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Abstract
Let d ≥ 2. In this paperwe give a simple proof of the endpoint Besov-Lorentz estimate

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤ C‖F‖L1(Rd ;Rk )

for all F ∈ L1(Rd ;Rk) which satisfy a first order cocancelling differential constraint,
where α ∈ (0, d) and Iα is a Riesz potential. We show how this implies endpoint
Besov–Lorentz estimates for Hodge systems with L1 data via fractional integration
for exterior derivatives.
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1 Introduction

In the L1 theory for linear elliptic systems it is quite difficult to obtain better than
weak-type bounds. A program in this direction was pioneered in the seminal work
of J. Bourgain and H. Brezis [5] (see also [6, 29]) and received remarkable contribu-
tions from Lanzani and Stein [14] and Van Schaftingen [30–32], while endpoint fine
parameter improvements on the Lorentz [10, 25] and Besov-Lorentz [28] scales have
only recently been obtained.

The purpose of this paper is to give a simple proof of the Besov-Lorentz estimates
obtained in [28] for a restricted class of operators and to show how this estimate can be
used to resolve several open questions in the theory, in particular estimates for Hodge
systems [31,Open Problems 1 & 2] and the endpoint extension of [32,Propositions 8.8
& 8.10] in the case of first order operators. Our starting place is an estimate the first
and third named authors proved in [10], that for d ≥ 2 and α ∈ (0, d) there exists a
constant C > 0 for which one has the inequality

‖IαF‖Ld/(d−α),1(Rd ;Rd ) ≤ C‖F‖L1(Rd ;Rd ) (1.1)

for all F ∈ L1(Rd ;Rd) such that div F = 0. Here Ld/(d−α),1(Rd;Rd) is a Lorentz
space (see Sect. 2 for a precise definition) and Iα denotes the Riesz potential of order
α ∈ (0, d), defined for F ∈ L1(Rd;Rk) by

IαF(x) := 1

�
(

α
2

)
∫ ∞

0
tα/2−1 pt ∗ F(x) dt ≡ 1

γ (α)

∫

Rd

F(y)

|x − y|d−α
dy, (1.2)

where pt (x) := (4π t)−d/2 exp(−|x |2/4t) is the heat kernel in Rd and

γ (α) = πd/22α�(α/2)

�
( d
2 − α

2

)

is a normalization constant (see, e.g. [26,p. 117]).
The estimate (1.1) is a partial replacement for the failure of the Hardy–Littlewood–

Sobolev embedding in the L1 endpoint, cf. [26,p. 119], while a comprehensive
resolution of the question of a replacement has been given by D. Stolyarov, who
in [28] (see also [3,Conjecture 2] where such an inequality was conjectured to hold)
establishes the sharper inequality

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤ C‖F‖L1(Rd ;Rk ) (1.3)

for a very general class of subspaces of L1(Rd ;Rk) that includes the kernels of J. Van
Schaftingen’s class of cocancelling operators [32] (see Definition 2.5 below where we
recall this class). The argument in [28] is quite involved, and it is there commented by
Stolyarov that whether the inequality (1.3) admits a simpler proof if one only seeks
its validity for the more restrictive class of divergence free measures is unknown. We
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Endpoint L1 estimates for Hodge systems

will shortly give such a proof, which benefited from several insights from his paper
and the series of lectures1 he gave on the topic.

To this end, let us recall the approach to (1.1) in [10]: For the space of divergence
free measures one finds appropriate atoms, one demonstrates the sufficiency of an
estimate on an atom, and one establishes the estimate for a single atom. The atoms
in this case are oriented piecewise-C1 loops which satisfy the uniform ball-growth
condition: To any oriented piecewise-C1 loop � ⊂ R

d one associates the measure
which is given by integration along the curve

∫
� · dμ� :=

∫ |�|

0
�(γ (t)) · γ̇ (t) dt, (1.4)

for � ∈ C0(R
d;Rd), where γ : [0, |�|] → R

d is the parametrization of � by
arclength. The atoms are then such piecewise-C1 closed curves for which

‖μ�‖M1(Rd ) := sup
x∈Rd ,r>0

||μ�||(B(x, r))

r
≤ C (1.5)

for some universal constant C > 0, where ||μ�|| is the total variation measure of μ� .
The sufficiency of an estimate on these atoms follows in two steps. First, by Smirnov’s
integral decomposition of divergence free measures [21] one has an approximation
of such objects in the strict topology by convex combinations of oriented C1 closed
loops. Second, a surgery on such loops shows how any oriented C1 closed loop �

admits a further decomposition into oriented piecewise-C1 closed loops {�i }N (�)
i=1

which satisfy (1.5) with some universal constant and whose total length is bounded
by a constant times the length of this loop. This approximation/decomposition and the
triangle inequality then yields that it suffices to prove the estimate for a single loop
which satisfies the ball growth condition (1.5). Finally, the estimate (1.1) for a single
loop was argued in [10] by a hands on interpolation that utilizes several pointwise
estimates for Riesz potentials and bounds for various maximal functions.

While the argument of (1.1) in [10] for a single loop with a ball growth condition
involves only estimates for various maximal functions, in this paper we observe that it
can be further simplified by the consideration of a very natural stronger quantity that
arises in Stolyarov’s estimates:

∫ ∞

0
tα/2−1‖pt ∗ F‖Ld/(d−α),1(Rd ;Rk ) dt . (1.6)

In particular, in [28], Stolyarov shows how if one controls a discrete analogue of (1.6)
this implies (1.3). As we will see below in Sect. 2, the continuous version (1.6) also
controls the Besov-Lorentz norm and therefore, taking into account the reduction to
atoms established in [10], for the demonstration of the Besov–Lorentz inequality for
divergence free functions it suffices to prove the inequality

1 We are indebted to D. Stolyarov for the efforts he put into giving these lectures, which can be found at
“https://vimeo.com/497090776”.
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∫ ∞

0
tα/2−1‖pt ∗ μ�‖Ld/(d−α),1(Rd ;Rd ) dt ≤ C ||μ�||(Rd) (1.7)

for all oriented piecewise-C1 closed loops � which satisfy (1.5). Let us remark that
it is not difficult to see that (1.6) controls the Lorentz norm of the Riesz potential of
a function, since this follows directly from the representation (1.2) and Minkowski’s
inequality for integrals. The argument for the Besov-Lorentz case is only slightly more
complicated because of the more technical definition of the space.

We therefore proceed to argue the validity of the inequality (1.7). We claim this
follows easily from the estimates

‖pt ∗ μ�‖L1(Rd ;Rd ) ≤ ‖pt‖L1(Rd )||μ�||(Rd) = ||μ�||(Rd), (1.8)

‖pt ∗ μ�‖L∞(Rd ;Rd ) ≤ ‖pt‖L∞(Rd )||μ�||(Rd) = c

td/2 ||μ�||(Rd), (1.9)

‖pt ∗ μ�‖L1(Rd ;Rd ) ≤ C1
||μ�||(Rd)2

t1/2
(1.10)

‖pt ∗ μ�‖L∞(Rd ;Rd ) ≤ C2

t (d−1)/2
‖μ�‖M1(Rd ). (1.11)

The former two are standard (linear) convolution inequalities for L1 functions, while
the latter two are nonlinear and only hold because we consider closed loops oriented
by their tangent. Indeed, (1.10) follows from the fact such objects admit a generalized
minimal surface spanning �, while (1.11) utilizes the fact that we work with curves
(and we later make use of the fact that they satisfy (1.5)). Note that if we only utilized
(1.8) and (1.9) it would not be sufficient for our purposes, since for any 1 ≤ p ≤ +∞
interpolation would yield the estimate

‖pt ∗ μ�‖L p,1(Rd ;Rd ) ≤ ‖pt ∗ μ�‖θ
L1(Rd ;Rd )

‖pt ∗ μ�‖1−θ

L∞(Rd ;Rd )
,

where θ = 1/p. In particular, when p = d
d−α

, using (1.8) and (1.9) we find

‖pt ∗ μ�‖Ld/(d−α),1(Rd ;Rd ) ≤ C
||μ�||(Rd)

tα/2 ,

which is not good enough to get a finite upper bound, as if utilized to estimate the
quantity (1.6) gives a logarithmic divergence at both zero and infinity and therefore
cannot yield the inequality (1.7).

The subtlety is to notice that the combination of (1.8) and (1.11) gives an estimate
with slightly better behavior at zero, while the combination of (1.9) and (1.10) gives
an estimate with slightly better behavior at infinity, the inequalities

‖pt ∗ μ�‖Ld/(d−α),1(Rd ;Rd ) ≤ C ′
1
||μ�||(Rd)(d−α)/d

tα(d−1)/2d
, (1.12)

‖pt ∗ μ�‖Ld/(d−α),1(Rd ;Rd ) ≤ C ′
2
||μ�||(Rd)1+(d−α)/d

tα/2+(d−α)/2d
. (1.13)
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Indeed,

α(d − 1)/2d < α/2,

α/2 + (d − α)/2d > α/2,

and therefore it remains to divide the integral so as to linearize the estimate, which
follows from dividing at |�|2 (alternatively, one may first reduce to the case |�| = 1
by dilation, though we here avoided this argument because the nonlinearity of the
estimates (1.10) and (1.11) becomes less clear).

We postpone further details until Sect. 2, including the proof of the slightly more
technical Besov-Lorentz inequality, so that we can continue to a second purpose of this
paper, which is to catalog some implications of the inequality (1.3) in the divergence
free case. Indeed, a fundamental contribution of J. Van Schaftingen’s paper [32] is that
divergence free vector fields are generic in the class of vector fields which admit a first
order cocanceling annihilator. In particular, following his argument we establish

Theorem 1.1 Let d ≥ 2, α ∈ (0, d), and suppose L(D) is a first order homogeneous
linear partial differential operator acting on vector fields F : Rd → R

k . Then the
estimate

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤ C‖F‖L1(Rd ;Rk ) for L(D)F = 0

holds if and only if L(D) is cocanceling, see Definition 2.5.

We recall that the cocanceling assumption is verymild: As was observed in [9, 18, 32],
failure of this assumption is equivalent to the existence of an unconstrained subspace
of L(D)-free fields.

Beyond an intrinsic interest in the mapping properties of fractional integrals, the
inequality given in Theorem 1.1 has implications for PDEs. For example, in [10] it
was demonstrated how (1.1) implies a Lorentz space sharpening of an estimate of
Bourgain and Brezis [4, 5]: If F ∈ L1(R3;R3) is divergence free, the solution of the
Div-Curl system

curl Z = F

div Z = 0

admits the estimate

‖Z‖L3/2,1(R3;R3) ≤ C‖F‖L1(R3;R3)

for some C > 0.
Theorem 1.1 of course implies a similar improvement to this inequality, though in

this form is useful for more general applications. For example, we immediately obtain
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Corollary 1.2 Let d ≥ 2, α ∈ (0, d), and k ∈ N ∩ [0, d]. There exists a constant
C = C(α, d) > 0 such that for k ≤ d − 2

‖Iαdu‖Ḃ0,1
d/(d−α),1(R

d ;�k+1Rd )
≤ C‖du‖L1(Rd ;�k+1Rd ), (1.14)

while for k ≥ 2

‖Iαd∗u‖Ḃ0,1
d/(d−α),1(R

d ;�k−1Rd )
≤ C‖d∗u‖L1(Rd ;�k−1Rd ), (1.15)

for all u ∈ C∞
c (Rd;�k

R
d).

Here, for k ∈ N∩ [0, d], �k
R
d denotes the vector space of k-forms, C∞(Rd;�k

R
d)

denotes the space of functions from R
d to the space of k-forms with smooth coeffi-

cients,

d : C∞(Rd ;�k
R
d) → C∞(Rd;�k+1

R
d)

d∗ : C∞(Rd ;�k
R
d) → C∞(Rd;�k−1

R
d)

are the exterior differential and exterior co-differential, respectively, and, with an
overloading of notation, Iαdu, Iαd∗u denote the Riesz potential acting on the k +
1, k−1-forms du, d∗u. Precisely, for any l-form Y ∈ L1(Rd;�l

R
d), one can express

Y in global coordinates as

Y =
∑

|I |=l

YI dxI

where YI ∈ L1(Rd;R), cf. [11,p. 237]. Then the Riesz potential of such a Y is given
by the formula

IαY =
∑

|I |=l

IαYI dxI , (1.16)

where IαYI is as defined in (1.2). From this one sees IαY is well-defined for Y ∈
L1(Rd;�l

R
d) for any l = 1, . . . , d, and in particular that all such Y are in the domain

of I2 ≡ (−	)−1 for d ≥ 3.
From Corollary 1.2 one not only obtains improvements to the left-hand-side of

estimates for the Div-Curl system, but more generally the Hodge systems considered
by Bourgain and Brezis in their paper [5] (see also Lanzani and Stein [14] for a
slicing argument in the spirit of Van Schaftingen’s simplification [32] of the original
argument of Bourgain and Brezis). In particular, we give an affirmative answer to
[31,Open Problems 1 & 2], the following

Theorem 1.3 Let d ≥ 3 and k ∈ N ∩ [1, d − 1]. If F ∈ L1(Rd ;�k−1
R
d) and

G ∈ L1(Rd;�k+1
R
d) satisfy the compatibility conditions

d∗F = dG = 0,
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then the function Z = d(−	)−1F + d∗(−	)−1G satisfies

d∗Z = F,

dZ = G,

and there exists a constant C > 0 such that

‖Z‖Ḃ0,1
d/(d−1),1(R

d ;�kRd )
≤ C

(‖F‖L1(Rd ;�k−1Rd ) + ‖G‖L1(Rd ;�k+1Rd )

)
,

where we additionally require F ≡ 0 in the case k = 1 or G ≡ 0 in the case k = d−1.

Note that the conditions d∗F = dG = 0 are necessitated by properties of the exterior
differential and exterior co-differential, d ◦ d = 0 and d∗ ◦ d∗ = 0, while the fact
that the expression Z = d(−	)−1F + d∗(−	)−1G is well-defined follows from the
assumptions F ∈ L1(Rd ;�k−1

R
d),G ∈ L1(Rd ;�k+1

R
d) and the formula (1.16).

Finally, let us record the following duality estimates, which extend [32,Propositions
8.8 & 8.10] to the endpoint q = ∞.

Proposition 1.4 Let d ≥ 2, α ∈ (0, d), and suppose L(D) is a first order cocanceling
operator on R

d . Then the estimates for vector fields

∫

Rd
F · ϕ dx ≤ C‖F‖L1(Rd ;Rk )‖Dϕ‖Ld,∞(Rd ;Rk×d ),

∫

Rd
F · ϕ dx ≤ C‖F‖L1(Rd ;Rk )‖ϕ‖Ḃα,∞

d/α (Rd ;Rk )

hold if L(D)F = 0.

Here we use a slightly unusual notation for the Besov spaces Ḃα,q
p , which is consistent

with our earlier notation. In other words, Ḃα,q
p = Ḃα,q

p,p.
The plan of the paper is as follows. In Sect. 2, we first recall the definition of the

Lorentz spaces and several results concerning them before we prove Theorem 1.1.
In Sect. 3 we prove Corollary 1.2, Theorem 1.3, and Proposition 1.4. In Sect. 4 we
address an implicit claim in [23] that the estimate in the curl free case was optimal
on the Lorentz scale. In particular, we here give a proof of this claim, which in turn,
by J. Van Schaftingen’s argument implies optimality of the result of the first and third
named authors in [10] on the Lorentz scale. It is likely these results are optimal on the
Besov-Lorentz scale, though we do not have an example which confirms this. Finally,
in Sect. 5, we give direct proofs of several of the results for F ∈ L1(Rd;Rd) such
that curl F = 0. Of course, this is not as general as the divergence free setting, though
notably it does not require the surgery construction from [10] and therefore provides
a streamlined proof for the Lorentz inequality that does not require anything beyond
the coarea formula and basic interpolation of Lebesgue or Lorentz spaces.
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2 Lorentz and Besov–Lorentz estimates

We begin by recalling some results concerning the Lorentz spaces Lq,r (Rd), where
we follow the development of R. O’Neil in [15].

Definition 2.1 For f a measurable function on R
d , we define

m( f , y) := |{| f | > y}|.

As this is a non-increasing function of y, it admits a left-continuous inverse, called
the non-negative rearrangement of f , and which we denote f ∗(x). Further, for x > 0
we define

f ∗∗(x) := 1

x

∫ x

0
f ∗(t) dt .

We can now give a definition of the Lorentz spaces Lq,r (Rd).

Definition 2.2 Let 1 < q < +∞ and 1 ≤ r < +∞. We define

‖ f ‖Lq,r (Rd ) :=
(∫ ∞

0

[
t1/q f ∗∗(t)

]r dt
t

)1/r

,

and for 1 ≤ q ≤ +∞ and r = +∞

‖ f ‖Lq,∞(Rd ) := sup
t>0

t1/q f ∗∗(t).

The Lorentz space Lq,r (Rd) is defined as

Lq,r (Rd) := {
f measurable : ‖ f ‖Lq,r (Rd ) < +∞}

.

For such parameters q, r , these functionals can be shown to be norms and the
associated spaces Lq,r (Rd) Banach spaces (see, e.g., [27,Chapter V]). Concerning
estimates involving the norm for functions in these spaces, a simpler quantity for our
purposes is a quasi-norm which does not involve rearrangements:

||| f |||Lq,r (Rd ) ≡ q1/r
(∫ ∞

0

(
t |{| f | > t}|1/q

)r dt
t

)1/r

. (2.1)

In particular, one can show this is equivalent to the norm on ‖ f ‖Lq,r (Rd ) (see, e.g.
[27,Theorem 3.21 on p. 204]):

Proposition 2.3 Let 1 < q < +∞ and 1 ≤ r ≤ +∞. Then

||| f |||Lq,r (Rd ) ≤ ‖ f ‖Lq,r (Rd ) ≤ q ′||| f |||Lq,r (Rd ).
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Finally, we recall that these spaces support an analogue of Young’s convolution
inequality, see [15,Theorem 3.1]:

Theorem 2.4 Let f ∈ Lq1,r1(Rd) and g ∈ Lq2,r2(Rd), and suppose 1 < q < +∞
and 1 ≤ r ≤ +∞ satisfy

1

q1
+ 1

q2
− 1 = 1

q
1

r1
+ 1

r2
≥ 1

r
.

Then

‖ f ∗ g‖Lq,r (Rd ) ≤ 3q‖ f ‖Lq1,r1 (Rd )‖g‖Lq2,r2 (Rd ).

We next give a few more details of the argument of Theorem 1.1 in the base
case L(D) = div. Toward the inequality (1.1), as discussed in the introduction, the
reduction argument given in [10] implies that it suffices to prove (1.7) for every oriented
piecewise C1 closed loop � that satisfies (1.5). This inequality, in turn, will follow if
we can establish the convolution inequalities (1.8), (1.9), (1.10), and (1.11).

For such curves, (1.8) and (1.9) follow from standard convolution inequalities,while
we now explain in more detail the inequalities (1.10) and (1.11). The inequality (1.10)
follows from the fact that in Euclidean space oriented piecewise C1 closed loops can
be identified with integral currents which admit spanning surfaces. In particular, by
[7,4.2.10], given T = μ� , there exists a (generalized) surface S which satisfies (in a
generalized sense)

∂S = T (2.2)

||S||(Rd) ≤ c||T ||(Rd)2. (2.3)

From this, one easily argues the estimate (1.10) by the computation

‖pt ∗ μ�‖L1(Rd ;Rd ) = ‖pt ∗ T ‖L1(Rd )

= ‖pt ∗ ∂S‖L1(Rd )

≤ ‖t1/2|∇ pt |‖L1(Rd )||S||(Rd)

t1/2
,

the identity

‖t1/2|∇ pt |‖L1(Rd ) = c′

and the isoperimetric inequality (2.3).
Concerning the estimate (1.11), it can be argued even simpler than theH1 − BMO

duality utilized to estimate an analogous quantity in [10], as it follows from a simple
expansion of the convolution on dyadic annuli, using (1.5): In particular,
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|pt ∗ μ�(x)| ≤
∫

Rd
pt (x − y) d||μ�||(y)

=
∑

n∈Z

∫

B(x,2n
√
t)\B(x,2n−1

√
t)
pt (x − y) d||μ�||(y)

≤
∑

n∈Z

1

(4π t)d/2 exp(−22n−2/4)
∫

B(x,2n
√
t)\B(x,2n−1

√
t)

d||μ�||(y)

≤
∑

n∈Z

1

(4π t)d/2 exp(−22n−2/4)||μ�||(B(x, 2n
√
t))

≤
∑

n∈Z

C

(4π t)d/2 2
n√t exp(−22n−2/4)

= C ′

t (d−1)/2
,

where C is as in (1.5) and

C ′ :=
∑

n∈Z

C

(4π)d/2 2
nexp(−22n−2/4).

This and the argument of the introduction completes the proof of the Lorentz inequality
in the case L(D) = div.

Concerning the Besov-Lorentz inequality, we follow the work of Stolyarov [28]
with a definition of the space Ḃ0,1

d/(d−α),1(R
d ;Rk) through a minor modification of that

for Besov spaces:

‖F‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
:=

∑

n∈Z
‖F ∗ (ψ2n+1 − ψ2n )‖Ld/(d−α),1(Rd ;Rk ),

where

ψr (x) = rdψ (r x) (2.4)

are dilates of some function ψ ∈ S(Rd) which satisfies

supp ψ̂ ⊂ B(0, 1),

ψ̂ ≡ 1 on B(0, 1/2).

One familiar with Besov spaces [1,Definition 4.1.2] observes that Besov-Lorentz
spaces are defined analogously, only with the replacement of Lebesgue norms in the
definition with Lorentz norms. These spaces arise in the real interpolation of Besov
spaces [16], and have also been called Lorentz-Besov spaces in the monograph of J.
Peetre [17] (see Example 6 on p. 57 as well as p. 106, 232). While these references
are classical, a systematic treatment of these spaces as well various relationships with
Triebel-Lizorkin analogues seems to be a recent development: In [20,equation (1)
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on p. 1018], A. Seeger and W. Trebels define an inhomogeneous version denoted by
B0
1 [Ld/(d−α),1], while it is remarked in the comments at the end of the introduction

there that the results in the paper hold for their homogeneous counterpart, which
is denoted by Ḃ0

1 [Ld/(d−α),1]. One can check that the only difference between the
definition in [20] and ours is the choice of Littlewood-Paley decomposition, provided
one utilizes the same norm on the Lorentz space Ld/(d−α),1(Rd ;Rk).

When presented with the Lorentz embedding proved in [10] and the Besov-Lorentz
embedding proved here, a natural question is whether one can deduce one from the
other. From the results in [20] one understands that the latter is indeed stronger: First,
one has the embedding

Ḃ0,1
d/(d−α),1(R

d ;Rk) ↪→ Ld/(d−α),1(Rd ;Rk). (2.5)

Indeed, with s = 0 in equation (3) on p. 1018 one finds the identification

Ḟ0
2 [Ld/(d−α),1] ≡ Ld/(d−α),1,

so that the claim follows by an application of the inhomogeneous variant of Theorem
1.1 (iv) with the choices

s0 = s1 = 0,

q0 = 1,

q1 = 2,

p0 = p1 = d

d − α
,

r0 = r1 = 1,

as one can check that they satisfy

s0 = s1, p0 = p1 �= q1, r0 ≤ r1, q0 ≤ min{p1, q1, r1}.

Second, since s0 = s1 and p0 = p1 �= q0, Theorem 1.2 (iv) asserts the reverse
inclusion can only hold if

q1 = 1 ≥ max{p0 = d

d − α
, q0 = 2, r0 = 1},

which is not valid (and note here the subscripts are opposite those immediately pre-
ceding in the invocation of Theorem 1.1 (iv)).

With the definition we have introduced above, we find that we must estimate

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
=

∑

n∈Z
‖IαF ∗ (ψ2n+1 − ψ2n )‖Ld/(d−α),1(Rd ;Rk ).
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In this form, an observation analogous to that of Stolyarov is that if we define the
multiplier

m̂(ξ) := ψ̂(ξ) − ψ̂(2−1ξ)

(2π |ξ |)αexp(−4π2|ξ |2) ,

then, with the use of the notation for scaling introduced in (2.4), one has

IαF ∗ (ψ2n+1 − ψ2n ) = 2−nα p2−2n ∗ F ∗ m2n .

Here we use the fact that m̂ is a Schwartz function to write the expression as a convo-
lution. In particular, the fact that m ∈ L1(Rd) and the invariance of the space L1(Rd)

with respect to the scaling (2.4) implies m2n ∈ L1(Rd) with

‖m2n‖L1(Rd ) = ‖m‖L1(Rd ) =: c.

By Young’s inequality on the Lorentz scale we obtain the bound

‖IαF ∗ (ψ2n+1 − ψ2n )‖Ld/(d−α),1(Rd ;Rk ) ≤ 3
d

d − α
c2−nα‖p2−2n ∗ F‖Ld/(d−α),1(Rd ;Rk ),

so that summation over n ∈ Z gives the inequality

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤ 3cd

d − α

∑

n∈Z
2−nα‖p2−2n ∗ F‖Ld/(d−α),1(Rd ;Rk ). (2.6)

The right-hand-side of this inequality is (a constantmultiple of) the discrete quantity
that Stolyarov obtains an upper bound for in his paper to prove the Besov-Lorentz
bound for the general class of subspaces. To pass to the continuous version, we use the
semi-group property of the heat kernel and another application of Young’s inequality
on the Lorentz scale: For each n ∈ Z and all s ∈ (2−2n−2, 2−2n),

‖p2−2n ∗ F‖Ld/(d−α),1(Rd ;Rk ) = ‖p2−2n−s ∗ ps ∗ F‖Ld/(d−α),1(Rd ;Rk )

≤ ‖p2−2n−s ∗ |ps ∗ F |‖Ld/(d−α),1(Rd ;Rk )

≤ 3d

d − α
‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk ).

In particular, integration from s = 2−2n−2 to 2−2n with respect to the measure ds/s
gives the inequality

‖p2−2n ∗ F‖Ld/(d−α),1(Rd ;Rk ) ≤ 1

ln(4)

3d

d − α

∫ 2−2n

2−2n−2
‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk )

ds

s
,
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which in combination with (2.6) yields

‖IαF‖
Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤

(
3d

d − α

)2 c

ln(4)

∑

n∈Z
2−nα

∫ 2−2n

2−2n−2
‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk )

ds

s
.

By further manipulation we obtain

∑

n∈Z
2−nα

∫ 2−2n

2−2n−2
‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk )

ds

s

≤
∑

n∈Z
2α

∫ 2−2n

2−2n−2
sα/2−1‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk )ds,

and thus

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
≤ c

∫ ∞

0
sα/2−1‖ps ∗ F‖Ld/(d−α),1(Rd ;Rk )ds (2.7)

for

c := 2α

(
3d

d − α

)2 c

ln(4)
.

The inequality (2.7) is exactly the control of the Besov-Lorentz norm by the quantity
(1.6) claimed in the introduction. In particular, by the argument of the introduction and
that preceding in this Section, we have established the estimate claimed in Theorem
1.1 for F ∈ L1(Rd ;Rd) such that div F = 0.

To conclude the proof of Theorem1.1,we follow the argument of J. Van Schaftingen
in [32] that the general case follows by an algebraic reduction. To do this, we first recall
a few facts on differential operators. We will work with first order homogeneous linear
differential operators with constant coefficients, which can be written as

L(D)F =
d∑

i=1

Li∂i F =
d∑

i=1

∂i (Li F),

where Li ∈ Lin(Rk;Rl) � R
l×k . Due to the usefulness of Fourier transform for linear

equations, it is natural to look at the symbol map

L(ξ) =
d∑

i=1

ξi Li ∈ Lin(Rk;Rl) for ξ ∈ R
d .

We make the simple observation that we can write

L(D)F = div(T F), where T F = (L1F |L2F | . . . |Ld F),
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so T ∈ Lin(Rk,Rl×d). The divergence of a matrix field is considered row wise.
We recall the definition of cocancellation:

Definition 2.5 An operator L(D) as above is said to be cocanceling if and only if

⋂

ξ∈Rd

ker L(ξ) = {0}.

We will show that cocancellation is equivalent with injectivity of the map T defined
above. The following lemma should be compared with [32,Prop. 2.5] and the proof of
[9,lem. 3.11].

Lemma 2.6 We have that

⋂

ξ∈Rd

ker L(ξ) = ker T .

To prove this, note that a vector F ∈ R
k lies in the left hand side if and only if

(T F)ξ = 0 for all ξ ∈ R
d ⇐⇒ T F = 0,

which yields the conclusion.
In particular, L(D) is cocanceling if and only if T is left invertible. If this is the

case, we can write an explicit left inverse in terms of the adjoint T ∗ of T ,

T † = (T ∗T )−1T ∗.

We can thus proceed with the proof of the main result.

Conclusion of the proof of Theorem 1.1 The necessity of cocancellation follows from
by plugging in a Dirac mass in the estimate and noting that Iα /∈ Ld/(d−α).

Conversely, we already proved the desired estimate for L(D) = div. We note that
if L(D)F = 0, we can write div(T F) = 0 and F = T †T F , so that

IαF = Iα(T †T F) = T † Iα(T F),

and using the inequality for divergence free measures and the fact that T †, T are
bounded maps on finite dimensional spaces we obtain

‖IαF‖Ḃ0,1
d/(d−α),1(R

d ;Rk )
= ‖T † Iα(T F)‖Ḃ0,1

d/(d−α),1(R
d ;Rk )

≤ C‖Iα(T F)‖Ḃ0,1
d/(d−α),1(R

d ;Rl×d )
≤ C‖T F‖L1(Rd ;Rl×d )

≤ C‖F‖L1(Rd ;Rk ),

which completes the proof. ��
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3 Hodge systems and duality estimates

We first note that Corollary 1.2 follows from Theorem 1.1 since the L1 vector fields
du and d∗u satisfy the first order conditions d(du) = 0 and d∗(d∗u) = 0, which are
cocanceling for the claimed ranges of k. This algebraic fact is elementary to check,
see also [32,Prop. 3.3] where the cocancellation of d on �-forms is proved, � ≤ d − 1.
The claim for d∗ follows by duality.

Proof of Theorem 1.3 We first infer from Corollary 1.2 with α = 1 that

‖I1F‖Ḃ0,1
d/(d−1),1(R

d ;�k−1Rd )
≤ C‖F‖L1(Rd ;�k−1Rd ), (3.1)

‖I1G‖Ḃ0,1
d/(d−1),1(R

d ;�k+1Rd )
≤ C‖G‖L1(Rd ;�k+1Rd ), (3.2)

where F ≡ 0 if k = 1 and G ≡ 0 if k = d − 1. Next, we note that since the Hodge
Laplacian coincides with the real variable Laplacian, we can express

Z = d I2F + d∗ I2G = (d I1)I1F + (d∗ I1)I1G, (3.3)

wherewe used (−	)−1 = I2 and the semigroup property of Riesz potentials. Note that
d I1, d∗ I1 give rise to a zero-homogeneous Fouriermultiplier, hence can be represented
as Calderón–Zygmund operators, and are therefore bounded on the Besov-Lorentz
spaces (Here one should be careful to note that these operators are mappings from one
exterior algebra into another.). It follows from (3.1), (3.2), and (3.3) that (and for the
convenience of display we remove the notation in the norm which details the images
of each map)

‖Z‖Ḃ0,1
d/(d−1),1(R

d )
≤ C

(
‖(d I1)I1F‖Ḃ0,1

d/(d−1),1(R
d )

+ ‖(d∗ I1)I1G‖Ḃ0,1
d/(d−1),1(R

d )

)

≤ C

(
‖I1F‖Ḃ0,1

d/(d−1),1(R
d )

+ ‖I1G‖Ḃ0,1
d/(d−1),1(R

d )

)

≤ C
(‖F‖L1(Rd ) + ‖G‖L1(Rd )

)
,

which completes the proof. ��
Proof of Proposition 1.4 Both inequalities follow from our main result, Theorem 1.1.
To prove the first estimate, we observe that the semi-group property of the Riesz
potentials and Hölder’s inequality on the Lorentz scale implies

∫

Rd
F · ϕ dx =

∫

Rd
I1F · (−	)1/2ϕ dx

≤ C‖I1F‖Ld/(d−1),1(Rd ;Rk )‖R∗Dϕ‖Ld,∞(Rd ;Rk ),

where we denote by R∗ the adjoint of the Riesz transforms, R∗ = − div I1, which
satisfies the identity R∗Dϕ = (−	)1/2ϕ. This inequality, Theorem 1.1, and the bound

‖R∗Dϕ‖Ld,∞(Rd ;Rk ) ≤ C‖Dϕ‖Ld,∞(Rd ;Rk×d )
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then implies the desired result, the last inequality following from the fact that R∗ is
bounded on the Lorentz spaces.

In a similar manner we argue the second inequality of the Proposition. First, by
duality we have

∫

Rd
F · ϕ dx ≤ C‖F‖Ḃ−α,1

d/(d−α)
(Rd ;Rk )

‖ϕ‖Ḃα,∞
d/α (Rd ;Rk ).

Next, we observe that the definition of Ḃ−α,1
d/(d−α)(R

d;Rk), in analogy with that of the
Besov-Lorentz space utilized in Sect. 2, is

‖F‖Ḃ−α,1
d/(d−α)

(Rd ;Rk )
=

∑

n∈Z
2−αn‖F ∗ (ψ2n+1 − ψ2n )‖Ld/(d−α)(Rd ;Rk ).

Therefore a slight modification of the argument of Theorem 1.1 in Sect. 2 leads to the
estimate

‖F‖Ḃ−α,1
d/(d−α)

(Rd ;Rk )
≤ C ′‖F‖L1(Rd ;Rk ),

which completes the proof of our second claim. ��

4 Optimality on the Lorentz scale

In a now classical paper on Sobolev embeddings, Alvino [2] proved (with sharp con-
stant) that one has

‖u‖Ld/(d−1),1(Rd ) ≤ C‖∇u‖L1(Rd ;Rd ).

Such an inequality extends to the case Du is a Radon measure, that is, Du ∈
Mb(R

d ;Rd) by approximation.
The first result of this Section is a construction which will show the optimality of

Alvino’s result. Here we should clarify our meaning of optimality. This is the endpoint
of where the Lorentz spaces are normable, so that on the scale of normable spaces it is
clear this is optimal. We will now show that the result cannot hold for a smaller choice
of second parameter in the quasi-norm introduced in (2.1), which is what we intend
by the phrase optimality.

Lemma 4.1 For every q < 1, there exists a sequence {uN }N∈N ⊂ BV (Rd) with

||DuN ||(Rd) ≤ C

independent of N ∈ N and

lim
N→∞ |||uN |||Ld/(d−1),q (Rd ) = +∞.
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Proof Define

uN =
N∑

i=1

hiχB(0,ri )(x) (4.1)

where hi ≥ 0 and ri ↘ 0 will be chosen later such that

||DuN ||(Rd) =
N∑

i=1

hiωdr
d−1
i ≤ C

independent of N and

lim
N→∞ |||uN |||Ld/(d−1),q (Rd ) = +∞.

To this end, we define H0 := 0,

Hi :=
i∑

j=1

h j

and compute

|||uN |||q
Ld/(d−1),q (Rd )

= d

d − 1

∫ HN

0

(
t |{|u| > t}|(d−1)/d

)q dt

t

= d

d − 1

N−1∑

i=0

∫ Hi+1

Hi

(
tω(d−1)/d

d rd−1
i

)q dt

t

= d

d − 1
ω
q(d−1)/d
d

N−1∑

i=0

r (d−1)q
i

∫ Hi+1

Hi

tq−1 dt .

Since q < 1, t �→ tq−1 is decreasing and therefore

∫ Hi+1

Hi

tq−1 dt ≥ Hq−1
i+1 (Hi+1 − Hi ) = Hq−1

i+1 hi+1.

In particular, with a shift of indices we find

|||uN |||q
Ld/(d−1),q (Rd )

≥ d

d − 1
ω
q(d−1)/d
d

N∑

i=1

r (n−1)q
i Hq−1

i hi .

Therefore it remains to choose hi , ri such that

∞∑

i=1

r (d−1)q
i Hq

i
hi
Hi

= +∞

123



F. Hernandez et al.

and recall we must do so in a way the ensures

∞∑

i=1

hiωdr
d−1
i ≤ C .

Choose hi = 2i , so that Hi = 2i+1. Thus we now are left to choose ri such that

∞∑

i=1

r (d−1)q
i Hq

i
hi
Hi

= 2q−1
∞∑

i=1

(
2i r (d−1)

i

)q = +∞

and

∞∑

i=1

2i r (d−1)
i < +∞.

But then the choice 2i r (d−1)
i = 1

i1/q
is sufficient, as q < 1. ��

Observe that Lemma 4.1 implies the optimality on the Lorentz scale of Alvino’s
result [2], that the second parameter in the Lorentz estimate cannot be taken less than
1. In fact, taking N → ∞ in the previous proof, we can prove the non inclusion of
BV in subcritical Lorentz spaces:

Corollary 4.2 For every q < 1, there exists u ∈ BV (Rd) \ Ld/(d−1),q(Rd).

Proof Let uN be the sequence defined in (4.1). Note that

uN ↗ u =
∞∑

i=1

hiχB(0,ri ) a.e.

This immediately implies

|||u|||Ld/(d−1),q (Rd ) ≥ |||uN |||Ld/(d−1),q (Rd ) ↗ ∞,

so u /∈ Ld/(d−1),q(Rd).
Note that since ||DuN ||(Rd) ≤ C , weak-* compactness in BV implies that, on a

subsequence, uN
∗
⇀u in BV (Rd). It follows that u ∈ BV (Rd), which completes the

proof. ��
For our purposes here it will be useful to observe another consequence of this

construction, the following

Lemma 4.3 For every r < 1, there exists a sequence {uN }N∈N ⊂ BV (Rd) with

||DuN ||(Rd) ≤ C
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independent of N ∈ N and

lim
N→∞ |||IαDuN |||Ld/(d−α),r (Rn;Rn) = +∞.

Proof We begin with an the inequality for u in terms of potentials and its gradient

|u(x)| ≤ cI1−α|IαDu(x)|.

We will estimate u by a standard potential estimate for I1−α . To this end, we recall an
estimate of Hedberg, see e.g. [1,Proposition 3.1.2 (a)] which asserts

|Iβ f | ≤ M( f )1−β p/d‖ f ‖β p/d
L p(Rd )

.

The choice f = |IαDu(x)|, β = 1 − α, and p = d/(d − α) yields

I1−α|IαDu(x)| ≤ M(|IαDu(x)|)(n−1)/(n−α)‖|IαDu|‖1−(d−1)/(d−α)

Ld/(d−α)(Rd )
.

By the boundedness of the maximal function (see [8,Theorem 1.4.19] for the case
q(d − 1)/(d − α) < 1) and properties of the Lorentz spaces, this shows that

|||u|||Ld/(d−1),q (Rd ) ≤ |||IαDu|||(d−1)/(d−α)

Ld/(d−α),q(d−1)/(d−α)(Rn)
|||IαDu|||1−(d−1)/(d−α)

Ld/(d−α)(Rd )
.

By the embedding proved in [19, 23], this implies

|||u|||Ld/(d−1),q (Rd ) ≤ |||IαDu|||(d−1)/(d−α)

Ld/(d−α),q(d−1)/(d−α)(Rd ;Rd )
||Du||(Rd)1−(d−1)/(d−α).

But then for any r < 1 we may choose

q = r × d − α

d − 1
< r < 1,

and the construction fromLemma 4.1with this choice of q yields the desired sequence.
��

From this we obtain the optimality of Theorem 1.1 in [23]. Here we remark that
while compactness properties of bounded sequences in BV again allows one to write
down the limit

u =
∞∑

i=1

hiχB(0,ri )(x) ∈ BV (Rd),

the fact that IαDu /∈ Ld/(d−α),r (Rd ;Rd) is not obvious in this case.
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5 Simplifications in the curl free case

That one has Lorentz and Besov-Lorentz embeddings for F ∈ L1(Rd;Rd) such that
curl F = 0 is contained in Theorem 1.1. We here will give an even more direct proof,
which improves upon those given in [12, 13, 22, 23] and in this less general setting
even simplifies some of the argument from Sect. 2 above. In particular, the goal of this
Section is to establish

Theorem 5.1 Let d ≥ 2 and α ∈ (0, d). There exists a constant C = C(α, d) > 0
such that

‖F‖Ḃ−α,1
d/(d−α),1(R

d ;Rd )
≤ C‖F‖L1(Rd ;Rd )

for all F ∈ L1(Rd;Rd) such that curl F = 0.

Theorem 5.1 has an interesting history, as it was pointed out to us by D. Stolyarov
that one can deduce it from Theorem 4 of V.I. Kolyada’s paper [12,Theorem 4]. The
third named author was not aware of this during the writing of [23], which gives a
different proof of what is unfortunately a slightly weaker result. We can here rectify
this in giving a simpler proof of the same result.

Proof of Theorem 5.1 First we claim that it suffices to prove the estimate

∫ ∞

0
tα/2−1‖pt ∗ DχE‖Ld/(d−α),1(Rd ;Rd ) dt ≤ C ||DχE ||(Rd)

for all χE ∈ BV (Rd), the space of functions of bounded variation. Indeed, in analogy
with the argument in [23], for general u ∈ BV (Rd) one begins with the representation

Du =
∫ ∞

−∞
DχEs ds

where Es := {u > s}.With this representation, an application ofMinkowski’s inequal-
ity for integrals and Fubini’s theorem yields

∫ ∞

0
tα/2−1‖pt ∗ Du‖Ld/(d−α),1(Rd ;Rd ) dt

≤
∫ ∞

−∞

∫ ∞

0
tα/2−1‖pt ∗ DχEs‖Ld/(d−α),1(Rd ;Rd ) dt ds.

Therefore, if one has established the desired inequality for χE ∈ BV (Rd), the result
for general u ∈ BV (Rd) follows from this chain of inequalities and the coarea formula

||Du||(Rd) =
∫ ∞

−∞
||DχEs ||(Rd) ds.
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Notice that if one only wants to prove the Lorentz inequality (1.1), or the weaker
Lebesgue inequality, the essential ingredients at the point are only Minkowski’s
inequality for integrals and the coarea formula.

Toward establishing the desired inequality for sets of finite perimeter, we recall
again the classical convolution inequalities

‖pt ∗ DχE‖L1(Rd ;Rd ) ≤ ‖pt‖L1(Rd )|DχE |(Rd), (5.1)

‖pt ∗ DχE‖L∞(Rd ;Rd ) ≤ ‖pt‖L∞(Rd )|DχE |(Rd). (5.2)

Interpolation of these inequalities alone would not suffice, and so we require two
additional inequalities which are special to characteristic functions of sets. It is here
that the curl free case is much simpler than the divergence free case, as these two
inequalities follow immediately from integration by parts and classical convolution
estimates:

‖pt ∗ DχE‖L1(Rd ;Rd ) ≤ ‖Dpt‖L1(Rd ;Rd )‖χE‖L1(Rd ), (5.3)

‖pt ∗ DχE‖L∞(Rd ;Rd ) ≤ ‖Dpt‖L1(Rd ;Rd )‖χE‖L∞(Rd ). (5.4)

In particular, one does not need to perform surgery, consider a ball growth condition,
maximal function estimates, or generalized minimal surfaces.

From here, one interpolates (5.1) and (5.4) to obtain

‖pt ∗ DχE‖L p,1(Rd ;Rd ) ≤ C3

t1/2p′ |DχE |(Rd)1/p, (5.5)

where we have used

‖pt‖L1(Rd ) = 1, ‖χE‖L∞(Rd ) = 1, and ‖Dpt‖L1(Rd ;Rd ) = c

t1/2
.

In a similar manner, interpolation of (5.3) and (5.2) yields

‖pt ∗ DχE‖L p,1(Rd ;Rd ) ≤ C4

t1/2p+d/2p′ ‖χE‖1/p
L1(Rd )

|DχE |(Rd)1−1/p (5.6)

where we have used

‖pt‖L∞(Rd ) = 1

(4π t)d/2 and ‖Dpt‖L1(Rd ;Rd ) = c

t1/2
.

As before, we use the fact that in interpolation of Lebesgue spaces, one can improve
the second parameter in the interpolation on the Lorentz scale. One can do even better
here than one, though below one the estimate is no longer linear and so the result for
the curl free case does not follow from the inequality for characteristics functions of
sets. Notice that if one only wants the Lebesgue scale inequality, the interpolation is
an exercise in Real Analysis.
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Finally, we can make the estimate by splitting the integral in two pieces

∫ ∞

0
tα/2−1‖pt ∗ DχE‖Ld/(d−α),1(Rd ;Rd ) dt

=
∫ r

0
tα/2−1‖pt ∗ DχE‖Ld/(d−α),1(Rd ;Rd ) dt

+
∫ ∞

r
tα/2−1‖pt ∗ DχE‖Ld/(d−α),1(Rd ;Rd ) dt

=: I + I I .

For I , we use the interpolated inequality (5.5) with the choice of p = d
d−α

to obtain

I ≤ C3

�
(

α
2

) |DχE |(Rd)(d−α)/d
∫ r

0
tα/2−1−α/2d dt

= C ′
3|DχE |(Rd)(d−α)/drα/2−α/2d ,

while for I I we use the interpolated inequality (5.6), with the same choice of p to
obtain

I I ≤ C4

�
(

α
2

)‖χE‖(d−α)/d
L1(Rd )

|DχE |(Rd)α/d
∫ ∞

r
tα/2−1−1/2p−d/2p′

dt

= C ′
4‖χE‖(d−α)/d

Mb(R
d )

|DχE |(Rd)α/dr−1/2+α/2d .

The desired inequality then follows fromoptimizing in r and the isoperimetric inequal-
ity

|E |1−1/d ≤ cd |DχE |(Rd).

This concludes the proof, the Section, and the paper. ��
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