related scaffolding molecule Fife was recently shown to 

collaborate with RIM to regulate AZ structure, SV docking and Ca2+ coupling efficiency [96]*.   

	
Evidence of AZ structural plasticity 
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In the face of these results, the obvious question is whether, and if so, how fast AZs might be 

able to undergo plasticity processes to change their functional status, and thus to support 

learning and memory processes. While deeper studies to address the interplay in between 

AZ architecture and AZ function are needed, several studies have reported dynamic changes 

of AZs scaffolds operating on the minute timescale in different synaptic preparations, which 

occur either spontaneously or due to different experimental conditions including reduction of 

postsynaptic glutamate receptor (GluR) activity or modulation of activity dependent. In 

cultures of hippocampal neurons, every fifth axospinous synapse spontaneously altered its 

size by more than 50% during a 30 min time interval, and these changes correlated closely 

with the equally dynamic alterations of SV release probability For the NMJ synapses of 

Drosophila, pharmacological blockade of postsynaptic glutamate receptors is known to trigger 

a homeostatic compensation. Already 10 minutes after drug application a significant increase 

in BRP intensity as a measure of AZ scaffold size was measured, showing that presynaptic 
scaffolds can change their sizes rather rapidly to mediate presynaptic strengthening [97].  

 BRP molecule number has been quantified with semi-quantitative super-resolution light 

microcopy and estimated to be approximately 140 BRP protein monomers per AZ while 

forming discrete sub-clusters [84, 98]. At the Drosophila neuromuscular junction, a spatial 

gradient of AZ size with larger and BRP enriched presynapses at the distal compared to the 

proximal end of the terminal correlating with larger and faster distal postsynaptic responses 

has been described [99]. Finally, a recent study analyzing AZ dynamics at Drosophila 

photoreceptor synapses reported activity dependent changes in scaffold size and 

composition. Here, prolonged light exposure triggered a disassembly process, which 

seemingly operates in reverse to the AZ assembly process as previously elucidated by 

intravital imaging in Drosophila larvae [53, 55, 87]. The canonical Wnt pathway and 

microtubule dynamics in conjunction with the Kinesin-3 motor was implicated in the control of 

rapid AZ reassembly at photoreceptor synapses [100].  

 In summary, several recent studies collectively suggest that modulations of the AZ 

scaffold extent and composition are mechanisms by which the SV release function could be 

adapted to activity-related or homeostatic demands. These programs seem to span a range 

of time scales, likely ranging from minutes to days. Future analysis will have to characterize 

the routes and kinetics of proteins to and from the AZ scaffolds and define the different pools 

of AZ proteins contributing to scaffold dynamics.  
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 This said, the small GTPase Rab3 was recently implicated in steering the “local dynamics” 

of AZ scaffolds [101]. Loss of Rab3 provokes a striking misdistribution of scaffold AZ 

component BRP over the AZs of Drosophila neuromuscular junctions. With an elegant 

experimental setup allowing for temporally restricted re-expression of Rab3 in a rab3 mutant 

background, BRP misdistribution could be reverted within 6-9 hours, suggesting a dynamic 

reshuffling of scaffold material between pre-existing AZs. To execute this function, Rab3 

requires GTP-binding and membrane attachment, but surprisingly not the GTP hydrolytic 

activity, potentially suggesting a Rab3-dependent vesicle docking mechanism in this context 

[102]. A more recent study also showed that the Rab3 GDP-GTP exchange factor (Rab3-

GEF) acts in conjunction with Rab3 to control AZ protein composition [103]. A transgenically 

expressed GTP-locked variant of Rab3 accumulates at the NMJ at wild-type levels and fully 

rescues the rab3 mutant but is unable to rescue the rab3-GEF mutant. These results suggest 

that although Rab3-GEF acts upstream of Rab3 to control Rab3 localization and likely GTP-

binding, it also might act downstream to regulate scaffold dynamics, potentially as a Rab3 

effector at the synapse. Recent analysis of Unc-104 indicates that this KIF1A MT motor 

ortholog is required for the delivery of Rab3 to specific synaptic sites [104], thus defining 
events upstream of this key regulator. 

Conclusions and Future Directions 
 Decades of work have revealed substantial complexity in the intracellular and intercellular 

mechanisms that orchestrate the adaptive structural plasticity of the synapse. We now 

appreciate that synapse growth and remodeling involve a sequence of events controlled by 

multiple highly-conserved signaling pathways linked to neural activity. These pathways are 

controlled by different cellular participants (presynaptic neurons, target cells and glia), but 

must ultimately converge to coordinately regulate neuronal morphogenesis and the assembly 

of active zones. The accessibility of Drosophila to a variety of in vivo approaches, from 

physiology to genetics, has made the NMJ a useful platform to identify the machinery 

necessary for synapse formation, maturation or elimination.  Although we are now poised to 

dissect the underlying mechanisms, very few of the genes know for essential roles in building 

the synapse have actually been tested for key roles in acute activity-dependent plasticity. 

This contrast between a rich palette of pathways and components, and a relatively open 

canvas, predicts a very exciting future of discovery for this model system.  As NMJ terminals 

are unique in their accessibility to imaging, we anticipate that combining intravital and super-
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resolution imaging will allow to draw an increasing sophisticated and dynamic image of the 

molecular trafficking and diffusion controlling synapse assembly and plasticity. In fact, a most 

recent study [105] allowed to directly measure and accurately quantify the lateral diffusion 

and trapping of syntaxin1A in nanoclusters which dynamically regulate neurotransmitter 

release. Thus, it looks that we just begun to exploit the NMJ system to decipher fundamental 

and profound insights into the dynamic underpinning of synapses directly from the in vivo 

situation.  

 

Figure Legends 
Figure 1. Overall Architecture of the Drosophila Neuromuscular Junction 

(A) A view of NMJs on the ventral longitudinal muscles (M7, M6, M13 and M12) shows an 

overview of branched motor neuron arbor (green) studded with boutons (arrows); boxed 

regions correspond to magnifired views in panels B and C. (B) Each large type 1b bouton is 

embedded within a complex folded subsynaptic reticulum (SSR, purple) of muscle membrane.  

SSR endfeet appose presynaptic active zones (AZ, green) that cluster synaptic vesicles 

(SVs); mitochondria (mt) also fill the nerve terminal along with other membranous organieeles 

and protein complexes (not shown). (C) During NMJ growth, nascent boutons are added 

interstitially or at terminal boutons through a process of budding. Underlying microtubule 

bundles are highlighted in bright green. (D) The process of terminal bouton budding and 

maturation occurs in stages and can be triggered by acute bursts of synaptic activity or 

developmental signaling. Phenotypic endpoint analysis can distinguish effects on the bouton 

maturation process, leaving persistent immature boutons that lack AZ/iGluR sites (“ghost 

boutons”; upper right) or boutons that fail to grow to normal size (“satellite boutons”; not 

shown), or effects on the pruning process that leave temporary remnants of the postsynaptic 

cytomatrix (“footprints”; lower left). 

 

Figure 2. Cartoon Schematic of Mature Active Zone Organization at the NMJ 

(A) A transmission electron micrograph of a type 1b bouton (green) shows a site of synaptic 

neurotransmitter release, or active zone (AZ, red box inset B corresponds to cartoon in panel 

B); the t-bar structure is marked with an asterisk. Scale bar is 50nm. (B) Each AZ is formed 

through assembly of multiple synaptic scaffolding proteins required for recruitment of 

glutamate-filled synaptic vesicles (SVs). AZ formation is a sequential process. Initially, Liprin-
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a and Syd-1 [blue and pink wedges] associate with Unc13B [tangerine sickle] and voltage-

sensitive calcium channels [yellow] containing the Cac subunit, to form a weak release site 

where GluRIIA-containing receptor complexes begin to accumulate. As AZ formation 

continues, BRP [pink sickle] and Unc13A complexes are inserted to form large clusters that 

define the ultrastructural T-bar that is observed in the mature AZ.  As postsynaptic receptor 

clusters consolidate, GluRIIB subunits accumulate, and the efficiency of the synapse 

increases. 

 

Figure 3. Unc13A and B localize in distinct distances from the presynaptic Ca2+ channels 

(A,B) Two-color super-resolution (“STED”) images are shown of individual planar AZs from 

3rd instar larvae of the genotypes stated stained with the indicated antibodies. (A,B) Unc13A 

is localized in close proximity to motoneuronal overexpressed CacGFP, surrounding it (A) 

while Unc13B localized in a larger distance (B). (C) Mean intensity profile of Cac (gold), 

motoneuronal overexpressed Unc13AGFP (red) or Unc13BGFP (blue) immunoreactivity plotted 

from the center of the AZ (the BRP signal was used as a reference, with the center of the 

BRP ring set to zero). The intensity maximum of the average fluorescence profile was found 

30 nm from the AZ center for Cac, 60 nm for Unc13AGFP and at 120 nm for Unc13BGFP. 
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