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In natural auditory environments, acoustic signals originate from the temporal

superimposition of different sound sources. The problem of inferring individual sources

from ambiguous mixtures of sounds is known as blind source decomposition.

Experiments on humans have demonstrated that the auditory system can identify

sound sources as repeating patterns embedded in the acoustic input. Source repetition

produces temporal regularities that can be detected and used for segregation.

Specifically, listeners can identify sounds occurring more than once across different

mixtures, but not sounds heard only in a single mixture. However, whether such a

behavior can be computationally modeled has not yet been explored. Here, we propose

a biologically inspired computational model to perform blind source separation on

sequences of mixtures of acoustic stimuli. Ourmethod relies on a somatodendritic neuron

model trained with a Hebbian-like learning rule which was originally conceived to detect

spatio-temporal patterns recurring in synaptic inputs. We show that the segregation

capabilities of our model are reminiscent of the features of human performance in a

variety of experimental settings involving synthesized sounds with naturalistic properties.

Furthermore, we extend the study to investigate the properties of segregation on task

settings not yet explored with human subjects, namely natural sounds and images.

Overall, our work suggests that somatodendritic neuron models offer a promising

neuro-inspired learning strategy to account for the characteristics of the brain segregation

capabilities as well as to make predictions on yet untested experimental settings.

Keywords: dendritic neurons, spiking neural networks, blind source separation, sound source repetition, spatio-

temporal structure

1. INTRODUCTION

Hearing a sound of specific interest in a noisy environment is a fundamental ability of the brain that
is necessary for auditory scene analysis. To achieve this, the brain has to unambiguously separate the
target auditory signal from other distractor signals. In this vein, a famous example is the “cocktail
party effect” (Cherry, 1953), i.e., the ability to distinguish a particular speaker’s voice against a
multi-talker background (Brown et al., 2001; Mesgarani and Chang, 2012). Many psychophysical
and neurobiological studies have been conducted to clarify the psychophysical properties and
underlying mechanisms of the segregation of mixed signals (Asari et al., 2006; Bee and Micheyl,
2008; Narayan et al., 2008; McDermott, 2009; McDermott et al., 2011; Schmidt and Römer, 2011;
Lewald and Getzmann, 2015; Li et al., 2017; Atilgan et al., 2018), and computational theories and
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models have also been proposed for this computation (Amari
et al., 1995; Bell and Sejnowski, 1995; Sagi et al., 2001; Haykin and
Chen, 2005; Elhilali and Shamma, 2009; Thakur et al., 2015; Dong
et al., 2016; Kameoka et al., 2018; Karamatli et al., 2018; Sawada
et al., 2019). However, how the brain attains its remarkable sound
segregation remains elusive. Various properties of auditory cues
such as spatial cues in binaural listening (Ding and Simon, 2012)
and temporal coherence of sound stimuli (Teki et al., 2013;
Krishnan et al., 2014) are known to facilitate the listener’s ability
to segregate a particular sound from the background. Auditory
signals that reached to ears first undergo the analysis of frequency
spectrums by cochlea (Oxenham, 2018). Simultaneous initiation
and termination of the component signals and the harmonic
structure of the frequency spectrums help the brain to identify
the components of the target sound (Popham et al., 2018). Prior
knowledge about the target sound, such as its familiarity to
listeners (Elhilali, 2013; Woods and McDermott, 2018), and top-
down attention can also improve their ability to detect the sound
(Kerlin et al., 2010; Xiang et al., 2010; Ahveninen et al., 2011;
Golumbic et al., 2013; O’Sullivan et al., 2014; Bronkhorst, 2015).
Selective attention as the combination of the auditory (sound)
and visual (lip movements, visual cues) modalities has also been
suggested to be beneficial to solve the cocktail party problem (Yu,
2020; Liu et al., 2021). However, many of these cues are subsidiary
and not absolutely required for hearing the target sound. For
example, a mixture sound can be separated by monaural hearing
(Hawley et al., 2004) or without spatial cues (Middlebrooks
and Waters, 2020). Therefore, the crucial mechanisms of sound
segregation remain to be explored.

Whether or not biological auditory systems segregate a sound
based on principles similar to those invented for artificial
systems remains unclear (Bee and Micheyl, 2008; McDermott,
2009). Among such principles, independent component analysis
(ICA) (Comon, 1994) and its variants are the conventional
mathematical tools used for solving the sound segregation
problem, or more generally, the blind source decomposition
problem (Amari et al., 1995; Bell and Sejnowski, 1995; Hyvärinen
and Oja, 1997; Haykin and Chen, 2005). Owing to its linear
algebraic features, the conventional ICA requires as many input
channels (e.g., microphones) as the number of signal sources,
which does not appear to be a requirement for sound segregation
in biological systems. In this context, however, recent works for
single-channel source separation based on techniques such as
Non-Negative Matrix Factorization (NNMF) have demonstrated
that ICA can be applied with a lower number of channels than
the number of sources (Krause-Solberg and Iske, 2015; Mika
et al., 2020). In addition, NNMF has been shown to extract
regular spatio-temporal patterns within the audio and to achieve
good performance in applications such as music processing
(Smaragdis and Brown, 2003; Cichocki et al., 2006; Santosh and
Bharathi, 2017; López-Serrano et al., 2019). It has been suggested
as an alternative possibility that human listeners detect latent
recurring patterns in the spectro-temporal structure of sound
mixtures for separating individual sound sources (McDermott
et al., 2011). This was indicated by the finding that listeners
could identify a target sound when the sound was repeated in
different mixtures in combination with various other sounds

but could not do so when the sound was presented in a
single mixture.

The finding represents an important piece of information
about the computational principles of sound source separation in
biological systems. Here, we demonstrate that a computational
model implementing a pattern-detection mechanism accounts
for the characteristic features of human performance observed
in various task settings. To this end, we constructed a
simplified model of biological auditory systems by using a
two-compartment neuron model recently proposed for learning
regularly or irregularly repeated patterns in input spike trains
(Asabuki and Fukai, 2020). Importantly, this learning occurs in
an unsupervised fashion based on the minimization principle
of regularized information loss, showing that the essential
computation of sound source segregation can emerge at the
single-neuron level without teaching signals. Furthermore, it
was previously suggested that a similar repetition-based learning
mechanism may also work for the segregation of visual objects
(McDermott et al., 2011). To provide a firm computational
ground, we extended the tasks of our framework to predictions
on visual images.

2. RESULTS

2.1. Learning of Repeated Input Patterns
by a Two-Compartment Neuron Model
We used a two-compartment spiking neuron model which learns
recurring temporal features in synaptic input, as proposed in
Asabuki and Fukai (2020). In short, the dendritic compartment
attempts to predict the responses of the soma to given synaptic
input by modeling the somatic responses. To this end, the
neuron model minimizes information loss within a recent period
when the somatic activity is replaced with its model generated
by the dendrite. Mathematically, the learning rule minimizes
the Kullback–Leibler (KL) divergence between the probability
distributions of somatic and dendritic activities. The dendritic
membrane potential of a two-compartment neuron obeys v(t) =
∑

j wjej(t), where wj and ej stand for the synaptic weight and
the unit postsynaptic potential of the j-th presynaptic input,
respectively. The somatic activity evolves as

u̇(t) = −
1

τ
u(t)+ gD[−u(t)+ v(t)]−

∑

j

Gkφ
som(uk(t))/φ0, (1)

where the last term describes lateral inhibition with modifiable
synaptic weights Gk (≥ 0), as shown later. The soma generates a
Poisson spike train with the instantaneous firing rate φsom(u(t)),
where φisom(ui) = φ0[1 + eβ(−ui+θ))]−1, and the parameters
β and θ are modified in an activity-dependent manner in
terms of the mean and variance of the membrane potential
over a sufficiently long period t0. To extract the repeated
patterns from temporal input, the model compresses the high
dimensional data carried by the input sequence onto a low
dimensional manifold of neural dynamics. This is performed
by modifying the weights of dendritic synapses to minimize
the time-averaged mismatch between the somatic and dendritic
activities over a certain interval [0,T]. In a stationary state,
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the somatic membrane potential ui(t) can be described as an
attenuated version v∗i (t) of the dendritic membrane potential. At
each time point, we compare the attenuated dendritic membrane
potential with the somatic membrane potential, on the level of
the two Poissonian spike distributions with rates φsomi (u(t)) and
φ(v∗i (t)), respectively, which would be generated if both soma and
dendrite were able to emit spikes independently. In practice, the
neuron model minimizes the following cost function for synaptic
weightsw, which represents the averaged KL-divergence between
somatic activity and dendritic activity, and in which we explicitly
represent the dependency of ui and v∗i on X:

E(w) =

∫

�X

dXP∗(X)

∫ T

0
dt

∑

i

DKL[φ
som
i (ui(t;X))||φ

dend(v∗i (t;X))], (2)

with P∗(X) and �X being the true distribution of input spike
trains and the entire space spanned by them, and φdend(x) =

φ0[1 + eβ0(−x+θ0))]−1. To search for the optimal weight matrix,
the cost function E(w) is minimized through gradient descent:
1wij ∝ −∂E/∂wij. Introducing the regularization term −γwi

and a noise component ξi with its intensity g gives the following
learning rule (for the derivation see Asabuki and Fukai, 2020):

ẇi(t) = η{ψ(v∗i (t))[{f (φ
som
i +φ0gξi)−φ

dend(v∗i (t))}/φ0]e(t)−γwi},
(3)

where wi = [wi1,...,wiNin
], e(t) = [e1, ...eNin], ξi obeys a normal

distribution, ψ(x) = d
dx
log(φdend(x)), φsom and φdend follow

Poisson distributions, η is the learning rate, and

f (x) =











0 if x < 0,

x if 0 ≤ x < φ0,

φ0 if x ≥ φ0

Finally, if a pair of presynaptic and postsynaptic spikes occur at
the times tpre and tpost , respectively, lateral inhibitory connections
between two-compartment neurons i and j are modified through
a symmetric anti-Hebbian STDP as

1Gij = Cpexp

(

−
tpre − tpost

τp

)

− Cdexp

(

−
tpre − tpost

τd

)

(4)

See Section 4 and Supplementary Note for additional details.
The prediction is learnable when input spike sequences from
presynaptic neurons are non-random and contain recurring
temporal patterns. In such a case, the minimization of
information loss induces a consistency check between the
dendrite and soma, eventually enforcing both compartments to
respond selectively to one of the patterns. Mathematically, the
somatic response serves as a teaching signal to supervise synaptic
learning in the dendrite. Biologically, backpropagating action
potentials may provide the supervising signal (Larkum et al.,
1999; Larkum, 2013).

We constructed an artificial neural network based on the
somatodendritic consistency check model and trained the

network to perform the task of source recovering from embedded
repetition. The network consisted of two layers of neurons. The
input layer encoded the spectrogram of acoustic stimuli into
spike trains of Poisson neurons. For each sound, the spike train
was generated through a sequence of 400 time steps, where
each time step corresponds to a “fire” or “non-fire” event. The
output layer was a competitive network of the two-compartment
models that received synaptic input from the input layer and
learned recurring patterns in the input (Figure 1). We designed
the output layer and the learning process similarly to the network
used previously (Asabuki and Fukai, 2020) for the blind signal
separation (BSS) within mixtures of multiple mutually correlated
signals. In particular, lateral inhibitory connections between
the output neurons underwent spike-timing-dependent plasticity
for self-organizing an array of feature-selective output neurons
(Section 4). In the spike encoding stage, the spectrogram is
flattened into a one-dimensional array where the intensity of each
element is proportional to the Poisson firing probability of the
associated input neuron. This operation disconnects the signal’s
temporal features from the temporal dynamics of the neurons.
Although this signal manipulation is not biologically plausible
and introduces additional latency as the whole sample needs to
be buffered, it allows the input layer to encode simultaneously all
the time points of the audio signal. Thanks to this strategy, the
length of the input spike trains does not depend on the duration
of the audio signal, and a sufficiently large population of input
neurons can encode arbitrarily long sounds, possibly with some
redundancy in the encoding for short sounds. We remark that,
while the somatodendritic mismatch learning rule was conceived
to capture temporal information in an online fashion, in our
framework it is applied to a flattened spectrogram, thus to a static
pattern. Furthermore, in order to relate the signal intensity with
the encoding firing rate, we normalized the spectrogram values to
the interval [0,1]. This strategy is suited to our aim of reproducing
the experiments with synthetic sounds and custom naturalistic
stimuli. However, in a real-world application any instantaneous
outlier in signal intensity would destroy other temporal features
of an input signal. Nonetheless, the normalization is performed
independently for each mixture, so if the outlier affects a masker
sound and not a target, and the target is presented in at least
two other mixtures, we expect that the normalization does not
affect the ability of the network of identifying sounds presented
in different mixtures.

2.2. Synthesized and Natural Auditory
Stimuli
We examined whether the results of our computational model
are consistent with the outcomes of the experiments on human
listeners on artificially synthesized sounds described previously
(McDermott et al., 2011). To provide a meaningful comparison
with the human responses, we adopted for our simulations
settings as close as possible to the experiments, both in terms
of dataset generation and performance evaluation (Section 4).
In McDermott et al. (2011), the generation of synthetic sounds
is performed by first measuring the correlations between pairs
of spectrograms cells of natural sounds (spoken words and
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FIGURE 1 | Network architecture. The input signal is pre-processed into a two-dimensional image (i.e., the spectrogram) with values normalized in the range [0,1].

The image is flattened into a one-dimensional array where the intensity of each element is proportional to the Poisson firing probability of the associated input neuron.

The neurons in the input layer are connected to those in the output layer through either full connectivity or random connectivity with connection probability p = 0.3.

The output neurons are trained following the artificial dendritic neuron learning scheme (Asabuki and Fukai, 2020).

animal vocalizations). Then such correlations are averaged across
different pairs to obtain temporal correlation functions. The
correlation functions in turn are used to generate covariance
matrices, in which each element is the covariance between
two spectrogram cells. Finally, spectrograms are drawn from
the resulting Gaussian distribution and applied to samples
of white noise, leading to the synthesis of novel sounds. In
our experiments we synthesized the sounds using the toolbox
provided at https://mcdermottlab.mit.edu/downloads.html. In
the human experiments, a dataset containing novel sounds
was generated such that listeners’ performance in sound source
segregation was not influenced by familiarity with previously
experienced sounds. To closely reproduce the experiment, we
created a database of synthesized sounds according to the same
method as described in McDermott et al. (2011) (Section 4).
The synthesized stimuli retained similarity to real-world sounds
except that they lacked grouping cues related to temporal
onset and harmonic spectral structures. Furthermore, unlike
human listeners, our neural network was trained and built from
scratch, and had no previous knowledge of natural sounds that
could bias the task execution. We exploited this advantage to
investigate whether and how the sound segregation performance
was affected by the presence of grouping cues in real sounds. To
this goal we also built a database composed of natural sounds
(Section 4).

To build the sequence of input stimuli, we randomly chose
a set of sounds from the database of synthesized or natural
sounds, and we generated various mixtures by superimposing
them—i.e., we summed element-wise the spectrograms of the

original sounds and then normalized the sum to the interval
[0,1]. We refer to the main sound, which is always part of
mixtures, as the target, and to all the other sounds, which
were either presented as mixing sounds with the target (i.e.,
masker sounds) or presented alone, as distractors. The target
sound is shown in red in the training protocols. Following
the protocol in McDermott et al. (2011), we concatenated the
mixtures of target and distractors into input sequences. For
certain experiments, we also included unmixed distractor sounds.
We presented the network with the input sequence for a fixed
number of repetitions. As each input signal—both unmixed
sounds and mixtures—is flattened into one input vector, each
input signal is one element of the input sequence. During the
input presentation, the network’s parameters evolved following
the learning rule described in Asabuki and Fukai (2020). Then,
we examined the ability of the trained network to identify the
target sound by using probe sounds, which were either the
target or distractor sound composing the mixtures presented
during training (correct probe) or a different sound (incorrect
probe). Incorrect probes for synthesized target sounds were
generated similarly as described in McDermott et al. (2011).
Specifically, we synthesized the incorrect probe by using the
same covariance structure of the target sound, and then we set
a randomly selected time slice of the incorrect probe (1/8 of
the sound’s duration) to be equal to a time slice of the target of
the same duration. Examples of target sounds, distractor sounds
and incorrect probes are shown in Figures 2A–C, respectively.
A further beneficial aspect of our model is the possibility of
freezing plasticity during the inference stage, so that the synaptic
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FIGURE 2 | Synthesized sounds—target and associated distractor. (A) Spectrogram of one target sound. (B) Step 1 to build the spectrogram of an incorrect probe

related to the target in (A): a sound is randomly selected from the same Gaussian distribution generating the target. (C) Step 2 to build the incorrect probe: after the

sampling, a randomly selected time slice equal to 1/8 of the sound duration is set to be equal to the target. In the figure, the temporal slice is the vertical stripe around

time 0.5 s.

connections do not change during the probe presentation. This
allows us to investigate whether the trained network can identify
not only the target but also the masker sounds.

2.3. Learning of Mixture Sounds in the
Network Model
Our network model contained various hyperparameters such
as number of output neurons, number of mixtures and
connectivity pattern. A grid search was performed to find
the best combination of hyperparameters. Figures 3A,B report
the learning curves obtained on synthesized and natural
sounds, respectively, for random initial weights and different
combinations of hyperparameters. For both types of sounds,
synaptic weights changed rapidly in the initial phase of learning.
The changes were somewhat faster for synthesized sounds than
for natural sounds, but the learning curves behaved similarly for
both sound types. The number of output neurons little affected
the learning curves, while they behaved differently for different
connectivity patterns or different numbers of mixtures. Because
familiarity to sounds enhances auditory perception in humans
(Jacobsen et al., 2005), we investigated whether pretraining with
a sequence containing target and distractors improves learning
in our model for various lengths of pretraining. Neither the
training speed nor the final accuracy were significantly improved
by the pretraining (Figures 3C–E). This suggests that the model
was “forgetting” about the pretraining stage and learning the
mixture sounds from scratch, not exploiting any familiarity with
previously seen sounds. We suspect that this behavior is related
to the well know limitation of ANNs of lack of continual learning
(French, 1999) rather than to a specific feature of our model.
Furthermore, we cannot provide a comparison in the learning
curve between the model and the psychophysical data, since the
model was trained for multiple epochs, while the human listeners
were presented with the training sequence only once and then
tested on the probe immediately after.

To reliably compare the performance of our model with
human listeners, we designed a similar assessment strategy to
that adopted in the experiment. In McDermott et al. (2011),
listeners were presented with mixtures of sounds followed by
a probe which could be either a correct probe (i.e., the target
sound present in the training mixtures) or an incorrect probe
(i.e., sounds unseen during the training). The subjects had to
say whether they believed the probe was present in the training
mixture by using one of the four responses “sure no,” “no,” “yes,”
and “sure yes.” The responses were used to build a receiver
operating characteristics (ROC) as described in Wickens (2002),
and the area under the curve (AUC) was used as performance
measure, with AUC = 0.5 and 1 corresponding to chance and
perfect correct, respectively. In our algorithm, we mimicked this
protocol for reporting by using the likelihood as a measure
of performance. To this goal, first, for each tested probe, we
projected the response of the N output neurons (Figures 4A,D)
to a two-dimensional PCA projection plane. We defined the
PCA space based on the response to the correct probes and later
projected on it the datapoints related to the incorrect probes
(Figures 4B,E).We remark that other clustering approaches such
as K-means and self-organizing maps could be used instead
of PCA without reducing the output dimension. Second, we
clustered the datapoints related to the correct probes through
a Gaussian Mixture Model (GMM) with as many classes as
the number of correct probes (Figures 4C,F). Third, for each
datapoint we computed the likelihood that it belonged to one of
the clusters. The target likelihood values are fixed to 1 and 0 for
datapoints related to correct and incorrect probes respectively.
We highlight that the labels introduced in this post-processing
phase are not specific for each sound, but rather depend on
the role of the sound in the tasks, i.e., if sound X is presented
during training as a target or masker sound it is associated to
label 1, while if, in another simulation, the same sound X is used
to build an incorrect probe (not used during training) then it
is associated with label 0. We binned the likelihood range into
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FIGURE 3 | Learning curves. (A) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being initialized with

random values. (B) Average synaptic weight change for the experiments carried out on the natural sounds, the network being initialized with random values. (C)

Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set presented for 100

epochs. (D) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set presented for

200 epochs. (E) Average synaptic weight change for the experiments carried out on the synthetized sounds, the network being pretrained on the targets set

presented for 300 epochs. The solid line and the shaded area represent the mean and standard deviation over 3 independent runs, respectively. Without pretraining,

when the number of output neurons is varied no significant change is found, while with pretraining when a larger number of neurons is used, the weight change curve

saturates at a lower value, as shown by the blue (N = 4) and green (N = 12) curves. Furthermore, the figures show that both when a larger number of training mixtures

is presented (yellow curves) and when only 30% of the connections are kept (red curves) the slope of the learning curve is steeper. The weight change is computed by

storing the weights values every 2,000 time steps (i.e., “fire” or “non-fire” events) and computing the standard deviation over the last 100 recorded values. The

standard deviation is then averaged across all connections from input to output neurons. Therefore, each point on the curve reports the average weight change over

the past 2000×100 time steps. Note that each sound/mixture is presented for 400 time steps. Finally, the x-axis shows the number of repetitions of the training

mixture sequence (2,000 for synthetic sounds and 1,500 for naturalistic sounds).

four intervals corresponding, in an ascending order, to the four
responses “sure no,” “no,” “yes,” and “sure yes.” Finally, based on
the four responses, we built the receiver operating characteristic
(ROC) curve: the datapoints falling in the interval (i) L > 0
(sure yes) were assigned the probability value p = 1.0, those in
(ii) −5 < L < 0 (yes) p = 0.66, those in (iii) −15 < L < −5
(no) p = 0.33, and those in (iv) L < −15 (sure no) p = 0.0. The
AUC of the ROC is used as the “accuracy” metric to evaluate the
performance of the model. For additional details see Section 4.
Now, we are ready to examine the performance of the model
in a series of experiments. We show examples of the different
behavior of the network trained on single (Figures 4A–C) or four
mixtures (Figures 4D–F). As expected, the ability of the model to
learn and distinguish the targets from the distractors depended
crucially on the number of mixtures.

The algorithm was implemented in Python and a sample
code used to simulate Experiment 1 is available at the repository
https://github.com/GiorgiaD/dendritic-neuron-BSS.

2.4. Experiment 1: Sound Segregation With
Single and Multiple Mixtures of
Synthesized Sounds
To begin with, we compared how the number of mixtures
influences the learning performance between human subjects
and the model. The number of mixtures presented during
training was varied from 1, where no learning was expected,
to 2 or more, where the model was expected to distinguish the
target sounds from their respective distractors. The simulation
protocol is shown in Figure 5A (bottom). As reported in
Figure 5A (top), we obtained that, when one mixture only was
shown, neither the target nor the mixing sound was learnt,
and performance was close to chance. An immediate boost in
the performance was observed when the number of mixtures
was raised to two. The network managed to distinguish the
learnt targets from the incorrect probes with an accuracy
greater than 90%. As the number of mixtures increased up
to six, the accuracy worsened slightly, remaining above 80%.
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FIGURE 4 | Experiment 1—output dynamics and clustering. (A–C) refer to the results of Experiment 1 on synthesized sounds with a single mixture presented during

training. (D–F) refer to the results of Experiment 1 on synthesized sounds with three mixtures presented during training. The “correct probes” are the target and the

distractor sounds composing the mixtures presented during training, while the “incorrect probes” are sounds not presented during training. The numbers in the

legends indicate the sound IDs. (A) Voltage dynamics of the 8 output neurons during inference, when the target, the distractor and the two associated incorrect

probes are tested. The neuron population is not able to respond with different dynamics to the four sounds, and the voltage of all the output neurons fluctuates

randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints belonging to the two targets (in blue) shows that the clusters are collapsed

into a single cluster. (C) When GMM is applied, all the datapoints representing both the correct probes (in blue) and the incorrect probes (in orange and red) fall within

the same regions, making it impossible to distinguish the different sounds based on the population dynamics. (D) Voltage dynamics of the 8 output neurons during

inference, when the four targets and the associated distractors are tested. As expected, the neuron population has learnt the feature of the different sounds and

responds with different dynamics to the eight sounds. Each output neuron exhibits an enhanced response to one or few sounds. (E) The PCA projection of the

datapoints belonging to the four correct probes (in blue) shows that the clusters are compact and spatially distant one from the other. (F) When GMM is applied, the

model shows that the network is, most of the times, able to distinguish the target and distractors (in blue) from the incorrect probes (in yellow, orange and red). The

correct probes are never overlapped. Three of the four distractors fall far from the targets’ region, while the fourth (in yellow) overlaps with one of the targets. These

results are overall coherent with the human performance. In (C,F), the contour lines represent the landscape of the log-likelihood that a point belongs to one of the

clusters associated to the correct probes.

A significant drop in the performance was observed for a
greater number of mixtures. From a comparison with the results
shown in Figure 5B, which were replicated for human subjects
(McDermott et al., 2011), it emerged that our model was able
to partially reproduce human performance: the success rate was
at chance levels when training consists of a single mixture only;
the target sounds could be distinguished to a certain accuracy
if more than a mixture was learnt. We also verified that the

model performance was robust for variations of the network
architecture, both in terms of the number of output neurons
N and the connection probability p (Supplementary Figure 1).
Furthermore we observe that, while none of the output neurons
exhibits an enhanced high firing rate when presented with the
target sound, the overall population response to the target is
substantially different from the response to the masker sounds
and to the incorrect probes.
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FIGURE 5 | Experiment 1 and 1 a.c.—results and comparison with human performance. (A) Results and schematics for Experiment 1 on the dendritic network

model. The number of mixtures is varied from 1 to 10. Performance is close to chance for a single training mixture. The performance is boosted as two mixtures are

presented. As the number of mixtures is further increased, the clustering accuracy slowly decreases toward chance values. The protocol shown at the bottom of the

panel illustrates that (i) in the training phase we feed the network only with the mixture(s), i.e., target+masker sound(s). (ii) in the inference phase we feed the network

only with the unmixed sounds (target, distractor separately) and with the incorrect probes (also unmixed sounds). We remark that in the case of one mixture (condition

1) the target and the masker sounds play the same role, while in the case of multiple mixtures (conditions 2 and 3) the target has a different role in the protocol as it is

present in more than one mixture while the masker sounds are presented in one mixture only in the training sequence. (B) Results and schematics for Experiment 1 on

the human experiment. The number of mixtures presented are 1, 2, 3, 5, and 10. For a single mixture the performance is close to chance. As the number of mixtures

increases, the classification accuracy improves steadily. Figure reproduced based on data acquired by McDermott et al. (2011). (C) Results and schematics for

Experiment 1 a.c. on the dendritic network model. The number of mixtures is varied from 2 to 5. Combining all the mixing sounds in mixtures slightly improves the

mean performance for two mixing sounds, while it slightly worsens it for a larger number of mixtures. The height of the bars and the error bars show, respectively,

mean and standard deviation of the AUC over 10 independent runs.

Our model and human subjects also exhibited interesting
differences. When the mixture number was increased to two,
performance improved greatly in our model but only modestly
in human subjects. Unlike human subjects, our model showed a
decreasing accuracy as the number of mixtures further increased.
We consider that such discrepancies may arise from a capacity
limitation of the network. Indeed, the network architecture
is very simple and consists of two layers only, whose size is
limited by the spectrogram dimensions for the input layer and
by the number of output neurons for the last layer. Therefore
the amount of information that the network can learn and
store is limited with respect to the significantly more complex
structure of the human auditory system. We also suspect that
the two-dimensional PCA projection might limit the model
performance when a large number of distractors is used.
Indeed the PCA space becomes very crowded and although the
datapoints are grouped in distinct clusters, the probability that
such a cluster lie close to each other is high. To verify this
hypothesis, we tested a modification of the inference protocol
of the algorithm. During test, we presented the network only
with the target sound and one incorrect probe, and performed
BSS on the PCA space containing the two sounds. Under

this configuration, the model performance is above chance
level for two or more different mixtures, and the accuracy
does not significantly decrease for large number of mixtures
(Supplementary Figure 2).

We may use our model for predicting performance of
human subjects in auditory perception tasks not yet tested
experimentally. To this end, we propose an extension of
the paradigm tested previously: for set-ups with the number
of mixtures between two and five, we investigated whether
presenting all possible combinations of the mixing sounds
among themselves, rather than only the distractors with the
target, affects the performance. The experiment is labeled
“Experiment 1 a.c.,” where a.c. stands for “all combinations,”
and its training scheme is reported in Figure 5C. Because all
sounds are in principle learnable in the new paradigm, we
expect an enhanced ability of distinguishing the correct probes
from the incorrect ones. Somewhat unexpectedly, however, our
model indicated no drastic changes in the performance when
the mixture sequence presented during training contained all
possible combinations of the mixing sounds. Such a scheme
resulted in a minor improvement in the accuracy only for
the experiments with two mixing sounds. Indeed, in the “all
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FIGURE 6 | Experiments 2 and 3—results and comparison with human performance. (A) Results for Experiments 2 (dark blue) and 3 (light blue) on the dendritic

network model. In Experiment 2 the performance is above chance for the three conditions. In Experiment 3 the accuracy decreases as the number of isolated sounds

alternating with the mixtures increases. (B) Results for Experiments 2 (dark blue) and 3 (light blue) on the human experiment. In Experiment 2 the performance is

above chance in the conditions A and C, while it is random for condition B. In Experiment 3 the accuracy decreases as the target presentation is more delayed. Figure

reproduced based on data acquired by McDermott et al. (2011). (C) Schematics for Experiments 2 and 3. The training is the same for both the dendritic network

model and the human experiment. The schematics is omitted for delays 3 and 5. The testing refers to the dendritic network model, while the testing for the human

experiment (same as in Figure 5B) is omitted. In (A,B), the height of the bars and the error bars show respectively mean and standard deviation of the AUC over 10

independent runs.

combinations” protocol, during training the distractor was
presented in more than one different mixture, while in the
original task setting only the target was combined with different
sounds. We hypothesize that the “all combinations” protocol
makes it easier for the network to better distinguish the distractor
sound. For four or five mixing sounds, instead, the performance
slightly worsened. It is likely that this behavior is related to the
already mentioned capacity restraints of the network. Indeed, the
length of the training sequence grows as the binomial coefficient
(n
k

)

where k = 2, therefore for four and five targets (i.e., for
n = 4 or 5) the number of mixtures is increased to 6 and
10, respectively.

2.5. Experiment 2: Sound Segregation With
Alternating Multiple Mixtures of
Synthesized Sounds
Next, we investigate the model’s performance when the training
sequence alternated mixtures of sounds with isolated sounds. An
analogous protocol was tested in a psychophysical experiment
(see experiment 3 in McDermott et al., 2011). Figures 6A,B show
the network accuracy and human performance, respectively,
for the protocols A,B,C in Figure 6C. Only the target and the
masker sounds were later tested since recognizing the sounds
presented individually during training would have been trivial
(see conditions B, 1, and 2 in Figure 6C). In the alternating
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task, the network was only partially able to reproduce the human
results, displaying an interesting contrast to human behavior. In
condition A, in which the sounds mixed with the main target (in
red) changed during training, the listeners were able to learn the
targets with an accuracy of about 80%, and so did our model. In
contrast, our network behaved radically differently with respect
to human performance under condition B, in which the training
sequence consisted of the same mixture alternating with different
sounds. As reported in Figure 5B, the listeners were generally not
able to identify the single sounds composing the mixture. Our
model, instead, unexpectedly achieved a performance well above
chance. The output dynamics could distinguish the distractors
from the two targets with accuracy surprisingly above 90%. The
behavioral discrepancy under condition B could be explained by
considering that in the training scheme the network is presented
with three different sounds besides the mixture. With respect to
Experiment 1 with a single mixture, in this protocol the network
could learn the supplementary features of the isolated sounds
and could exploit them during inference to respond differently
to the distractors. From the spectrograms shown in Figure 2,
it is evident that some regions of overlap exist between the
higher-intensity areas of different sounds. Therefore, the network
presented during training with isolated sounds in addition
to the single mixture, could detect some similarities between
the training sounds and the tested distractors and respond
with a more defined output dynamics than in Experiment 1.
Finally, under condition C, both human subjects and our model
performed above chance. While human performance was slightly
above 60%, the network achieved more than 90% accuracy. This
result should be interpreted considering that during inference
also the isolated sound (blue) was tested together with the
associated distractor, which was a trivial task for the nature of
our network and thus boosted its overall performance.

2.6. Experiment 3: Effect of Temporal Delay
in Target Presentation With Synthesized
Sounds
Temporal delay in the presentation of mixtures containing
the target degraded performance similarly in the model and
human subjects. We presented the network with a training
sequence of six mixtures containing the same target mixed
each time with a different distractor (Figure 6C, protocols 0,1,2:
c.f. experiment 4 in McDermott et al., 2011). The mixtures
alternated with an increasing number of isolated sounds, hence
increasing the interval between successive presentations of the
target. The human ability to extract single sounds from mixtures
was previously shown to worsen as the interval between target
presentations increased, as replicated in Figure 6B. The network
presented a similar decreasing trend, as reported in Figure 6A.
An interesting difference, however, is that the performance of
our model drastically dropped even with one isolated sound
every other mixture while the human performance was affected
when at least two isolated sounds separated the target-containing
mixtures. The discrepant behavior indicates that the insertion
of isolated sounds between the target-containing mixtures more
strongly interferes the learning of the target sound in the

model compared to human subjects. This stronger performance
degradation may partly be due to the capacity constraint of our
simple neural model, which uses a larger amount of memory
resource as the number of isolated sounds increases. In contrast,
such a constraintmay be less tight in the human auditory systems.

Also for Experiments 2 and 3, we tested a modification of
the inference protocol, by presenting the network only with the
target sound and one incorrect probe. Under this configuration,
the model performance of Experiment 2 improves compared to
the original protocol, while no substantial changes are noted for
Experiment 3 (Supplementary Figure 3).

2.7. Experiment 4: Sound Segregation With
Single and Multiple Mixtures of Real-World
Sounds
We applied the same protocol of Experiments 1 to the
dataset of natural sounds. Although such experiments were
previously not attempted on human subjects, it is intriguing
to investigate whether the model can segregate target natural
sounds by the same strategy. The spectrograms of two isolated
sounds and of their mixtures are shown in Figures 7A–C,
together with the respective sound waves (Figures 7D–F). The
qualitative performance was very similar to that obtained with
the synthesized sounds. Specifically, the output dynamics learned
from the repetition of a single mixture was randomly fluctuating
for both seen and randomly chosen unseen sounds (Figure 8A),
whereas the network responses to targets and unseen sounds
were clearly distinct if multiple mixtures were presented
during training (Figure 8D). The output dynamics were not
quantitatively evaluated because it was not possible to rigorously
generate incorrect probes associated with the learnt targets and
distractors. Therefore, we qualitatively assessed the performance
of the model by observing the clustering of network responses
to the learnt targets vs. unseen natural sounds (Figures 8B–F).
We observed that, in the case of multiple mixtures, the clusters
related to natural sounds (Figures 8E,F) weremore compact than
those of synthetic sounds (Figures 4E,F). Furthermore, these
clusters were more widely spaced on the PCA projection plane:
the intraclass correlation in the response to the same target
was greater while the interclass similarity in the response to
different targets or distractors was lower. These results indicate
that grouping cues, such as harmonic structure and temporal
onset, improve the performance of the model.

2.8. Experiment 5: Image Segregation With
Single and Multiple Mixtures of Real-World
Images
Finally, we examined whether the source segregation through
repetition scheme can also extend to vision-related tasks, as
previously suggested (McDermott et al., 2011). To this end, we
employed the same method as developed for sound sources
and performed the recovery of visual sources with the protocol
of Experiment 1. The mixtures were obtained by overlapping
black-and-white images sampled from our visual dataset (Section
4), as shown in Figure 9. Similarly to Experiment 4, the
performance of the model was assessed only qualitatively in the
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FIGURE 7 | Real-world sounds—targets and mixture. (A) Spectrogram of a spoken sentence 800 ms-long. (B) Spectrogram of 800 ms-long recording of chimes

sounds. (C) Spectrogram of the mixture of the sounds in (A,B). (D) Sound wave associated with the spectrogram in (A). (E) Sound wave associated with the

spectrogram in (B). (F) Sound wave associated with the spectrogram in (C).

visual tasks. As in the acoustic tasks, the clustering of network
responses showed that the model was able to retrieve the single
images only when more than one mixture was presented during
training. The network responses are shown in Figure 10. We
remark that the model is presented with the visual stimuli
following the same computational steps as for sounds. Indeed, as
previously described, the acoustic stimuli are first pre-processed
into spectrograms and then encoded by the input layer. While
it is not unexpected that similar computational steps lead to
consistent results, we remark that the nature of the “audio
images,” i.e., the spectrograms, is substantially different to that
of the naturalistic images, leading to very different distributions
of the encoding spike patterns. Therefore, successful signal
discrimination in the visual task strengthens our results, proving
that our model is robust with respect to different arrangements
of signal intensity.

3. DISCUSSION

The recovery of individual sound sources from mixtures of
multiple sounds is a central challenge of hearing. Based on
experiments on human listeners, sound segregation has been
postulated to arise from prior knowledge of sound characteristics
or detection of repeating spectro-temporal structure. The results
of McDermott et al. (2011) show that a sound source can
be recovered from a sequence of mixtures if it occurs more
than once and is mixed with more than one masker sound.
This supports the hypothesis that the auditory system detects
repeating spectro-temporal structure embedded in mixtures, and
interprets this structure as a sound source. We investigated

whether a biologically inspired computational model of the
auditory system can account for the characteristic performance
of human subjects. To this end, we implemented a one-layer
neural network with dendritic neurons followed by a readout
layer based on GMM to classify probe sounds as seen or
unseen in the training mixtures. The results in McDermott
et al. (2011) show that source repetition can be detected by
integrating information over time and that the auditory system
can perform sound segregation when it is able to recover the
target sound’s latent structure. Motivated by these findings,
we trained our dendritic model with a learning rule that was
previously demonstrated to detect and analyze the temporal
structure of a stream of signals. In particular, we relied on the
learning rule described by Asabuki and Fukai (2020), which
is based on the minimization of regularized information loss.
Specifically, such a principle enables the self-supervised learning
of recurring temporal features in information streams using
a family of competitive networks of somatodendritic neurons.
However, while the learning rule has been designed to capture
temporal information in an online fashion, in our framework
we flatten the spectrogram before encoding it, making the spike
pattern static during the stimulus presentation. Therefore, the
temporal fluctuations are determined by the stochastic processes
in the rate encoding step.

We presented the network with temporally overlapping
sounds following the same task protocols as described in
McDermott et al. (2011). First, we carried out the segregation task
with the same dataset of synthesized sounds presented to human
listeners in McDermott et al. (2011). We found that the model
was able to segregate sounds only when one of the masker sounds
varied, not when both sounds of the mixture were repeated.
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FIGURE 8 | Experiment 4—output dynamics and clustering. (A–C) refer to the results of Experiment 4 on real-world sounds with a single mixture presented during

training. (D–F) refer to the results of Experiment 4 on real-world sounds with three mixtures presented during training. (A) Voltage dynamics of the 8 output neurons

during inference, when the target, the distractor and one unseen sound are tested. As expected, the neuron population is not able to respond with different dynamics

to the three sounds, and the voltage of all the output neurons fluctuates randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints

belonging to the target and distractor (in blue) shows that the clusters are collapsed into a single cluster. (C) When GMM is applied, all the datapoints representing

both the learnt sounds (in blue) and the unseen sound (in orange) fall within the same regions, making it impossible to distinguish the different sounds based on the

population dynamics. (D) Voltage dynamics of the 8 output neurons during inference, when the target, the three distractors, and one unseen sound are tested. As

expected, the neuron population has learnt the feature of the different sounds and responds with different dynamics to the five sounds. Each output neuron has an

enhanced response to one or few sounds. (E) The PCA projection of the datapoints belonging to the four correct probes (in blue) shows that the clusters are more

compact and more spatially distant one from the other with respect to the result obtained with the synthetized sounds. (F) When GMM is applied, the model shows

that the network clearly distinguished the learnt sounds (in blue) from the unseen sound (in orange). These results show that the grouping cues improve the model

accuracy with respect to the synthesized dataset.

Our findings bear a closer resemblance to the experimental
findings of human listeners over a variety of task settings.
Earlier works have proposed biologically inspired networks to
perform BSS (Pehlevan et al., 2017; Isomura and Toyoizumi,
2019; Bahroun et al., 2021). However, to our knowledge, this
is the first attempt to reproduce the experimental results of
recovering sound sources through embedded repetition. For
this reason, we could not compare our results with previous
works. Additionally, we demonstrated that our network can be
a powerful tool for predicting the dynamics of brain segregation
capabilities under settings difficult to test on humans. In

particular, the recovery of natural sounds is expected to be a
trivial task for humans given their familiarity with the sounds,
whereas our model is built from scratch and has no prior
knowledge about natural sounds. We find that the hallmarks of
natural sounds make the task easier for the network when the
target is mixed with different sounds, but, as for the synthetic
dataset, the sounds cannot be detected if presented always
in the same mixture. Furthermore, we extended the study to
investigate BSS of visual stimuli and observed a similar qualitative
performance as in the auditory settings. This is not surprising
from a computational perspective as the computational steps
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FIGURE 9 | Real-world images—targets and mixture. (A) Squared 128 × 128 target image of a zebra. (B) Squared 128 × 128 distractor image of a butterfly. (C)

Mixture of the target and distractor images shown in (A,B). Source: Shutterstock.

of the visual experiment are the same as for the acoustic
experiment: there, the sounds are first preprocessed into images,
the spectrograms, and then presented to the network in a
visual form. From the biological point of view, the neural
computational primitives used in the visual and the auditory
cortex may be similar, as evidenced by anatomical similarity and
by developmental experiments where auditory cortex neurons
acquire V1-like receptive fields when visual inputs are redirected
there (Sharma et al., 2000; Bahroun et al., 2021). We point
out, however, that such a similarity is valid only at high level
as there are some substantial differences between visual and
auditory processing. For instance, the mechanisms to encode
the input signal into spikes rely on different principles: in the
retina the spike of a neuron indicates a change in light in the
space it represents, while in the cochlea the rate of a neurons
represents the amplitude of the frequency it is associated to,
like a mechanical FFT. Motivated by these reasons, we suggest
extending the experiments of source repetition to vision to
verify experimentally whether our computational results provide
a correct prediction of the source separation dynamics of the
visual system.

Although the dynamics of our model under many aspects
matches the theory of repetition-based BSS, the proposed
scheme presents a few limitations. The major limitation concerns
the discrepancy of the results in experiment 2B. In such a
setting, the model performance is well above chance, although
the target sound always occurs in the same mixture. We
speculate that, in this task settings, the output neurons learn the
temporal structure of the distractor sounds presented outside
the mixture and that they recognize some similarities in the
latent structure of the probes. We note that the degree of
similarity among distractors is the same as in the psychophysics
experiment. This pushes the neurons to respond differently to
the correct and incorrect probes, thereby allowing the output
classifier to distinguish the sounds. In contrast, we speculate
that human auditory perception relies also on the outcome of
the later integration of features detected at early processing

stages. This will prevent the misperception of sounds based
on unimportant latent features. A second limitation of the
selected encoding method consists in the difficulty to model
the experiments relying on the asynchronous overlapping of
signals and on reversed probe sounds presented by McDermott
et al. (2011). Indeed, in our approach, because of the flattening
of the spectrogram in the encoding phase, each input neuron
responds to one specific time frame, and the output neurons are
trained uniquely on this configuration. Hence, temporal shifts
or inverting operations are not possible. Third, we observed
that in Experiment 1, as the number of mixtures increased
over a certain threshold, the model’s accuracy degraded. We
speculate that, in such settings, substituting PCAwith a clustering
algorithm not relying on dimensionality reduction, such as K-
means, may help mitigate the issue. In addition, an interesting
variation of our framework would be replacing the clustering
step of the model with an another layer of spiking neurons.
Fourth, the flattening of the spectrogram in the spike encoding
stage is not biologically plausible and introduces high latency
as the entire input signal needs to be buffered before the
encoding starts. This strategy exhibits the advantage of making
the length of the spike train fixed for any sound length,
though modifications of the encoding scheme that preserves
the signal’s temporal structure might be more suitable for
applications tailored for real-world devices. Furthermore, an
instantaneous identity coding approach, either from raw signal
or via a spectrogram, would not be affected by the previously
described issues related to the spectrogram normalization in
the presence of outliers in signal intensity. Motivated by
these points, in a follow up work we intend to explore an
extension of the presented framework combining time frame-
dependent encoding and spike-based post-processing clustering,
which would allow us to integrate the model in embedded
neuromorphic applications for sound source separation with
reduced response latency. In this context, for further lowering
the temporal latency, as well as for reducing the model’s energy
consumption in neuromorphic devices, the time-to-first-spike
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FIGURE 10 | Experiment 5—output dynamics and clustering. (A–C) refer to the results of Experiment 5 on real-world images with a single mixture presented during

training. (D–F) refer to the results of Experiment 5 on real-world images with three mixtures presented during training. (A) Voltage dynamics of the 5 output neurons

during inference, when the two training images and one unseen image are tested. As expected, the neuron population is not able to respond with different dynamics

to the three images, and the voltage of all the output neurons fluctuates randomly throughout the whole testing sequence. (B) The PCA projection of the datapoints

belonging to the two seen images (in blue) shows that the clusters are collapsed into a single cluster. (C) When GMM is applied, all the datapoints representing both

the targets (in blue) and the unseen image (in orange) fall within the same regions, making it impossible to distinguish the different images based on the population

dynamics. (D) Voltage dynamics of the 5 output neurons during inference, when the four targets and one unseen image are tested. As expected, the neuron

population has learnt the features of the different images and responds with different dynamics to the five images. Each output neuron has an enhanced response to

one or few inputs. (E) The PCA projection of the datapoints belonging to the four learnt images (in blue) shows that the clusters are compact and spatially distant one

from the other. (F) When GMM is applied, the model shows that the network clearly distinguished the target and distractors (in blue) from the unseen image (in

orange). These results suggest that humans would be able to distinguish single visual targets if previously seen in different mixtures.

encoding method could be explored as an alternative to the
current rate coding approach.

Furthermore, as previously mentioned, the training scheme
in Asabuki and Fukai (2020) has proven to be able to learn
temporal structures in a variety of tasks. In particular, the model
was shown to perform chunking as well as to achieve BSS from
mixtures of mutually correlated signals. We underline that our
computational model and experiments differ in fundamental
ways from the BSS task described by Asabuki and Fukai (2020).
First, the two experiments diverge in their primary scope. The
BSS task aims at using the average firing rate of the single

neurons responding to sound mixtures to decode separately
the original sounds. In our work, instead, sound mixtures are
included only in the training sequence and, during inference,
only individual sounds are presented to the network. Our goal
is to verify from the population activity whether the neurons
have effectively learned the sounds and can distinguish them
from unseen distractors. Furthermore, in Asabuki and Fukai
(2020) the stimulus was encoded into spike patterns using one
Poisson process proportional to the amplitude of the sound
waveform at each time step, disregarding the signal intensity at
different frequencies. This method was not suitable for the source
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segregation through repetition task, where the sound mixtures
retain important information on the frequency features of the
original sounds at each time frame. Furthermore, we flatten the
audio signal spectrogram before encoding it, unlike in the BSS
task described by Asabuki and Fukai (2020).

In summary, we have shown that a network of dendritic
neurons trained in an unsupervised fashion is able to learn
the features of overlapping sounds and, once the training is
completed, can perform blind source separation if the individual
sounds have been presented in different mixtures. These results
account for the experimental performance of human listeners
tested on the same task setting. Our study has demonstrated
that a biologically inspired simple model of the auditory system
can capture the intrinsic neural mechanisms underlying the
brain’s capability of recovering individual sound sources based
on repetition protocols. Furthermore, as the adopted learning
scheme in our model is local and unsupervised, the network
is self-organizing. Therefore, the proposed framework opens up
new computational paradigms with properties specifically suited
for embedded implementations of audio and speech processing
tasks in neuromorphic hardware.

4. MATERIALS AND METHODS

4.1. Datasets
A dataset of synthesized sounds were created in the form
of spectrogram, which shows how signal strength evolves
over time at various frequencies, according to the method
described previously (McDermott et al., 2011). In short, the
novel spectrograms were built as Gaussian distributions based on
correlation functions analogous to those of real-world sounds.
White noise was later applied to the resulting spectrograms.
Five Gaussian distributions were employed to generate each
of ten different sounds in Figure 5A. The corresponding
spectrograms featured 41 frequency filters equally spaced on
an ERBN (Equivalent Rectangular Bandwidth, with subscript
N denoting normal hearing) scale (Glasberg and Moore, 1990)
spanning 20–4,000 Hz, and 33 time frames equally dividing
the 700 ms sound length. For our simulations, we used the
same MATLAB toolbox and parameters used in the previous
study (McDermott et al., 2011). For further details on the
generative model for sounds, please refer to the SI Materials and
Methods therein.

In addition to the dataset of synthesized sounds, we built
a database composed of 72 recordings of isolated natural
sounds. The database contained 8 recordings of human speech
from the EUSTACE (the Edinburgh University Speech Timing
Archive and Corpus of English) speech corpus (White and King,
2003), 23 recordings of animal vocalizations from the Animal
Sound Archive (Frommolt et al., 2006), 29 recordings of music
instruments by Philharmonia Orchestra (Philarmonia Orchestra
Instruments, 2019), and 12 sounds produced by inanimate
objects from the BBC Sound Effect corpus (BBC, 1991). The
sounds were cut into 800 ms extracts. Then the library librosa
(McFee et al., 2015) was employed to extract spectrograms with
128 frequency filters spaced following theMel scale (Stevens et al.,
1937) and 10 ms time frames with 50% overlap.

For image source separation, we built a database consisting of
32 black-and-white pictures of various types, both single objects
and landscapes. The images were later squared, and their size was
reduced to 128× 128 pixels.

4.2. Neuron Model
In this study we used the same two-compartment neuron model
as that developed previously (Asabuki and Fukai, 2020). The
mathematical details are found therein. Here, we only briefly
outline the mathematical framework of the neuron model. Our
two-compartment model learns temporal features of synaptic
input given to the dendritic compartment by minimizing a
regularized information loss arising in signal transmission from
the dendrite to the soma. In other words, the two-compartment
neuron extracts the characteristic features of temporal input by
compressing the high dimensional data carried by a temporal
sequence of presynaptic inputs to the dendrite onto a low
dimensional manifold of neural dynamics. The model performs
this temporal feature analysis by modifying the weights of
dendritic synapses to minimize the time-averaged mismatch
between the somatic and dendritic activities over a certain recent
interval. In a stationary state, the somatic membrane potential of
the two-compartment model could be described as an attenuated
version of the dendritic membrane potential with an attenuation
factor (Urbanczik and Senn, 2014). Though we deal with time-
dependent stimuli in our model, we compare the attenuated
dendritic membrane potential with the somatic membrane
potential at each time point. This comparison, however, is not
drawn directly on the level of the membrane potentials but on
the level of the two non-stationary Poissonian spike distributions
with time-varying rates, which would be generated if both soma
and dendrite were able to emit spikes independently. In addition,
the dynamic range of somatic responses needs to be appropriately
rescaled (or regularized) for meaningful comparison. An efficient
learning algorithm for this comparison can be derived by
minimizing the Kullback–Leibler (KL) divergence between the
probability distributions of somatic and dendritic activities. Note
that the resultant learning rule enables unsupervised learning
because the somatic response is fed back to the dendrite to
train dendritic synapses. Thus, our model proposes the view that
backpropagating action potentials from the soma may provide a
supervising signal for training dendritic synapses (Larkum et al.,
1999; Larkum, 2013).

4.3. Network Architecture
The network architecture, shown in Figure 1, consisted of two
layers of neurons, either fully connected or with only 30%
of the total connections. The input layer contained as many
Poisson neurons as the number of pixels present in the input
spectrogram (acoustic stimulus) or input image (visual stimulus).
The postsynaptic neurons were modeled according to the two-
compartment neuron model proposed previously (Asabuki and
Fukai, 2020). Their number was varied from a pair to few
tenths, depending on the complexity of the task. Unless specified
otherwise, 8 and 5 output neurons were set for acoustic and visual
task respectively.
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In the first layer, the input was encoded into spikes through a
rate coding-based method (Almomani et al., 2019). The strength
of the signal at each pixel drove the firing rate of the associated
input neuron, i.e., the spike trains were drawn from Poisson point
processes with probability proportional to the intensity of the
pixel. We imposed that, for each input stimulus, the spike pattern
was generated through a sequence of 400 time steps, where each
time step corresponds to a “fire” or “non-fire” event.

We designed the output layer and the learning process
similarly to the previous network used for the blind signal
separation (BSS) within mixtures of multiple mutually correlated
signals as well as for other temporal feature analyses (Asabuki
and Fukai, 2020). As mentioned previously, the learning rule was
modeled as a self-supervising process, which is at a conceptual
level similar to Hebbian learning with backpropagating action
potentials. The soma generated a supervising signal to learn
and detect the recurring spatiotemporal patterns encoded in
the dendritic activity. Within the output layer, single neurons
learned to respond differently to each input pattern. Competition
among neurons was introduced to ensure that different neurons
responded to different inputs. With respect to the network
used for BSS containing only two output neurons, we rescaled
the strength of the mutual inhibition among dendritic neurons
by a factor proportional to the inverse of the square root of
the number of output neurons. This correction prevented each
neuron from being too strongly inhibited when the size of the
output layer increased (i.e., exceeds three or four). Furthermore,
we adopted the same inhibitory spike timing-dependent plasticity
(iSTDP) as employed in the previous model. This rule modified
inhibitory connections between two dendritic neurons when they
coincidently responded to a certain input. The iSTDP allowed the
formation of chunk-specific cell assemblies when the number of
output neurons was greater than the number of input patterns.

For all parameters but noise intensity ξi during learning, we
used the same values as used in the original network model
(Asabuki and Fukai, 2020). For bigger values of noise intensity
g, the neural responses were subject to more fluctuations and
neurons tended to group in only one cell assembly. From the
analysis of the learning curves shown in Figure 3, we decided
to train the network from randomly initialized weights and to
expose it, during training, to the mixture sequence 3,000 times
for the synthesized sounds and 1500 times for the real-world
sounds. The learning rate was kept constant throughout the
whole process. During testing, the sequence of target sounds and
respective distractors was presented 50 times, and the resulting
neural dynamics was averaged over 20 trials. The performance
results shown in the section 2 were computed as average over
10 repetitions of the same simulation set-up. In each repetition
different target sounds and distractors were randomly sampled
from the dataset in order to ensure performance independence
of specific sounds.

4.4. Experimental Settings and
Performance Measure
The synapses were kept fixed during inference in our network,
implying that the responses to probes tested later were not

affected by the presentation of other previously tested probes.
This allowed us to test the trained network on a sequence of
probes, rather than only on one probe as in the studies of the
human brain where plasticity cannot be frozen during inference
(McDermott et al., 2011). In Figures 5A, 6C, the first half of the
sequence contained the target and the distractors, the second half
the respective incorrect probes, which were also built by using
the same method as in human experiment (McDermott et al.,
2011). Each incorrect probe was a sound randomly selected from
the same Gaussian distribution generating the associated target.
After the sampling, a randomly selected time slice equal to 1/8 of
the sound duration was set to be equal to the target.

The possibility of presenting more than one probe allowed
us to test the performance of the network for all the sounds
present in the mixtures. To ensure a stable neural response
against the variability of the encoding, we repeated the sequence
50 times. The response of the network consisted of the ensemble
activity of the output neurons. As previously explained, 400 time-
steps were devoted to the presentation to each stimulus. The
response to each probe, therefore, consisted of 400 data points
describing the dynamical activity of each output neuron, each
point being a collection of N values, where N is the number
of output neurons. An example of one testing epoch output is
shown in Figures 4A,C. We neglected the first 50 data points,
since, during the initial transient time, the membrane potential
was still decaying or rising after the previous input presentation.
For visualization purpose, we applied the principal component
analysis (PCA) to reduce the dimensionality of the data from
N to 2. In our settings, the two principal components explain
approximately 40% of the variance of the neural response. The
PCA transformation was based uniquely on the data points
obtained with the presentation of the target and the distractors,
as shown in Figures 4B,E. The same transformation was later
exploited to project the points related to the incorrect probes.
Only the target and distractors patterns were presented during
the learning process, and the responses to unseen patterns were
afterwards projected on the space defined by the training.

The two-dimensional projection of the target-related data
points were clustered in an unsupervised manner through GMM.
We set the number of Gaussians equal to the number of targets
such that the covariance matrices had a full rank. With the
defined GMM model at hand, we proceeded with fitting all the
PCA data points, related to both correct and incorrect probes.
The model tells which cluster each data point belonged to
and what was the likelihood (L) that the cluster had generated
this data point. Figures 4C,F show the datapoints projected
on the PCA plane together with the GMM clustering and
likelihood curves.

We used the likelihood as a measure of performance. The
four intervals of the likelihood range corresponding to the four
responses “sure no,” “no,” “yes,” and “sure yes” were (i) L > 0
(sure yes), (ii) −5 < L < 0 (yes), (iii) −15 < L < −5 (no),
and (iv) L < −15 (sure no). In building the receiver operating
characteristic (ROC) curve, the datapoints falling in the interval
(i) were assigned the probability value 1.0, those in (ii) 0.66, those
in (iii) 0.33, and those in (iv) 0.0.
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The described evaluation metrics was applied only to the
experiments carried on the dataset composed of synthesized
sounds. For the experiments based on natural sounds and
images, the results of clustering were shown only qualitatively
for the target-related datapoints. Indeed, due to the real-
world nature of signals, it was not possible to simply use
Gaussian functions to build physically consistent incorrect
probes. On the real-world sound dataset, we performed all
the same protocol of Experiment 1 (Experiment 4). On the
image dataset we performed an experiment with a protocol
analogous to Experiment 1. Here, the mixtures were obtained by
overlapping two images, both with transparency 0.5, similarly to
the spectrogram overlapping described for the acoustic task. The
input images were normalized to the range [0,1] and the intensity
of each pixel was encoded through the firing rate of one input
neuron. We followed the same procedure and network setting
described for the audio stimuli segregation to assess the ability
of the network to separate visual stimuli presented in mixtures.
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