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Abstract: (1) Background. The endocannabinoid (eCB) system, which regulates physiological and
cognitive processes, presents a promising therapeutic target for treating HIV-associated neurocogni-
tive disorders (HAND). Here we examine whether upregulating eCB tone has potential protective
effects against HIV-1 Tat (a key HIV transactivator of transcription) protein-induced alterations in
synaptic activity. (2) Methods. Whole-cell patch-clamp recordings were performed to assess inhibitory
GABAergic neurotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in
the presence and absence of the fatty acid amide hydrolase (FAAH) enzyme inhibitor PF3845. Western
blot and mass spectrometry analyses assessed alterations of cannabinoid receptor and enzyme protein
expression as well as endogenous ligands, respectively, to determine the impact of Tat exposure on
the eCB system. (3) Results. GABAergic activity was significantly altered upon Tat exposure based on
sex, whereas the effectiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was
not altered by Tat or sex and involved CB1R-related mechanisms that depended on calcium signaling.
Additionally, our data indicated sex-dependent changes for AEA and related non-eCB lipids based on
Tat induction. (4) Conclusion. Results highlight sex- and/or Tat-dependent alterations of GABAergic
activity and eCB signaling in the prefrontal cortex of Tat transgenic mice and further increase our
understanding about the role of FAAH inhibition in neuroHIV.

Keywords: endocannabinoids; neuroHIV; fatty acid amide hydrolase; Tat transgenic mice; inhibitory
postsynaptic potentials; PF3845; cannabinoid type 1 receptor; anandamide; non-eCB lipids; endo-
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1. Introduction

Despite the successful introduction of combination antiretroviral therapy (cART) [1–3],
the prevalence of mild to moderate forms of human immunodeficiency virus type 1 (HIV-
1)-associated neurocognitive disorders (HAND) remains high [4–9]. Symptoms of HAND
in the post-cART era are specifically associated with cortical brain structures, such as the
prefrontal cortex (PFC) [10,11], and include impairments in executive function, memory
consolidation, decision-making, and attention [6,10–13]. The pathogenesis underlying
HAND has been suggested to involve an early viral protein, HIV-1 transactivator of tran-
scription (Tat), which is continually secreted from infected cells in the central nervous
system (CNS) despite cART [14]. Various preclinical in vivo and in vitro studies demon-
strate Tat’s ability to induce inflammation, excitotoxicity, dendritic damage, and synaptic
alteration [15–22], all of which contribute to HAND development and is recapitulated
in Tat rodent models [23–43]. Studies examining cognitive function associated with PFC
tasks in the Tat transgenic mouse model have shown inhibitory control deficits, increased
novelty exploration, and pre-attentive filtering deficits [32,43] that coincide with inflam-
matory responses as well as decreases in inhibitory pre- and post-synaptic proteins [43].
Alterations of the GABAergic system by Tat have been demonstrated in various mouse
brain structures [28,30,40,44–46] and have further been implicated in HAND pathology in
people living with HIV (PWH) [28,30,31,40,44,45,47–49]. Nevertheless, little is known about
whether sex may differentially contribute to HIV/Tat-induced alterations on inhibitory
GABAergic neurotransmission in the PFC and how endocannabinoid tone might be altered
in the context of HAND.

As HAND is associated with inflammatory and neurotoxic insults [50–52], the en-
docannabinoid (eCB) system, which regulates both immune function and cognition, has
high therapeutic potential for treating the consequences of HIV-1 infection because of the
anti-oxidative, anti-excitotoxic, and anti-inflammatory properties of cannabinoids (see
reviews, [53–56]). To avoid site effects induced with cannabinoid receptor agonists due
to lack of site specificity and CB1R-related psychoactive effects [57], research efforts have
specifically focused on the development of drugs targeting components of the endogenous
cannabinoid system, including enzymes regulating the biosynthesis and degradation of the
two major endogenous cannabinoids N-arachidonoyl ethanolamine (anandamine/AEA)
and 2-arachidonoyl glycerol (2-AG) [58–60]. Selective enzyme inhibitors of the main AEA-
metabolizing enzyme, fatty acid amide hydrolase (FAAH), and of the main 2-AG catabolic
enzyme, monoacylglycerol lipase (MAGL), are promising therapeutic tools as they enhance
eCB signaling on demand in locations where they are being actively produced, e.g., at
the site of injury, to evoke their local neuroprotective effects with minimal off-target ef-
fects [61–63]. Recent preclinical research studies have demonstrated the protective effects
of FAAH and MAGL enzyme inhibitors in a variety of different neurodegenerative disease
models [63–65], including neuroHIV [19,32,66–70]. Work on the FAAH enzyme inhibitor
PF3845 indicated protective effects against Tat-induced synaptodendritic injury and neu-
ronal death in cultured primary frontal cortex neurons in vitro [19,70], as well as against
increased neuronal excitability (excitatory postsynaptic currents, EPSCs) in Tat-treated PFC
slices ex vivo [32]. Additionally, it is not clear whether HIV-1 proteins, such as Tat, affect
the eCB system and its signaling properties. Alterations of the eCB system in neuroHIV
have been reported for cannabinoid receptors [32,71–73] but less so for endocannabinoid
ligands [19,70]. Further, a downregulation of cannabinoid signaling in the presence of
neuroHIV has been demonstrated in some preclinical studies [48,74].

Thus, in the present study we were interested in examining Tat effects on inhibitory
GABAergic activity and how eCB signaling might be altered in the context of neuroHIV.
Whole-cell patch-clamp recordings were conducted to assess inhibitory GABAergic neu-
rotransmission in prefrontal cortex slices of Tat transgenic male and female mice, in the
presence and absence of PF3845 bath application. Western blot and mass spectrometry
analyses assessed alterations on CB1R, FAAH, and MAGL protein expression and eCB
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and non-eCB lipids, respectively, to determine the impact of HIV-1 Tat exposure on the
eCB system.

2. Materials and Methods
2.1. Animals

Doxycycline (DOX)-inducible, brain-specific HIV-1IIIB Tat1-86 transgenic male and
female mice (~4–5 months of age) were used in the present study and developed on a
C57BL/6J hybrid background described in detail in previous literature [30,75]. All mice
received a specially formulated chow containing 6 mg/g DOX (Harlan, Indianapolis, IN,
USA, product #: TD.09282), including mice that express the GFAP-rtTA and TRE-tat genes
[Tat(+) mice] to induce Tat expression and control Tat(−) transgenic mice that express only
the GFAP-rtTA gene and lack the tat transgene. Animals were fed the DOX-supplemented
food 3 months before experiments were conducted. Mice were group-housed (2–4 mice
per cage) on a reversed 12-h light/dark cycle (lights off at 8:00 AM) and had free access to
water and chow. The wellbeing of all the animals was monitored by expert veterinarians.
Experiments were conducted in accordance with the ethical guidelines defined by the
National Institutes of Health (NIH Publication No. 85-23) [76] and all procedures were
approved by the University of North Carolina at Chapel Hill (UNC) Institutional Animal
Care and Use Committee (IACUC, Protocol ID: 20-108.0, Web ID: 84198).

2.2. Slice Electrophysiology Ex Vivo
2.2.1. Prefrontal Cortex (PFC) Slices

Brain PFC slices were prepared from male and female Tat transgenic mice. Brains
were removed after decapitation and placed into ice-cold sucrose buffer containing (in
mM): 254 sucrose,10 D-glucose, 26 NaHCO3, 2 CaCl2, 2 MgSO4, 3 KCl, and 1.25 NaH2PO4,
saturated with 95% O2/5% CO2, at pH 7.4, 300 mOsm. Coronal PFC slices (300 µm thick)
were cut with a VT 1000S microtome (Leica, Deerfield, IL, USA). Slices were transferred
immediately into a holding chamber and were incubated at 32 to 33 ◦C for a 30-min
recovery period in a mixture of 50% sucrose saline and 50% artificial cerebrospinal fluid
(aCSF) containing (in mM): 128 NaCl, 10 D-glucose, 26 NaHCO3, 2 CaCl2, 2 MgSO4, 3 KCl,
and 1.25 NaH2PO4. Slices were then placed on a nylon mesh, submerged in normal
aCSF bubbled continuously with 95% O2/5% CO2, and maintained at room temperature
(~21–24 ◦C) until whole-cell patch-clamp recording (30 min to 5 h).

2.2.2. Electrophysiological Recordings

Slices were transferred to a submersion-type recording chamber (Warner Instruments,
Hamden, CT, USA) on a Siskiyou 4080P fixed-stage system (Grants Pass, OR, USA), secured
beneath a nylon harp, and perfused with aCSF heated to 30 to 33 ◦C with an inline heater
(Warner SC-20, Hamden, CT, USA) at a rate of 2 to 3 mL per min. Recordings were taken
from the medial (m)PFC of layer 2/3 as previously shown [45]. Layer 2/3 pyramidal
neurons are known to receive dense inhibitory synaptic input from a rich variety of in-
terneurons to provide tight control of neuronal excitability [77,78]. PFC pyramidal neurons
were identified visually by using an Axio Examiner A1 microscope (Zeiss, Thornwood, NY,
USA) equipped with a 40×water-immersion objective coupled with an infrared differential
interference contrast and an integrated Dodt gradient camera system. Whole-cell patch-
clamp recordings from mPFC neurons were established using a MultiClamp 700B amplifier
(Axon Instruments, Union City, CA, USA). Membrane current and potential signals were
digitized and analyzed with Digidata 1550A and pClamp 10.0 systems (Molecular Devices,
Sunnyvale, CA, USA). Patch pipettes of ~5 MΩ were pulled with a PC-10 puller (Narishige,
Greencale, NY, USA). The pipette solution had the following composition (in mM) unless
otherwise stated: 140 KCl, 0.1 CaCl2, 5 EGTA, 10 HEPES, 4 ATP-Mg2+, 0.4 GTP-2Na+,
1 QX314 (Lidocaine N-ethyl bromide), pH 7.2, and 290 mOsm. QX314 was added to the
pipette solution to block the GABABR-mediated currents and to prevent the generation of
Na+-dependent action potentials. Under these conditions, miniature postsynaptic currents
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(mPSCs) were acquired in aCSF containing tetrodotoxin (TTX, 1 µM) at a holding potential
of −70 mV. To record spontaneous inhibitory postsynaptic currents (sIPSCs) and mIPSCs,
glutamate receptor antagonists DNQX (20 µM) and AP-5 (20 µM) were added to aCSF.
Drugs were administered by bath application. Synaptic currents were collected for 5 min for
each experimental condition. Access resistance (<25 MΩ) was regularly monitored during
recordings, and cells were rejected if resistance changed >15% during the experiment. If
the access resistance increased during course of the experiment and caused significant
reductions in the synaptic current amplitudes, efforts were made to improve access (such
as applying additional suction or slight positive pressure); if this failed, the experiment
was discontinued.

2.2.3. Acquisition and Analysis of Synaptic Currents

Spontaneously occurring synaptic currents were filtered at 2 kHz and digitized at
10 kHz using Digidata 1550A. Off-line analysis of synaptic currents was performed using
the Minianalysis software (Version 6.0.8; Synaptosoft, Decatur, GA, USA). Synaptic currents
were screened automatically using an amplitude threshold of 3 pA. Events were then
visually screened to ensure that the analysis was not distorted by changes in noise level or
by membrane fluctuations. If the background noise increased during the recording, data
from that cell were discarded.

2.3. Treatments and Drugs

Treatments included the FAAH enzyme inhibitor PF3845 (1 µM, Dr. Benjamin Cravatt),
the CB1R antagonist SR141716A (SR1, 1 µM, Tocris, Ellisville, MO, USA) and the CB2R
antagonist AM630 (1 µM, Tocris). Cannabinoid concentrations were chosen based on
preliminary experiments (data not shown) and previous studies from our laboratory [45].
AP-5 (DL-2-amino-5-phosphonovaleric acid, NMDA receptor antagonist, 20 µM), DNQX
(6,7-dinitroquinoxaline-2,3-dione, AMPA and kainate receptor antagonists, 20 µM), and
TTX (tetrodotoxin, 1 µM) were purchased from Tocris. All drugs were dissolved in dimethyl
sulfoxide (DMSO), except for TTX, and AP-5, which were dissolved in distilled water. All
stock solutions were stored at −80 ◦C as frozen aliquots for less than one month. Drugs
were administered by bath application. AP-5, DNQX, and TTX were bath applied 20 min
prior to, and for the duration of the experiment. For the experimental manipulation of
extracellular calcium, cadmium chloride (CdCl2, 200 µM, Sigma-Aldrich, St. Louis, MO,
USA) was applied to the bath, which blocks high and low threshold voltage-dependent
calcium channels, or aCSF was used without calcium. For the manipulation of intracellular
calcium levels, the endoplasmic reticulum calcium pump inhibitor thapsigargin (1 µM,
Sigma-Aldrich, St. Louis, MO, USA) was bath applied to the slices that depletes the
intracellular calcium stores.

2.4. Western Blot Analysis

For the western blot analysis, tissue from the PFC of male and female Tat transgenic
mice were freshly harvested and homogenized on ice in an appropriate volume of ice-
cold RIPA Lysis and Extraction buffer (G-Bioscience, St. Louis, MO, USA) with protease
inhibitor cocktail (VWR Life Science, Cleveland, OH, USA). Homogenized tissue lysates
were centrifuged at 10,000× g for 10 min at 4 ◦C. To determine sample protein concentration
a BCA protein assay was used. Laemmli buffer (1:5) was used to suspend protein lysates
and denatured at 95 ◦C for 3 min. Using BioRad Protean 3 mini apparatus, equal amounts
of protein (10 µg/lane) were resolved in 10% SDS-PAGE at a 150 volt for 1 h. Electrophoretic
transfer of proteins from the gel to nitrocellulose membranes was carried out in 10 mM
CAPS buffer with 0.01% SDS, pH 11, overnight at 0–4 ◦C at 20 V using a Bio-Rad Trans-Blot
Cell equipped with a cooling coil. Blots were washed with Tris-buffered saline (TBS),
incubated with blocking buffer (5% nonfat dry milk plus 5% normal goat serum in TBS) for
1 h at room temperature followed by incubation with affinity-purified anti-CB1R (rabbit
polyclonal; Chemical, Ann Arbor, MI, USA; #101500; 1:1000 dilution for 3 h), anti-FAAH1
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(mouse monoclonal; Abcam, Waltham, MA, USA; ab54615; 1:1000 dilution for 3 h), or anti-
MAGL (rabbit polyclonal; Abcam, ab24701; 1:1000 dilution for 3 h) at room temperature,
washed 2× with TBS, and then incubation with anti β-Actin (anti-mouse or anti-rabbit
from Cell Signaling Technology, Danvers, MA; #3700 or #4970; 1:1000) for 3 h, washed
3× with TBS (TBS with 0.1% Tween 20), and incubated with horseradish peroxidase-
coupled anti-rabbit and/or anti-mouse IgG sequentially (with 1× TBS wash in between)
for 1 h at room temperature. Immunoreactive bands were detected by ECL reaction
(Amersham, Buckinghamshire, UK) from the blot using BioRad Gel Doc XR+ system and
image acquiring software (Image Lab ver. 5.1, Hercules, CA, USA). Densitometric analysis
was carried out using a modified version (version 1.59) of the Scion Image software (Scion
Corporation, Frederick, MD, USA).

2.5. Analysis of Endocannabinoids (eCBs) and Other Lipids

Endogenous cannabinoid ligands, including the two main eCBs AEA and 2-AG as well
as nine related lipids, including N-arachidonoyl glycine (NAGly), peroxisome proliferator
activator receptor (PPAR) ligands, such as N-oleoyl ethanolamide (OEA) and N-palmitoyl
ethanolamide (PEA), and 2-linoleoyl glycerol (2-LG), were quantified via mass spectrom-
etry in the PFC of male and female Tat transgenic mice. Immediately following cervical
dislocation and decapitation, brains were removed and the PFC was rapidly dissected,
frozen in liquid nitrogen, and stored at −80 ◦C until use, as described previously [79]. PFC
samples from the right hemisphere were processed, and substrates were quantified in a
similar manner to previous studies [80]. Briefly, frozen PFC samples stored in microfuge
tubes were removed from the −80 ◦C freezer and immediately placed on dry ice. Each
entire sample was then weighed in a TissueLyzer tube with stainless steel ball (Qiagen,
Hilden, Germany), the weight was recorded, and the samples were placed on dry ice until
homogenization. Immediately before homogenization, 440 µL of ice-cold methanol (Fisher
Scientific, Fair Lawn, NJ, USA), 50 µL of internal standard containing 50 ng/mL of 2-AG-d5,
5 ng/mL of AEA-d4, 5 ng/mL of OEA-d4 (Cayman Chemical, Ann Arbor, MI, USA), and
10 µL of 5 mg/mL of BHT (Sigma-Aldrich, St. Louis, MO, USA) in methanol antioxidant
solution was added. Samples were then homogenized at 50 Hz for 2 min (Qiagen Tis-
sueLyzer LT, Germantown, MD, USA). Immediately after homogenization, samples were
placed in a microcentrifuge at 14,000 RPM for 10 min at 4 ◦C. The supernatant was removed
and placed in an MRQ reduced surface activity vial (Microsolv, Leland, NC, USA) and
analyzed immediately by liquid chromatography coupled with tandem mass spectrometry
(LC/MS/MS; ref. [80]).

2.6. Statistical Analysis

Data are presented as raw data or percent change from control (mean ± SEM) and
tested for normality with Shapiro–Wilk test. Data sets from western blot analysis and mass
spectrometry were analyzed by a two-way analysis of variance (ANOVA) with sex (2 levels:
male, female) and genotype (2 levels: Tat(−) mice, Tat(+) mice) as between-subject factors.
ANOVAs were followed by planned comparisons or Bonferroni post hoc correction for
multiple comparisons as necessary (SPSS Statistics 25; IBM, Chicago, IL, USA; and/or
GraphPad 8.0, San Diego, CA, USA). For electrophysiology data, in addition to two-way
ANOVAs, data were analyzed by three-way repeated measures ANOVAs when appropriate,
including sex and genotype as between-subject factors and drug bath exposure (i.e., PF3845;
SR141716A, AM630, 0 Ca2+, CdCl2, Thapsigargin) as a within-subject factor. ANOVAs
were followed by planned comparisons or Bonferroni post hoc correction for multiple
comparisons as necessary. Electrophysiology data that are presented as percent change
from control (% of control) were further analyzed using a one-sample t-test (control, 0%) to
assess significance from baseline. To correct for multiple comparisons Bonferroni correction
was used. Sample size is indicated for all electrophysiology experiments as (cells/mice).
An alpha level of p < 0.05 was considered significant for all statistical tests.
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3. Results
3.1. Inhibitory GABAergic Neurotransmission Is Altered in Tat Transgenic mPFC Brain Slices in a
Sex-Dependent Manner

To explore the effects of Tat induction on spontaneous and miniature GABAA receptor-
mediated inhibitory postsynaptic currents (sIPSCs and mIPSCs, respectively), we per-
formed patch-clamp recordings on mPFC pyramidal neurons from Tat transgenic mice
(n = 13–23 neurons, 3 mice per group and sex) in the presence of DNQX and AP-5 (Figure 1).
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Figure 1. Tat induction alters the frequency and partially the amplitude of IPSCs in mPFC neurons
in a sex-dependent manner. (A) Representative traces of sIPSCs in female and male Tat transgenic
mPFC brain slices. (B) Tat induction significantly decreased mean sIPSC frequency for Tat(+) males
compared to Tat(−) males, whereas a significant increase in sIPSC frequency was demonstrated for
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Tat(+) females compared to their respective Tat(−) counterparts. (C) No significant effects were
noted on the mean amplitude of sIPSCs. (D) Similarly, for mIPSCs, Tat(+) males showed decreased
mIPSC frequency compared to Tat(−) males and Tat(+) females showed increased mIPSC frequency
compared to Tat(−) females. (E) For the mean amplitude of mIPSCs only Tat(+) males demonstrated
decreased mIPSC amplitude compared to Tat(−) males. Female Tat transgenic mice did not signif-
icantly differ from each other. Data are raw data (mean ± SEM) separated by sex and genotype.
Statistical significance was assessed by ANOVA followed by planned comparisons; * p < 0.05. In all
panels, sample size is indicated as (cells/mice).

Two-way ANOVAs were conducted with sex (2 levels: male, female) and genotype
(2 levels: Tat(−), Tat(+)) as between-subject factors. For sIPSC frequency, no significant
main effects were noted but a significant sex x genotype interaction, F(1, 66) = 8.61, p = 0.005
(Figure 1B). Planned comparisons demonstrated decreased sIPSC frequency for Tat(+)
males (M = 1.44, SEM = 0.25, n = 13/3) compared to Tat(−) males (M = 2.41, SEM = 0.29,
n = 19/3; p = 0.025), whereas Tat(+) females showed increased sIPSC frequency (M = 2.66,
SEM = 0.55, n = 19/3) compared to Tat(−) females (M = 1.48, SEM = 0.15, n = 19/3; p = 0.046).
No significant main effects or interaction were noted for sIPSC amplitude (all p’s > 0.05;
Figure 1C).

To assess mIPSCs, TTX was added to the bath to eliminate large-amplitude, action
potential-dependent IPSCs. A two-way ANOVA revealed a significant main effect for sex,
F (1, 72) = 8.76, p = 0.004, with females demonstrating increased mIPSC frequency (M = 1.55,
SEM = 0.17, n = 37/6) compared to males (M = 1.01, SEM = 0.13, n = 39/6). Further, a
significant sex x genotype interaction was noted on mIPSC frequency, F(1, 72) = 11.23,
p = 0.001, with Tat(+) males indicating decreased mIPSC frequency (M = 0.65, SEM = 0.14,
n = 16/3) compared to Tat(−) males (M = 1.26, SEM = 0.18, n = 23/3; p = 0.016), whereas
Tat(+) females showed increased mIPSC frequency (M = 1.93, SEM = 0.27, n = 18/3) com-
pared to Tat(−) females (M = 1.19, SEM = 0.19, n = 19/3; p = 0.029; Figure 1D). For mIPSC
amplitude, no significant main effects were noted apart from a significant sex x genotype
interaction, F(1, 72) = 9.19, p = 0.003 (Figure 1E). Planned comparisons demonstrated de-
creased mIPSC amplitude for Tat(+) males (M = 18.01, SEM = 1.29, n = 16/3) compared
to Tat(−) males (M = 23.43, SEM = 1.89, n = 23/3; p = 0.038), whereas females did not
significantly differ from each other. Thus, whereas for male transgenic mice Tat induction
inhibited GABA release (action potential-dependent and action potential-independent),
Tat induction increased GABAergic synaptic activity for female mice, predominantly via
presynaptic mechanisms.

3.2. PF3845 Decreases Inhibitory GABAergic Neurotransmission Independent of Tat Induction
and Sex

It is known that eCBs, such as AEA [81] or 2-AG [82], decrease GABAergic neuro-
transmission in different brain regions [83]; however, it is unclear if the downregulation
of GABA release is altered in the presence of Tat. Thus, we examined the effects of FAAH
enzyme inhibition on IPSCs by performing patch-clamp recordings in Tat transgenic mPFC
brain slices with bath application of PF3845 (1 µM; n = 8–18 neurons, 3–5 mice per group
and sex; Figure 2). Three-way mixed ANOVAs were conducted with drug (2 levels: control,
PF3845 1 µM) as a within-subject factor and sex and genotype as between-subject factors.
For sIPSC frequency, a significant main effect for drug was noted, F(1, 56) = 30.55, p < 0.001,
with an overall inhibition of sIPSC frequency by PF3845 (M = 1.37, SEM = 0.15; n = 60/18)
compared to control condition in the absence of PF3845 (M = 2.19, SEM = 0.20; n = 60/18;
Figure 2B).
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= 1.42, SEM = 0.22, n = 25/8), as well as a significant sex x genotype interaction, F(1, 56) = 
6.56, p = 0.013. The sex x genotype interaction indicates decreased sIPSC frequency for 
Tat(+) males (M = 1.63, SEM = 0.27, n = 17/5) compared to Tat(−) males (M = 2.44, SEM = 
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Figure 2. PF3845 decreases the frequency and partially the amplitude of IPSCs in mPFC neurons
independent of Tat induction and sex. (A) Representative traces show sIPSCs in female Tat(−)
and Tat(+) mPFC brain slices before and after PF3845 (1 µM) application. (B) Tat(+) males showed
decreased sIPSC frequency compared to Tat(−) males, whereas Tat(+) females demonstrated increased
sIPSC frequency compared to Tat(−) females. Further, PF3845 significantly decreased the mean sIPSC
frequency in Tat(−) and Tat(+) brain slices for each sex with the downregulation being similar across
all groups. (C) For the mean amplitude of sIPSCs, a significant downregulating effect by PF3845 was
noted specifically for Tat(−) males. (D) For the mean mIPSC frequency, PF3845 significantly decreased
mIPSC frequency in all groups with similar inhibitory effects across. (E) For the mean mIPSC
amplitude, no significant effects were noted. Data are raw data (mean ± SEM) separated by sex and
genotype. Statistical significance was assessed by ANOVA followed by Bonferroni’s post hoc test;
* p < 0.05 vs. corresponding Tat(−) counterpart; # p < 0.05. In all panels, sample size is indicated as
(cells/mice).

Further, a significant effect for sex was noted, F(1, 56) = 4.99, p = 0.029, with males
showing higher IPSC frequency (M = 2.04, SEM = 0.22, n = 35/10) compared to females
(M = 1.42, SEM = 0.22, n = 25/8), as well as a significant sex x genotype interaction,
F(1, 56) = 6.56, p = 0.013. The sex x genotype interaction indicates decreased sIPSC frequency
for Tat(+) males (M = 1.63, SEM = 0.27, n = 17/5) compared to Tat(−) males (M = 2.44,
SEM = 0.33, n = 18/5), whereas Tat induction in females indicated increased sIPSC frequency
for Tat(+) females (M = 1.73, SEM = 0.32, n = 15/5) compared to Tat(−) females (M = 0.94,
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SEM = 0.16, n = 10/3; Figure 2B). Lastly, the significant drug x sex x genotype interaction on
sIPSC frequency, F(1, 56) = 4.08, p = 0.048, was further explored by conducting additional
analyses on PF3845-induced change (∆), which, however, revealed no significant differences
for sex and/or genotype (Supplemental Figure S1). For sIPSC amplitude, a three-way
mixed ANOVA demonstrated a significant effect for drug, F(1, 56) = 7.78, p = 0.007, with
PF3845 treatment inhibiting sIPSC amplitude (M = 23.10, SEM = 0.97; n = 60/18) compared
to control condition in the absence of PF3845 (M = 26.09, SEM = 1.08; n = 60/18; Figure 2C).

To assess action potential-independent IPSCs (mIPSCs) TTX was added to the bath
to eliminate large-amplitude IPSCs. A mixed three-way ANOVA on mIPSC frequency
demonstrated a significant effect for drug, F(1, 51) = 48.89, p < 0.001, with an overall
inhibition of mIPSC frequency by PF3845 (M = 0.89, SEM = 0.11; n = 55/18) compared to
control condition in the absence of PF3845 (M = 1.26, SEM = 0.11; n = 55/18; Figure 2D).
Further a significant effect for sex was noted, F(1, 51) = 5.10, p = 0.028, with males indicating
higher IPSC frequency (M = 1.30, SEM = 0.17, n = 30/10) compared to females (M = 0.81,
SEM = 0.11, n = 25/8; Figure 2D). No other effects and/or interactions were significant. For
mIPSC amplitude, a three-way mixed ANOVA demonstrated a significant effect for drug,
F(1, 51) = 8.06, p = 0.006, with PF3845 treatment inhibiting mIPSC amplitude (M = 19.79,
SEM = 1.04; n = 55/18) compared to control in the absence of PF3845 (M = 21.34, SEM = 0.91;
n = 55/18; Figure 2E). No other effects and/or interactions were significant. Overall, these
findings indicate that PF3845 decreases GABAergic neurotransmission presynaptically
(sIPSC and mIPSCs frequencies) independent of Tat induction or sex.

3.3. PF3845′s Inhibitory Effects on GABAergic Neurotransmission Are Mediated by CB1Rs but
Not CB2Rs

We showed that PF3845 bath application decreased GABAergic neurotransmission
independent of Tat induction and sex, but the underlying CBR-related mechanisms were
not investigated. Thus, we examined the FAAH enzyme inhibitor PF3845 on IPSCs in Tat
transgenic mPFC brain slices with bath application of the CB1R antagonist SR141716A
(1 µM; n = 6–14 neurons, 2–3 mice per group and sex; Figure 3A–C) and the CB2R antagonist
AM630 (1 µM; n = 7–8 neurons, 2–3 mice per group and sex; Figure 3D–F). Three-way mixed
ANOVAs were conducted on IPSCs (% of control) with drug (2 levels: CBR antagonist, CBR
antagonist + PF3845) as a within-subject factor and sex and genotype as between-subject
factors (see Supplemental Result and Figure S2 for analysis and presentation of raw data).
As no significant effects and/or interactions were noted for sex and/or genotype on any of
the IPSC measures, data are presented combined for sex and genotype (Figure 3).

Blocking CB1Rs with SR141716A (1 µM) bath application. Three-way mixed ANOVAs on
sIPSC (frequency and amplitude; % of control) and mIPSC (frequency and amplitude; % of
control) demonstrated no significant effects and/or interactions (Figure 3B,C). Addition-
ally, no significant effects were noted for one-sample t-tests (with Bonferroni correction)
that assessed significance for percent change from the control condition (0%). These data
indicate that the CB1R antagonist SR141716A (1 µM) by itself had no significant effect on
action potential-dependent and action potential-independent GABA release, and further
that SR141716A was able to block the downregulating effects of PF3845 on GABAergic
neurotransmission, suggesting PF3845′s inhibitory effects involve CB1R-mediated mecha-
nisms.
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Figure 3. PF3845 effects on the frequency and amplitude of IPSCs (% of control) in mPFC neurons are
blocked by CB1R antagonist SR141716A but not CB2R antagonist AM630. No significant effects were
noted for sex and genotype on any sIPSC measure (% of control) and are therefore collapsed across.
(A) Representative traces show sIPSCs before and after SR141716A (1 µM) ± PF3845 (1 µM) appli-
cation. (B) No significant differences on sIPSC frequency and amplitude (% of control) were noted
between the SR141716A alone and SR141716A in combination with PF3845 conditions, indicating
the CB1R antagonist SR141716A was able to block the downregulating effects of PF3845 on sIPSCs.
Further, both conditions were not significantly different from control condition (0%). (C) Similarly, no
significant effects were noted on the mIPSC frequency and amplitude (% of control). (D) Represen-
tative traces show sIPSCs before and after AM630 (1 µM) ± PF3845 (1 µM) application. (E) There
was a significant difference between AM630 alone and AM630 in combination with PF3845 con-
ditions on sIPSC frequency (% of control), indicating pretreatment of AM630 did not prevent the
PF3845-induced decreases in the mean frequency of sIPSCs (% of control). This is supported by a
significant downregulation of sIPSC frequency for the AM630 in combination with PF3845 condition
compared to control (0%), which was not seen for the AM360 alone condition. No significant effects
were noted on sIPSC amplitude (% of control). (F) Similarly, pretreatment of AM630 did not block the
downregulating effects of PF3845 on mIPSC frequency and both conditions significantly decreased
mean mIPSC frequency compared to control (0%). No significant effects were noted on mIPSC
amplitude (% of control). Data are percent of control data (mean ± SEM) collapsed across sex and
genotype. Statistical significance was assessed by ANOVA followed by Bonferroni’s post hoc test;
# p < 0.05. One-sample t-tests with Bonferroni correction assessed significant changes from control
condition (0%), a p < 0.05 vs. control (before treatment, 0%). In all panels, sample size is indicated as
(cells/mice); please see Supplemental Table S1 for specific information on sample size for sex and
genotype. SR1, SR141716A; PF, PF3845; AM, AM630.
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Blocking CB2Rs with AM630 (1 µM) bath application. A three-way mixed ANOVA on
sIPSC frequency (% of control) demonstrated a significant effect for drug, F(1, 27) = 43.09,
p < 0.001, with AM630± PF3845 treatment (M =−27.01, SEM = 5.42; n = 31/10) significantly
downregulating sIPSC frequency (% of control) compared to AM630 condition (M = −3.41,
SEM = 5.35; n = 31/10; Figure 3E), indicating AM630 pretreatment was not able to block the
downregulating effect of PF3845 on sIPSC frequency. No other effects and/or interactions
were significant. Further, one-sample t-tests (with Bonferroni correction) demonstrated a
significant downregulation of sIPSC frequency for the AM630± PF3845 condition from con-
trol (0%; p < 0.001). For sIPSC amplitude (% of control), a three-way ANOVA demonstrated
no significant effects and/or interactions (Figure 3E).

To assess mIPSCs, TTX was added to the bath to eliminate large-amplitude, action
potential-dependent IPSCs. A three-way mixed ANOVA on mIPSC frequency (% of control)
demonstrated similar effects as demonstrated on sIPSC frequency (% of control). A signifi-
cant effect was noted for drug, F(1, 26) = 59.78, p < 0.001, with AM630 ± PF3845 treatment
(M = −35.60, SEM = 3.82; n = 30/10) significantly downregulating sIPSC frequency (%
of control) compared to AM630 condition (M = −9.81, SEM = 3.38; n = 30/10; p < 0.001;
Figure 3F). No other effects and/or interactions were significant. Further, one-sample t-tests
(with Bonferroni correction) indicated a significant downregulation of mIPSC frequency for
AM630 and AM630 ± PF3845 treatments from control (0%; p = 0.028 and p < 0.001, respec-
tively). For mIPSC amplitude (% of control), a three-way mixed ANOVA demonstrated
no significant effects and/or interactions (Figure 3F). Overall, these data indicate that the
CB2R antagonist AM630 was not able to block the downregulating effects of PF3845 on
GABAergic neurotransmission and therefore PF3845′s inhibitory effects appear not to be
regulated via CB2R-mediated mechanisms but involve CB1Rs.

3.4. Effects of PF3845 on Inhibitory GABAergic Neurotransmission Involve the Presence of
Extracellular and Intracellular Calcium

To understand the mechanisms by which PF3845 1 µM decreased GABAergic synaptic
neurotransmission assessed by IPSCs, we examined the involvement of extracellular cal-
cium be removing calcium from the bath solution (0 Ca2+, n = 6–14 neurons, 2–4 mice per
group and sex; Figure 4A–C) and by adding a calcium channel blocker cadmium chloride
to the bath solution calcium channels (CdCl2 200 µM, n = 4–15 neurons, 2–4 mice per group
and sex; Figure 4D–F). Involvement of intracellular calcium was assessed via thapsigargin
(1 µM) application in the presence and absence of PF3845 (1 µM; Figure 4G–I). Three-way
mixed ANOVAs were conducted on IPSC (% of control) with drug (2 levels: 0 Ca2+ or
CdCl2 or thapsigargin, 0 Ca2+ + PF3845 or CdCl2 + PF3845 or thapsigargin + PF3845)
as a within-subject factor and sex and genotype as between-subject factors (see Supple-
mental Result and Figures S3 and S4 for analysis and presentation of raw data). As no
significant effects and/or interactions were noted for sex and/or genotype on any of the
IPSC measures, data are presented combined for sex and genotype (Figure 4). Three-way
mixed ANOVAs on sIPSC (frequency and amplitude; % of control) and mIPSC (frequency
and amplitude; % of control) demonstrated no significant effects and/or interactions for
any of the treatment conditions, indicating that PF3845′s ability to downregulate GABA
release was abolished when external calcium was removed from the aCSF, or voltage-gated
calcium channels were blocked with CdCl2. Similarly, depleting intracellular calcium stores
via thapsigargin blocked the downregulating PF3845 effects on GABA release. Further,
one-sample t-tests (with Bonferroni correction) indicated a significant downregulation of
IPSC frequency and partly of IPSC amplitude from control (0%) for most of the treatment
conditions (see Figure 4 for M, SEM, n), indicating the involvement of extracellular and
intracellular calcium in GABAergic synaptic activity. Thus, the significant downregulation
of action potential-dependent and action potential-independent GABA release (sIPSCs and
mIPSCs) by PF3845 as well as GABAergic synaptic activity itself depend on extracellular
and intracellular calcium.
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Figure 4. Effects of PF3845 on the frequency and amplitude of IPSCs (% of control) in mPFC neurons
are blocked in the absence of extracellular and intracellular calcium. No significant effects were noted
for sex and genotype on any sIPSC measure and are therefore collapsed across. (A) Representative
traces show sIPSCs before and after 0 Ca2+ ± PF3845 (1 µM) bath application. (B) Removing extracel-
lular calcium from the aCSF in the presence or absence of PF3845 (1 µM) significantly downregulated
sIPSC frequency or amplitude (% of control; except for sIPSC amplitude at 0 Ca2+ condition) com-
pared to control condition (before removal of 0 Ca2+, 0%). Importantly, the 0 Ca2+ ± PF3845 condition
was not significantly different from 0 Ca2+, indicating PF3845 had no significant effect on sIPSC
frequency or amplitude in the absence of extracellular calcium. (C) Similarly, mIPSC frequency or
amplitude (% of control) was significantly downregulated by 0 Ca2+ ± PF3845 (except for mIPSC
amplitude at 0 Ca2+) with PF3845 showing no further downregulation in the absence of extracellular
calcium compared to the 0 Ca2+ condition. (D) Representative traces show sIPSCs before and after
CdCl2 (200 µM) ± PF3845 (1 µM) bath application. (E) Application of CdCl2 significantly downregu-
lated sIPSC frequency and amplitude (% of control) in the presence or absence of PF3845 compared
to control condition (before CdCl2 treatment, 0%). No differences were noted between CdCl2 and
CdCl2 ± PF3845 treatment conditions. (F) For mIPSCs, application of CdCl2 significantly downregu-
lated mIPSC frequency (% of control) from control condition (0%), with CdCl2 ± PF3845 showing no
further downregulation compared to the CdCl2 condition. No significant differences were noted for
mIPSC amplitude (% of control). (G) Representative traces show sIPSCs before and after thapsigargin
(1 µM) ± PF3845 (1 µM) bath application. (H) Application of thapsigargin significantly downregu-
lated sIPSC frequency and amplitude (% of control) in the presence or absence of PF3845 compared to
control condition (before thapsigargin treatment, 0%). No differences were noted between thapsigar-
gin and thapsigargin + PF3845 treatment conditions, indicating that depletion of intracellular calcium
stores blocked PF3845′s downregulating effects on sIPSC frequency and amplitude (% of control).
(I) Similarly, mIPSC frequency was significantly downregulated by thapsigargin, with PF3845 show-
ing no further downregulation compared to thapsigargin alone. No significant differences were noted
for mIPSC amplitude (% of control). Data are percent of control data (mean ± SEM) collapsed across
sex and genotype. Statistical significance was assessed by ANOVA followed by Bonferroni’s post
hoc test and revealed no significant effects. One-sample t-tests with Bonferroni correction assessed
significant changes from control condition (0%), a p < 0.05 vs. control (before treatment, 0%). In
all panels, sample size is indicated as (cells/mice); please see Supplemental Table S1 for specific
information on sample size for sex and genotype. 0 Ca2+, zero extracellular calcium; PF, PF3845;
Thap, thapsigargin.
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3.5. Tat Transgenic Mice Display No Changes in CB1R, FAAH, and MAGL Protein Expression

To explore the impact of Tat induction on the endocannabinoid (eCB) system western
blot analyses were conducted in the PFC of Tat transgenic mice (n = 3 mice per group and
sex) to quantify cannabinoid type 1 receptor (CB1R) protein expression, protein expression
of the AEA degrading enzyme FAAH, and protein expression of the 2-AG degrading
enzyme MAGL. Two-way ANOVAs with sex and genotype as between subject-factors
indicated no significant differences for any of the three measures (Figure 5).
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Figure 5. CB1R, FAAH, and MAGL protein expression levels are not altered by Tat and sex. Western
blot analyses of protein expression levels for CB1R (A), FAAH (B), and MAGL (C) were assessed in
the PFC of Tat transgenic mice. No significant effects were noted for any of the three measures. Data
are eCB/β-Actin ratio data (mean ± SEM) separated by sex and genotype. Statistical significance
was assessed by ANOVA. Sample size: n = 3 mice per group and sex.

3.6. Tat Transgenic Mice Display Altered Levels in AEA and Related Non-eCB Lipids in the PFC in
a Sex and/or Tat-Dependent Manner

To determine the effects of Tat on eCB lipids we quantified levels of AEA, 2-AG, and
nine related non-eCB lipids, in the PFC of Tat transgenic mice (n = 8–9 mice per group and
sex; Table 1 and Figure 6). A one-way repeated ANOVA indicated significant differences
between lipid concentrations (pg/mg), F(10, 330) = 241.1, p < 0.001, in the following order
starting with the lowest: Docosatetraenyl ethanolamide (DEA; M = 2.20, SEM = 0.11;
n = 34), N-palmitoleoyl ethanolamide (POEA; M = 4.62, SEM = 0.27; n = 34), Linoleoyl
ethanolamide (LEA; M = 10.58, SEM = 0.79; n = 34), AEA (M = 13.10, SEM = 0.86; n = 34),
Docosahexaenoyl ethanolamide (DHEa; M = 19.04, SEM = 1.16; n = 34), OEA (M = 22.02,
SEM = 1.38; n = 34), NAGly (M = 40.79, SEM = 3.07; n = 34), PEA (M = 51.73, SEM = 3.04;
n = 34), SEA (M = 57.68, SEM = 4.44; n = 34), 2-LG (M = 300.13, SEM = 17.76; n = 34), and
2-AG (M = 2438.81, SEM = 153.81; n = 34). All conditions, except for DHEa vs. OEA, NAGly
vs. PEA, NAGly vs. SEA, PEA vs. SEA, significantly differ from each other (Bonferroni
post hoc test’s, p’s < 0.001).

Two-way ANOVAs with sex and genotype as between subject-factors indicated a
significant main effect of sex for AEA, DEA, DHEa, LEA, NAGly, OEA, PEA, POEA, and
SEA as well as a significant sex x genotype interaction for AEA, DEA, DHEa, LEA, NAGly,
and POEA (see ANOVA results in Table 1). No significant effects were noted for 2-AG
or 2-LG. To explore the sex x genotype interactions further, Bonferroni post hoc tests
demonstrated significant upregulation of AEA and seven non-eCB lipid concentrations for
female Tat(+) mice compared to one or more of the other groups (see Figure 6; actual values
for each lipid molecule are presented in Supplemental Table S2).
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Figure 6. AEA and seven related non-eCB lipids are significantly upregulated in the PFC of female
Tat(+) mice. Concentrations of AEA, 2-AG and other lipid molecules were assessed in the PFC of Tat
transgenic mice using LC/MS/MS. Lipid concentrations were normalized to pg/mg of tissue. (A) No
significant effects were noted for 2-AG or its related non-eCB lipid 2-LG. (B) For AEA and eight
related non-eCB lipids, a significant sex and/or sex x genotype interaction was noted (see Table 1 for
ANOVA results) with female Tat(+) mice demonstrating significant increased lipid concentrations
in the PFC compared to one or more of the other three groups, except for PEA. Data of (non-)eCB
concentration are expressed in pg/mg (mean ± SEM) separated by sex and genotype. Statistical
significance was assessed by ANOVA followed by Bonferroni post hoc tests; * p < 0.05 vs. Tat(−)
female, # p < 0.05 vs. Tat(+) male, § p < 0.05 vs. Tat(−) male. Sample size: n = 9, Tat(−) mice per
sex; n = 8, Tat(+) mice per sex. Please see Supplemental Table S2 for the actual concentration values
(mean ± SEM).
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Table 1. ANOVA results for sex and genotype on eCB and other lipid signaling molecule levels
(pg/mg) in the prefrontal cortex of HIV Tat transgenic mice a.

Lipids Sex Effect Genotype Effect Sex x Genotype

pg/mg F1, 30 p F1, 30 p F1, 30 p

2-AG 2.7 0.114 <1.0 0.939 3.0 0.096

2-LG <1.0 0.697 1.0 0.318 1.6 0.211

AEA 18.3 <0.001 <1.0 0.493 11.5 0.002

DEA 15.6 <0.001 <1.0 0.360 4.9 0.035

DHEa 18.4 <0.001 1.0 0.325 7.0 0.013

LEA 25.6 <0.001 1.3 0.261 4.7 0.038

NAGly 7.5 0.010 <1.0 0.605 8.0 0.008

OEA 9.7 0.004 <1.0 0.537 1.1 0.307

PEA 5.0 0.033 <1.0 0.592 1.7 0.208

POEA 13.6 <0.001 <1.0 0.509 5.0 0.033

SEA 6.8 0.014 2.2 0.149 <1.0 0.630
a Levels of eCB and non-eCB lipids (n = 8–9 mice per group) in the prefrontal cortex of Tat transgenic mice.
Two-way ANOVAs were conducted with sex and genotype as between-subject factors. F-values and p-values are
presented from ANOVA results. Bold values indicate significance. Data (expressed as mean ± SEM in pg/mg)
with Bonferroni post hoc correction for multiple comparisons as necessary are represented in Figure 6.

4. Discussion

The present study investigated the role of the eCB system in the HIV Tat transgenic
mouse model on inhibitory GABAergic neurotransmission and how HIV Tat alters the
eCB system, including cannabinoid receptor and enzyme protein expression as well as
levels of AEA and 2-AG and related non-eCB lipids. Here we report significant alterations
on GABAergic activity upon Tat exposure based on sex, with a suppression of inhibitory
postsynaptic current (IPSCs) frequency and amplitude in Tat(+) male mPFC slices whereas
Tat(+) females demonstrated an upregulation of IPSCs frequency. Interestingly, the effec-
tiveness of PF3845 to suppress GABAergic activity in Tat transgenic mice was not altered by
Tat induction or sex and involved CB1R related mechanisms that depended on extracellular
and intracellular calcium. Additionally, our data indicated sex-dependent changes in levels
of endogenous eCB and non-eCB lipids, in the PFC of Tat transgenic mice, for AEA, DEA,
DHEa, LEA, NAGly, OEA, PEA, POEA, and SEA but not 2-AG or 2-LG, with sex effects
being significantly altered by Tat induction for AEA, DEA, DHEa, LEA, NAGly, and POEA.
No sex or Tat effects were noted for receptor or enzyme protein expression in the PFC of Tat
transgenic mice. Overall, Tat alterations on inhibitory activity in the PFC depended on sex
potentially due to sex-dependent changes of eCB and non-eCB lipid levels in the PFC upon
chronic Tat induction; on the other hand, PF3845 suppression of inhibitory GABA activity
was not altered by sex and/or Tat exposure and involved CB1R related mechanisms that
depended on extracellular and intracellular calcium.

4.1. Inhibitory Neurotransmission Is Sex-Dependently Affected by Tat Exposure

Disturbance of neurotransmitter systems and circuits plays an important role in neu-
roHIV [84–91] and growing evidence indicates that inhibitory GABA neurotransmission
is altered in the CNS of PWH [47,49]. A downregulation of the pre- and post-synaptic
inhibitory GABA system was reported selectively in the frontal neocortex of PWH with
neurocognitive impairments [47] and similar effects have been demonstrated in various
mouse models of neuroHIV [31,40,43,45], even though an upregulation of GABA activity
has also been reported depending on the brain region and synaptic marker involved [28,44].
The present study supports the downregulation of inhibitory synaptic activity in Tat(+)
male mPFC slices including action potential-dependent and -independent release of GABA
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(sIPSCs and mIPSCs, respectively). As the frequency and amplitude of mIPSCs was reduced
in male Tat(+) mice, decrease in GABAergic release could be due to pre- and post-synaptic
mechanisms, i.e., the decrease in mIPSC frequency might be related to the inhibition of
the vesicle release machinery in the presynaptic axon terminal (presynaptic inhibition)
and a decrease of postsynaptic receptors could mimic the reduction in mIPSC amplitude
(postsynaptic inhibition).

In contrast, a significant upregulation of inhibitory GABAergic neurotransmission was
noted for female PFC Tat(+) slices, specifically for IPSC frequency but not amplitude, thus
involving presynaptic but not postsynaptic inhibitory output. Existing data suggest that
sex can significantly contribute to differences in synaptic neurotransmission which might
play a role in sex-specific vulnerabilities to disease conditions, including schizophrenia,
Alzheimer’s disease, and depression [92–94]. A recent study on schizophrenia reported a
similar pattern as demonstrated in our current study, with males displaying reduced ex-
pression of GABAergic genes in the anterior cingulate cortex (ACC) of the medial PFC, and
females demonstrating an overall increase of GABA gene expression [94]. Compensatory
upstream mechanisms have been reported in schizophrenia that normalize GABA concen-
trations from an initial downregulation to an increase in synaptic activity of GABA [95].
This is interesting as the increased inhibitory synaptic activity in female mice could be
attributed to a compensatory effect, since increases in excitatory synaptic activity via the
glutamate system have been frequently reported in PWH and neuroHIV models [32,96,97].
An additional argument for a potential compensatory response of increased GABAergic
neurotransmission in the PFC of female Tat(+) mice is the selected upregulation of AEA
and related non-eCB lipids found in the PFC of Tat(+) females in the current study (Figure 6,
discussed further below).

4.2. PF3845 Decreases GABAergic Neurotransmission Independent of Sex and Genotype via
CB1R-Related Mechanisms

It is well known that cannabinoids function as retrograde messengers that activate
presynaptic CB1Rs and reduce inhibitory GABA release via inhibition of calcium chan-
nels [98,99]. Nevertheless, effects of AEA and FAAH enzyme inhibition on GABAergic
synaptic activity are variable depending on the brain region involved [45,100]. Our present
study supports a downregulation of GABAergic synaptic activity in the PFC by the FAAH
enzyme inhibitor PF3845 via CB1R-related mechanisms that is dependent on extracellular
and intracellular calcium. Whereas CB1R antagonist SR141716A prevented the PF3845-
induced decrease in GABA release, AM630, a CB2R antagonist, failed to block the PF3845-
induced effects on GABA neurotransmission. Similarly, removing extracellular calcium
prevented PF3845-induced decrease in GABA release and was also blocked by using a
voltage-gated calcium channel subtype. It has been shown previously that the sensitiv-
ity of GABA release depends on extracellular calcium with the involvement of different
voltage-gated calcium channel subtypes [101]. Further, it should be noted that removal of
intracellular calcium also blocked the PF3845-induced effects on GABA neurotransmission,
suggesting that intracellular calcium stores play a role in PF3845-mediated inhibition of
GABA release. Studies have demonstrated that cannabinoids produce neuroprotection by
reducing intracellular calcium release from ryanodine-sensitive stores [102]. Overall, it is
suggested that PF3845 activates CB1Rs presynaptically and downregulates GABA release
via the well-known CB1R-mediated retrograde synaptic signaling mechanism by inhibiting
Ca2+ channels and intracellular calcium stores [100,102–106].

An unexpected finding was that PF3845′s inhibitory effects on GABAergic synaptic ac-
tivity was not altered by sex and Tat exposure. Sex- and disease-dependent effects have been
reported for FAAH enzyme inhibitors (e.g., PF3845, URB597) in vivo, including producing
anti-anxiety effects under stressful conditions without affecting control animals [107], and
improving cognitive function in male but not female rats [108]. Further, recent studies
demonstrated Tat-induced impairment or enhancement of cannabinoid-mediated inhibi-
tion of transmitter release, depending on the brain region involved [32,48]. Nevertheless,
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previous reported effects of Tat on the cannabinoid system were specific to glutamatergic
neurotransmission and no effects were noted for the inhibitory GABAergic system [48].
Thus, whether the induced differential response by PF3845 in the presence of Tat is specific
to excitatory and not inhibitory neurotransmission and how PF3845 would affect synaptic
activity in the context of neuroHIV in vivo, especially when given chronically, remains
uncertain but is a compelling area for further investigation.

4.3. Tat Exposure Significantly Alters AEA and Related Non-eCB Lipids in the PFC of Female
Mice but Not Male Mice

Potential effects of neuroHIV on the eCB system have been reviewed recently [53,55,56].
The present study found no differences for CB1R, FAAH, and MAGL protein expression
levels in the PFC of Tat transgenic mice, potentially due to the low sample size that increased
the likelihood of type II error. Variable effects on CB1R protein expression levels have been
reported in the context of neuroHIV [20,32,71–73,109,110]. A previous study from our
laboratory reported neuronal CB1R upregulation in the infralimbic region of stressed
female Tat(+) mice compared to their control Tat(−) females via immunohistochemistry,
which was associated with behavioral deficits in an inhibitory control task [32]. The
association that CB1R expression upregulates with increased cognitive impairments has
been supported in a recent immunohistochemistry study in PWH, where CB1R levels
in neurons in the frontal lobe significantly increased with increasing degree of cognitive
impairment in PWH [73]. In comparison to cannabinoid receptor levels, much less is known
about changes of expression levels of eCB degrading enzymes in the context of neuroHIV,
including FAAH and MAGL enzymes that degrade AEA and 2-AG, respectively [58–60]. In
recent studies, FAAH was found to be overexpressed in perivascular astrocytes of cortical
SIV tissue samples [73] and neuritic plaque-associated astrocytes in Alzheimer’s disease
brains [111]. Noteworthy, even though the present study found no differences in FAAH
enzyme expression, female Tat(+) mice demonstrated upregulated levels of AEA and
related non-eCB lipids in the PFC (Figure 6). As FAAH is a degrative enzyme for AEA,
it would be beneficial to assess cell-specificity of FAAH expression in a follow up study
as it seems to be specifically localized in astrocytes and downregulation of cell-specific
FAAH expression could potentially contribute to the upregulated levels of AEA in the PFC
of female Tat(+) mice. Thus, immunohistochemistry and other molecular tests, such as
assessing mRNA expression via polymerase chain reaction, would be important methods
to complement Western blot data and should be included in future studies.

The selected upregulation of AEA and related non-eCB lipids specifically in the PFC
of Tat(+) females but not male mice is an interesting finding and parallels a previous study
that demonstrated upregulated CB1R expression levels in female Tat(+) mice which also
showed inhibitory control deficits [32]. In general, HIV literature finds a higher vulnerabil-
ity of HAND in women [112–116] even though it appears that HIV+ men and women may
have different cognitive profiles that are domain specific [117–119]. Additional studies are
needed to clarify the difference in HAND pathology between sexes and the differential
role that sex plays on the eCB system in HAND. Further, the finding of upregulated eCB
levels in Tat(+) females needs to be investigated more in detail, specifically in the light of
female Tat(+) mPFC slices demonstrating increased GABAergic synaptic activity. Not a lot
of work has looked at changes in eCB lipids in the CNS of PWH and it is unknown if eCB
ligands, including AEA or 2-AG, are increased in the PWH brain. Recent in vitro studies
from our laboratory found no significant Tat-induced changes in eCB levels but AEA and
related non-eCB lipids (PEA and/or OEA) were trending towards an upregulation upon
Tat exposure [19,70]. It is well known that AEA is synthesized and released on demand
to repair and provide homeostasis; therefore, its endogenous tone in the brain can change
depending on the insult that happens. Multiple studies have demonstrated that Tat induces
neuroinflammation, neuronal injury, and excitotoxicity in various brain regions, including
the PFC [19,32,43,45,70,97]; thus, upregulation of AEA in the PFC of Tat(+) females could be
a mechanism to counteract Tat-induced neurodegenerative changes. However, it is known
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that AEA is a partial agonist for CB1R [120] and it has been widely demonstrated that acti-
vation of CB1R reduces rather than facilitates GABAergic synaptic activity [98,99]. Similarly,
AEA can activate transient receptor potential vanilloid type 1 (TRPV1) receptors [121–123],
that also have been shown to decrease GABAergic neurotransmission in the mPFC of
mice [124]. Noteworthy, as demonstrated in the present study, structurally related lipids
to AEA, including PEA, OEA, and NAGly, which do not activate cannabinoid receptors,
are often altered in parallel with changes in AEA [125–128]. PEA and OEA activate other
G-protein-coupled receptors, including GPR55 and GPR119 [129,130], and other receptor
systems including peroxisome proliferator-activated alpha receptors PPAR-α [131,132] and
TRPV1 [133–135]. The effects of PEA on GABA activity have been demonstrated previously,
in which PEA enhanced GABA transmission in the striatum by acting on GPR55 [136].
Further, NAGly, which is an endogenous lipid derived from AEA but lacking affinity for
the CB1R, has been demonstrated to activate GPR18 [137–139]. GPR18s are specifically
found on microglia and NAGly-GPR18 signaling has been shown to exert protective effects
against excitotoxic neuronal damage [140]. We speculate that the Tat-induced changes for
AEA and related eCB lipids, including DEA and NAGly, in the female PFC, as well as the
upsurges in GABAergic neurotransmission, represent a homeostatic response to the insult
caused by Tat induction. The activation of selective PPARs, GPR55, and/or GPR18 by these
endogenous ligands may play a role in upregulating GABAergic synaptic activity. In pre-
clinical disease models it has been demonstrated that the dysregulation of the eCB system
contributes to changes in inhibitory synaptic activity in various brain regions [136,141,142].
However, the causal relationship between the eCB system and GABA activity is not clear. A
recent study demonstrated that long-term increases of GABA release were responsible for
driving changes in eCB lipid levels [143]. The exact mechanisms underlying the findings in
the present study are not investigated here and require further investigation specifically
the role that sex plays in this context.

5. Conclusions

In the present study, we evaluated the role of the eCB system in a neuroHIV mouse
model (i.e., female and male HIV-1 Tat transgenic mice) by first assessing potential protec-
tive effects elicited by a FAAH enzyme inhibitor PF3845 on inhibitory synaptic activity in
mPFC brain slices (neurotransmission; Figure 2), and second by examining changes in recep-
tor, enzyme, and lipid expression levels of the eCB system in PFC tissue (Figures 5 and 6).
Although PF3845 elicited its effects independent of sex and Tat with inhibiting GABA neu-
rotransmission for all groups in a similar manner via CB1R-related mechanisms, significant
sex differences were noted for the protein and lipid signature of the eCB system as well
as the inhibitory synaptic activity depending on Tat exposure. Specifically, female Tat(+)
animals demonstrated upregulated AEA and non-eCB lipid levels, which potentially con-
tribute to a compensatory response in the GABAergic system. Overall, our results suggest
that the eCB system is significantly altered under conditions of HAND in a sex-dependent
manner which should be taken into account when considering eCB treatments as potential
therapeutic options against neuroHIV pathogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11050857/s1, Table S1: Sample size (cell/mice) information
based on sex and genotype for all treatment conditions, Table S2: Levels of eCB and non-eCB lipids
in the prefrontal cortex of HIV Tat transgenic mice expressed in pg/mg as mean and SEM, Figure
S1: PF3845 significantly induces a decrease in the IPSC frequency in mPFC neurons independent of
Tat induction and sex, Figure S2: PF3845 effects on IPSCs in mPFC neurons are blocked by CB1R
antagonist SR141716A but not CB2R antagonist AM630, Figure S3: Effects of PF3845 on IPSCs in
mPFC neurons are blocked in the absence of extracellular calcium, Figure S4: Depletion of intracellular
calcium stores via thapsigargin affects IPSCs in mPFC neurons depending on sex and Tat induction
and blocks PF3845′s downregulating effects similarly across groups.
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