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Abstract. In this paper, we study functions of bounded variation on a complete and

connected metric space with finite one-dimensional Hausdorff measure. The definition

of BV functions on a compact interval based on pointwise variation is extended to this

general setting. We show this definition of BV functions is equivalent to the BV functions

introduced by Miranda [18]. Furthermore, we study the necessity of conditions on the

underlying space in Federer’s characterization of sets of finite perimeter on metric measure

spaces. In particular, our examples show that the doubling and Poincaré inequality

conditions are essential in showing that a set has finite perimeter if the codimension one

Hausdorff measure of the measure-theoretic boundary is finite.

1. Introduction

Functions of bounded variation, also known as BV functions, have been extensively

studied and widely applied in different areas including the calculus of variations, hyperbolic

conservation laws, and minimal surfaces [3, 6, 9]. In the context of metric measure spaces,

the notion of functions of bounded variation is introduced by Miranda [18] and it has

attracted significant attention in recent years (e.g. [1, 2, 13, 16, 17]). Motivated by the

observation that various function classes including Sobolev functions and BV functions

defined on the real line R have simple characterizations, in this work we focus our study on

BV functions in one-dimensional metric spaces. Our main result gives a simple alternative

definition of BV functions in a general one-dimensional space based on pointwise variation.

Let Ω denote an open set in the Euclidean space Rn. A function u ∈ L1
loc(Ω) is said to

have bounded variation in Ω if

‖Du‖(Ω) := sup

{ˆ
Ω
udivϕdx : ϕ ∈ C1

c (Ω;Rn), |ϕ| ≤ 1

}
<∞.

By the Riesz representation theorem, the class of functions with bounded variation in Ω,

denoted by BV(Ω), is the collection of functions whose weak first partial derivatives are

Radon measures. An equivalent characterization of BV functions is given as the L1 lim-

its of sequences of smooth functions with gradients bounded in L1. By replacing smooth

functions with locally Lipschitz functions and the absolute value of the gradient by a local
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Lipschitz constant, Miranda [18] introduced functions of bounded variation on a complete

doubling metric measure space (X, d, µ) supporting a Poincaré inequality. Equivalent def-

initions of BV functions on complete and separable metric measure spaces are studied by

Ambrosio and Di Marino [2]. They relax the locally Lipschitz functions in Miranda’s defi-

nition to a more general class of functions, with the local Lipschitz constants replaced by

upper gradients. We recall the definition of BV functions on general metric measure spaces

using upper gradients.

Definition 1.1. Given an open set Ω ⊂ X and a function u on Ω, the total variation of u

in Ω is defined by

‖Du‖(Ω) := inf

{
lim inf
i→∞

ˆ
Ω
gui dµ : ui → u in L1

loc(Ω)

}
,

where each gui is an upper gradient of ui in Ω. A function u is said to have bounded

variation on Ω if ‖Du‖(Ω) <∞.

On the real line R, various function classes usually have simpler characterizations. For

example, upon choosing a good representative, we can identify a Sobolev function u ∈
W 1,p([a, b]) with an absolutely continuous function with p-integrable derivative [7, Theorem

1, Page 163]. Functions of bounded variation on R can also be characterized by pointwise

variation. Recall that the pointwise variation of a function u : [a, b]→ R is defined as

PV(u, [a, b]) := sup

{
n−1∑
k=1

|u(tk)− u(tk+1)|, a ≤ t1 ≤ . . . ≤ tn ≤ b

}
. (1.1)

If Ω ⊂ R is open, the pointwise variation PV(u,Ω) is defined as sup
∑n

k=1 PV(u, Ik),

where {Ik}nk=1 is a finite collection of pairwise disjoint closed intervals in Ω and supremum

is taken over all such collections in Ω. The essential variation eV(u,Ω) is defined as

eV(u,Ω) := inf {PV(v,Ω) : u = v a.e. in Ω} .

For u ∈ L1
loc(Ω), we have eV(u,Ω) = ‖Du‖(Ω) [3, Theorem 3.27].

The above characterizations of function classes can be extended to general one-dimensional

metric spaces. Let X be a complete and connected metric space with finite one-dimensional

Hausdorff measure H1(X) < ∞. In [19], the notion of absolutely continuous functions is

generalized and Newtonian Sobolev functions are characterized by these absolutely contin-

uous functions. Functions of bounded variations on curves in metric measure spaces are

studied by Martio [16, 17]. In this work, we investigate the pointwise variation characteri-

zations of BV functions on the above one-dimensional space. We first give the definition:
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Definition 1.2. Let X be a complete connected metric measure space with H1(X) <∞.

For a function v on X, we define the pointwise variation as

pV(v,X) := sup

∑
j

|v ◦ γj(`j)− v ◦ γj(0)|

 ,

where the supremum is taken over all finite collections of pairwise disjoint injective arc-

length parametrized curves γj : [0, `j ]→ X. Then we define

Var(u,X) := inf{pV(v,X), v = u a.e. on X}.

A function u : X → R has bounded pointwise variation if Var(u,X) <∞.

It can be shown that when X is an interval, we have Var(u,X) = eV(u,X).

Remark 1.1. In the above definition, one could replace |v ◦γj(`j)− v ◦γj(0)| with PV(v ◦
γj , [0, `j ]) for each simple curve. Lemma 3.1 shows that the two quantities are comparable.

We say that a function ũ is a good representative of u if u = ũ almost everywhere and

Var(u,X) = pV(ũ, X). We show that every function u with Var(u,X) <∞ admits a good

representative.

Lemma 1.1 (Existence of a good representative). Suppose that (X, d,H1) is a complete

and connected metric measure space with H1(X) <∞. If Var(u,X) <∞, then there exists

a function ũ on X with ũ = u a.e. and

pV(ũ, X) = Var(u,X) = inf{pV(v,X) : v = u a.e. on X}.

We show that the class of BV functions given by Definition 1.2 is equivalent to the BV

functions given in Definition 1.1. The main theorem is stated below:

Theorem 1.1 (Main Theorem). Suppose that (X, d,H1) is a complete and connected met-

ric measure space with H1(X) <∞. Let u be a function on X. Then the following hold:

(1) If ‖Du‖(X) <∞, then Var(u,X) ≤ ‖Du‖(X).

(2) Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0 (1.2)

holds. If Var(u,X) <∞, then ‖Du‖(X) <∞.

Remark 1.2. In particular, if X is complete, connected and Ahlfors 1-regular with

H1(X) <∞, a function u on X satisfies ‖Du‖(X) <∞ if and only if Var(u,X) <∞.

Remark 1.3. The density upper bound (1.2) turns out to be essential in this characteri-

zation. Complete and connected metric spaces (X, d) with H1(X) <∞ can be constructed

such that a function u satisfies ‖Du‖(X) =∞ while Var(u,X) <∞, see Example 4.1 and

Example 4.2.
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The proof for the first part of the main theorem is standard and is given in Proposition

3.1. The second part requires a more delicate argument. Suppose u is a function with

Var(u,X) <∞. We first use the existence of good representatives to show that Var(v,X)

is lower semicontinuous with respect to convergence in L1(X). Then we prove the coarea

inequality stated below, first for curve-continuous functions, i.e. functions that are contin-

uous along every curve in X. A sequence of curve-continuous functions ui approximating u

in L1(X) can be constructed such that the limit superior of pV(ui, X) is bounded above by

C1 Var(u,X), where C1 is a constant. These facts imply the following result; χE denotes

the characteristic function of E ⊂ X.

Lemma 1.2 (Co-area Inequality). Let (X, d,H1) be a complete and connected metric mea-

sure space with H1(X) <∞. Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0

holds. Suppose Var(u,X) <∞. Then

C1 Var(u,X) ≥
ˆ ∗
R

Var(χ{u>t}, X) dt.

Using also the BV coarea formula [18, Proposition 4.2] (see detailed statement (2.4) in

Section 2), it now suffices to consider u = χE for Var(χE , X) < ∞. Hence the proof is

completed by showing that ‖DχE‖(X) is bounded above by C0 Var(χE , X).

An interesting and important aspect of the theory of BV functions lies in the analysis of

sets of finite perimeter, that is, sets whose characteristic functions are BV functions. For a

set E ⊂ Rn, Federer’s characterization of sets of finite perimeter [8] states that E has finite

perimeter if and only if the codimension one Hausdorff measure of its measure-theoretic

boundary satisfies H(∂∗E) < ∞, see Section 4 for detailed definitions. Let (X, d, µ) be

a complete and doubling metric measure space that supports a 1-Poincaré inequality and

let E ⊂ X be a measurable set. Ambrosio [1, Theorem 5.3] shows that if E has finite

perimeter then H(∂∗E) < ∞. The converse implication of Federer’s characterization in

the general metric space setting is proved by the first author in [15, Theorem 1.1].

It has not been known so far whether the doubling and Poincaré inequality conditions on

the underlying space are necessary when showing that the condition H(∂∗E) <∞ implies

that E is of finite perimeter. By constructing simple explicit examples of one-dimensional

spaces, we show that these two conditions are really essential.

This paper is organized in the following way: preliminaries are covered in Section 2 and

the proof of the main theorem is presented in Section 3. In Section 4, we construct two

examples to show the necessity of the doubling condition and the Poincaré inequality in

Federer’s characterization.
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2. Definitions and notation

Assume throughout the paper that (X, d,H1) is a complete and connected metric space

with H1(X) < ∞. If a property holds outside a set of H1-measure zero, we say that it

holds almost everywhere, abbreviated a.e. The symbol C will denote a constant that only

depends on the space X. We say that a measure µ is doubling if there exists a constant

C such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all open balls B(x, r). The space X is Ahlfors

s-regular if there is a constant C such that

C−1rs ≤ µ(B(x, r)) ≤ Crs,

whenever x ∈ X and 0 < r < diam(X). If X is Ahlfors s-regular with respect to µ, we can

replace µ by the s-dimensional Hausdorff measure Hs without losing essential information

[12, Exercise 8.11].

A continuous mapping γ : [a, b] → X is said to be a rectifiable curve if it has finite

length. A rectifiable curve always admits an arc-length parametrization (see e.g. [10,

Theorem 3.2]). If γ : [a, b] → X is a rectifiable curve and g : γ([a, b]) → [0,∞] is a Borel

function, we define ˆ
γ
g ds :=

ˆ `

0
g(γ̃(s)) ds,

where γ̃ : [0, `] → X is the arc-length parametrization of γ. From now on we will assume

all curves to be rectifiable and arc-length parametrized unless otherwise specified.

Definition 2.1 (Upper gradient). Let u : X → R. We say that a Borel function g : X →
[0,∞] is an upper gradient of u if

|u(γ(`γ))− u(γ(0))| ≤
ˆ
γ
g ds (2.1)

for every curve γ. We use the conventions ∞ −∞ = ∞ and (−∞) − (−∞) = −∞. If

g : X → [0,∞] is a µ-measurable function and (2.1) holds for 1-almost every curve, we say

that g is a 1-weak upper gradient of u. A property is said to hold for 1-almost every curve

if there exists ρ ∈ L1(X) such that
´
γ ρ ds = ∞ for every curve γ for which the property

fails.

For 1 ≤ p < ∞, the Newtonian Sobolev class N1,p(X) consists of those Lp-integrable

functions on X for which there exists a p-integrable upper gradient.

The notation uB stands for an integral average, that is,

uB :=

 
B
u dµ :=

1

µ(B)

ˆ
B
u dµ.

A metric measure space supporting a Poincaré inequality is defined in the following way.

Definition 2.2 (Space supporting Poincaré inequality). Let 1 ≤ p <∞. A metric measure

space (X, d, µ) is said to support a p-Poincaré inequality if there exists constants C > 0 and
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λ ≥ 1 such that the following holds for every pair of functions u : X → R and g : X → [0,∞],

where u is measurable and g is an upper gradient of u:

 
B(x,r)

|u− uB(x,r)| dµ ≤ Cr

( 
B(x,λr)

gp dµ

) 1
p

for every ball B(x, r).

A metric space X is quasiconvex if every two points can be joined by a curve with

length comparable to the distance between these two points. If X is complete, doubling

and supports a p-Poincaré inequality for 1 ≤ p <∞, then X is quasiconvex [11, Proposition

4.4].

We recall the following generalization of the Euclidean area formula to the case of Lips-

chitz maps f from the Euclidean space Rn into a metric space X. The proof can be found

in [14, Corollary 8].

Theorem 2.1 (Area formula). Let f : Rn → X be Lipschitz. Thenˆ
Rn
g(x)Jn(mdfx) dx =

ˆ
X

∑
x∈f−1(y)

g(x) dHn(y)

for any Borel function g : Rn → [0,∞], andˆ
A
g(f(x))Jn(mdfx) dx =

ˆ
X
g(y)H0(A ∩ f−1(y)) dHn(y)

for A ⊂ Rn measurable and any Borel function g : X → [0,∞].

We apply the above theorem to an arc-length parametrized curve. Let f = γ and

γ : [0, `]→ X. In this case, J1(mdfx) equals the metric derivative defined as

|γ̇|(t) := lim
h→0

d(γ(t+ h), γ(t))

|h|
,

and |γ̇|(t) = 1 for almost every t ∈ [0, `]. Let Γ = γ([0, `]) and let g : X → [0,∞] be a Borel

function. It follows from Theorem 2.1 thatˆ `

0
g(γ(s)) ds =

ˆ
Γ
g(y)H0([0, `] ∩ γ−1(y)) dH1(y). (2.2)

A compact and connected 1-dimensional metric space admits a nice parametrization.

The proofs of the following two classical results can be found in [4, Theorem 4.4.7, Theorem

4.4.8].

Theorem 2.2 (First Rectifiability Theorem). If E is complete and C ⊂ E is a closed

connected set such that H1(C) <∞, then C is compact and connected by simple curves.

Theorem 2.3 (Second Rectifiability Theorem). If E is complete, C ⊂ E is closed and

connected, and H1(C) <∞, then there exist countably many arc-length parametrized simple
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curves γi : [0, `i]→ C such that

H1
(
C \

∞⋃
i=1

γi([0, `i])
)

= 0.

Given u ∈ Liploc(X), we define the local Lipschitz constant by

Lipu(x) := lim sup
y→x

|u(y)− u(x)|
d(y, x)

. (2.3)

Given an open set Ω ⊂ X and a function u ∈ L1
loc(Ω), we define the total variation of u

in Ω by

‖Du‖(Ω) := inf

{
lim inf
i→∞

ˆ
Ω
gui dµ : ui ∈ N1,1

loc (Ω), ui → u in L1
loc(Ω)

}
,

where each gi is a (1-weak) upper gradient of ui in Ω. We say that a function u ∈ L1(Ω)

is of bounded variation, and denote u ∈ BV(Ω), if ‖Du‖(Ω) < ∞. A µ-measurable set

E ⊂ X is said to be of finite perimeter if ‖DχE‖(X) < ∞, where χE is the characteristic

function of E.

The following coarea formula is given in [18, Proposition 4.2]: if Ω ⊂ X is an open set

and u ∈ L1
loc(Ω), then

‖Du‖(Ω) =

ˆ ∗
R
‖Dχ{u>t}‖(Ω) dt, (2.4)

where we abbreviate {u > t} := {x ∈ Ω : u(x) > t}. We use an upper integral since

measurability is not clear, but if either side is finite, then both sides are finite and we also

have measurability.

3. Proofs of the main results

Standing assumptions: We will assume throughout this section that (X, d,H1) is

a complete and connected metric measure space with 0 < H1(X) < ∞. By the First

Rectifiability Theorem 2.2, it follows that X is compact.

3.1. Finite total variation implies finite pointwise variation. We prove part (1) of

Theorem 1.1 first.

Proposition 3.1. Let u be a function on X such that ‖Du‖(X) <∞. Then Var(u,X) ≤
‖Du‖(X).

Proof. From the definition of the total variation we find a sequence (ui) such that ui → u

in L1(X) and

lim
i→∞

ˆ
X
gi dH1 = ‖Du‖(X), (3.1)

where each gi is an upper gradient of ui. Passing to a subsequence (not relabeled), we also

have ui → u a.e. By the First Rectifiability Theorem 2.2, for every pair of points x, y ∈ X
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we find a simple curve γ : [0, `]→ X with γ(0) = x and γ(`) = y, and then by (2.2),

|ui(y)− ui(x)| ≤
ˆ
γ
gi ds ≤

ˆ
X
gi dH1 → ‖Du‖(X) as i→∞.

Thus the functions ui are uniformly bounded. Note that the sequence of Radon measures

gi dH1 has uniformly bounded mass, and so we know that passing to a subsequence (not

relabeled) we have gi dH1 ∗
⇀ dν for some Radon measure ν on X [3, Theorem 1.59]. This

reference also gives the lower semicontinuity

ν(X) ≤ lim inf
i→∞

ˆ
X
gi dH1 = ‖Du‖(X). (3.2)

Moreover, for any compact set K ⊂ X we have

ν(K) ≥ lim sup
i→∞

ˆ
K
gi dH1; (3.3)

see [3, Proposition 1.62] (and then in fact equality holds in (3.2)). Define v(x) := lim supi→∞ ui(x)

for every x ∈ X, so that v = uH1-a.e., and v is bounded since the functions ui are uniformly

bounded. Now for every simple curve γ : [0, `]→ X we have

|v ◦ γ(`)− v ◦ γ(0)| ≤ lim sup
i→∞

|ui ◦ γ(`)− ui ◦ γ(0)|

≤ lim sup
i→∞

ˆ
γ
gi ds

= lim sup
i→∞

ˆ
γ([0,`])

gi dH1 by (2.2)

≤ ν(γ([0, `])) by (3.3).

It follows that for any finite collection of pairwise disjoint simple curves γj : [0, `j ]→ X,∑
j

|v ◦ γj(`j)− v ◦ γj(0)| ≤
∑
j

ν(γj([0, `j ])) ≤ ν(X) ≤ ‖Du‖(X) by (3.2).

It follows that pV(v,X) ≤ ‖Du‖(X) and so Var(u,X) ≤ ‖Du‖(X). �

3.2. Finite pointwise variation implies finite total variation. The proof of part (2)

of Theorem 1.1 is more involved. We divide the argument into several parts.

3.2.1. Existence of a good representative. We first show that every u with Var(u,X) <∞
admits a good representative ũ. As a result, Var(u,X) turns out to be lower semicontinuous

with respect to convergence in L1(X).

Note that we can define an alternative version of the pointwise variation of a function v

on X by

PV(v,X) := sup

∑
j

PV(v ◦ γj)

 ,
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where the supremum is taken over finite collections of pairwise disjoint simple curves

γj : [0, `j ] → X, and we denote PV(v ◦ γj) := PV(v ◦ γj , [0, `j ]); recall (1.1). Then ob-

viously pV(v,X) ≤ PV(v,X). Conversely, we have the following.

Lemma 3.1. For any function v on X, we have PV(v,X) ≤ 2 pV(v,X).

Proof. Consider a simple curve γ. Take a partition 0 = t0 ≤ t1 ≤ . . . ≤ tn = `γ . Suppose n

is odd (the case of even n is similar). Then the subcurves γ|[tk,tk+1]
, for k = 0, 2, . . . , n− 1,

are disjoint, and so are the subcurves γ|[tk,tk+1]
for k = 1, 3, . . . , n − 2. Let γk be γ|[tk,tk+1]

reparametrized by arc-length. Then

n−1∑
k=0

|v(γ(tk))− v(γ(tk+1))|

=
∑

k=0,2,...,n−1

|v(γk(0))− v(γk(`γk))|+
∑

k=1,3,...,n−2

|v(γk(0))− v(γk(`γk))|.

Taking supremum over all partitions, we get PV(v ◦ γ, [0, `γ ]) ≤ 2 pV(v,X). If we consider

collections of pairwise disjoint simple curves γj , and if we do the above for each γj , we

obtain that PV(v,X) ≤ 2 pV(v,X). �

Next we show that we can find a good representative ũ of any function u, with pV(ũ, X) =

Var(u,X). In proving this we will take inspiration from Martio [16]. Given a function v

on X and a set D ⊂ X, we define

pVD(v,X) := sup

∑
j

|v ◦ γj(`j)− v ◦ γj(0)|

 ,

where the supremum is taken over finite collections of pairwise disjoint simple curves

γj : [0, `j ]→ X with endpoints γj(0), γj(`j) ∈ D.

Proposition 3.2. Let D ⊂ X be an arbitrary set with H1(X\D) = 0. Suppose pVD(v,X) <

∞. Then there exists a function ve on X such that ve = v on D and pV(ve, X) =

pVD(v,X).

Proof. If x ∈ D, define ve(x) = v(x). Fix a point z0 ∈ D. For any point x ∈ X \ D, by

the First Rectifiability Theorem (Theorem 2.2), there exists a simple curve γx : [0, `x]→ X

with γx(0) = x and γx(`x) = z0. We define

ve(x) := lim
t→0+, γx(t)∈D

v ◦ γx(t).

The limit exists since the quantity

sup

{
n−1∑
k=1

|v ◦ γx(tk)− v ◦ γx(tk+1)|, 0 ≤ t1 ≤ . . . ≤ tn ≤ `x, γx(tk) ∈ D

}
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is finite, which follows from the condition pVD(v,X) < ∞ just as in Lemma 3.1. Then

we show that ve : X → R, with ve = v on D, satisfies pV(ve, X) = pVD(v,X). It is clear

that pV(ve, X) ≥ pVD(v,X). Conversely, let {γj}nj=1 be an arbitrary collection of pairwise

disjoint curves. If all the endpoints γj(0), γj(`j) ∈ D, then

n∑
j=1

|v ◦ γj(`j)− v ◦ γj(0)| =
n∑
j=1

|ve ◦ γj(`j)− ve ◦ γj(0)|.

If there exists a point pj = γj(`j) ∈ X \D (or γj(0) ∈ X \D, or both), then we denote the

curve connecting z0 and pj in the definition of the function value of ve at pj by γpj : [0, `pj ]→
X. Let ε > 0 be arbitrary. We discuss two cases:

(1) If there exists δ > 0 such that γj intersects with γpj only at pj inside B(pj , δ), then

we define a simple curve γ̃j : [0, ˜̀j ]→ X by

γ̃j(t) :=

γj(t) if 0 ≤ t ≤ `j
γpj (t− `j) if `j ≤ t ≤ ˜̀j

where ˜̀j ≤ `j + δ. By choosing ˜̀j sufficiently close to `j , we have that

|v ◦ γ̃j(˜̀j)− ve ◦ γj(`j)| < ε

2n
.

Likewise, if pj = γj(0) ∈ X \D, we can also extend γj slightly to γ̃j by attaching

a small piece of γpj at the endpoint such that

|v ◦ γ̃j(0)− ve ◦ γj(0)| < ε

2n
.

(2) If for every δ > 0 there exists q ∈ B(pj , δ) with q 6= pj such that q = γj(t̃) = γpj (t)

for some t̃, t, then we define γ̃j : [0, ˜̀j ]→ X as the restriction of γj to [0, t̃], so that

|v ◦ γ̃j(˜̀j)− ve ◦ γj(`j)| = |v ◦ γj(t̃)− ve ◦ γj(`j)|
= |v ◦ γpj (t)− ve(pj)|

≤ ε

2n
,

if we choose t sufficiently close to 0. A similar modification works for the case when

pj = γj(0).

Then we get a new collection of curves {γ̃j}nj=1 defined as above if at least one of the

endpoints of γj belong to X \ D. Furthermore, since the curves γj are pairwise disjoint,

we can choose δ sufficiently small such that the curves γ̃j are pairwise disjoint. Hence, we

get that
n∑
j=1

|ve ◦ γj(`j)− ve ◦ γj(0)| ≤
n∑
j=1

|v ◦ γ̃j(˜̀j)− v ◦ γ̃j(0)|+ ε.

This implies that pV(ve, X) ≤ pVD(v,X), and pV(ve, X) = pVD(v,X) follows. �
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Proposition 3.3. Suppose Var(u,X) < ∞. Then there exists a function ũ on X with

ũ = u a.e. and

pV(ũ, X) = Var(u,X) = inf{pV(v,X) : v = u a.e. on X}.

Proof. Take a function v = u a.e. with pV(v,X) <∞. Let ui : X → R be a sequence such

that ui = v on Di with H1(X \ Di) = 0 and pV(vi, X) → Var(u,X). Let D0 :=
⋂
iDi.

Then ui = v on D0 and H1(X \D0) = 0. By Proposition 3.2 there exists ũ : X → R such

that ũ = v on D0 and

pV(ũ, X) = pVD0
(v,X) = pVD0

(ui, X) ≤ pV(ui, X)→ Var(u,X) as i→∞.

�

We have the following lower semicontinuity results.

Proposition 3.4. Suppose D ⊂ X and vi(x)→ v(x) for all x ∈ D. Then

pVD(v,X) ≤ lim inf
i→∞

pVD(vi, X).

Next suppose ui → u in L1(X). Then

Var(u,X) ≤ lim inf
i→∞

Var(ui, X).

Proof. The first claim is easy to check. To prove the second, we can assume that the right-

hand side is finite and in fact that Var(ui, X) <∞ for each i ∈ N, and then we can choose

good representatives ũi. Passing to a subsequence (not relabeled) we have ũi(x) → u(x)

for every x ∈ D with H1(X \D) = 0. By the first claim,

pVD(u,X) ≤ lim inf
i→∞

pVD(ũi, X)

≤ lim inf
i→∞

pV(ũi, X)

= lim inf
i→∞

Var(ui, X) <∞.

(3.4)

By Proposition 3.2, there exists an extension ue for u restricted to D satisfying ue = u on

D and pV(ue, X) = pVD(u,X). In particular, ue = u a.e. on X. We get

Var(u,X) = inf{pV(v,X) : v = u a.e. on X}

≤ pV(ue, X)

= pVD(u,X)

= lim inf
i→∞

Var(ui, X)

by (3.4). �

3.2.2. Approximation by curve-continuous functions. We say that a function v on X is

curve-continuous if v◦γ is continuous for every curve γ inX. In this part, we exploit the nice

properties of curve-continuous functions to show that every function with Var(u,X) <∞
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is H1-measurable and it can be approximated in L1(X) by a sequence of curve-continuous

functions ui such that

lim sup
i→∞

pV(ui, X) ≤ C1 Var(u,X)

for some constant C1 depending only on C0 in the density upper bound condition (1.2).

We first show that every curve-continuous function is H1 measurable.

Lemma 3.2. Let v be a curve-continuous function on X. Then v is H1-measurable.

Proof. Let t ∈ R. It suffices to show that {v ≥ t} isH1-measurable. By curve-continuity, for

each curve γ : [0, `]→ X the set γ([0, `])∩{v ≥ t} is compact. By the Second Rectifiability

Theorem 2.3, there exist curves γj : [0, `j ]→ X, j ∈ N, such that

H1

X \ ∞⋃
j=1

γj([0, `j ])

 = 0.

The set
⋃∞
j=1(γj([0, `j ]) ∩ {v ≥ t}) is a Borel set and differs from {v ≥ t} only by a set of

H1-measure zero. �

For a function v on X and t ∈ R, r > 0, we define the truncations vt := min{t, v} and

vt,t+r := max{t,min{t+ r, v}}.

Lemma 3.3. Let v be a curve-continuous function on X with pV(v,X) <∞ and let t ∈ R,

r > 0. Then

pV(vt, X) + pV(vt,t+r, X) ≤ pV(vt+r, X).

Proof. Consider a curve γ used in estimating pV(vt, X) <∞. Note that vt ≡ t in {v ≥ t}.
Thus, by also reversing direction if necessary, we can assume that γ(0) ∈ {v < t}. Suppose

also γ(`γ) ∈ {v < t}, but γ intersects {v ≥ t}. Let s1, s2 be the smallest and largest

number, respectively, for which γ(s1), γ(s2) ∈ {v ≥ t}; these exist by the curve-continuity.

If ε > 0, by curve-continuity we find s̃1 < s1, s̃2 > s2 such that vt(γ(s̃1)) > t − ε and

vt(γ(s̃2)) > t − ε. Then for the subcurves γ1 := γ|[0,s̃1] and γ2 := γ|[s̃2,`γ ] (reparametrized

by arc-length) we have

|vt(γ1(0))− vt(γ1(`γ1))| ≥ |vt(γ(0))− t| − ε

and

|vt(γ2(0))− vt(γ2(`γ2))| ≥ |vt(γ(`γ))− t| − ε.

Thus

|vt(γ1(0))− vt(γ1(`γ1))|+ |vt(γ2(0))− vt(γ2(`γ2))| ≥ |vt(γ(0))− vt(γ(`γ))| − 2ε.

Since ε > 0 was arbitrary, we conclude that in the definition of pV(v,X), we can replace

the curve γ by two curves that are contained in {v < t}. Similarly, if γ(0) ∈ {v < t} and

γ(`γ) ∈ {v ≥ t}, we can replace such γ by one subcurve that is in {v < t}.



BV FUNCTIONS ON ONE-DIMENSIONAL SPACES 13

Now fix ε > 0 and take a collection of pairwise disjoint simple curves γj contained inside

{v < t} such that
N1∑
j=1

|vt ◦ γj(`j)− vt ◦ γj(0)|+ ε > pV(vt, X).

Analogously, we find a collection of pairwise disjoint simple curves γj contained inside

{v > t} such that

N2∑
j=N1+1

|vt,t+r ◦ γj(`j)− vt,t+r ◦ γj(0)|+ ε > pV(vt,t+r, X).

Now the curves γj , j = 1, . . . , N2, are pairwise disjoint, and thus

pV(vt, X) + pV(vt,t+r, X)

≤
N1∑
j=1

|vt ◦ γj(`j)− vt ◦ γj(0)|+
N2∑

j=N1+1

|vt,t+r ◦ γj(`j)− vt,t+r ◦ γj(0)|+ 2ε

=

N2∑
j=1

|vt+r ◦ γj(`j)− vt+r ◦ γj(0)|+ 2ε

≤ pV(vt+r, X) + 2ε.

Letting ε→ 0, we get pV(vt, X) + pV(vt,t+r, X) ≤ pV(vt+r, X). �

Lemma 3.4. Let v be a curve-continuous function on X and t ∈ R, r > 0. Then

pV(χ{v>t}, X) ≤ lim inf
r→0

1

r
pV(vt,t+r, X).

Proof. Let γ : [0, `]→ X be a simple curve. We have for every s ∈ [0, `]

χ{v>t}(γ(s)) = lim
r→0

vt,t+r(γ(s))− t
r

.

In fact, if v(γ(s)) ≤ t, then χ{v>t}(γ(s)) = 0 and vt,t+r(γ(s)) = t. If v(γ(s)) > t, then

χ{v>t}(γ(s)) = 1 . Choose r0 sufficiently small such that v(γ(s)) ≥ t+ r for all r ≤ r0 and

then vt,t+r(γ(s)) = t+ r.

Now

|χ{v>t} ◦ γ(`)− χ{v>t} ◦ γ(0)| = lim
r→0

r−1|vt,t+r ◦ γ(`)− vt,t+r ◦ γ(0)|.
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Let ε > 0. Then take a collection of pairwise disjoint injective curves γj such that

min{pV(χ{v>t}, X), ε−1} ≤
N∑
j=1

|χ{v>t} ◦ γj(`j)− χ{v>t} ◦ γj(0)|+ ε

=

N∑
j=1

lim
r→0

r−1|vt,t+r ◦ γj(`j)− vt,t+r ◦ γj(0)|+ ε

= lim
r→0

r−1
N∑
j=1

|vt,t+r ◦ γj(`j)− vt,t+r ◦ γj(0)|+ ε

≤ lim inf
r→0

r−1 pV(vt,t+r, X) + ε.

Letting ε→ 0, we get the result. �

For any functions v, w on X, we clearly have the subadditivity

pV(v + w,X) ≤ pV(v,X) + pV(w,X). (3.5)

Define the inner metric din by

din(x, y) := inf{`γ : γ is a curve such that γ(0) = x, γ(`γ) = y}, x, y ∈ X.

Denote a ball with respect to the inner metric by Bin(x, r).

Proposition 3.5. Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0

holds. Suppose Var(u,X) < ∞. Then u is H1-measurable and there exists a sequence of

curve-continuous functions ui → u in L1(X) such that

lim sup
i→∞

pV(ui, X) ≤ C1 Var(u,X).

for a constant C1 that depends only on C0.

Proof. By Proposition 3.3 we find a good representative v of u. Note that v is necessarily

bounded; if it were not, we could fix a point x0 and find points xj with |v(xj)| → ∞ as

j → ∞, and join x0 to each xj with a curve γj (by the First Rectifiability Theorem), to

get

pV(v,X) ≥ |v(γj(`γj ))− v(γj(0))| = |v(xj)− v(x0)| → ∞ as j →∞.

Fix ε > 0. Consider all the points where v is not curve-continuous; such points are

contained in the “jump sets”, defined for κ > 0 by

Jv,κ := {x ∈ X : for all δ > 0 there exist pairwise disjoint curves γj ⊂ Bin(x, δ)

such that
∑
j

|v(γj(`j))− v(γj(0))| ≥ κ}. (3.6)



BV FUNCTIONS ON ONE-DIMENSIONAL SPACES 15

We can see that each Jv,κ is finite (else we would get pV(v,X) = ∞). Let also Jv :=⋃
κ>0 Jv,κ. For every x ∈ Jv, we define the “size of the jump”

Jv(x) := sup{κ > 0 : x ∈ Jv,κ}.

Let ε > 0. The set Jv is at most countable, and so we find an open set Wε ⊃ Jv with

H1(Wε) < ε.

Let xk be an enumeration of all the points in Jv, with the jumps Jv(xk) in decreasing

order. Note first that by choosing suitable short curves near the jump points, we find that

pV(v,X) ≥
∞∑
k=1

Jv(xk). (3.7)

We modify v as follows. We find r1 > 0 such that B1 = Bin(x1, r1) ⊂Wε and, using also

(1.2) (below pV(v, 2B1) means that all the curves considered are inside 2B1 = Bin(x1, 2r1))

pV(v, 2B1) ≤ 2Jv(x1) and
H1(2B1)

r1
< 2C0. (3.8)

Choose a function η1 that is r−1
1 -Lipschitz with respect to din, with η1 = 1 in B1 and η1 = 0

outside 2B1. Define (vB1 denotes integral average)

w1 := v(1− η1) + η1 · vB1 .

Note that Jw1 ⊂ Jv \ {x1} and that

Jw1(xk) ≤ Jv(xk) for all k ≥ 2. (3.9)

Note also that w1 = v+η1(vB1 −v) and consider pV(η1(vB1 −v), X). Let γj be pairwise

disjoint simple curves. Note that η1(vB1 − v) 6= 0 only inside the ball 2B1. By splitting the

curves γj into subcurves if necessary, we can assume that each of them is contained inside

the ball 2B1. Then we have

|(η1(vB1 − v))(γj(`j))− (η1(vB1 − v))(γj(0))|

≤ |η1(γj(`j))(vB1 − v)(γj(`j))− η1(γj(`j))(vB1 − v)(γj(0))|

+ |η1(γj(`j))(vB1 − v)(γj(0))− η1(γj(0))(vB1 − v)(γj(0))|

≤ |v(γj(`j))− v(γj(0))|+ |η1(γj(`j))− η1(γj(0))| sup
2B1

|vB1 − v|

≤ |v(γj(`j))− v(γj(0))|+ |η1(γj(`j))− η1(γj(0))| · 2Jv(x1) by (3.8)

≤ |v(γj(`j))− v(γj(0))|+ r−1
1 `γj · 2Jv(x1).
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Thus∑
j

|(η1(vB1 − v))(γj(`j))− (η1(vB1 − v))(γj(0))|

≤
∑
j

|v(γj(`j))− v(γj(0))|+ r−1
1 H

1(2B1)2Jv(x1) ≤ (2 + 4C0)Jv(x1) by (3.8)

and so

pV(η1(vB1 − v), X) ≤ (2 + 4C0)Jv(x1).

Finally, by (3.5),

pV(w1, X) ≤ pV(v,X) + pV(η1(vB1 − v), X) ≤ pV(v,X) + (2 + 4C0)Jv(x1). (3.10)

Now we can do this inductively. For each k ∈ N, provided that xk+1 ∈ Jwk (if not, we

just let wk+1 = wk) we choose rk+1 > 0 such that 2Bk+1 = Bin(xk+1, 2rk+1) ⊂Wε and

pV(wk, 2Bk+1) ≤ 2Jwk(xk+1) and
H1(2Bk+1)

rk+1
< 2C0.

As above, we choose a cutoff function ηk+1 and then define

wk+1 := wk(1− ηk+1) + ηk+1 · (wk)Bk+1
.

We claim that for all k ∈ N, we have

pV(wk, X) ≤ pV(v,X) + (2 + 4C0)
k∑

m=1

Jv(xm)

and that

Jwk(xm) ≤ Jv(xm) for all m ≥ k + 1. (3.11)

We have shown these to be true for k = 1 (recall also (3.9)), and (3.11) is easily seen to

hold with k replaced by k + 1. Moreover,

pV(wk+1, X) ≤ pV(wk, X) + (2 + 4C0)Jwk(xk+1) (just as in (3.10))

≤ pV(v,X) + (2 + 4C0)

k∑
m=1

Jv(xm) + (2 + 4C0)Jwk(xk+1) by ind. hyp.

≤ pV(v,X) + (2 + 4C0)
k+1∑
m=1

Jv(xm) by (3.11).

Then let w := limk→∞wk. Note that the convergence is uniform, in particular pointwise,

since

|wk+1 − wk| ≤ 2Jv(xk+1)
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and recalling (3.7). Now by Proposition 3.4 and (3.7),

pV(w,X) ≤ lim inf
k→∞

pV(wk, X)

≤ pV(v,X) + (2 + 4C0)
∞∑
k=1

Jv(xk) ≤ (3 + 4C0) pV(v,X).

Since wk has jump discontinuities on curves with jump size at most Jv(xk+1) → 0 as

k →∞, and since wk → w uniformly, we see that w is curve-continuous.

Recall that w also depends on ε > 0, with w = v outside the open set Wε with H1(Wε) <

ε. Recall also that v is bounded, and furthermore it is easy to check from the construction

that infX v ≤ w ≤ supX v. Choosing ε = 1/i and letting ui be the corresponding curve-

continuous function w, we now get ui → u a.e., and so u is H1-measurable by Lemma 3.2,

and then ui → u in L1(X) and

lim sup
i→∞

pV(ui, X) ≤ (3 + 4C0) pV(v,X) = (3 + 4C0) Var(u,X).

�

3.2.3. Coarea inequality and the conclusion. In the last part, we will show a coarea in-

equality and prove the implication from sets with finite pointwise variation to finite total

variation. First we show the following coarea inequality.

Proposition 3.6. Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0

holds. Suppose Var(u,X) <∞. Then

C1 Var(u,X) ≥
ˆ ∗
R

Var(χ{u>t}, X) dt.

Note that we use an upper integral since measurability is not clear.

Proof. First assume that u is curve-continuous and that pV(u,X) <∞. Define (recall that

ut = min{t, u})
m(t) := pV(ut, X), t ∈ R.

Then m is an increasing function and so

pV(u,X) ≥
ˆ ∞
−∞

m′(t) dt.

Let ε > 0. Now by Lemma 3.3,

m(t+ r)−m(t) ≥ pV(ut,t+r, X).

Furthermore, Lemma 3.4 implies that

lim inf
r→0

m(t+ r)−m(t)

r
≥ lim inf

r→0

pV(ut,t+r, X)

r
≥ pV(χ{u>t}, X).
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Thus we have

pV(u,X) ≥
ˆ ∗
R

pV(χ{u>t}, X) dt ≥
ˆ ∗
R

Var(χ{u>t}, X) dt. (3.12)

Now for a general function u on X with Var(u,X) < ∞, by Proposition 3.5 we find a

sequence of curve-continuous functions ui with ui → u in L1(X) and

lim sup
i→∞

pV(ui, X) ≤ C1 Var(u,X).

For every x ∈ X,
ˆ ∞
−∞
|χ{ui>t}(x)− χ{u>t}(x)| dt =

ˆ max{ui(x),u(x)}

min{ui(x),u(x)}
dt = |ui(x)− u(x)|.

Hence by Fubini’s theorem (recall the measurability statement of Proposition 3.5)ˆ
X
|ui − u| dH1 =

ˆ
X

ˆ ∞
−∞
|χ{ui>t}(x)− χ{u>t}(x)| dt dH1(x)

=

ˆ ∞
−∞

ˆ
X
|χ{ui>t}(x)− χ{u>t}(x)| dH1(x) dt.

Thus ‖χ{ui>t} − χ{u>t}‖L1(X) → 0 in L1(R) and so we can find a subsequence of ui (not

relabeled) such that

‖χ{ui>t} − χ{u>t}‖L1(X) → 0 for a.e. t ∈ R.

Then for such t, by the lower semicontinuity of Proposition 3.4,

Var(χ{u>t}, X) ≤ lim inf
i→∞

Var(χ{ui>t}, X).

We find measurable functions hi ≥ χ{ui>t} on R such that

lim inf
i→∞

ˆ ∞
−∞

hi(t) dt = lim inf
i→∞

ˆ ∗
R

Var(χ{ui>t}, X) dt.

Then by Fatou’s lemmaˆ ∗
R

Var(χ{u>t}, X) dt ≤
ˆ ∗
R

lim inf
i→∞

Var(χ{ui>t}, X) dt

≤
ˆ
R

lim inf
i→∞

hi(t) dt

≤ lim inf
i→∞

ˆ
R
hi(t) dt

= lim inf
i→∞

ˆ ∗
R

Var(χ{ui>t}, X) dt

≤ lim inf
i→∞

pV(ui, X) by (3.12)

≤ C1 Var(u,X).

�
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Due to the above coarea inequality, it will suffice to consider characteristic functions

u = χE for E ⊂ X.

Proposition 3.7. Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0

holds. Let E ⊂ X. Then ‖DχE‖(X) ≤ C0 Var(χE , X).

Proof. We can assume that Var(χE , X) <∞. By Proposition 3.3 we find a good represen-

tative v of χE , so that pV(v,X) = Var(χE , X). Let D := {x ∈ X : v(x) ∈ {0, 1}}, so that

H1(X \D) = 0. By Proposition 3.2 and its proof, we know that there is a function ve on

X with ve = v on D, taking only the values 0, 1, with pV(ve, X) = pVD(v,X) ≤ pV(v,X)

and so in fact pV(ve, X) = Var(χE , X). In conclusion, we can take the good representative

to be χF for F ⊂ X, and then pV(χF , X) = Var(χE , X).

Recall the definition of the jump set from (3.6); it is not difficult to see that now

JχF = {x ∈ X : for all δ > 0 there exists a curve γ ⊂ Bin(x, δ)

that intersects both F and X \ F}.

We call this the “curve boundary” ∂cF := JχF . Clearly any curve intersecting both F and

X \F needs to intersect also ∂cF . Now if H0(∂cF ) =∞, then we can pick arbitrarily many

disjoint curves γ : [0, `] → X with |χF (γ(`)) − χF (γ(0))| = 1 and thus pV(χF , X) = ∞.

But since pV(χF , X) < ∞, actually H0(∂cF ) < ∞. In other words, ∂cF = {x1, . . . , xN}
with N ≤ pV(χF , X) = Var(χE , X).

Take a sequence δi ↘ 0 such that the balls B(xj , δ1), j = 1, . . . , N , are pairwise disjoint.

Fix i ∈ N. By (1.2), for each j = 1, . . . , N we find δj,i ∈ (0, δi) such that

H1(B(xj , δj,i))

δj,i
< C0. (3.13)

For each j = 1, . . . , N , let ηj,i be a 1/δj,i-Lipschitz function with ηj,i(xj) = 1 and ηj,i = 0

outside B(xj , δj,i). Define

vi := max {η1,i, . . . , ηN,i} and ui := max {χF , η1,i, . . . , ηN,i} .

Let

gi :=
N∑
j=1

χB(xj ,δj,i)

δj,i
.

Note that since the pointwise Lipschitz constant (2.3) is an upper gradient [5, Proposition

1.14], and by [5, Corollary 2.21], we know that χB(xj ,δj,i)/δj,i is a 1-weak upper gradient of

ηj,i (recall Definition 2.1). Then gi is a 1-weak upper gradient of vi.

Then we can verify that gi is a 1-weak upper gradient of ui. For this we need to check

three cases for a curve γ : [0, `] → X with end points γ(0) = x and γ(`) = y. We can
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assume that the pair (vi, gi) satisfies the upper gradient inequality on the curve γ as well

as all of its subcurves [5, Lemma 1.40]. The first case is x, y ∈ F , where

|ui(x)− ui(y)| = 0 ≤
ˆ
γ
gi ds.

The second case is x, y ∈ X \ F . Here

|ui(x)− ui(y)| = |vi(x)− vi(y)| ≤
ˆ
γ
gi ds.

The third case is x ∈ F and y ∈ X \ F . As mentioned before, γ now necessarily intersects

∂cF . Thus there is some t ∈ [0, `] such that γ(t) ∈ ∂cF , and thus γ(t) = xj for some j.

Note that ui(γ(0)) = 1, ui(γ(t)) = vi(γ(t)) = 1, and ui(γ(`)) = vi(γ(`)). It follows that

|ui(γ(`))− ui(γ(0))| ≤ |ui(γ(`))− ui(γ(t))|+ |ui(γ(t))− ui(γ(0))|

= |vi(γ(`))− vi(γ(t))| ≤
ˆ
γ
gi ds.

In conclusion, gi is a 1-weak upper gradient of ui. It is easy to see that also ui → χE in

L1(X). Now we have, using (3.13),

‖DχE‖(X) ≤ lim inf
i→∞

ˆ
X
gi dH1 ≤ lim inf

i→∞

N∑
j=1

H1(B(xj , δj,i))

δj,i
≤ C0N ≤ C0 Var(χE , X).

�

Proposition 3.8. Suppose there exists a constant C0 such that for all x ∈ X

lim inf
r→0

H1(B(x, r))

r
< C0

holds. Suppose Var(u,X) <∞. Then ‖Du‖(X) ≤ C Var(u,X).

Proof. From Var(u,X) <∞ it follows that u is essentially bounded, and u isH1-measurable

by Proposition 3.5. Combined with the fact that H1(X) <∞, we get u ∈ L1(X). By the

BV coarea formula (2.4), Proposition 3.7, and the coarea inequality of Proposition 3.6, it

follows that

‖Du‖(X) =

ˆ ∗
R
‖Dχ{u>t}‖(X) dt ≤ C0

ˆ ∗
R

Var(χ{u>t}, X) dt ≤ C0C1 Var(u,X).

�

Theorem 1.1 follows by combining Proposition 3.1 and Proposition 3.8.

4. Federer’s characterization of sets of finite perimeter

Let us briefly consider a more general metric space (X, d, µ), where µ is a Radon measure.

The codimension one Hausdorff measure is defined for any set A ⊂ X by

H(A) := lim
R→0
HR(A)
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with

HR(A) := inf

{∑
i∈I

µ(B(xi, ri))

ri
: A ⊂

⋃
i∈I

B(xi, ri), ri ≤ R

}
,

where I ⊂ N is a finite or countable index set. Note that in an Ahlfors one-regular space,

H is comparable to H0.

Given any set E ⊂ X, the measure-theoretic boundary ∂∗E is the set of points x ∈ X
for which

lim sup
r→0

µ(B(x, r) ∩ E)

µ(B(x, r))
> 0 and lim sup

r→0

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

Recall from the Introduction that if (X, d, µ) is a complete metric space such that µ is

doubling and the space supports a 1-Poincaré inequality, then the condition H(∂∗E) <∞
for a measurable set E ⊂ X implies that ‖DχE‖(X) < ∞. This is the “if” direction of

Federer’s characterization of sets of finite perimeter.

Define a space as a subset of R2 as follows. First define for each j ∈ N

Aj :=

2j−1⋃
k=0

Ijk,

where

Ijk :=

{(
t cos

(
kπ

2j

)
, t sin

(
kπ

2j

))
∈ R2 : t ∈ [−1, 1]

}
is a line segment passing through the origin with length H1(Ijk) = 2. The angle between Ijk
and the positive x-axis is kπ

2j
and the angle between Ijk and Ijk−1 is π

2j
. For any set A ⊂ R2

and a > 0, we let

aA := {(ax, ay) : (x, y) ∈ A}.

Then consider Ãj := 2−2j−1Aj for each j ∈ N. Note that Ãj is a collection of 2j line

segments Ĩjk with length H1(Ĩjk) = 2−2j .

Define

X :=
∞⋃
j=1

Ãj . (4.1)

We first show that the doubling condition is essential in the “if” direction of Federer’s

characterization.

Example 4.1. Equip the set X in (4.1) with the geodesic metric and the measure H1. We

have

H1(X) ≤
∞∑
j=1

2jH1(Ĩjk) =

∞∑
j=1

2−j = 1.

Clearly, the density upper bound condition (1.2) no longer holds at 0. Moreover, H1 is not

doubling: the doubling condition fails when we choose points x close to 0 with 0 ∈ B(x, 2r)

and 0 /∈ B(x, r).
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Now we show that this space does support a 1-Poincaré inequality. First consider a ball

B(0, r). Suppose u is a function on X with u(0) = 0 and let g be an upper gradient of u.

Every x ∈ B(0, r) is connected to 0 by a line segment I. We haveˆ
I
g dH1 ≥ |u(x)− u(0)| = |u(x)|.

Note that B(0, r) consists of countably many line segments {Ij}∞j=1 that have the origin as

one end point (some may be half-open). By the above, we have

|u(x)| ≤
ˆ
Ij

g dH1 for every x ∈ Ij .

Thusˆ
B(0,r)

|u| dH1 =

∞∑
j=1

ˆ
Ij

|u| dH1 ≤
∞∑
j=1

(
H1(Ij)

ˆ
Ij

g dH1
)

≤ r
ˆ
B(0,r)

g dH1 since H1(Ij) ≤ r for all j ∈ N.

Now consider a general ball B(x, r) and a function u ∈ L1(X) with upper gradient

g. If B(x, r) is contained in only one line segment, the Poincaré inequality obviously

holds since it holds in R. So we can assume that 0 ∈ B(x, r). We can also assume that´
B(0,2r) g dH

1 <∞ and then u is a bounded function in B(0, 2r). Thus we can assume that

u(0) = 0. Nowˆ
B(x,r)

|u− uB(x,r)| dH1 ≤ 2

ˆ
B(x,r)

|u| dH1 (see e.g. [5, Lemma 4.17])

≤ 2

ˆ
B(0,2r)

|u| dH1

≤ 4r

ˆ
B(0,2r)

g dH1

≤ 4r

ˆ
B(x,3r)

g dH1.

Thus a 1-Poincaré inequality holds with CP = 4 and λ = 3.

Next, for each j ∈ N choose

Ij1 = {(t cos(2−jπ), t sin(2−jπ)), t ∈ [−1, 1]}

and then let

E :=
∞⋃
j=1

Ĩj1 =
∞⋃
j=1

2−2j−1Ij1 . (4.2)

Consider any sequence (ui) ⊂ N1,1(X) with ui → χE in L1(X), with upper gradients gi.

We can also assume that ui → χE a.e. Thus for each j ∈ N we can choose a point xj ∈ Ĩj1 ,

xj 6= 0 and a point x′j in Ãj \ Ĩj1 such that
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(1) ui(xj)→ 1 as i→∞;

(2) ui(x
′
j)→ 0 as i→∞;

(3) the curves γj joining x′j and xj only intersect at the origin.

Now ˆ
X
gi dH1 ≥

∞∑
j=1

ˆ
γj

gi dH1 ≥
∞∑
j=1

|ui(x′j)− ui(xj)| → ∞ as i→∞.

Hence ‖DχE‖(X) =∞.

It is easy to check that 0 /∈ ∂∗E and then in fact ∂∗E = ∅. This shows that the “if”

direction of Federer’s characterization does not hold without the doubling condition.

On the other hand, pV(χE , X) = 1 since only a curve intersecting 0 can give nonzero

variation. Thus we do need condition (1.2) in Proposition 3.7 and Proposition 3.8.

The following example shows that the Poincaré inequality cannot be dropped in the

implication from H(∂∗E) <∞ to ‖DχE‖(X) <∞ either.

Example 4.2. Equip the set X in (4.1) with the metric inherited from R2 and the mea-

sure H1. In this case, we will show that H1 is doubling on X, but X does not support

any Poincaré inequality since it is clearly not quasiconvex (recall Definition 2.2 and the

paragraph after it). Let x ∈ X. If x 6= 0, we have 2−2k−3 ≤ d(x, 0) ≤ 2−2k−1 for some

k ∈ N. Suppose first that r ≤ 2−2k−4. Recalling the notation from the previous example,

note that Ãk consists of 2k line segments, which are at angles 2π× 2−k−1 from each other.

By simple geometric reasoning we see that the ball B(x, r/2) is intersected by at least

r

2
× 22k−1 × (2π × 2−k−1)−1 ≥ 23k−4r

line segments belonging to Ãk, each for a length at least r/2 inside B(x, r). Thus

H1(B(x, r)) ≥ 23k−5r2.

To prove a converse estimate, suppose still that 2−2k−3 ≤ d(x, 0) ≤ 2−2k−1, and suppose

that 2−3k−6 ≤ r ≤ 2−2k−4. We have B(x, r) ∩ Ãj = ∅ for all j ≥ k + 2. Note that Ãk+1

consists of 2k+1 line segments, which are at angles 2π × 2−k−2 from each other. Thus we

can see that there are at most

4r × 22k+4 × (2π × 2−k−2)−1 ≤ 23k+6r

line segments intersecting B(x, r), each for a length at most 2r. Thus

H1(B(x, r)) ≤ 23k+7r2.

Thus in total

23k−5r2 ≤ H1(B(x, r)) ≤ 23k+7r2, (4.3)

where the first inequality holds for all r ≤ 2−2k−4 and the second for all 2−3k−6 ≤ r ≤
2−2k−4.
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Moreover, for every k ∈ N,

H1(B(0, 2−2k−1)) ≥ 2−2k−1H1(Ak) = 2−2k−12k+1 = 2−k

and so

2−k ≤ H1(B(0, 2−2k−1)) ≤
∞∑
j=k

2−2j−1H1(Aj) =
∞∑
j=k

2−2j−12j+1 = 2−k+1. (4.4)

From these, the doubling condition for balls centered at 0 easily follows. Now assume again

that x 6= 0, so that 2−2k−3 ≤ d(x, 0) ≤ 2−2k−1 for a given k ∈ N. We consider four cases:

(1) If R < 2−3k−4, then B(x, 2R) consists of just one line segment and so

H1(B(x, 2R)) = 2H1(B(x,R)).

(2) If 2−3k−4 ≤ R ≤ 2−2k−5, then by (4.3),

23k−5R2 ≤ H1(B(x,R)) and H1(B(x, 2R)) ≤ 23k+7(2R)2,

and so we have

H1(B(x, 2R)) ≤ 214H1(B(x,R)).

(3) If 2−2k−5 < R ≤ 2−2k+1, then applying (4.3) with r = 2−2k−5,

H1(B(x,R)) ≥ H1(B(x, 2−2k−5)) ≥ 23k−5(2−2k−5)2 = 2−k−15

and by (4.4),

H1(B(x, 2R)) ≤ H1(B(0, 2−2k+2)) ≤ 2−k+3,

and so we have

H1(B(x, 2R)) ≤ 218H1(B(x,R)).

(4) If 2−2k+1 < R ≤ 2−2 with k ≥ 2 (note that diamX = 2−2), we choose j ≤ k such that

2−2j+1 < R ≤ 2−2j+3. Note that B(0, R/2) ⊂ B(x,R) ⊂ B(x, 2R) ⊂ B(0, 4R). Now

by (4.4),

H1(B(x,R)) ≥ H1(B(0, R/2)) ≥ H1(B(0, 2−2j)) ≥ 2−j

and

H1(B(x, 2R)) ≤ H1(B(0, 4R)) ≤ H1(B(0, 2−2j+5)) ≤ 2−j+4.

Thus

H1(B(x, 2R)) ≤ 24H1(B(x,R)).

In total, the doubling condition always holds with doubling constant 218, when x 6= 0.

Finally, define the set E as in (4.2). As before, we obtain that ‖DχE‖(X) = ∞,

pV(χE , X) = 1, and ∂∗E = ∅. Thus again we see that the “if” direction of Federer’s

characterization does not hold, and that condition (1.2) is needed in Proposition 3.7 and

Proposition 3.8.
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