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Spatial constraints, such as rigid barriers, affect the dynamics of cell populations,
potentially altering the course of natural evolution. In this paper, we investigate the
population genetics of Escherichia coli proliferating in microchannels with open ends.
Our analysis is based on a population model, in which reproducing cells shift entire
lanes of cells toward the open ends of the channel. The model predicts that diversity is
lost very rapidly within lanes but at a much slower pace among lanes. As a consequence,
two mixed, neutral E. coli strains competing in a microchannel must organize into an
ordered regular stripe pattern in the course of a few generations. These predictions are
in quantitative agreement with our experiments. We also demonstrate that random
mutations appearing in the middle of the channel are much more likely to reach
fixation than those occurring elsewhere. Our results illustrate fundamental mechanisms
of microbial evolution in spatially confined space.

spatial population dynamics | bacterial evolution | microfluidics | individual-based models

Biological populations can be spatially organized by landscape barriers that constrain
individual movement, generating ordered patterns at the population level. For example,
populations of rod-shaped bacteria Escherichia coli growing on surfaces tend to organize
into domains of aligned cells (1, 2). When E. coli grows in confined channels, cell
alignment is affected by the geometry of the channel boundaries (3, 4). In narrow channels,
populations reach a highly ordered structure, with cells organized parallel to each other
and to the boundaries (5, 6). In wide channels, such alignment is disrupted at large scales
by a buckling instability (7).

Once a cell population densely fills a microchannel, dividing cells push others toward
the open ends, potentially leading to expulsion of cells. The timescale at which cells are
expelled is typically shorter than their lifetime (an estimate of the latter is, e.g., in ref. 8).
Therefore, death events can be usually neglected when focusing on a population inside a
microchannel. In genetically diverse populations, we expect such competition to reduce
diversity at a pace that depends on the channel dimensions relative to the cell size.

Microfluidic devices constitute ideal experimental systems to study population growth
in confined geometries (9). Size and shape of the microchannels in these devices can
be tailored to mimic microorganism habitats (10, 11). Nutrients can be delivered to
the residing microorganisms inside the microchannels by controlled flows. Such devices
are often used to track population dynamics of microorganisms at the single-cell level
over several generations (12, 13). A paradigmatic example is the “mother machine”—a
microchannel with one open end and small-enough width to accommodate a single lane of
cells (8). Microchannels with two open ends have been used to validate a relation between
the cell division time distribution and the population growth rate (14), but see (15).

From the theoretical side, competition in confined geometries has been scarcely
studied. Common spatial competition models, ranging from Kimura’s stepping stone
model (16, 17) to generalizations in the theory of evolutionary graphs (18–21), include
birth, death, and diffusion events only and do not account for cell to cell mechanical
interactions in confined geometries. Single-lane models in which newborn individuals
shift their neighbors away have been theoretically studied in the context of cancer
progression (22, 23). A microbial population dynamics model incorporating shifting has
been investigated with computational approaches (14, 24). In particular, simulations of a
model of competing bacterial strains (24) show a formation of lanes along the channel axial
direction. Theoretical predictions for geometries hosting multiple lanes and quantitative
experimental validations have been lacking.

In this paper, we study the population genetics of bacterial colonies growing in confined
geometries. We combine theory, numerical simulations, and experiments on E. coli
populations growing in rectangular microchannels with two open ends. We introduce
our work by first presenting experiments in which two fluorescently marked neutral E.
coli strains competing in microchannels demix into a stripe pattern. We explain this
phenomenon by means of an individual-based population model describing competition
between strains inside the channel. This model reveals that the diversity loss within each
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Fig. 1. Competition between two E. coli strains (in red and green) in microchannels with two open ends. Two experimental realizations in microchannels
of different widths are shown. (A) Competing strains form two stripes in a channel of width 2.5 μm harboring three lanes of cells. (B) Strains segregate
into four stripes in a channel of width 3 μm harboring four lanes of cells. The observed number of stripes fluctuates among different experimental runs
(SI Appendix, Fig. S1A).

lane is much faster than that predicted by traditional spatial pop-
ulation genetics, in quantitative agreement with our experimental
observations. We discuss the consequences of our results and their
implications for the evolution of cell populations in confined
geometries.

Results

Competing Neutral E. coli Strains Form Stripe Patterns in
Microchannels. As a motivation, we present an experiment that
anticipates a main consequence of our theory. We inoculated a
mixture of two E. coli strains into microchannels (Fig. 1). The
two strains are labeled with green fluorescent protein (GFP)
and red fluorescent protein and are otherwise neutral (i.e., have
the same fitness). Bacteria reproduce in nutrient-rich conditions
inside the microchannels and push each other toward the open
ends. As a result, cells are continuously expelled, while the
number of cells inside the channels remains nearly constant.
Our microchannels have a rectangular cross section, are 30-μm
long, 1-μm deep, and have variable width from 1 to 3 μm, unless
specified otherwise. For comparison, E. coli cells are 2.1± 0.2 μm
in length and 0.65± 0.04μm in width, so that the microchannels
host monolayers of cells of width ranging from one to four lanes.

In about 8 h, the two strains organize themselves into regular
stripe patterns (Fig. 1 and Movies S1 and S2). The number of
stripes and their width depend on the microchannel width and
also fluctuate depending on the initial arrangement of inocu-
lated cells. In these experiments, the average cell division time is
∼95 min, meaning that lanes are formed within a few generations.
Our focus is on microchannels hosting monolayers of cells, but
we also observe stripe formation in deeper (3-μm) microchannels,
harboring multiple layers of cells (Movie S3).

Population Model Predicts the Stripe Pattern. We want to un-
derstand how the genetic diversity of a microbial population in
a microchannel changes with time. We model the microchannel
as a lattice of M × N sites. Each site is always occupied by one
cell (Fig. 2A). We define clonal populations as groups of cells that

originate from a common ancestor in the initial population. The
dynamics of the clonal populations permits us to determine the
patterns that the population would develop if some of the cells
were fluorescently marked or carried a neutral mutation.

The dynamics proceeds as follows. Cells reproduce binarily at a
constant rate b. After reproduction, one daughter cell takes the
position of its mother. The other occupies one of the adjacent
lattice sites and shifts a lane of existing cells toward one open end
of the microchannel. As a result, a cell at the open end is expelled
from the microchannel. If a reproducing cell is located next to
an open end, its daughter can end up outside the microchannel,
thereby being immediately expelled.

Our experiments reveal that the probabilities of choosing
neighboring sites are not uniform. Specifically, we identify two
effects that bias these probabilities. The first effect is related to
the mass of the lane of cells to be shifted. We observe that
reproduction events that shift shorter lanes of cells are more likely.
We quantify this effect via a mass parameter m ≥ 0. Increasing
m biases reproduction in the direction closer to an open end. The
second effect is the preference of cells to reproduce within the
same lane due to their aligned arrangement and the rod shape of
E. coli. We introduce an alignment parameter α > 0 equal to the
relative probability of a reproduction event within a lane over that
of an event involving a change of lane. In the limiting case α= 1
and m = 0, the reproduction probabilities are uniform as in the
model numerically studied in ref. 14.

We determine the parameters N, M, b, m, and α from our
experiments with a single E. coli strain in channels of different
width (Materials and Methods and SI Appendix). We find that N
and b are the only parameters that significantly depend on the
channel width (Table 1).

We take the number A(t) of clonal populations in the mi-
crochannel at time t as our measure of diversity. At the initial time
t = 0, we have A(0) =MN . Diversity decreases with time, as
progenies of initial individuals are expelled from the microchannel
(Fig. 2B). At intermediate times, the surviving strains tend to form
stripe patterns that resemble those in Fig. 1 (SI Appendix, Fig. S1
shows a more extensive qualitative comparison). The model
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Fig. 2. The population model describes cells proliferating in a microchannel.
(A) Scheme of the model. The population is made up of M X N individuals.
Different colors represent different clonal populations. A randomly chosen
cell reproduces to the right (arrow) and shifts all the cells to its right toward
the right end of the microchannel. As a result, the cell next to the right end
is expelled from the microchannel. Dashed arrows show the other seven
possible directions for reproduction. Cells located at the boundaries can
reproduce in five possible directions. (B) Dynamics of the model. The dynam-
ics progresses until one clonal population takes over the entire population.
SI Appendix, Fig. S1 shows a more extensive comparison between the patterns
observed in experiments and in simulations. Parameters are M = 5, N = 10,
b = 0.01 min−1, m = 0.6, and α = 3.2.

further predicts that competition between stripes should lead
to fixation of one of the strains at very long times.

Diversity Loss and Fixation Are Exponentially Fast in Sin-
gle-Lane Microchannels. We study diversity loss starting from
microchannels with a single lane. In this case, we compute the
rate of diversity loss by focusing on the interfaces between clonal
populations (Materials and Methods). We find that the average
diversity at time t is equal to

〈A(t)〉= (N − 1)e−βt + 1, [1]

where we define

β = b

(
1− m

N − 1

)
. [2]

Eq. 1 shows that diversity loss in single-lane channels is expo-
nentially fast. This result is in stark contrast with classic spatial
population models, such as the voter model, where diversity
decays as t−1/2 in one dimension (25). The characteristic rate
β at which diversity is lost is on the order of the reproduction

Table 1. Parameters evaluated from the experimental
recordings
Width, μm M N b (1/min) m α

1 1 13 0.007 0.6 —
1.5 2 9 0.007 0.6 3.2
2.5 3 9 0.01 0.6 3.2
3 4 9 0.0105 0.6 3.2

rate b, apart from a correction term that depends on the mass
parameter m.

At long times, one clonal population eventually takes over the
entire microchannel. The time at which this event occurs is called
the fixation time. In microchannels with a single lane, the average
fixation time is equal to

〈TN→1〉= β−1
N∑

A=2

1

A− 1
≈ β−1[log(N − 1) + γ], [3]

where γ ≈ 0.577 is the Euler–Mascheroni constant, and the
approximation is valid for large N (Materials and Methods). The
logarithmic dependence of the fixation time on the population size
N reflects the fact that the number of clonal populations decays
exponentially in time (Eq. 1). The theoretical predictions of Eqs.
1 and 3 are in excellent agreement with our experiments (Fig. 3A
and Table 2).

First Regime of Diversity Loss: Exponentially Fast Fixation
within Each Lane. Our results in the single-lane case suggest that,
in microchannels with multiple lanes, competition within each
lane should lead to an exponentially fast diversity loss. In contrast,
we expect competition among lanes to be less effective at reducing
diversity. The alignment of cells favors reproduction events within
each lane, further enhancing this difference. Following this idea,
we identify two temporal regimes of diversity loss. In the first
regime, diversity rapidly decreases from A=MN to A=M ,
primarily due to competition within lanes. The second regime
ranges from A=M down to A= 1 and is characterized by
competition among lanes.

The first regime is characterized by negligible interaction
among lanes. It follows from Eq. 1 that the average number
of clonal populations at time t is approximated by

〈A(t)〉 ≈M (N − 1)e−βt +M . [4]

We test this prediction in experiments with a single E. coli
strain, where we track descendant of each individual in the
initial population (Materials and Methods). We find an excellent
agreement (Fig. 3A). Eq. 4 also implies that the quantity
log[(〈A(t)〉 −M )/(M (N − 1))] must be a universal linear
function of βt (Fig. 3 A, Inset).

We approximate the average duration 〈TMN→M 〉 of the first
regime as

〈TMN→M 〉 ≈ β−1[log(M (N − 1)) + γ] [5]

(SI Appendix). This approximation and numerical simulations of
the model agree well with our experiments (Table 2).

Second Regime of Diversity Loss: Slow Competition among
Lanes. In the second temporal regime of diversity loss, compe-
tition among lanes becomes relevant. This competition is driven
by events in which a cell reproduces in a neighboring lane and its
progeny eventually colonizes the entire lane. These events occur
at a rate that we estimate to be quite small (SI Appendix). Aside
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Fig. 3. Two temporal regimes of diversity loss. In all plots, circles with error bars represent the experimental data, triangles represent numerical simulations,
and solid curves represent analytical solutions. Model parameters are listed in Table 1. (A) The first regime of diversity loss. Theory, simulations, and experiments
show that diversity decreases exponentially in time. Time is measured in generations. The solid curves represent the analytical solutions given by Eq. 4. A, Inset
shows a linear data collapse of the experimental data based on Eq. 4. (B) The second regime of diversity loss. The probability of observing a given number of
clonal population as a function of time is measured in generations from the start of the second regime. The experimental data are obtained by retracking our
experimental data (Materials and Methods). Details on the data analysis and analytical solutions are in SI Appendix.

from these events, lanes are typically dominated by a single clonal
population (SI Appendix).

Following these ideas, we can consider lanes as single units,
which invade each other at a certain rate. This process is called
the invasion process in the literature (21). We mathematically
solve this invasion process and thereby, estimate the probability to
observe a given diversity A(t) in the second regime (SI Appendix).
Our experimental results agree very well with simulations of the
model and qualitatively agree with the results from the invasion
process (Fig. 3B). Our theoretical and numerical results predict
that the average fixation time for microchannels with multiple
lanes is very long and therefore, inaccessible in our experiments
(Table 2).

Exponentially Fast Diversity Loss in the Mother Machine. We
extend our theory to quantify the rate of diversity loss in a mother
machine. Conceptually, the mother machine is similar to our
microchannels with one lane. The main difference is that, in the
mother machine, reproductions can occur in only one direction
since one end of the microchannel is sealed.

We solve our model with one lane under such conditions
(Materials and Methods). In this case, we do not consider a mass
effect, as the reproduction event can only occur in one direction.
We find that, for the mother machine, the diversity loss is still
given by Eq. 1 and the average fixation time is given by Eq. 3,
where we set m = 0 in both expressions. These results show that
the change in boundary conditions does not affect the dynamics
of diversity loss.

Cells in the Middle of a Microchannel Possess a Positional
Advantage. We expect cells located far from the open ends of the
microchannel to benefit from a positional advantage. We quantify
this idea by means of the fixation probability Pfix

i,j , defined as
the probability that the clonal population whose initial ancestor
has coordinates i , j eventually takes over the microchannel. In
the one-lane case and for large N, the fixation probability is
approximated by

Pfix
i = φm,N (i), [6]

where φm,N (i) = exp[−(i − μ)2/(2σ2)]/
√
2πσ2 is a Gaus-

sian distribution with mean μ= (N − 1)/2 and variance
σ2 = (1−m/2)(N − 1)/4 (SI Appendix). This means that, at
increasing the mass effect, mutants that are likely to take over the
population are located in a narrower region at the center of the
microchannel (SI Appendix, Fig. S3G). In particular, the value of
the mass parameter that we estimated (m = 0.6) leads to a 30%
reduction in σ2, compared with the case m = 0.

In microchannels with multiple lanes, we approximate the
fixation probabilities by

Pfix
i,j ≈

⎧⎪⎪⎨
⎪⎪⎩

2α+ 6

M (2α+3)+6
φm,N (i) if j = 1,M

2α+ 3

M (2α+3)+6
φm,N (i) otherwise

[7]

(Fig. 4A). The approximation in Eq. 7 is valid in the limit of large
N as well. We also require the two regimes of diversity loss to be

Table 2. Mean duration of the first regime TMN→M and the second regime TM→1

TMN→M TM→1

Microchannel width, μm No. of lanes Experimental Theoretical Numerical Theoretical Numerical
1 M = 1 3.58 ± 1.4 3.22 ± 1.31 3.26 ± 1.21 − −
1.5 M = 2 4.04 ± 1.19 3.62 ± 1.74 3.95 ± 1.46 5.95 ± 2.61 6.39 ± 3.99
2.5 M = 3 4.75 ± 0.79 4.05 ± 1.83 4.28 ± 1.36 14.68 ± 5.56 13.47 ± 8.44
3 M = 4 3.86 ± 0.42 4.37 ± 1.89 4.42 ± 1.25 21.25 ± 6.23 22.32 ± 14.04

Time in the experimental data is scaled by the division rate b evaluated for each group of data with one, two, three, and four lanes. The associated uncertainties are SDs. Parameters for
the theoretical and numerical predictions are summarized in Table 1.
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Fig. 4. Fixation probabilities are highest at the center of a microchannel. (A)
Fixation probabilities predicted by Eq. 7 for M = 10, N = 30, m = 0.6, and α =
3.2. (B) Fixation probabilities along the vertical (j) axis. Color histograms repre-
sent empirical probabilities from experiments with associated uncertainties.
Dark blue bars represent marginalized fixation probabilities Pfix

j =
∑

i Pfix
i,j ,

where Pfix
i,j is given in Eq. 7. The number of cells per lane is N = 9 for all three

cases. In the experiments where populations do not reach fixation, we use
all remaining clonal populations at the end of the experiment (typically, from
two to six) to approximate the empirical fixation probabilities. The validity
of this approximation is supported by numerical simulations (SI Appendix).
(C) Projections of the fixation probabilities along the horizontal (i) axis. The
gray histogram represents the empirical fixation probabilities. Dark blue bars
represent Pfix

i =
∑

j Pfix
i,j .

well separated (SI Appendix). The fixation probabilities predicted
by Eq. 7 are in good agreement with experimental observations
(Fig. 4 B and C ).

Discussion

In this paper, we studied the population genetics of microbial pop-
ulations growing in microchannels with open ends. We base our
study on a simple model in which cells are placed in lanes that are
shifted by reproduction events. This shifting dynamics, combined
with the geometry of the microchannels, causes a fast exponential
loss of genetic diversity, rapid fixation within each lane, and
slower competition among lanes. Our experiments quantitatively
confirm these predictions and reveal that population dynamics
generates stripes of clonal populations inside the microchannels.
This outcome is in sharp contrast to the case of bacterial pop-
ulations growing on agar plates, where competing populations
organize into sectors whose boundaries perform random walks
(26).

Previous population models considered shifting dynamics in
a single lane. Allen and Nowak (23) studied a similar model on
a one-dimensional ring, concluding that this dynamics does not
significantly affect the selection strength. However, a model of
epithelial tissues has led to the conclusion that the shift dynamics

suppresses selection (22). In this latter model, cells are arranged
in a linear array and can be expelled only on one end, in a similar
fashion as in the mother machine (8). Therefore, random muta-
tions of the cell next to the opposite end are very likely to reach
fixation, whereas fixation probabilities of mutations occurring
elsewhere are very small. Our results show that this imbalance in
fixation probabilities is a robust consequence of pushing dynamics
in channels with multiple lanes and open ends, which does not
require a strict geometric constraint imposing all cells to descend
from a mother cell.

Our results can be extended to populations growing in wider
and deeper channels. In such populations, the ordered lane struc-
ture is disrupted at large scales, potentially leading to jamming
(27, 28). In fact, crowding is known to affect the outcome of com-
petition among microbial strains even in nonconfined geometries
(29, 30). Clarifying the connection between these evidences and
our results is an interesting venue for future studies.

Our findings are potentially relevant for microbial ecology in
soil. Bacteria in soil are spatially organized into relatively isolated
and confined microenvironments (31), where fluid flows supply
cells with nutrients (32). Most bacteria colonize micropores with
diameter of about three times their body size (33) and in any
case, smaller than 6 μm since small pores retain water for longer
times. Moreover, bacteria residing in a pore of appropriate size
are sheltered against larger predators (34). Although bacteria have
very large population sizes, it was estimated that each bacterium
in soil interacts with about 120 other individuals on average
(35). Taken together, these observations support that the size of
our microchannels is comparable with that of typical bacterial
microenvironments in soil.

Renewing epithelial tissues in multicellular organisms (36)
present a similar spatial organization as the one studied in our
work. Two main examples are the epidermis (37) and the intestinal
crypt (38). The epidermis consists of multiple compartments of
cells that originate from a stem cell layer. These stem cells divide
and generate differentiated cells that are shifted toward the top of
the compartment and can be eliminated from the tissue once they
reach the surface. In the intestine, stem cells divide at the bottom
of each crypt, move upward, differentiate, and are removed once
they reach the top of the villus. This dynamics permits rapid
expulsion of cells that have accumulated deleterious mutations,
thereby decreasing the risk of cancer, which would otherwise have
high chances to arise in rapidly growing epithelial tissues (39, 40).
Similarly, proliferation of intestinal stem cells is thought to be
disregulated in carcinogenesis (38). Our findings can potentially
be extended to understand evolutionary dynamics of these tissues.
In particular, adapting our model to study cancer dynamics would
require introducing nonneutral clonal populations, as fitness dif-
ferences between cell types are important for cancer progression
(41, 42). Moreover, cells that carry tumor-promoting mutations
can be eliminated by apoptosis or killed by surrounding cells so
that more detailed cellular interactions should be considered in
this case.

The fact that a constrained geometry has such a drastic im-
pact on population genetics should be taken into account when
designing experimental evolutionary studies. Our results open
possibilities for constraining evolution by shaping the geometry
of a microchannel hosting a microbial population.

Materials and Methods

Bacteria Strains and Maintenance. MG1655, a derivative of the E. coli K-12
wild-type strain, was used in this study. We transformed a plasmid in MG1655 to
constitutively express GFP (pUA66 PrpsL-GFP KanR) (43). For the red fluorescent
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strain, the pUA66 plasmid with mCherry open reading frame replacing that of
GFP was customly constructed (VectorBuilder). We cultured the MG1655 host-
ing pUA66 plasmids in Luria–Bertani (LB) broth (Lennox) supplemented with
50 μg mL−1 kanamycin. A detailed description of bacteria culture and plasmid
engineering is provided in SI Appendix.

Microfluidic Chip Design and Microfabrication Protocols. The
poly(dimethylsiloxane) (PDMS) device (on top of the cover glass) consisted
of the top flow channels for nutrients delivery and bacteria removal and
the bottom growth channels for bacteria growth, removal, and monitoring
(SI Appendix, Fig. S2A). In order to perfuse fresh nutrients and create flow to
remove bacteria, 20 growth channels of different width were intersected with
16 flow channels (Length × Width × Height [L × W × H] = 4500 × 50 ×
15 μm). Growth channels (L × H = 30 × 1 μm) with varying widths (1, 1.5,
2.5, and 3 μm) and interspacing of 10 μm were designed such that bacteria
could be expelled from both ends, in contrast to the single-end design of the
mother machine (8, 44). The flow channels were joined by flow-equalizing tree-
like channels and flow resistors on both ends (45) and connected to an inlet and
an outlet.

A silicon mold with the microstructures designed as above was fabricated
by multistep lithography with negative photoresist and maskless direct writing.
PDMS microfluidic devices (Sylgard 184; Dow Corning) were fabricated by stan-
dard soft lithography (46). The PDMS slab was first cut and punched with an inlet
and outlet using a puncher; then, it was bonded to a high-precision cover glass
using plasma activation. A 2-mm-thick acrylic frame was cut with a CO2 laser cutter
and affixed on top of the PDMS as a reservoir for bacteria seeding, completing
the fabrication of the integrated microdevice. Detailed information of design and
microfabrication is provided in SI Appendix.

Bacterial Lineage Tracking and Time-Lapse Microscopy. Log-phase
MG1655 E. coli harboring plasmids for fluorescent proteins was grown at 37◦ C
with vigorous shaking in LB broth supplemented with antibiotic kanamycin
until the optical density at 600 nm reached 0.2. The bacteria suspension was
concentrated 20 times by centrifugation before being injected into the PDMS
microdevice, which was pretreated with a passivation solution to reduce bacterial
binding to the microdevice surfaces. The PDMS microdevice was mounted
in a microscope on-stage incubator preequilibrated at 37◦ C on an inverted
motorized epifluorescence microscope. The bacteria were allowed to enter the
growth channels under static conditions for 2 h before the M9 media were
infused using a syringe pump first at a flow rate of 1.6μL min−1, doubling every
2 h until it reached 16 μL min−1.

The fluorescence images were taken with either a 100× oil immersion objec-
tive or a 60 × oil immersion objective with 1.5× intermediate magnification at
an interval ofΔt = 3 min using a high-sensitivity camera (Prime95B; Photomet-
rics) with GFP or mCherry filter cubes. More details are provided in SI Appendix.

Image Analysis and Data Processing. We processed the time-lapse record-
ings of our experiments using ImageJ software (47). We used the MicrobeJ plug-
in to detect bacteria in each frame (48) and a custom Python program to track all
the bacteria in time. The tracking algorithm is based on construction and compari-
son of local structures for each cell (SI Appendix, Fig. S3A). We then reconstructed
spatial lineage trees for each cell in the channel (SI Appendix, Fig. S3B).

In experiments with multiple lanes, microscopy focus drift issues for long-
term live cell imaging experiments caused occasional quality loss in the
recordings for a few frames. We cropped the recordings when such issues
occurred. The durations of our recordings after this operation are 13.4 ± 4.7h,
9.7 ± 2h, and 7.93 ± 1.5h, corresponding to 5.64 ± 2.02, 5.84 ±
1.35, and 4.76 ± 0.95 generations for the experiments with two, three,
and four lanes, respectively.

To explore the second regime, we perform a retracking of the experimental
data (SI Appendix). In the retracking, we consider an initial condition, in which
each lane is occupied by a single clonal population. Retracking is justified by the
observation that, during the time at which A(t) = M in our original tracking, at
least 70% of each lane is occupied by a single clonal population (SI Appendix).

Reproduction Rates and Model Parameters. We assign to each cell its coor-
dinates (i, j), with 1 ≤ i ≤ N and 1 ≤ j ≤ M. In the following, we refer to the
coordinate i as the “horizontal” or “axial” coordinate. We define the reproduction
probability k(i′ ,j′)(i,j) as the probability that the daughter of a cell at position i, j
is placed at position i′, j′.

We start from the case with one lane, M = 1. In this case, the probabilities
p(i) = ki−1,i and q(i) = ki+1,i that a cell at position i reproduces to the left
and right, respectively, are expressed by

p(i) =− im
N−1

+
m(N+1)+N−1

2(N−1)
, q(i) = 1−p(i), [8]

where m is the mass parameter. These probabilities depend linearly on i, as
observed in experiments (Fig. 5D).

In the case M > 1, we determine the reproduction probabilities by imposing
two constraints. First, the probabilities to divide to the left k(i−1,j)(i,j) and to the
right k(i+1,j)(i,j) satisfy the condition k(i−1,j′)(i,j)/k(i+1,j′)(i,j) = p(i)/q(i)

Fig. 5. Estimation of the model parameters from experimental observations. (A) Empirical distributions of division times. (B) Growth rates evaluated from
the experimental data. The error bars represent the mean values and the SEs of the population growth rates obtained as ln((2))/〈τ〉, where 〈τ〉 is the cell
division time averaged over the population in a single experimental run. The stars mark the reproduction rates b evaluated by solving the Euler–Lotka equation
2〈exp(−bτ)〉 = 1 (SI Appendix). (C) Scheme of the two possible directions of division. We interpret an asymmetry between frequencies of reproductions in these
two directions as a mass effect. (D) Mass effect in the experimental data. The scattered points represent the average frequencies of leftward divisions as a
function of the cell position in the experimental data. We fit the data with the linear function given in Eq. 8 using the least squares method, resulting in m = 0.6
for all channel widths. (E) Division within the same lane and to a neighbor lane. The alignment parameter α is defined as the ratio between the probability of
a cell division within a lane and that of a cell division involving a change of lane. (F) Average value and the SE of α estimated from the experimental data. We
find that α does not significantly vary across experiments and lanes. The average value over all experiments is α = 3.2. The averages are calculated over 17
microchannels with two lanes, 21 microchannels with three lanes, and 20 microchannels with four lanes.
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for j′ = (j − 1, j, j + 1). Second, the ratio between the probability of a cell
division within a lane and that of a cell division involving a change of lane
must be equal to α: k(i′ ,j)(i,j)/k(i′ ,j′)(i,j) = α with i′ = (i − 1, i + 1) and
j′ = (j − 1, j + 1).

The reproduction probabilities for cells in the bulk of the population (1 < j <
M) satisfying these constraints are expressed by

k(i−1,j)(i,j) = α
−2mi + m(N + 1) + N − 1

2(N − 1)(α+ 3)
,

k(i+1,j)(i,j) =
2α

2(α+ 3)
− k(i−1,j)(i,j),

k(i−1,j−1)(i,j) = k(i−1,j+1)(i,j) =
k(i−1,j)(i,j)

α
,

k(i+1,j−1)(i,j) = k(i+1,j+1)(i,j) =
k(i+1,j)(i,j)

α
,

k(i,j−1)(i,j) = k(i,j+1)(i,j) =
1

2(α+ 3)
. [9]

If i′ = i, the lane of cells j′ is shifted either to the left or the right with probabilities
given by Eq. 8.

We impose the same constraints for cells next to the top boundary of the
microchannel (j = 1), obtaining

k(i−1,1)(i,1) = α
−2mi + m(N + 1) + N − 1

(N − 1)(2α+ 3)
,

k(i+1,1)(i,1) =
2α

2α+ 3
− k(i−1,1)(i,1),

k(i−1,2)(i,1) =
k(i−1,1)(i,1)

α
,

k(i+1,2)(i,1) =
k(i+1,1)(i,1)

α
,

k(i,2)(i,1) =
1

2α+ 3
. [10]

The reproduction probabilities for cells next to the bottom boundary (j = M) can
be similarly expressed. In all cases, if the i coordinate of the daughter is equal to
zero or N + 1, she is immediately expelled from the microchannel.

The model parameters evaluated from experiments are summarized in Table
1. For each microchannel width, we estimated M and N as the average number of
lanes and the average number of cells per lane in our experiments, respectively.
SI Appendix has details. The estimation of parameters b, m, and α is detailed in
Fig. 5.

Dynamics of Interfaces. We consider the case M = 1 and assign to each cell
at position i at time t the position fi(t) of its ancestor at time t = 0. The quantity
fi(t) changes every time the cell at position i is replaced by another one having a
different initial ancestor. Two neighboring cells having the same value of fi(t) are
conspecific (i.e., they belong to the same clonal population). We assign interfaces
to neighboring cells that are not conspecific. We encode these interfaces into a
vector �σ(t) = (σ1(t),σ2(t), . . . ,σN−1(t)), whose components are defined
by

σi(t) =

{
0 if fi(t) = fi+1(t),
1 if fi(t) �= fi+1(t).

[11]

The initial condition is �σ(0) = (1, 1, . . . , 1). The vector of interfaces evolves
until it reaches the absorbing state (0, 0, . . . , 0) that corresponds to fixation
of one clonal population. Each cell division creates a pair of conspecific cells and
shifts all cells by one position, either to their right or to their left. This event implies
that one interface {σi}i=1,...,N−1 is set to zero, and all interfaces on one side of
it are shifted by one position, depending on the direction of the cell division. As
a consequence, an interface located at the open end may be removed from the
vector (Fig. 6).

Fig. 6. Dynamics of interfaces. Different colors correspond to different
clonal populations. Interfaces σ1, σ2 . . . σN−1 are associated with adjacent
cells. An interface σi is equal to one if the two associated cells belong to
different clonal populations and zero otherwise. As a consequence of cell
division, an interface of value zero is created at i = 6, and a portion of the
vector of interface is shifted (in red). As an outcome, one interface is expelled.

To describe the interface dynamics, we introduce inverse shift operators that
take into account the presence or absence of an interface at the open end:

b̂i
r�σ = (σ1,σ2, . . . ,σi−1,σi+1, . . . ,σN−1, 0),

b̂i
l�σ = (0,σ1,σ2, . . . ,σi−1,σi+1, . . . ,σN−1),

ĉi
r�σ = (σ1,σ2, . . . ,σi−1,σi+1, . . . ,σN−1, 1),

ĉi
l�σ = (1,σ1,σ2, . . . ,σi−1,σi+1, . . . ,σN−1). [12]

A state b̂i
r�σ or ĉi

r�σ evolves to a state�σ if the ith cell divides to the right. Similarly,
a state b̂i

l�σ or ĉi
l�σ evolves to a state �σ if the (i + 1) th cell divides to the left.

The master equation for the interface distribution is

dP�σ

dt
= − b

N−1∑
i=1

[q(i) + p(i + 1)]P�σ(t)+

+ b
N−1∑
i=1

δσi ,0[q(i)(Pb̂i
r�σ

+ Pĉi
r�σ
) + p(i + 1)(Pb̂i

l�σ
+ Pĉi

l�σ
)],

[13]

where p(i) and q(i) are defined in Eq. 8 and the Kronecker delta takes care of
the fact that a reproduction event necessarily creates an interface of value equal
to zero. The solution of Eq. 13 reads

P�σ =

N−1∏
i=1

[
σie

−βt + (1 − σi)(1 − e−βt)
]

, [14]

where β is defined in Eq. 2. The solution given in Eq. 14 can be verified by direct
substitution into Eq. 13. Eq. 14 shows that the interfaces {σi(t)}i=1,...,N−1

are independent, identically distributed random variables with P(σi(t) = 1) =
e−βt for all i. The diversity is related to the number of interfaces by

A(t) =
N−1∑
i=1

σi(t) + 1. [15]

Computing the average of A(t) using Eq. 14 leads to Eq. 1.

Fixation Time in the Model with One Lane. We calculate the fixation time
for the model with M = 1, employing the interface formalism. Removing one
interface amounts to removing one clonal population. We denote by TA→A−1

the time it takes to remove the Ath clonal population. The fact that the interfaces
σi(t) are independent, identically distributed random variables implies that the
time intervals TA→A−1 are exponentially distributed with mean 〈TA→A−1〉=
1/[β(A − 1)]. This observation directly implies Eq. 3.
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Fixation Time in the Mother Machine. We apply the interface formalism to
a model of the mother machine. Without loss of generality, we assume that the
open end is the right one. Therefore, the vector of interfaces evolves according to
a master equation including only right inverse shift operators:

dP�σ

dt
=−b(N − 1)P�σ(t) + b

N−1∑
i=1

δσi ,0(Pb̂i
r�σ

+ Pĉi
r�σ
) [16]

(Eqs. 12 and 13). The solution to this master equation also factorizes

P�σ =

N−1∏
i=1

[σie
−bt + (1 − σi)(1 − e−bt)]. [17]

It follows that Eq. 3 with β = b holds for the mother machine as well.

Data Availability. All study data are included in the article and/or supporting
information.
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