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Abstract
In this review article, we present the major insights from and challenges faced in the acquisition, analysis and modeling of 
astrocyte calcium activity, aiming at bridging the gap between those fields to crack the complex astrocyte “Calcium Code”. 
We then propose strategies to reinforce interdisciplinary collaborative projects to unravel astrocyte function in health and 
disease.
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Introduction

Astrocytes, the most abundant non-neuronal cells of the nervous 
system, are essential to brain function, from synaptogenesis and 
neurotransmission to higher brain functions such as memory and 
learning (Verkhratsky and Nedergaard 2018). Those functions of 
astrocytes are altered in various brain diseases such as epilepsy, 
brain tumors, neurodegenerative diseases, Down syndrome, 
major depressive disorder and schizophrenia (Verkhratsky 
and Nedergaard 2018). Astrocytes notably respond to stimuli 
with transient elevations in cytosolic calcium concentration, 
referred to as calcium signals. Those calcium signals are essen-
tial to brain function and are altered in various brain diseases 
(Verkhratsky and Nedergaard 2018; Semyanov et al. 2020). 
Importantly, astrocyte calcium signals can trigger the release of 

molecules referred to as gliotransmitters that modulate neuronal 
communication at synapses (for recent reviews on gliotransmis-
sion and the associated controversies, see (Savtchouk and Vol-
terra 2018; Fiacco and McCarthy 2018)). Better understanding 
astrocyte physiology and the communication between astrocytes 
and other cells of the central nervous system thus rely on our 
ability to make sense of those calcium signals. Astrocyte cal-
cium signals are characterized by diverse spatial (from microdo-
mains to signals spreading within astrocyte networks) and tem-
poral characteristics (from hundreds of milliseconds to tens of 
seconds) (Semyanov et al. 2020). The majority of those signals 
occur in fine astrocyte compartments (50-200 nm), referred to 
as processes, that account for as much as 80 % of the volume of 
an astrocyte, yet cannot be resolved by diffraction-limited light 
microscopy (Semyanov et al. 2020; Bindocci et al. 2017) (see 
Fig. 1). This strongly hinders our ability to characterize astrocyte 
calcium activity, from the molecular pathways involved to the 
quantification of the spatio-temporal properties of the signals. 
Consequently, the functions of the various signals observed, 
referred to as the astrocyte “Calcium Code”, remain unclear. 
Better characterizing astrocyte activity concomitantly with the 
activity of other brain cells will be essential to unravel the roles 
of astrocyte calcium signals in brain function (Adamsky et al. 
2018). Please refer to the review (Semyanov et al. 2020) for 
more details on the current challenges associated with the study 
of calcium signals in astrocytes.

In this review article, we highlight the importance of rein-
forcing interdisciplinary collaborations to crack the astrocyte 
“Calcium Code”, with a focus on the characterization of the 
properties of astrocyte calcium signals. We present the major 
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insights from and challenges faced in data acquisition, analy-
sis and modeling of astrocyte calcium activity and propose 
strategies to facilitate and strengthen collaborations between 
these fields, which are essential to unravel the functions of 
astrocyte calcium signals in health and disease.

Acquisition of Astrocyte Calcium Signals

Data acquisition is the first step to characterize astrocyte 
calcium activity. In this section, we present a brief overview 
of the tools that are available for imaging astrocyte calcium 
signals, both in slices and in vivo. We further highlight the 
insights, challenges and perspectives associated with meas-
uring calcium signals in astrocytes.

Imaging Tools for Astrocyte Calcium Acquisition

The development of calcium indicators, which change 
their fluorescence properties when binding to calcium ions, 
allowed neuroscientists to study astrocyte calcium activity. 
Numerous indicators exist, characterized by diverse kinetics 
and diffusion properties, so that they should be chosen care-
fully. In the early days, chemical calcium dyes, such as Fluo-4 
or Oregon Green BAPTA, were commonly used (Fellin et al. 
2004; Fiacco and McCarthy 2004; Hirase et al. 2004; Parri 
et al. 2001; Perea and Araque 2005; Serrano et al. 2006). 

One of the main caveats of these chemical sensors is the 
low signal-to-background noise ratio of the resulting signals, 
which only allows visualizing calcium signals in the soma 
and the main thick branches of astrocytes (see Fig. 1), unless 
loaded through a patch-clamp recording pipette and visual-
ized with high-resolution microscopy (Di Castro et al. 2011; 
Panatier et al. 2011; Min and Nevian 2012). More recently, 
the development of genetically encoded calcium indicators 
(GECIs) (Berlin et al. 2015) has considerably improved our 
understanding of astrocyte calcium dynamics. Various GECIs 
have been developed in the last years that can be imaged 
by different tools, for precise or wide imaging at cellular or 
subcellular levels (Agarwal et al. 2017; Durkee and Araque 
2019; Shigetomi et al. 2013; Shigetomi et al. 2010; Serrat 
et al. 2021). GECIs have several advantages compared to 
classical calcium dyes. First, they can be easily targeted to be 
expressed specifically in astrocytes. Moreover, they provide 
a higher signal-to-background noise ratio compared to clas-
sical calcium dyes and diffuse better into the fine processes. 
Additionally, GECIs can be expressed in live organisms, thus 
allowing in vivo calcium imaging in anesthetized (Lines et al. 
2020; Poskanzer and Yuste 2016; Stobart et al. 2018; Serrat 
et al. 2021), awake head-fixed (Agarwal et al. 2017; Paukert 
et al. 2014; Srinivasan et al. 2016; Stobart et al. 2018) or 
freely moving mice during consecutive behavioral sessions 
(Corkrum et al. 2020; Paukert et al. 2014; Qin et al. 2020). 
While many GECIs have been designed in the last years for 
neurons, only a few are available to target astrocytes spe-
cifically (reviewed in (Lohr et al. 2021)). These GECIs have 
different spectral, temporal and spatial properties that make 
them suitable for specific experimental applications (Tong 
et al. 2013). Importantly, they yield calcium signals with dif-
ferent spatio-temporal properties that may not be comparable 
and may be difficult to analyze with certain software (see 
“Analysis of Astrocyte Calcium Signals”).

Astrocytes display most of their activity in their fine pro-
cesses. The majority of those signals are spatially restricted, 
forming so-called microdomains, and display strikingly 
diverse spatio-temporal properties (Khakh and McCarthy 
2015). Understanding the physiological relevance of those 
calcium signals requires powerful imaging techniques that 
can be used in combination with complementary methods to 
manipulate astrocyte and neuronal activity, such as electro-
physiology, optogenetics, pharmacology and behavioral tests. 
Notably, because of the small size of astrocyte processes, 
high-resolution microscopy is needed to obtain a thorough 
view of the astrocyte calcium activity. Both confocal and two-
photon microscopy are good options for imaging astrocyte 
calcium activity because these setups are generally compat-
ible with other techniques, allowing for the study of calcium 
signals at the tripartite synapse level in slices and in vivo in 
anesthetized (Poskanzer and Yuste 2016; Stobart et al. 2018; 
Lines et al. 2020; Serrat et al. 2021) or awake head-fixed mice 

Fig. 1  Confocal image of an astrocyte expressing GCaMP6f (maxi-
mum intensity projection over time) that shows its different structural 
compartments and their size
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(Paukert et al. 2014; Agarwal et al. 2017; Stobart et al. 2018; 
Srinivasan et al. 2016). Light sheet fluorescence microscopy 
(LSFM) and Lattice LSFM are novel imaging techniques that 
allow fast 3D scanning with low phototoxicity and a resolu-
tion comparable to confocal microscopy (Chen et al. 2014; 
Ducros et al. 2019). Therefore, those techniques are excel-
lent imaging options for experiments in brain slices. Please 
refer to Table 1 for an overview of optical resolution, pho-
totoxicity/photobleaching, and compatibility of the differ-
ent imaging techniques. High-resolution microscopy allows 
recording calcium signals at a high acquisition speed (in the 
order of ms), but its spatial resolution is limited by diffraction 
(x-y: 0.2–0.3 � m and z: 0.5 � m at best) and, thus, does not 
allow visualizing fine processes in detail. Recent studies have 
used super-resolution microscopy such as stimulated emis-
sion depletion (STED) and stochastic optical reconstruction 
microscopy (STORM) to study astrocyte morphology at the 
tripartite synapse level in live tissue (Panatier et al. 2014;  
Heller et al. 2020; Arizono et al. 2020). STED microscopy has 
revealed that the complex spongiform morphology of astro-
cyte processes contains functionally isolated nanostructures 
that are characterized by spatially restricted calcium signals 
(Arizono et al. 2020). Currently, because of their low acquisi-
tion speed and high laser intensity, which induces high pho-
tobleaching of calcium sensors, super-resolution microscopy 
techniques cannot be used to perform calcium imaging. Thus, 
in the aforementioned study, calcium signals were acquired 
using high-resolution microscopy and were then mapped onto 
super-resolution structural images. Super-resolution imaging 

requires powerful computational tools, both for acquisition 
and analysis, which are not broadly available in the experi-
mental community (in terms of knowledge, software and 
hardware) and emphasizes the need to establish collaborations 
between experimental and computer scientists.

The Need for Interdisciplinary Approaches

It is important to keep in mind that experimental approaches 
have inherent limitations. First, calcium indicators are cal-
cium buffers. Therefore, calcium indicators compete with 
calcium binding sites in the cell, altering calcium signals 
and the normal functioning of the cell. Second, the spatial 
and temporal characteristics of the measured signals are 
constrained by the imaging technique as well as the kinet-
ics of the calcium indicator used. It is thus possible that 
some faster or smaller calcium signals than those currently 
reported exist in astrocytes that cannot be detected by the 
calcium imaging tools that are currently available. Impor-
tantly, this effect can be amplified during 3D scanning for 
calcium signals that are faster than the z-scanning time. 
Lastly, experimental manipulations, such as using a knock-
out mouse line or bath applying drugs, can have unexpected 
off-site effects that can impact the results, making it diffi-
cult to extract causal relationships between the experimental 
manipulation and the obtained results. Collaborative work 
with computational scientists is essential to build mecha-
nistic models to go beyond those limitations. For example, 
models have been essential to characterize the effect of the 

Table 1  Overview of the main calcium imaging techniques used to study astrocyte calcium signals

* The ability to perform 3D fast scanning depends on the scanning method that the microscope uses, which varies depending on its hardware set-
tings; **Photobleaching and phototoxicity can be high at the focal plane with two-photon microscopy because it uses high intensity lasers, but it 
is low if the whole sample is considered (see (Benninger and Piston 2013)); ***Note that Light sheet fluorescence microscopy (LSFM) and Lat-
tice LSFM cannot be used in vivo in postnatal murine models but can be used in vivo in embryos

Imaging method Optical resolution Photobleaching 
& phototoxicity

Preparation Compatible with fast 
3D scanning*

Compatible with other 
techniques

Wide-field Soma & main branches High In vitro & in vivo (anes-
thetised & head-fixed)

No Electrophysiology, phar-
macology, wide-field 
photostimulation

Confocal Soma, main branches & 
fine processes

High In vitro & in vivo (anes-
thetised & head-fixed)

No Electrophysiology, phar-
macology, localized 
photostimulation

Two-photon Soma, main branches & 
fine processes

**Low In vitro & in vivo (anes-
thetised & head-fixed)

Yes, depending on the 
microscope

Electrophysiology, phar-
macology, localized 
photostimulation

LSFM Soma, main branches & 
fine processes

Low ***In vitro Yes, faster than two-
photon

Electrophysiology, phar-
macology

Lattice LSFM Soma, main branches & 
fine processes

Very low ***In vitro Yes, faster than LSFM Electrophysiology, phar-
macology

Fiber photometry Population High In vivo (freely behaving) No Electrophysiology, wide-
field photostimulation

Miniscopes Soma High In vivo (freely behaving) No Wide-field photostimu-
lation
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concentration, kinetics and diffusion coefficient of calcium 
buffers, such as calcium indicators, on calcium dynamics 
(Matthews and Dietrich 2015; Schwaller 2010). Models 
can thus be used to predict the free calcium signals that 
would occur in the absence of indicators. Further, models 
can measure in silico calcium signals at very high spatial 
and temporal resolution (depending on the method used, 
see "Modeling Astrocyte Calcium Signals"), thus predict-
ing the range of calcium signals that could not be resolved 
experimentally.

Analysis of Astrocyte Calcium Signals

In the quest of characterizing astrocyte calcium signals, the 
key role of analysis is to provide tools to experimentalists 
and modelers to process their data, of increasing size and 
complexity. Statistical as well as advanced computational 
image analysis tools are thus needed. In this section, we 
focus on the analysis of calcium images, which is meant 
to quantify what is observed, i.e., to extract meaningful 
information or measurements from images. In particular, 
we emphasize the importance of developing computational 
image analysis tools dedicated to the quantification of astro-
cyte calcium signals, and the challenges to get there.

Image Analysis to Characterize Astrocyte Calcium 
Signals

Decoding the astrocyte “Calcium Code” involves the char-
acterization of the spatio-temporal dynamics of astrocyte 
calcium signals. Computational image analysis tools aim 
at accurately detecting all astrocyte calcium signals in a 
sequence of microscopy images and, for each signal, extract-
ing its dynamical and spatial features, such as its amplitude, 
its duration, its trajectory, its propagation speed, the location 
from which it originates and its volume. Various informa-
tion, such as the number of calcium signals in a specified 
region or cell, their frequency at a position, and the different 
types of signals induced by a stimulus, can be deduced from 
those measurements.

From an image analysis point of view, reaching this ideal 
of output information requires preprocessing steps (e.g., 
denoising, deconvolution, motion correction) as well as the 
detection, the segmentation and the quantification of the cal-
cium signals in a sequence of microscopy images, which is 
very challenging due to the complex nature of these signals. 
First, calcium signals are characterized by various durations 
(from milliseconds to tens of seconds), frequencies and sig-
nal-to-noise ratios. Second, their spatial spreads vary from 
microdomains to signals that propagate within the astro-
cyte in regions of various sizes and shapes. Third, they can 
overlap in space and time (Srinivasan et al. 2015). As most 

signals occur in fine astrocyte processes that cannot be fully 
resolved by diffraction-limited light microscopy techniques, 
image analysis methods cannot rely on morphological crite-
ria to detect calcium signals, which also complexifies their 
quantification. In addition, the developed image analysis 
methods should ideally operate across data with different 
spatial scales, taken in vivo or in vitro, and acquired with 
different imaging techniques.

Lack of Computational Image Analysis Tools 
Adapted to the Complexity and Diversity of the Data

Recently, several image analysis algorithms have been 
developed to quantify astrocyte calcium signals in 2D+time 
microscopy images. Among them, we can cite GECIquant 
(Venugopal et al. 2019), CaSCaDe (Agarwal et al. 2017), 
FASP (Wang et al. 2017), AQuA (Wang et al. 2019) and, 
more recently, Begonia (Bjørnstad et al. 2021) and Astral 
(Dzyubenko et al. 2021). Most of these methods are ROI-
based approaches (ROI: region of interest), meaning that cal-
cium signals are analyzed through fixed spatial boundaries 
in the image. As the spatial spread of calcium signals can 
vary over time and become larger than or get out of the ROI, 
those approaches can lead to inaccurate or partial detection 
of the signals. To solve this issue, event-based algorithms 
have been developed, such as AQuA (Wang et al. 2019). For 
more details about these algorithms (e.g., analysis approach 
and outputs), please refer to the dedicated section in the 
review article from (Lia et al. 2021).

The aforementioned analysis tools have considerably 
improved the detection and characterization of astrocyte 
calcium signals. Yet, their use can be restricted, either 
because they are not adapted to the diversity of acquisition 
modes and calcium indicators (see “Acquisition of Astrocyte 
Calcium Signals”) or because they are not open-source or 
not user-friendly (Carpenter et al. 2012). This can constrain 
some neuroscientists to implement “in-house” analysis pipe-
lines, which is time-consuming and less reproducible, or 
to use tools that were initially developed for neuronal cal-
cium imaging analysis, such as CaImAn (Giovannucci et al. 
2019), Suite2P (Pachitariu et al. 2017) and LC_Pro (Francis 
et al. 2012). This latter approach is not optimal as astrocytes 
differ from neurons in many ways. For example, they have 
a different morphology. Further, notably because astrocytes 
are not polarized cells, their calcium signals display different 
spatio-temporal properties than the ones of neurons.

The continuous scientific and technical advances in cal-
cium imaging will always call for new and adapted image 
analysis algorithms. Until now, most of the quantification 
of calcium signals has been performed on 2D+time fluores-
cence microscopy data. The recent emergence of 3D+time 
imaging techniques gives access to new and major struc-
tural and dynamical information, such as the number of 
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calcium signals occurring in an entire astrocyte volume, 
their synchronization, their trajectory and the location from 
which they originate (Bindocci et al. 2017). To the best of 
our knowledge, there is currently no image analysis tool to 
detect, segment and quantify astrocyte calcium signals in 
3D+time microscopy images.

Challenges Hindering the Development of 3D+time 
Image Analysis Tools

The main reason why the quantification of astrocyte cal-
cium signals has been so far restricted to 2D+time images 
is because of the trade-off between temporal and spatial 
resolution in microscopy techniques. The access to a refined 
3D imaging of the dynamical behavior of calcium signals 
in astrocytes is quite recent, owing to the emergence of 
microscopes enabling a high 3D spatio-temporal resolu-
tion with low phototoxicity (e.g., lattice light sheet fluo-
rescence microscopy (LSFM) (Chen et al. 2014; Ducros 
et al. 2019) and of genetically encoded calcium indicators 
(GECIs) (Berlin et al. 2015). Despite these scientific and 
technical advances, the development of 3D+time image 
analysis tools tailored for the astrocyte calcium activity is 
not straightforward and calls for new quantitative analysis 
algorithms with new constraints and challenges. First, a key 
challenge in the development of 3D+time image analysis 
tools is the memory and computational costs required to 
process large 3D+time data. To give the reader an idea, the 
equivalent of one hour of acquisition of Lattice LSFM data 
represents about 1 To of data. Importantly, the developed 
analysis tools should be accessible and thus ideally be able 
to run on standard desktop computers. To tackle this chal-
lenge, ingenious solutions for image processing are needed 
such as using data-dimensionality reduction techniques. 
Second, and more critical, reliable and large amounts of 
labeled data are not available. Such datasets are crucial 
to evaluate image analysis tools and to train data-driven 
tools, which are increasingly common with the emergence 
of deep learning in biological image analysis (Meijering 
2020). Manually annotating 3D time-lapse images is a tedi-
ous task—mainly because of the complex visualization in 
4D space—that cannot be performed reliably. There is a 
significant intra- and inter-experimenter variability. There 
is currently a major lack of annotations of astrocyte calcium 
activity images. Note that this is also true for other datasets 
of 3D images in live tissue (Yakimovich et al. 2021). For 
all of those reasons, a common and promising approach 
is to use realistic synthetic datasets with known ground-
truths (i.e., all morphological and dynamical properties are 
known and controlled) to train and quantitatively assess the 
performance of analysis software. This highlights the need 
for developing models and simulators that are able to mimic 
real image sequences.

Need for Public Realistic Synthetic Datasets: Join 
the Forces!

To solve the difficulty to reliably label calcium signals in 
microscopy images, a promising approach consists in gen-
erating 3D+time synthetic datasets that realistically depict 
astrocyte calcium signals observed in real microscopy 
images. To be as realistic as possible, the simulation should 
be driven by a biophysical model that describes the calcium 
signals at the nanoscale, which requires close collaboration 
between image analysts, modelers (see “Modeling Astrocyte 
Calcium Signals”) and experimentalists (see “Acquisition of 
Astrocyte Calcium Signals”). For instance, a recent interdis-
ciplinary collaboration (Badoual et al. 2021) has resulted in 
the creation of a simulator to generate realistic sequences 
of 3D lattice LSFM images depicting calcium activity in 
the sponge-like network of astrocyte processes by integrat-
ing a simplified version of the kinetic model developed by 
(Denizot et al. 2019). In addition to hopefully opening the 
door to the deployment of 3D+time image analysis tools to 
quantify astrocyte calcium activity, these simulators could 
also help modelers tuning their models and the parameters 
in a faster way than using computational simulations, which 
are often time and computationally expensive. A major chal-
lenge to develop such simulators is the complexity of evalu-
ating the similarity between the generated synthetic images 
and real images. Implementing rigorous methods to evaluate 
synthetic astrocyte calcium images will thus be essential to 
ensure the success of this approach. Note that these syn-
thetic data are essential to guide analysts in the development 
of their algorithms, but final qualitative validation on real 
images is still required.

Modeling Astrocyte Calcium Signals

Models correspond to simplifications that describe relevant 
parameters of a system of interest (its elements, their states 
and their interactions), allowing for better quantification, 
visualization, and understanding of the system. The famous 
quotation from George Box, “All models are wrong but some 
are useful” (Box 1980), highlights that models are incom-
plete representations of the system as a whole, yet provide 
crucial insights into the system’s behavior and dynamics. 
Such insights would not be grasped by a model as complex 
as the system of interest itself.

Depending on the question and hypothesis that emerge 
from experimental data, modelers choose different 
approaches and toolkits (see Table 2). For example, mod-
els studying calcium activity in microdomains will need a 
higher spatial resolution than models of somatic signals. 
Further, the modeling approaches that are well-suited 
to study calcium microdomains, such as particle-based 
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methods (see (Denizot et al. 2020) for a review), are more 
accurate but extremely demanding in terms of computational 
power and simulation time. Simulating hundreds of seconds 
of calcium activity in a fine astrocyte process (e.g., 1 � m 
long, 200 nm in radius) can take days to compute, so that 
using those tools to simulate signals in a whole cell or in a 
network of cells is currently unfeasible. Please note that the 
computation time to simulate, e.g., 1 millisecond of calcium 
activity varies not only depending on the modeling tech-
nique used, but also on the computational resources avail-
able in each laboratory, on the volume and number of reac-
tions modeled as well as the simulation time. To learn more 
about the different approaches that can be used to model 
reactions, their insights and limitations, please refer to dedi-
cated reviews (Burrage et al. 2011; Denizot et al. 2020). The 
goal of this section is not to present an exhaustive list of 
astrocyte models (see (Denizot et al. 2020; Manninen et al. 
2018; Oschmann et al. 2017)), to review existing models of 

calcium signaling (reviewed in (Dupont et al. 2011; Dupont 
et al. 2016; Dupont and Croisier 2010; Dupont and Sneyd 
2017; Rüdiger 2014; Rüdiger and Shuai 2019)), or to present 
a detailed list of modeling tools to model calcium signals 
(Dupont et al. 2016; Blackwell 2013). Rather, we emphasize 
the key insights that can be gained from models of astrocyte 
calcium activity as well as the challenges that computational 
neuroscientists are currently facing.

Insights from Modeling into Biological Processes

Mathematical and computational models are powerful tools 
that provide new insights in the mechanisms that regulate 
calcium activity in astrocytes and generate testable predic-
tions. First, models can be used to conduct in silico experi-
ments that are time-consuming or unfeasible experimen-
tally. Models have for example been used to finely tune the 
spatial distribution of calcium channels (molecules that, 

Table 2  Brief summary of the main modeling approaches that are 
commonly used to model astrocyte calcium activity, their insights, 
limitations and examples. Biological processes are inherently noisy. 
When the system that is modeled contains a large number of mole-
cules, this noise can be averaged. Such models are called determinis-
tic and describe the variation of molecular concentrations over time. 
They are often used to describe calcium signals at the whole cell and 
at the network levels. When the system of interest contains a small 

number of molecules or ions, typically small subcellular compart-
ments like astrocyte processes, this approximation is no longer valid 
and the stochastic nature of molecular reactions has to be taken into 
account in the model. Further, models can be spatial, i.e. take into 
account the position and potential diffusion of molecules in the cell, 
or well-mixed, i.e. at each time step, any molecule can virtually move 
anywhere in the cell. The location of the molecules and cell morphol-
ogy is thus not taken into account in well-mixed models

Note that the characteristics presented in this table are indicative as the usage and computational cost of a given model vary greatly depending 
on the precise method implemented and the number of molecules/reactions modeled (see (Burrage et al. 2011; Denizot et al. 2020) for reviews)
* Calcium concentration in spatial stochastic simulations can be deducted from the number of molecules tracked and the system’s volume; 
**Some spatial stochastic techniques track individual molecules (particle-based) while others track the number of molecules in small sub- 
compartments (voxel-based). See e.g. (Smith and Grima 2018) for a review

Name of the modeling 
approach

Spatial Describe  
variation of  
concentration

Tracks 
individual 
molecules

Computational cost Common use Examples

Well-mixed,  
deterministic

No Yes No Very low Astrocyte network/
whole cell

(Lavrentovich and 
Hemkin 2008; 
Oschmann et al. 
2017; De Pittá et al. 
2009)

Well-mixed, stochastic No Yes No Low Astrocyte network/
whole cell

(De Pittá et al. 2016; 
Kuchibhotla et al. 
2009; Riera et al. 
2011)

Spatial, deterministic Yes Yes No Low-intermediate Whole cell/Signal 
propagation in major 
branches

(Brazhe et al. 2018; 
Cresswel-Clay et al. 
2018; Höfer et al. 
2002; Lallouette et al. 
2014; Postnov et al. 
2009; Savtchenko 
et al. 2018; Gordleeva 
et al. 2018)

Spatial, stochastic Yes Yes* Yes** High Spongiform domain (Denizot et al. 2019; 
Héja and Kardos 
2020)
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when open, result in a calcium influx into the cytosol, form-
ing a calcium signal) within the cell and explore its impact 
on astrocyte activity (Denizot et al. 2019; Savtchenko et al. 
2018). Moreover, models can be used to generate realistic 
datasets that can be used to train tools developed to char-
acterize the system’s behavior (see “Analysis of Astrocyte 
Calcium Signals”) (Badoual et al. 2021). Lastly, computa-
tional models are useful to go beyond correlational obser-
vations and to propose mechanistic principles that explain 
experimentally observed data. For example, models have 
shown the effect of cellular morphology on the compart-
mentalization of calcium signals in dendritic spines (Bell 
et al. 2019; Biess et al. 2011; Santamaria et al. 2011; Yasuda 
2017) as well as in astrocyte processes (Denizot et al. 2022). 
For a recent review on the insights gained from computa-
tional approaches on astrocyte function as well as strategies 
to start incorporating astrocyte calcium signals in systems 
neuroscience to better understand how astrocytes contribute 
to brain computation, see (Kastanenka et al. 2019). Overall, 
modeling approaches can provide key insights to astrocyte 
physiology.

Main Challenges Associated With the Development 
of Models of Astrocyte Calcium Activity

Computational neuroscientists are facing major chal-
lenges to build models of astrocyte calcium activity. 
First, a lot of data are currently missing or not shared 
publicly, so that most parameter values used in the astro-
cyte models that are currently available are derived from 
data obtained in other cell types. Those data include the 
concentration and sub-cellular distribution of endogenous 
buffers, the diffusion coefficient of diffusing molecules 
involved in calcium dynamics in astrocytes, the distribu-
tion of the major calcium channels and pumps in the cell, 
the dynamic remodeling of the morphology of the cell 
and of its internal calcium stores in live tissue. Second, 
the computational cost of simulations increases drasti-
cally as the accuracy of the model increases, so that a 
trade-off often has to be made by the modeler, resulting in 
models with few reactions or low spatial resolution. Fur-
ther, some of the currently available models suffer from 
a lack of availability, replicability, and reproducibility 
(Manninen et al. 2018). Lastly, models often focus on spe-
cific spatio-temporal scales of astrocyte activity. Bridg-
ing those models together is critical to better understand 
the involvement of local calcium signals in higher-level 
brain functions such as cognition and learning. Building 
such multi-scale models is challenging but should provide 
unprecedented insights in the involvement of astrocyte 
calcium signals in the activity of neural circuits and over-
all in brain (dys-)function.

Is There such a Thing as a Generic Astrocyte Model?

Although astrocytes share common morphological and bio-
chemical characteristics, they are remarkably heterogeneous. 
The diversity of astrocyte morphology has been described 
as early as 100 years ago by Cajal and morphology-based 
classifications of astrocytes have been proposed (Emsley 
and Macklis 2006). Astrocyte electrophysiological prop-
erties (D’Ambrosio et al. 1998; Nimmerjahn et al. 2009; 
Takata and Hirase 2008), gene (Doyle et al. 2008; Molofsky 
et al. 2014; Shah et al. 2016) and protein expression levels 
(Oberheim et al. 2012) also vary drastically depending on 
the brain region under study. Those observations suggest that 
astrocytes are a heterogeneous cell population, questioning 
the specificities and roles of individual sub-types. For more 
details, see dedicated reviews on astrocyte heterogeneity 
(Bayraktar et al. 2015; Haim and Rowitch 2017; Verkhratsky  
and Nedergaard 2018; Zhou et  al. 2019). Whether the 
diverse functions of astrocytes in the brain rely on molecu-
larly and morphologically distinct sub-populations of astro-
cytes is still poorly understood, yet crucial to uncover the 
functions of astrocytes in the healthy and diseased brain. 
A recent study identified sub-populations of astrocytes that 
selectively contributed to specific functions such as syn-
aptogenesis and tumor invasion of glioma (John Lin et al. 
2017). Incorporating this diversity in astrocyte models by 
building models of specific sub-populations of astrocytes 
rather than the currently available generic astrocyte models 
will be essential to provide insights into the functional impli-
cations of the molecular and morphological heterogeneity of 
astrocytes that have been reported recently.

Need for Interdisciplinary Collaborations to Improve 
Models of Astrocyte Calcium Activity

Several strategies and perspectives could be developed to go 
beyond the aforementioned challenges to model astrocyte 
calcium activity. First, computational neuroscientists would 
highly benefit from the existence of open-source datasets, 
which could be used to build and test models. Such datasets 
are crucial for data-driven modeling practices, which rely on 
strong iterative collaborative work between experimentalists 
and computational neuroscientists. Moreover, several good 
practices and step-by-step modeling guides have been pub-
lished to ensure the reproducibility of models (Blohm et al. 
2020; Kording et al. 2018; Novére et al. 2005). Lastly, initia-
tives such as the Neuromatch Academy courses and confer-
ences (Achakulvisut et al. 2021; van Viegen et al. 2021) 
provide an unprecedented opportunity to build an accessi-
ble, democratic, inclusive, international and interdiscipli-
nary community aiming at using computational approaches 
to improve our understanding of brain function.
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Perspectives

Astrocytes are cells that display a highly complex activ-
ity that is essential to brain function. Characterizing the 
diverse signals displayed by active astrocytes and under-
standing their physiological roles, the “Calcium Code”, 
are the biggest challenges of the field and are crucial to 
understand the involvement of astrocytes in brain function. 
In this short review article, we highlighted the different 
insights that can be gained from each field that studies cal-
cium signals in astrocytes and the major challenges that 
they are facing. Key challenges that prevent us from mak-
ing sense of astrocyte calcium activity have arisen from our 
discussions during our interdisciplinary workshop, hosted 
by the 1st Virtual Conference of the European Society  
for Neurochemistry “Future perspectives for European  
neurochemistry—a young scientist’s conference”, in May 2021, 
entitled “Let’s join forces—Bridging the gap between  
experimental, computational and data sciences to disentan-
gle astrocyte calcium activity”. Those challenges include:

• The development of analysis tools allowing accurate 
detection and characterization of individual calcium 
signals in astrocytes are lacking, notably in 3D+time.

• There is no consensus in key definitions and terminol-
ogy, which further hinders efficient communication across 
fields (e.g., calcium microdomain/nanodomain, processes/
leaflets, Calcium Code, gliapil/spongiform domain).

• A lot of data are missing to fully grasp the mechanisms 
regulating astrocyte calcium signals and their physiologi-
cal roles. For example, local and regional variability of 
the expression levels of proteins involved in calcium 
signaling, both in health and disease, remain to be char-
acterized. The morphology of perisynaptic astrocyte pro-
cesses and their organelles, together with their dynamical 
remodeling, also remain to be uncovered in live tissue.

• Raw data are rarely shared in public repositories. Notably, 
labeled datasets are needed to evaluate image analysis tools 
and to train data-driven tools. Providing public access to 
such datasets has contributed to fast improvements in other 
fields, such as the development of tools detecting the onset 
of epileptic seizures (Brinkmann et al. 2016).

• Interdisciplinary events and projects are rare, which 
constitutes a major barrier to our efforts to unravel the 
astrocyte “Calcium Code”. Indeed, scientists from differ-
ent fields lack opportunities to discuss, share ideas and 
knowledge. The interactions between fields working on 
astrocyte calcium signals and opportunities for improve-
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Fig. 2  Reinforcing interdisciplinary collaborations to unravel the 
astrocyte “Calcium Code”. Left: workflow for the characterization of 
calcium signals involving the fields of acquisition, analysis and mod-
eling. The raw data acquired by experimentalists include e.g., calcium 
images, structural images or omics data. Raw data processing by ana-
lysts results in dynamical (e.g., duration, trajectory, frequency) and 

structural characterization (e.g., protein localization, cell morphol-
ogy) of astrocytes as well as the quantification of protein expression 
levels, for example. Right: schematic representation of the interac-
tions between the fields. Interactions to reinforce are highlighted in 
dashed blue lines (4, 5, 6)



Journal of Molecular Neuroscience 

1 3

ments are highlighted in Fig. 2. We believe that such joint 
efforts are essential to fully grasp the complex properties 
and functions of astrocytes.

Reinforcing interdisciplinary projects, bringing together 
experts from different fields, will be crucial to ensure our 
success in cracking the astrocyte “Calcium Code”. Such 
collaborative projects are still rare in the field, which 
might result from the high fragmentation of research pro-
jects and fields working on astrocyte physiology, often 
presenting their work in different, highly specialized con-
ferences and journals. We propose initiatives that will 
facilitate the emergence of new interdisciplinary projects:

• Agreement on shared definitions and terminology 
across fields.

• Sharing datasets, together with all the relevant informa-
tion on the data acquisition, processing and modeling (if 
relevant) methods used. This might require the creation of 
an online platform to store and discuss data on astrocytes.

• Sharing user-friendly data analysis tools, including pro-
viding the code in open-access and the dataset(s) used to 
facilitate their dissemination to the whole community.

• Organization of recurrent meetings and events that 
bring together experts from various fields of expertise.

Because of the complexity of astrocyte morphology and 
signaling, interdisciplinary projects will be essential to not 
only crack the astrocyte “Calcium Code”, but also to suc-
cessfully improve our understanding of astrocyte (patho-)
physiology and to propose models of astrocyte function.
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