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ARTICLE INFO ABSTRACT

MSC: The study of material surfaces uses notions from classical differential geometry, such as the covariant gradient,

53A05 the mean and Gaussian curvatures, and the Peterson-Mainardi-Codazzi and Gauss equations. These notions

74K25 are traditionally introduced relative to local surface coordinates and involve Christoffel symbols. We proceed

74K20 instead without recourse to coordinates using direct notation. After developing the formula for the covariant

74K35 . . . . . . . . .
gradient relative to a surface metric, we derive versions of the Peterson-Mainardi-Codazzi and Gauss equations

Keywo'rds: . and Gauss’ Theorema Egregium relevant to a deformed material surface. We then apply our framework to

Covariant gradient kinematically constrained material surfaces. For material surfaces that can sustain only deformations that

Deformable surfaces . . .. . . . .

1 s

Material inferfaces preserve either angles or lengths, we obtain explicit representations for the covariant gradient relative to

Shells the surface metric in terms of the surface gradient. We show also that a deformation of a material surface

Plates that preserves angles and areas must be length preserving and vice versa. Finally, we present an alternative

derivation of the Peterson-Mainardi-Codazzi and Gauss equations for a deformed material surface subject to
the provision that the surface metric derives from the metric for the ambient Euclidean space within which
the surface is embedded. An Appendix involving coordinates is included to ease comparisons between our
approach to covariant differentiation and associated derivations of the Peterson-Mainardi-Codazzi and Gauss
equations and standard coordinate-based approaches.

Kinematical constraints

1. Introduction [TThe essential simplicity and elegance of a treatment free of co-
ordinate considerations allows for greater insight into and emphasis
upon the fundamental geometric and algebraic concepts involved.
In this respect it is to be observed that direct notation does not
merely mean that the results are presented free of indicial notation
but rather that, inter alia, precise definitions of surface, position
and motion are made without recourse to any co-ordinate system.
Thus by the employment of direct notation is implied a philosophy

in which inessentials and non-physical considerations involved in

Material surfaces are fundamental to all theories of thin-walled
plates and shells, whether established asymptotically with reference to
three-dimensional theory or formulated directly, and have also been
used extensively to model adhesive interphases in composites, surface
coatings, and thin films. The kinematical framework needed to describe
the deformation of a material surface relies intimately on tools and
results from classical differential geometry. Orthodox treatments of this
subject, as exemplified by the comprehensive treatise of Ciarlet (2005),

typically begin by introducing coordinate charts for the reference and
deformed configurations of the material surface and hinge on represent-
ing fundamental kinematical objects through their components relative
to the associated coordinates.

The primary aim of the present work is to supply a nonstandard
treatment that, by avoiding such ingredients, is resolutely coordinate
free. In so doing, we seek to extend and complement the pioneer-
ing contributions of Gurtin and Murdoch (1975), Murdoch (1978),
and Murdoch and Cohen (1979). Specifically, we emulate the perspec-
tive and approach synopsized in the following passage due to Murdoch
(1978):
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the modeling of natural phenomena are carefully excised, the more
clearly to perceive the relationship between the model and its
subject.

To begin, we develop coordinate-free representations for the covariant
gradient and curl operators on a surface. We then derive coordinate-
free versions of the Peterson-Mainardi-Codazzi and Gauss equations
and present an invariant proof of Gauss’ Theorema Egregium, all for a
deformed material surface. Our Peterson-Mainardi-Codazzi and Gauss
equations involve the pullbacks, to the reference surface, of the metric
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and curvature tensors of the deformed surface that must be met to en-
sure the existence of a deformation and, thus, constitute compatibility
conditions. We find that a deformation serves effectively as a chart
that describes the deformed surface in terms of the reference surface.
However, there are three significant differences between a deformation
and a coordinate chart. First, whereas a coordinate chart involves a
bijection between a set of parameter pairs that can be identified with
an open subset of R? and a possibly curved surface, a deformation is
a bijection between reference and deformed surfaces that may both
be curved. Second, whereas the introduction of a chart entails the
provision of a basis and, thus, dependence upon the associated coor-
dinates, a deformation can be considered independent of any choice
of coordinates, as we have done in the present work. Third, whereas
there is no unique way of selecting a coordinate chart to describe
a surface as a purely geometrical object and the parameter pairs of
a coordinate chart need not be related to the points that describe a
material surface, a deformation must preserve the identity of material
points that comprise a material surface and, thus, supplies a natural
correspondence between the reference and deformed configurations of
a material surface.

As an initial application, we use our framework to derive represen-
tations for the covariant gradient operator on material surfaces that
are subject to deformations which preserve angles and to deformations
which preserve lengths. Building on those results, we next demonstrate
that a deformation of a material surface that preserves both angles and
areas must be length preserving and vice versa. In another application,
we show how our framework can be applied to obtain an alternative
derivation of the Peterson-Mainardi-Codazzi and Gauss equations that
holds when the surface metric is derived from the metric for the three-
dimensional Euclidean space in which the surface is embedded. This
derivation exposes the unity of the Peterson-Mainardi-Codazzi and
Gauss equations in that these two conditions are found to stem from the
normal and tangential components of a single equation. Moreover, this
alternative derivation yields the Gauss equation in a form commonly
encountered in the literature. However, that condition is expressed in
direct notation rather than relative to the associated coordinates.

To connect with traditional approaches to covariant differentiation,
we include an appendix containing coordinate-based representations.
Those representations hinge on the classical differential geometric no-
tion of a coordinate chart.

2. Preliminaries from linear algebra

Given linear spaces X and Y, let Lin(X,Y) denote the set of all
linear mappings from X to Y. If X and Y are inner-product spaces,
then the transpose M" of M € Lin(X, ) is an element of Lin(), X) and
is determined by

(y,Mx)y = (x, My)y,

Given x € X and y € Y, the tensor product y ® x € Lin(X, ) is defined
by

XEX, ye. 1)

(y @ X)z = (X, Z)»Y, z€X. 2

If Y =& and M" = M, then M € Sym(X, X) C Lin(X,X) and is said to

be symmetric. The wedge product x; A x, € Lin(X,X) of x; € X and

X, € X is defined by

X AX) =X] @X; — X, @X;. 3)
If A € Lin(X,Lin(X,Y)), then its right transpose A’ is a linear

mapping of the same type defined by

(A'x))xy = (AXy)Xy, X, Xy € X. (€]

It is alternatively possible to interpret A as a bilinear mapping from X
to Y through the relation

AX(,Xy) = (AX()X,, X|,X; € X. (5)
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We use Lin, (X, Y) to denote the set of all such bilinear mappings. Also,
if A € Lin, (X, V) satisfies A’ = A, then A € Sym,(X,Y) C Lin, (X, YY) and
is called right symmetric.

Suppose that X is a two-dimensional inner-product space and that
M € Lin(X, X). The determinant det M of M is then characterized by
the property:

Mx; A Mx, = (det M)(x; A X;), X|,X; € X. (6)

If, moreover, Y is a two-dimensional inner-product space and N €
Lin(Y, X), then the wedge product on the left-hand side of (6) obeys

(N'MN)y; A (N'MN)y, = N'(MNy; A MNy,)N
= (det M)N'(Ny,; A Ny,)N
= (det M)(N'N)y; A N'N)y,
= (det M) det(N'N)y; Ay, )

for all choices of y, € Y and y, € Y, with the consequence that the
determinant of N'MN is given by the product of the determinants of
M € Lin(X, X) and N'N € Lin(&, X):

det(N"MN) = (det M) det(N'N). (8)
3. Surfaces in a Euclidean space

Consider a smooth surface S in a three-dimensional Euclidean point
space & with associated vector space V. Let the inner product of two
vectors a € ¥V and b € V be denoted by a - b. For each x € S, the
tangent space T,.S of S is a two-dimensional subspace of V. We write
P(x) € Lin(V, V) for the orthogonal projection of ¥ onto T..S.

The tangent space 7,.S can be used to parameterize the surface
S local to x € S. More precisely, there is a neighborhood WV, of
zero in 7T,.S and a smooth injective function =, : N, — & such that
7, (N,) constitutes a neighborhood of x in S. A function ¢ from S to a
Euclidean space F with vector space W is said to be differentiable at x
if oz, is differentiable, and the surface gradient V°¢ of ¢ is defined
by

VS p(x) = grad(¢ox,)(0) € Lin(T, S, W). ©)

We consider only functions on S that are smooth in the sense that they
can be differentiated as many times as needed.

It is sometimes convenient to view VS¢(x) as a linear mapping on
V, rather than on the subspace T,.S. This can be achieved by stipulating
that V°¢(x) vanish on the orthogonal complement of T,.S. Put another
way, we may identify V°¢ with the product (V°¢)P. For the particular
choice 7 = R, since T,.S is a subspace of V, the inner product on V can
be used to identify V°¢(x) € Lin(T, S, R) with an element of T,.S such
that

(VSg(x) -a= (VSp(x))a,

A vector field on S is a function of the form u : S — V and is called
tangential if u(x) € TS for all x € S. Given a tangential vector field u
and a field ¢, the directional derivative Vf ¢ of ¢ along u is the field
defined such that

acT,S. (10)

Vip=(Vigpu. an

We will use the notation:

D scalar fields,
D(V) vector fields,
D(TS) tangential vector fields.

A two-tensor field M on S can be defined as a mapping from D(V)

to itself that is D-linear in the sense that
M(gu + hv) = gMu + hMv, g, h €D, uveDDV). 12)

It follows that M can be viewed as a function on S defined such that for
each x € S, M(x) € Lin(V, V). Any such function M is called tangential
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if it takes tangential vector fields to tangential vector fields. In this case,
M(x) € Lin(T,. S, T,.S). We use the following notation:

D,(V)
Dy(TS)

two-tensor fields,
tangential two-tensor fields.

Lastly, we define a three-tensor A to be a D-linear mapping from D(V)
to D,(V), call such a mapping tangential if it takes elements of D(T'S)
to elements of D,(T'S), and adopt the notation

D3(V)
Dy(TS)

three-tensor fields,
tangential three-tensor fields.

Given the surface gradient VSM of M € D,(T'S), we define its surface
curl, Curl*M e D;(V), by

Curl®M = V°M — (VM) 13)

Suppose that S is orientable, so that there is a n € D(V) that is
unit-vector valued and is orthogonal to S. The orthogonal projection
P, which at each x € S maps V onto T,S, can then be expressed in
terms of n through

P=1-n®n. 14
Moreover, the curvature tensor L of S is defined by

L=-V°n. (15)
Taking the surface gradient of the equation n-n = 1 yields

L'n=0, (16)

from which we see that L is tangential. Until further notice, let x € S
be fixed, consider r, : N, — &, and define I, = grad z,. Since the
range of r, is contained in S, it follows that IT,a is tangent to S for
any a € T,.S. Then, for any a € T, S,

n(z,(p)) - I (p)a =0,

Taking the gradient with respect to p in the direction b € TS of the
previous equation produces the identity

a- H;(p)L(ﬂx(p))Hx(p)b = n(ﬂx(P)) : [(grad Hx)(”x(p))a] (18)

Since grad IT, is the second gradient of z,, it is symmetric. Thus,
it follows from (18) that L is symmetric. The mean and Gaussian
curvatures H and K of S are defined through the curvature tensor L
of S by

pEN,. a7

H= %trL and K =detL. (19)

Notice that D(T'S) C D(V) and thus that the surface gradient of a

tangential vector u must satisfy
Vu(x) € Lin(T, S, V), xeS. (20)

From (20), we see that the surface gradient VSu of a tangential vector
field u need not be tangential. To elaborate on this, taking the surface
gradient of the equation u-n =0 yields

(VSu)'n = Lu, 2D
from which it follows that

VSu=PVSu+n® Lu. (22)

While this shows that generally the surface gradient of a tangential
vector fields is not tangential, it is possible to combine two tangential
vector fields with the surface gradient to obtain a tangential vector
field. To verify this assertion, we observe from the product rule and
the symmetry of L that for any u € D(T'S) and v € D(T'S),

n~(va—Vfu)=Vf(n-v)—v-an—Vf(n-u)+u-an
=v-Lu—u-Lv

=0. (23)
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Thus, the vector field [u, v] defined by
[u,v] = va - Vfu, (24)

and known as the Lie bracket of u and v, is tangential.

Given a tangential two-tensor field M defined on S, it is possible
to identify M with an element of M € D,(V). This identification is
accomplished by first extending M(x) to act on any element of V with
the stipulation that it annihilate any vector orthogonal to 7,.S and by
recalling T,.S as a subspace of V. In accord with this convention,

M = MP. (25)

Moreover, the surface gradient VSM of M is the three-tensor field
defined such that

VSM(x) € Lin(T, S, Lin(V,V)), x€S. (26)

Taking the surface gradient in the direction u € D(T'S) of (25) and
utilizing the product rule, the representation (14) for the orthogonal
projection P onto S, and the definition (15) of the curvature tensor L
of S produces the relation

ViM = (V;M)P+MLu®n. 27)

Thus, as with the surface gradient of a tangential vector field defined on
S, the surface gradient VM of a tangential two-tensor field M defined
on S need not be tangential.

Remark 1. The identifications that allow us to compute the surface
gradient of a tangential two-tensor are not always used. Specifically,
given x € S, Gurtin and Murdoch (1975) introduce the inclusion map
I(x) € Lin(T, S, V),' as defined by

I(x)a=a, aeT,S, (28)

and a projection map P(x) € Lin(V, T,.S) that resembles the projection
used in this paper except that its codomain is 7,.S rather than V. Given
a tangential two-tensor field M € D,(T'S), the fields I and P so defined
can be used to define M = IMP € D,(V). With these provisions, the
surface gradient VM of M is the three-tensor field defined such that

VSM = VSML (29)

Although the approach adopted in this paper is less precise than that
relying on the inclusion and projection mappings, it is less cumbersome
from a notational perspective. We thus opt for simplicity of presentation
over mathematical precision. As an outcome of this compromise, it is,
however, essential to apply (27) when taking the surface gradient of a
tangential two-tensor field.

4. Metrics

A metric on S is a rule that smoothly assigns to each x € S an inner
product (-, -)r ¢ on the tangent space 7,.S of S at x. Here, the notion
of smoothness is embodied by the requirement that the scalar field
x = (u, V)1, ¢ be smooth for all u € D(T'S) and v € D(T'S). Since T,S is
a subspace of V, the inner product on V can be used to define a metric
on S. A metric so defined is referred to as “induced”. Intuitively, this
induced surface metric can be considered as a metric that derives from
the metric for the space € in which the surface is embedded. It follows
that any metric on S has associated with it a tangential two-tensor field

G that satisfies
(a, b)sz =a- G(x)b, abeT,S, (30)

and is called a metric tensor. As a consequence of (30), G(x) €
Sym(T, S, T,.S) and must satisfy the inequality a - G(x)a > 0 for every

1 See also Murdoch (1978), Murdoch and Cohen (1979), and Murdoch
(1990).
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nonzero a € T, S. These conditions imply that G(x) is invertible. If, in
particular, the metric is the induced metric, then G = P.
Since the values of G are symmetric, the identity

u-Gv=v-Gu 31

must hold for all u € D(T'S) and v € D(TS). Applying the surface
gradient in the direction w € D(T'S) to both sides of (31), setting

G=V°G, (32)
and invoking the symmetry of G, we see that G must satisfy
u- (Gw)v =v - (Gw)u (33)

for all u € D(T'S), ve D(TS), and w € D(TS).

Given a metric on S with metric tensor G, the inner product of
a € T,Sand b € T, S can be computed in two different ways: a - b
and (a,b)7 s = a- G(x)b. Because of this, the meaning of the transpose
of a two-tensor M € Lin(T, S, T, S) suffers from ambiguity. Specifically,
there exist linear mappings M; and M, on T, S that satisfy

a-Mb=b-Ma and (a,Mb)y ¢ = (b,M,a)r s, (34)

for all a € T,S and b € T,.S. While M, is the transpose of M relative
to the induced inner product on TS, M, is the transpose of M relative
to the inner product (-, )1, . Using (30), (34), can be written as

a-G(x)Mb =b - G(x)M,a, a,beT,sS. (35)

Since G(x) is invertible and symmetric, (35) is equivalent to

a-Mb=b-GxM,G(x)a, a,beT,sS. (36)

Comparing the previous equation with (34); we see that M; and M,
are related through

M, = G(x)M,G(x)~!. 37)

Hereafter, we exclusively use the transpose relative to the induced inner
product on T, S and employ the notation M" = M, to denote said
transpose. The notion of the magnitude of a tangent vector also suffers
from an ambiguity. For a € T,.S, we adopt the notation

laj=+a-a and lalg = /(2 a)7, 5. (8

5. Covariant gradient and covariant curl

Although the surface gradient V° of a tangential vector field need
not be tangential, there is, given a metric on S with associated metric
tensor G, another object that delivers a tangential two-tensor field
when applied to a tangential vector field. Termed the covariant gradi-
ent relative to a metric G and denoted by V©, that object is the unique
mapping from D(T'S) to D,(T'S) which, given g € D, u € D(T'S), and
v € D(T'S), has the following properties:

(P1) VS(u +v) = VGu + VGy,

(P2) VS(gu) = gVeu+u® Vg,
(P3) Vf,;u - VEV = [v,u],

(P4) Vi(u, v) = (Vgu, v) + (u, VSV).

While property P1 ensures that VC is additive, property P2 is a product
rule for V6. Together, P1 and P2 imply that VS is linear, though it
should be noted that VS is not D-linear and, thus, that V¢ should
not be misconstrued as a three-tensor. It will become evident that P3
encompasses a notion of symmetry for VS. Property P4 ensures that V&
preserves the metric G on S.

We next obtain an expression for V¢ in terms of the metric tensor G.
Given u € D(T'S), v e D(T'S), and w € D(T'S), we may apply property
P4 of VS to give

V;z(u, v) = <V$u, V) + (u, ng),
S _ G G

Vo (w,u) = (Vow,u) + (w, Vou), (39)
S _ G G

VL (v, w) =(VV, W) + (v, V'W).
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Subtracting (39),; from the sum of (39), and (39);, recalling from (32)
that V°G = G, and using the consequences

Vz(u, v) = Vz(u - Gv)

= Viu-Gv+u-(Gw)v+u~GV§v

= (Pvau, v)+u- (Gw)v+ (u, PViV), (40)
Vf(w, u) = (PVfw, u) +w- (Gv)u + (w, PVfu),
Vf(v, w) = (Pva, w) + v (Cu)w + (v, PVfw)

of the product rule for V¥, we then find that

<V?w - VSV, u) + <Vfw - VSu, v) + <V?u + VSV, w)
=([v,w],u) + ([u,w],v) + <P(Vfu + va), w)
—u- (Gw)v+w- (Gv)u+v - (Gu)w. 41)

From property P3 of VE, we find that (41) reduces to

(w, VvGu) =(w, PVfu) + %(v - (Gu)w + w - (Gv)u —u - (Gw)). (42)
Using (4) and (33), we notice that (42) can be written as

(w, Véu) = (w,PViu) + %w - [(Cwv + (G'w)v — (G'u)"v] (43)
or, equivalently, as

(w,V6u) = (w,PVSu) + %(w, G [(Gwyv + (G'wyv — (G'w)v]). (44)

Since (44) holds for all v € D(T'S) and w € D(T'S), we conclude that
the covariant gradient VSu of u admits a representation of the form

V6u = PVSu + %G‘I(Gu +Glu— (G (45)
We next define the tensor A € D;(T'S) by
My = %G‘l(Gu +Gu—(Gw)y, wveDTS) (46)

From (46) of VG, we observe that

Nx) € Symy(T,S,T,S), which justifies identifying property P3 as a

and property P3

symmetry condition. Finally, using the definition (46), we express (45)
in the abbreviated form

Véu = (PV® + Au. 47)

The covariant gradient VOM of M € D,(TS) is the tangential
three-tensor defined such that

VEM =P(VIM)P — (Aw)'M —MAu,  ue DTS). (48)
The definition (48) ensures the satisfaction of the product rule

s _ vG G G
Vy@-My)=Viu-Mv+u-(VoM)v+u-MV7y, (49)

which generalizes property P4 of VG. A simple but important conse-
quence of the definition (48) is that

véG =o. (50)
The covariant curl, Curl®M e D;(T'S), of M € D,(TS) is defined by
Curl®M = VoM — (VOM) (€))

and, thus, mimics the definition (13) of the surface curl of M € D,(T'S).
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Consider the special case where the metric is the induced metric, so
that G = P. Since

(VSP)v =0, u,veDTS), (52)

it follows from (45) and (46) that
vP =PV, (53)
Moreover, from (13) and (51) we find that for any M € D,(T'S)

(Curl®M)(u, v) = P(Curl*M)(u, v), w,v e DTS). (54)
Remark 2. Instead of defining the covariant gradient of M € D,(T'S)
to ensure satisfaction of (49), it is possible to motivate a definition of
VGM that ensures satisfaction of the alternative product rule

V3 (u,Mv) = (VSu,Mv) + (u, (VEM)V) + (u, MVEv). (55)

This is the approach taken in standard treatments of Riemannian
geometry — as expounded by do Carmo (1992), among others. Since
we utilize the induced inner product, rather than the metric tensor, to
identify the dual of each tangent space with itself (see (10)), we find it
more natural to define VEM so that (49), rather than (55), holds.

6. Deformation of a material surface

Viewing S as a material surface, we consider a deformation f : S —
& of S to another surface, namely the set S = f(S). For each x € S the
deformation gradient is defined through the surface gradient:

F(x) = V5 f(x) € Lin(T, S, V). (56)

Since the range of F(x) is Tf(x)S', it is possible to consider F(x) as a
linear mapping from 7, S to Ty(,)S. In this context, F(x) is invertible.
To take advantage of this property, we will consider F(x) as a mapping
from one tangent space to another.

This deformation gradient can be used to induce a metric on S
through

(a,b) s =F(x)a-F(x)b=a- F'(x)F(x)b, abeT.sS. (57)

The right Cauchy-Green tensor C = F'F € D,(T'S) is therefore the
metric tensor that measures any length and angle changes caused by
deforming S to S. This tensor can also be recognized as the pullback
to S of the induced metric on S.

Now consider the surface gradient

F=V°F (58)

of F. Since F is the second surface gradient of f, its restriction to

tangent vectors is symmetric:
F(x) € Symy (T, S, V), xX€eS. (59)

Referring to (46), we find that the three-tensor A associated with the

metric tensor C = F'F is given in terms of F and F such that
(Mwyv =F'(Fuyy, uveDTS). (60)

Suppose that S and S are orientable and let i € D(V) be a unit-
normal vector field on S. Since F takes tangential vector fields on S to
tangential vector fields on S, we have for any u € D(T'S) that

n-Fu=0. (61)

Applying the surface gradient in the direction v € D(T'S) to both sides
of (61) and using (61) to simplify the resulting identity yields

—LFv-Fu+i- (Fv)u =0, (62)

where L is the curvature tensor for S. It then follows from (59) that
the tangential tensor field H € D,(T'S) defined by

H(x) = FT(x)L(f (x))F(x), xX€ES (63)

Mechanics of Materials 166 (2022) 104193

is related to [ through

v-Hu=#n-(Fv)u, u,ve DTS). (64)

As defined through (63), H is the pull-back, to S, of the curvature tensor
L of S.

7. Versions of the Peterson-Mainardi-Codazzi and Gauss equa-
tions for a deformed material surface

In classical differential geometry, the induced metric P and curva-
ture tensor L of a surface S can be represented as matrices relative
to a basis induced by a coordinate chart.> The coefficients of those
matrices must necessarily satisfy the Peterson-Mainardi-Codazzi and
Gauss equations.® Conversely, if the coefficients of a pair of given
matrices satisfy the Peterson-Mainardi-Codazzi and Gauss equations,
then there is a surface and a coordinate chart for that surface such that
the matrix representations of P and L relative to that coordinate chart
are identical to the given matrices. Moreover, the surface so determined
is unique up to an orientation preserving isometry of the space £ in
which it is embedded. We next derive counterparts of the Peterson—
Mainardi-Codazzi and Gauss equations that, given a material surface
with reference configuration S, the referential surface metric C of S
and the pullback H, to S, of the curvature tensor L of a surface S must
satisfy to ensure the existence of deformation f from S to S.

Proposition 1. The tensor H satisfies

Curl®H = 0. (65)
Proof. We begin by fixing u € D(T'S), v € D(TS), and w € D(TS).
Combining (48) and (60), we next obtain the relation

u- (VEHyv = u - (VSH)v - F~!'(Fuw - Hv —u - HF ! (Fv)w. (66)
Using (63), the chain rule, and the product rule, we find further that
(VSH)V = (Fw)'LFy + F'(Vy L)Fv + F'LFv. (67)

Since VSL = —vSV¥i is a second gradient, we notice that its values
are symmetric in the sense that

(V5 LFv = (V5 L)Fw. (68)

In view of (59) and the symmetry of A, we infer from the previous
equation that

u- [(VSH)v — (VEH)wW]

= (Fw)u-LFv — (Fv)u - LFw — F ' (Fu)w - Hv + F!(Fu)v - Hw.  (69)
Finally, using the identities
F~'(Fu)w - Hv = F~!(Fu)w - F'LFv

= (Fw)u-LFv (70)

and
F~'(Fu)v- Hw = (Fv)u - LFw (71)
to simplify (69), we obtain (65), which completes the proof. []

The mean A and Gaussian K curvatures of S can be written in terms
of H and C since

= %tri:H~C‘1 72)

2 An overview of this approach is provided in the Appendix.

3 Mainardi (1856) and Codazzi (1868-1869) obtained (65) independently
while being unaware of an earlier derivation due to Peterson (1853); (73)
was one of many results in Gauss’ (1828) groundbreaking contribution to the
differential geometry of curves and surfaces.
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and, by (8),
> detH
K= detC’ 73

In writing (72) and (73), it is important to note that H and C are
considered as linear mappings from each tangent space to itself rather
than as linear mappings on the ambient space V. If H and C are viewed
instead as linear mappings on V, then C is no longer invertible and
Egs. (72) and (73) become problematic. In this case, it is possible to
obtain H and K determined directly from L through A = %tri and
K = $[(trLy? — tr(L2)].

If S is a smooth surface S with metric G and there is a symmetric

H € D,(T'S) such that
detH= (det &)k and  Curl®H=0, 74)

then there exists a deformation f : S — S with surface gradient
F = V°f such that the right Cauchy-Green tensor C = F'F equals
G and the deformed surface S has curvature tensor L with referential
pull-back H = F'LF. Thus, when solving problems involving material
surfaces in which G and H are unknown quantities that are needed to
determine the deformed surface S, it is necessary to ensure that (74)
hold. In this sense, the versions (65) and (73) of the Peterson-Mainardi—
Codazzi equations derived here constitute compatibility conditions that
any deformation f : S — S must satisfy.

8. Gauss’ Theorema Egregium

In the present context, the Theorema Egregium of Gauss (1828)
takes the following form:

Proposition 2. The Gaussian curvature K of the surface S obtained by
a deformation f : S — & with gradient F = VS f only depends on the
associated metric C = F'F induced on S.

Proof. For u,v € D(T'S), we use (60) to give

(Fu)v = F(Au)v + (0 - (Fu)v)n. (75)

With reference to (64), we notice that the previous equation can be
recast as

(Fu)v = F(Au)v + (i ® Hu)v. (76)
Taking into account (27), we find from (76) that
Fu=F(u+Lu®n)+n® Hu. 77)

Applying the surface gradient in the direction v to both sides of the
previous equation and simultaneously multiplying each term of the
resulting identity from the left by F' and from the right by P, we see
that

FT(VVS Fu)P = C[(Av)Au + Vf/\u —Lu® Lv] — Hv ® Hu. (78)
We thus find that
F'(ViFv - ViFuwP

= C[(AWAY — (M)A + VAV = Vi +LuALul-HuaHv.  (79)

Since [ is the surface gradient of F, we recognize that VSF must be
symmetric in the sense that

S S
V. Fv=V_ Fu (80)
Combining the previous two equations, we find that
Hu A Hv = C{AWAY — (AV)Au + (VEAVP — (VS Aw)P + Lu ALu].  (81)

Using (73), we infer that the left-hand side of (81) can be expressed in
the form

Hu A Hv = K(detC)u A v. (82)
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Finally, since the right-hand side of (81) only depends on the surface
S through C, and since A is determined by C, we confirm that the
Gaussian curvature K depends on S only through C, which completes
the proof. []

Consider the case where f is the identity mapping on the surface S,
so that no deformation occurs. Then, C = P is the induced metric on S
and (53) holds. Moreover, a calculation shows that

VeViw = ViViw — Vi | w = (Lu A Lv)w. (83)
Using (6) in the foregoing equality yields

VeViw = VIVEw = VP | w = (det L)@ A v)w. (84)
Some authors refer to (84), rather than (73), as the Gauss equation

when the surface metric is the induced metric P.

Remark 3. In Riemannian geometry, the Riemannian curvature tensor
R for S relative to the metric C is a mapping that associates to each
pair of vector fields u € D(T'S) and v € D(T'S) a tangential two-tensor
R(u, v) defined by

Re(u,vw = (VEVE - VEVOwW - Vi o w. (85)
A calculation using (47) shows that
Re(w,v) = Rp(u, v) + (AWAY — (AV)Au + PVS Av — PVS Au, (86)

where Rp is the Riemannian curvature for the induced metric P. A
further calculation shows that

Rp(u,v) = LuALv. (87)
Inserting (86) and (87) into (81) yields

Hu A Hv = CRc(u, v). (88)
Finally, using (6) and (73), the previous equation can be written as
KCu A Cv =CRg(u,v), (89)

which shows that the Riemann curvature tensor relative to C is com-
pletely determined by the Gaussian curvature K of S.

9. Kinematical constraints

We next specialize the results of the preceding section to certain spe-
cial classes of deformations. For each class of deformations considered,
the kinematics are constrained by a scalar- or tensor-valued condition
on the surface metric C. We refer to such constraints as kinematical
since they impose restrictions on the kinds of deformations a material
surface can sustain. Common alternatives to this choice of terms include
“internal constraints” and “material constraints”.

9.1. Angle preserving deformations

Consider a deformation f : S — &, with gradient F = V£, that
preserves angles, in the sense that for each x € S, given a € T, S
and b € T,.S, the angle between these vectors is the same as the angle
between F(x)a and F(x)b. Hence,

a-b _ Fxa-Fxb _(abrg

lal[b] "~ [FGoal[F(x)b] ~ lalc/blc’

a,beT,S, xes. (90)
Such a deformation f : S — £ is often called conformal.

Proposition 3. A deformation preserves angles if and only if there is a
positive A € D such that

Au-v=Fu-Fy, u,veDTS). 91
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Proof. If (91) holds for some positive A € D, it is then evident that
(90) holds. Suppose that (90) holds. Fix x € S. Define A by

_ [Fal
Jal

AMx,a) s aeT.S, a#0. (92)

From this definition it follows that A is positive, smooth, and that, for
any e>0and aeT,S,

Ax, a) = A(x, €a). (93)

Differentiating the previous equation with respect to ¢ and evaluating
the resulting expression at € = 1 yields

(grad A(x,a))a = 0, 94)

where grad denotes the derivative of 1 with respect to its second
variable. Moreover, setting £ = 1/|a| in (93) yields

A(x,a) = /I(x, %) (95)

Referring to the definition (92) of A, we see that, for any a,b € T, S
and € > 0,

[F(x)(@+ eb)|? = A(x,u+ ev)*|a + £b|2. (96)
Granted that a and b are orthogonal, so that a-b = 0, it is evident from
(90) that F(x)a - F(x)b = 0. Thus, (96) can be recast as

a+eb
|a+ eb|

At )2 ul? + 24() = i(x, )(|u|2 +2v?). 97

Differentiating the previous equation with respect to ¢ and then evalu-
ating it at e = 0 yields

(grad A(x,a)b = 0. (98)

In combination, (94) and (98) lead to the conclusion that grad A(x,a) =
0 and, hence, that 4 is independent of a. Thus, 1 € D as claimed. []

Notice that if the deformation preserves angles, then it follows from
(91) that

|Fux Fv| = Aluxv|, u,v e D(TS). 99)

Since the magnitude of the cross product of two vectors gives the
area of the parallelogram spanned by those vectors, (99) shows that A
quantifies how infinitesimal areas scale under a deformation f : S — &
which preserves angles as indicated in (90).

It follows from Proposition 3 that a deformation f : S — & with
gradient F = V° f preserves angles if and only if the associated metric

tensor C = F'F satisfies
C= AP (100)

for some positive A € D. If specialized in accord with the above result,
(46) simplifies to

L os s
M = ﬁ((Vu AP +uA VA (101)

Thus, from (47), the covariant gradient V€ relative to C = F'F is given
by

vCu = vy

=PVu+ %((Vf/l)P+u/\ VSd). (102)

9.2. Locally area preserving deformations

Consider a deformation f : S — &, with gradient F = V° £, that
preserves areas in the sense that

Area(A) = Area(f(A)), ACS. (103)

This condition can be written using integrals as

/ dA = / dA, ACS. (104)
A S(A)

Mechanics of Materials 166 (2022) 104193

By the area formula |’ ) dA = /4 detCdA, so the previous equation is
equivalent to

/(1—detC)dA=0, ACS. (105)
A

It follows that the deformation f : S — £ is area preserving if and only
if
detC=1. (106)

In contrast to what occurs for angle preserving deformations, the
foregoing restriction on C does not lead to a simplification of the
representation (46) for the corresponding covariant gradient V€.

9.3. Local length preserving deformations

Consider a deformation f : S — &, with gradient F = VS £, that
preserves the lengths of tangent vectors in the sense that

lu| = |Fu| = |ulc, u e D(TS). (107)

Such a deformation is called a local isometry. It follows from (107) that,
for all u € D(T'S) and v € D(T'S),

[ul> +2u-v+|v> = Ju+ v

= |Fu|? + 2Fu - Fv + |[Fv|%. (108)
Referring again to (107) simplifies the previous relation to
u-v=Fu-Fy, u,veDTS). (109)

It follows that the deformation f S — & preserves angles and,
moreover, (91) holds with 4 = 1. Thus, the metric tensor C of a locally
length preserving deformation f : S — & is equal to the orthogonal
projection P onto S:

C=P. (110)
It then follows from (53) that
vCe =vP =pvs. (111)

9.4. Locally length and area preserving deformations

We next show that, consistent with intuitive expectations, a defor-
mation f : S — & that is both angle and locally area preserving must
also preserve lengths, and vice versa.

Proposition 4. A deformation f : S — & is locally length preserving if
and only if it is both angle preserving and locally area preserving.

Proof. If a deformation locally preserves lengths, then C = P. It follows
that det C = 1, so it is locally area preserving, and also (91) holds with
A =1, so it is angle preserving.

On the other hand, suppose that a deformation is both angle and
locally area preserving. We can then combine (100) and (106) to find
that C = P. It immediately follows from (107) that the deformation is
locally length preserving. []

This last result affords an alternative argument leading to (111).
Specifically, any deformation that is locally length preserving must, by
Proposition 4, also be angle and locally area preserving. Thus, (100)
and (102) must hold for some 1. It then follows from (106) that A =1
and, hence, that (102) reduces to (111).
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10. Derivation of the Peterson-Mainardi-Codazzi and Gauss equa-
tions subject to the provision that the surface metric is the induced
metric

Wempner (1967) and Steele (1971) derive the Peterson-Mainardi—
Codazzi and Gauss equations under the provision that the surface
metric derives from the metric for the ambient three-dimensional Eu-
clidean space & within which the surface is embedded. In our setting,
that assumption amounts to requiring that the metric C of S be equal
to the induced metric P. Intuitively, this amounts to selecting the
deformed configuration S of a material surface as the reference configu-
ration S for that surface. We next show how our framework specializes
if this is so.

Apart from the choice

C=P (112)

inspired by the works of Wempner (1967) and Steele (1971), our alter-
native derivation the Peterson-Mainardi-Codazzi and Gauss equations
begins with the understanding that the surface curl of the surface
gradient of any tangent vector field w € D(7'S) must vanish:

curl*(vSw) = 0. (113)

This fact is a consequence of the symmetry of the second surface
gradient V5(VSw) of w. The basic idea is to decompose this equation
into parts tangent and normal to the surface. Towards this end, we
first use (22) to split V°w into the sum of a tangential two-tensor
PV°w = VPw and its complement n ® Lw. We then use (15) and the
product rule to find that for all u € D(T'S) and v € D(T'S)

Curl*(V¥w)(u,v) = V5 (VPw)v - VI (VFwu

—(Lu® Lw)v + (Lv® Lw)u
+HVE@LW) - v—V@Lw) - wn. (114
Since VPw = PVPw, we see from the product rule that
Vi(VPww = (VPu - Lvn + PV (VPww. (115)

On augmenting (114) with the previous identity and applying the
product rule again, it follows that
Curl®*(VSw)(u,v) = Curl’(VPu)(a,b) — (Lu ® Lw)v + (Lv ® Lw)u

+(VIL)w- v — (VSL)w - uln. (116)

To obtain the Peterson—-Mainardi-Codazzi equation, we take the
inner-product of (113) with n and use (116). This gives
0=w-[(VSL)'v—(VSL)ul. (117)

Since L = —V°n and V¥(V®n) is symmetric, we see that (117) can be

expressed as
0=w- Curl*L(u, v). (118)

Thus, since the foregoing condition must hold for any w € D(T'S), we
infer that
0 = PCurl*L(u,v), (119)

which, by (54), is (65) for G = P.
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To obtain the Gauss equation, we first notice that since L is sym-
metric, (6) can be used to find that

(Lu® Lw)v — (Lv® Lw)u = (Lu A Lv)w

= K@uAv)w. (120)
Thus, if we apply P to (113) and invoke (116), we obtain
K(@uAww = Curl®(VPw)(u, v). (121)
A final calculation then gives
Curl®(VPw)(u,v) = VEVEw - VEVEw — VI w (122)

and, hence, (121) is (84), which some authors refer to as the Gauss
equation granted, of course, that the surface metric is given by P.

Remark 4. Rather than using the surface curl operator defined in (13),
many authors use the surface curl curl®M e D,(V) of M € D,(TS)
defined such that

((curl®>M)Ta) x b = (VS (MTa) - VS(M™a)") x b (123)

for all a,b € V. It should be stressed that the object curl®M so defined
is a two-tensor but that Curl®M is a three-tensor. This allows for a
derivation that is essentially identical to the one presented above. In
particular, the decomposition (22) can be used and the vector equation
curl®*(VSw)n = 0 can be decomposed into a tangential and normal
components. While the normal component,

P(curl®L)n = 0, (124)
can be seen to be equivalent to (65) with C = P, the tangential
component is

|w]?K = (w xn) - (curl® (VPw))n. (125)

A direct connection between (125) and (121) is, however, elusive
because (125) is scalar valued and involves a single arbitrary tangential
vector field w while (84) is vector valued and involves three tangential
vector fields u, v, and w. For this reason, we prefer the derivation based
on the definition (13) of the surface curl operator.

Remark 5. Instead of the local condition (113), Wempner (1967) and
Steele (1971) begin by stipulating that the integral of the differential
increment du of a tangential vector field u about all simple closed
contours on the surface must vanish. The condition (113) imposed here
follows from that global stipulation on applying Stokes’ theorem and
localizing the resulting surface integral at an arbitrary point on the
portion of the surface enclosed by the original contour.

Remark 6. The condition (112) embodying the assumption that the
surface metric be derived from the metric for the space £ in which the
surface is embedded should not be misconstrued with the constraint
(110) that applies if the surface can sustain only length preserving
deformations. However, the argument leading to the versions (119)
and (121) of the Peterson-Mainardi-Codazzi and Gauss equations does
apply if (112) is interpreted as a constraint on the surface metric instead
of as a choice. Hence, (119) and (121) are the versions of the Peterson—
Mainardi-Codazzi and Gauss equations that apply for a surface that can
sustain only length preserving deformations.
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Appendix. Coordinate based representations

Letr : U — & be a coordinate chart for the surface S, meaning
that:

+ U is an open subset of R?;
* r is smooth;
+ (gradr)(p) is injective for every p € U’;

+ the range Rngr of r is contained in S; and

1

» the inverse r~! : Rngr — U of r exists.

Since r is injective, it follows that if {e,,e,} is a basis for R?, then s,
and s, defined for each p € U by*

s;(r(p)) = r;(p) = (gradr)(pe;, (A1)

form a basis for Top)S- Notice from (A.1) that s; and s, are viewed
as functions that are defined on Rngr. The corresponding dual basis
{s'(x),s*(x)} on T,.S is determined by the criteria
) . 1, ifi=j,
s'(x)-s;(x)=6", = (A.2)
i / 0, ifi#,.
Given the field n = s; X s,, which is defined on Rngr, is orthogonal to
S, and has unit magnitude, {s;(x),s,(x),n(x)} and {s'(x),s*(x), n(x)} are
bases for V.
We can represent a tangential vector field u € D(T'S) on Rngr using
either the basis {s;,s,} or the dual basis {s!,s?}:

u=u's; = u;s', (A.3)
where ' = u-s' and u; = u-s;. Likewise, a tangential two-tensor field
M € D,(T'S) can be represented using either basis:

M=M's,@s; =M;s' @, a4
where MY =s'-Ms/ and M;; =s, - Ms;. However, it is also possible to
represent M using both bases simultaneously:
M=Mijsi®sj=Mijsi®sj, (A.5)

where M [j =s'-Ms; and M,.j = s;-Ms/. Finally, a tangential three-tensor
field A € D;(TS) can be represented in eight different ways involving
the bases. One example of such a representation is

A= Aijks,- ®s @sk, (A.6)
where A’ = s’ (Asy)s ;- The remaining alternatives take similar forms.
We can also define the symbols g;; and g”/ by

8ij =S;"§; and gl =55 A7)

It follows from the definitions in (A.7) and (A.3) that

J =
g =y and

gijuj =i (A.8)
Thus, we see that the symbols g;; and g'/ can be used to raise and lower
the index used in the components of a vector. Similar computations can

4 Throughout this section subscripts and superscripts using i, j,k etc. are
assumed to equal either 1 or 2. Moreover, if there are repeated indices with
one index a superscript and the other a subscript, then summation over that
index from 1 to 2 is implied.
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be done involving the components of second and third order tensors.
Just as an example, we have
Mijgjk = Mik and Ak,mgkigl" =A". (A.9)
Combining the two equations in (A.8) shows that
(A.10)

K ok G
g,-jg/ =6, and g”gjk—é‘k.

Taking the gradient of (A.1) in the direction e; and invoking the
chain rule gives

Ve S @) =10 (A.11)

The Christoffel symbols I'%; are defined through

rt =s-vis,. (A.12)
ij S;

From (A.12) and the identity r; =r j;, it follows that I"jj = F’}i. Since
s; is tangent to S, s; - n = 0. Applying the surface gradient V> in the
direction s; to s; - n = 0 yields

s _ S _ _
Vsjs[~n_—si-Vsjn_si~sz_L,-j. (A.13)
Combining (A.12) and (A.13) results in
Vssjs[ = F’;jsk + L;n. (A14)
Applying V° in the direction s, of both sides of (A.2) gives
s; - VSSksi =—s - Vssksj = —Fijk. (A.15)
Calculations analogous to (A.13) and (A.14) deliver
S o
Vsjs’ -n=¢s' -Ls; = L’j (A.16)
and
Vf_s‘ = —F‘jksk + L’jn. (A17)
J

Given ¢ € D, it follows that VS¢ € D(T'S) and, thus, that we can
write

Vi =¢s',

where ¢; = V¢ -s,. By the product rule, (A.3);, (A.14), and (A.18), it
follows that, for all u € D(T'S) and v € D(T'S),

(A.18)

Vou = @ho' + T ohs + L v'n. (A.19)

Given a metric on S with metric tensor G, it then follows from (47)
and (A.19) that

G , L
Vou = [ + (I + A5 )l v'ls, (A.20)

which is a coordinate representation of (47). While I ’jj are the Christof-
fel symbols for the covariant gradient PVS, we see from (A.20) that the
sum I'%; + A% are the Christoffel symbols for V©.

Similarly, for M € D,(T'S), the product rule, (A.4), and (A.17) can
be used to show that

VM = M, s, ®s;
kopi ol j J o ool i J
—M;;u (F’kls ®s’ +Fkls' ®s — L’ksl- ®n-L n®s)). (A.21)
A coordinate representation of (48) follows from (A.21):
VM = M, ufs' ® s/
ki i\ j J J e @ ol
-M;u [(I"'k, + A’kl)s ®s + (I wtA kl)s’ ®s']. (A.22)

Comparing (A.20) to (A.19) and (A.22) to (A.21) shows that the com-
ponents of the three-tensor A that determines the relationship between
the covariant and surface gradients through (47) enter the component-
based representations for Véu and V6M in a fashion completely anal-
ogous to the Christoffel symbols. Whereas the Christoffel symbols are
needed to account for the particular features of the chosen coordinates
and, thus, are not the components of a three-tensor, the components
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of A reflect the process of converting the surface gradient operator to
an object that operates on tangential vector fields to produce tangential
two-tensor fields and, thus, is independent of any choice of coordinates.

It follows from (A.21) that the Peterson-Mainardi—-Codazzi (65),
when written using components, becomes

Hyjp = Hyy = Hyy (I + AL + Hy (K 4+ A1) =0, (A.23)

If the reference and deformed surfaces coincide, so that the metric C
is the induced metric P and H is the curvature tensor L on S, rather
than the pull-back of the curvature tensor of the deformed surface, then
(A.23) becomes

Lijx = Ly = LTy + Hy ', = 0. (A.24)

ik,j

Next we obtain a component version of the alternate form of the
Gauss Eq. (84) for the particular case in which the metric is the induced
metric P and A = 0. Then, it follows from (A.19) that, for any tangent
vector fields u and v,

Vfu =PViu= (uﬁui + F"ijujvi)sk. (A.25)

Using the foregoing identity in (84) with the particular choices u =s;,
;> and w = s, and taking the inner product with s! on both sides
of the resulting identity gives

v=s

—-rt

! 1 — 7! 1 i
Ly =L Ly =1 1% — T I+ T, o (A.26)

kj,i

which is a commonly encountered form of the Gauss equation.

Remark 7. In traditional approaches that rely on coordinate charts to
describe the reference and deformed surfaces S and S, the Peterson—
Mainardi-Codazzi (A.24) and Gauss (A.26) equations must be satis-
fied on both surfaces and, hence, constitute conditions of compati-
bility, as Koiter and Simmonds (1972) explain in their incisive and
comprehensive survey of the foundations of shell theory.

Remark 8. It is possible to express the covariant gradient VM of a
tangential two-tensor M using any of the four component representa-
tions for M in (A.4) and (A.5). For example, on using

M=M's®s (A.27)

10
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it follows from (A.7)-(A.10) that
VEM = M, s @

+MH [ — A8 @8 — (T + A s @61 (A.28)

Since I ’jj and Akl.j appear in the same way in (A.22), it can be argued
that the expression (A.22) is less ragged than and, thus preferable
to, (A.28). This difference stems from our chosen definition of VEM
through (49). Within that formula, it is most natural to view M as
a bilinear mapping that takes in two vector fields u € D(T'S) and
v € D(T'S) and outputs the scalar field u-Mv. Such a bilinear mapping
is most naturally expressed using the dual basis {s!,s?} and, hence,
through the representation (A.4),.
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