

Evolution and phylogeny of glass-sponge-associated zoantharians, with description of two new genera and three new species

Journal:	Zoological Journal of the Linnean Society
Manuscript ID	ZOJ-11-2020-4375
Manuscript Type:	Original Article
Keywords:	taxonomy < Taxonomy, species diversity < Taxonomy, Cnidaria < Taxa, phylogenetics < Phylogenetics
Abstract:	Hexactinellid sponges are important members of deep-sea benthic ecosystems as they provide available hard substrate habitats for filter feeding invertebrates. However, symbioses between hexactinellid sponges and their epibiont symbionts are poorly known. Zoantharians associated with hexactinellid sponges have been reported widely from deep sea marine ecosystems, either on the bodies or stalks of hexactinellid sponges, but there has been a lack of research on their diversity and phylogenetic relationships. In this study, 20 specimens associated with amphidiscophoran and hexasterophoran sponges were collected from the waters of Australia and Japan in the Pacific, and from Curaçao in the southern Caribbean, and in addition we examined previously collected museum specimens. Based on our molecular phylogenetic analyses and morphological observations, we formally describe two new genera and three new species of Zoantharia as well as newly report several previously described species. Our results demonstrate that the diversity of glass-sponge-associated zoantharians is much higher than has been previously thought. The results suggest at least two independent origins for the symbioses between hexactinellid sponges and zoantharians. The new taxa described in this work further reconfirm that the deep sea harbors high levels of undescribed zoantharian diversity.

1 ABSTRACT

Hexactinellid sponges are important members of deep-sea benthic ecosystems as they provide available hard substrate habitats for filter feeding invertebrates. However, symbioses between hexactinellid sponges and their epibiont symbionts are poorly known. Zoantharians associated with hexactinellid sponges have been reported widely from deep sea marine ecosystems, either on the bodies or stalks of hexactinellid sponges, but there has been a lack of research on their diversity and phylogenetic relationships. In this study, 20 specimens associated with amphidiscophoran and hexasterophoran sponges were collected from the waters of Australia and Japan in the Pacific, and from Curaçao in the southern Caribbean, and in addition we examined previously collected museum specimens. Based on our molecular phylogenetic analyses and morphological observations, we formally describe two new genera and three new species of Zoantharia as well as newly report several previously described species. Our results demonstrate that the diversity of glass-sponge-associated zoantharians is much higher than has been previously thought. The results suggest at least two independent origins for the symbioses between hexactinellid sponges and zoantharians. The new taxa described in this work further reconfirm that the deep sea harbors high levels of undescribed zoantharian diversity.

19 Keywords: Epizoanthidae, hexactinellid sponge, deep sea, museum collections,

20 Parazoanthidae, symbiosis, Hexasterophora

26 INTRODUCTION

Class Hexactinellida Schmidt, 1870 (Porifera) consists of sponges forming siliceous structures, and its species are found exclusively in the deep-sea (Dohrmann et al. 2008). Hexactinellid sponges are important in deep-sea benthic ecosystems as they provide available hard substrate habitats for filter feeding invertebrates such as cnidarians, tunicates, ophiuroids, bryozoans, and other sponges in the muddy environments of the deep-sea seafloor (Beaulieu 2001; Levs et al. 2007). Although many hexactinellid sponge-associated invertebrates have been observed (Beaulieu 2001; Kahn et al. 2020), symbioses between hexactinellid sponges and symbionts are poorly described. Within the subclass Hexacorallia Haeckel, 1896, some members of the orders Actiniaria Hertwig, 1882 and Zoantharia Rafinesque, 1815 are known to have symbioses with hexactinellid sponges. Spongiactis *japonica* Sanamyan, Sanamyan & Tabachnick, 2012, reported from Japanese waters, is currently the only known actiniarian species to associate with hexactinellid sponges (Sanamyan et al. 2012). On the other hand, many hexactinellid-sponge-associated zoantharian species have been described; species of the genera *Epizoanthus* Gray, 1867 and Thoracactis Gravier, 1918 within the family Epizoanthidae Delage & Hérouard, 1901, and of Isozoanthus Carlgren in Chun, 1903 within Parazoanthidae Delage & Hérouard, 1901. Hexactinellid sponge-zoantharian associations are distributed widely across the globe. For instance, several species associated with stalks of Hvalonema such as E. stellaris Hertwig, 1888 and E. fatuus (Schultze, 1860) have been reported from the Indo-Pacific Ocean as well as from the Atlantic Ocean (Fautin 2013; Bigatti 2015; Hajdu et al. 2017; Dueñas & Puentes 2018; NIWA 2018; Kahn et al. 2020). Epizoanthus stellaris is the most common epibiont on stalks of Hyalonema Gray, 1832 in the deep-sea of the Northeast Pacific (Beaulieu 2001). Thus, such associations may be widespread and common in the deep-sea.

Page 3 of 56

However, the taxonomy of hexactinellid zoantharians still faces many problems. Most importantly, several stalked hexactinellid-sponge-associated *Epizoanthus* and Isozoanthus species have not been examined since their original descriptions, or have been observed only a very few times. As well, the genus Isozoanthus is in need of taxonomic reexamination as previous studies using molecular phylogenetic analyses have cast doubt on the validity of this genus (Sinniger et al. 2010, 2013). Thus, although some previous studies have reported on several stalked hexactinellid sponge-associated Parazoanthidae specimens, the formal taxonomic position of many of these specimens remains uncertain (Sinniger et al. 2010).

Furthermore, while many zoantharian species have been reported on the stalks of hexactinellid sponges, there is little information on zoantharian species that are found growing on or in the bodies of hexactinellid sponges. Two species have been described with such growth forms; Palythoa oligomyaria (Wassilief, 1908) and Thoracactis topsenti Gravier, 1918. Palvthoa oligomvaria was originally placed within the genus Gemmaria Duchassaing de Fonbressin & Michelotti, 1860, and this genus group is currently a junior subjective synonym of Palythoa Lamouroux, 1816 (see Low et al. 2016). Palythoa *oligomvaria* was distinguished from other *Gemmaria* (=*Palythoa*) species by its marginal musculature as "the few known species of the genus Gemmaria have well-developed sphincters. On the other hand, *P. oligomvaria* stands out because of the extraordinarily weak development of the sphincter" (p. 47 translated from Wassilief 1908). However, the taxonomic position of *P. oligomyaria* is questionable for several reasons; as the original description is brief, subsequent studies have not been performed since its original description by Wassilief (1908), and no further specimens have been collected. Additionally, the genus Palythoa generally contains zooxanthellate species living on rocks and coral reefs in subtropical and tropical shallow waters (Duerden 1903; Burnett 2002; Reimer et al. 2011),

while *P. oligomyaria* is an azooxanthellate epibiont from the deep-sea; clearly the genericplacement of this species is doubtful.

As well, the taxonomic position of the monospecific genus *Thoracactis* (type species: *Thoracactis topsenti*) is uncertain; Gravier (1918) identified this species as an actiniarian
based on the lack of zooxanthellae, channels, gaps, or cell islets. Subsequently, Reimer *et al.*(2010) suggested that *Thoracactis* may be within the family Parazoanthidae and not in the
family Epizoanthidae based on its bright yellow color, which is commonly observed in some
Parazoanthidae species (e.g., West, 1979). However, no formal phylogenetic and taxonomic
reassessment of the position of this genus have been conducted.

Recently, unidentified zoantharians have been reported living on main bodies of Cyrtaulon sigsbeei (Schmidt, 1880), Verrucocoeloidea liberatorii Reiswig & Dohrmann, 2014, Heterorete pulchrum Dendy, 1916, Psilocalyx wilsoni Ijima, 1927, and Aspidoscopulia australia Dohrmann, Göcke & Janussen, 2011 (Reiswig & Wheeler 2002a; Dohrmann et al. 2011; Reiswig & Dohrmann 2014; van Soest et al. 2014; Montenegro et al. 2020). These observations suggest that the diversity of zoantharians found on bodies of hexactinellid sponges is higher than has been previously thought. However, phylogenetic studies focused specifically on zoantharians found on bodies and stalks of hexactinellid sponges have not yet been performed.

93 Thus, further studies utilizing a combination of molecular phylogenetic and
94 morphological analyses supplemented with ecological information are needed to better
95 understand the diversity of hexactinellid sponge-associated zoantharians. In this study, we
96 examined zoantharian specimens found on bodies and stalks of hexactinellid sponges
97 collected from the Indo-Pacific and Atlantic Oceans as well as specimens in the collection of
98 Naturalis Biodiversity Center. The results of our molecular phylogenetic analyses combined
99 with data from morphological observations clarify the phylogenetic relationships and

1 2		
3 4	100	taxonomic positions of several hexactinellid sponge-associated zoantharian species, and we
5 6	101	formally describe two new genera and three new species.
7 8 9	102	
10 11	103	MATERIALS AND METHODS
12 13	104	Specimen collection
14 15	105	Hexactinellid-sponge-associated zoantharian specimens were collected by several
16 17 18	106	methods; beam trawls, baskets, dredging, and utilizing remotely operated submersibles
19 20	107	(ROV), from the waters of Australia, Curaçao (southern Caribbean), and Japan. In addition,
21 22	108	we examined relevant specimens in the Coelenterata and Porifera collections (RMNH and
23 24 25	109	ZMA) at Naturalis Biodiversity Center, Leiden, the Netherlands, and a specimen in the
26 27	110	collection of the Department of Invertebrate Zoology of the Natural Museum of Natural
28 29	111	History, Washington, United States of America (Fig. 1, Table 1).
30 31 32	112	
32 33 34	113	DNA extraction, PCR amplification and sequencing
35 36	114	Total genomic DNA was extracted from tissue preserved in 70–99.5% ethanol
37 38 39	115	either by following a guanidine extraction protocol (Sinniger et al. 2010) or by using a spin-
39 40 41	116	column DNeasy Blood and Tissue Extraction kit following the manufacturer's instructions
42 43	117	(Qiagen, Hilden, Germany). PCR amplification using the Hot Star Taq Plus Master Mix kit
44 45	118	(Qiagen, Hilden, Germany) was performed for each of the genetic markers; COI
46 47 48	119	(mitochondrial cytochrome oxidase subunit I), mt 12S-rDNA (mitochondrial 12S ribosomal
49 50	120	DNA), mt 16S-rDNA (mitochondrial 16S ribosomal DNA), 18S-rDNA (nuclear 18S
51 52	121	ribosomal DNA), ITS-rDNA (nuclear internal transcribed spacer region of ribosomal DNA),
53 54	122	and 28S-rDNA (nuclear 28S ribosomal DNA) using published primers and protocols (Medlin
55 56 57	123	et al. 1988; Folmer et al. 1994; Apakupakul 1999; Chen et al. 2002; Sinniger et al. 2005,
58 59 60	124	2013; Swain 2009a, 2010; Fujii & Reimer 2011: Table S1). All PCR products were purified

1	
2 3	
4	
5 6	
7	
8	
10	
11	
12	
14	
15 16	
17	
18	
19 20	
21	
22	
23 24	
25	
26 27	
28	
29	
30 31	
32	
33 34	
35	
36	
37 38	
39	
40 41	
41	
43	
44 45	
46	
47	
40 49	
50	
51 52	
53	
54	
55 56	
57	
58	
59	

125	with 1 U of shrimp alkaline phosphatase (SAP) and 5 U of Exonuclease I (Takara Bio Inc.,
126	Shiga, Japan) at 37°C for 40 min followed by 80°C for 20 min. Cleaned PCR products were
127	sequenced in both directions on an ABI 3730Xl (Fasmac, Kanagawa, Japan). Additionally,
128	some cleaned PCR products were sequenced on an ABI 3930 Genetic Analyzer (Applied
129	Biosystems, Thermofisher) at the Genomic Unit, Scientific and Technological Support
130	Center for Research (CACTI), University of Vigo (Spain). Obtained sequences in this study
131	were deposited in GenBank under accession numbers XXXXX – XXXXX (Table 1).
132	
133	Molecular and phylogenetic analyses
134	Molecular sequences were individually aligned in Geneious v10.2.3 (Kearse et al.
135	2012) using the global alignment tool with free-end gaps and default settings. All output
136	alignments were visually inspected and manually curated. The resulting alignments were
137	subsequently concatenated with no overlapping positions.
138	Publicly available sequences from families Parazoanthidae and Epizoanthidae,
139	and two sequences from the genus Microzoanthus were downloaded from GenBank for each
140	marker and included into the alignments generated above; 43 sequences were added to COI,
141	33 for mt 12S-rDNA, 64 for mt 16S-rDNA, 32 for 18S-rDNA, 26 for 28S-rDNA, and 55 for
142	ITS-rDNA (Table S2). Each region was individually aligned using MAFFT (Katoh &
143	Standley 2013) with the "auto" algorithm and default settings. Thereafter all alignments were
144	manually trimmed, curated and realigned as before. The resultant alignments were 396 bp in
145	length for COI, 829 bp for mt 12S-rDNA, 592 bp for mt 16S-rDNA, 1696 bp for 18S-rDNA,
146	842 bp for 28S-rDNA, and 759 bp for ITS. For the 18S-rDNA region samples 23K, 52J,
147	HPD1323, OK1, and ZMA10224 were missing one of the three amplified regions, and
148	therefore missing positions were replaced by "N"s, as were all missing positions and gaps

- 149 across markers. These alignments were subsequently concatenated to obtain a final dataset of
- 60

2	
3	150
4 5	151
6 7	
8 9	152
10 11	153
12 13	154
14 15	155
16 17 19	156
10 19 20	157
21 22	158
23 24	159
25 26 27	160
28 29	161
30 31	162
32 33 34	163
35 36	164
37 38	165
39 40 41	166
42 43	167
44 45	168
46 47 48	169
49 50	170
51 52	171
53 54 55	172
55 56 57	173
58 59	174
60	

50 5,114bp for 85 OTUs. All aligned datasets are available from the Dryad repository 51 (http://datadryad.org, XXXXXX).

52 Phylogenetic reconstructions were performed over the concatenated alignment using Maximum-likelihood (ML) and Bayesian inference (BI). TOPALi v2.5 (Milne et al. 53 2009) was used to select the best fitting model for each molecular marker and independently 54 for ML and BI analyses. The selected models for ML were K80+G for COI and mt 12S-55 rDNA, SYM+G for mt 16S-rDNA, K81uf+I+G for 18S-rDNA, TIM+G for 28S-rDNA, and 56 57 TrN+I+G for ITS. The same models were selected for BI, except for K80+I for 18S-rDNA, 58 GTR+G for 28S-rDNA, and HKY+I+G for ITS. All phylogenetic estimations were performed using the substitution models indicated above per partition in RAxML-NG v.0.9 59 50 (Kozlov et al. 2019) standalone version for ML, and in the MrBayes v3.2.6 (Ronquist & 51 Huelsenbeck, 2003) plugin version in Geneious for BI. RAxML-NG was configured to use 52 12345 initial seeds, search for the best tree among 100 preliminary parsimony trees, branch length was scaled and automatically optimized per partition, and model parameters were also 53 54 optimised. MrBayes was configured to use the models and parameters above with the following settings; four MCMC heated chains were run for 5,000,000 generations with a 55 temperature for the heated chain of 0.2. Chains were sampled every 200 generations. Burn-in 56 was set to 25% at which point the average standard deviation of split frequency (ASDOSF) 57 58 was steadily below 0.01. Sequences of genus *Microzoanthus* (family Microzoanthidae) were 59 used as outgroup in ML and BI analyses.

Morphological observations 71

72 We observed four categories of morphological characters; external morphology, 73 internal morphology, cnidae, and morphology of associated hexactinellid sponges. External morphology was examined based on preserved specimens and photographs and included 74

2 3	175	lengths and diameters of individual polyps, tentacle numbers, coloration of polyps and
4 5	476	
6 7 8 9	1/6	coenenchyme, and relative development of coenenchyme. Diameters of oral disks and polyp
	177	dimensions were measured when polyps were expanded. The internal morphology was
10 11	178	observed based on histological sections of $8-10 \ \mu m$ thickness stained with hematoxylin and
12 13	179	eosin after decalcification with Morse solution for 24-48 h (1:1 vol; 20% citric acid: 50%
14 15	180	formic acid). We additionally observed hand-cut polyps for marginal musculature position
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	181	and type, and mesenterial arrangement and number of mesenteries. Classification of marginal
	182	musculature shapes followed Swain et al. (2015). Cnidae were observed in the tentacles,
	183	column, actinopharynx, and mesenteries filaments under a Nikon Eclipse80i
	184	stereomicroscope (Nikon, Tokyo). Cnidae sizes were measured using ImageJ ver. 1.45s
	185	(Rasband 2012). Cnidae classification followed England (1991) and Ryland & Lancaster
	186	(2004) exception for the treatment of basitrichs and microbasic b-mastigophores as
	187	mentioned in Kise et al. (2019). Associated hexactinellid sponges were identified based on
	188	morphology (Reiswig & Wheeler 2002a; Reiswig & Wheeler 2002b).
35 36	189	
37 38	190	Abbreviations used
39 40 41	191	NSMT: National Science Museum, Tsukuba, Ibaraki, Japan
41 42 43 44 45 46 47	192	QM: Queensland Museum, Queensland, Australia
	193	RMNH: Rijksmuseum van Natuurlijke Historie (now at Naturalis Biodiversity Center),
	194	Leiden, the Netherlands
48 49 50	195	RUMF: Ryukyu University Museum (Fujukan), University of the Ryukyus, Okinawa, Japan
51 52	196	USNM: Natural Museum of Natural History, Washington, United States of America
53 54	197	ZMA: Zoological Museum Amsterdam (now at Naturalis Biodiversity Center), Leiden, the
55 56 57	198	Netherlands
58 59 60	199	

2		
3 4	200	RESULTS
5 6	201	Systematics
7 8 9	202	Phylum Cnidaria Hatschek, 1888
10 11	203	Class Anthozoa Ehrenberg, 1831
12 13	204	Order Zoantharia Rafinesque, 1815
14 15	205	
16 17 18	206	Family Epizoanthidae Delage & Hérouard, 1901
19 20	207	Genus Epizoanthus Gray, 1867
21 22	208	Type species Dysidea papillosa Johnston, 1842, by monotypy (see also Opinion 1689, ICZN
23 24 25	209	1992).
26 27	210	
28 29	211	Diagnosis. Macrocnemic zoantharians with simple mesogleal musculature, readily
30 31 32	212	distinguishable from Palaeozoanthus by the presence of non-fertile micromesenteries
33 34	213	(Sinniger & Häussermann 2009).
35 36	214	
37 38 30	215	Epizoanthus fatuus (Schultze, 1860)
40 41	216	Fig. 2A, B.
42 43	217	Synonymy: <i>Palythoa fatua</i> Schultze 1860: 36, taf. 2, fig. 1–2; <i>Palythoa fatua</i> – Andres 1884:
44 45	218	311; Sidisia fatua – Lwowsky 1913: 589–596, taf. 19, fig. 5–8; Sidisia fatua var. alba –
40 47 48	219	Lwowsky 1913: 597.
49 50	220	
51 52	221	Material examined. MISE-HK33-2 (NSMT Co-XXXX), off Amakusa, Kumamoto, Japan,
53 54 55	222	32°24'44.8"N 129°28'01.3"E (position approximate, exact location unknown), 1000 m depth,
56 57	223	beat trawl, coll. D. Uyeno on the training vessel Nagasaki-maru, 2011, fixed in 99.5%
58 59 60	224	ethanol. MISE-HK132 (NSMT Co-XXXX), Sagami Bay, Kanagawa, Japan, 35°08'27.5"N-

225 35°08'33.5"N, 139°32'12.2"E–139°32'44.3"E, 133–274 m depth, dredging, coll. H. Kotsuka
226 on vessel *Rinkai-maru*, 12 Feb 2015, fixed in 99.5% ethanol.

Description. External morphology. Preserved colonies of examined specimens consist of 10-50 cylindrical polyps connected by strongly developed dark brown and light beige coenenchyme on stalks of hexactinellid sponges (Hyalonema sp.). Column of preserved polyps dark brown and light beige in coloration. Colonies cover upper part of stalks, do not cover around the spiculous anchor. Contracted preserved polyps 0.8–2.9 mm in height, 1.9– 3.6 mm in diameter. Capitulum swollen, and diameter of capitulum larger than scapus when contracted. Capitulary ridges present and strongly pronounced when contracted, 14 in number. The number of tentacles of each polyp in this study 28, and tentacles arranged in two rows. Ectoderm and mesoglea of polyps and coenenchyme heavily encrusted with numerous sand and silica particles. Internal morphology. Zooxanthellae absent. Number of mesenteries 28, in macrocnemic

arrangement. Mesogleal thickness 0.1–0.3 mm and gradually wider in direction from
capitulum towards scapus. Mesoglea either as thick as or thinner than ectoderm. Reticulate
mesogleal musculature. Siphonoglyph distinct and V-shaped. Mesenterial filaments present.
Habitat and distribution. Indo-Pacific Ocean: near Indonesia (Carlgren 1923), East China
Sea (Pei 1998), the Bay of Bengal, India, and Japan (Lwowsky 1913).

5 243 Associated host. Hyalonema spp.

Remarks. This species has been reported in several studies, which indicate the presence of
intraspecific variation (Andres 1884; Lwowsky 1913, Carlgren 1923). In fact, we observed
several morphological differences such as coloration and polyp dimensions between the two
examined specimens (NSMT Co-XXXX and NSMT Co-XXXX). As well, some genetic
variation of *E. fatuus* was observed in ITS-rDNA sequences (8 bp), and thus the possibility
remains that *E. fatuus* contains cryptic species, as ITS-rDNA has been demonstrated to be

1 2		
2 3 4	250	among the most variable genetic regions currently utilized to delineate species within
5 6	251	Zoantharia (e.g., Reimer et al. 2007, Montenegro et al. 2015). However, the sequences of the
7 8 9	252	two examined specimens formed a strongly supported monophyletic clade and we therefore
) 10 11	253	identify the examined specimens as a single species, E. fatuus, in this study. Additional
12 13	254	specimens and fine-scale genetic analyses are required to better examine if there is any
14 15 16	255	cryptic diversity within this group.
10 17 18	256	
19 20	257	Epizoanthus aff. fatuus (Schultze, 1860)
21 22 22	258	Fig. 2C.
25 24 25	259	
26 27	260	Material examined. QM G337590. Hunter CMR, Australia, New South Wales,
28 29	261	32°34'30.0"S–32°37'53.8"S, 153°08'31.2"E–153°09'42.1"E, 1006–1036 m depth, beam trawl,
30 31 32	262	coll. M. Ekins on <i>RV Investigator</i> , Cruise IN2017_V03, 03 June 2017, fixed in 99.5% EtOH.
33 34	263	Description. External morphology. Preserved colony of the examined specimen consists ca.
35 36	264	40 cylindrical polyps connected by strongly developed light beige coenenchyme on stalks of
37 38 39	265	hexactinellid sponges (Hyalonema sp.). Colony covers upper part of the stalks, but not
40 41	266	around the spiculous anchor. Contracted preserved polyps 1.0-3.0 mm in height, 1.5-3.5 mm
42 43	267	in diameter.
44 45 46	268	
40 47 48	269	Remarks. The capitulums of this specimen (QM G337590) were not swollen, while
49 50	270	capitulums of the examined specimens of Epizoanthus fatuus (NSMT Co-XXXX, NSMT Co-
51 52	271	XXXX) were swollen when contracted. On the other hand, the numbers of tentacles and
53 54 55	272	mesenteries were the same between QM G337590 and the examined specimens of <i>E. fatuus</i> .
56 57	273	Therefore, we here preliminarily identified the examined specimen as <i>Epizoanthus</i> aff.
58 59 60	274	fatuus.

1 2		
- 3 4	275	
5 6	276	Epizoanthus stellaris Hertwig, 1888
7 8 9	277	Fig. 2D.
10 11	278	
12 13	279	Material examined. QM G337585. Hunter CMR, New South Wales, Australia,
14 15 16	280	32°28'44.4"S-32°30'25.2"S, 152°59'27.6"E-52°59'38.4"E, 1006-1036 m depth, beam trawl,
10 17 18	281	coll. M. Ekins on <i>RV Investigator</i> , Cruise IN2017_V03, 03 June 2017, fixed in 99.5% EtOH.
19 20	282	Description. External morphology. Preserved colony consists of ca. 40 nearly saucer-shaped
21 22	283	polyps connected by strongly developed dark brownish coenenchyme on stalks of
23 24 25	284	hexactinellid sponges (Hyalonema sp.). Colony covers the upper part of the stalks, but not
26 27	285	around the spiculous anchor. Contracted preserved polyps only rise a little from the
28 29	286	coenenchyme and very flat, 0.4–1.1 mm in height, 3.0–6.9 mm in diameter. Capitulary ridges
30 31 22	287	present and well pronounced when contracted, approximately 14-18 in number. Ectoderm
32 33 34	288	and mesoglea of polyps and coenenchyme heavily encrusted with numerous sand and silica
35 36	289	particles.
37 38	290	Internal morphology. Zooxanthellae absent. Number of mesenteries 28–36, in macrocnemic
39 40 41	291	arrangement. Mesogleal thickness ca. 0.1-0.3 mm. Numerous and various size of pigment
42 43	292	cells in the ectoderm and mesoglea. Mesoglea thicker than ectoderm and endoderm in
44 45	293	column, actinopharynx and mesenteries. Reticulate mesogleal musculature short and poorly
46 47 48	294	developed. Siphonoglyph distinct and V-shaped. Mesenterial filaments present.
49 50	295	Habitat and distribution. Tasman Sea at depths of 1006–1036 m depth in this study. The
51 52	296	type locality of this species is off Samboangan, Philippines at a depth of 150 m depth (82
53 54	297	fathoms). This species has been recorded from the Indian Ocean (Fautin 2012), New Zealand
55 56 57	298	(NIWA 2018), the Northeast and eastern Pacific Ocean (Beaulieu 2001; Fautin 2012), and the
58 59 60	299	Caribbean Sea (Dueñas & Puentes 2018).

2	
3	
1	
4	
5	
6	
7	
, ,	
8	
9	
10	
11	
11	
12	
13	
11	
14	
15	
16	
17	
10	
18	
19	
20	
21	
21	
22	
23	
24	
27	
25	
26	
27	
20	
20	
29	
30	
31	
51	
32	
33	
34	
25	
35	
36	
37	
20	
20	
39	
40	
41	
12	
42	
43	
44	
15	
46	
47	
48	
40	
49	
50	
51	
57	
52	
53	
54	
55	
55	
56	
57	
58	
50	
59	
60	

300 Associated host. *Hyalonema* sp.

301 Remarks. Epizoanthus stellaris can be distinguished from other Epizoanthus species found on stalks of hexactinellid sponges; the strongly lamellated polyps of E. stellaris are not 302 303 observed in E. fatuus, E. armatus, or E. longiceps (Lwowsky, 1913) (2.0–10.0 mm in height: Carlgren 1923; Lwowsky, 1913). Lwowsky (1913) synonymized E. stellaris as E. fatuus on 304 account of high amounts of morphological variability that are commonly found within 305 zoantharian species However, the results of our molecular phylogenetic analyses support that 306 307 E. stellaris and E. fatuus are distinct species. Beaulieu (2001) observed E. stellaris frequently 308 in the eastern Pacific Ocean. It should be noted that several species may be contained in the *E. stellaris* observed by Beaulieu (2001), as similarities in external morphological features 309 with various *Epizoanthus* species found on stalks of hexactinellids were observed in their 310 ~~.en 311 study. 312 Epizoanthus aff. armatus Carlgren, 1923 313 314 Fig. 2E. 315 316 Material examined. NSMT Co-XXXX (MISE-HPD1323), Kuroshima Island, Kagoshima, Japan, 24°13'36.1"N, 124°06'18.0", 468 m depth, ROV, coll. J. D. Reimer on RV 317 Natsushima, 19 Sep 2011, fixed in 90% ethanol. 318 319 **Description.** *External morphology*. Preserved colony consists of ca. 80 cylindrical polyps connected by strongly developed light brownish coenenchyme on stalks of hexactinellid 320 sponges (*Hyalonema* sp.). Colony covers the upper part of the stalks, but not around the 321 322 spiculous anchor. Contracted preserved polyps well developed and 0.5–4.9 mm in height, 2.5-7.8 mm in diameter. Capitulary ridges present but weakly pronounced when contracted, 323 324 ca. 14–16 in number. The numbers of tentacles of each polyp ca. 28–32, and tentacles

arranged in two rows. The morphological characters and dimensions observed in the examined specimen agree well with the original description by Carlgren (1923). Internal morphology. Zooxanthellae absent. Number of mesenteries 28-32, in macrocnemic arrangement. Reticulate mesogleal musculature. Habitat and distribution. Off Kuroshima, Okinawa, in the Ryukyu Archipelago, Japan at a depth of 468 m. Epizoanthus armatus has previously been reported from off Somalia in the Indian Ocean (Carlgren 1923). Associated host. Hyalonema sp. **Remarks.** Polyp dimensions of the examined specimen are larger than those of *E. fatuus* and *E. stellaris*, and this specimen resembles *E. armatus* as described by Carlgren (1923). Epizoanthus armatus was originally described from eastern Africa (Carlgren 1923). Kise et al. (2018) reported the existence of E. planus Carlgren, 1923 in Japanese waters, and this species was also originally described from eastern Africa. Therefore, it is possible that E. armatus may also be distributed in Japanese waters. However, the collected depths of the examined specimen in this study and the specimens Carlgren (1923) examined are different (468 m vs 741–1362 m depth). As well, we could not observe internal morphology of the examined specimen due to its poor preserved condition. Therefore, we here preliminarily identified the examined specimen as *Epizoanthus* aff. armatus. Examination of additional specimens combined with molecular analyses should help confirm the identity of this taxon. Family Parazoanthidae Delage & Hérouard, 1901 Genus Churabana gen. nov. Fig. 3A-H. ZooBank ID (LSID): XXXX

1		
2 3 4	350	Type species. Churabana kuroshioae sp. nov. by original designation.
5 6	351	Diagnosis. Parazoanthidae with obligate symbiotic relationship with massive
7 8 9	352	hexasterophoran sponges. Preserved polyps 3.0–4.0 mm in height, 2.8–4.0 mm in diameter.
) 10 11	353	Azooxanthellate. Cteniform endodermal marginal musculature.
12 13	354	Remarks. Churabana gen. nov. and other already described sponge-associated zoantharian
14 15 16	355	genera can be easily distinguished from each other by their host sponges (Hexactinellida
10 17 18	356	sponges vs Demospongiae sponge), and depths; the former can be found at >140 m, while the
19 20	357	latter are found in shallow coral reefs. Although Churabana gen. nov. and several species
21 22	358	within Isozoanthus and Epizoanthus are associated with Hexactinellida sponges, these three
23 24 25	359	genera can be distinguished from each other by hosts; the latter two genera are associated
26 27	360	with species within the subclass Amphidiscophora, while species of Churabana gen. n. are
28 29	361	associated with sponge species within the subclass Hexasterophora. Churabana gen. n. has a
30 31 22	362	unique deletion of 15 bp (from position 168–182 in our alignment) in its 16S-rDNA region.
33 34	363	
35 36	364	Etymology. The generic name is derived from the Ryukyuan language words <i>chura</i> (=
37 38	365	beautiful) and bana (=flower) referring to the appearance of this species. Gender feminine.
39 40 41	366	
42 43	367	Churabana kuroshioae sp. nov.
44 45	368	Synonymy: Parazoanthidae sp. 1 – Reimer et al. 2019: 7, fig. 2A.
46 47 48	369	Fig. 3A-H.
49 50	370	ZooBank ID (LSID): XXXX
51 52	371	
53 54	372	Material examined. Holotype: RUMF-ZG-04447, near Iejima Island, Motobu, Okinawa,
55 56 57 58 59 60	373	Japan, 26°54′53.6″N, 127°37′50.9″E, 600–650 m, baskets, coll. T. Higashiji on vessel Daini-

kuroshio-maru, 02 March 2018, divided into two pieces, one portion fixed in 5–10%

375 saltwater formalin, and other in 99.5% ethanol.

376 Paratype: RUMF-ZG-04448, near Iejima Island, Motobu, Okinawa, Japan, 26°54′53.6″N,

377 127°37′50.9″E, 600–650 m, baskets, coll. T. Higashiji on vessel *Daini-kuroshio-maru*, 02

378 March 2018, fixed in 99.5% ethanol. Voucher number (MISE-JMG51J), Nanpo Trough,

379 Kikaijima Island, Kagoshima, Japan, 28°20'21.64"N, 129°57'14.56"E, 520 m depth, ROV,

380 coll. Javier Montenegro on RV *Natsushima*, 14 Oct 2011, fixed in 99.5% ethanol.

381 Etymology. The species is named after the *Daini-kuroshio-maru*, as the type specimens were
382 collected by this vessel.

Description. *External morphology.* Preserved specimens consist of four truncated cone shape or cylindrical polyps. The polyp bases embedded within the sponge *Pararete* Ijima, 1927. Solitary polyps arise irregularly from *Pararete* species. The living polyps cream pink or beige, and tentacles cream or whiteish transparent in coloration. Preserved polyps beige and partially red. Surface of column rough, and ectoderm continuous. Ectoderm and mesoglea of polyps encrusted with numerous and various sizes of sand and silica particles. The living expanded oral disks ca. 1.5–2.0 mm in diameter, expanded polyps ca. up to 10 mm in height, 4.0-5.0 mm in diameter. Preserved contracted preserved polyps 3.0-4.0 mm in height, 2.8-4.0 mm in diameter. Capitulary ridges discernible, 15–16 in number when contracted. 30–32 tentacles in number.

Internal morphology. Zooxanthellae absent. Cyclically transitional marginal musculature.
Encircling sinus present and basal canals of mesenteries absent. Mesenteries thin, 30–32 in
macrocnemic arrangement. Mesoglea thickness 0.5–1.6 mm. Mesoglea thicker than ectoderm
and endoderm. Siphonoglyph distinct and U-shaped. Mesenterial filaments present.

2 3	397	<i>Cnidae</i> Basitrichs and microbasic b-mastigophores microbasic p-mastigophores holotrichs
4 5	200	endering seets (Tis AA Table 2)
6 7	398	and spirocysts (Fig. 4A, Table 2).
8 9	399	
10 11	400	Distribution and habitats. Ryukyu Archipelago, Japan: Near Iejima Island, Okinawa and
12 13	401	Nanpo Trough, Kikaijima Island, Kagoshima, Japan at depths of 520–650 m.
14 15	402	
16 17 18	403	Associated host. Pararete sp. 1 and Pararete sp. 2
19 20	404	Remarks. Churabana kuroshioae sp. nov. resembles Vitrumanthus gen. nov. species.
21 22	405	However, C. kuroshioae sp. nov. and species within Vitrumanthus gen. nov. can be easily
23 24 25	406	separated by differences in their marginal musculatures (see also Remarks of Vitrumanthus
25 26 27 28 29	407	gen. nov.).
	408	
30 31 32	409	Genus Vitrumanthus gen. nov.
32 33 34	410	Type species. Vitrumanthus schrieri sp. nov. by original designation.
35 36	411	Figs. 5-7.
37 38	412	ZooBank ID (LSID): XXXX
39 40 41	413	
42 43	414	Diagnosis. Parazoanthidae with obligate symbiotic relationship with massive
44 45	415	hexasterophoran sponges. Preserved polyps 0.3-3.1 mm in length, 0.8-3.4 mm in diameter.
46 47 48	416	Azooxanthellate. Cyclically transitional marginal musculature.
48 49 50	417	Remarks. Vitrumanthus gen. nov. is distinguished genus from the Hexasterophora sponge-
51 52	418	associated Churabana gen. nov by its marginal musculature: in Vitrumanthus gen. nov.
53 54	419	cyclically transitional marginal musculature with several mesogleal lacunae was observed,
55 56 57	420	while in Churabana gen. nov. cteniform endodermal marginal musculature with comb-like
58 59	421	mesogleal pleats was observed. Molecular phylogenetic analyses clearly support the
00		

1 ว		
2 3 4	422	distinctiveness between Churabana gen. nov. and Vitrumanthus gen. nov. In the16S-rDNA
5 6 7	423	region, Vitrumanthus gen. nov. has a unique deletion of 15 bp (positions 136–150 in our
7 8 9	424	alignment).
10 11	425	
12 13 14	426	Etymology. The generic name is derived from the Latin word <i>vitruma</i> (= glass) and Greek
14 15 16	427	word anthos (=flower) referring to this genus' appearance. Gender masculine.
17 18	428	
19 20	429	<i>Vitrumanthus schrieri</i> sp. nov.
21 22 23	430	Synonymy: Parazoanthidae sp. – Montenegro et al. 2020: 7-8, fig. 2; "zoanthid symbionts",
24 25	431	"zoanthids" - Reiswig & Dohrmann 2014: 241–242, fig. 4A,B; "white zoanthids" - Van Soest
26 27	432	<i>et al.</i> 2014: 438.
28 29 30	433	Fig. 5A-F.
31 32	434	ZooBank ID (LSID): XXXX
33 34	435	
35 36 27	436	Material examined. Holotype: RMNH.COEL.42429, SubStation, Curaçao, 12°14'01"N,
37 38 39	437	68°53'32"W, depth range 161–243 m depth, manned submarine <i>Curasub</i> , coll. B. W.
40 41	438	Hoeksema, 31 Mar 2014, fixed in 99.5% ethanol.
42 43 44	439	Paratype: RMNH.COEL.42430, SubStation, Curaçao, 12°05'04"N, 68°53'54"W, ca. 200 m
44 45 46	440	depth, manned submarine Curasub, coll. B. W. Hoeksema, 21 Apr 2014, fixed in 99.5%
47 48	441	ethanol.
49 50	442	Other material examined: RMNH.COEL.42620, Cargill Pier, Bonaire, Caribbean
52 53	443	Netherlands, 12°04'47.9"N, 68°17'37.7"W, 223 m depth, manned submarine <i>Curasub</i> based
54 55	444	on RV Chapman, coll. L. Becking and E. Meesters, 1 Jun 2013, fixed in 99.5% ethanol.
56 57	445	RMNH.COEL.42621, Cargill Pier, Bonaire, Caribbean Netherlands, 12°04'47.9"N,
58 59 60	446	68°17'37.7"W, 248 m depth, manned submarine <i>Curasub</i> based on RV <i>Chapman</i> , coll. L.

2 3 4	447
5 6	448
7 8	449
9 10 11	450
12 13	451
14 15 16	452
16 17 18	453
19 20	454
21 22	455
23 24 25	456
26 27	457
28 29	458
30 31 22	459
32 33 34	460
35 36	461
37 38	462
39 40 41	463
42 43	464
44 45	465
46 47 48	466
49 50	467
51 52	468
53 54 55	469
56 57	470
58 59	471

Becking and E. Meesters, 1 Jun 2013, fixed in 99.5% ethanol. RMNH.COEL.42622,
Kralendijk Pier, Bonaire, Caribbean Netherlands, 12°08'48.9"N, 68°16'55.6"W, 140 m depth,
manned submarine *Curasub* based on RV *Chapman*, coll. L. Becking and E. Meesters, 30
May 2013, fixed in 99.5% ethanol.

452 Etymology. The species *V. schrieri* is named after Adriaan "Dutch" Schrier, owner of the
453 manned submersible *Curasub* and *RV Chapman*, operated from Substation Curaçao, for his
454 generosity in allowing BWH to sample specimens.

Description. *External morphology*. Preserved specimen consists of ca. 50 cylindrical polyps. 456 Solitary or colonial polyps rise irregularly from the hexactinellid sponge Verrucocoeloidea 457 458 *liberatoriii* Reswig & Dohrmann, 2014. Living polyps white, and tentacle transparent in coloration. Preserved polyps dark beige. Surface of column rough, and ectoderm continuous. 459 Ectoderm and mesoglea of polyps encrusted with numerous and various sizes of sand and 460 461 silica particles. The living expanded oral disks ca. up to 8.0 mm in diameter, expanded polyps ca. up to 10 mm in height, 1.0–5.0 mm in diameter. Preserved contracted preserved polyps 462 0.3–2.1 mm in height, 0.8–2.8 mm in diameter. Capitulary ridges indiscernible. Tentacles 20– 463 24 in number. 464

465 *Internal morphology*. Zooxanthellae absent. Cyclically transitional marginal musculature.
 466 Encircling sinus present and basal canals of mesenteries absent. Mesenteries thin. Mesoglea
 467 thickness ca. 0.6 mm. Mesoglea thicker than ectoderm and endoderm. Siphonoglyph distinct
 468 and V-shaped. Mesenterial filaments present.

4 469 *Cnidae*. Basitrichs and microbasic b-mastigophores, microbasic p-mastigophores, holotrichs,
 6 470 and spirocysts (Fig. 4B, Table 2).

471 Distribution and habitats. Dutch Caribbean: Curaçao and Bonaire at depths of 140–248 m.

Associated hosts. Verrucocoeloidea liberatorii Reswig & Dohrmann, 2014, Parahigginsia

strongvlifera van Soest, Meesters & Becking 2015, and Cyrtaulon sigsbeei (Schmidt, 1880).

can be distinguished from V. vanderlandi sp. nov. and V. oligomvarius comb. nov. as only V.

schrieri sp. nov. is associated with Verrucocoeloidea sponges. As well, V. schrieri sp. nov. is

genus Parahigginsia (Van Soest et al. 2014). On the other hand, V. vanderlandi sp. nov. and

addition, the column of V. schrieri sp. nov. is rough due to heavy encrustation, while columns

encrustations. Vitrumanthus sp. (NSMT-XXXX) and V. vanderlandi sp. nov. are associated

Reiswig & Dohrmann (2014) reported zoantharians were found on

Verrucocoeloidea liberatorii, and we judge that these are likely V. schrieri sp. nov. based on

Holotype: RMNH.COEL.42623, CANCAP-VII Expedition Station CV 7.041, Cape Verde

Islands, SãoTiago, Ilheus Rombos, east of Cima, 14°56'59"N, 24°37'59"W, Agassiz trawl,

580 m depth coll. RV HNIMS Tydeman, 24 Aug 1986, fixed in 99.5% ethanol. Paratype:

RMNH.COEL.42624, CANCAP-VII Expedition Station CV 7.041, Cape Verde Islands,

external morphology and the host hexactinellid sponge species.

not only associated with hexactinellid sponges but also with Demospongiae species in the

V. oligomyarius comb. nov. are associated with Tretochone duplicata (Topsent, 1928). In

of V. vanderlandi sp. nov. and V. oligomyarius comb. nov. are smooth with almost no

Remarks. In terms of host hexactinellid sponges, Vitrumanthus schrieri sp. nov.

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
- 1 0 /0	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
20	
59	

1

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

60

Fig. 6.

with Cyrtaulon species.

Vitrumanthus vanderlandi sp. nov.

ZooBank ID (LSID): XXXX

Material examined.

~	
3 4	497
5 6 7	498
/ 8 9	499
) 10 11	500
12 13	501
14 15	502
16 17 18	503
19 20	504
21 22	505
23 24 25	506
26 27	507
28 29	508
30 31 32	509
33 34	510
35 36	511
37 38 30	512
39 40 41	513
42 43	514
44 45	515
46 47 48	516
49 50	517
51 52	518
53 54	519
55 56 57	520
58 59	521
60	

SãoTiago, Ilheus Rombos, east of Cima, 14°56'59"N, 24°37'59"W, Agassiz trawl, 580 m 97 depth. coll. RV HNIMS Tvdeman, 24 Aug 1986. 98 Other material examined: RMNH.COEL.42625, Equalant II Expedition to the Gulf of .99 00 Guinea, as part of the ICITA Programme (International Cooperative Investigations of the

02 700-800 m, on RV Geronimo Cruise 2, 31 Oct 1963, fixed in 99.5% ethanol.

Etymology. This species is named in honor of Dr. Jacob van der Land, expedition leader of 604 05 the CANCAP-VII expedition off the coast of West Africa (Van der Land 1987), during which the type specimens of this species were collected. 606

Tropical Atlantic), Sta. 18/8, 38 km off Liberia, 4°25'N, 8°29'W, trawl at a depth range of

80 **Description.** *External morphology* Preserved holotype specimen consists of 32 cylindrical polyps. Base of polyps embedded in *Aphrocallistes* sponge. Solitary polyps arise irregularly 09 from host hexactinellid sponge. Preserved polyps cream white in coloration. Surface of 510 511 column very smooth, and ectoderm continuous. Ectoderm of polyps partially encrusted with small size of sand and silica particles. Transparent capitulum contracted and rounded. 512 Contracted preserved polyps 0.3–2.5 mm in height, 0.8–3.0 mm in diameter. Capitulary 13 ridges indiscernible when contracted. Approximately 20 tentacles in number. 514 Internal morphology. Zooxanthellae absent. Cyclically transitional marginal musculature. 15 516 Mesoglea thickness 0.2–1.1 mm. Mesoglea thicker than ectoderm and endoderm. 17 Siphonoglyph distinct and V-shaped. Mesenterial filaments present. Cnidae. Basitrichs and microbasic b-mastigophores, microbasic p-mastigophores, and 518 19 spirocysts (Fig. 4C, Table 2). Distribution and habitats. Western coast of Africa: Guinea and Cape Verde at depths of 20

21 580-800 m.

1 2		
2 3 4	522	Associated host. Aphrocallistes beatrix Gray, 1858, Aphrocallistes sp.
5 6	523	Remarks. Vitrumanthus vanderlandi sp. nov. is phylogenetically close to V. oligomyarius
7 8 0	524	comb. nov. However, these two species can be distinguished by dimensions of polyps and the
) 10 11	525	numbers of tentacles. As well, V. vanderlandi sp. nov. and V. oligomyaria comb. nov. are
12 13	526	associated with different host hexactinellid sponges (Aphrocallistes species vs. Tretochone
14 15 16	527	duplicata). Moreover, V. vanderlandi sp. nov. does not have any holotrich nematocysts in all
10 17 18	528	tissues we examined, while other species within Vitrumanthus gen. n. have holotrich
19 20	529	nematocysts present in some tissues.
21 22 22	530	Although the in situ polyp color of <i>V. vanderlandi</i> is unknown, Buhl-Mortensen <i>et al.</i> (2017)
23 24 25	531	have reported yellowed colored zoantharians that were observed on A. beatrix collected from
26 27	532	the Gulf of Guinea. Therefore, the coloration of polyps of this species may be yellow. Further
28 29	533	investigations with newly collected specimens are needed to confirm the in situ morphology
30 31 32	534	of <i>V. vanderlandi</i> sp. nov.
33 34	535	
35 36	536	Vitrumanthus oligomyarius comb. nov. (Wassilief, 1908)
37 38	537	Synonym: Gemmaria oligomyaria Wassilief, 1908: 47, fig. 29; taf. I, fig. 29.
39 40 41	538	Fig. 7.
42 43	539	
44 45	540	Material examined. CMNH ZG-4785, off Katsuura, Chiba, Japan, 34°50'N – 35°00'N,
46 47 48	541	140°20'W–140°30'W, 390, vertical long line fishing, coll. A. Tamura on vessel Kiyo-maru,
49 50	542	19 Jan 2006, divided into two pieces, one portion fixed in 5-10% saltwater formalin, and
51 52	543	other in 99.5% ethanol.
53 54	544	Description. External morphology. Preserved specimen consists of ca. >300 cylindrical
55 56 57	545	polyps that appear to be solitary on Tretochone duplicata (Topsent, 1928). Preserved polyps
58 59 60	546	dark yellow in coloration and trapezoid when opened. Polyps located all over the three-

Page 23 of 56

1 2		
3 4 5 6 7 8 9 10 11	547	dimensional structured hexactinellid sponge body. Surface of column very smooth, and
	548	ectoderm continuous. Ectoderm of polyps partially encrusted with very small sized sand and
	549	silica particles (ca. < 0.1 mm). The transparent capitulum contracted and rounded. Contracted
	550	preserved polyps 0.5–3.1 mm in height, 1.2–3.4 mm in diameter. Capitulary ridges
12 13	551	indiscernible when contracted. 32–36 tentacles in number.
14 15	552	Internal morphology. Zooxanthellae absent. Cyclically transitional marginal musculature
16 17 18	553	from endoderm to mesogleal, and lacunae confined toward endoderm proximally. Encircling
19 20	554	sinus or mesogleal canal usually imperceptible and basal canals of mesenteries absent.
21 22	555	Mesenteries thin, 32–36 in number, in brachycnemic arrangement. Mesoglea thickness 0.7–
 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 	556	1.0 mm. Mesoglea thicker than endoderm but thinner than ectoderm in the body wall.
	557	Siphonoglyph distinct and U-shaped. Mesenterial filaments present.
	558	Cnidae. Basitrichs and microbasic b-mastigophores, microbasic p-mastigophores, holotrichs,
	559	and spirocysts (Fig. 4D, Table 2).
	560	Distribution and habitats. Pacific coast of Japan: Suruga Bay, Shizuoka and off Katsuura,
	561	Chiba at depths of < 390 m.
	562	Associated host. Tretochone duplicata (Topsent, 1928).
	563	Remarks. The morphological characteristics of Vitrumanthus oligomyarius comb. nov.
	564	collected in this study are identical to those of the original description by Wassilief (1908).
44 45	565	The musculature of the sphincter of the examined specimen is in a cyclically transitional
46 47 48	566	arrangement containing several mesogleal lacunae; identical musculature was also mentioned
48 49 50	567	by Wassilief (1908). Moreover, surprisingly, the examined specimen by Wassilief (1908) and
51 52	568	this study both have brachycnemic mesenterial arrangements, with incomplete mesenteries in
53 54 55	569	the fifth mesenterial pair from the dorsal directive, a diagnostic characteristic of the suborder
55 56 57	570	Brachycnemina. This finding is unusual as V. oligomyarius is very clearly phylogenetically
58 59 60	571	located within the suborder Macrocnemina, which have complete fifth mesentery pairs from

1	
2	
3	
Δ	
5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17 10	
10 10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
50	
52 52	
55	
54	
55	
56	
57	
58	
59	

572	the dorsal directive. On the other hand, the other morphological characteristics of V .
573	oligomyarius are similar to those of other macrocnemic species. It should be noted a similar
574	case has been reported in the past. Parazoanthus douglasi Haddon & Shackleton, 1891,
575	which likely belongs within the genus Hydrozoanthus Sinniger, Reimer & Pawlowski, 2010
576	(Reimer & Sinniger 2020), also has a brachycnemic mesenterial arrangement, while its other
577	characteristics such as being epizoic on hydroids and its marginal musculature are similar to
578	other macrocnemic species. V. oligomyarius comb. nov. can be easily distinguished from
579	other Vitrumanthus species by the numbers of tentacles and its unique mesenterial
580	arrangement.
581	This study reports on the existence of this species for the first time since its original
582	description.
583	
584	Genus Kauluzoanthus Sinniger, Ocaña & Baco, 2013
585	Type species. Kauluzoanthus kerbyi Sinniger, Ocaña & Baco, 2013
586	Diagnosis. Polyps do not contract when fixed. Characteristic insertion/deletion pattern in the
587	16S V5 region sensu Sinniger et al. (2005) (Sinniger et al. 2013).
588	
589	Kauluzoanthus sp.
590	Fig. 8.
591	
592	Material examined. USNM 1424050, French Frigate Shoals, Hawaii (23°56.649' N,
593	166°02.187' W), 1225 m, ROV, coll. RV Okeanos Explorer, NOAA on 28 February 2016,
594	fixed in 99.5% EtOH.
595	Description. Non-encrusted azooxanthellate zoantharians. The examined specimen
596	associated with Hyalonema sp. Preserved polyps cylindrical and ca. 1.8-9.6 mm in height,

1 2		
3 4 5 6 7 8 9 10 11	597	3.9–6.7 mm in diameter, with brown column in coloration. Thin coenenchyme completely
	598	covering stalk of Hyalonema sp. Capitulary ridges discernible, 14–16 in number when
	599	contracted. Tentacles relatively short, as long as expanded oral disk diameter. Numbers of
	600	tentacles 28–32.
12 13	601	Associated host. Hyalonema sp.
14 15 16	602	Distribution and habitats. North Pacific Ocean: French Frigate Shoals, Hawaii at a depth of
16 17 18 19 20	603	1225 m.
	604	Remarks. The genus Kauluzoanthus is known as associating with the gold coral
21 22 22	605	Kulamanamana haumeaae as well as with several octocoral species (Sinniger et al. 2013).
23 24 25 26 27 28 29 30 31 32 33 34	606	However, our examined specimen was associated with Hyalonema sponges, and was
	607	genetically close to Ka. kerbyi based on the results in this study. This finding suggests that
	608	Kauluzoanthus species are not host-specific to Ku. haumeaae or other octocorals. However,
	609	we could not obtain any 16S-rDNA sequences, which contain the V5 region sensu Sinniger et
	610	al. (2005). Therefore, further integrated studies including morphological and ecological
35 36	611	studies are needed to describe this putative species.
37 38 39	612	
40 41	613	Molecular phylogeny
42 43	614	All phylogenetic analyses (ML, BI) using the concatenated dataset show that the new genera
44 45	615	Churabana gen. nov. and Vitrumanthus gen. nov. are located within the family
40 47 48	616	Parazoanthidae (Fig. 9). The basic topologies between ML and BI phylogenetic trees are
40 49 50	617	congruent, although there are a few differences. In the ML phylogenetic tree, Vitrumanthus
51 52	618	gen. nov. is basal to Churabana gen. n. and a clade containing the Demospongiae sponge-
53 54 55	619	associated genera Bergia Duchassaing & Michelotti, 1860, Parazoanthus Haddon &
56 57	620	Shackleton, 1891, and Umimayanthus Montenegro, Sinniger & Reimer, 2015 with weak
58 59 60	621	nodal support (ML=40%), while in the BI phylogenetic tree Churabana gen. n. is basal to

2
3
1
5
S
6
7
8
9
10
11
11
12
13
14
15
16
17
18
10
20
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
3/
25
35
36
37
38
39
40
41
12
72 12
40
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
50
20
59
60

622	Vitrumanthus gen. nov. and the clade of Demosponge-associated zoantharian genera with
623	strong support (BI=0.99). Both Churabana gen. n. and Vitrumanthus gen. nov. are
624	monophyletic clades with strong nodal support (ML=100%, BI=1; ML=98%, BI=1).
625	Kauluzoanthus sp. associated with Hyalonema sp. is sister to Ka. kerbyi with moderate
626	support (ML=73%, BI=1).
627	In Epizoanthidae, all hexactinellid sponge-associated species (Epizoanthus fatuus, E.
628	stellaris, E. aff. fatuus, and E. aff. armatus) formed a monophyletic clade including E. aff
629	illoricatus sensu Swain (2010) with moderate nodal support (ML=59%, BI=0.99), and this
630	clade was sister to a clade consisting of sequences of eunicid polychaete-associated species
631	(E. illoricatus and E. beriber).
632	
633	
634	DISCUSSION
635	Phylogeny and taxonomy of hexactinellid sponge-associated zoantharians
636	Our phylogenetic analyses focused on hexactinellid sponge-associated
637	zoantharians conducted for first time confirmed that the diversity of glass-sponge-associated
638	zoantharians is higher than has been previously thought, as two new genera and three new
639	species were formally described. Our study confirms that hexactinellid-sponge-associated
640	zoantharians are located in both families Epizoanthidae and Parazoanthidae: zoantharians
641	found on stalks of Amphidiscophora sponges are found in both families, while zoantharians
642	found on the bodies of Hexasterophora are unique to Parazoanthidae (Table S3).
643	Amphidiscophora sponge-associated zoantharians have not been previously described,
644	although Sanamyan et al. (2012) described the Amphidiscophora sponge-associated
645	actiniarian Spongiactis japonica from the body of the Amphidiscophora sponge Hyalonema

siebold. It should be noted that S. japonica was not found on stalks of spicules of the Amphidiscophora sponge.

In Epizoanthidae, Amphidiscophora sponge-associated zoantharians were identified as *Epizoanthus* species, and the monophyly of this association was confirmed. The phylogenetic positions of E. fatuus and E. stellaris were established for first the time within Epizoanthidae, with additional information on their morphology provided by the present study.

In our phylogenetic analyses, within Parazoanthidae, previously reported sequences of Amphidiscophora sponge-associated zoantharians Parazoanthid sp. [CORSARO], Parazoanthid sp. [EBISCO], Parazoanthid sp. [NC2], and Parazoanthid sp. [NC3] (Sinniger et al. 2010) formed a monophyletic clade, supporting previous studies (Sinniger et al. 2010; Swain 2010, 2018). These parazoanthid specimens may possibly correspond to one or more of the *Isozoanthus* species described on the stalks of Amphidiscophora sponges: I. africanus Carlgren, 1923, I. arenosus Carlgren, 1923, and I. valdiviae Carlgren, 1923, described from East Africa and the Andaman Sea. Currently, no DNA sequences exist for these Isozoanthus species. However, the taxonomic status of the genus *Isozoanthus* is uncertain, and has been debated in several studies (e.g., Williams 2000; Sinniger et al. 2010; Low et al. 2016). In fact, the species Hydrozoanthus antumbrosus (Swain, 2009b) and Zibrowius primnoidus (Carreiro-Silva et al. 2010) were both originally described within the genus Isozoanthus based on available ecological and morphological data. The type species of the genus is Isozoanthus giganteus Carlgren in Chun, 1903, and this species is not associated with stalked glass sponges but is instead a large solitary species (Carlgren 1938). Moreover, the phylogenetic position of *I. giganteus* is closer to Epizoanthidae than to that of Parazoanthidae, although comparatively phylogenetically distant from all other zoantharians (Swain 2010, 2018). Thus, we consider that the

phylogenetic clade of Parazoanthidae specimens found on stalks of hexactinellid sponges are
likely distinct from *Isozoanthus* and represent an as-of-yet undescribed group. Further
molecular and morphological analyses with specimens from this clade are needed to clarify
the taxonomy of this group.

Churabana gen. nov. and Vitrumanthus gen. nov. are genera consisting of Hexasterophora sponge-associated zoantharian species. The phylogenetic results correspond with their marginal musculatures; the position of *Churabana* gen. nov. is relatively closer to demosponge-associated zoantharian genera (Bergia, Parazoanthus and Umimayanthus), and they share analogous marginal musculatures (cteniform endodermal arrangement), while *Vitrumanthus* gen. nov. has cyclically transitional marginal musculature as has been reported in specimens of *Corallizoanthus* and *Savalia* (Swain et al. 2015). Thus, these findings clearly support the importance of marginal musculature characters for use in the higher taxonomy of Zoantharia, as has been recently emphasized by Swain & Swain (2014) and Swain et al. (2015).

Although the taxonomic position of *Thoracactis topsenti* is still not clear, *Thoracactis* and the two new genera in this study can be easily distinguished from each other by their external morphology. *Thoracactis topsenti* has an obligate association with the Hexasterophora sponge *Sarostegia oculata*, and polyps of *T. topsenti* are completely embedded in S. oculata and surrounded by sponge ectosomal formations (Topsent 1904; Gravier 1918). On the other hand, only the bases of polyps of *Churabana* gen. nov. and Vitrumanthus gen. nov. are embedded in host hexactinellid sponges. However, in this study, no Thoracactis specimens were available for examination, and thus further studies are necessary to determine the exact taxonomic position of *T. topsenti*.

695 The origin and evolution of hexactinellid sponge-associated zoantharians

Page 29 of 56

2 3	696	Our results do not support a single origin for the symbioses between hexactinellid
4 5	000	our results do not support à single origin for the symolosies between nondetmenta
6 7	697	sponges and zoantharians. At least two independent origins are indicated based on the results
, 8 9	698	of our phylogenetic analyses. Although Amphidiscophora sponge-associated Epizoanthus and
10 11	699	Parazoanthidae can be easily distinguished from each other by their marginal musculatures,
12 13	700	the appearance of the columns and mesoglea of both groups are similar (H. Kise, M. Ekins
14 15	701	and J. D. Reimer unpubl. data). This similarity may reflect convergent adaptions associated to
16 17 18	702	similar environmental constraints in the sponge-zoantharian associations of Epizoanthus and
19 20	703	Parazoanthidae species. According to our analyses, Amphidiscophora sponge symbioses may
21 22	704	represent a derived state from the Annelida symbiosis in Epizoanthidae, while
23 24 25	705	Hexasterophora sponge symbioses appear to have been independently gained in
26 27	706	Parazoanthidae (Fig. 9).
28 29	707	The new taxa described in this work further reconfirm that the deep sea harbors
30 31 32	708	high levels of undescribed zoantharian diversity as has been recently speculated (Sinniger et
33 34	709	al. 2013: Carreiro-Silva et al. 2017: Reimer et al. 2019). Other recent work has clearly
35 36	710	highlighted the lack of information on deep-sea zoantharian data (Reimer et al. 2020), and
37 38 20	711	even small numbers of new specimens may yet have a great influence on our understanding
39 40 41	712	of our diversity of this early-diverging hexacorallian order. The present research also
42 43	713	demonstrates that museum collections can contain important specimens of associated
44 45	714	zoantharian species that awaiting discovery, and that a continued study of this material would
46 47 48	715	be a welcome addition to field sampling in order to obtain a more complete image of the
49 50	716	zoantharian faunal composition in various regions around the world, in both shallow and in
51 52	717	deep waters (Reimer et al. 2014, 2015; Montenegro et al. 2020).
53 54 55	718	
56 57	719	REFERENCES
58 59 60	720 721	Andres A. 1884. Le Attinie. Fauna und Flora des Golfes von Neapel 9: 1-459.

2		
3 4	722	Apakupakul K, Siddall ME, Burreson EM. 1999. Higher level relationships of leeches
5 6	723	(Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular
/ 8	724	Phylogenetics and Evolution 12: 350–359.
9 10 11	725	
12 13	726	Beaulieu SE. 2001. Life on glass houses: sponge stalk communities in the deep sea. Marine
14 15	727	<i>Biology</i> 138: 803–817.
16 17 18	728	
19 20	729	Bigatti G. 2015. Marine Invertebrate from Argentina, Uruguay and Chile. v1.4. ArOBIS
21 22	730	Centro Nacional Patagónico. Dataset/Occurrence.
23 24 25	731	
26 27	732	Buhl-Mortensen L, Serigstad B, Buhl-Mortensen P, Olsen MN, Ostrowski M, Błażewicz-
28 29	733	Paszkowycz M, Appoh E. 2017. First observations of the structure and megafaunal
30 31 32	734	community of a large Lophelia reef on the Ivorian-Ghanaian margin (the Gulf of Guinea).
33 34	735	Deep Sea Research Part II: Topical Studies in Oceanography 137: 148–156.
35 36	736	
37 38 30	737	Carlgren O. 1923. Ceriantharia und Zoantharia der deutschen Tiefsee-Expedition. Zoantharia.
40 41	738	Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf dem Dampfer "Valdivia"
42 43	739	1898-1899 19: 252–337.
44 45 46	740	
40 47 48	741	Carlgren O. 1938. South African Actiniaria and Zoantharia. Kungliga Svenska
49 50	742	Vetenskapsakademiens Handlingar 17(3): 1–148.
51 52	743	
53 54 55	744	Carreiro-Silva M, Ocaña O, Stanković D, Sampaio Í, Porteiro FM, Fabri MC, Stefanni S.
56 57 58 59 60	745	2017. Zoantharians (Hexacorallia: Zoantharia) associated with cold-water corals in the

1 ว		
2 3 4	746	Azores region: new species and associations in the deep sea. Frontiers in Marine Science 4:
5 6 7	747	1-21.
7 8 9	748	
10 11	749	Chen CA, Wallace CC, Wolstenholme J. 2002. Analysis of the mitochondrial 12S rRNA
12 13	750	gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals.
14 15 16	751	Molecular Phylogenetics and Evolution 23: 137–149.
17 18	752	
19 20	753	Chun, C. 1903. Aus den Tiefen des Weltmeeres Schilderungen von der Deutschen Tiefsee-
21 22 23	754	Expedition. Jena: Gustav Fisher.
24 25	755	
26 27 20	756	Delage Y, Hérouard E. 1901. Zoanthidés - Zoanthidea. In Traité de Zoologie concrète. Tome
28 29 30	757	II – 2me Partie. Les Coelentérés. Paris: C. Reinwald, 654–667.
31 32	758	
33 34	759	Dendy A. 1916. Report on the Hexactinellid sponges (Triaxonida) collected by H.M.S.
35 36 37	760	'Sealark' in the Indian Ocean. Transactions of the Linnean Society of London 17(2): 211-224.
38 39	761	
40 41	762	Dohrmann M, Janussen D, Reitner J, Collins AG, Wörheide G. 2008. Phylogeny and
42 43 44	763	evolution of glass sponges (Porifera, Hexactinellida). Systematic Biology 57(3): 388-405.
45 46	764	
47 48	765	Dohrmann M, Göcke C, Janussen D, Reitner J, Lüter C, Wörheide G. 2011. Systematic and
49 50 51	766	spicule evolution in dictyonal sponges (Hexactinellida: Sceptrulophora) with description of
52 53	767	two new species. Zoological Journal of the Linnean Society 4: 1003–1025.
54 55	768	
56 57	769	Duchassaing P, Michelotti J. 1860. Mémoire sur les coralliaires des Antilles. Memorie della
58 59 60	770	Reale Accademia delle Scienzeai di Torino Serie Seconda 23: 270–365.

1 2		
2 3 4	771	
5 6	772	Dueñas LF, Puentes V. 2018. Aportes al conocimiento de la biodiversidad de aguas
7 8	773	profundas del mar Caribe colombiano. V1.0. Anadarko Colombia Company.
9 10 11	774	Dataset/Occurence. https://doi. org/10.15472/kr6lqa
12 13	775	
14 15 16	776	Ehrenberg CG. 1834. Beiträge zur physiologischen Kenntniss der Corallenthiere im
10 17 18	777	allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen
19 20	778	Systematik derselben. Abhandlungen der Koniglichen Akademie der Wissenschaften in
21 22	779	<i>Berlin, 1832 (1)</i> : 225–380.
23 24 25	780	
26 27	781	England KW. 1991. Nematocysts of sea anemones (Actiniaria, Ceriantharia and
28 29	782	Corallimorpharia: Cnidaria): nomenclature. Hydrobiologia 216: 691–697.
30 31 32	783	
32 33 34	784	Fautin DG. 2013. Hexacorallians of the World. Available from:
35 36	785	http://geoportal.kgs.ku.edu/hexacoral/anemone2/index.cfm. Accessed April 2020
37 38	786	
39 40 41	787	Folmer O, Black M, Hoeh W, Lutz R Vrijenhoek R. 1994. DNA primers for amplification of
42 43	788	mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.
44 45	789	Molecular Marine Biology and Biotechnology 3: 294–299.
46 47 48	790	
49 50	791	Fujii T, Reimer JD. 2011. Phylogeny of the highly divergent zoanthid family
51 52	792	Microzoanthidae (Anthozoa, Hexacorallia) from the Pacific. Zoologica Scripta 40: 418-431.
53 54 55 56 57 58 59 60	793	

1 2		
3 4	794	Gravier C .1918. Note sur une Actinie (* Thoracactis* n. g., * topsenti* n. sp.) et un
5 6	795	Annélide Polychète (* Hermadion Fauveli* n. sp.), commensaux d'une Éponge siliceuse (*
/ 8 9	796	Sarostegia oculata* Topsent). Bulletin de l'Institut océanographique de Monaco 344:1–20.
10 11	797	
12 13	798	Gray JE. 1832. Synopsis of the contents of the British Museum. London (27th edition.) (4): 1-
14 15 16	799	212.
17 18	800	
19 20	801	Gray JE. 1867. Notes on Zoanthinae, with descriptions of some new genera. Proceedings of
21 22 23	802	the Zoological Society of London 15: 233–240.
23 24 25	803	
26 27	804	Gray JE. 1858. On Aphrocallistes, a new genus of Spongiadae from Malacca. Proceedings of
28 29 20	805	the Zoological Society of London 26: 114–115.
30 31 32	806	
33 34	807	Haddon AC, Shackleton AM. 1891. A revision of the British Actiniae. Part II. The
35 36 27	808	Zoantheae. Scientific Transactions of the Royal Dublin Society 4: 609–672.
37 38 39	809	
40 41	810	Haeckel E. 1896. Systematische Phylogenie der Wirbellosen Thiere (Invertebrata). Zweiter
42 43	811	Theil. Des Entwurfs einer systematischen Stammesgeschichte. Berlin: G. Reimer.
44 45 46	812	
47 48	813	Hatschek B. 1888. Lehrbuch der Zoologie: eine morphologische Übersicht des Thierreiches
49 50	814	zur Einführung in das Studium dieser Wissenschaft. Jena: Gustav Fischer.
51 52 53	815	
55 54 55	816	Hertwig R. 1882. Report on the Actiniaria dredged by H.M.S. "Challenger" during the years
56 57	817	1873–1876. Report on the Scientific Results of the Exploring Voyage of H.M.S. "Challenger"
58 59 60	818	<i>1873-1876, Zoology</i> 6: 1–134.

2		
3 ⊿	819	
5 6	820	Hertwig R. 1888. Report on the Actiniaria dredged by H.M.S, "Challenger" during years
7 8 9	821	1873–1876. Reports Scientific Results Voyager Challenger (Zoology) 26: 39–41.
10 11	822	
12 13	823	Ijima I. 1927. Hexactinellida of the Siboga expedition. In: Weber M ed Uitkomsten op
14 15 16	824	zoologisch, botanisch, oceanographisch et geologisch Gebied versameld in Nederlandsk
17 18	825	Oost-Indie 1899–1900, 6. Leiden: Brill, 1–138.
19 20 21	826	
21 22 23	827	International Commission on Zoological Nomenclature. 1992. Opinion 1689. Epizoanthus
24 25	828	Gray, 1867 (Cnidaria, Anthozoa): conserved. Bulletin of Zoological Nomenclature 49: 236-
26 27 28	829	237.
29 30	830	
31 32	831	Johnston G. 1842. <i>A History of British Sponges and Lithophytes</i> . Edinburgh: London &
33 34 35	832	Dublin.
36 37	833	
38 39	834	Kahn AS, Pennelly CW, McGill PR, Leys SP. 2020. Behaviors of sessile benthic animals in
40 41 42	835	the abyssal northeast Pacific Ocean. Deep Sea Research Part II: Topical Studies in
43 44	836	Oceanography, 173.
45 46	837	
47 48 49	838	Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
50 51	839	Improvements in performance and usability, <i>Molecular Biology and Evolution</i> 30: 772–780.
52 53	840	Keener M. Main D. Wilson A. Standa Harra S. Channer M. Standards S. Davitan S. Caanan A.
54 55 56	841	Markensite S. Darren C. Thiana T. Ashtan D. Maintia D. Darrens and A. 2012. Canaisan
57 58 59 60	842	Markowitz S, Duran C, Thierer T, Ashion B, Meinijes P, Drummond A. 2012. Geneious

2		
3 4	843	Basic: An integrated and extendable desktop software platform for the organization and
5 6 7	844	analysis of sequence data. Bioinformatics 28: 1647–1649.
/ 8 9	845	
10 11	846	Kise H, Dewa N, Reimer JD. 2018. First record of sea urchin-associated Epizoanthus planus
12 13	847	from Japanese waters and its morphology and molecular phylogeny. Plankton and Benthos
14 15 16	848	<i>Research</i> 13: 136–141.
17 18	849	
19 20	850	Kise H, Maeda T, Reimer JD. 2019. A phylogeny and the evolution of epizoism within the
21 22 23	851	family Hydrozoanthidae with description of a new genus and two new species, Molecular
24 25	852	Phylogenetics and Evolution 130: 304–314.
26 27	853	
28 29 30	854	Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable
31 32	855	and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics
33 34	856	35(21): 4453–4455.
35 36 37	857	
38 39	858	Lamouroux JVF. 1816. Histoire des Polypiers Coralligenes Flexibles, Vulgairement Nommés
40 41	859	Zoophytes. Caen, France: F. Poisson.
42 43 44	860	
45 46	861	Leys SP, Mackie GO, Reiswig HM. 2007. The biology of glass sponges. Advances in Marine
47 48	862	<i>Biology</i> 52: 1–145.
49 50 51	863	
51 52 53	864	Low MEY, Sinniger F, Reimer JD. 2016. The order Zoantharia Rafinesque, 1815 (Cnidaria,
54 55	865	Anthozoa: Hexacorallia): supraspecific classification and nomenclature. ZooKeys 641:1-80.
56 57 58 59 60	866	

3 4	867	Lwowsky FF. 1913. Revision der Gattung Sidisia (Epizoanthus auct.), ein Beitrag zur
5 6 7	868	Kenntnis der Zoanthiden. Zoologische Jahrbücher (Systematik) 34: 557-613.
7 8 9	869	
10 11	870	Medlin L, Elwood HJ, Stickel S, Sogin ML. 1988. The characterization of enzymatically
12 13	871	amplified eukaryotic 16s-like rRNA-coding regions. Gene 71: 491-499.
14 15 16 17 18	872	
	873	Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F. 2009.
19 20	874	TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on
21 22 22	875	HPC clusters and multi-core desktops. <i>Bioinformatics</i> 25: 126–127.
25 24 25	876	
26 27	877	Montenegro J, Sinniger F, Reimer JD. 2015. Unexpected diversity and new species in the
28 29 30	878	sponge-Parazoanthidae association in southern Japan. Molecular Phylogenetics and
30 31 32	879	<i>Evolution</i> 89: 73–90.
33 34	880	
35 36	881	Montenegro J, Hoeksema BW, Santos MEA, Kise H, Reimer JD. 2020. Zoantharia (Cnidaria:
37 38 39	882	Hexacorallia) of the Dutch Caribbean with historical distribution records from the Atlantic
40 41	883	and one new species of Parazoanthus. Diversity 12(5): 190.
42 43	884	
44 45 46	885	NIWA (2018): NIWA Invertebrate Collection. v1.1. The National Institute of Water and
47 48 49 50 51 52	886	Atmospheric Research (NIWA). Dataset/Occurrence.
	887	https://nzobisipt.niwa.co.nz/resource?r=obisspecify&v=1.1
	888	
53 54 55	889	Pei Z. 1998. Fauna Sinica. Coelenterata: Actiniaria, Ceriantharia, Zoanthidea. Beijing:
56 57	890	Science Press, 200–201.
58 59 60	891	

2 3	892	Rafinesque CS 1815 Analyse de la nature ou tableau de l'univers et des corps organisés
4 5	052	Rannesque e.s. 1915. Analyse de la nature ou tableau de l'univers et des corps organises.
6 7 8	893	Palerme, 224.
9 10	894	Rasband WS. 2012. ImageJ: Image processing and analysis in Java. Astrophysics Source
11 12 13 14	895	Code Library 1: 06013.
15 16	896	Reimer J, Sinniger F. 2020. WoRMS Zoantharia: World List of Zoantharia (version 2019-03-
17 18 19	897	05).
20 21 22	898	Reimer JD, Takishita K, Ono S, Maruyama T. 2007. Diversity and evolution in the zoanthid
23 24	899	genus Palythoa (Cnidaria: Hexacorallia) based on nuclear ITS-rDNA. Coral Reefs 26: 399-
25 26 27	900	410.
28 29 30	901	Reimer JD, Hirose M, Wirtz P. 2010. Zoanthids of the Cape Verde Islands and their
31 32	902	symbionts: previously unexamined diversity in the Northeastern Atlantic. Contributions to
33 34 35	903	Zoology 79: 147–163.
36 37	904	
38 39	905	Reimer JD, Obuchi M, Irei Y, Fujii T, Nozawa Y. 2011. Shallow water brachycnemic
40 41 42	906	zoanthids (Cnidaria: Hexacorallia) from Taiwan: a preliminary survey. <i>Zoological Studies</i> 50:
43 44	907	363-371.
45 46 47	908	Reimer ID Poliseno A Hoeksema BW 2014 Shallow-water zoantharians (Cnidaria
48 49	910	Hexacorallia) from the Central Indo-Pacific <i>ZooKevs</i> 444:1–57
50 51 52	911	
52 53 54	912	Reimer JD, Wee HB, Ang P, Hoeksema BW. 2015. Zoantharia (Cnidaria: Anthozoa:
55 56	913	Hexacorallia) of the South China Sea and Gulf of Thailand: a species list based on past
57 58 59 60	914	reports and new photographic records. <i>Raffles Bulletin of Zoology</i> 63: 334–356.

1 ว		
2 3 4	915	
5 6	916	Reimer JD, Kise H, Santos MEA, Lindsay DJ, Pyle RL, Copus JM, Bowen BW, Nonaka M,
7 8 0	917	Higashiji T, Benayahu Y. 2019. Exploring the biodiversity of understudied benthic taxa at
9 10 11	918	mesophotic and deeper depths: examples from the order Zoantharia (Anthozoa:
12 13	919	Hexacorallia). Frontier in Marine Science 6: 305.
14 15	920	
16 17 18	921	Reimer JD, Yanagi K, Kise H, Poliseno A, Kushida Y, Saeedi H, Lindsay D. 2020. Review
19 20	922	of deep-sea Cnidaria and Ctenophora in the NW Pacific Ocean. In: Saeedi H, Brandt A, eds.
21 22	923	Biogeographic Atlas of the Deep NW Pacific Fauna. Sofia: Pensoft Publishers, 67–88.
23 24 25	924	
26 27	925	Reiswig HM, Dohrmann M. 2014. Three new species of glass sponges (Porifera:
28 29	926	Hexactinellida) from the West Indies, and molecular phylogenetics of Euretidae and
30 31 32	927	Auloplacidae (Sceptrulophora). Zoological Journal of the Linnean Society 171(2): 233–253.
33 34	928	
35 36	929	Reiswig HM, Wheeler B. 2002a. Family Euretidae Zittel, 1877. In: Hooper JNA, van Soest
37 38 30	930	RWM eds Systema Porifera. A guide to the classification of sponges. New York: Plenum,
40 41	931	1301–1331.
42 43	932	
44 45 46	933	Reiswig HM, Wheeler B. 2002b. Family Tretodictyidae Schulze, 1886. In: Hooper JNA, van
40 47 48	934	Soest RWM eds Systema Porifera. A guide to the classification of sponges. New York:
49 50	935	Plenum, 1341–1354.
51 52	936	
53 54 55	937	Ronquist FR, Huelsenbeck JP. 2003. MRBAYES: Bayesian inference of phylogeny.
56 57	938	Bioinformatics 19: 1572–1574.
58 59 60	939	

940	Ryland JS, Lancaster JE. 2004. A review of zoanthid nematocyst types and their population
941	structure. <i>Hydrobiologia</i> 530: 179–187.
942	
943	Sanamyan NP, Sanamyan KE, Tabachnick KR. 2012. The first species of Actiniaria,
944	Spongeactis japonica gen. n. (Cnidaria: Anthozoa), an obligate symbiont of a glass sponge.
945	Invertebrate Zoology 9: 127–141.
946	
947	Schmidt O. 1870. Grundzüge einer Spongien-Fauna des atlantischen Gebietes. Leipzig: W.
948	Engelmann, iii–iv, 1–88.
949	
950	Schmidt O. 1880. Die Spongien des Meerbusen von Mexico (Und des caraibischen Meeres).
951	Heft II. Abtheilung II. Hexactinelliden. Abtheilung III. Tetractinelliden. Monactinelliden und
952	Anhang. Nachträge zu Abtheilung I (Lithistiden). In: Reports on the dredging under the
953	supervision of Alexander Agassiz, in the Gulf of Mexico, by the USCSS 'Blake'. Jena:
954	Gustav Fischer, 33–90.
955	
956	Schultze MJS.1860. Die Hyalonemen. Ein Beitrag zur Naturgeschichte der Spongien. Bonn:
957	A. Marcus, i–iii, 1–46.
958	
959	Sinniger F, Häussermann V. 2009. Zoanthids (Cnidaria: Hexacorallia: Zoantharia) from
960	shallow waters of the southern Chilean fjord region, with descriptions of a new genus and
961	two new species. Organisms Diversity & Evolution 9: 23-36.
962	
	940 941 942 943 944 945 946 947 948 949 950 951 951 952 953 954 955 955 956 955 956 955 956 955 956 955 956 955 956

2 3 4 5 6 7 8	963	Sinniger F, Montoya-Burgos JI, Chevaldonne P, Pawlowski J. 2005. Phylogeny of the order
	964	Zoantharia (Anthozoa, Hexacorallia) based on the mitochondrial ribosomal genes. Marine
	965	<i>Biology</i> 147: 1121–1128.
9 10 11	966	
12 13	967	Sinniger F, Reimer JD, Pawlowski J. 2010. The Parazoanthidae (Hexacorallia: Zoantharia)
14 15	968	DNA taxonomy: description of two new genera. Marine Biodiversity 40: 57-70.
16 17 18	969	
19 20	970	Sinniger F, Ocana OV, Baco AR. 2013. Diversity of zoanthids (Anthozoa: Hexacorallia) on
21 22	971	Hawaiian seamounts: description of the Hawaiian gold coral and additional zoanthids. PLoS
23 24 25	972	ONE 8: e52607.
25 26 27	973	
28 29	974	Swain TD, Wulff JL 2007. Diversity and specificity of Caribbean sponge-Zoanthusid
30 31 22	975	symbioses: a foundation for understanding the adaptive significance of symbioses and
32 33 34	976	generating hypotheses about higher-order systematics. Biological Journal of the Linnean
35 36	977	Society 92: 695–711.
37 38	978	
39 40 41	979	Swain TD. 2009a. Isozoanthus antumbrosus, a new species of zoanthid (Cnidaria: Anthozoa:
42 43	980	Zoanthidea) symbiotic with Hydrozoa from the Caribbean, with a key to hydroid and sponge-
44 45	981	symbiotic zoanthid species. Zootaxa 2051: 41-48.
46 47 48	982	
49 50	983	Swain TD. 2009b. Phylogeny-based species delimitations and the evolution of host
51 52	984	associations in symbiotic zoanthids (Anthozoa, Zoanthidea) of the wider Caribbean region,
53 54 55	985	Zoological Journal of Linnean Society 156: 223–238.
55 56 57 58 59 60	986	

1 ว		
2 3 4	987	Swain TD. 2010. Evolutionary transitions in symbioses: dramatic reductions in bathymetric
5 6 7	988	and geographic ranges of Zoanthidea coincide with loss of symbioses with invertebrates,
7 8 9	989	Molecular Ecology 19: 2587–2598.
10 11 12	990	
12 13 14	991	Swain TD. 2018. Revisiting the phylogeny of Zoanthidea (Cnidaria: Anthozoa): staggered
14 15 16	992	alignment of hypervariable sequences improves species tree inference. Molecular
17 18	993	Phylogenetics and Evolution 118: 1–12.
19 20 21	994	
21 22 23	995	Swain TD, Swain LM. 2014. Molecular parataxonomy as taxon description: examples from
24 25	996	recently named Zoanthidea (Cnidaria: Anthozoa) with revision based on serial histology of
26 27 28	997	microanatomy, Zootaxa 3796(1): 81–107.
20 29 30	998	
31 32 33 34 35	999	Swain TD, Schellinger JL, Strimaitis AM, Reuter KE. 2015. Evolution of anthozoan polyp
	1000	retraction mechanisms: convergent functional morphology and evolutionary allometry of the
35 36 37	1001	marginal musculature in order Zoanthidea (Cnidaria: Anthozoa: Hexacorallia), BMC
38 39	1002	Evolutionary Biology 15: 123.
40 41	1003	
42 43	1004	Topsent E. 1904. Sarostegia oculata, Hexactinellide nouvelle des îles du Cap-Vert, Bulletin
44 45 46	1005	du Musée Océanographique de Monaco 10:1–8.
47 48	1006	
49 50	1007	van der Land J. 1987. Report on the CANCAP-project for marine biological research in the
51 52	1008	Canarian - Cape Verdean region of the North Atlantic Ocean. Part I. List of stations.
54 55	1009	Zoologische Verhandelingen 243: 3–94.
56 57 58 59 60	1010	

2 3 4	1011	van Soest RWM, Meesters EH, Becking LE. 2014. Deep-water sponges (Porifera) from							
5 6	1012	Bonaire and Klein Curaçao, Southern Caribbean, Zootaxa 3878: 401-443.							
7 8	1013								
9 10 11	1014	Wassilieff A. 1908. Japanische Actinien, in Doflein. Abhandlungen der Mathematisch-							
12 13	1015	Physikalischen Klasse der Königlich Bayerischen Akademie der Wissenschaften 1(2): 1–49.							
14 15	1016								
16 17 18	1017	West DA. 1979. Symbiotic zoanthids (Anthozoa: Cnidaria) of Puerto Rico. Bulletin of							
19 20	1018	Marine Science 29: 253–271.							
21 22	1019								
23 24 25	1020	Williams RB. 2000. A redescription of the zoanthid Isozoanthus sulcatus (Gosse, 1859), with							
25 26 27 28 29 30 31 32 33 34	1021	notes on its nomenclature, systematics, behavior, habitat and geographical distribution.							
	1022	<i>Ophelia</i> 3: 193–206.							
	1023								
	1024	FIGURE LEGENDS							
35 36	1025	Figure 1. Distribution of hexactinellid sponge-associated zoantharians examined in this study.							
37 38 30	1026	Enclosed symbols indicate Hexasterophora sponge-associated zoantharians: Churabana							
39 40 41	1027	kuroshioae sp. nov. (dark blue), Vitrumanthus schrieri sp. nov. (red), Vitrumanthus							
42 43	1028	vanderlandi sp. nov. (green), Vitrumanthus oligomyarius comb. nov. (yellow). Boxes							
44 45	1029	indicate Amphidiscophora sponge-associated zoantharians: Epizoanthus aff. armatus (gray),							
46 47 48	1030	Epizoanthus fatuus (violet), Epizoanthus stellaris (light blue), Epizoanthus aff. fatuus (pink),							
49 50	1031	Kauluzoanthus sp. (black).							
51 52	1032								
53 54 55	1033	Figure 2. Images of preserved Amphidiscophora sponges-associated zoantharians. (A, B)							
56 57 58 59 60	1034	Epizoanthus fatuus collected from Japan, (C) Epizoanthus aff. fatuus collected from							

Figure 3. Images of external and internal morphology of Churabana kuroshioae sp. nov. (A:

2	
3 4	1035
5 6	1036
7 8 0	1037
9 10 11	1038
12 13	1039
14 15	1040
16 17	1041
18 19 20	1042
20 21 22	1043
23 24	1044
25 26	1045
27 28	1046
29 30 31	10/17
32	1047
33 34	1048
35 36	1049
37 38	1050
39 40 41	1051
42 43	1052
44 45	1053
46 47	1054
48 49	1055
50 51	1000
52 53	1056
55 54 55	1057
56 57	1058
58 59	1059
60	

1035 Australia, (D) *Epizoanthus stellaris* collected from Australia, (E) *Epizoanthus* aff. *armatus*1036 collected from Japan. Scales: 10 mm.

paratype: NSMT Co-XXXX; B-I: holotype: RUMF-ZG-04447). (A) living polyps on *Pararete* sp.1 in situ at, (B) living polyps on *Pararete* sp.2 in an aquarium at Okinawa Churaumi Aquarium, Motobu, Japan, (C) close-up image of preserved polyp, (D-F) longitudinal section of polyp, (G) cross-section of polyp, (H) close-up image of cyclically transitional marginal musculature, (I) drawing of cteniform endodermal marginal

1044 musculature. Abbreviations: A=actinopharynx, Dd=dorsal directives, Cemm=cteniform
 1045 endodermal marginal musculature, Ec=ectoderm, En=endoderm, M=mesoglea,

S=siphonoglyph, O=oral disk, 5th=5th mesentery from dorsal directives. Scales: 5 mm (A,B),
1047 2 mm (C-H).

Figure 4. Cnidae in the tentacles, column, actinopharynx, and mesenterial filaments of
holotypes of new species in this study. (A) cnidae of *Churabana kuroshioae* sp. nov., (B)
cnidae of *Vitrumanthus schrieri* sp. nov., (C) cnidae of *Vitrumanthus vanderlandi* sp. nov.,
(D) cnidae of *Vitrumanthus oligomyarius* comb. nov. Abbreviations: Hl=holotrichs large,
Hm=holotrichs medium, Hs=holotrich small, O=basitrichs and microbasic b-mastigophores,
Pm=microbasic p-mastigophores, S=spirocysts.

Figure 5. Images of external and internal morphology of *Vitrumanthus schrieri* sp. nov. (B-F:
holotype: RMNH.COEL.42429). (A) living polyps on *Verrucocoeloidea liberatorii* in situ,
(B) preserved polyps, (C) close-up image of preserved polyp, (D) close-up image of tentacle
musculature, (E) close-up image of cyclically transitional marginal musculature, (F) drawing

2 3	4000	
4	1060	of cyclically transitional marginal musculature. Abbreviations: A=actinopharynx,
5 6 7	1061	Tem=tentacle musculature, Ctmm=cyclically transitional marginal musculature. Scale bars:
/ 8 0	1062	10 mm (A), 25 mm (B), 5 mm (C), 0.5 mm (D,E).
) 10 11	1063	
12 13	1064	Figure 6. Images of external and internal morphology of Vitrumanthus vanderlandi sp. nov.
14 15 16	1065	(holotype: RMNH.COEL.42623). (A) preserved polyps on Aphrocallistes beatrix, (B,C)
17 18	1066	close-up image of polyp, (D) close-up image of tentacle musculature, (E) longitudinal section
19 20	1067	of polyp, (F) drawing of cyclically transitional marginal musculature. Abbreviations:
21 22	1068	A=actinopharynx, Te=tentacle, Tem= tentacle musculature, Ctmm=cyclically transitional
23 24 25	1069	marginal musculature. Scale bars: 3 mm (A), 1.5 mm (B,C,E), mm (C), 0.3 mm (D).
26 27	1070	
28 29	1071	Figure 7. Images of external and internal morphology of Vitrumanthus oligomyarius comb.
30 31 22	1072	nov. (CMNH ZG-4785). (A) preserved polyps on Tretochone duplicata, (B,C) cross section
32 33 34	1073	of polyp. (D) longitudinal section of polyp, (E,F) close-up images of cyclically transitional
35 36	1074	marginal musculature, (G) close-up image of tentacle musculature. Abbreviations:
37 38	1075	A=actinopharynx, Dd=dorsal directives, Ctmm=cyclically transitional marginal musculature,
39 40 41	1076	Ec=ectoderm, M=mesoglea, Mm=marginal musculature, S=siphonoglyph, O=oral disk,
42 43	1077	5th=5th mesentery from dorsal directives. Scale bars: 5 mm (A), 1.5 mm (B,C), 0.5 mm
44 45	1078	(D,E), 0.1 mm (F), 0.25 mm (G).
46 47 48	1079	
49 50	1080	Figure 8. Images of Kauluzoanthus sp. (A) in situ image of Kauluzoanthus sp. on stalks of
51 52	1081	Hyalonema sp., (B) preserved colony. Scale: 10 mm (A). Images credits: Okeanos/NOAA.
53 54	1082	
55 56 57	1083	Figure 9. Maximum likelihood tree based on combined dataset of COI, 12S-rDNA, 16S-
58 59 60	1084	rDNA, 18S-rDNA, 28S-rDNA, and ITS-rDNA. Green colored box indicates Hexasterophora

1 2		
2 3 4	1085	sponge-associated zoantharians, and blue colored boxed indicate Amphidiscophora sponge-
5 6	1086	associated zoantharians. Number at nodes represent ML bootstrap values (> 50% are shown).
7 8	1087	Black circles on nodes indicate high support of Bayesian posterior probabilities (>0.95).
9 10		
11 12		
13		
15		
16 17		
18 19		
20 21		
22 23		
24		
25 26		
27		
29 30		
31 32		
33 34		
35 36		
37		
39 40		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52		
53 54		
55 56		
57 58		
59 60		
00		

Figure 1. Distribution of hexactinellid sponge-associated zoantharians examined in this study. Enclosed symbols indicate Hexasterophora sponge-associated zoantharians: *Churabana kuroshioae* sp. nov. (dark blue), *Vitrumanthus schrieri* sp. nov. (red), *Vitrumanthus vanderlandi* sp. nov. (green), *Vitrumanthus oligomyarius* comb. nov. (yellow). Boxes indicate Amphidiscophora sponge-associated zoantharians: *Epizoanthus* aff. *armatus* (gray), *Epizoanthus fatuus* (violet), *Epizoanthus* sp. (black).

Figure 2. Images of preserved Amphidiscophora sponges-associated zoantharians. (A, B) *Epizoanthus fatuus* collected from Japan, (C) *Epizoanthus* aff. *fatuus* collected from Australia, (D) *Epizoanthus stellaris* collected from Australia, (E) *Epizoanthus* aff. *armatus* collected from Japan. Scales: 10 mm.

Figure 3. Images of external and internal morphology of *Churabana kuroshioae* sp. nov. (A: paratype: NSMT Co-1754; B-I: holotype: RUMF-ZG-04447). (A) living polyps on Pararete sp.1 in situ at, (B) living polyps on Pararete sp.2 in an aquarium at Okinawa Churaumi Aquarium, Motobu, Japan, (C) close-up image of preserved polyp, (D-F) longitudinal section of polyp, (G) cross-section of polyp, (H) close-up image of cyclically transitional marginal musculature, (I) drawing of cteniform endodermal marginal musculature.
Abbreviations: A=actinopharynx, Dd=dorsal directives, Cemm=cteniform endodermal marginal musculature, Ec=ectoderm, En=endoderm, M=mesoglea, S=siphonoglyph, O=oral disk, 5th=5th mesentery from dorsal directives. Scales: 5 mm (A,B), 2 mm (C-H).

Figure 4. Cnidae in the tentacles, column, actinopharynx, and mesenterial filaments of holotypes of new species in this study. (A) cnidae of *Churabana kuroshioae* sp. nov., (B) cnidae of *Vitrumanthus schrieri* sp. nov., (C) cnidae of *Vitrumanthus vanderlandi* sp. nov., (D) cnidae of *Vitrumanthus oligomyarius* comb. nov. Abbreviations: HI=holotrichs large, Hm=holotrichs medium, Hs=holotrich small, O=basitrichs and microbasic b-mastigophores, Pm=microbasic p-mastigophores, S=spirocysts.

Figure 5. Images of external and internal morphology of *Vitrumanthus schrieri* sp. nov. (B-F: holotype: RMNH.COEL.42429). (A) living polyps on *Verrucocoeloidea liberatorii* in situ, (B) preserved polyps, (C) closeup image of preserved polyp, (D) close-up image of tentacle musculature, (E) close-up image of cyclically transitional marginal musculature, (F) drawing of cyclically transitional marginal musculature. Abbreviations: A=actinopharynx, Tem=tentacle musculature, Ctmm=cyclically transitional marginal musculature. Scale bars: 10 mm (A), 25 mm (B), 5 mm (C), 0.5 mm (D,E).

Figure 6. Images of external and internal morphology of *Vitrumanthus vanderlandi* sp. nov. (holotype: RMNH.COEL.42623). (A) preserved polyps on *Aphrocallistes beatrix*, (B,C) close-up image of polyp, (D) close-up image of tentacle musculature, (E) longitudinal section of polyp, (F) drawing of cyclically transitional marginal musculature. Abbreviations: A=actinopharynx, Te=tentacle, Tem= tentacle musculature, Ctmm=cyclically transitional marginal musculature. Scale bars: 3 mm (A), 1.5 mm (B,C,E), mm (C), 0.3 mm (D).

Figure 7. Images of external and internal morphology of *Vitrumanthus oligomyarius* comb. nov. (CMNH ZG-4785). (A) preserved polyps on *Tretochone duplicata*, (B,C) cross section of polyp. (D) longitudinal section of polyp, (E,F) close-up images of cyclically transitional marginal musculature, (G) close-up image of tentacle musculature. Abbreviations: A=actinopharynx, Dd=dorsal directives, Ctmm=cyclically transitional marginal musculature, Ec=ectoderm, M=mesoglea, Mm=marginal musculature, S=siphonoglyph, O=oral disk, 5th=5th mesentery from dorsal directives. Scale bars: 5 mm (A), 1.5 mm (B,C), 0.5 mm (D,E), 0.1 mm (F), 0.25 mm (G).

Figure 8. Images of *Kauluzoanthus* sp. (A) in situ image of *Kauluzoanthus* sp. on stalks of *Hyalonema* sp., (B) preserved colony. Scale: 10 mm (A). Images credits: Okeanos/NOAA.

Zoological Journal of the Linnean Society

raoie i the specimens	examined in thi	s study, with Gen	mank accession numbers or combined data	isci of CO1, 123-1DINA, 103-1DINA, 163-1DINA, 285-1DINA, an	Continue										
Vouwhar numbar	Spaciman ID	Familie	enariae	Collection locality	L atituda	Longitude	Data	Danth (m)	Collactar	COL	125	165 rDNA	18S PDNA	ITS DNA	285 -DNA
RMNH.COEL.42620	2K	Parazoanthidae	Vitrumanthus schrieri sp. nov.	Cargill pier. Bonaire. The Netherlands	12°04'47.9"N	68°17'37.7"W	June 1, 2013	223	L. Becking & E. Meesters		.20	105-1DINA	105-1DINA	Accession nu	imt
RMNH.COEL.42621	24I	Parazoanthidae	Vitrumanthus schrieri sp. nov.	Cargill pier, Bonaire, The Netherlands	12°04'47.9"N	68°17'37.7"W	June 1, 2013	248	L. Becking & E. Meesters					Accession nu	umt
RMNH.COEL.42622	101	Parazoanthidae	Vitrumanthus schrieri sp. nov.	Kralendijk pier, Bonaire, The Netherlands	12°08'48.9"N	68°16'55.6"W	May 30, 2013	140	L. Becking & E. Meesters					Accession nu	imt
RMNH.COEL.42624	16A	Parazoanthidae	Vitrumanthus vanderlandi sp. nov.	Cape Verde Islands, SãoTiago, Ilheus Rombos, E of Cima	14°56'59"N	NA24°37'59"W	August 24, 1986	580	R/V HNIMS Tydeman					Accession nu	ımt
MNH.COEL.42623	4L	Parazoanthidae	Vitrumanthus vanderlandi sp. nov.	Cape Verde Islands, SãoTiago, Ilheus Rombos, E of Cima	14°56'59"N	NA24°37'59"W	August 24, 1986	700-800	R/V HNIMS Tydeman	Accession num	ıb	Accession num	Ł Accession nur	nt Accession nu	imt Accession numb
MNH.COEL.42625	3L	Parazoanthidae	Vitrumanthus vanderlandi sp. nov.	Gulf of Guinea, Guinea	4°25'N	8°29'W	October 31, 1963	380-510	ICITA					Accession nu	umt
ANH ZG 4785	JDR307	Parazoanthidae	Vitrumanthus oligomyarius comb. nov.	ott Katsuura, Chiba, Japan Norre Treuch Kihauiime Kassakime Jar	34°50'N-35°00'N	140°20'W-140°30'W	January 19, 2006	390	A. Lamura	Accession num	h Accession	Accession num	t Accession nur	nt Accession nu	Imt Accession numb
MT CO-XXXX	511	Parazoanthidae	r arazoaninidae sp. Churahana kuroshioae sp. pov	Nanpo Trough, Kikaujima, Kagoshima Japan	26 20/21.04 IN 28°20/21 64"N	129 57 14.50 E	October 14, 2011	430	J. Montenegro	Accession num	in Accession num	Accession num	+ Accession nur	mt Accession nu	imt accession numb
MT Co-XXXX	52J	Parazoanthidae	Vitrumanthus sp.	Nanpo Trough, Kikaujima, , Kagoshima, Japan	28°20'21.64"N	129°57'14.56"E	October 14, 2011	520	J. Montenegro	Accession num	ib	Accession num	Ł Accession nur	nt Accession nu	umt
INH.COEL.42430	6BH	Parazoanthidae	Vitrumanthus schrieri sp. nov.	SubStation, Curacao	12°05'04"N	68°53'54"W	April 21, 2014	200	B.W. Hoeksema					Accession nu	umt
INH.COEL.42429	5BH	Parazoanthidae	Vitrumanthus schrieri sp. nov.	SubStation, Curacao	12°14'01"N	68°53'32"W	March 31, 2014	161-243	B.W. Hoeksema		Accession num	nb Accession num	Ł Accession nur	nt Accession nu	imt Accession numb
UMF-ZG-04447	MZ1	Parazoanthidae	Churabana kuroshioae sp. nov.	Near Iejima, Okinawa, Japan	26°54'53.6"N	127°37′50.9″E	March 2, 2018	600-650	T. Higashiji	Accession num	b Accession num	nb	Accession nur	nt Accession nu	umt Accession numb
JMF-ZG-04448	MZ3	Parazoanthidae	Churabana kuroshioae sp. nov.	Near Iejima, Okinawa, Japan	26°54′53.6″N	127°37′50.9″E	March 2, 2018	600-650	T. Higashiji	Accession num	hb Accession num	nb Accession num	Ł Accession nur	nt Accession nu	imt Accession numb
AT Co-XXXX	HPD1323	Epizoanthidae	Epizoanthus aff. armatus	Kuroshima Island, Kagoshima, Japan	24°13'36.1"N	124°06'18.0"E	September 19, 2011	484	J.D. Reimer	Accession num	b Accession num	nb Accession num	Ł Accession nur	nt Accession nu	Imt Accession numb
MT Co-XXXX	HK132	Epizoanthidae	Epizoanthus fatuus	Sagami Bay, Kanagawa, Japan	35°08'27.5"N-35°08'33.5"N	139°32'12.2"E-139°32'44.3"E	February 12, 2015	133-274	H. Kotsuka	Accession num	hb Accession num	hb Accession num	Ł Accession nur	nt Accession nu	Imt Accession numb
MI Co-XXXX	HK33-2	Epizoanthidae	Epizoanthus fatuus	Amakusa, Kumamoto, Japan	52°24'44.8"N	129°28'01.3"E	2011	2505 2474	D. Uyeno	Accession num	tt Accession num	nb Accession num	t Accession nur	nt Accession nu	Imt Accession numb
G337590	G337590	Epizoanthidae	Epizoanthus att. fatuus	Hunter CMR, Australia	32"34"30.0"8- 32"37'53.8"S	155°08'31.2"E-155°09'42.1"E	June 3, 2017	2595-2474	M. Ekine	Accession num	Nu Accession num	in Accession num	L Accession nur	mt Accession nu	umb Accession numb
NM 1424050	OV1	Parazoanthidaa	Laubroanthus stetturis	Hunder Corre, Australia Honoby Moana/EV1602	22 20 44.4 3-32 30 23.2 3 22°56 640' N	152 5727.0 E-152 5738.4 E	Eabruary 28, 2017	1000-1000	Okeanos Explorer expedition NOAA	Accession num	in Accession NUIT	in Accession num	Accession nur	mt Accession nu	ime Accession numb

			Churabana kuroshioae	sp. nov.			Vitrumanthus schrieri	sp. nov.			Vitrumanthus vanderla	undi sp. nov.		Vitrumanthus oligomvarius	comb. nov.	
Tissue	Type of cnidae	Length (min-max mean) Frequency n Length (min-max mean) Frequency n								Length (min-max_n	nean) Width (min-max i	nean) Frequency n	Length (min-max mean) Width (min-max mean) Frequency			
Tentacle	Spirocysts	13.0-26.0, 20.2	2.0-4.0, 3.0	Numerous	58	12.0-21.0, 16.0	2.0-4.0, 2.7	Numerous	51	11.0-22.0, 16.1	1.0-4.0, 2.6	Numerous	75 11.0-24.0, 17.7	2.0-5.0, 3.3	Numerous	1
	Basitrichs and microbasic b-															
	mastigophores	20.0-30.0, 25.3	2.0-5.0, 4.0	Numerous	105	13.0-18.0, 15.1	2.0-4.0, 2.8	Common	27	11.0-29.0, 22.9	2.0-4.0, 2.9	Numerous	54 13.0-20.0, 17.3	2.0-5.0, 3.3	Numerous	
	Holotrichs (M)												18.0-20.0, 19.0	9.0-12.0. 10.5	Occasional	
	Holotrichs (L)					24.0-26.0, 25.3	9.0-11.0, 10.3	Rare	3				29.0	14.0	Rare	
	Microbasic p-mastigophores															
Column	Holotrichs (L)	33.0-34.0, 33.3	17.0-19.0, 17.7	Rare	3	22.0-26.0, 23.7	11.0-12.0, 11.3	Occasional	7				22.0-28.0, 25.5	12.0-14.0, 13.0	Rare	
	Holotrich (M)					20.0	11.0	Rare	1				11.0-14.0, 12.5	2.0-4.0, 3.0	Rare	
Actinopharynx	Spirocysts	13.0-17.0, 15.0	3.0	Rare	2	14.0-20.0, 16.5	2.0-3.0, 2.8	Rare	4	12.0-18.0, 16.1	2.0-4.0, 2.6	Occasional	7 15.0-19.0, 16.6	3.0-4.0, 3.1	Common	1
	Basitrichs and microbasic b-															
	mastigophores	20.0-28.0, 22.7	2.0-4.0, 3.4	Common	18	15.0-17.0, 16.0	2.0-3.0, 2.6	Occasional	5	13.0-19.0, 15.3	2.0-4.0, 2.5	Common	15 13.0-19.0, 15.1	1.0-4.0, 2.5	Common	2
	Holotrichs (M)												17.0-18.0, 17.5	9.0-11.0, 10.0	Rare	
	Holotrichs (L)					23.0	11.0	Rare	1				23.0-28.0, 25.6	11.0-15.0, 12.9	Occasional	1
	Microbasic p-mastigophores									13.0-14.0, 13.5	3.0-5.0, 4.0	Rare	2			
	Bastrichs and microbasic b-		105010										10.0.20.0.15.2	2010.27		
Mesenterial maments	Misselasian	21.0-27.0, 23.3	4.0-5.0, 4.5	Nare	4	10.0.17.0.16.0	2050 44	01		120 170 140	40 (0 47	N	10.0-20.0, 15.3	3.0-4.0, 3.7	Kare	
	Microbasic p-masugophores	18.0-27.0, 22.7	4.0-7.0, 5.4	Numerous	/9	10.0-17.0, 15.0	5.0-5.0, 4.4	Occasional	11	13.0-17.0, 14.9	4.0-0.0, 4.7	Numerous	31 14.0-20.0, 17.1	4.0-0.0, 5.0	Common	2
	Holotrichs (M)	9.0-10.0, 9.8	2.0-3.0, 2.9	Occasional	9	20.0	9.0	Rare	1				20.0	11.0	Rare	
	Holotrichs (L)	28.0-35.0, 32.6	14.0-21.0, 17.8	Common	20	21.0-25.0, 23.4	9.0-19.0, 11.3	Rare	11				23.0-28.0, 25.5	11.0-16.0, 13.1	Common	2