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We show that a Tonks-Girardeau (TG) gas that is immersed in a Bose-Einstein condensate can undergo a
transition to a crystal-like Mott state with regular spacing between the atoms without any externally
imposed lattice potential. We characterize this phase transition as a function of the interspecies interaction
and temperature of the TG gas, and show how it can be measured via accessible observables in cold atom
experiments. We also develop an effective model that accurately describes the system in the pinned
insulator state and which allows us to derive the critical temperature of the transition.
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Introduction.—Quantum phase transitions are a hallmark
of quantum many-body physics and responsible for sys-
tems being able to access new states and obtain unique
properties [1]. In lattice systems of cold atoms at effectively
zero temperature the celebrated superfluid to Mott-insulator
transition was first experimentally observed by Greiner
et al. [2] and sparked a large effort in observing condensed
matter physics in these highly controllable systems [3].
More recently, the possibilities to reach new parameter
regimes have also led to these systems becoming highly
successful quantum simulators [4].
In one dimension a commensurate-incommensurate

phase transition emerges in the regime of strong repulsive
interactions, the well-known Tonks-Girardeau (TG) limit
[5], where ordering of particles in a lattice potential is
governed by the filling ratio. In this limit the transition
takes place even for infinitesimal lattice depths [6] and it
has been experimentally observed by Haller et al. [7]. Since
one-dimensional systems in the TG limit are highly
analytically accessible even for larger numbers of particles,
this system has received a lot of attention in recent years,
especially with respect to its out-of-equilibrium dynamics
[8–17].
While these quantum phase transitions are induced by

the control of static external fields, more complex phenom-
ena can be explored in systems where the particles exert a
backaction on their environments. For example, long-range
interactions can be created between particles confined in an
optical cavity, leading to self-organization phase transitions
such as the Dicke transition [18–21] and the superfluid-
supersolid transition [22]. Analogous systems are two-

component Bose-Einstein condensates (BECs) where
competition between the interspecies and intraspecies
interactions can realize miscible-immiscible transitions,
where the two components avoid spatial overlap to reduce
interaction energies [23–27], as well as Bose-Fermi mix-
tures [28]. Beyond the mean-field regime, phase separation
and composite fermionization have been explored in true
many-body systems, allowing one to probe correlations and
nonequilibrium dynamics from systems of few [29–39] to
many particles [40,41].
In this work we consider a system where a small number

of strongly interacting atoms in the TG limit is immersed in
a much larger, but weakly correlated, background BEC
[31]. Here, interspecies interactions can create an effective
mean-field potential for the TG gas, which is highly
nonlinear since it depends on the positions of the individual
TG atoms. In analogy to the pinning transition, we show
that for suitably strong interspecies interaction the TG gas
self-organizes into a regular structure thereby creating its
own perfectly commensurate mean-field potential in the
BEC. Using an effective description in terms of nonlinear
localized single particle states for the TG atoms, we are able
to find an analytical expression for the energy gap that
opens at the phase transition point as a function of the
interaction strength between both components. Finally, we
describe this self-pinning transition at finite temperature
and derive an expression for the critical temperature below
which the pinned state can emerge and discuss how it can
be observed experimentally.
Model.—We consider a highly anisotropic cigar-shaped

BEC of Nc particles with the radial degrees of freedom
restricted to their respective ground states, leading to an
effectively one-dimensional setting, which in the mean-
field limit is described by a macroscopic wave function
ψðxÞ. Into the condensate a small sample of N particles is
immersed, which is described by a full many-particle
wave function, Φðx ¼ x1; x2;…; xNÞ. At low temperatures
all interactions can be approximated by pointlike
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pseudopotentials and quantified by scattering lengths only.
If we assume that the couplings between the immersed
atoms and the ones in the BEC are weak, the interactions
between the two components can be described by a
straightforward density coupling, leading to the coupled
evolution equations

i _ψðxÞ ¼
�
−
1

2

∂2

∂x2 þ gmjΦj2 þ gcjψ j2
�
ψðxÞ; ð1Þ

i _ΦðxÞ ¼
�X

l

−
1

2

∂2

∂x2l þVðxlÞþ gmjψ j2þV int

�
ΦðxÞ; ð2Þ

where for simplicity we have set ℏ and all masses equal to
one. The interactions between the immersed atoms are
described by V int ¼ g

P
N
k<l δðjxk − xljÞ, and g, gc, and gm

are proportional to the scattering lengths describing
the interaction strengths within the immersed gas, within
the condensate and between the two components, respec-
tively. We assume that the condensate is in free space with
an average density nc ≡ Nc=Lc ¼ μ0=gc, whereas the
immersed component sees a box potential of width L with
VðxÞ≡ 0 for jxj ≤ L=2 and VðxÞ≡∞ otherwise.
While Eq. (2) for the immersed component is hard to

solve for larger particle numbers and for arbitrary values of
g, the TG limit of strong interactions (g → ∞) allows for
exact solutions due to the Bose-Fermi mapping theorem
[5,42]. In this limit the interaction term can be replaced by a
boundary condition resembling the Pauli exclusion prin-
ciple, and one can solve a system of noninteracting
fermionic particles, while making sure that the bosonic
symmetry is maintained. This means that all that is required
is the knowledge of the single particle eigenstates ϕnðxÞ
with eigenenergies En which are the solutions of Eq. (2)
with V int ¼ 0. The density of the TG gas at zero temper-
ature, which is the quantity to which the BEC couples in
Eq. (1), is then simply given by

ρðxÞ ¼ jΦðxÞj2 ¼
XN
n¼1

jϕnðxÞj2: ð3Þ

In the following we will concentrate on the TG regime for
the immersed component.
Pinned states.—Solving the coupled evolution equations

numerically, one can identify three different regimes as a
function of the interaction strength between the TG atoms
and the BEC, which are depicted in Fig. 1(a). If the two
components do not interact, the immersed atoms are
delocalized over the full box and the condensate density
is flat. However, for finite values of gm the atoms start to
localize in a regularly spaced pattern, while at the same
time creating their own matter wave lattice potential in the
BEC. This trend continues for increasing gm, until the
overlap between neighboring TG atoms becomes zero.
This behavior is quite different from the well-known

miscible-immiscible phase transition one would expect in

repulsively interacting multicomponent systems [43].
However, it is strongly reminiscent of the pinning phase
transition known to occur for a single-component TG gas
[6,7], where the individual atoms become localized at
individual lattice sites irrespective of the lattice depth.
While in our situation no external lattice is applied, the
interaction between the two components leads to an arrange-
ment of the BEC density into a periodic pattern that
resembles a standing matter wave which pins the atoms
into the mean-field potential minima. The numerically
obtained energy spectrum of the TG gas [in the shifted
reference frame of the effective Hamiltonian in Eq. (5), see
below] is shown in Fig. 1(b) and one can see that in the
pinned regime it exhibits a characteristic gap. The size of this
gap,ΔE ¼ ENþ1 − EN , increases with increasing intercom-
ponent interaction strength [see Fig. 1(c)], therefore signal-
ing the presence of an insulating phase in which the
individual particles become localized in the matter-wave
potential. For values below gm ≈ 1 the gap closes and the TG
density is delocalized, therefore possessing superfluid
properties. This is due to the finite size of our system,
and the exact value of gm for which this happens depends on
the number of particles N as detailed in the Supplemental
Material [44].
To determine the size of the gap analytically, let us

concentrate on the regime where the TG gas atoms are
tightly localized. The overlap between adjacent particles
then vanishes and one can use an effective single particle
description for the immersed system. If the intercomponent
interaction is small, gm ≪ μ0L=N, the BEC can be con-
sidered to be in the Thomas-Fermi limit, as the deviations

(a)

(b) (c)

FIG. 1. (a) TG gas density ρðxÞ (red lines) and BEC depletion
jψ j2 − μ0=gc (blue lines) for N ¼ 7 TG atoms and increasing
interaction strengths gm. The dotted lines indicate the maxima of
the TG density in the noninteracting case gm ¼ 0. (b) Spectrum of
the TG gas E0

n ¼ En − gmμ̃=gc for gm ¼ 0 (superfluid phase,
black dots) and gm ¼ 2 (pinned phase, blue dots). (c) Size of the
energy gap as a function of gm. The black dashed line shows the
approximation ΔE ≈ hϕ1jĤ0

1jϕ1i ¼ ja2pin=6 − 2a0apin=3j. Other
parameters are gc ¼ 1 and μ0 ¼ 200.
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of the density from the constant solution for gm ¼ 0 are
only small. This allows one to neglect the kinetic energy in
Eq. (1) and leads to

ψðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

gc
ðμ̃ − gmjΦj2Þ

s
e−iμ̃t: ð4Þ

Here the modified chemical potential μ̃ ¼ μ0½1þ
ðgmN=gcNcÞ� accounts for the change in condensate
density due to the interaction with the immersed atoms.
With this the relevant Hamiltonian for a single atom can be
written as [45–50]

Ĥ1
0 ¼ −

1

2

∂2

∂x2 −
g2m
gc

jϕ1ðxÞj2; ð5Þ

where the ground state energy is shifted by a constant term
E0
1 ¼ E1 − ðgm=gcÞμ̃. This Hamiltonian has a well-known

nonlinear structure that allows for solitonlike localized
solutions of inverse width a0 of the form [51]

ϕ1ðxÞ ¼
ffiffiffiffiffi
a0
2

r
1

cosh ða0xÞ
with a0 ¼

g2m
2gc

ð6Þ

and E0
1 ¼ −a20=2. However, the Thomas-Fermi limit does

not take into account the energies that are needed by the
immersed atom to displace the BEC density and by the
BEC to keep the single atom from dispersing. Considering
this will lead to a reduction in the peak height of the wave
function of the immersed atom, apin < a0, and to a redu-
ction in the density dip appearing in the BEC. For moderate
interaction strengths gm, the width of the atomic wave
function and the density dip are proportional to each other
and it is possible to find a closed expression apin ¼
a0ϵ−1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ϵ

p
− 1Þ with ϵ ¼ 6a20=5μ̃ (see Supplemental

Material [44]). The total energy of the coupled system of
the BEC and the full TG gas in this pinned state is then
given by

Epin ¼ N

�
g2m

30μ̃gc
a3pin þ

a2pin
6

−
g2m
6gc

apin

�
þ μ̃2Lc

2gc
; ð7Þ

where the expression in the parentheses is the energy of a
single atom. In fact, atoms with energy E0

n < 0 are pinned
within the mean-field potential, while states with energy
E0
n ≥ 0 are delocalized over the whole system [see

Fig. 1(b)]. In the pinned phase one can therefore think of
the TG atoms as being inWannier-type states, which all have
the same energy that lies slightly above the expected ground
state energy E0

1 ¼ −a20=2 of the effective Hamiltonian in
Eq. (5). By using the modified inverse width apin for the
ground state, ϕ1ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
apin=2

p
cosh−1ðapinxÞ, an approxi-

mation to the numerically observed single particle energies

can be given asE0
1 ≈ hϕ1jĤ0

1jϕ1i ¼ ða2pin=6Þ − 2
3
a0apin [44].

Since on the shifted energy scale E0
Nþ1 ≈ 0 (if the box is

large enough), one can directly write an approximate
expression for the energy gap as ΔE ¼ E0

Nþ1 − E0
N≈

jE0
1j. This closely matches the numerical solutions for

gm > 1 [see Fig. 1(c)]; however, it becomes unreliable in
the regime of weak interactions, gm < 1, where the effective
single particle description breaks down. Here the TG atoms
start to overlap and their energy spectrum is dominated by
the inherently strong interactions; therefore, a full many-
body description is required. It is important to note that the
scaling of the energy gap asΔE ∼ a20 ∼ g4m=g2c is in line with
the linear scaling ΔE ∼ V0 reported for the pinning tran-
sition in an external lattice potential of strengthV0 [6,7], if in
equilibrium the nonlinearity in the effective Hamiltonian
Eq. (5) is regarded as an external potential VðxÞ ∼
V0=cosh2ðapinxÞ with V0 ¼ a20.
Since deep in the pinned state the overlap between

different atoms is zero, the TG gas density can simply be
written as an arrangement of single impurity densities

ρpinðxÞ ¼
apin
2

XN
n¼1

1

cosh2½apinðx − xnÞ�
; ð8Þ

at positions xn with inverse width apin. If we consider
the pinned state to be the result of an adiabatic ramp
from gm ¼ 0 to some final value gm > 0, these posi-
tions are approximately given by the maxima of their
initial density in the infinite box ρðgm ¼ 0; xÞ ¼
ð2=LÞPN

n¼1 sin
2fðnπ=LÞ½xþ ðL=2Þ�g which are deter-

mined by the odd solutions of ð2N þ 1Þ tanðπzÞ ¼
tan½ð2N þ 1Þπz� for 0 ≤ z ≤ 1. This is highlighted in
Fig. 1(a) where one can see that the positions of the tightly
localized particles xn are equally spaced on the approxi-
mate order of L=N when gm ¼ 1.5.
Finite temperature.—While at zero temperature the most

obvious manifestation of the self-organized pinning tran-
sition is a vanishing overlap between the different TG
atoms, at finite temperatures this tight localization of the
single particle states is not guaranteed due to the presence
of thermal excitations. In this case the TG gas density ρðxÞ
is given by the diagonal of the reduced single particle
density matrix (RSPDM)

ρðx; x0Þ ¼ 1

Z

X
n

e−βðEN
n −μNÞ

Z
dx2…dxN

×Φnðx; x2;…; xNÞΦ�
nðx0; x2;…; xNÞ: ð9Þ

Here β ¼ 1=kBT, μ is the chemical potential and Z ¼P
n e

−βðEN
n −μNÞ is the grand-canonical partition function

with EN
n being the total energy of the many-body wave

functionΦn. While calculating Eq. (9) is not an easy task, it
was shown in Ref. [52] that the RSPDM of the TG gas can
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be written in terms of the RSPDM of spinless fermions.
More recently, efficient techniques to calculate Eq. (9) for
the finite temperature TG gas using just the single particle
states ϕnðxÞ were presented [12,13,53]. Through this
mapping the density of the TG gas can be written as ρðxÞ ¼P∞

n¼1 fnjϕnðxÞj2 where fn ¼ fexp ½βðEn − μÞ� þ 1g−1 is
the Fermi-Dirac distribution and μ is fixed by the number of
atoms N ¼ P∞

n¼1 fn. Note that due to the large difference
in particle number, we will assume that the BEC is still
effectively at zero temperature.
To include the effect of temperature into the single

impurity model one can replace ϕ1 →
ffiffiffiffiffi
f1

p
ϕ1 in the

Hamiltonian (5), which corresponds to an effective reduc-
tion of the interaction between the BEC and the TG gas.
However, this results in a changed energy E0

1 which, in turn,
leads to a modified occupancy f1, etc.. The resulting state
therefore needs to be determined from the self-consistency
criterion

fpin ¼
1

expfβ½EðfpinÞ − μðfpinÞ�g þ 1
; ð10Þ

where the energy is given by the ground state energy
of the single-impurity Hamiltonian Ĥ0 of Eq. (5) as
EðfpinÞ ¼ E0

1 ≈ ða2pin=6Þ − 2
3
fpina0apin. The reduced peak

height apin also depends on the Fermi-Dirac factors since it is
calculated for geffm ¼ gm

ffiffiffiffiffiffiffiffi
fpin

p
. The remaining factors fn

with n ≥ N þ 1, which correspond to nonpinned states, are
required to determine the chemical potential μðfpinÞ. Since
these states are not trapped by the mean-field potential and
therefore exist in the continuum, their energies can be well
approximated by the energy spectrum of the box potential
plus an energy offset given by the average density of
the BEC.
The average occupation of the N lowest states

PN ¼ P
N
n¼1 fn=N, which is equal to one in the pinned

state at T ¼ 0, is shown in Fig. 2(a). Here and in the
following we give the temperature in units of Tf ¼ ΔE=kB
whereΔE is the average energy of the band gap in the pinned
state at T ¼ 0. One can see that in a narrow temperature band
sudden jumps occur in the probability indicating the ejection
of particles from the pinned phase. For large temperatures
further discontinuities are absent and the ground state
occupation takes values PN ≪ 1 implying that the many-
body state is strongly delocalized. One can therefore use the
quantity PN to map the phase diagram of this pinning
transition as a function of gm and T, see Fig. 2(b).
As one would expect, pinned states with larger intercompo-
nent interactions are more robust to the effects of temperature,
as the energy gap protects the ground state from thermal
excitations. While the occupancy of the ground state allows
us to determine both the pinned and delocalized TG phases,
other order parameters show similar results, i.e., energy and
coherence functions (not shown).

The critical temperature for the pinning transition can
also be determined from Eq. (10) by looking for the point
where the change in fpin is maximal, i.e., where the left-
and right-hand sides of Eq. (10) are tangent to each other.
This gives [44]

Tcrit

Tf
¼ Cðf�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðf�Þ2ϵ

p
− 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ϵ
p

− 1
; ð11Þ

where Cðf�Þ is a numerical constant and f� ≈ 2=3 is the
value of fpin at the critical temperature. The critical
temperature is indicated in both plots in Fig. 2 as a black
dashed line and it can be seen to be in good agreement with
the transition region observed in the numerical simulations.
Finally, direct observation of the transition between

pinned and delocalized states can be made through the
momentum distribution which can be obtained via time-of-
flight measurements common to cold atom experiments.
The momentum distribution can be calculated from the
RSPDM as nðkÞ ¼ R

ρðx; x0Þe−ikðx−x0Þdxdx0, and when the
particles are pinned it also has a solitonic shape of inverse
width π=2apin

(a)

(b)

FIG. 2. (a) Average ground state occupancy PN ¼ P
N
n¼1 fn=N

for the system of N ¼ 7 particles at gm ¼ 3. The black line
indicates the analytically determined value fpin according to
Eq. (10) and the black dashed line indicates the critical temper-
ature Tcrit ¼ 0.1726Tf according to Eq. (11). (b) Phase diagram
as a function of gm and temperature T. The color coding shows
the ground state occupancy PN. The black dashed line shows the
analytically determined Tcrit according to Eq. (11). The temper-
ature scaling has been chosen for fixed Tfðgm ¼ 3Þ to be
consistent with the other figures. Other parameters are gc ¼ 1
and μ0 ¼ 200.
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npinðkÞ ¼
π

4apin

1

cosh2ð π
2apin

kÞ
XN
n¼1

fn
N

: ð12Þ

The numerically obtained momentum distribution of the
TG gas in the pinned phase at T ¼ 0 is shown in Fig. 3(a),
and it can be seen to agree well with the form of Eq. (12). In
the thermal phase [see Fig. 3(b)] the momentum distribu-
tion consists of a Gaussian peak for small momenta k and
additionally exhibits typical tails at large momenta for a TG
gas at finite temperatures [54–58]. Apart from the shape of
the momentum distribution, the pinned and the thermal
phase of the TG gas can also be distinguished by looking at
the height of the zero-momentum peak of the normalized
distribution, nðk ¼ 0Þ. As shown in Fig. 3(c), this value
increases with increasing temperature in the pinned phase
but decreases with increasing temperature in the thermal
phase and is therefore maximal around the crossover. It also
shows jumps whenever an individual particle is depinned.
Conclusions.—We have identified and characterized a

self-pinning phase transition of a gas of strongly interacting
bosons immersed in a Bose-Einstein condensate without
any externally imposed lattice structure. The gas is pinned
in a periodic manner once the interaction between the two
components exceeds a certain value. We have presented a
model to accurately describe the system in the pinned phase

over a wide range of parameters and numerically calculated
the phase diagram of the system.
We have also investigated the situation when the

immersed component is at finite temperature and shown
that the pinned state is unstable against thermal energies.
Using a self-consistency criterion for the pinned state we
have derived an expression for the critical temperature and
shown that this behavior can be observed in the momentum
distribution of the immersed atoms. Our work is a detailed
investigation into a fundamental and complex many-body
system that can be used to study new effects and is
experimentally realizable. It also opens the door to studying
quantum behavior in controllable environments (in this
example made from a matter wave) and there are clear
analogies to atoms confined in cavity fields [59] and cold
atom systems with long range interactions [60]. Including
finite interactions between the immersed atoms would be
an interesting future extension to this work, allowing one to
explore how the competing intraspecies and interspecies
interactions affect the phase diagram.
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