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A B S T R A C T

The study of material surfaces uses notions from classical differential geometry, such as the covariant gradient,
the mean and Gaussian curvatures, and the Peterson–Mainardi–Codazzi and Gauss equations. These notions
are traditionally introduced relative to local surface coordinates and involve Christoffel symbols. We proceed
instead without recourse to coordinates using direct notation. After developing the formula for the covariant
gradient relative to a surface metric, we derive versions of the Peterson–Mainardi–Codazzi and Gauss equations
and Gauss’ Theorema Egregium relevant to a deformed material surface. We then apply our framework to
kinematically constrained material surfaces. For material surfaces that can sustain only deformations that
preserve either angles or lengths, we obtain explicit representations for the covariant gradient relative to
the surface metric in terms of the surface gradient. We show also that a deformation of a material surface
that preserves angles and areas must be length preserving and vice versa. Finally, we present an alternative
derivation of the Peterson–Mainardi–Codazzi and Gauss equations for a deformed material surface subject to
the provision that the surface metric derives from the metric for the ambient Euclidean space within which
the surface is embedded. An Appendix involving coordinates is included to ease comparisons between our
approach to covariant differentiation and associated derivations of the Peterson–Mainardi–Codazzi and Gauss
equations and standard coordinate-based approaches.
. Introduction

Material surfaces are fundamental to all theories of thin-walled
lates and shells, whether established asymptotically with reference to
hree-dimensional theory or formulated directly, and have also been
sed extensively to model adhesive interphases in composites, surface
oatings, and thin films. The kinematical framework needed to describe
he deformation of a material surface relies intimately on tools and
esults from classical differential geometry. Orthodox treatments of this
ubject, as exemplified by the comprehensive treatise of Ciarlet (2005),
ypically begin by introducing coordinate charts for the reference and
eformed configurations of the material surface and hinge on represent-
ng fundamental kinematical objects through their components relative
o the associated coordinates.

The primary aim of the present work is to supply a nonstandard
reatment that, by avoiding such ingredients, is resolutely coordinate
ree. In so doing, we seek to extend and complement the pioneer-
ng contributions of Gurtin and Murdoch (1975), Murdoch (1978),
nd Murdoch and Cohen (1979). Specifically, we emulate the perspec-
ive and approach synopsized in the following passage due to Murdoch
1978):

∗ Corresponding authors.
E-mail addresses: bseguin@luc.edu (B. Seguin), eliot.fried@oist.jp (E. Fried).

[T]he essential simplicity and elegance of a treatment free of co-
ordinate considerations allows for greater insight into and emphasis
upon the fundamental geometric and algebraic concepts involved.
In this respect it is to be observed that direct notation does not
merely mean that the results are presented free of indicial notation
but rather that, inter alia, precise definitions of surface, position
and motion are made without recourse to any co-ordinate system.
Thus by the employment of direct notation is implied a philosophy
in which inessentials and non-physical considerations involved in
the modeling of natural phenomena are carefully excised, the more
clearly to perceive the relationship between the model and its
subject.

To begin, we develop coordinate-free representations for the covariant
gradient and curl operators on a surface. We then derive coordinate-
free versions of the Peterson–Mainardi–Codazzi and Gauss equations
and present an invariant proof of Gauss’ Theorema Egregium, all for a
deformed material surface. Our Peterson–Mainardi–Codazzi and Gauss
equations involve the pullbacks, to the reference surface, of the metric
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and curvature tensors of the deformed surface that must be met to en-
sure the existence of a deformation and, thus, constitute compatibility
conditions. We find that a deformation serves effectively as a chart
that describes the deformed surface in terms of the reference surface.
However, there are three significant differences between a deformation
and a coordinate chart. First, whereas a coordinate chart involves a
bijection between a set of parameter pairs that can be identified with
an open subset of R2 and a possibly curved surface, a deformation is
a bijection between reference and deformed surfaces that may both
be curved. Second, whereas the introduction of a chart entails the
provision of a basis and, thus, dependence upon the associated coor-
dinates, a deformation can be considered independent of any choice
of coordinates, as we have done in the present work. Third, whereas
there is no unique way of selecting a coordinate chart to describe
a surface as a purely geometrical object and the parameter pairs of
a coordinate chart need not be related to the points that describe a
material surface, a deformation must preserve the identity of material
points that comprise a material surface and, thus, supplies a natural
correspondence between the reference and deformed configurations of
a material surface.

As an initial application, we use our framework to derive represen-
tations for the covariant gradient operator on material surfaces that
are subject to deformations which preserve angles and to deformations
which preserve lengths. Building on those results, we next demonstrate
that a deformation of a material surface that preserves both angles and
areas must be length preserving and vice versa. In another application,
we show how our framework can be applied to obtain an alternative
derivation of the Peterson–Mainardi–Codazzi and Gauss equations that
holds when the surface metric is derived from the metric for the three-
dimensional Euclidean space in which the surface is embedded. This
derivation exposes the unity of the Peterson–Mainardi–Codazzi and
Gauss equations in that these two conditions are found to stem from the
normal and tangential components of a single equation. Moreover, this
alternative derivation yields the Gauss equation in a form commonly
encountered in the literature. However, that condition is expressed in
direct notation rather than relative to the associated coordinates.

To connect with traditional approaches to covariant differentiation,
we include an appendix containing coordinate-based representations.
Those representations hinge on the classical differential geometric no-
tion of a coordinate chart.

2. Preliminaries from linear algebra

Given linear spaces  and  , let Lin( ,) denote the set of all
linear mappings from  to  . If  and  are inner-product spaces,
then the transpose 𝐌⊤ of 𝐌 ∈ Lin( ,) is an element of Lin( ,) and
is determined by

⟨𝐲,𝐌𝐱⟩ = ⟨𝐱,𝐌⊤𝐲⟩ , 𝐱 ∈  , 𝐲 ∈  . (1)

Given 𝐱 ∈  and 𝐲 ∈  , the tensor product 𝐲⊗ 𝐱 ∈ Lin( ,) is defined
by

(𝐲⊗ 𝐱)𝐳 = ⟨𝐱, 𝐳⟩𝐲, 𝐳 ∈  . (2)

If  =  and 𝐌⊤ = 𝐌, then 𝐌 ∈ Sym( ,) ⊆ Lin( ,) and is said to
be symmetric. The wedge product 𝐱1 ∧ 𝐱2 ∈ Lin( ,) of 𝐱1 ∈  and
𝐱2 ∈  is defined by

𝐱1 ∧ 𝐱2 = 𝐱1 ⊗ 𝐱2 − 𝐱2 ⊗ 𝐱1. (3)

If A ∈ Lin( ,Lin( ,)), then its right transpose A𝑡 is a linear
mapping of the same type defined by

(A𝑡𝐱1)𝐱2 = (A𝐱2)𝐱1, 𝐱1, 𝐱2 ∈  . (4)

It is alternatively possible to interpret A as a bilinear mapping from 
to  through the relation
2

A(𝐱1, 𝐱2) = (A𝐱1)𝐱2, 𝐱1, 𝐱2 ∈  . (5) e
We use Lin2( ,) to denote the set of all such bilinear mappings. Also,
if A ∈ Lin2( ,) satisfies A𝑡 = A, then A ∈ Sym2( ,) ⊆ Lin2( ,) and
is called right symmetric.

Suppose that  is a two-dimensional inner-product space and that
𝐌 ∈ Lin( ,). The determinant det𝐌 of 𝐌 is then characterized by
the property:

𝐌𝐱1 ∧𝐌𝐱2 = (det𝐌)(𝐱1 ∧ 𝐱2), 𝐱1, 𝐱2 ∈  . (6)

If, moreover,  is a two-dimensional inner-product space and 𝐍 ∈
Lin( ,), then the wedge product on the left-hand side of (6) obeys

(𝐍⊤𝐌𝐍)𝐲1 ∧ (𝐍⊤𝐌𝐍)𝐲2 = 𝐍⊤(𝐌𝐍𝐲1 ∧𝐌𝐍𝐲2)𝐍
= (det𝐌)𝐍⊤(𝐍𝐲1 ∧ 𝐍𝐲2)𝐍
= (det𝐌)(𝐍⊤𝐍)𝐲1 ∧ (𝐍⊤𝐍)𝐲2
= (det𝐌) det(𝐍⊤𝐍)𝐲1 ∧ 𝐲2 (7)

or all choices of 𝐲1 ∈  and 𝐲2 ∈  , with the consequence that the
eterminant of 𝐍⊤𝐌𝐍 is given by the product of the determinants of
∈ Lin( ,) and 𝐍⊤𝐍 ∈ Lin( ,):

det(𝐍⊤𝐌𝐍) = (det𝐌) det(𝐍⊤𝐍). (8)

. Surfaces in a Euclidean space

Consider a smooth surface  in a three-dimensional Euclidean point
pace  with associated vector space  . Let the inner product of two
ectors 𝐚 ∈  and 𝐛 ∈  be denoted by 𝐚 ⋅ 𝐛. For each 𝑥 ∈ , the
angent space 𝑇𝑥 of  is a two-dimensional subspace of  . We write
(𝑥) ∈ Lin( ,) for the orthogonal projection of  onto 𝑇𝑥.

The tangent space 𝑇𝑥 can be used to parameterize the surface
local to 𝑥 ∈ . More precisely, there is a neighborhood 𝑥 of

ero in 𝑇𝑥 and a smooth injective function 𝜋𝑥 ∶ 𝑥 →  such that
𝑥(𝑥) constitutes a neighborhood of 𝑥 in . A function 𝜙 from  to a
uclidean space  with vector space  is said to be differentiable at 𝑥
f 𝜙◦𝜋𝑥 is differentiable, and the surface gradient ∇𝜙 of 𝜙 is defined
y
𝜙(𝑥) = grad(𝜙◦𝜋𝑥)(0) ∈ Lin(𝑇𝑥 ,). (9)

e consider only functions on  that are smooth in the sense that they
an be differentiated as many times as needed.

It is sometimes convenient to view ∇𝜙(𝑥) as a linear mapping on
, rather than on the subspace 𝑇𝑥. This can be achieved by stipulating

hat ∇𝜙(𝑥) vanish on the orthogonal complement of 𝑇𝑥. Put another
ay, we may identify ∇𝜙 with the product (∇𝜙)𝐏. For the particular

hoice  = R, since 𝑇𝑥 is a subspace of  , the inner product on  can
e used to identify ∇𝜙(𝑥) ∈ Lin(𝑇𝑥 ,R) with an element of 𝑇𝑥 such
hat

∇𝜙(𝑥)) ⋅ 𝐚 = (∇𝜙(𝑥))𝐚, 𝐚 ∈ 𝑇𝑥 . (10)

A vector field on  is a function of the form 𝐮 ∶  →  and is called
angential if 𝐮(𝑥) ∈ 𝑇𝑥 for all 𝑥 ∈ . Given a tangential vector field 𝐮
nd a field 𝜙, the directional derivative ∇

𝐮𝜙 of 𝜙 along 𝐮 is the field
efined such that

𝐮𝜙 = (∇𝜙)𝐮. (11)

e will use the notation:
 scalar fields,

() vector fields,
(𝑇) tangential vector fields.

A two-tensor field 𝐌 on  can be defined as a mapping from ()
o itself that is -linear in the sense that

(𝑔𝐮 + ℎ𝐯) = 𝑔𝐌𝐮 + ℎ𝐌𝐯, 𝑔, ℎ ∈ , 𝐮, 𝐯 ∈ (). (12)

t follows that 𝐌 can be viewed as a function on  defined such that for

ach 𝑥 ∈ , 𝐌(𝑥) ∈ Lin( ,). Any such function 𝐌 is called tangential
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if it takes tangential vector fields to tangential vector fields. In this case,
𝐌(𝑥) ∈ Lin(𝑇𝑥 , 𝑇𝑥). We use the following notation:

2() two-tensor fields,
2(𝑇) tangential two-tensor fields.

Lastly, we define a three-tensor A to be a -linear mapping from ()
to 2(), call such a mapping tangential if it takes elements of (𝑇)
to elements of 2(𝑇), and adopt the notation

3() three-tensor fields,
3(𝑇) tangential three-tensor fields.

Given the surface gradient ∇𝐌 of 𝐌 ∈ 2(𝑇), we define its surface
curl, Curl𝐌 ∈ 3(), by

url𝐌 = ∇𝐌 − (∇𝐌)𝑡. (13)

Suppose that  is orientable, so that there is a 𝐧 ∈ () that is
unit-vector valued and is orthogonal to . The orthogonal projection
𝐏, which at each 𝑥 ∈  maps  onto 𝑇𝑥, can then be expressed in
terms of 𝐧 through

𝐏 = 𝟏 − 𝐧⊗ 𝐧. (14)

Moreover, the curvature tensor 𝐋 of  is defined by

𝐋 = −∇𝐧. (15)

Taking the surface gradient of the equation 𝐧 ⋅ 𝐧 = 1 yields

𝐋⊤𝐧 = 𝟎, (16)

from which we see that 𝐋 is tangential. Until further notice, let 𝑥 ∈ 
be fixed, consider 𝜋𝑥 ∶ 𝑥 →  , and define 𝜫𝑥 = grad 𝜋𝑥. Since the
range of 𝜋𝑥 is contained in , it follows that 𝜫𝑥𝐚 is tangent to  for
any 𝐚 ∈ 𝑇𝑥. Then, for any 𝐚 ∈ 𝑇𝑥,

𝐧(𝜋𝑥(𝐩)) ⋅𝜫𝑥(𝐩)𝐚 = 0, 𝐩 ∈ 𝑥. (17)

Taking the gradient with respect to 𝐩 in the direction 𝐛 ∈ 𝑇𝑥 of the
previous equation produces the identity

𝐚 ⋅𝜫⊤
𝑥(𝐩)𝐋(𝜋𝑥(𝐩))𝜫𝑥(𝐩)𝐛 = 𝐧(𝜋𝑥(𝐩)) ⋅ [(grad 𝜫𝑥)(𝜋𝑥(𝐩))𝐚]. (18)

Since grad 𝜫𝑥 is the second gradient of 𝜋𝑥, it is symmetric. Thus,
it follows from (18) that 𝐋 is symmetric. The mean and Gaussian
curvatures 𝐻 and 𝐾 of  are defined through the curvature tensor 𝐋
of  by

𝐻 = 1
2

tr𝐋 and 𝐾 = det 𝐋. (19)

Notice that (𝑇) ⊆ () and thus that the surface gradient of a
tangential vector 𝐮 must satisfy

∇𝐮(𝑥) ∈ Lin(𝑇𝑥 ,), 𝑥 ∈  . (20)

rom (20), we see that the surface gradient ∇𝐮 of a tangential vector
ield 𝐮 need not be tangential. To elaborate on this, taking the surface
radient of the equation 𝐮 ⋅ 𝐧 = 0 yields

∇𝐮)⊤𝐧 = 𝐋𝐮, (21)

rom which it follows that
𝐮 = 𝐏∇𝐮 + 𝐧⊗ 𝐋𝐮. (22)

hile this shows that generally the surface gradient of a tangential
ector fields is not tangential, it is possible to combine two tangential
ector fields with the surface gradient to obtain a tangential vector
ield. To verify this assertion, we observe from the product rule and
he symmetry of 𝐋 that for any 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇),

𝐧 ⋅ (∇
𝐮 𝐯 − ∇

𝐯 𝐮) = ∇
𝐮 (𝐧 ⋅ 𝐯) − 𝐯 ⋅ ∇

𝐮 𝐧 − ∇
𝐯 (𝐧 ⋅ 𝐮) + 𝐮 ⋅ ∇

𝐯 𝐧
= 𝐯 ⋅ 𝐋𝐮 − 𝐮 ⋅ 𝐋𝐯

= 0. (23)
3

(

Thus, the vector field [𝐮, 𝐯] defined by

[𝐮, 𝐯] = ∇
𝐮 𝐯 − ∇

𝐯 𝐮, (24)

and known as the Lie bracket of 𝐮 and 𝐯, is tangential.
Given a tangential two-tensor field 𝐌 defined on , it is possible

to identify 𝐌 with an element of 𝐌 ∈ 2(). This identification is
accomplished by first extending 𝐌(𝑥) to act on any element of  with
the stipulation that it annihilate any vector orthogonal to 𝑇𝑥 and by
recalling 𝑇𝑥 as a subspace of  . In accord with this convention,

𝐌 = 𝐌𝐏. (25)

Moreover, the surface gradient ∇𝐌 of 𝐌 is the three-tensor field
defined such that

∇𝐌(𝑥) ∈ Lin(𝑇𝑥 ,Lin( ,)), 𝑥 ∈  . (26)

Taking the surface gradient in the direction 𝐮 ∈ (𝑇) of (25) and
utilizing the product rule, the representation (14) for the orthogonal
projection 𝐏 onto , and the definition (15) of the curvature tensor 𝐋
of  produces the relation

∇
𝐮𝐌 = (∇

𝐮𝐌)𝐏 +𝐌𝐋𝐮⊗ 𝐧. (27)

Thus, as with the surface gradient of a tangential vector field defined on
, the surface gradient ∇𝐌 of a tangential two-tensor field 𝐌 defined
on  need not be tangential.

Remark 1. The identifications that allow us to compute the surface
gradient of a tangential two-tensor are not always used. Specifically,
given 𝑥 ∈ , Gurtin and Murdoch (1975) introduce the inclusion map
𝐈(𝑥) ∈ Lin(𝑇𝑥 ,),1 as defined by

𝐈(𝑥)𝐚 = 𝐚, 𝐚 ∈ 𝑇𝑥 , (28)

and a projection map 𝐏(𝑥) ∈ Lin( , 𝑇𝑥) that resembles the projection
used in this paper except that its codomain is 𝑇𝑥 rather than  . Given
a tangential two-tensor field 𝐌 ∈ 2(𝑇), the fields 𝐈 and 𝐏 so defined
can be used to define 𝐌̂ = 𝐈𝐌𝐏 ∈ 2(). With these provisions, the
surface gradient ∇𝐌 of 𝐌 is the three-tensor field defined such that

∇𝐌 = ∇𝐌̂. (29)

Although the approach adopted in this paper is less precise than that
relying on the inclusion and projection mappings, it is less cumbersome
from a notational perspective. We thus opt for simplicity of presentation
over mathematical precision. As an outcome of this compromise, it is,
however, essential to apply (27) when taking the surface gradient of a
tangential two-tensor field.

4. Metrics

A metric on  is a rule that smoothly assigns to each 𝑥 ∈  an inner
product ⟨⋅, ⋅⟩𝑇𝑥 on the tangent space 𝑇𝑥 of  at 𝑥. Here, the notion
f smoothness is embodied by the requirement that the scalar field
↦ ⟨𝐮, 𝐯⟩𝑇𝑥 be smooth for all 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇). Since 𝑇𝑥 is
subspace of  , the inner product on  can be used to define a metric
n . A metric so defined is referred to as ‘‘induced’’. Intuitively, this
nduced surface metric can be considered as a metric that derives from
he metric for the space  in which the surface is embedded. It follows
hat any metric on  has associated with it a tangential two-tensor field

that satisfies

𝐚,𝐛⟩𝑇𝑥 = 𝐚 ⋅𝐆(𝑥)𝐛, 𝐚,𝐛 ∈ 𝑇𝑥 , (30)

nd is called a metric tensor. As a consequence of (30), 𝐆(𝑥) ∈
ym(𝑇𝑥 , 𝑇𝑥) and must satisfy the inequality 𝐚 ⋅ 𝐆(𝑥)𝐚 > 0 for every

1 See also Murdoch (1978), Murdoch and Cohen (1979), and Murdoch
1990).
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nonzero 𝐚 ∈ 𝑇𝑥. These conditions imply that 𝐆(𝑥) is invertible. If, in
particular, the metric is the induced metric, then 𝐆 = 𝐏.

Since the values of 𝐆 are symmetric, the identity

𝐮 ⋅𝐆𝐯 = 𝐯 ⋅𝐆𝐮 (31)

must hold for all 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇). Applying the surface
gradient in the direction 𝐰 ∈ (𝑇) to both sides of (31), setting

G = ∇𝐆, (32)

and invoking the symmetry of 𝐆, we see that G must satisfy

𝐮 ⋅ (G𝐰)𝐯 = 𝐯 ⋅ (G𝐰)𝐮 (33)

for all 𝐮 ∈ (𝑇), 𝐯 ∈ (𝑇), and 𝐰 ∈ (𝑇).
Given a metric on  with metric tensor 𝐆, the inner product of

𝐚 ∈ 𝑇𝑥 and 𝐛 ∈ 𝑇𝑥 can be computed in two different ways: 𝐚 ⋅ 𝐛
and ⟨𝐚,𝐛⟩𝑇𝑥 = 𝐚 ⋅𝐆(𝑥)𝐛. Because of this, the meaning of the transpose
of a two-tensor 𝐌 ∈ Lin(𝑇𝑥 , 𝑇𝑥) suffers from ambiguity. Specifically,
there exist linear mappings 𝐌1 and 𝐌2 on 𝑇𝑥 that satisfy

𝐚 ⋅𝐌𝐛 = 𝐛 ⋅𝐌1𝐚 and ⟨𝐚,𝐌𝐛⟩𝑇𝑥 = ⟨𝐛,𝐌2𝐚⟩𝑇𝑥 , (34)

for all 𝐚 ∈ 𝑇𝑥 and 𝐛 ∈ 𝑇𝑥. While 𝐌1 is the transpose of 𝐌 relative
to the induced inner product on 𝑇𝑥, 𝐌2 is the transpose of 𝐌 relative
to the inner product ⟨⋅, ⋅⟩𝑇𝑥 . Using (30), (34)2 can be written as

𝐚 ⋅𝐆(𝑥)𝐌𝐛 = 𝐛 ⋅𝐆(𝑥)𝐌2𝐚, 𝐚,𝐛 ∈ 𝑇𝑥 . (35)

Since 𝐆(𝑥) is invertible and symmetric, (35) is equivalent to

𝐚 ⋅𝐌𝐛 = 𝐛 ⋅𝐆(𝑥)𝐌2𝐆(𝑥)−1𝐚, 𝐚,𝐛 ∈ 𝑇𝑥 . (36)

Comparing the previous equation with (34)1 we see that 𝐌1 and 𝐌2
are related through

𝐌1 = 𝐆(𝑥)𝐌2𝐆(𝑥)−1. (37)

Hereafter, we exclusively use the transpose relative to the induced inner
product on 𝑇𝑥 and employ the notation 𝐌⊤ = 𝐌1 to denote said
transpose. The notion of the magnitude of a tangent vector also suffers
from an ambiguity. For 𝐚 ∈ 𝑇𝑥, we adopt the notation

|𝐚| =
√

𝐚 ⋅ 𝐚 and |𝐚|𝐆 =
√

⟨𝐚, 𝐚⟩𝑇𝑥 . (38)

5. Covariant gradient and covariant curl

Although the surface gradient ∇ of a tangential vector field need
not be tangential, there is, given a metric on  with associated metric
tensor 𝐆, another object that delivers a tangential two-tensor field
when applied to a tangential vector field. Termed the covariant gradi-
ent relative to a metric 𝐆 and denoted by ∇𝐆, that object is the unique
mapping from (𝑇) to 2(𝑇) which, given 𝑔 ∈ , 𝐮 ∈ (𝑇), and
∈ (𝑇), has the following properties:

(P1) ∇𝐆(𝐮 + 𝐯) = ∇𝐆𝐮 + ∇𝐆𝐯,
(P2) ∇𝐆(𝑔𝐮) = 𝑔∇𝐆𝐮 + 𝐮⊗ ∇𝑔,
(P3) ∇𝐆

𝐯 𝐮 − ∇𝐆
𝐮 𝐯 = [𝐯,𝐮],

(P4) ∇
𝐰⟨𝐮, 𝐯⟩ = ⟨∇𝐆

𝐰𝐮, 𝐯⟩ + ⟨𝐮,∇𝐆
𝐰𝐯⟩.

While property P1 ensures that ∇𝐆 is additive, property P2 is a product
rule for ∇𝐆. Together, P1 and P2 imply that ∇𝐆 is linear, though it
should be noted that ∇𝐆 is not -linear and, thus, that ∇𝐆 should
not be misconstrued as a three-tensor. It will become evident that P3
encompasses a notion of symmetry for ∇𝐆. Property P4 ensures that ∇𝐆

preserves the metric 𝐆 on .
We next obtain an expression for ∇𝐆 in terms of the metric tensor 𝐆.

Given 𝐮 ∈ (𝑇), 𝐯 ∈ (𝑇), and 𝐰 ∈ (𝑇), we may apply property
P4 of ∇𝐆 to give

∇
𝐰⟨𝐮, 𝐯⟩ = ⟨∇𝐆

𝐰𝐮, 𝐯⟩ + ⟨𝐮,∇𝐆
𝐰𝐯⟩,

∇
𝐯 ⟨𝐰,𝐮⟩ = ⟨∇𝐆

𝐯 𝐰,𝐮⟩ + ⟨𝐰,∇𝐆
𝐯 𝐮⟩,

 𝐆 𝐆

⎫

⎪

⎬

⎪

(39)
4

∇𝐮 ⟨𝐯,𝐰⟩ = ⟨∇𝐮 𝐯,𝐰⟩ + ⟨𝐯,∇𝐮 𝐰⟩. ⎭

a

Subtracting (39)1 from the sum of (39)2 and (39)3, recalling from (32)
that ∇𝐆 = G, and using the consequences

∇
𝐰⟨𝐮, 𝐯⟩ = ∇

𝐰(𝐮 ⋅𝐆𝐯)
= ∇

𝐰𝐮 ⋅𝐆𝐯 + 𝐮 ⋅ (G𝐰)𝐯 + 𝐮 ⋅𝐆∇
𝐰𝐯

= ⟨𝐏∇
𝐰𝐮, 𝐯⟩ + 𝐮 ⋅ (G𝐰)𝐯 + ⟨𝐮,𝐏∇

𝐰𝐯⟩,
∇
𝐯 ⟨𝐰,𝐮⟩ = ⟨𝐏∇

𝐯 𝐰,𝐮⟩ + 𝐰 ⋅ (G𝐯)𝐮 + ⟨𝐰,𝐏∇
𝐯 𝐮⟩,

∇
𝐮 ⟨𝐯,𝐰⟩ = ⟨𝐏∇

𝐮 𝐯,𝐰⟩ + 𝐯 ⋅ (G𝐮)𝐰 + ⟨𝐯,𝐏∇
𝐮𝐰⟩

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(40)

f the product rule for ∇ , we then find that

∇𝐆
𝐯 𝐰 − ∇𝐆

𝐰𝐯,𝐮⟩ + ⟨∇𝐆
𝐮 𝐰 − ∇𝐆

𝐰𝐮, 𝐯⟩ + ⟨∇𝐆
𝐯 𝐮 + ∇𝐆

𝐮 𝐯,𝐰⟩

= ⟨[𝐯,𝐰],𝐮⟩ + ⟨[𝐮,𝐰], 𝐯⟩ + ⟨𝐏(∇
𝐯 𝐮 + ∇

𝐮 𝐯),𝐰⟩

−𝐮 ⋅ (G𝐰)𝐯 + 𝐰 ⋅ (G𝐯)𝐮 + 𝐯 ⋅ (G𝐮)𝐰. (41)

rom property P3 of ∇𝐆, we find that (41) reduces to

𝐰,∇𝐆
𝐯 𝐮⟩ = ⟨𝐰,𝐏∇

𝐯 𝐮⟩ +
1
2
(𝐯 ⋅ (G𝐮)𝐰 + 𝐰 ⋅ (G𝐯)𝐮 − 𝐮 ⋅ (G𝐰)). (42)

sing (4) and (33), we notice that (42) can be written as

𝐰,∇𝐆
𝐯 𝐮⟩ = ⟨𝐰,𝐏∇

𝐯 𝐮⟩ +
1
2
𝐰 ⋅ [(G𝐮)𝐯 + (G𝑡𝐮)𝐯 − (G𝑡𝐮)⊤𝐯] (43)

or, equivalently, as

⟨𝐰,∇𝐆
𝐯 𝐮⟩ = ⟨𝐰,𝐏∇

𝐯 𝐮⟩ +
1
2
⟨𝐰,𝐆−1[(G𝐮)𝐯 + (G𝑡𝐮)𝐯 − (G𝑡𝐮)⊤𝐯]⟩. (44)

ince (44) holds for all 𝐯 ∈ (𝑇) and 𝐰 ∈ (𝑇), we conclude that
he covariant gradient ∇𝐆𝐮 of 𝐮 admits a representation of the form

𝐆𝐮 = 𝐏∇𝐮 + 1
2
𝐆−1(G𝐮 + G𝑡𝐮 − (G𝑡𝐮)⊤). (45)

e next define the tensor ˜ ∈ 3(𝑇) by

˜𝐮)𝐯 = 1
2
𝐆−1(G𝐮 + G𝑡𝐮 − (G𝑡𝐮)⊤)𝐯, 𝐮, 𝐯 ∈ (𝑇). (46)

rom (46) and property P3 of ∇𝐆, we observe that
(𝑥) ∈ Sym2(𝑇𝑥 , 𝑇𝑥), which justifies identifying property P3 as a
ymmetry condition. Finally, using the definition (46), we express (45)
n the abbreviated form

𝐆𝐮 = (𝐏∇ + ˜)𝐮. (47)

The covariant gradient ∇𝐆𝐌 of 𝐌 ∈ 2(𝑇) is the tangential
hree-tensor defined such that

𝐆
𝐮 𝐌 = 𝐏(∇

𝐮𝐌)𝐏 − (˜𝐮)⊤𝐌 −𝐌˜𝐮, 𝐮 ∈ (𝑇). (48)

he definition (48) ensures the satisfaction of the product rule


𝐰(𝐮 ⋅𝐌𝐯) = ∇𝐆

𝐰𝐮 ⋅𝐌𝐯 + 𝐮 ⋅ (∇𝐆
𝐰𝐌)𝐯 + 𝐮 ⋅𝐌∇𝐆

𝐰𝐯, (49)

hich generalizes property P4 of ∇𝐆. A simple but important conse-
uence of the definition (48) is that

𝐆𝐆 = 𝟎. (50)

he covariant curl, Curl𝐆𝐌 ∈ 3(𝑇), of 𝐌 ∈ 2(𝑇) is defined by

url𝐆𝐌 = ∇𝐆𝐌 − (∇𝐆𝐌)𝑡 (51)
nd, thus, mimics the definition (13) of the surface curl of 𝐌 ∈ 2(𝑇).
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Consider the special case where the metric is the induced metric, so
that 𝐆 = 𝐏. Since

∇
𝐮𝐏)𝐯 = 𝟎, 𝐮, 𝐯 ∈ (𝑇), (52)

t follows from (45) and (46) that
𝐏 = 𝐏∇ . (53)

oreover, from (13) and (51) we find that for any 𝐌 ∈ 2(𝑇)

Curl𝐏𝐌)(𝐮, 𝐯) = 𝐏(Curl𝐌)(𝐮, 𝐯), 𝐮, 𝐯 ∈ (𝑇). (54)

Remark 2. Instead of defining the covariant gradient of 𝐌 ∈ 2(𝑇)
to ensure satisfaction of (49), it is possible to motivate a definition of
∇𝐆𝐌 that ensures satisfaction of the alternative product rule

∇
𝐰⟨𝐮,𝐌𝐯⟩ = ⟨∇𝐆

𝐰𝐮,𝐌𝐯⟩ + ⟨𝐮, (∇𝐆
𝐰𝐌)𝐯⟩ + ⟨𝐮,𝐌∇𝐆

𝐰𝐯⟩. (55)

This is the approach taken in standard treatments of Riemannian
geometry — as expounded by do Carmo (1992), among others. Since
we utilize the induced inner product, rather than the metric tensor, to
identify the dual of each tangent space with itself (see (10)), we find it
more natural to define ∇𝐆𝐌 so that (49), rather than (55), holds.

6. Deformation of a material surface

Viewing  as a material surface, we consider a deformation 𝑓 ∶  →
 of  to another surface, namely the set ̄ = 𝑓 (). For each 𝑥 ∈  the
deformation gradient is defined through the surface gradient:

𝐅(𝑥) = ∇𝑓 (𝑥) ∈ Lin(𝑇𝑥 ,). (56)

Since the range of 𝐅(𝑥) is 𝑇𝑓 (𝑥)̄, it is possible to consider 𝐅(𝑥) as a
linear mapping from 𝑇𝑥 to 𝑇𝑓 (𝑥)̄. In this context, 𝐅(𝑥) is invertible.
To take advantage of this property, we will consider 𝐅(𝑥) as a mapping
from one tangent space to another.

This deformation gradient can be used to induce a metric on 
through

⟨𝐚,𝐛⟩𝑇𝑥 = 𝐅(𝑥)𝐚 ⋅ 𝐅(𝑥)𝐛 = 𝐚 ⋅ 𝐅⊤(𝑥)𝐅(𝑥)𝐛, 𝐚,𝐛 ∈ 𝑇𝑥 . (57)

The right Cauchy–Green tensor 𝐂 = 𝐅⊤𝐅 ∈ 2(𝑇) is therefore the
metric tensor that measures any length and angle changes caused by
deforming  to ̄. This tensor can also be recognized as the pullback
to  of the induced metric on ̄.

Now consider the surface gradient

F = ∇𝐅 (58)

of 𝐅. Since F is the second surface gradient of 𝑓 , its restriction to
tangent vectors is symmetric:

F(𝑥) ∈ Sym2(𝑇𝑥 ,), 𝑥 ∈  . (59)

Referring to (46), we find that the three-tensor ˜ associated with the
metric tensor 𝐂 = 𝐅⊤𝐅 is given in terms of 𝐅 and F such that

(˜𝐮)𝐯 = 𝐅−1(F𝐮)𝐯, 𝐮, 𝐯 ∈ (𝑇). (60)

Suppose that  and ̄ are orientable and let 𝐧̄ ∈ () be a unit-
normal vector field on ̄. Since 𝐅 takes tangential vector fields on  to
tangential vector fields on ̄, we have for any 𝐮 ∈ (𝑇) that

𝐧̄ ⋅ 𝐅𝐮 = 0. (61)

Applying the surface gradient in the direction 𝐯 ∈ (𝑇) to both sides
of (61) and using (61) to simplify the resulting identity yields

− 𝐋̄𝐅𝐯 ⋅ 𝐅𝐮 + 𝐧̄ ⋅ (F𝐯)𝐮 = 0, (62)

where 𝐋̄ is the curvature tensor for ̄. It then follows from (59) that
the tangential tensor field 𝐇 ∈ 2(𝑇) defined by

𝐇(𝑥) = 𝐅⊤(𝑥)𝐋̄(𝑓 (𝑥))𝐅(𝑥), 𝑥 ∈  (63)
5

d

is related to F through

𝐯 ⋅𝐇𝐮 = 𝐧̄ ⋅ (F𝐯)𝐮, 𝐮, 𝐯 ∈ (𝑇). (64)

As defined through (63), 𝐇 is the pull-back, to , of the curvature tensor
𝐋̄ of ̄.

7. Versions of the Peterson–Mainardi–Codazzi and Gauss equa-
tions for a deformed material surface

In classical differential geometry, the induced metric 𝐏 and curva-
ture tensor 𝐋 of a surface  can be represented as matrices relative
to a basis induced by a coordinate chart.2 The coefficients of those
matrices must necessarily satisfy the Peterson–Mainardi–Codazzi and
Gauss equations.3 Conversely, if the coefficients of a pair of given
matrices satisfy the Peterson–Mainardi–Codazzi and Gauss equations,
then there is a surface and a coordinate chart for that surface such that
the matrix representations of 𝐏 and 𝐋 relative to that coordinate chart
are identical to the given matrices. Moreover, the surface so determined
is unique up to an orientation preserving isometry of the space  in
which it is embedded. We next derive counterparts of the Peterson–
Mainardi–Codazzi and Gauss equations that, given a material surface
with reference configuration , the referential surface metric 𝐂 of 
and the pullback 𝐇, to , of the curvature tensor 𝐋̄ of a surface ̄ must
satisfy to ensure the existence of deformation 𝑓 from  to ̄.

Proposition 1. The tensor 𝐇 satisfies

Curl𝐂𝐇 = 𝟎. (65)

Proof. We begin by fixing 𝐮 ∈ (𝑇), 𝐯 ∈ (𝑇), and 𝐰 ∈ (𝑇).
Combining (48) and (60), we next obtain the relation

𝐮 ⋅ (∇𝐂
𝐰𝐇)𝐯 = 𝐮 ⋅ (∇

𝐰𝐇)𝐯 − 𝐅−1(F𝐮)𝐰 ⋅𝐇𝐯 − 𝐮 ⋅𝐇𝐅−1(F𝐯)𝐰. (66)

Using (63), the chain rule, and the product rule, we find further that

(∇
𝐰𝐇)𝐯 = (F𝐰)⊤𝐋̄𝐅𝐯 + 𝐅⊤(∇̄

𝐅𝐰𝐋̄)𝐅𝐯 + 𝐅⊤𝐋̄F𝐯. (67)

Since ∇̄ 𝐋̄ = −∇̄∇̄ 𝐧̄ is a second gradient, we notice that its values
are symmetric in the sense that

(∇̄
𝐅𝐰𝐋̄)𝐅𝐯 = (∇̄

𝐅𝐯𝐋̄)𝐅𝐰. (68)

In view of (59) and the symmetry of ˜, we infer from the previous
equation that

𝐮 ⋅ [(∇𝐂
𝐰𝐇)𝐯 − (∇𝐂

𝐯 𝐇)𝐰]

= (F𝐰)𝐮 ⋅ 𝐋̄𝐅𝐯 − (F𝐯)𝐮 ⋅ 𝐋̄𝐅𝐰 − 𝐅−1(F𝐮)𝐰 ⋅𝐇𝐯 + 𝐅−1(F𝐮)𝐯 ⋅𝐇𝐰. (69)

inally, using the identities
−1(F𝐮)𝐰 ⋅𝐇𝐯 = 𝐅−1(F𝐮)𝐰 ⋅ 𝐅⊤𝐋̄𝐅𝐯

= (F𝐰)𝐮 ⋅ 𝐋̄𝐅𝐯 (70)

nd
−1(F𝐮)𝐯 ⋅𝐇𝐰 = (F𝐯)𝐮 ⋅ 𝐋̄𝐅𝐰 (71)

o simplify (69), we obtain (65), which completes the proof. □

The mean 𝐻̄ and Gaussian 𝐾̄ curvatures of ̄ can be written in terms
f 𝐇 and 𝐂 since

̄ = 1
2

tr 𝐋̄ = 𝐇 ⋅ 𝐂−1 (72)

2 An overview of this approach is provided in the Appendix.
3 Mainardi (1856) and Codazzi (1868–1869) obtained (65) independently
hile being unaware of an earlier derivation due to Peterson (1853); (73)
as one of many results in Gauss’ (1828) groundbreaking contribution to the
ifferential geometry of curves and surfaces.
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and, by (8),

𝐾̄ = det𝐇
det 𝐂

. (73)

n writing (72) and (73), it is important to note that 𝐇 and 𝐂 are
onsidered as linear mappings from each tangent space to itself rather
han as linear mappings on the ambient space  . If 𝐇 and 𝐂 are viewed
nstead as linear mappings on  , then 𝐂 is no longer invertible and
qs. (72) and (73) become problematic. In this case, it is possible to
btain 𝐻̄ and 𝐾̄ determined directly from 𝐋̄ through 𝐻̄ = 1

2 tr 𝐋̄ and
̄ = 1

2 [(tr𝐋̄)
2 − tr(𝐋̄2)].

If  is a smooth surface  with metric 𝐆 and there is a symmetric
𝐇 ∈ 2(𝑇) such that

det𝐇 = (det𝐆)𝐾̄ and Curl𝐆𝐇 = 𝟎, (74)

hen there exists a deformation 𝑓 ∶  → ̄ with surface gradient
= ∇𝑓 such that the right Cauchy–Green tensor 𝐂 = 𝐅⊤𝐅 equals
and the deformed surface ̄ has curvature tensor 𝐋̄ with referential

ull-back 𝐇 = 𝐅⊤𝐋̄𝐅. Thus, when solving problems involving material
urfaces in which 𝐆 and 𝐇 are unknown quantities that are needed to
etermine the deformed surface ̄, it is necessary to ensure that (74)
old. In this sense, the versions (65) and (73) of the Peterson–Mainardi–
odazzi equations derived here constitute compatibility conditions that
ny deformation 𝑓 ∶  → ̄ must satisfy.

. Gauss’ Theorema Egregium

In the present context, the Theorema Egregium of Gauss (1828)
akes the following form:

roposition 2. The Gaussian curvature 𝐾̄ of the surface ̄ obtained by
deformation 𝑓 ∶  →  with gradient 𝐅 = ∇𝑓 only depends on the
ssociated metric 𝐂 = 𝐅⊤𝐅 induced on .

roof. For 𝐮, 𝐯 ∈ (𝑇), we use (60) to give

F𝐮)𝐯 = 𝐅(˜𝐮)𝐯 + (𝐧̄ ⋅ (F𝐮)𝐯)𝐧̄. (75)

ith reference to (64), we notice that the previous equation can be
ecast as

F𝐮)𝐯 = 𝐅(˜𝐮)𝐯 + (𝐧̄⊗𝐇𝐮)𝐯. (76)

aking into account (27), we find from (76) that

𝐮 = 𝐅(˜𝐮 + 𝐋𝐮⊗ 𝐧) + 𝐧̄⊗𝐇𝐮. (77)

pplying the surface gradient in the direction 𝐯 to both sides of the
revious equation and simultaneously multiplying each term of the
esulting identity from the left by 𝐅⊤ and from the right by 𝐏, we see
hat
⊤(∇

𝐯 F𝐮)𝐏 = 𝐂[(˜𝐯)˜𝐮 + ∇
𝐯 ˜𝐮 − 𝐋𝐮⊗ 𝐋𝐯] −𝐇𝐯⊗𝐇𝐮. (78)

e thus find that
⊤(∇

𝐮F𝐯 − ∇
𝐯 F𝐮)𝐏

= 𝐂[(˜𝐮)˜𝐯 − (˜𝐯)˜𝐮 + ∇
𝐮˜𝐯 − ∇

𝐯 ˜𝐮 + 𝐋𝐮 ∧ 𝐋𝐮] −𝐇𝐮 ∧𝐇𝐯. (79)

Since F is the surface gradient of 𝐅, we recognize that ∇F must be
symmetric in the sense that

∇
𝐮F𝐯 = ∇

𝐯 F𝐮. (80)

Combining the previous two equations, we find that

𝐇𝐮 ∧𝐇𝐯 = 𝐂[(˜𝐮)˜𝐯 − (˜𝐯)˜𝐮 + (∇
𝐮˜𝐯)𝐏 − (∇

𝐯 ˜𝐮)𝐏 + 𝐋𝐮 ∧ 𝐋𝐮]. (81)

Using (73), we infer that the left-hand side of (81) can be expressed in
the form

̄

6

𝐇𝐮 ∧𝐇𝐯 = 𝐾(det𝐂)𝐮 ∧ 𝐯. (82) 𝜆
Finally, since the right-hand side of (81) only depends on the surface
̄ through 𝐂, and since ˜ is determined by 𝐂, we confirm that the
Gaussian curvature 𝐾̄ depends on ̄ only through 𝐂, which completes
the proof. □

Consider the case where 𝑓 is the identity mapping on the surface ,
o that no deformation occurs. Then, 𝐂 = 𝐏 is the induced metric on 
nd (53) holds. Moreover, a calculation shows that
𝐏
𝐮∇

𝐏
𝐯𝐰 − ∇𝐏

𝐯∇
𝐏
𝐮𝐰 − ∇𝐏

[𝐮,𝐯]𝐰 = (𝐋𝐮 ∧ 𝐋𝐯)𝐰. (83)

sing (6) in the foregoing equality yields
𝐏
𝐮∇

𝐏
𝐯𝐰 − ∇𝐏

𝐯∇
𝐏
𝐮𝐰 − ∇𝐏

[𝐮,𝐯]𝐰 = (det 𝐋)(𝐮 ∧ 𝐯)𝐰. (84)

ome authors refer to (84), rather than (73), as the Gauss equation
hen the surface metric is the induced metric 𝐏.

emark 3. In Riemannian geometry, the Riemannian curvature tensor
𝐂 for  relative to the metric 𝐂 is a mapping that associates to each
air of vector fields 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇) a tangential two-tensor
(𝐮, 𝐯) defined by

𝐂(𝐮, 𝐯)𝐰 = (∇𝐂
𝐮∇

𝐂
𝐯 − ∇𝐂

𝐯 ∇
𝐂
𝐮 )𝐰 − ∇𝐂

[𝐮,𝐯]𝐰. (85)

calculation using (47) shows that

𝐂(𝐮, 𝐯) = 𝐑𝐏(𝐮, 𝐯) + (˜𝐮)˜𝐯 − (˜𝐯)˜𝐮 + 𝐏∇
𝐮˜𝐯 − 𝐏∇

𝐯 ˜𝐮, (86)

here 𝐑𝐏 is the Riemannian curvature for the induced metric 𝐏. A
urther calculation shows that

𝐏(𝐮, 𝐯) = 𝐋𝐮 ∧ 𝐋𝐯. (87)

nserting (86) and (87) into (81) yields

𝐮 ∧𝐇𝐯 = 𝐂𝐑𝐂(𝐮, 𝐯). (88)

inally, using (6) and (73), the previous equation can be written as

̄𝐂𝐮 ∧ 𝐂𝐯 = 𝐂𝐑𝐂(𝐮, 𝐯), (89)

hich shows that the Riemann curvature tensor relative to 𝐂 is com-
letely determined by the Gaussian curvature 𝐾̄ of ̄.

. Kinematical constraints

We next specialize the results of the preceding section to certain spe-
ial classes of deformations. For each class of deformations considered,
he kinematics are constrained by a scalar- or tensor-valued condition
n the surface metric 𝐂. We refer to such constraints as kinematical
ince they impose restrictions on the kinds of deformations a material
urface can sustain. Common alternatives to this choice of terms include
‘internal constraints’’ and ‘‘material constraints’’.

.1. Angle preserving deformations

Consider a deformation 𝑓 ∶  →  , with gradient 𝐅 = ∇𝑓 , that
reserves angles, in the sense that for each 𝑥 ∈ , given 𝐚 ∈ 𝑇𝑥
nd 𝐛 ∈ 𝑇𝑥, the angle between these vectors is the same as the angle
etween 𝐅(𝑥)𝐚 and 𝐅(𝑥)𝐛. Hence,

𝐚 ⋅ 𝐛
|𝐚||𝐛|

=
𝐅(𝑥)𝐚 ⋅ 𝐅(𝑥)𝐛
|𝐅(𝑥)𝐚||𝐅(𝑥)𝐛|

=
⟨𝐚,𝐛⟩𝑇𝑥
|𝐚|𝐂|𝐛|𝐂

, 𝐚,𝐛 ∈ 𝑇𝑥 , 𝑥 ∈  . (90)

uch a deformation 𝑓 ∶  →  is often called conformal.

roposition 3. A deformation preserves angles if and only if there is a
ositive 𝜆 ∈  such that

𝐮 ⋅ 𝐯 = 𝐅𝐮 ⋅ 𝐅𝐯, 𝐮, 𝐯 ∈ (𝑇). (91)



Mechanics of Materials 166 (2022) 104193B. Seguin and E. Fried

v

𝜆

D
a

(

I
𝟎

(

|

S
a
q
w

g
t

𝐂

f
(

˜

T
b

∇

S
f

|

R

𝐮

I
m
l
p

𝐂

I

∇

9

m
a

P
a

P
t
𝜆

l
t
l

S
P
a
a

Proof. If (91) holds for some positive 𝜆 ∈ , it is then evident that
(90) holds. Suppose that (90) holds. Fix 𝑥 ∈ . Define 𝜆 by

𝜆(𝑥, 𝐚) = |𝐅(𝑥)𝐚|
|𝐚|

, 𝐚 ∈ 𝑇𝑥 , 𝐚 ≠ 𝟎. (92)

From this definition it follows that 𝜆 is positive, smooth, and that, for
any 𝜀 > 0 and 𝐚 ∈ 𝑇𝑥,

𝜆(𝑥, 𝐚) = 𝜆(𝑥, 𝜀𝐚). (93)

Differentiating the previous equation with respect to 𝜀 and evaluating
the resulting expression at 𝜀 = 1 yields

(grad 𝜆(𝑥, 𝐚))𝐚 = 0, (94)

where grad denotes the derivative of 𝜆 with respect to its second
ariable. Moreover, setting 𝜀 = 1∕|𝐚| in (93) yields

(𝑥, 𝐚) = 𝜆
(

𝑥, 𝐚
|𝐚|

)

. (95)

Referring to the definition (92) of 𝜆, we see that, for any 𝐚,𝐛 ∈ 𝑇𝑥
and 𝜀 > 0,

|𝐅(𝑥)(𝐚 + 𝜀𝐛)|2 = 𝜆(𝑥,𝐮 + 𝜀𝐯)2|𝐚 + 𝜀𝐛|2. (96)

Granted that 𝐚 and 𝐛 are orthogonal, so that 𝐚 ⋅𝐛 = 0, it is evident from
(90) that 𝐅(𝑥)𝐚 ⋅ 𝐅(𝑥)𝐛 = 0. Thus, (96) can be recast as

𝜆(𝑥, 𝐚)2|𝐮|2 + 𝜀2𝜆(𝐯)2 = 𝜆
(

𝑥, 𝐚 + 𝜀𝐛
|𝐚 + 𝜀𝐛|

)

(|𝐮|2 + 𝜀2|𝐯|2). (97)

ifferentiating the previous equation with respect to 𝜀 and then evalu-
ting it at 𝜀 = 0 yields

grad 𝜆(𝑥, 𝐚))𝐛 = 𝟎. (98)

n combination, (94) and (98) lead to the conclusion that grad 𝜆(𝑥, 𝐚) =
and, hence, that 𝜆 is independent of 𝐚. Thus, 𝜆 ∈  as claimed. □

Notice that if the deformation preserves angles, then it follows from
91) that

𝐅𝐮 × 𝐅𝐯| = 𝜆|𝐮 × 𝐯|, 𝐮, 𝐯 ∈ (𝑇). (99)

ince the magnitude of the cross product of two vectors gives the
rea of the parallelogram spanned by those vectors, (99) shows that 𝜆
uantifies how infinitesimal areas scale under a deformation 𝑓 ∶  → 
hich preserves angles as indicated in (90).

It follows from Proposition 3 that a deformation 𝑓 ∶  →  with
radient 𝐅 = ∇𝑓 preserves angles if and only if the associated metric
ensor 𝐂 = 𝐅⊤𝐅 satisfies

= 𝜆𝐏 (100)

or some positive 𝜆 ∈ . If specialized in accord with the above result,
46) simplifies to

𝐮 = 1
2𝜆

((∇
𝐮 𝜆)𝐏 + 𝐮 ∧ ∇𝜆). (101)

hus, from (47), the covariant gradient ∇𝐂 relative to 𝐂 = 𝐅⊤𝐅 is given
y
𝐂𝐮 = ∇𝜆𝐏𝐮

= 𝐏∇𝐮 + 1
2𝜆

((∇
𝐮 𝜆)𝐏 + 𝐮 ∧ ∇𝜆). (102)

9.2. Locally area preserving deformations

Consider a deformation 𝑓 ∶  →  , with gradient 𝐅 = ∇𝑓 , that
preserves areas in the sense that

Area() = Area(𝑓 ()),  ⊆  . (103)

This condition can be written using integrals as

𝑑A = 𝑑A,  ⊆  . (104)
7

∫ ∫𝑓 ()
By the area formula ∫𝑓 () 𝑑A = ∫ det𝐂 𝑑A, so the previous equation is
equivalent to

∫
(1 − det 𝐂) 𝑑A = 0,  ⊆  . (105)

It follows that the deformation 𝑓 ∶  →  is area preserving if and only
if

det 𝐂 = 1. (106)

In contrast to what occurs for angle preserving deformations, the
foregoing restriction on 𝐂 does not lead to a simplification of the
representation (46) for the corresponding covariant gradient ∇𝐂.

9.3. Local length preserving deformations

Consider a deformation 𝑓 ∶  →  , with gradient 𝐅 = ∇𝑓 , that
preserves the lengths of tangent vectors in the sense that

|𝐮| = |𝐅𝐮| = |𝐮|𝐂, 𝐮 ∈ (𝑇). (107)

uch a deformation is called a local isometry. It follows from (107) that,
or all 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇),

𝐮|2 + 2𝐮 ⋅ 𝐯 + |𝐯|2 = |𝐮 + 𝐯|2

= |𝐅𝐮|2 + 2𝐅𝐮 ⋅ 𝐅𝐯 + |𝐅𝐯|2. (108)

eferring again to (107) simplifies the previous relation to

⋅ 𝐯 = 𝐅𝐮 ⋅ 𝐅𝐯, 𝐮, 𝐯 ∈ (𝑇). (109)

t follows that the deformation 𝑓 ∶  →  preserves angles and,
oreover, (91) holds with 𝜆 = 1. Thus, the metric tensor 𝐂 of a locally

ength preserving deformation 𝑓 ∶  →  is equal to the orthogonal
rojection 𝐏 onto :

= 𝐏. (110)

t then follows from (53) that

𝐂 = ∇𝐏 = 𝐏∇ . (111)

.4. Locally length and area preserving deformations

We next show that, consistent with intuitive expectations, a defor-
ation 𝑓 ∶  →  that is both angle and locally area preserving must

lso preserve lengths, and vice versa.

roposition 4. A deformation 𝑓 ∶  →  is locally length preserving if
nd only if it is both angle preserving and locally area preserving.

roof. If a deformation locally preserves lengths, then 𝐂 = 𝐏. It follows
hat det 𝐂 = 1, so it is locally area preserving, and also (91) holds with
= 1, so it is angle preserving.

On the other hand, suppose that a deformation is both angle and
ocally area preserving. We can then combine (100) and (106) to find
hat 𝐂 = 𝐏. It immediately follows from (107) that the deformation is
ocally length preserving. □

This last result affords an alternative argument leading to (111).
pecifically, any deformation that is locally length preserving must, by
roposition 4, also be angle and locally area preserving. Thus, (100)
nd (102) must hold for some 𝜆. It then follows from (106) that 𝜆 = 1
nd, hence, that (102) reduces to (111).
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10. Derivation of the Peterson–Mainardi–Codazzi and Gauss equa-
tions subject to the provision that the surface metric is the induced
metric

Wempner (1967) and Steele (1971) derive the Peterson–Mainardi–
Codazzi and Gauss equations under the provision that the surface
metric derives from the metric for the ambient three-dimensional Eu-
clidean space  within which the surface is embedded. In our setting,
that assumption amounts to requiring that the metric 𝐂 of  be equal
o the induced metric 𝐏. Intuitively, this amounts to selecting the
eformed configuration ̄ of a material surface as the reference configu-
ation  for that surface. We next show how our framework specializes
f this is so.

Apart from the choice

= 𝐏 (112)

nspired by the works of Wempner (1967) and Steele (1971), our alter-
ative derivation the Peterson–Mainardi–Codazzi and Gauss equations
egins with the understanding that the surface curl of the surface
radient of any tangent vector field 𝐰 ∈ (𝑇) must vanish:

url (∇𝐰) = 𝟎. (113)

his fact is a consequence of the symmetry of the second surface
radient ∇ (∇𝐰) of 𝐰. The basic idea is to decompose this equation
nto parts tangent and normal to the surface. Towards this end, we
irst use (22) to split ∇𝐰 into the sum of a tangential two-tensor
∇𝐰 = ∇𝐏𝐰 and its complement 𝐧 ⊗ 𝐋𝐰. We then use (15) and the
roduct rule to find that for all 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇)

Curl (∇𝐰)(𝐮, 𝐯) = ∇
𝐮 (∇

𝐏𝐰)𝐯 − ∇
𝐯 (∇

𝐏𝐰)𝐮

−(𝐋𝐮⊗ 𝐋𝐰)𝐯 + (𝐋𝐯⊗ 𝐋𝐰)𝐮

+(∇
𝐮 (𝐋𝐰) ⋅ 𝐯 − ∇

𝐯 (𝐋𝐰) ⋅ 𝐮)𝐧. (114)

Since ∇𝐏𝐰 = 𝐏∇𝐏𝐰, we see from the product rule that

∇
𝐯 (∇

𝐏𝐮)𝐰 = (∇𝐏
𝐰𝐮 ⋅ 𝐋𝐯)𝐧 + 𝐏∇

𝐯 (∇
𝐏𝐮)𝐰. (115)

On augmenting (114) with the previous identity and applying the
product rule again, it follows that

Curl (∇𝐰)(𝐮, 𝐯) = Curl𝐏(∇𝐏𝐮)(𝐚,𝐛) − (𝐋𝐮⊗ 𝐋𝐰)𝐯 + (𝐋𝐯⊗ 𝐋𝐰)𝐮

+[(∇
𝐮𝐋)𝐰 ⋅ 𝐯 − (∇

𝐯 𝐋)𝐰 ⋅ 𝐮]𝐧. (116)

To obtain the Peterson–Mainardi–Codazzi equation, we take the
inner-product of (113) with 𝐧 and use (116). This gives

0 = 𝐰 ⋅ [(∇
𝐮𝐋)

⊤𝐯 − (∇
𝐯 𝐋)

⊤𝐮]. (117)

Since 𝐋 = −∇𝐧 and ∇ (∇𝐧) is symmetric, we see that (117) can be
expressed as

0 = 𝐰 ⋅ Curl𝐋(𝐮, 𝐯). (118)

Thus, since the foregoing condition must hold for any 𝐰 ∈ (𝑇), we
infer that

𝟎 = 𝐏Curl𝐋(𝐮, 𝐯), (119)
8

which, by (54), is (65) for 𝐆 = 𝐏. i
To obtain the Gauss equation, we first notice that since 𝐋 is sym-
metric, (6) can be used to find that

(𝐋𝐮⊗ 𝐋𝐰)𝐯 − (𝐋𝐯⊗ 𝐋𝐰)𝐮 = (𝐋𝐮 ∧ 𝐋𝐯)𝐰

= 𝐾(𝐮 ∧ 𝐯)𝐰. (120)

Thus, if we apply 𝐏 to (113) and invoke (116), we obtain

𝐾(𝐮 ∧ 𝐰)𝐰 = Curl𝐏(∇𝐏𝐰)(𝐮, 𝐯). (121)

A final calculation then gives

Curl𝐏(∇𝐏𝐰)(𝐮, 𝐯) = ∇𝐏
𝐮∇

𝐏
𝐯𝐰 − ∇𝐏

𝐯∇
𝐏
𝐮𝐰 − ∇𝐏

[𝐮,𝐯]𝐰 (122)

nd, hence, (121) is (84), which some authors refer to as the Gauss
quation granted, of course, that the surface metric is given by 𝐏.

emark 4. Rather than using the surface curl operator defined in (13),
any authors use the surface curl curl𝐌 ∈ 2() of 𝐌 ∈ 2(𝑇)
efined such that

(curl𝐌)⊤𝐚) × 𝐛 = (∇ (𝐌⊤𝐚) − ∇ (𝐌⊤𝐚)⊤) × 𝐛 (123)

or all 𝐚,𝐛 ∈  . It should be stressed that the object curl𝐌 so defined
s a two-tensor but that Curl𝐌 is a three-tensor. This allows for a
erivation that is essentially identical to the one presented above. In
articular, the decomposition (22) can be used and the vector equation
url (∇𝐰)𝐧 = 𝟎 can be decomposed into a tangential and normal
omponents. While the normal component,

(curl𝐋)𝐧 = 𝟎, (124)

an be seen to be equivalent to (65) with 𝐂 = 𝐏, the tangential
omponent is

𝐰|2𝐾 = (𝐰 × 𝐧) ⋅ (curl (∇𝐏𝐰))𝐧. (125)

direct connection between (125) and (121) is, however, elusive
ecause (125) is scalar valued and involves a single arbitrary tangential
ector field 𝐰 while (84) is vector valued and involves three tangential
ector fields 𝐮, 𝐯, and 𝐰. For this reason, we prefer the derivation based
n the definition (13) of the surface curl operator.

emark 5. Instead of the local condition (113), Wempner (1967) and
teele (1971) begin by stipulating that the integral of the differential
ncrement d𝐮 of a tangential vector field 𝐮 about all simple closed
ontours on the surface must vanish. The condition (113) imposed here
ollows from that global stipulation on applying Stokes’ theorem and
ocalizing the resulting surface integral at an arbitrary point on the
ortion of the surface enclosed by the original contour.

emark 6. The condition (112) embodying the assumption that the
urface metric be derived from the metric for the space  in which the
urface is embedded should not be misconstrued with the constraint
110) that applies if the surface can sustain only length preserving
eformations. However, the argument leading to the versions (119)
nd (121) of the Peterson–Mainardi–Codazzi and Gauss equations does
pply if (112) is interpreted as a constraint on the surface metric instead
f as a choice. Hence, (119) and (121) are the versions of the Peterson–
ainardi–Codazzi and Gauss equations that apply for a surface that can

ustain only length preserving deformations.
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Appendix. Coordinate based representations

Let 𝐫 ∶  →  be a coordinate chart for the surface , meaning
that:

•  is an open subset of R2;
• 𝐫 is smooth;
• (grad 𝐫)(𝐩) is injective for every 𝐩 ∈  ;
• the range Rng 𝐫 of 𝐫 is contained in ; and
• the inverse 𝐫−1 ∶ Rng 𝐫 →  of 𝐫 exists.

ince 𝐫 is injective, it follows that if {𝐞1, 𝐞2} is a basis for R2, then 𝐬1
and 𝐬2 defined for each 𝐩 ∈  by4

𝐬𝑖(𝐫(𝐩)) = 𝐫,𝑖(𝐩) = (grad 𝐫)(𝐩)𝐞𝑖, (A.1)

form a basis for 𝑇𝐫(𝐩). Notice from (A.1) that 𝐬1 and 𝐬2 are viewed
as functions that are defined on Rng 𝐫. The corresponding dual basis
𝐬1(𝑥), 𝐬2(𝑥)} on 𝑇𝑥 is determined by the criteria

𝑖(𝑥) ⋅ 𝐬𝑗 (𝑥) = 𝛿𝑖𝑗 =

{

1, if 𝑖 = 𝑗,
0, if 𝑖 ≠ 𝑗.

(A.2)

Given the field 𝐧 = 𝐬1 × 𝐬2, which is defined on Rng 𝐫, is orthogonal to
, and has unit magnitude, {𝐬1(𝑥), 𝐬2(𝑥),𝐧(𝑥)} and {𝐬1(𝑥), 𝐬2(𝑥),𝐧(𝑥)} are
bases for  .

We can represent a tangential vector field 𝐮 ∈ (𝑇) on Rng 𝐫 using
either the basis {𝐬1, 𝐬2} or the dual basis {𝐬1, 𝐬2}:

𝐮 = 𝑢𝑖𝐬𝑖 = 𝑢𝑖𝐬𝑖, (A.3)

where 𝑢𝑖 = 𝐮 ⋅ 𝐬𝑖 and 𝑢𝑖 = 𝐮 ⋅ 𝐬𝑖. Likewise, a tangential two-tensor field
𝐌 ∈ 2(𝑇) can be represented using either basis:

𝐌 = 𝑀 𝑖𝑗𝐬𝑖 ⊗ 𝐬𝑗 = 𝑀𝑖𝑗𝐬𝑖 ⊗ 𝐬𝑗 , (A.4)

where 𝑀 𝑖𝑗 = 𝐬𝑖 ⋅𝐌𝐬𝑗 and 𝑀𝑖𝑗 = 𝐬𝑖 ⋅𝐌𝐬𝑗 . However, it is also possible to
represent 𝐌 using both bases simultaneously:

𝐌 = 𝑀 𝑖
𝑗𝐬𝑖 ⊗ 𝐬𝑗 = 𝑀 𝑗

𝑖 𝐬𝑖 ⊗ 𝐬𝑗 , (A.5)

where 𝑀 𝑖
𝑗 = 𝐬𝑖⋅𝐌𝐬𝑗 and 𝑀 𝑗

𝑖 = 𝐬𝑖⋅𝐌𝐬𝑗 . Finally, a tangential three-tensor
field A ∈ 3(𝑇) can be represented in eight different ways involving
the bases. One example of such a representation is

A = 𝐴𝑖
𝑗𝑘𝐬𝑖 ⊗ 𝐬𝑗 ⊗ 𝐬𝑘, (A.6)

where 𝐴𝑖
𝑗𝑘 = 𝐬𝑖 ⋅ (A𝐬𝑘)𝐬𝑗 . The remaining alternatives take similar forms.

We can also define the symbols 𝑔𝑖𝑗 and 𝑔𝑖𝑗 by

𝑔𝑖𝑗 = 𝐬𝑖 ⋅ 𝐬𝑗 and 𝑔𝑖𝑗 = 𝐬𝑖 ⋅ 𝐬𝑗 . (A.7)

It follows from the definitions in (A.7) and (A.3) that

𝑔𝑖𝑗𝑢
𝑗 = 𝑢𝑖 and 𝑔𝑖𝑗𝑢𝑗 = 𝑢𝑖. (A.8)

Thus, we see that the symbols 𝑔𝑖𝑗 and 𝑔𝑖𝑗 can be used to raise and lower
the index used in the components of a vector. Similar computations can

4 Throughout this section subscripts and superscripts using 𝑖, 𝑗, 𝑘 etc. are
ssumed to equal either 1 or 2. Moreover, if there are repeated indices with
ne index a superscript and the other a subscript, then summation over that
ndex from 1 to 2 is implied.
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be done involving the components of second and third order tensors.
Just as an example, we have

𝑀𝑖𝑗𝑔
𝑗𝑘 = 𝑀 𝑘

𝑖 and 𝐴𝑘
𝑙𝑚𝑔𝑘𝑖𝑔

𝑙𝑛 = 𝐴 𝑛
𝑖 𝑚. (A.9)

ombining the two equations in (A.8) shows that

𝑖𝑗𝑔
𝑗𝑘 = 𝛿 𝑘

𝑖 and 𝑔𝑖𝑗𝑔𝑗𝑘 = 𝛿𝑖𝑘. (A.10)

Taking the gradient of (A.1) in the direction 𝐞𝑗 and invoking the
chain rule gives

∇
𝐬𝑗 (𝐫(𝐩))

𝐬𝑖(𝐫(𝐩)) = 𝐫,𝑖𝑗 (𝐩). (A.11)

The Christoffel symbols 𝛤 𝑘
𝑖𝑗 are defined through

𝛤 𝑘
𝑖𝑗 = 𝐬𝑘 ⋅ ∇

𝐬𝑗
𝐬𝑖. (A.12)

From (A.12) and the identity 𝐫,𝑖𝑗 = 𝐫,𝑗𝑖, it follows that 𝛤 𝑘
𝑖𝑗 = 𝛤 𝑘

𝑗𝑖. Since
𝐬𝑖 is tangent to , 𝐬𝑖 ⋅ 𝐧 = 0. Applying the surface gradient ∇ in the
irection 𝐬𝑗 to 𝐬𝑖 ⋅ 𝐧 = 0 yields


𝐬𝑗
𝐬𝑖 ⋅ 𝐧 = −𝐬𝑖 ⋅ ∇

𝐬𝑗
𝐧 = 𝐬𝑖 ⋅ 𝐋𝐬𝑗 = 𝐿𝑖𝑗 . (A.13)

ombining (A.12) and (A.13) results in

𝐬𝑗
𝐬𝑖 = 𝛤 𝑘

𝑖𝑗𝐬𝑘 + 𝐿𝑖𝑗𝐧. (A.14)

Applying ∇ in the direction 𝐬𝑘 of both sides of (A.2) gives

𝐬𝑗 ⋅ ∇
𝐬𝑘
𝐬𝑖 = −𝐬𝑖 ⋅ ∇

𝐬𝑘
𝐬𝑗 = −𝛤 𝑖

𝑗𝑘. (A.15)

Calculations analogous to (A.13) and (A.14) deliver

∇
𝐬𝑗
𝐬𝑖 ⋅ 𝐧 = 𝐬𝑖 ⋅ 𝐋𝐬𝑗 = 𝐿𝑖

𝑗 (A.16)

and

∇
𝐬𝑗
𝐬𝑖 = −𝛤 𝑖

𝑗𝑘𝐬
𝑘 + 𝐿𝑖

𝑗𝐧. (A.17)

Given 𝜙 ∈ , it follows that ∇𝜙 ∈ (𝑇) and, thus, that we can
write

∇𝜙 = 𝜙,𝑖𝐬𝑖, (A.18)

where 𝜙,𝑖 = ∇𝜙 ⋅ 𝐬𝑖. By the product rule, (A.3)1, (A.14), and (A.18), it
follows that, for all 𝐮 ∈ (𝑇) and 𝐯 ∈ (𝑇),

∇
𝐯 𝐮 = (𝑢𝑘,𝑖𝑣

𝑖 + 𝛤 𝑘
𝑖𝑗𝑢

𝑗𝑣𝑖)𝐬𝑘 + 𝐿𝑖𝑗𝑢
𝑗𝑣𝑖𝐧. (A.19)

Given a metric on  with metric tensor 𝐆, it then follows from (47)
and (A.19) that

∇𝐆
𝐯 𝐮 = [𝑢𝑘,𝑖𝑣

𝑖 + (𝛤 𝑘
𝑖𝑗 + 𝛬𝑘

𝑖𝑗 )𝑢
𝑗𝑣𝑖]𝐬𝑘, (A.20)

which is a coordinate representation of (47). While 𝛤 𝑘
𝑖𝑗 are the Christof-

fel symbols for the covariant gradient 𝐏∇ , we see from (A.20) that the
sum 𝛤 𝑘

𝑖𝑗 + 𝛬𝑘
𝑖𝑗 are the Christoffel symbols for ∇𝐆.

Similarly, for 𝐌 ∈ 2(𝑇), the product rule, (A.4), and (A.17) can
be used to show that

∇
𝐮𝐌 = 𝑀𝑖𝑗,𝑘𝑢

𝑘𝐬𝑖 ⊗ 𝐬𝑗
−𝑀𝑖𝑗𝑢

𝑘(𝛤 𝑖
𝑘𝑙𝐬

𝑙 ⊗ 𝐬𝑗 + 𝛤 𝑗
𝑘𝑙𝐬

𝑖 ⊗ 𝐬𝑙 − 𝐿𝑖
𝑘𝐬𝑖 ⊗ 𝐧 − 𝐿𝑗

𝑘𝐧⊗ 𝐬𝑗 ). (A.21)

A coordinate representation of (48) follows from (A.21):

∇𝐆
𝐮 𝐌 = 𝑀𝑖𝑗,𝑘𝑢

𝑘𝐬𝑖 ⊗ 𝐬𝑗

−𝑀𝑖𝑗𝑢
𝑘[(𝛤 𝑖

𝑘𝑙 + 𝛬𝑖
𝑘𝑙)𝐬

𝑙 ⊗ 𝐬𝑗 + (𝛤 𝑗
𝑘𝑙 + 𝛬𝑗

𝑘𝑙)𝐬
𝑖 ⊗ 𝐬𝑙]. (A.22)

Comparing (A.20) to (A.19) and (A.22) to (A.21) shows that the com-
ponents of the three-tensor ˜ that determines the relationship between
the covariant and surface gradients through (47) enter the component-
based representations for ∇𝐆𝐮 and ∇𝐆𝐌 in a fashion completely anal-
ogous to the Christoffel symbols. Whereas the Christoffel symbols are
needed to account for the particular features of the chosen coordinates

and, thus, are not the components of a three-tensor, the components
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of ˜ reflect the process of converting the surface gradient operator to
an object that operates on tangential vector fields to produce tangential
two-tensor fields and, thus, is independent of any choice of coordinates.

It follows from (A.21) that the Peterson–Mainardi–Codazzi (65),
when written using components, becomes

𝐻𝑖𝑗,𝑘 −𝐻𝑖𝑘,𝑗 −𝐻𝑙𝑗 (𝛤 𝑙
𝑘𝑖 + 𝛬𝑙

𝑘𝑖) +𝐻𝑙𝑘(𝛤 𝑙
𝑗𝑖 + 𝛬𝑙

𝑗𝑖) = 0. (A.23)

If the reference and deformed surfaces coincide, so that the metric 𝐂
is the induced metric 𝐏 and 𝐇 is the curvature tensor 𝐋 on , rather
than the pull-back of the curvature tensor of the deformed surface, then
(A.23) becomes

𝐿𝑖𝑗,𝑘 − 𝐿𝑖𝑘,𝑗 − 𝐿𝑙𝑗𝛤
𝑙
𝑘𝑖 +𝐻𝑙𝑘𝛤

𝑙
𝑗𝑖 = 0. (A.24)

Next we obtain a component version of the alternate form of the
Gauss Eq. (84) for the particular case in which the metric is the induced
metric 𝐏 and ˜ = 𝟎. Then, it follows from (A.19) that, for any tangent
vector fields 𝐮 and 𝐯,

∇𝐏
𝐯𝐮 = 𝐏∇𝐮 = (𝑢𝑘,𝑖𝑣

𝑖 + 𝛤 𝑘
𝑖𝑗𝑢

𝑗𝑣𝑖)𝐬𝑘. (A.25)

Using the foregoing identity in (84) with the particular choices 𝐮 = 𝐬𝑖,
𝐯 = 𝐬𝑗 , and 𝐰 = 𝐬𝑘 and taking the inner product with 𝐬𝑙 on both sides
of the resulting identity gives

𝐿𝑙
𝑖𝐿𝑘𝑗 − 𝐿𝑙

𝑗𝐿𝑖𝑘 = 𝛤 𝑙
𝑚𝑖𝛤

𝑚
𝑘𝑗 − 𝛤 𝑙

𝑚𝑗𝛤
𝑚
𝑘𝑖 + 𝛤 𝑙

𝑘𝑗,𝑖 − 𝛤 𝑙
𝑘𝑖,𝑗 , (A.26)

which is a commonly encountered form of the Gauss equation.

Remark 7. In traditional approaches that rely on coordinate charts to
describe the reference and deformed surfaces  and ̄, the Peterson–
Mainardi–Codazzi (A.24) and Gauss (A.26) equations must be satis-
fied on both surfaces and, hence, constitute conditions of compati-
bility, as Koiter and Simmonds (1972) explain in their incisive and
comprehensive survey of the foundations of shell theory.

Remark 8. It is possible to express the covariant gradient ∇𝐆𝐌 of a
tangential two-tensor 𝐌 using any of the four component representa-
tions for 𝐌 in (A.4) and (A.5). For example, on using

𝐌 = 𝑀 𝑖
𝑗𝐬𝑖 ⊗ 𝐬𝑗 (A.27)
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it follows from (A.7)–(A.10) that

∇𝐆
𝐮 𝐌 = 𝑀 𝑖

𝑗,𝑘𝑢
𝑘𝐬𝑖 ⊗ 𝐬𝑗

+𝑀 𝑖
𝑗𝑢

𝑘[(𝛤 𝑙
𝑖𝑘 − 𝛬 𝑙

𝑖 𝑘)𝐬𝑙 ⊗ 𝐬𝑗 − (𝛤 𝑗
𝑘𝑙 + 𝛬𝑗

𝑘𝑙)𝐬𝑖 ⊗ 𝐬𝑙]. (A.28)

Since 𝛤 𝑘
𝑖𝑗 and 𝛬𝑘

𝑖𝑗 appear in the same way in (A.22), it can be argued
that the expression (A.22) is less ragged than and, thus preferable
to, (A.28). This difference stems from our chosen definition of ∇𝐆𝐌
through (49). Within that formula, it is most natural to view 𝐌 as
a bilinear mapping that takes in two vector fields 𝐮 ∈ (𝑇) and
𝐯 ∈ (𝑇) and outputs the scalar field 𝐮 ⋅𝐌𝐯. Such a bilinear mapping
is most naturally expressed using the dual basis {𝐬1, 𝐬2} and, hence,
through the representation (A.4)2.
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