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Abstract

Optical nanofibers (ONFs) have shown promising potential for quantum technology de-
velopments. The tight transverse confinement of guided light over an extended length
(> 1000�) offers strong atom-light interactions with potential long-range atom-atom
interactions mediated by the guided light, allowing for better scalability in many quan-
tum information applications than their corresponding free-space implementations. We
demonstrated, experimentally, an electric quadrupole transition and a single-frequency
two-photon transition in cold 87Rb atoms driven by nanofiber-guided light, establishing
ONFs as excellent platforms for potential applications in compact fiber-based clocks
and correlated photon pair sources. ONFs are well-suited for nonlinear collective in-
teractions, such as four-wave mixing and superradiance, that require an ensemble of
phase-matched quantum emitters coupled to a common radiation field. An effective
system is a 1D array of few hundred atoms trapped near an ONF surface and coupled
with the guided mode. A crucial requirement is maximizing the number of trapped
atoms which remains challenging in the absence of a quantitative description of atom
dynamics during the trap-loading process involving many-body interactions and com-
plex scattering process. We experimentally optimized, leveraging the ability of machine
learning algorithms, the number of 87Rb atoms loaded in a shallow fiber-based dipole
trap by parametrizing the control of magneto-optical trap parameters. This sets the
first step toward planned studies on optical nanofiber mediated collective atom-light
interactions and nearest-neighbor interactions in a 1D lattice of Rydberg atoms.
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Chapter 1

Introduction

In recent years, quantum technologies [1] such as quantum control, quantum metrol-
ogy [2], quantum communication [3] and quantum computation [4] have attracted im-
mense interest. In the context of quantum communication, a significant goal has been
the development of quantum networks [5] consisting of spatially separated quantum
nodes interconnected by quantum channels. The information can be mapped to quan-
tum states that are generated, manipulated, and stored in the quantum nodes, while
quantum channels distribute this quantum information over the network via entangle-
ment. A variety of candidates such as photons [6], neutral atoms [7], ions [8], nitrogen-
vacancy centers in diamond [9], cavity quantum electrodynamics (QED) systems [10],
and superconducting circuits [11] are being investigated for physical implementations.
Each has its own advantages and disadvantages [12]. Photons are widely agreed to
be the ideal candidate for transmitting quantum information as they travel quickly,
interact weakly with the environment, and, therefore, do not decohere easily. Atomic
internal states are well-suited for coherent manipulation and long-term storage of quan-
tum information.

A key goal has been to realize an efficient interface for the coherent transfer of
information between two systems, viz., photons and atoms. In that context, a strong
interaction between atoms and photons has become an essential task to be achieved.
The strength of the interaction is determined by the overlap between the transverse
spread of the photonic mode and the atomic absorption cross-section (�0 = 3�2/2⇡)
of resonant light with a wavelength �. Therefore, a strong transverse confinement
of photonic modes is an essential requirement for efficient interaction. In free-space,
strong transverse confinement of a Gaussian mode may be achieved by tightly focusing
the beam; however, it is achieved at the expense of the effective interaction volume,
which depends on the Rayleigh range (zR = ⇡w2

0/�, where w0 is the diameter of the
transverse spread at the focus) of the focused beam. The strength may be enhanced by
implementing a longitudinal confinement of the photonic mode in high-finesse optical
cavities enabling multiple interactions between the photons and atoms confined within
the cavity [5]. This has been investigated in numerous studies [10, 13, 14] over the
past several decades, leading to the achievement of the ideal limit of single photon-
single atom interactions, thereby opening opportunities for fundamental interaction
studies [15], and several quantum computation and quantum networking schemes [16].

The quest for full control over the quantum state of cold atoms and photons has
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2 Introduction

evolved into the vision of what is called ensemble-based quantum information and quan-
tum interfaces. These systems have demonstrated their potential with the successful
experimental implementation of quantum memories [17], and single-photon generation
[18]. A desired control over light-matter interactions in a dense atomic ensemble can
be achieved by using electromagnetically induced transparency (EIT) [19] with appli-
cations in light storage [20, 21] and precision measurements [22]. As well as this, dense
mesoscopic atom samples allow for the production of very long range Rydberg molec-
ular states [23], and fast dipole-blockade based Rydberg quantum manipulation [24]
becomes possible. These applications of cold and dense atomic ensembles require so-
phisticated cooling and trapping of cold atoms in an optical dipole trap lattice in which
a few 100s of atoms are confined for long durations.

More recently, in the past decade, significant advances have been made toward
the realization of hybrid quantum interfaces based on nanophotonic devices, waveg-
uides, and cavities interfaced with quantum emitters. In particular, optical nanofibers
(ONFs) have opened promising prospects for future developments in quantum tech-
nologies. Atoms coupled to ONFs (and nanofiber cavities) offer an alternative to the
free-space, light-matter interfaces described before, as their effective interaction length
can be several times longer than the Rayleigh length (zR). Nanofiber optical modes
feature diffraction-free strong transverse confinement, over the entire length of the
subwavelength diameter section of the tapered optical fiber, leading to a strong inter-
action with atoms exposed to the evanescent field, thus achieving high optical depth
(OD) with a few atoms. The spontaneous emission of atoms is strongly coupled to the
nanofiber and is shown to be preferentially channelled to it [25, 26]. Atoms trapped in
an evanescent field lattice around an ONF [27, 28] have long lifetimes and useful collec-
tive properties [29–31], while allowing direct integration into a fiber network, further
increasing their attractiveness for practical quantum communication schemes.

In this thesis, we primarily explore evanescent field mediated interactions in cold
rubidium atoms with nanofiber guided light, potentially extending the range of ap-
plications of the nanofiber-atom interface. The results of our studies are reported in
subsequent chapters. Here, we start by introducing ONFs and their advantages as a
platform for light interaction studies. This is followed by a brief review of research and
applications of ONFs in atomic and quantum physics. The layout of the rest of the
thesis is outlined at the end of the chapter.

1.1 ONF as a Light-Atom Interface: A Brief Review

A conventional step-index optical fiber tapered down to subwavelength diameter, re-
ferred to as an optical nanofiber (ONF), has gained much attention over the last decade,
paving the way toward a versatile platform for quantum optics and sensing experiments.
A schematic of an ONF is shown in Figure 1.1 The development in the manufacturing
processes of such ultrathin fibers in the early 2000s [32, 33] have enabled us to produce
adiabatically tapered ONFs with nearly 100% optical transmission. The adiabaticity
here means that the optical field guided into the core of the standard step-index fiber
is coupled to the optical mode guided in the subwavelength diameter region, i.e., the
waist, of the ONF without any significant loss. Often we will use the term ONF to only
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Figure 1.1: Schematic of a tapered optical fiber. A single-mode commercial fiber with
typical diameter⇠125 µm is adiabatically tapered down to a subwavelength diameter of
a few 100s of nanometers in the waist region. Typical dimensions of the core, cladding,
and the waist of a single-mode ONF for 780 nm light are given.

refer to this waist region of the tapered fiber. A review by Ward et al. [34] discusses
several ONF fabrication techniques.

As all the power coupled to the fiber can be adiabatically transfered to the ONF,
ONFs feature strong transverse confinement and diffraction-free propagation of the
guided optical mode. Additionally, a significant portion of the power propagates outside
the ONF in the form of an intense evanescent field surrounding the fiber. It is worth
noting that the medium surrounding the ONF (the core) is what forms the cladding for
the step-index fiber structure supporting the mode-guiding. In addition, ONFs have
excellent mechanical properties allowing them to be bent and manipulated without
damage, thereby facilitating the fabrication of highly compact devices [35–37].

Following the theoretical proposal from Patnaik et al. [38] in 2002, a series of theo-
retical studies have been reported on the interaction of atoms with an ONF [26, 27, 39–
41]. The ONFs enable interactions between the guided optical fields and the atoms, via
the evanescent field, within a distance of a few hundred nanometers from the surface
of the ONF. The effects of surface-atom interactions in the context of an ONF were
investigated in a number of theoretical [25, 26, 39, 42–46] and experimental [47, 48]
papers. It was demonstrated that the ONF modifies the boundary conditions and the
density of modes, affecting the decay properties of the atoms. An apparent conse-
quence is the modification of the spontaneous emission rate of atoms in the vicinity
of an ONF, with the possibility of a significant fraction of the spontaneous emission
being coupled to the guided mode of the ONF [26]. This was experimentally demon-
strated by Nayak et al. [47]. The effects of van der Waals and Casimir-Polder forces
manifest as a red-shifted asymmetry in the fluorescence spectra as shown by a series
of theoretical works [42, 43]. Furthermore, it was shown that the Casimir-Polder force
is negligible compared to the van der Waals interactions [42]. In a different research
direction, for circularly polarized light confined in the fundamental mode of an ONF,
theoretical calculations identified that the light possesses a finite angular momentum,
with both spin and orbital components [40], which not only affects the internal state of
an atom but also the center-of-mass motion, in particular rotating the atoms around
the ONF [41].

Many pioneering experiments demonstrating atom-nanofiber interfaces have been
undertaken since then and have enabled ONFs as a workbench for quantum optics
studies and applications. With warm atoms, nonlinear optics was demonstrated [49,
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50] showing, in particular, saturation effects at low power levels (nW). Morrissey et
al. [51] measured several magneto-optical trap (MOT) characteristics such as MOT
size, shape and atom number by collecting the fluorescence with the ONF. Das et
al. [52] measured the fluorescence emission spectrum of a few atoms with an ONF
combined with optical heterodyne and photon correlation spectroscopy, and measured
the Mollow triplet spectrum of atoms at high excitation intensity. Nayak et al.[53]
performed intensity autocorrelation measurements by splitting the coupled fluorescence
on to a polarizing beam spitter (PBS) and detecting by two detectors in a Hanbury-
Brown and Twiss (HBT) setup showing anti-bunching effects, revealing the presence
of a single atom emitting photons into the guided mode. Grover et al. [54] performed
a similar correlation measurement to measure the temperature of an atomic cloud.
Another experiment performed in a cold 87Rb atom cloud created in a MOT, measured
the Autler-Townes splitting generating up-converted photons at 420 nm [55]. In a
similar setup, Kumar et al. [56] realized electro-magnetically induced transparency
(EIT) in a ladder configuration which they used to demonstrate optical switching in
an all-fiber system.

Employing the trapping scheme proposed by Le Kien et al. [27], Cs atoms were
trapped in a one-dimensional array around a nanofiber using ONF-guided fields [28].
The physical idea behind nanofiber-based trap is discussed in Section 1.3 which we
followed for our implementation of a trap for Rb atoms (discussed in Chapter 6). The
trapping of atoms around an ONF has provided an optically dense quantum interface,
opening routes toward quantum nonlinear optics and cavity QED with atomic ensem-
bles (see Figure 1.2). Photon storage experiments with an ensemble of trapped cold
atoms were demonstrated where fiber-guided optical pulses at the single photon level
were stored in the ensemble and retrieved on-demand [57].

Interactions between the nanofiber-guided mode and atoms could be further en-
hanced by combining the features of ONFs and cavities. Some proposals have high-
lighted the advantages of creating a cavity network in which each cavity is linked to
others via fibers [59, 60]. In this regard, integrated cavity structures, either with fiber
Bragg-gratings [61–65] or ring-cavities [66, 67], have been investigated (see Figure 1.3).

1.2 Collective Effects in an ONF-Atom System: Po-

tential Applications in Quantum Information

With fiber-based traps as a stepping-stone, researchers were able to study collective
near-resonant light scattering from a coherently driven ensemble of atoms. In a system
with interatomic distances on the order of the wavelength of light or smaller, atom-atom
correlations become significant. Chang et al. [58] theoretically showed that an ensemble
of periodically arranged two-level atoms in an evanescent field lattice around an ONF
can form an effective high-finesse cavity within the ONF using collective enhancement
effects. Coherent Bragg scattering from an array of trapped atoms around an ONF
was experimentally demonstrated [68, 69], paving the way toward strong coupling in
1D atom-photon systems. Corzo et al. [30] experimentally observed a single collective
atomic excitation in an array of cesium atoms trapped along an ONF. The stored,
collective entangled state can be efficiently read out, leading to on-demand emission of
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Figure 1.2: Different configurations of a coupled atom-fiber system with atoms
trapped around a nanofiber. (a) Single atom scatters ONF-guided input with reflec-
tion (r1) and transmission (t1) amplitudes. (b) A chain of atoms form an atomic Bragg
mirror. (c) Two atomic Bragg mirrors form a cavity which enhances the coupling of an
impurity atom (shown in green). (d) Quantum information transfer can occur between
two initially separated impurity atoms p, q in cavities separated by a chain of mirror
atoms. The mirror atoms between the impurity atoms are flipped into a transparent
hyperfine state, essentially loading p, q into a common cavity mode defined by the re-
maining mirror atoms positioned external to them. The figure is reproduced from [58].

single photons into a guided mode. This paves the way to herald, store, and read out
a single collective atomic excitation in waveguide-QED platforms.

Superradiance and Subradiance Spontaneous emission for an ensemble of closely
spaced identical atoms may be modified due to collective effects, leading to either
enhancement (superradiance) or suppression (subradiance) of the spontaneous emis-
sion [70]. Superradiance occurs if all the atoms contribute constructively to the emis-
sion process through a constructive interference between the radiation from different
atoms. This is strongest for a symmetric collective state. Subradiance occurs for an
anti-symmetric collective state where the expectation value of the total dipole moment
is minimized or even reduced to zero via destructive interference between the radiation
from different atoms.

Owing to their suppressed radiation, the anti-symmetric states that constitute a
sub-radiant system can store quantum information encoded in photons over long time
scales. In contrast, a superradiant state is promising for a fast readout of the quantum
information for high-speed quantum networks, owing to their radiation speed-up which
is much faster than the single atom spontaneous emission.

Recently, Zhou et al. [71] investigated the dependence of the single photon super-
radiant emission rate on the interatomic distance in a 1D chain of atoms around a
waveguide. Kornovan et al. [72] showed that long-lived subradiant states could be ob-
tained in a similar periodic chain of two-level atoms with proper system paramters.
Solano et al. [70] reported infinite-range atom-atom interactions between macroscopi-
cally separated (typically hundreds of resonant wavelengths) 87Rb atoms in the vicinity
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Figure 1.3: Nanofiber-integrated cavity structures. (a) Scanning ion microscope
(SIM) image of a nanofiber Bragg grating fabricated via focused-ion beam (FIB)
milling. Reproduced from [62]. (b) Scanning electron microscope (SEM) image of
a cavity fabricated on an ONF. Reproduced from [65]. (c) Experimental schematic
with a nanofiber-integrated cavity interfacing a cold Cs ensemble, reproduced from
[67]. Collectively enhanced strong coupling of the Cs ensemble with a fiber cavity was
demonstrated.

of an ONF, constituting a proof-of-principle demonstration of collective behavior of
macroscopically delocalized atomic states. This opens up new proposals in quantum
information and many-body physics.

Four-wave mixing Four-wave mixing (FWM) is a third-order nonlinear process in
which the simultaneous interaction of atoms with two near-resonant laser fields leads
to the generation of two additional coherent fields. In the field of quantum com-
munication, a great deal of attention is being paid to developing quantum-correlated
photon pairs from atomic ensembles [73, 74]. This is due, in part, to the proposal of
an atomic ensemble-based quantum repeater, the DLCZ protocol [75]. Long distance
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quantum communication relies on the distribution of entanglement over large distances
and entangled photon pairs are currently the leading candidates to provide entangle-
ment distribution. Quantum-correlated photon pairs have been an important resource
enabling a range of quantum optical technologies, including the fundamental tests for
quantum mechanics [76–79] and for the implementation of quantum-information pro-
tocols [6, 80, 81]. One of the most promising approaches to generate photon pairs is
to use nonlinear optical effects in atomic media, such as parametric FWM processes.
Another promising application of FWM is in the generation of squeezed light [82, 83],
which is a fundamental building block for photonic quantum technologies [84] and an
invaluable resource for quantum metrology applications [22, 85]. FWM processes are
typically achieved at high OD (⇡30-40) which requires us to increase the OD in our
ONF-atom system.

1.3 Nanofiber-Based Dipole Traps for Cold Atoms

The optical dipole force, that will be discussed in Section 2.1.3, can be used to create
conservative traps. For laser frequencies red-detuned with respect to the atomic tran-
sition, the ac-Stark effect (see Section 2.1.4) produces a negative shift to the ground
state energy of the atom. The shift is proportional to the electric field intensity and, for
a spatially varying intensity, the atom experiences a dipole force toward the intensity
maximum region. In contrast, the ground state energy experiences a positive shift for
a blue-detuned beam: the atom is pushed away from the intensity maximum region.

A simple way to construct an optical dipole trap is to focus a collimated red-detuned
Gaussian beam. A focused Gaussian beam possesses an intensity profile that decreases
both radially and axially away from the focal point. A 1D optical lattice can be
constructed by overlapping two counter-propagating red-detuned beams with the same
polarizations. The counter-propagating beams create a standing wave with a spatial
intensity variation of the form cos2(kz) along the axis of propagation z, with k being
the wavenumber of the light. The intensity profiles for the two cases are illustrated in
Figure 1.4.

The dipole force exerted by far-detuned light guided through a nanofiber is sig-
nificant, even with relatively low optical power, due to the strong transverse field
confinement. This is utilized in fiber-based evanescent field trapping to confine atoms
in a lattice in the vicinity of a nanofiber [28]. The basic idea is to use a two-color
dipole trap [27] as depicted in Figure 1.5(a). For a red-detuned beam propagating in
the fundamental, HE11, mode through the ONF, an atom (ground state) in the evanes-
cent field experiences a dipole force toward the nanofiber surface since the evanescent
field intensity decreases radially away from the surface (see Figure 3.10). However, this
would result in atoms either getting deposited on the ONF surface or being heated
up by the fiber and lost from the interaction region altogether. Stable trapping in
the vicinity of the ONF can be achieved by an additional blue-detuned beam propa-
gating in the HE11 mode, which pushes the atoms away from the surface. Since the
evanescent field for the blue-detuned light (shorter wavelength) decays faster than that
for the red-detuned light (longer wavelength), the attractive potential decays slower
than the repulsive potential. The combintation of these two colors, with appropriate
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Figure 1.4: Illustration of (a) a dipole trap created by a single focused Gaussian
beam and (b) a 1D optical lattice created by two counter-propagating focused Gaussian
beams. For red-detuned beams, atoms experience a dipole force toward the intensity
maxima. The counter-propagating beams create a standing-wave pattern with half-
wavelength (�/2) separation between the consecutive intensity maxima.

intensities, creates a trapping potential located a few hundred nanometers from the
surface thereby confining atoms in the radial direction. The confinement along the
fiber axis is obtained with a standing wave similar to the 1D lattices in free-space (see
Figure 1.5(b)). The azimuthal confinement depends on the guided mode symmetry.
For a quasi-circularly polarized mode, the trapping potential is rotationally invariant
around the ONF, but for quasi-linearly polarized mode, the trapping potential depends
on the overlap of the polarizations of the two light fields and, in general, is azimuthally
asymmetric.

The trapping potential is a consequence of the intrinsic ac-Stark (light) shifts of the
ground state energy level of atoms by optical trapping fields. However, this intrinsic
shift is also an important issue as, together with the light shifts of the excited states,
the optical transition energies are shifted. This is an important parameter for coherent
state control of the atoms. Additionally, there are differential shifts within the hyperfine
manifold of states owing to the vector and the tensor parts of the polarizability (see
Section 2.2.2). The differential shifts within the excited state hyperfine manifold are
typically several orders of magnitude larger than those of the ground state. For a typical
far off-resonant trap with ⇠1 mK depth, the state-dependent excited state differential
light shifts can easily exceed tens of MHz [86], which is larger than the typical excited
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Figure 1.5: Schematic of the two-color fiber trap configuration. (a) The intensity
profile for 762 nm (blue-detuned) and 1064 nm (red-detuned) light propagating through
an ONF of 400 nm diameter. The blue field decays faster than the red field such that
with a suitable balance of power an atom is trapped at a certain distance from the
nanofiber surface. (b) Evenly spaced intensity maxima for the red field are created
with counter-propagating 1064 nm light.

state transition linewidth. The ground state differential shift is of the order of 100 kHz.
For many applications, trapping alkali atoms without affecting the energies between

the relevant atomic levels is desirable, as a deep trap potential can be achieved with-
out broadening the relevant transition beyond usefulness. For example, in frequency
metrology, atomic clock, and quantum computing applications, the differential light
shifts of the hyperfine transition are a major source of decoherence. For certain tran-
sitions, this can be achieved by tuning the two-color trapping lasers - the red- and
blue-detuned lasers - to magic wavelengths [87, 88] that shift the ground and the ex-
cited states by the same amount so that the optical transition itself is not shifted.
Cancellation of differential light shifts, in free-space, can be achieved for circularly [89]
and elliptically polarized [90] optical traps and, in some cases, with additional quadratic
Zeeman shifts [91, 92].

In an ONF, the presence of the longitudinal component of the electric field of the
guided modes with a ⇡/2 phase relative to the transverse component causes the field to
have a non-zero ellipticity, leading to a large vector and tensor polarizabilities. A state-
insensitive compensated two-color fiber-based dipole trap can be achieved by using two
pairs of guided counter-propagating beams, one attractive red- and another repulsive
blue-detuned, operating at the magic wavelengths [93, 94]. In this state-insensitive
compensated trap, the differential vector and tensor shifts are strongly suppressed.
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Such a compensated ONF-based dipole trap has been demonstrated for laser-cooled
Cs atoms [30, 68] with around 2000 atoms trapped.

For Rb atoms, the situation is somewhat more complicated than for Cs; there are
magic wavelengths [88–90, 95], but these are either too close to resonant transitions,
causing heating, or are not convenient to use in nanofiber-based traps, due to absorption
by the silica fiber. There has been only one report of a (non state-compensated) ONF-
based dipole trap for Rb atoms [96]. The authors estimated that 302 87Rb atoms were
trapped, with a lower bound of 123 atoms. This number is relatively low compared to
that reported for Cs. One of our goals was to improve this number.

1.4 Thesis Outline

Chapter 2: We start with a discussion of the basics of light-matter interactions and
atomic physics concepts relevant to the works presented in the following chapters.
Chapter 3: This chapter presents the description of the ONF-MOT hybrid setup
we used for all the experiments with laser-cooled 87Rb atoms interfacing to the ONF.
The properties of the installed ONF and the method of polarization control for a
single-mode ONF adapted from [97] are detailed. The polarization control is a crucial
element for the S ! S single-frequency two-photon transition (Chapter 5) and the
fiber-trap (Chapter 6) experiments.
Chapter 4: Here we report on our experimental demonstration of an electric quadrupole
transition driven by nanofiber-guided pump light. We probed a quadrupole transition
in laser-cooled 87Rb atoms using only a few µW of laser power propagating through
the ONF; exploiting the large electric field gradient in the evanescent field of the ONF
guided mode. This established the ONF as an easily accessible platform to drive
quadrupole transitions, which are usually harder to access in free-space because of the
requirement of a large field gradient.
Chapter 5: Here, we discuss single-frequency two-photon excitation in 87Rb, both
in a warm vapor cell with a paraxial pump beam and in a cold MOT ensemble with
a nonparaxial pump beam guided through the ONF. We first detail the theoretical
framework for polarization dependence in an S ! S transition. The results of the
experiments on the excitation efficiency of the 5S1/2 ! 6S1/2 two-photon transition in
87Rb on the polarization of the pump beams are presented.
Chapter 6: Here we report on our implementation of a two-color evanescent field
fiber trap [27, 28, 96], where a pair of counter-propagating red-detuned light fields and
a single traveling blue-detuned light field were used to create a 1D array of trapping
potentials along the ONF. The effects of the inherent ellipticity in polarization of the
fiber modes on the trapping is outlined, explaining the limiting condition on permissible
trap depth for 87Rb atoms. We discuss machine learning based optimzation of the
loading of the laser-cooled 87Rb atoms into the trap array to optimize the final number
of trapped atoms and the OD of the system.
Chapter 7: In this chapter, we discuss a degenerate four-wave mixing (FWM) pro-
cess in a hot rubidium vapor cell. While this is an incomplete work, we discuss our
motivation, the limitations and the improvements that can be made.

Finally, we conclude the thesis summarizing the work so far and presenting some
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outlook on future experiments that can be performed.
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Chapter 2

Light-Matter Interactions

In this chapter, we will give a brief theoretical description of the interaction of atoms
with electromagnetic (EM) fields. We will consider the treatment of a two-level atom
coupled to a classical light field (specifically, an intense monochromatic laser field)
within the semi-classical picture. We will restrict our discussion to hydrogen-like atoms
with one valence electron in their outer shell. This is followed by a generalization to
multilevel atoms. Finally, we will introduce how the cooling and trapping of atoms can
be achieved using appropriate spatially structured laser light fields.

2.1 Two-Level Atoms

Let us start by assuming we have a single atom with an excited and a ground state,
labelled |ei and |gi, respectively. The two states are coupled by an electric dipole
transition frequency, !eg. It is convenient to define some atomic operators in the basis
{|ei, |gi}. We define the operators as

�̂+ = �̂x + i�̂y = |eihg| (2.1)
�̂� = �̂x � i�̂y = |gihe| (2.2)
�̂z = |eihe|� |gihg|. (2.3)

The �̂x, �̂y and �̂z are the Pauli spin matrices that represent the intrinsic angular
momentum components of electronic spin. The operators �̂± are the atomic transition
operators and account for the atomic coherence.

We will consider a monochromatic classical field, E(t), with amplitude, E , polar-
ization vector, ✏, and angular frequency, !, which is detuned, �, from the atomic
transition frequency, !eg, such that

E(t) = ✏E cos(!t) =
✏E

2

�
e�i!t + ei!t

�

= E+(t) + E�(t). (2.4)

The total Hamiltonian, H, of the system can be written as the sum of the free atom

13
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Hamiltonian, HA, and the atom-field interaction Hamiltonian, HI , as

H = HA +HI . (2.5)

Defining the zero-point energy as the midway between the ground and the excited state
energy, HA takes the form

HA =
1

2
~!eg|eihe|�

1

2
~!eg|gihg| =

1

2
~!eg�̂z. (2.6)

Considering the interaction between the atom and the field to be the electric dipole
interaction, the atom-field interaction Hamiltonian in the dipole approximation is

HI = �d · E. (2.7)

Here, d is the electric dipole operator, which can be expanded into its constituent
transition dipole matrix elements as

d = hg|d|ei (�̂+ + �̂�) = dge (�̂+ + �̂�) (2.8)
= d+ + d�, (2.9)

where we have introduced the notation dge = hg|d|ei. Only the off-diagonal matrix
elements are nonzero due to parity symmetry (hg|d|gi = he|d|ei = 0). The dipole
term oscillates at the atomic resonance frequency, d±

⇠ e⌥i!egt. Then, the interaction
Hamiltonian, HI , contains terms oscillating at ! + !eg and terms oscillating at ! �
!eg(= �). When |�|⌧ ! + !eg, the rotating wave approximation (RWA) is made by
neglecting the fast oscillation terms. The interaction Hamiltonian is approximated as

HI ⇡ �d
+
· E�

� d�
· E+. (2.10)

The RWA focuses on slow dynamics, replacing the terms rotating at optical frequencies
by their zero average value. The Hamiltonian can be written in terms of the Rabi
frequency, ⌦,

HI =
~⌦
2
(�̂+e

�i�t + �̂�e
i�t), (2.11)

where ⌦ = �dge ·✏E/~. The Rabi frequency describes the strength of coupling between
the atom and the field.

2.1.1 Optical Bloch equations

The Schrödinger equation suffices to describe the dynamics of the atom-light system
in the absence of any decoherence. However, such a description does not account for
any dissipative or relaxation processes. A real atomic system exhibits finite lifetimes
of the excited states, with the excited states decaying back to the ground state via
spontaneous emission. Considering the interaction Hamiltonian we have constructed
in Equation 2.11, the evolution of the system can be described in the density matrix
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formalism by the Schrödinger-von Neumann [98] equation in the rotating frame

i~@t⇢ = [H, ⇢], (2.12)

where ⇢ = | ih | is the density operator. We can determine the following equations
for the density matrix elements

@t⇢ee = i
⌦

2
(⇢̃eg � ⇢̃ge),

@t⇢gg = �i
⌦

2
(⇢̃eg � ⇢̃ge),

@t⇢̃ge = �i�⇢̃ge � i
⌦

2
(⇢ee � ⇢gg),

@t⇢̃eg = �i�⇢̃eg + i
⌦

2
(⇢ee � ⇢gg). (2.13)

Equations 2.13 describe the evolution of populations (⇢ee and ⇢gg) and coherences (⇢ge
and ⇢eg) in the two-level atom system. Here, the tilde is used to denote the density
matrix elements in the rotating frame (⇢̃eg = ⇢eg exp (�i�t) and ⇢̃ge = ⇢̃⇤

ge
). We arrive

at the optical Bloch equations (OBE) by adding the phenomenological damping terms
to the evolution terms:

@t⇢ee = i
⌦

2
(⇢̃eg � ⇢̃ge)� �⇢ee

@t⇢gg = �i
⌦

2
(⇢̃eg � ⇢̃ge) + �⇢ee

@t⇢̃ge = �(� + i�)⇢̃ge � i
⌦

2
(⇢ee � ⇢gg)

@t⇢̃eg = �(� � i�)⇢̃eg + i
⌦

2
(⇢ee � ⇢gg), (2.14)

where � is the spontaneous decay rate and � corresponds to the coherence decay rate,
which models dephasing effects such as atom-atom collisions that do not affect the
populations.

2.1.2 Useful results and definitions

Here, we summarize several useful results and definitions obtained from the solutions
to the OBE, Equations 2.14, that will be referred to throughout this work.

Steady state solution The dissipation introduced by the spontaneous emission
allows the system to reach a steady state. In the asymptotic limit, the populations ⇢gg
and ⇢ee in Equations 2.14 are constant. Hence, letting the time derivatives be zero, and
by further assuming purely radiative damping (� = �/2), the excited state population
settles to the steady state

⇢ee(t!1) =
(⌦/�)2

1 + 2(⌦/�)2 + 4(�/�)2
. (2.15)
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Saturation The maximum population of the excited state is ⇢ee = 1/2, which is
achieved only asymptotically as the laser intensity (I) is increased (since ⌦2

/ I).
This effect is known as saturation. We can define a saturation parameter, s, given by

s =
⌦2/��

1 +�2/�2
. (2.16)

Scattering cross-section The total scattering rate is given by �⇢ee. The scattering
cross-section, �, defined as the power radiated by the atom divided by the incident
energy flux, is then given by

� =
�0

1 + 2(⌦/�)2 + 4(�/�)2
, (2.17)

where the on-resonance cross-section is defined by

�0 =
~!eg�

2Isat
. (2.18)

In writing Equation 2.18, we defined the saturation intensity, Isat, such that

s ⌘
I

Isat
= 2

✓
⌦

�

◆2

. (2.19)

Power broadening The scattering rate has a Lorentzian lineshape, with a full-
width-half-maximum (FWHM), �0 = �

p
1 + s. At low intensity (s⌧ 1), the width is

equal to the natural linewidth, �. The width increases with intensity, leading to power
broadening of the absorption line.

2.1.3 The polarizability of a two-level atom

The steady-state solution of the OBE yields an induced dipole moment of the atom
described by the expectation value of the dipole operator. Thus, the induced dipole
moment is given as

d = hdi = Tr(⇢d)

= dge(⇢̃ege
i�t + ⇢̃gee

�i�t), (2.20)

where Tr(Ô) =
P

n
hn|Ô|ni denotes the trace of a matrix. The polarizabilty, ↵(!), is

then given as the ratio of the induced dipole moment of an atom to the electric field
that produces it, such that

d = ↵(!)E. (2.21)

The steady state polarizability (plotted in Figure 2.1) can then be found by substituting
the steady state value of ⇢̃ge from the OBE (Equations 2.14) into Equation 2.20 and
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Figure 2.1: Real (blue) and imaginary (orange) parts of the polarizability, ↵(!), as
a function of angular frequency, !, of the driving field.

then comparing it with Equation 2.21:

Re [↵(!)] = �
d2
ge

~
4�/�2

1 + 4(�/�)2 + 2(⌦/�)2
, (2.22)

Im [↵(!)] =
d2
ge

~
2/�

1 + 4(�/�)2 + 2(⌦/�)2
. (2.23)

Scattering rate and the scattering force The time-averaged power absorbed
by the atom from the driving field and subsequently re-emitted as dipole radiation is
described by

P = hḋ · Ei =
!I

✏0c
Im [↵(!)]. (2.24)

The absorption and subsequent scattering results obtained from the imaginary part of
the polarizability (Equation 2.23) is related to the out-of-phase component of the dipole
moment. The energy dissipation is quantized and photons are emitted when atoms
transition back to the ground state |gi from the excited state |ei with a scattering rate

�sc =
P

~! =
�

2

s0

1 + s0 + 4(�/�)2
. (2.25)

Comparing this with Eq. 2.15, we notice that �sc = �⇢ee. This follows naturally since
the total scattering rate is obtained from the spontaneous decay of the excited state
population. The force associated with this scattering is given as

Fsc = (~k)⇥ �sc, (2.26)
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where ~k is the momentum of incoming photons and k is the associated wavevector.
The scattering is a dissipative process, which allows for cooling atoms down to µK
temperatures.

Saturated absorption and optical depth An important effect to consider while
working with an ensemble of atoms is saturated absorption. The intensity of light, I(z),
propagating through a vapor cell filled with atoms at a density n will be attenuated due
to scattering by atoms as it propagates a distance dz through the cell, I(z) = I0e�z.
The attenuation then relates to the imaginary component of the polarizability as

 = nk
Im↵(!)

✏0
. (2.27)

This gives us the relation,

dI

dz
= �nkI

Im↵(!)

✏0
= �n~!�

2

I/Isat

1 + I/Isat + 4(�/�)2
. (2.28)

In the high intensity limit I � Isat we have,

dI

dz
= �n~!�

2
. (2.29)

It is worth noticing that, in this limit, the attenuation of intensity is independent of
the intensity and decreases linearly only with the distance propagated through the
medium, i.e., the absorption saturates at high intensity. This principle underlies the
basis of saturated absorption spectroscopy (SAS) [99] often used to lock the operating
frequency of lasers.

In the weak intensity limit I ⌧ Isat, a useful quantity that describe the strength
of interaction of light with an ensemble of atoms is optical depth. Optical depth (OD)
is defined as the quantity, od, such that an incident resonant field is attenuated by a
factor e�od while transmitted through the medium. The optical depth may then be
determined by sending an on-resonant field with intensity I0 through the ensemble and
measuring the transmitted intensity IT .

od = ln
I0
IT

(2.30)

Such a measurement may however be challenging for ensembles with very high optical
depth as such an ensemble will attenuate the incident light beyond measuring capacity.
Thus it is practical to define the optical depth in terms of transmitted off-resonant light.
It follows from Equation 2.28 that

od = (1 + 4(�/�)2) · ln
I0

IT (� 6= 0)
. (2.31)

Dipole potential and the dipole force The time averaged interaction of the
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induced dipole moment in the driving field (linearly polarized) is given by

Udip = �
1

2
hd · Ei = �

I

2✏0c
Re [↵(!)]. (2.32)

The factor 1/2 accounts for the fact that the dipole is induced and not permanent.
Atoms subjected to a spatially varying light field will experience a spatially varying
induced dipole potential and a resulting dipole force from the gradient of the interaction
potential, which is given by

Fdip(r,!) = rUdip(r) =
1

2✏0c
Re [↵(!)]rI(r). (2.33)

2.1.4 AC-Stark shift or the light shift

An alternative picture to understand the dipole potential described in the previous
section is in terms of the light shift of the ground state energy of an atom due to the
interaction Hamiltonian. The ac-Stark shift or the light shift corresponds to the shift
in energy levels of the bare atoms due to interaction with an EM field. Going back to
the total Hamiltonian for a two-level atom interacting with a monochromatic classical
field (Equations 2.6 and 2.11),

H =
1

2
~!eg�̂z +

~⌦
2
(�̂+e

�i�t + �̂�e
i�t). (2.34)

We can diagonalize this Hamiltonian to find the eigensolutions which are given as

E± =
1

2
~!eg ±

1

2
~
p

⌦2 +�2. (2.35)

E+(E�) is the excited (ground) state energy eigenvalue of the atom in the presence
of the field. The excited state is thus shifted up by ~⌦e↵/2 while the ground state is
shifted down by ~⌦e↵/2, where we have used the notation ⌦e↵ =

p
⌦2 +�2 for effective

Rabi frequency. Figure 2.2 shows the light shifts in a two-level atom in a presence of a
detuned light field. The gradient of the energy describes the dipole force on the atom
and thus an atom in the ground state and in a red-detuned field can be trapped in the
region of high intensity of the light field.

In general, a real atom has a complex electronic substructure with each sublevel
having slightly different interactions with the field and associated different shifts. This
may lead to some interesting effects, including the inhomogenous broadening of the
absorption (see Chapter 6).

2.2 Multilevel Atoms

Each sublevel in the electronic substructure of the atom couples to the radiation field
slightly differently depending on the orientation of its dipole moment and the polar-
ization of the light. Rewriting the standard interaction Hamiltonian Equation 2.7 in a
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(a) (b) (c)energy

|e�

|g�

��0

Figure 2.2: AC-stark shift of a two-level atom in a focused red- and blue-detuned
light field, detuned with respect to the atomic transition energy. (a) Unperturbed
energy levels of the ground |gi and excited |ei state. The red and blue arrows indicate
the energy of the red- and blue-detuned light respectively. (b) Shifted energies of |gi
and |ei in the red-detuned light field. The shift is proportional to the intensity with
higher intensity represented by darker region. (c) The sign of the shift is inverted for
the blue-detuned light field.

slightly different way gives
HI = �er · ✏E , (2.36)

where r is the position of the electron, ✏ is the polarization of the light, e is the
electronic charge and E is the amplitude of the electric field. Expressed in terms of
atomic operators �ij = |iihj| between any two atomic energy levels, we can write

er · ✏ =
X

i,j

e|iihj|r · ✏|iihj| =
X

i,j

dij�ij (2.37)

with dij = ehi|r · ✏|ji denoting the electric-dipole transition element. The calculation
of this transition element depends on the wavefunctions of the involved energy levels
and in general is not an easy task. The calculation, however, is simplified in spherical
coordinates. The factor r · ✏ can be written in terms of spherical unit vectors uq as

r · ✏ = r · uq =

r
4⇡

3
· r · Y q

1 (✓,�) (2.38)

with
u+ =

1
p
2
(ex + iey) , u� =

1
p
2
(ex � iey) , u0 = ez, (2.39)

where

Y m

l
(✓,�) =

s
(2l + 1)

4⇡
·
(l +m)!

(l �m)!
· Pl(cos ✓)e

im�. (2.40)
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Y m

l
(✓,�) is the spherical harmonics function, Pl(cos ✓) is the Legendre polynomial and

q = 0,±1 specifies the polarization of the light field.
In a simple case without fine and hyperfine interactions and n, l,m are the princi-

pal, orbital and magnetic quantum numbers, respectively, the electric-dipole transition
element may be written as

ehi|r · ✏|ji = ehn0l0m0
|r · ✏|nlmi = ehn0l0||r||nlihl0m0

|

r
4⇡

3
· Y q

1 |lmi. (2.41)

The term hn0l0||r||nli is the reduced matrix element and depends only on the orbital
wavefunction. This is a special notation used in conjunction with the Wigner-Eckart
theorem [100, 101]. The angular contribution of the matrix elements relates to the
Clebsch-Gordon (CG) coefficients, involving the integrals of the products of spherical
harmonics, that can be conveniently evaluated in terms of Wigner 3j-symbol [102]

hl0m0
|

r
4⇡

3
· Y q

1 |lmi = (�1)(l
0�m

0)
p

max(l, l0)
✓

l0 1 l
�m0 q m

◆
. (2.42)

2.2.1 Fine and hyperfine interactions

Spin-orbit interaction that couples the electronic spin with its orbital angular momen-
tum leads to the splitting principal energy levels called fine structures. This leads
naturally to the introduction of total angular momentum J = L + S. Fine energy
levels are further split into hyperfine levels due to the coupling of nuclear spin I with
the total angular momentum J . Similar to J , this introduces the quantum number
F = J + I.

Analogous to Equation 2.41, the two hyperfine levels |F,mF i and |F 0,m0
F
i couples

via the dipole interaction, resulting in a reduced matrix element which is independent of
magnetic sublevels and coupling coefficient that only depends on the magnetic quantum
number.

ehF mF |r · ✏|F
0 m0

F
i = ehF ||r||F 0

i · (�1)F
0�1+mF

p

2F + 1 ·

✓
F 0 1 F
m0

F
q �mF

◆
. (2.43)

The full calculation involves the expansion of F states in the L�S basis and recoupling
of all CG coefficients [100, 101]. Further simplification of the reduced matrix element
is done by factoring out the F, F 0 dependence

ehF ||r||F 0
i = ehJ ||r||J 0

i · (�1)F
0+J+1+I

p
(2F 0 + 1)(2J + 1) ·

⇢
J J 0 1
F 0 F I

�
. (2.44)

The term in the curly braces is the Wigner 6j-symbol. They are the generalization of
the CG coefficients and Wigner 3j-symbols that appear in the coupling of three angular
momenta [100, 101]. The J, J 0 dependence can further be factored out by expanding
the J basis in to the L�S basis resulting only in L dependent reduced matrix element,
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ehJ ||r||J 0
i = ehL||r||L0

i · (�1)J
0+L+1+S

p
(2J 0 + 1)(2L+ 1) ·

⇢
L L0 1
J 0 J S

�
. (2.45)

The numerical values of the reduced matrix element can be calculated from the radiative
lifetime measurements of the involved states or the Einstein A coefficients [103].

1

⌧
= Aij =

!3
ij

3⇡✏0~c3
·
2J + 1

2J 0 + 1
· |hJ ||r||J 0

i|
2. (2.46)

Following these, the dipole matrix element, dij, can be factorized into a reduced matrix
element ||d|| and a real transition coefficients cij [100, 101]

dij = cij||d||. (2.47)

The coefficients, cij, take into account the coupling strength between the specific sub-
levels, and the electronic and nuclear angular momenta involved.

2.2.2 Light shift and the polarizability for multilevel atoms

As a general result, the effect of a weak variable far-detuned EM field on the atomic
levels can be treated as a perturbation in second order of the electric field [98]. The
energy shift of the i-th unperturbed state for non-degenerate states is given by [104]

�Ei = �
E
2

4~
X

j 6= i

Re

 
|ehj|r · ✏|ii|2

!ji � ! � ı�ji/2
+

|ehi|r · ✏|ji|2

!ji + ! + ı�ji/2

!
. (2.48)

The ac-Stark shift Equation 2.48 can be conveniently recasted in terms of polarizability
through the Equation 2.21 as

�Ei = �
1

2
↵i(!)E

2, (2.49)

where ↵i(!) is the total dynamic polarizability for the state |ii ⌘ |F,mF i, which can
be further decomposed into mF -independent scalar ↵(0)

F
, vector ↵(1)

F
and tensor ↵(2)

F

components such that [90]

↵i(!) = ↵(0)
F
(!) + �✏

mF

2F
↵(1)
F
(!) + �✏

3m2
F
� F (F + 1)

F (2F � 1)
↵(2)
F
(!). (2.50)

The �✏ and �✏ depend on the polarization vector of the light field given as

�✏ = ı(✏⇥ ✏⇤) · eq and �✏ =
1

2
[3(✏⇤ · eq)(✏ · eq)� 1] (2.51)
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with eq being the quantization axis unit vector. The expressions for the three compo-
nents of the polarizabilities are given as follows [89, 104]:

↵(0)
F
(!) =

1

3(2J + 1)

X

J 0 6=J

|ehJ 0
||r||Ji|2

⇥
1

~Re

✓
1

!J 0J � ! � ı�JJ 0/2
+

1

!J 0J + ! + ı�J 0J/2

◆
, (2.52)

↵(1)
F
(!) =(�1)F+I

r
6F (2F + 1)

F + 1

⇢
F 1 F
J I J

�X

J 0 6=J

(�1)J
0
⇢
1 1 1
J J 0 J

�

⇥ |ehJ 0
||r||Ji|2

1

~Re

✓
1

!J 0J � ! � ı�JJ 0/2
+

1

!J 0J + ! + ı�J 0J/2

◆
, (2.53)

↵(2)
F
(!) =(�1)F+I

s
10F (2F � 1)(2F + 1)

3(F + 1)(2F + 3)

⇢
F 2 F
J I J

�X

J 0 6=J

(�1)J
0
⇢
1 2 1
J J 0 J

�

⇥ |ehJ 0
||r||Ji|2

1

~Re

✓
1

!J 0J � ! � ı�JJ 0/2
+

1

!J 0J + ! + ı�J 0J/2

◆
. (2.54)

A detailed theoretical treatment of the formalism introduced in this section can be
found in the appendix of [104].

2.2.3 Optical pumping

The symmetries of the dipole moment dictate that all the excited state sublevels
|Fe,mFei decay with the same rate, �, with the population branching into various
ground state sublevels |Fg,mFgi according the the relative transition strengths (essen-
tially the same as the square of the CG coefficients). This couples the ground state
populations in the presence of a light field driving |Fgi ! |Fei, with average rates
determined by the absorption rates and the relative transition strengths, leading to an
incoherent redistribution of population between ground state sublevels. This process
is called optical pumping.

The steady-state ground level population distribution can be approximated by cal-
culating the rate of optical pumping following a simplified approach described in [105].
Consider a set of ground |gi and excited |ei energy state manifolds, as shown in Fig-
ure 2.3, coupled via a light field driving the transitions between them. For any sublevel
|gji in the ground manifold and |eki in the excited manifold, Rjk represents the absorp-
tion rate and �jk represents the relative transition strength. We assume the transitions
are driven below saturation in which case the time scale for the total process will be
dominated by the slow driving rate. The spontaneous decay rate will then essentially
be instantaneous, on the time scale relevant for the experiment. The rate of change of
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energy

|e�
|ek-1�

|ek+1�

|ek �

|gi-1�

|gi+1�

|gi �
|g�

Γβk,i+1

Γβk,iΓβk,i-1 Rk,i-1

Figure 2.3: Two sets of discrete energy states manifold: one stable manifold labelled
|gii and another consisting levels with short radiative lifetimes, labelled |eki. The
green double arrow represents the driving rate Rk,i�1 and the red arrow represents
the spontaneous decay from the upper level. �k,i�1, �k,i, �k,i+1 represents the relative
transition strengths from the level |eki. Contributions from all other pairs of ground-
excited state can be similarly considered.

ground state populations gi can then be evaluated by

d

dt
gi(t) =

X

j 6=i

gj(t)

"
X

k

Rjk�jk�ik

#
� gi(t)

X

k

Rik�ik(1� �ik). (2.55)

The sum over j is over all ground state levels, and the sums over k go over all excited
states. The first term expresses the transfer of population to the |gii ground state from
all other ground states, while the second term expresses the population transferring
out of the |gii ground state.

2.3 Cooling and Trapping of Neutral Atoms

A particularly useful tool for studying atom-light interactions is to cool the ensemble
of atoms downs to low temperatures, thereby reducing their thermal motion and in-
creasing the interaction time which is key for precise measurements. The interaction
time can be further increased by trapping the cold atoms in some form of an atomic
trap. A detailed discussion on different types of traps can be found in [99]. We will
be considering the magneto-optical trap (MOT), successfully developed in 1985, which
uses a method of laser cooling to cool a gas of neutral atoms down to few tens of µK
and a quadrupolar magnetic field distribution to assist in trapping at the zero of the
magnetic field.

Laser cooling Laser cooling relies on slowing down atoms due to transfer of mo-
mentum from the resonant laser field. With the laser field tuned to near resonance, an
atom scatters an incoming photon by absorbing and spontaneously emitting a photon
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in a random direction. While the photon absorption results in a momentum transfer
to the atom in the direction of the laser field propagation, the momentum kick due to
spontaneous emission averages to zero over many scattering event. Atoms thus get a
net momentum kick in the direction of laser field propagation.

The cooling is achieved by making the photon scattering rate velocity dependent.
Considering the 1-dimensional case of two counter-propagating laser fields (in the low
intensity limit), the total scattering force experienced by an atom with a velocity v is
given as (refer Equation 2.26)

F = ~k�
2


s0

1 + s0 + 4(�� k · v)2/�2
�

s0

1 + s0 + 4(�+ k · v)2/�2

�
. (2.56)

While writing this equation, we have included the Doppler shift ±k · v experienced by
the moving atom with respect to the two counter-propagating fields. In the limit of
small velocities, |k · v|⌧ �, Equation 2.56 reduces to

F ⇡
8~k2�s0

�(1 + s0 + 2(�/�)2)
· v = ��D · v, (2.57)

where we have introduced �D as a damping coefficient, acting against the atomic ve-
locity. We can see that the atomic motion is viscously damped for the case � < 0. The
atoms selectively scatter photons that they see Doppler-shifted into resonance and thus,
by detuning the laser field to the red of resonance, atoms scatter photons at a higher
rate if moving toward the laser field than if moving away from it. This configuration is
known as 1D optical molasses because of the viscous nature of the damping force. The
atoms can be slowed down in all three spatial dimensions and thus cooled down with
three pairs of counter-propagating laser beams, a pair in each dimensions. Magneto-

optical trap (MOT) The atoms in the optical molasses created via laser cooling
would simply diffuse out of the molasses region without any spatial dependence of the
optical force. A MOT uses an inhomogeneous magnetic field to achieve the required
spatial dependence of the optical force via the position-dependent Zeeman shift of the
magnetic states of the atoms in order to localize them to a particular region.

A quadrupolar magnetic field is generated with a pair of coils in an anti-Helmholtz1

configuration. This produces a linearly increasing magnetic field away from the center
of the anti-Helmholtz pair where the magnetic field B = 0 (refer Figure 2.4). This is
particularly useful as it provides an easy way to define a central region for trapping
atoms. As the atoms move further away from the trap, the detuning of the magnetic
states shifts relative to the magnetically insensitive state mF = 0. This asymmetry in
detuning causes the atoms to scatter light preferentially from the cooling beams that
are counter to the atoms motion away from the trap, hence pushing the atoms toward
the center of the trap where there is no preferential scattering.

We will consider a simplified one dimensional model with two-level atoms to under-
stand the principle of the MOT. We assume the atom has a ground (excited) state with

1An anti-Helmholtz pair consists of two identical circular coils with radius R each placed symmet-
rical along a common axis and separated by distance R, with equal currents going through the coils
in opposite direction.
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Figure 2.4: Principle of a MOT. (a) Coil geometry in an anti-Helmholtz configuration
with their magnetic field lines. The arrow on the coils shows the direction of the current
through them. (b) Mechanism of the MOT for an atom with J = 0! J = 1 transition.
(Top) The coil configuration creates a linear magnetic field across the center of the trap
with the zero field at the center. (Bottom) The spatially-dependent Zeeman-splitting
and the selection rules for dipole transitions cause a particular sublevel to be resonant
with each of the circularly polarized light beams. The net scattering force pushes the
atoms toward the center of the MOT.

total angular momentum Fg = 0 (Fe = 1) and we only consider the dynamics in the
z-direction. The principle of the MOT is schematized in Figure 2.4b. Along the z-axis,
the excited state split into the three magnetic states given by mF = 0,±1 with the
detuning of the form z, where z is the position of the atom and  = µB~(dB/dz)�1.
In the region z < 0, mF = +1 is shifted down while mF = �1 is shifted up. The
inverse is true for the region z > 0. For the cooling beams along the z-direction, we
shine a right (�+) circularly polarized beam propagating from the left and a left (��)
circularly polarized beam propagating from the right. The selection rules impose that
�+ (��) can only cause transitions to mF = +1 (mF = �1). For appropriate red
detuning of the cooling beams, atoms moving left are more likely to scatter the �+

light in the region z < 0 as the �+ light is closer to resonance while the opposite is true
for the region z > 0. Thus the net effect on atoms from the cooling beams is toward
the center of the trap where B = 0.

2.4 Conclusion

This chapter introduced the main theoretical ideas and concepts that are relevant to
the work presented in this thesis. A simple treatment of a two-level atom interacting
with a classical field was discussed. Using the optical Bloch equations, the concept
of polarizability was first introduced for the case of a two-level atom and then was
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extended for multilevel atoms. It is particularly useful for the understanding of light
shifts and dipole trapping. Finally, the physical idea behind laser cooling and trapping
of atoms in a magneto-optical trap was explained. The next chapter will outline the
technical details of the experimental setup we used.
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Chapter 3

Experimental Details

In the preceding chapter, the theoretical background for the experiments has been
discussed. This chapter focuses on the design1 and the important technical details for
the experiments reported in the following chapters.

3.1 Cold Atomic Ensemble of Rubidium Atoms

Experiments carried out in this thesis research use 87Rb, which is a non-stable isotope of
rubidium albeit with an extremely slow decay rate [106] having a half-life of 4.88⇥1010

years. Alkali atoms are often chosen for atom-light experiments because they have a
relatively strong interaction of the induced dipoles with the EM field via D-transitions.
They offer almost perfectly closed cyclic transitions (see Figure 3.1) which are accessible
by readily available commercial tunable diode lasers, allowing for laser cooling and
trapping in a MOT. Additionally, it is simpler to study and predict their behavior
owing to their hydrogen-like structure with a single outer electron.

3.1.1 Vacuum setup
The preparation of cold atoms in a MOT critically depends on the collision rate be-
tween the atoms and any background gas. In order to maximize the trap lifetime, the
experiments require ultra high vacuum (UHV) conditions (i.e., pressure < 10�8 mbar).
UHV is created using a combination of a scroll and a turbo-molecular pump TPS
Compact (with TV81M turbo-molecular pump, Agilent Technologies) initially and is
maintained with the continuous operation of an ion-pump (VacIon Plus Starcell 55,
Varian). Our setup (see Figure 3.2) consists of a main MOT chamber, a custom-made
octagonal stainless steel chamber with 10 ConFlat (CF) flanges: 8⇥ 2.7500 and 2⇥ 4.500

CF, that contains a U-shaped aluminum mount for the ONF passing vertically through
the center of the chamber. The U-mount fits in a cylindrical base, which is attached
to one of the flanges of the MOT chamber. Optical access for the MOT beams, probe
beams, and the cameras is provided by the seven viewports (6 ⇥ 2.7500 and 1 ⇥ 4.500

CF ports) which are anti-reflection (AR) coated for near-infrared (NIR) wavelengths.
1The cold atom system has been built by previous unit members over many years. The setup is

modified as per requirements for each of the experiments carried out in this thesis research.

29
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Figure 3.1: Hyperfine energy levels of the D2 line of 87Rb showing the cooling and
the repump transitions.

The two pigtail ends of the ONF enter and exit the chamber from the top and bot-
tom 2.7500 flanges through teflon-based vacuum feedthroughs. The back port of the
MOT chamber is connected to a pneumatic valve via a four-way cross (4X), with the
remaining two ports of the 4X fitted with the electric feed throughs where rubidium
dispensers (SAES Rb Getters) containing chemically bound rubidium are attached.
They release atomic rubidium when electrically heated to about 500�C. The other side
of the penumatic valve is connected to a six-way cross (6X), with the diametrically
opposite CF port fitted with a 4.500 CF viewport with AR coating for the MOT beams
access. The top flange of the 6X is connected to a titanium sublimation pump (Agilent
TSP Filament Cartridge). On one side a 4X is fitted and blanks on the remaining
two flanges. The 4X is connected to the ion-pump using a stainless steel bellows. The
top flange of the 4X is connected to a vacuum gauge (Dual Filament Bayard-Alpert
Pirani Guage, FRG730CF35S, Agilent Tehnologies). The bottom flange is connected
to a T-valve (rated to 10�12 mbar) and to a TPS Compact via a flexible metal bellow.
All the flanges are CF and copper gaskets are used to seal the vacuum. This system
was originally designed in 2003 and has been used for all ONF-atom work from the
group since then [42, 51, 55, 56, 107–111].

3.1.2 Laser system
87Rb has two D-lines: the D1 transition 5S1/2 ! 5P1/2 and the D2 transition 5S1/2 !

5P3/2. We chose the D2 transition for cooling and trapping of 87Rb atoms using the
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Figure 3.2: Illustration of the vaccum assembly of the experimental setup.

scheme described in Section 2.3. The hyperfine structure of 87Rb and the relevant tran-
sitions for cooling are shown in Figure 3.1. The cooling laser addresses the closed cycle
transition 5S1/2(F = 2) ! 5P3/2(F 0 = 3), which we term the cooling transition from
this point onwards. While the cooling transition is closed, the atoms can still be lost
due to the finite probability of the 5S1/2(F = 2) ! 5P3/2(F 0 = 2) transition followed
by spontaneous decay to the 5S1/2(F = 1) ground state. For a typical condition in our
setup, 1 in 1000 photon scatterings can take the atoms out of the cooling cycle. An
additional repump laser tuned to the 5S1/2(F = 1)! 5P3/2(F 0 = 2) transition is used
along with the cooling beams to bring the lost atoms back into the cooling cycle.

A schematic of the laser cooling system is shown in Figure 3.3. The cooling beam is
derived from a commercial extended-cavity diode laser (ECDL) with a tapered amplifier
(TA) system (Toptica TA Pro) running at ⇡ 780.241 nm. The laser is locked with
a computer-controlled laser-locking module (Toptica DigiLock110) to the 5S1/2(F =
2)! 5P3/2(F 0 = [2, 3]

co
) line in the D2 spectrum which is obtained through saturated

absorption spectroscopy using a Toptica CoSy. The [2, 3]
co

corresponds to the crossover
line between the 5S1/2(F = 2) ! 5P3/2(F 0 = 2) and 5S1/2(F = 2) ! 5P3/2(F 0 = 3)
transitions. Figure 3.4 shows the hyperfine-resolved saturated absorption spectrum
for the D2 lines. The cooling beam is passed through an acousto-optic modulator
(AOM, ATM-602DA2B, IntraAction Corp, central frequency: 60 MHz) in a double-
pass configuration producing a shift of 120 MHz. With this setup, we could maintain
the frequency of the cooling laser at anywhere between 0 to ⇠40 MHz red-detuned
from the cooling transition. We typically used 14 MHz red-detuning for most of the
work in this thesis except for that reported in Chapter 6 where different detunings were
explored by a machine learner in optimization of the cooling process for loading atoms
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Figure 3.3: Detailed schematic of the optics for spatial and frequency control of
the cooling and repump laser beams. Inset (a): Beams B1 and B2 retro-reflected
in the MOT chamber at +45� and -45� with respect to the x-axis in the xz-plane
respectively. Beam B3 retro-reflected along the y-axis is omitted from the sketch. A
ring like structure designated C and illustrated around the point of beams’ intersection
shows the anti-Helmholtz coils arrangement placed at y = ±45 mm with ONF in
the y = 0 plane. Inset (b): An image of a typical cold atom cloud produced in our
experiments. FC: Fiber coupler, M: Mirror, I: Iris, L1: Convex lens (f = 75 mm), Q:
Quarter-wave plate, AOM: Acousto-optic modulator, BD: Beam dump, H: Half-wave
plate, L2: Concave lens (f = �50 mm), L3: Convex lens (f = 100 mm), B1,B2,B3:
Laser cooling beams retro-reflected in the MOT chamber.
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Figure 3.4: Saturated absorption spectrum showing the transition peaks in the D2

5S1/2(F = 2) ! 5P3/2 lines of 87Rb. The frequency is relatve to the F = 2 ! F 0 = 1
transition peak. The spectrum is obtained from the Toptica DigiLock interface.

in a fiber-based dipole trap.
The repump beam is derived from another ECDL (Toptica DL100 Pro), locked to

5S1/2(F = 1) ! 5P3/2(F 0 = [1, 2]
co
), which then is single-passed through an AOM

(central frequency: 80 MHz) running at 78 MHz. Both the cooling and repump lasers
have a typical linewidth of the order of 100 kHz. The cooling (60 mW) and repump (2
mW) beams are overlapped and expanded to a beam size of 15 mm in diameter. The
overlapped and expanded beams are then split into three beams of equal intensities,
passed through a quarter-wave plate (QWP) each, and aligned to intersect mutually
orthogonally at the center of the vacuum chamber. The QWP transforms the origi-
nal linear polarization of the beams to a circular polarization in accordance with the
MOT requirement discussed in Section 2.3. The cooling configuration with counter-
propagating orthogonal circular polarizations (�+-��) is achieved by retroreflecting
each of the beams through another QWP.

3.1.3 Magnetic fields

As discussed before in Section 2.3, the spatial localization of the atoms in a MOT is
achieved through a combined effect of an optical and magnetic field. The magnetic field
is provided by two coils in an anti-Helmholtz configuration. Two identical, circular,
copper coils with 200 turns and radii 75 mm are placed symmetrically outside the
vacuum chamber such that they are 90 mm apart and the zero of the magnetic field
nearly coincides with the center of the chamber (see Figures 3.2 and 3.3). During a
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typical steady-state loading of the MOT, the magnetic field gradient in the trapping
volume and along the axis of the coils is set to 10-15 G/cm.

Additionally, three pairs of Helmholtz coils, along each of the three orthogonal
directions, are used either to cancel any stray unwanted magnetic field or to add a
uniform magnetic field in a certain direction such as to shift the center of the trap. The
coils are individually connected to an insulated-gate bipolar transistor (IGBT) switch,
which allows this magnetic field to be switched on and off during an experimental cycle.

3.1.4 Characterization of the cold 87Rb atom cloud
Under suitable UHV conditions (pressure ⇠3.0⇥ 10�9 mbar, in our case), a cold atom
cloud is formed in a MOT. In our case, the MOT is formed around an ONF (see Sec-
tion 3.2 for details). Atoms in the cloud can be overlapped with the ONF by either
using the three pairs of mutually orthogonal Helmholtz coils putting a bias magnetic
field to shift the zero position of the magnetic field in the MOT, or by slightly misalign-
ing the MOT cooling beams. Two cameras, imaging from the orthogonal directions,
help identify the position of the atom cloud with respect to the ONF. The cloud overlap
with the ONF is further optimized by monitoring the fluorescence coupled to the ONF.

Imaging The MOT cloud centered on the ONF is imaged with an EMCCD2 cam-
era (LucaEM R, DL-604M-OEM, ANDOR Technologies) through one of the viewports
in the MOT chamber, via a 2:1 telescope arrangement composed of two achromatic
doublet lenses (L1: AC508-150B f=150 mm and L2: AC508-300B f=300 mm). The
imaging system, as shown in Figure 3.5, is used for the characterization of the MOT
cloud, including the temperature and the atom number and density. An additional
triggerable CMOS3 camera (Thorlabs DCC3240N) images the atom cloud from the
orthogonal direction.

Temperature The atom cloud temperature is estimated via time-of-flight measure-
ments, which are based on a measurement of the rate of thermal expansion of the cloud.
The cloud expansion rate, �⌧ , is related to the temperature via

Tcloud =
ma�⌧

kB
(3.1)

where ma is the mass of the atom and kB is the Boltzmann constant. The anti-
Helmholtz coils, the cooling, and the repump lasers are turned off to allow for the
ballistic expansion of the cloud. The cloud diameter is imaged after a time t by si-
multaneously switching on the cooling beams to scatter fluorescence from the atom
cloud and triggering the EMCCD camera for a snapshot. The images are collected by
varying t in steps of 1–2 ms (see Figure 3.6). The cloud expansion rate is determined
as the slope of the curve when the square of the cloud diameter is plotted as a function
of the square of the expansion time.

Atom number and density The number of atoms in the atom cloud can be de-
2Electron-Multiplying Charge Coupled Device
3Complementary Metal Oxide Semiconductor
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Figure 3.5: Sketch of fluorescence imaging of the atom cloud. L1,L2: Achromatic
doublets, NPBS: Non-polarizing beam splitter, FL: Dichroic 780 nm narrow bandpass
filter, PMT: Photo-multiplier tube.
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Figure 3.6: A series of snapshots of an atom cloud ballistically expanding when the
MOT cooling laser and magnetic field are turned off. The value under each image
corresponds to the amount of time the cloud was left to expand before taking the
picture.
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termined by either considering the image obtained through the EMCCD camera or a
fluorescence signal collected on a photomultiplier tube (PMT). The PMT signal is ob-
tained by splitting the fluorescence collected from the imaging telescope arrangement
(see Figure 3.5) on a 50 : 50 beam splitter (BS). The power, P , corresponding to the
PMT signal relates to the number of atoms, Natoms, according to the following equation

P = Natoms�sc⇥, (3.2)

where �sc is the scattering rate of atoms (see Equation 2.25) and ⇥ is the fraction of the
solid angle from which the fluorescence is collected, i.e., the field-of-view of the imaging
telescope. The counts, Ncounts, collected on the EMCCD camera is also a measure of
the number of atoms via

Ncounts

⌘texp
= Natoms�sc⇥, (3.3)

where ⌘ is the quantum efficiency of the EMCCD (48% at 780 nm) and texp is the
exposure time. The average density is then calculated by estimating the volume of
the MOT cloud from the image, with the knowledge that each pixel of the EMCCD is
8 µm ⇥ 8 µm in size. We typically measured around 5.0 ⇥ 106 atoms trapped in our
MOT, with an average density of around 109 cm�3.

3.2 ONF Embedded in the MOT Chamber

We began this chapter with a description of the first important tool of our experiments:
the cold atomic ensemble. The second tool is the optical nanofiber, which was fabri-
cated from a commercial single-mode optical fiber (SM800-5.6-125, Fibercore) via a
flame-brushing technique [34]. The initial fiber diameter of 125 µm was exponentially
tapered to around 400 nm at the waist, thereby producing a single-mode ONF for 780
nm wavelength light.

The ONF was mounted in the MOT vacuum chamber with a U-shaped aluminum
holder attached to one of the CF flanges, as mentioned in Section 3.1.1, with the
pigtails exiting from the top and the bottom CF flanges, respectively. The two pigtails
provided access to the light fields coupled to the ONF. The installation procedure is
described in the thesis of Dr. K.S. Rajasree [112]4. Figure 3.7 shows a schematic of the
optical paths coupling in and out of the ONF. During a typical operation, 100 µW of
1064 nm light was coupled into both the ends of the ONF, which kept the ONF hot and
avoided atom deposition on the ONF surface. Additonally, it attracted atom toward
the ONF surface due to the dipole force, thereby increasing the density of atoms in
the evanescent field. Note that, when we refer to light power through the ONF, the
values given are those measured at the output port of the fiber and not at the ONF
waist. For this we assumed that most losses are at the input coupling and the down-
taper of the ONF. In our case, the ONF was optimized for 780 nm propagation and
the adiabaticity criterion may not be matched for other wavelengths leading to high
loss at the down-taper. There may be additional wavelength-specific material losses,

4The single-mode ONF was fabricated and installed by Dr. K.S. Rajasree and Dr. T. Ray before
the beginning of my PhD.
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Figure 3.7: Optical layout for coupling light in and out of the ONF. Light field
transmitted through the ONF from Port B was directed on to an SPCM. OF: 780 nm
narrow bandpass optical filter, M: Mirror, BD: Beam dump, NPBS: Non-polarizing
beam splitter, DM: Dichroic mirror (Thorlabs DMLP950), PBS: Polarizing beam split-
ter, Q: Quarter-wave plate, H: Half-wave plate, FC: Fiber coupler.

which we assumed to be minimal. The 1064 nm light was from a Mephisto 1064 nm
high power laser providing up to 450 mW of power. The same 1064 nm laser was used
as a source of counter-propagating red-detuned beams for the evanescent field dipole
trap reported in Chapter 6. The 1064 nm beam was passed through an AOM (MT80-
A1-1064, AA Optoelectronics, central frequency: 80 MHz) to control the power of the
beam via amplitude modulation.

The output from one of the ONF ports was coupled to a single-photon count-
ing module (SPCM, SPCM-AQRH-14-FC, Excelitas Technologies). The quantum ef-
ficiency of the SPCM at 780 nm is 60% and the dark count is 100 counts/s. The
fluorescence from the atoms in the vicinity of the ONF was coupled into the fiber and
then registered on the SPCM as photon counts. Figure 3.8 shows typical photon counts
during a MOT loading process.

3.2.1 Single-mode ONF and the fundamental HE11 mode
A commercial step-index optical fiber is composed of a cylindrical dielectric core with
refractive index nco surrounded by a cladding with a slightly lower refractive index ncl,
such that nco � ncl ⌧ 1. The cladding and the core regions are made of pure and
doped silica respectively, with a typical refractive index difference of ⇠ 0.001. This is
called the weakly-guiding regime. For weakly-guiding fibers, the field mode solutions
can be approximated to homogeneous linearly polarized (LP) modes. In the case of an
ONF, the cladding of the original fiber forms the core of the ONF, while the cladding
is formed by the material in which the ONF is embedded. For the case relevant to
this thesis, the ONF was embedded in vacuum + Rb atoms and thus the transverse
confinement of the field mode is due to the silica-vacuum refractive index difference
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Figure 3.8: SPCM photon counts from the atom cloud fluorescence coupled to the
ONF as a function of time, during a typical MOT loading sequence. The vertical red
line indicates the time at which the cooling and repump beams were switched on.

(⇠ 0.45), ignoring the small effect due to the Rb atoms. In this strongly-guiding regime,
the previous approximation is not valid and a full vector model had to be considered
to find the exact solutions of Maxwell’s equations. The properties of the EM field in
waveguides are described in much detail in [113]. This includes the case of step-index
fibers and ONFs. A short summary of guided and radiated modes in ONFs can be
found, for example, in the appendices of [114].

An ONF can be modeled as a dielectric cylinder of radius a and refractive index n1

surrounded by an infinite background medium of refractive index n2, where n2 < n1.
A general solution has six-hybrid field components. The TE modes have a transverse
electric field, but have both a transverse and longitudinal magnetic field. The TM
modes have a transverse magnetic field, and have both transverse and longitudinal
electric field. The HE and EH modes (hybrid modes) consist of both transverse and
longitudinal components for both electric and magnetic field components. For a guided
light field of frequency ! (vacuum wavelength � = 2⇡c/! and wave number k = !/c),
the allowed modes are characterized by the propagation constant, �, determined by
the eigenvalue equation [114]

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The parameters h = (n2
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� �2)1/2 and q = (�2

� n2
2k

2)1/2 characterize the scales of
the fields inside (r < a) and outside (r > a) the ONF. The integer index l = 0, 1, 2, ... is
the azimuthal mode order, which determines the phase gradient in the transverse plane.
The Jl and Kl denote the Bessel functions of the first kind and the modified Bessel
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functions of the second kind, respectively. One can limit the number of allowed modes
by decreasing a dimensionless quantity called the normalized frequency, or V-number,
defined as

V =
2⇡

�
a
q
n2
1 � n2

2. (3.5)

For a given wavelength, the number of allowed modes reduces with decreasing fiber
radius. Each mode exhibits a cut-off for the V-number, see Figure 3.9, below which the
mode cannot propagate. Only one mode remains for V < 2.405, this is the fundamental
mode, HE11. The ONF is then termed single-mode. The ONF embedded in our
MOT chamber was ⇠400 nm in diameter and was therefore single-mode for all the
wavelengths involved in this thesis work except for 516.6 nm (used for the quadrupole
transition work reported in Chapter 4) for which the first group of higher order modes,
TE01, TM01, and HE21,eo, could propagate. We have seen elsewhere that, by coupling
the HE11 mode into the input fiber pigtail to the ONF, the amount of coupling into
higher order modes is minimal [115, 116].

We restrict our discussion to the fundamental, HE11, mode as we only worked with
this. Figure 3.10 shows the intensity profile of the HE11 mode for a 400 nm diameter
ONF with linear polarization along the x-axis at the fiber input with the ONF axis
along z. While fully transverse polarization is possible in free-space propagation, the
transverse confinement of the field in the ONF produces a longitudinal field along the
direction of the propagation. Thus, the polarization of the HE11 at the ONF waist
is not strictly linear and is referred to as quasi-linearly polarized along the x-axis. A
derivation of the mode solutions and relevant field expressions for inside and outside
the ONF are given in Appendix A. There is a strong discontinuity of the electric field
intensity at the ONF surface. In the evanescent field region, the intensity is maximal
in the plane y = 0. In this plane, the polarization is elliptic, rotating around the y-axis
with opposite directions in the y > 0 and y < 0 region. This chiral behavior on the two
sides of the ONF has been studied [117] and led to demonstrations of chiral light-matter
interactions with ONFs, directional spontaneous emission [118], and nonreciprocal light
transmission [119].

3.2.2 Setting the polarization of the guided HE11 mode

We adapted the technique developed by Dr. G. Tkachenko in our unit for complete
control of the polarization state in a single-mode ONF [97]. The commercial fibers
used for the fabrication of the ONFs were not polarization maintaining (PM)5. The
polarization transformation from the input of the fiber to the ONF waist depends
strongly on the birefringence of the whole fiber including the pigtail and the down-taper
region. The birefringence, sensitive to any stress6 in the fiber and to its temperature,
could be compensated by placing a free-space polarization compensator (PC) before the

5This is mostly due to the rotational invariant nature of the PM-fibers that makes it simpler to
work with. Additional simplicity comes from the fabrication perspective as the fabrication of an ONF
from a PM-fiber is technically challenging due to its highly birefringent construction.

6One unavoidable source of stress is from the teflon ferrules in the vacuum feedthroughs through
which the ONF pigtails enter and exit the MOT chamber. The ferrules have to be squeezed tightly
around the pigtail in order to avoid any leakage and to maintain UHV conditions.
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Figure 3.10: Intensity profile inside and outside the ONF (diameter 400 nm) for 780
nm light propagating in the HE11 mode, quasi-linearly polarized along x. The color
bar indicates the intensity in arbitrary units.

fiber. This method relies on the fact that, in adiabatically tapered fibers, polarization
transformations are restricted to 3D rotations of the Poincaré sphere. The key to the
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method is sequentially mapping two different nonorthogonal linear polarization states
at the input to their respective polarization states at the ONF waist.

A crucial component for the polarization mapping is identification of the polar-
ization in the ONF. It is typically identified with Rayleigh imaging [120, 121] of the
light scattered from the ONF, due to inherent imperfections, in a direction orthogonal
to the ONF axis. The imperfections are supposed to be dipole Rayleigh scatterers
which means the scattered light preserves the polarization and no light is scattered in
the direction of linearly polarized excitation. Filtering out the inherent longitudinal
component of the HE11 mode, an arbitrary polarization state of the transversal part
of the HE11 mode can be determined by monitoring the Rayleigh scattering from two
different directions, both orthogonal to the ONF axis.

Tkachenko et al. [97] developed a method that requires only one lens and a video
camera, greatly reducing the optical access requirements. It is particularly useful for
experiments with severe geometric constraints, like ours where the ONF was mounted
inside a vacuum chamber with limited optical access. The method relies on capturing
a blurred image of the ONF at the y0 plane in contrast to a diffraction-limited sharp
image in the imaging plane (at y = yim), see Figure 3.11. For the blurred image, the
integrated brightness ⌃1 and ⌃2 (corresponding to x > 0 and x < 0 respectively) shows
a noticeable change with varying polarization states, while there is no noticeable change
for the sharp image. The quantity ⌃ = ⌃1 + ⌃2 has the global maximum (minimum)
when the transverse component of the HE11 mode is x-polarized (y-polarized). In turn
� = ⌃2�⌃1 has the global maximum (minimum) when the mode is in diagonal (anti-
diagonal) linear polarization, oriented at +45� (-45�) with respect to x. To maximize
the precision of � measurements, we used the lenses L1 and L2 (in Figure 3.11) with
a diameter of 50 mm, thus achieving a maximum collection angle ↵ ⇡ 18�. The errors
in the state identification are expected to be less than 10� on the Poincaré sphere [97].

The polarization compensation is then achieved in two steps. First, x-polarized light
at input is mapped to a quasi-linear x-polarized HE11 by putting a pair of QWPs at the
input. The QWPs are independently rotated until ⌃ is maximized. Second, the input is
switched to the diagonal polarization and a variable retarder (VR, liquid-crystal type,
Thorlabs LCC1111-C) is introduced before the QWPs. The VR is rotated to maximize
�, mapping the input diagonal polarization with the diagonal polarization in the ONF.
Application of this polarization control technique will be discussed in Chapters 5 and 6.

3.3 Conclusion

This chapter provided most of the details of the experimental systems, including the
laser systems, vacuum components and imaging system, that were used in this thesis
work. The properties of a single-mode ONF and its guided mode were discussed. The
chapter concluded with the description of the method to control the polarization of the
ONF-guided HE11 mode. In the following chapters, we will discuss results obtained
using this experimental setup.
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Figure 3.11: Identification of ONF-guided HE11 mode polarization. (a) Sketch of the
imaging system for polarization identification. L1: Plano-convex lens (f = 75 mm),
L2: Plano-convex lens (f = 125 mm), LP: Linear polarizer, FL: Dichroic filter (780
nm narrow bandpass filter). (b) A sharp (at y = yim) and a blurred (at y = y0) image
of the ONF. ⌃1, ⌃2 are the sum of the brightness for x > 0 and x < 0 respectively.
⌃1 and ⌃2 cannot be distinguished in the sharp image, but are distinguishable in the
blurred image.



Chapter 4

Quadrupole Excitation Mediated via

an Optical Nanofiber
1

In Chapter 3, we have discussed the preparation of our ONF-MOT experimental setup.
The crucial point is that an ONF (diameter ⇠400 nm, single-mode for 780 nm) was
mounted in UHV, such that a cold 87Rb atom cloud surrounded the ONF and the
guided light field could interact with the atoms via the evanescent field. The ONF-
MOT system is ideal to study atomic transitions that are hard to access in free-space
experiments.

Following recent theoretical results from our group on an ONF-mediated enhance-
ment of the 5S1/2 ! 4D5/2 quadrupole transition for a 87Rb atom in the evanescent
field of an ONF [123], we proceeded to do the experiment. This chapter reports on the
experimental observation of the 516.6 nm (vacuum wavelength) electric quadrupole ex-
citation in a cloud of laser-cooled 87Rb atoms mediated by an ONF using a continuous-
wave (CW) guided field. However, we considered the 5S1/2 ! 4D3/2 quadrupole ex-
citation in 87Rb instead, due to technical issues related to photon detection for the
subsequent decay channels (as discussed in Section 4.3).

The chapter starts with an introduction outlining the relevance of this work in
atomic and molecular physics. This is followed by a brief review of the theoretical
result showing the enhancement of the quadrupole transition in an alkali-metal atom
interacting with the guided mode of an ONF [123] and some useful notations are
introduced. Finally, the results of our experiment demonstrating the 5S1/2 ! 4D3/2

quadrupole transition in 87Rb are presented.

1This chapter is adapted from the work published as T. Ray, R.K. Gupta, V. Gokhroo,
J.L. Everett, T. Nieddu, K.S. Rajasree and S. Nic Chormaic, "Observation of the 87Rb
5S1/2 ! 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofibre",
New J. Phys. 22 (2020) 062001 [122]. RKG contributed to the work by assembling the frequency
reference setup, collecting and plotting the experimental data, and by participating in the writing of
the research article.
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4.1 Electric Quadrupole Transitions

The multipole expansion of the energy of a charge distribution in an external field can
be written as [124],

E = q�(0)� d.E(0)�
1
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���
0
+ · · · (4.1)

where d is the dipole moment and Qij is the quadrupole moment tensor component of
the charge distribution. The simplest and generally the strongest interaction between
the EM field and matter is the electric dipole (E1) interaction – the first radiating term
in a multipole expansion. The commonly used selection rules for atomic transitions
are based on the electric dipole approximation and the effect of the higher order terms
are frequently neglected, leading to what are known as dipole forbidden transitions.
The strength of the optical transitions can be defined in terms of several different
paramaeters, such as the Einstein A and B coefficients, the dipole moments, or the
oscillator strengths (i.e. the f values) [125]. The electric dipole Rabi frequency is
linearly proportional to the electric dipole moment and the electric field amplitude of
the light (see Section 2.1). The corresponding E1 oscillator strengths are propotional
to the square of the dipole moment and, hence, the square of the E1 Rabi frequency.

The next term in the multipole expansion is the electric quadrupole (E2). Quadrupole
transitions play an important role in atomic and molecular spectroscopy [126–128] with
relevance in photochemistry, atmospheric physics, and fundamental processes [129], to
name just a few. The E2 Rabi frequency is linearly proportional to the quadrupole
moment and the gradient of the light field. Similarly to the E1 case, the oscillator
strength for an E2 transition is proportional to the square of the E2 Rabi frequency.
This implies that the E2 oscillator strength depends on the gradient of the electric field.
Due to this dependency, E2 transitions are less studied than their E1 counterparts as
it can be challenging to create a large enough field gradient experimentally. Note that
the E2 oscillator strength is also proportional to the square of the E2 Rabi frequency.

Several platforms for driving E2 transitions in alkali atoms have been proposed
and/or demonstrated, with recent particular focus on the S ! D transitions since
they may be useful for high-precision measurements of parity non-conservation (PNC)
[129] and could be used for an exchange of orbital angular momentum between light
and the internal states of the atom [123, 130]. There are significant studies on the 6S1/2

to 5D5/2 transition in Cs at 685 nm using a variety of techniques including evanescent
light fields from prism surfaces [128, 131], surface plasmons [132], and continuous wave
(CW) free-space excitation [133], with proposals for using optical vortices [134], nano-
edges [135], and plasmonics [132, 136].

Experiments in Rb have been more limited, with pulsed laser excitation of the 5S1/2

to the 4D levels at 516.6 nm [137, 138] and from the 5S1/2 to nD, where n = 27� 59
Rydberg levels using a pulsed excitation at ⇠ 297 nm wavelength [139] having been
reported. Some works have also focussed on n2

1P ! n2
2P electric quadrupole transitions

in Rb by exploiting double resonances [140, 141]. However, for the reasons mentioned
earlier, our focus is primarily on the S ! D quadrupole transitions. The difficulty
in exciting the 5S1/2 ! 4D transitions lies in the fact that the ratio of E1 to E2
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transitions in the visible region is of the order of 107, so aside from the desirability of a
strong electric field gradient, sufficient laser intensity at ⇠ 516.6 nm is needed to drive
the transition, with the cross-section for absorbing one photon being 1.4 ⇥ 10�17 cm2

[137]. The rapid radial exponential decay of the 516.6 nm evanescent field from the
surface of the ONF provides a very steep electric field gradient in the region of highest
field intensity even for very low excitation laser powers, leading to relatively efficient
excitation of the E2 transition.

4.2 Enhancement of the Quadrupole Transition

Previously, Le Kien et al. [123] theoretically studied the E2 interaction of an alkali-
metal atom with guided light in the fundamental and higher-order modes of an ONF.
They showed that the E2 Rabi frequency and the E2 oscillator strength are enhanced
due to the gradient of the field amplitude in fiber mode. The enhancement was ex-
pressed in terms of an enhancement factor, ⌘osc, which is the ratio of the oscillator
strength of a fiber-guided field to the oscillator strength for a free-space, plane wave of
the same intensity. Using Cartesian coordinates (x1, x2, x3), ⌘osc is given by [123]

⌘osc =
2

k2
0|E|

2

X

q

�����
X

ij

u(q)
ij

@Ej
@xi

�����

2

, (4.2)

where the matrices u(q)
ij

with q = �2,�1, 0, 1, 2 are given in Appendix B, i, j = 1, 2, 3, E
is the electric field amplitude with Ej components, and k0 is the wave number associated
with the atomic transition frequency. The enhancement depends only on the atomic
transition frequency and the fiber geometry, and not on any characteristics of the
internal atomic states. It is determined by the ratio between the gradients and the
amplitude of the field at the atomic resonance. In Figure 4.1(a), the enhancement
factor for the 5S1/2(F = 2)! 4D3/2(F 0 = 3) transition is plotted as a function of atom
position in the xy-plane (where the fiber axis is along z and 1 µW of 516.6 nm light
is guided in the fundamental HE11 mode quasi-linearly polarized along x). We find
a maximum enhancement factor for the oscillator strength, ⌘osc = 4.92, for an atom
located on the fiber surface and positioned along the x-axis.

The enhancement factor, however, is not easily measured experimentally since it
is a comparison between the ONF-mediated E2 interaction and that in free-space for
a specific intensity at a single point; it does not account for the exponential decay of
the evanescent field. An experimentally useful and accessible parameter is the E2 Rabi
frequency. Consider an alkali atom with a ground state |gi = |nFmF i and an excited
state |ei = |n0F 0mF 0i, where n is the principal quantum number, F is the total angular
momentum quantum number of the atom and mF is the magnetic quantum number.
Then the E2 Rabi frequency, using Cartesian coordinates (x1, x2, x3) is given as [124]

⌦FMFF 0MF 0 =
1

6~
X

ij

hn0F 0MF 0 |Qij|nFMF i
@Ej
@xi

, (4.3)

where the Qij are the quadrupole tensor components representing the strength of the
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Figure 4.1: Theoretical values of (a) quadrupole oscillator strength enhancement
factor ⌘osc and (b) the RMS quadrupole Rabi frequency for atoms positioned along the
x-axis (solid line) or y-axis (dashed line), calculated for the 5S1/2(F = 2)! 4D3/2(F 0 =
3) transition in 87Rb for 1 µW of 516.6 nm light propagating in the HE11 mode of a
400 nm diameter ONF, with quasi-linear polarisation along the x-axis. Plotted by
Dr. J.L. Everett.

quadrupole transition. The Qij are defined by [124]

Qij = e(3xixj �R2�ij). (4.4)

Here, e is the electron charge, xi is the ith coordinate of the valence electron of the atom
and R =

p
x2
1 + x2

2 + x2
3 is the distance from the valence electron to the center-of-mass

of the atom.
It is possible to define the root-mean-square (RMS) E2 Rabi frequency, ⌦̄FF 0 , de-

termined from Equation 4.3 by summing over all the possible mF , mF 0 values [142]

⌦̄2
FF 0 =

X

MFMF 0

|⌦FMFF 0MF 0 |
2. (4.5)

Figure 4.1(b) shows a plot of the RMS E2 Rabi frequency as a function of radial
distance from the ONF surface for atoms interacting with the evanescent field of the
HE11 mode. The RMS Rabi frequency is enhanced when atoms are positioned along
the direction of polarization of the quasi-linear HE11 mode, i.e., the x-axis (as shown
in black), where we have considered the fiber axis along z. While the E2 RMS Rabi
frequency reduces rapidly with radial distance from the fiber, the E2 oscillator strength
varies slowly and can be significant even at appreciable distances from the fiber surface.
The E2 oscillator strength fFF 0 can be calculated from the RMS E2 Rabi frequency
using the relation [142]

⌦̄2
FF 0 =

e2|E|2

2~me!0
(2F + 1) fFF 0 , (4.6)

where me is the mass of an electron, E is the electric field amplitude and !0 is the
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Figure 4.2: Energy level diagram of the 516.6 nm electric quadrupole excitation in
87Rb and subsequent decay channels. A two-photon transition at 1033 nm is used as a
frequency reference. The dashed black lines represents a virtual energy level.

atomic transition frequency from the ground state |gi to the excited state |ei.

4.3 Observation of the 5S1/2!4D3/2 Quadrupole Tran-

sition

The relevant energy level diagram for the 516.6 nm electric quadrupole transition in
87Rb is shown in Figure 4.2. Atoms excited to the 4D5/2 state can decay back to the
ground state via the 5P3/2 intermediate state and those excited to the 4D3/2 state can
decay back via two channels, either the 5P3/2 or the 5P1/2 intermediate state. The
decay through the 5P3/2 state is accompanied with a cascaded emission of two photons
at 1529 nm and 780 nm [143, 144], while that through the 5P1/2 state is accompanied
with a cascaded emission at 1476 nm and 795 nm. Detection of either of the emitted
photon pairs would allow us to infer the E2 excitation. We detected 795 nm due to
the availability of single photon detectors (SPD) at NIR wavelengths and its spectral
separability from the 780 nm photons scattered during the atom cooling process. The
first step in the decay path at 1476 nm was undetected, as we did not have an efficient
detector in far-IR at the time. We drove the 5S1/2 ! 4D3/2 E1 forbidden, E2 allowed
optical transition in our cold atomic ensemble of 87Rb, via the evanescent field of an
ONF. The emitted photons coupled into the ONF and could be detected at the output
pigtail. A schematic of the experimental setup is illustrated in Figure 4.3.
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Figure 4.3: Schematic of the experimental setup. BD: Beam dump, CM: Concave
mirror, D: Photodiode for visible wavelengths, DMLP650: Longpass dichroic mirror
at 650 nm, DMLP950: Longpass dichroic mirror at 950 nm, FC: Fiber coupler, FL1:
800 nm shortpass filter, FL2: 795 nm narrow bandpass filter, H: Half-wave plate, L1,L2:
Plano-convex lenses, M: Mirror, PBS: Polarizing beam splitter, SHG: Second harmonic
generator, SPCM: Single photon counting module.

4.3.1 Frequency reference using two-photon spectroscopy

A frequency reference for the quadrupole transition was obtained using free-space, two-
photon spectroscopy in a Rb vapor cell (with Rb gas at natural abundance) heated
to 125�C [145]. We used a 1033.3 nm output from a Ti:Sapphire laser (M Squared
SolsTis) to drive the corresponding two-photon transition (see Figure 4.2). The laser
was frequency locked to a scanning reference cavity yielding a spectral linewidth of
50 kHz, and could be scanned by scanning the length of the cavity. Two-photon
transitions are an attractive tool enabling Doppler-free spectra without the need of
laser cooling. Two-photon transitions are discussed in Chapter 5.

The spectroscopy setup is shown in Figure 4.3. The 1033.3 nm direct output from
the Ti:Sapphire was focused into a heated Rb vapor cell using a plano-convex lens (L1,
f = 150 mm) and was then retro-reflected by a concave mirror (CM, f = �75 mm)
placed at a distance 150 mm away from L1. A combination of a HWP and a PBS
was used to control the power of the 1033.3 nm pump beam. The emitted 780 nm
and 795 nm fluorescence was collected using a plano-convex lense (L2, f = 50 mm)
and detected by a PMT (Hamamatsu R636-10) in conjugation with an optical short-
pass filter (FL, Thorlabs FES0800). The quantum efficiencies of the PMT at 780 nm
and 795 nm are 0.09 and 0.08, respectively. The obtained signal was amplified with a
low-noise pre-amplifier (SR560, Stanford Research Systems) with a gain of 105. The
laser was scanned around 1033.3 nm such that atoms are excited to the 4D3/2F 0 level.
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Figure 4.4: Vapor cell spectroscopy for the 5S1/2(F = 2) to the excited states
4D3/2(F 0) using free-space two-photon excitation at 1033.3 nm. The frequency is rela-
tive to the F = 2! F 0 = 0 transition peak and the frequency scale is used as half the
atomic transition frequencies, calibrated for 1033 nm light frequency.

Figure 4.4 shows the two-photon spectroscopy signal for the 5S1/2(F = 2)! 4D3/2(F 0)
transitions. The four observed peaks correspond to the allowed transitions for the two-
photon excitation at 1033.3 nm (�F = 0,±1,±2) [146].

4.3.2 Quadrupole excitation in the cold atom-ONF system

To study the quadrupole transition, we cooled and trapped 87Rb in the MOT and
arranged it so that the ONF passed through the center of the cold atom cloud. A good
overlap of the atom cloud with the ONF was ensured by observing the fluorescence
coupled into the ONF. The Gaussian FWHM size of the atom cloud was measured to
be ⇠0.5 mm and the cloud temperature was measured to be about ⇠120 µK, using
the method described in Section 3.1.4. A 1064 nm beam was coupled into both ends
of the ONF throughout the experiment (see Section 3.2).

The 516.6 nm light used to drive the transition was derived from the Ti:Sapphire
laser used for the frequency reference through a frequency-doubling module (ECD-X
second harmonic generator). The output from the second harmonic generator (SHG)
was mode cleaned using a single-mode fiber and was coupled to one pigtail of the ONF
using a dichroic mirror (Thorlabs, FEL0600), see Figure 4.3. Shortpass filters (Thorlabs
FES0650) were placed after the SHG to remove any residual 1033.3 nm light, which
could lead to two-photon excitation of the transition of interest. We controlled the
516.6 nm power through the ONF using a half-wave plate combined with a polarizing
beam splitter (PBS) and neutral density filters (NDF). Only 10% of the 516.6 nm light
input was detected at the output and we assumed it to be the same as its power at the
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Figure 4.5: Spectroscopy signal for the 5S1/2(F = 2) ! 4D3/2(F 0) quadrupole tran-
sition in 87Rb. The photon counts for emitted 795 nm emitted photons measured at
the SPCM as a function of 516.6 nm pump frequency, for different powers in the ONF.
The frequency is relative to the F = 2! F 0 = 0 transition peak.

ONF waist.
The experiment was performed by scanning the Ti:Sapphire laser frequency across

the 5S1/2(F = 2)! 4D3/2(F 0) transitions (see Figure 4.2) and recording the 795 nm de-
cay photons generated from the ONF-mediated E2 transition on an SPCM conjugated
with a 795 nm narrow bandpass filter. Simultaneously, we recorded the 1033.3 nm,
two-photon spectroscopy signal from the vapor cell using a PMT. Each experiment
cycle was 10 s long, with 20 ms bin time both for the SPCM and the PMT. Each
data point was an average of 50 cycles. We could also detect the transmission of the
516.6 nm light through the ONF using a photodiode (PD) if desired.

4.3.3 Results

We studied the dependence of the 795 nm emission on the 516.6 nm power propagating
through the nanofiber, see Figure 4.5. The four observed peaks correspond to the
electric quadrupole transitions, �F  2, which are comparable to the observed two-
photon dipole spectroscopy signal at 1033.3 nm in Figure 4.4. Expected features,
such as peak broadening and peak shifts due to the presence of the ONF, are visible
in the spectra, with wide asymmetric tails which we attribute to the van der Waals
interaction between the ONF and the atoms [43]. Due to the roughly exponential
decay profile of the evanescent field, atoms experienced a varying 516.6 nm intensity
as they were excited to the 4D3/2 state. We ignored this and assumed that the 795 nm
emission into the fibre was produced by stationary atoms in a constant field with
an effective quadrupole Rabi frequency ⌦e↵ . This frequency included the oscillator
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Figure 4.6: The photon counts under the quadrupole transition peaks in Figure 4.5
plotted against the 516.6 nm power propagating in the ONF, scaled to the fitted value
of the estimated effective E2 Rabi frequency ⌦e↵ .

strength fFF 0 for each F ! F 0 transition, so each F 0 level experienced a different ⌦e↵

for a specific propagating power in the ONF. We also ignored the pumping of atoms
into particular MF states by the cooling beams, as we expect this to be random and
for the polarisation dependence to essentially average out over the length of the ONF.
This allowed us to equate the RMS quadrupole Rabi frequency with the experimentally
measured quadrupole Rabi frequency.

From Figure 4.5, we extracted ⌦e↵ for each power by modelling each F 0 transition
as a broadened Lorentzian. We integrated the photon counts for each transition, with
bounds set manually. The F 0 = 0 transition was discarded due to the large overlap
that it had with F 0 = 1. Calculating the area under the peak, allowed us to disregard
the exact source of the broadening. The integrated photon count was then related to
the effective Rabi frequency by A / ⌦2

e↵/
q

�2 + 2⌦2
eff

, where �/2⇡ is the decay rate of
the 4D3/2 state indirectly toward the ground state. In Figure 4.6 we fit the data to find
⌦e↵ = (0.12 ± 0.02)� for 1 µW of propagating power, with the data plotted directly
against the fitted value. Ignoring intermediate state lifetimes and the effect of the ONF
on E1 transition rates, the dipole decay from the 4D3/2 state gives �/2⇡ = 2.12 MHz,
resulting in ⌦e↵/2⇡ = 250± 50 kHz for a power of 1 µW in the fibre. For comparison,
the theoretically estimated value for the Rabi frequency (see Figure 4.1(b)), averaged
over the azimuthal angle, is about 250 kHz for 1 µW of propagating optical power,
200 nm from the ONF surface. Since there is good qualitative agreement between the
value predicted by theory and that measured experimentally by our alternate method,
we can conclude that the 516.6 nm power at the waist should correspond roughly to
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Figure 4.7: Spectroscopy signal for the 5S1/2(F = 2)! 4D3/2(F 0) quadrupole transi-
tion in 87Rb. The photon counts for emitted 795 nm photons measured at the SPCM as
a function of 516.6 nm pump frequency, for different Rb getter currents. The frequency
is relative to the F = 2! F 0 = 0 transition peak.

that measured at the output.

Subsequently, we studied the dependence of the 795 nm emission on the getter cur-
rent to the Rb source. Results are shown in Figure 4.7. By assuming a Gaussian profile
of the atom cloud, we estimated that a getter current of 4.0 A (4.8 A) corresponded to
a density of ⇠6 ⇥ 109 (8 ⇥ 109) cm�3. Note, however, that the cloud shape changed
dramatically during these measurements and as such it is more accurate to consider
the number of atoms in the evanescent field increasing with getter current.

As a verification that the transition was E2 driven and not due to any 1033.3 nm
leakage that may be driving a two-photon E1 transition, we used an AOM (DE-2503-
3026, IntraAction Corp., central frequency: 250 MHz) set to a frequency of !RF ⇠ 245
MHz, to shift the SHG output light. Here, light from the SHG at 516.6 nm and any
residual light at 1033.3 nm passed through the AOM and the positive first-order was
sent through the ONF, in addition to the zeroth-order. The frequency of the light with
respect to the SHG output was shifted by !RF. If the atoms were excited via the E2
transition at 516.6 nm, the spectroscopy signal peaks should shift by !RF, whereas if
excitation was via the two-photon transition by residual light at 1033.3 nm, the peaks
should shift by 2 ⇥ !RF. Observations showed, see Figure 4.8, that the signal was
shifted by !RF; thence, the excitation was indeed via the E2 transition.

2The data was taken by Dr. V. Gokhroo.
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~245 MHz

Figure 4.8: Spectroscopy signal2 for the 5S1/2(F = 2) ! 4D3/2(F 0) quadrupole
transition in 87Rb. Quadrupole excitation in cold atoms when the SHG output is first
passed through an AOM before being coupled to the ONF. The presence of the 1st order
signal due to the AOM frequency shift, in the absense of a 2nd order signal, verifies the
E2 transition. The frequency is relative to the F = 2! F 0 = 0 transition peak.

4.4 Conclusion

We demonstrated an ONF-mediated electric quadrupole transition, 5S1/2 ! 4D3/2, in
87Rb at 516.6 nm [147], by recording fluorescence emissions at 795 nm. An important
feature is that only a few µW of power were needed to drive the E2 transition. Even
though the 1476 nm photon from the first step in the decay path was undetected
in this work, it may be possible to indirectly determine the lifetime of the 4D level
from the fluorescence distribution of the 795 nm [148] since the lifetime of the 5P1/2 is
well-documented [149, 150].

The 5S1/2 ! 4DX/2 transition in 87Rb could be used to study parity-violating
nuclear forces beyond the standard model with the accuracy in Rb expected to be
higher than that for Cs [129, 151] or could be exploited for the transfer of orbital
angular momentum of light to the internal degrees of freedom of an atom. A similar
technique to the work presented here could be used to study the 4D5/2 transition; this
decays to the 5S1/2 state along a single path via the 5P3/2 state with the simultaneous
emission of 1529 nm and 780 nm correlated photons. This work extends the use of
ONFs in atomic systems and could find applications in fiber-based atomic clocks [152],
lifetime measurements of atomic states, and in devising trapping schemes for neutral
atoms.
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Chapter 5

Polarization Dependence of a

Single-Frequency Two-Photon

Transition
1

Previously it was described how the high intensity at low optical power levels and
the exponential gradient features of the ONF can be exploited to achieve an efficient
quadrupole excitation in a laser-cooled cloud of 87Rb, see Chapter 4. The high intensity
(⇠108 mW/cm2 on the surface for 1 mW of propagating optical power) of the guided
mode in the ONF also facilitates two-photon interactions [50, 55] which, like electric
quadrupole (E2) interactions, gives access to states with the same parity, such as
electric dipole (E1) forbidden transitions [154]. ONF-mediated two-photon transitions
at low power levels may be useful for fiber-based-optical switching [56, 155, 156], fiber-
based compact atomic clocks [157] or fiber-integrated quantum logic gates based on
the Zeno effect [158]. This chapter describes our study of the effect of the excitation
field polarization on single-frequency two-photon transitions in 87Rb atoms.

Here, we start by discussing some of the properties of a two-photon transition, in
particular S ! S transitions. This is followed by a discussion of the theoretical model of
the two-photon transition in an atom as a function of polarization of the excitation light
field, going beyond the limiting cases of purely linear or circular polarization. Finally,
the results of our experiment, verifying the polarization dependence of the 5S1/2 !

6S1/2 two-photon transition at 993 nm in 87Rb atoms (see Figure 5.1) for two different
excitation cases are presented: (i) warm atoms in a vapor cell with paraxial Gaussian
beam illumination and (ii) laser-cooled atoms in the evanescent field of a single-mode
ONF, where the light is strongly nonparaxial. For case (i), the two-photon transition
rate scales proportionally with the squared degree of linear polarization, being zero for
circularly polarized light. In contrast, for case (ii) the two-photon transition rate is not
completely extinguished by varying the polarization.

1This chapter is adapted from the work published as K.S. Rajasree, R.K. Gupta, V. Gokhroo,
F. Le Kien, T. Nieddu, T. Ray, S. Nic Chormaic and G. Tkachenko, "Spin selection in single-frequency
two-photon excitation of alkali-metal atoms", Phys. Rev. Res. 2 (2020) 033341 [153]. RKG con-
tributed by calculating the two-photon transition rate with the help of Dr. F. Le Kien, setting up the
polarization compensation, performing the experiments with the vapor cell, and by participating in
the writing of the research article.
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Figure 5.1: Energy level diagram relevant to the 993 nm two-photon transition in
87Rb and subsequent decay channels. The horizontal dashed black line represents a
virtual energy level.

5.1 S!S Two-Photon Transition

Two photon transitions in atoms can only occur between electron orbitals of the same
parity. This leads to a selection rule for the allowed change of the orbital angular
momentum of the electron: �L = 0,±2. In addition, the hyperfine levels involved in
the transition obey a selection rule for the total angular momentum quantum number:
�F = 0,±1,±2 [146]. Here, we focus on an S ! S transition where the intermediate
level is detuned from the single-photon resonance frequency (see Figure 5.1). In this
case, �F = 0 and �mF = 0 (with mF being the magnetic quantum number) [159],
which means that the total spin of the atom must be conserved. If we assume that
the spin of light is well-defined, conservation of angular momentum in the excitation
process requires that the two photons must have mutually canceling spin projections
along the quantization axis. This principle has been verified experimentally using
sodium [160, 161] and rubidium [145, 162] vapor illuminated by counter-propagating
Gaussian beams. Doppler-free transition peaks were observed when the beams had
equal linear polarizations or opposite circular polarizations in the laboratory frame,
but the peaks disappeared for circular polarizations of the same handedness.

When the excitation light is elliptically polarized, two-photon transitions are not
completely absent, but occur at a rate that depends on the shape of the polarization
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ellipse, as demonstrated experimentally [162]. It is important to note that in the
aforementioned spectroscopy experiments, the atoms interacted with a paraxial, free-
space light field only. In our case, we studied the atoms interacting with the evanescent
field of an ONF, the polarization dependency for this case has not been studied before.

Two-photon transition frequencies for S ! S transitions are insensitive to magnetic
fields below the Paschen-Back regime2 [163], while two-photon transitions to metastable
states have extremely narrow linewidths (of the order of few kHz) compared to those for
single-photon processes [164, 165]. These features make them a powerful tool for pre-
cision measurements [166, 167]. In the next section a model for this type of transitions
is introduced in order to facilitate an understanding of the underlying physics rele-
vant to the experimentally demonstrated polarization dependence of the two-photon
transition.

5.2 Theoretical Model
3

We consider an atomic transition from a ground state |gi to an excited state |ei (with
corresponding angular frequency difference, !eg = !e � !g), excited by the simulta-
neous absorption of photons from two light fields characterized by frequencies !1, !2,
amplitudes E1, E1 and unit polarization vectors ✏1, ✏2 respectively. The rate of such a
two-photon transition is given by [103]

Pge = C

����
1

~
X

i

✓
he|✏1 · d|iihi|✏2 · d|gi

!ig � !2 + i�i/2
+
he|✏2 · d|iihi|✏1 · d|gi

!ig � !1 + i�i/2

◆����
2

, (5.1)

with
C =

1

16~2
�

(!1 + !2 � !eg)2 + (�/2)2
|E1|

2
|E2|

2, (5.2)

where d is the atomic dipole operator, |ii is an intermediate state, !ig = !i � !g is
the angular frequency difference between the states |ii and |gi, � = �e +�g is the sum
of the decay rates of the upper and lower states, and �e, �g, and �i are the natural
linewidths of the states |ei, |gi, and |ii, respectively. We find

Pge = C|Veg|
2, (5.3)

where

Veg =
X

K=0,1,2

V (K)
eg

(5.4)

is the matrix element of the two-photon transition operator Veg [100, 101], with the
scalar (K = 0), vector (K = 1), and tensor (K = 2) parts given as (see Section 2.2 for

2The presence of a strong magnetic field causes decoupling of the total electronic momentum J
and the nuclear spin momentum I.

3The model was developed in collaboration with Dr. F. Le Kien, Quantum Systems Unit, OIST.
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the notation)

V (K)
eg

= (�1)K+I+Je�mg
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(2Fe + 1)(2Fg + 1)

⇢
Fe K Fg

Jg I Je

�
↵(K)
J

⇥

X

q

{✏1 ⌦ ✏2}Kq

✓
Fe K Fg

me q �mg

◆
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where q = 0,±1 describes the polarization in a spherical basis (see Section 2.2) and
↵(K)
J

are the reduced scalar (K = 0), vector (K = 1), and tensor (K = 2) two-photon
susceptibility coefficients in the basis of the electronic angular momentum quantum
number, J , and are given as

↵(K)
J

=(�1)K+Je+Jg
p

2K + 1
X

niJi

⇢
1 K 1
Je Ji Jg

�
hneJekdkniJiihniJikdkngJgi

⇥


1

~(!niJi � !g � !2 + i�i/2)
+

(�1)K

~(!niJi � !g � !1 + i�i/2)

�
.

(5.6)

The explicit expressions for the compound tensor components {A⌦B}Kq which appear
in Equation 5.5 are given in Appendix C. It is clear from Equation 5.6 that, in the
particular case of equal photon frequencies with !1 = !2, we have ↵(1)

J
= 0. In this

case, the vector part V (1)
eg of the two-photon transition operator Veg vanishes.

The general selection rule for the electronic angular momentum quantum number
J is that the two-photon transition is allowed only if |�J |  2 [159, 168, 169]. Using
Equation 5.6, the following rules can be stated:

• !1 = !2: the transitions Jg = 0 ! Je = 1 and Jg = 1 ! Je = 0 are forbid-
den [159].

• Je 6= Jg: the Wigner 6-j symbol in Equation 5.6 for K = 0 is zero. This means
that the coefficient ↵(0)

J
and the corresponding matrix element V (0)

eg vanish for
Je 6= Jg.

• Je = Jg = 0 or 1/2: the Wigner 6-j symbol in Equation 5.6 for K = 2 is zero.
This means that the coefficient ↵(2)

J
and the corresponding matrix element V (2)

eg

vanish for Je = Jg = 0 or 1/2.

The aforementioned selection rules for the electronic angular momentum, J , are equally
true for the total angular momentum, F . However, depending on J , we may find
additional selection rules for F . For instance, when Je = Jg = 0 or 1/2 and the
photons have equal frequencies, we have the selection rules Fe = Fg and me = mg

[159].
The average transition rate for the transition between the hyperfine levels, Fg and

Fe, is given by
PFgFe =

1

2Fg + 1

X

mgme

Pge. (5.7)
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In the absence of a magnetic field, the level energies ~!g and ~!e do not depend on mg

and me, respectively. In this case, we find

PFgFe = C(2Fe + 1)
X

K

⇢
Fe K Fg

Jg I Je

�2

⇥
|↵(K)

J
|
2

2K + 1

X

q

|{✏1 ⌦ ✏2}Kq|
2. (5.8)

If Je = Jg = 0 or 1/2 and !1 = !2, the two-photon transition operator is scalar. In
this case, the transition may occur only for Fe = Fg and, hence, we find

PFgFe =
C

3(2Jg + 1)
|↵(0)

J
|
2
|(✏1 · ✏2)|

2. (5.9)

It is interesting to note that PFgFe does not depend on Fg. The line intensity, IFgFe ,
is the product of the transition rate, PFgFe , and the number of atoms in the initial
state, |ngJgFgi. If the hyperfine sublevels of the ground state are populated according
to their degeneracy, the line intensity is IFgFe = PFgFeN0(2Fg + 1)/[(2Jg + 1)(2I + 1)],
where N0 is the total number of atoms in the ground state. It is clear that IFgFe is
proportional to 2Fg + 1 [159].

According to Equation 5.9, the dependence of the two-photon transition rate, PFgFe ,
on the polarization of the excitation light field is determined by the factor |(✏1 · ✏2)|2.
The maximal value of this factor is one, achieved for two fields with identical linear
polarizations or opposite circular polarizations with respect to the quantization axis,
z (that is, opposite photon spin projections onto z). The minimal value of |(✏1 · ✏2)|2
is zero and is achieved for two fields with orthogonal linear polarizations or identical
circular polarizations with respect to z (identical photon spin projections onto z).

Equation 5.9 can be simplified further for the two-photon transition with Je =
Jg = 1/2, under excitation by two fields with identical frequencies !1 = !2 � !eg/2,
amplitudes E1 = E2 = E/

p
2 and polarizations ✏1 = ✏2 = ✏. The fields are either co-

propagating (which we refer to as a one-beam configuration) or counter-propagating
(a two-beam configuration). For such a single frequency, two-photon excitation, the
transition rate is

Pge =
1

96~2� |↵
(0)
J
|
2
E
4
|(✏1 · ✏2)|

2. (5.10)

5.2.1 Transition rate calculation for excitation by an ONF mode

Consider the excitation of a two-photon transition Jg = 1/2 ! Je = 1/2 in a gas
of atoms in the evanescent field of an ONF, in particular by an elliptically polarized
fundamental HE11 mode propagating along +z with the ONF axis aligned parallel to
the z. The electric field of this mode is given by

E = (
p
1 + �hE+1 +

p
1� �hE�1)/

p

2, (5.11)
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where �h 2 [�1, 1] is the helicity parameter4 [170, 171] and

Ep = (err̂ + pe''̂+ ez ẑ)e
i(p'+�z), (5.12)

where p = ±1 is the polarization index for a quasicircularly polarized HE11 mode [172],
� is the propagation constant, er, e', and ez are the reduced cylindrical components
of the mode function which are independent of ' and z [114]. Equations 5.11 and 5.12
give

E
2
|(✏1 · ✏2)| = E · E =

✓
cos 2'+ i�h sin 2'+

q
1� �2

h

◆�
e2
r
+ e2

z

�
e2i�z

+

✓
cos 2'+ i�h sin 2'�

q
1� �2

h

◆
e2
'
e2i�z. (5.13)

The mode function components have the properties e2
r
= �|er|2, e2

'
= |e'|2, and

e2
z
= |ez|2 [113, 114]. The average two-photon transition rate in an atom cloud for

excitation by a HE11 mode can then be calculated from Equations 5.10 and 5.13, and
by statistically averaging Equation 5.13 over the volume of the cloud interacting with
the evanescent field. This gives

P̄ge / ⇠̄ = A� �2
h
B, (5.14)

where

A =h(|er|
2 + |e'|

2
� |ez|

2)2ir
+ 0.5 h(|er|

2
� |e'|

2
� |ez|

2)2ir ,

B =h(|er|
2 + |e'|

2
� |ez|

2)2
r
i

� 0.5 h(|er|
2
� |e'|

2
� |ez|

2)2ir , (5.15)

with h· · · ir denoting statistical averaging over the radial distance, r, from the ONF
surface. For this we have neglected the interaction of and collision between the atoms
and have assumed that the atoms have a uniform stochastic distribution of position in
the cloud. The proportionality equation (Equation 5.14) predicts that the transition
rate is maximum for linearly polarized (�h = 0) and minimum (but, in general, nonzero)
for quasi-circularly polarized (�h = ±1) excitation field modes. Equation 5.14 is true
for a general field mode. For a paraxial Gaussian field, ez = 0 and |er| = |e'| thereby
reducing the average single-frequency two-photon transition rate to

P̄ge / 1� �2
h
. (5.16)

4The degree of circular polarization.
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In order to verify the above theoretical result experimentally, we chose the 5S1/2(F =
2)! 6S1/2(F 0 = 2) transition in 87Rb, accessible via a two-photon excitation at 993 nm.
The relevant energy level diagram is shown in Figure 5.1. The 993 nm light used to
drive the transition was derived from a Ti:Sapphire laser (M Squared SolsTis), where
the frequency was stabilised using a reference cavity and monitored using a wavelength
meter (HighFinesse, WS-6). The 993 nm output from the Ti:Sapphire laser was split
into two: one was sent to a warm vapor cell containing a mixture of 87Rb and 85Rb
in their natural abundances and the other was coupled to the ONF (see Figure 5.2).
Atoms excited to the 6S1/2 state can decay back to the 5S1/2 through two channels
either through the 5P3/2 intermediate state emitting 1367 nm and 780 nm photons
or through the 5P1/2 intermediate state emitting 1324 nm and 795 nm photons (see
Figure 5.1).

5.3.1 Experiment: Warm atoms excited by a Gaussian beam
A schematic of the experiment is given in Figure 5.2. This experiment uses only the
dashed part of the whole experimental setup. A 150 mW 993 nm laser beam was
weakly focused into the warm vapor cell, maintained at 130�C, by a plano-convex lens
(L1, f=150 mm) and was retro-reflected by a concave mirror (CM, f=�75 mm) placed
at a distance 150 mm from L1. We had a one-beam configuration when the retro-
reflected beam was blocked, otherwise it was a two-beam configuration. The 780 nm
and 795 nm fluorescence emitted around the focal point of L1 was detected by a PMT
through a relay telescope assembly made from plano-convex lenses (L2,L3, f=50 mm)
in conjugation with a shortpass filter (Thorlabs FESH0800). The fluorescence intensity
is a measure of the two-photon transition rate. A typical spectroscopy signal obtained
by scanning the 993 nm frequency over the range of 3 GHz for horizontol polarization of
the 993 nm input to the ONF is shown in Figure 5.3. The Doppler-broadened spectrum
(top panel) was obtained for the one-beam configuration, whereas the spectrum showed
a Doppler-free hyperfine spectrum (bottom panel) for the two-beam configuration.

Next, we reduced our frequency scan range to only scan around the F = 2! F 0 = 2
transition in 87Rb. We introduced a QWP (Q1) before L1 and scanned the helicity
parameter �h over the whole [�1, 1] range by varying ✓, the angle between x and the
slow axis of the waveplate. As a result, the initial horizontal polarization state was
transformed into sin = (1, cos2 2✓, sin 2✓ cos 2✓,� sin 2✓), where sin is the reduced Stokes
vector5 defined from the point of view of the receiver. Figure 5.4 shows the measured
polarization of the beam shown on the Poincaré sphere, as Q1 was rotated. The
helicity parameter was given by �h = sin 2✓. For this case, the two-photon transition
rate was expected to scale as cos2 2✓ (see Equation 5.16), as confirmed by the measured
polarization dependence of the fluorescence signal (see Figure 5.5). The fluorescence
signal in the one-beam configuration was simply the mean voltage output of the PMT.

5For a reduced Stokes vector s = (1, S1, S2, S3), Si for i = 1, 2, 3 are the reduced Stokes parameters
quantifying the horizontol, diagonal, and circular components of the polarization, respectively.
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Figure 5.2: Schematic of the experimental setup. BD: Beam dump, CM: Concave mir-
ror, FC: Fiber coupler, FL1: Narrow bandpass filter at 795 nm, FL2: Narrow bandpass
filter at 990 nm, H: Half-wave plate, L1,L2,L3,L4,L5: Plano-convex lenses, LP: Linear
polarizer, M: Mirror, PBS: Polarizing beam splitter, PC: Polarization compensator,
Q1,Q2,Q: Quarter-wave plates for 993 nm light, SHG: Second harmonic generator,
SPCM: Single photon counting module, SPF: Shortpass filter at 800 nm, VR: Variable
retarder.

In the two-beam configuration, the maxima of the transition spectral profile fitted to
a Lorentzian curve was averaged over ten independent measurements for each helicity
input.

5.3.2 Experiment: Laser-cooled atoms excited by an ONF mode

A schematic of the experimental setup is shown in Figure 5.2. One arm of the 993 nm
light output from the Ti:Sapphire was coupled into the ONF. Recall that the ONF
diameter was ⇠400 nm at the waist, thereby supporting only the fundamental HE11
mode for 780 nm, 795 nm and 993 nm light. The transmission of the coupled 993 nm
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Figure 5.3: Typical Doppler-broadened (top) and Doppler-free (bottom) spectroscopy
signals (background subtracted) of the 5S1/2 ! 6S1/2 two-photon transition in a warm
vapor cell containing a mixture of 85Rb and 87Rb in their natural abundances, in one-
beam and two-beam configurations respectively.

light through the ONF assembly was about 30% including the coupling losses, since the
ONF was optimized for 780 nm propagation (see Section 3.2). In a similar fashion to the
quadrupole experiment described in Chapter 4, we only detected fluorescence emitted
at 795 nm because of its spectral separability from the 780 nm photons scattered during
the atom cooling process.

The optical power of the 993 nm light coupled to the ONF was maintained at
0.6 mW as measured at the output end of the fiber. This high power of 993 nm
through the ONF kept it hot and avoided atoms sticking on the surface. The 993 nm
light was sent through the ONF for two hours prior to measurements in order to heat the
ONF and reach a stable temperature. This is important as the temperature-induced
birefringence causes fluctuations in the polarization of the guided mode. After two
hours of heating, the polarization was stable to within 1� on the Poincaré sphere, as
confimed by a free-space polarimeter (Thorlabs PAX1000IR) placed at the output end
of the fiber.

Due to stress-induced birefringence in the tapered fiber, the preset input polariza-
tion state of the 993 nm ONF-guided light was transformed into an unknown state
at the ONF waist. To study the polarization dependence on the transition rate, it
was crucial to gain control over the polarization (helicity) at the waist. For this, we
implemented6 a polarization compensation (developed by Dr. G. Tkachenko [97] and
described in Section 3.2.2) at the ONF input fiber coupler to match the polarization

6Dr. G. Tkachenko, Dr. K.S. Rajasree and RKG contributed equally to set this up.
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Figure 5.4: Measured polarization of the input 993 nm beam represented on the
Poincaré sphere, in terms of the reduced Stokes parameters, as the QWP Q1 (Fig-
ure 5.2) is rotated from ✓ = 0 to ✓ = �180�.

state of 993 nm light at the ONF input to that at the ONF waist. A crucial component
of the compensation is the identification of the polarization from Rayleigh imaging. The
error in state identification was expected to be less than 10� on the Poincaré sphere [97].
When |�h| approaches unity, this error corresponds to a confidence range of about 1.5%
for |�h| and 3% for �2

h
. Once polarization compensation was achieved, a QWP Q2 was

placed before the compensator to vary the helicity of the 993 nm at the ONF waist.
A cold cloud of 87Rb atoms well-overlapped with the ONF was produced in a

MOT. An average atom cloud density of 109 cm�3 and a temperature of 120 µK was
estimated from fluorescence imaging by the method described in Section 3.1.4. In a
typical experimental sequence7, the helicity of the 993 nm was set by rotating Q2,
the atom cloud was loaded to saturation and then the excitation laser was scanned
±40 MHz across the 5S1/2(F = 2) ! 6S1/2(F 0 = 2) transition in 87Rb, while the

7The experiment with cold atoms was performed by Dr. K.S Rajasree.
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Figure 5.5: Polarization dependence of the fluorescence signal for the 993 nm two-
photon transition in the vapor cell. Blue circles and red squares show the experimental
data for one-beam and two-beam configurations. The principal polarization states of
the 993 nm light are indicated: horizontal x-polarized (H), left-hand circular (L), and
right-hand circular (R).

795 nm fluorescence coupled to the ONF was recorded by an SPCM through a narrow
bandpass filter at 795 nm. The data was averaged over 40 experimental cycles for each
Q2 orientation.

Figure 5.6 shows typical transition peaks for fluorescence at 795 nm in the two
limiting cases, linearly polarized (�h = 0, ⇠̄0 = A) and quasi-circularly polarized (�h =
±1, ⇠̄± = A � B). Here, we have used the notation ⇠̄ introduced in Equation 5.14.
Each set of data is fitted to a Lorentzian curve and its peak height is the measure of
the two-photon transition rate. The peak height is plotted against Q2 orientation in
Figure 5.7, where the solid curve is the calculated ⇠̄/⇠̄0. We attribute the discrepancy
between the experimental data and the theoretical curve, specifically the shallower
and narrower dips in the measurement, to several experimental factors beyond our
control: the polarization compensation only works for the transverse field components,
atoms are not necessarily evenly distributed around the ONF (as suggested by the
atom cloud picture shown in the inset of Figure 5.2), individual atoms may see local
inhomogeneities of the excitation field near the ONF waist, or residual magnetic field
and cooling beams may be present in the excitation region, thereby influencing the
two-photon process.

The lateral shift of the rising slopes seen in both periods of the ✓ dependence in
Figure 5.7 is likely to be an experimental artefact such as imperfection of the waveplate,
enhanced by coupling of light into the fiber. Other effects not taken into account are
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Figure 5.6: Measured 795 nm fluorescence from the cold atoms. Typical transition
peaks for linearly polarized (Q2 at ✓ = 0� and �h = 0) and circularly polarized (✓ = 45�

and �h = 1) 993 nm light coupled into the ONF. The solid lines represent Lorentzian
curve fitting.

possible polarization-dependent saturation [49] of the transition in the atomic cloud, a
polarization-induced inhomogeneity in the intensity profile [173] and the related change
in the local atomic density due to the dipole force, and position-dependent Stark shifts
in the atomic energy levels [99]. We also note that the relation �h = sin(2✓) may not be
exactly fulfilled for ONF-mediated excitation. For instance, the generation of orbital
angular momentum in the evanescent field, which is more significant for quasi-circular
polarization [40, 171], effectively changes the helicity and its relation to the polarization
of light sent into the fiber. This invites further studies on two-photon processes under
nonparaxial fields, inclusive of the orbital degree of freedom.

5.4 Conclusion

We observed the dependence of an S ! S single-frequency two-photon transition on
the polarization of the excitation field, both within and beyond the paraxial limit.
Owing to accurate polarization control of light at the ONF waist, we were able to
study the transition rate in a cold atomic cloud mediated by the evanescent field of the
ONF-guided mode, as a function of its helicity. In contrast to the paraxial case in a
vapor cell, the two-photon transition in the evanescent field could not be extinguished
by simply varying the polarization of the coupled light; we observe a minimum rate
of about 25% of the maximum. The theoretical minimum is calculated to be around
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Figure 5.7: Polarization dependence of the 795 nm fluorescence from the cold atoms
excited by a nanofiber mode. The solid line shows theoretical calculation.

13% of the maximum. These findings are expected to have impact in atom-based
hybrid quantum technologies where full control on quantum state selection is vital
and could open new ways of selecting transition pathways for frequency references and
atomic clocks, novel fiber-based atom trapping schemes [28], transfer of spin or orbital
angular momentum between light and atoms [130, 174], chiral nanophotonics [175],
and fundamental precision tests in parity nonconservation [176, 177].
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Chapter 6

Machine Learner Optimization of

Nanofiber-Based Dipole Traps
1

In Chapters 4 and 5, we discussed experiments related to cold atom cloud interacting
with the evanescent field of a nanofiber. However, these experiments with the atom
cloud suffer from two limiting factors. First, the atom density is reduced close to
the ONF surface due to thermal heating, thus limiting the optical depth. Second,
the atoms have a very short transit time (⇠1 µs for an average atom temperature of
100 µK) in the small evanescent field region, thus limiting the interaction time. A
fiber-based evanescent field dipole trap can be used to hold cold atoms with longer
trapping lifetimes exceeding tens of milliseconds while facilitating direct interrogation
of the atoms and integration of the experimental platform into a fiber network. In this
chapter, we describe an implementation of a two-color evanescent field trap for 87Rb
atoms in our ONF-MOT system and its optimization (in terms of the number of atoms
trapped and optical depth) using a machine learning (ML) scheme.

In Chapter 1 we first discussed fiber-based dipole traps. In an uncompensated trap
that is deep enough to trap laser-cooled Rb atoms from a MOT; a tens of MHz light shift
broadens the absorption profile of a probe beam near-resonant to the cooling transition
(5S1/2 ! 5P3/2 for 87Rb) and creates asymmetries in the observed spectra [96]. This
makes it difficult to determine the number and temperature of trapped Rb atoms as
the saturation absorption method [28] cannot be used, and dispersive methods [179] are
much less effective. Real-time and manual optimization of the trap loading parameters
is very time intensive, if not near impossible, in contrast to Cs [179]. Furthermore,
optimization of the optical depth (OD) depends on both the number and temperature of
the trapped atoms, rendering OD determination in real-time also very challenging [180].

With Rb atoms being one of the most widely used atomic species in cold atom-
based quantum technologies, finding techniques to optimize their loading into ONF-
based dipole traps is crucial. The aforementioned difficulty in measuring the number

1This chapter is adapted from the manuscript R. K. Gupta, J. L. Everett, A. D. Tranter, R. Henke,
V. Gokhroo, P. K. Lam and S. Nic Chormaic, "Machine learner optimization of optical nanofiber-based
dipole traps for cold 87Rb atoms", arXiv preprint arXiv:2110.03931 (2021). RKG contributed to all
aspects of the work including setting up and performing the experiment, adapting the python-based
deep learning code [178] written by A. D. Tranter, developing the theoretical model in collaboration
with J. L. Everett, and writing the manuscript.
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Figure 6.1: Schematic of the experimental setup for fiber-based dipole trapping of
87Rb atoms. DM: DMLP950 Longpass dichroic mirror at 950 nm, FC: Fiber coupler,
FL: Narrow bandpass optical filter, GR: Ruled grating, L1,L2: Plano-convex lenses,
LP: Linear polarizer, NBF: Narrow bandpass filter at 780 nm, NPBS: Non-polarizing
beam splitter, Q: Quarter-wave plates, VBG: Volume Bragg grating.

of trapped atoms in real-time renders optimization of the trapping sequence during an
experiment essentially impossible if one tries to do this manually. Here, we present an
application of a ML optimization protocol, based on deep learning, to the experimental
control sequence for cooling atoms in a MOT and subsequently loading them into a
fiber-based dipole trap.

6.1 Implementation of an Uncompensated Fiber Trap

for
87

Rb

Our ONF-based two color optical dipole trap array was created using a combination of
red- and blue-detuned beams relative to the cooling transition 5S1/2 ! 5P3/2 in 87Rb.
A schematic of the experimental setup is shown in Figure 6.1. We sent 1064 nm (red-
detuned) light through an ONF in a counter-propagating configuration with 1.8 mW
in one direction and 2.1 mW in the opposite direction. The difference in the powers is
due to different losses in each of the taper regions. Additionally, 1.23 mW of 762 nm
(blue-detuned) light was sent through the ONF along one direction. The resulting
potential from a counter-propagating red-detuned and a traveling blue-detuned field
configuration is of the form

U(r,�, z) =
1

4

⇥
4↵(!red)|Ered(r,�, z)|

2 cos2(�redz) + ↵(!blue)|Eblue(r,�, z)|
2
⇤
, (6.1)

where ↵(!red) and ↵(!blue) are the polarizabilities (see Section 2.2.2) of the ground
state for the red- and the blue-detuned frequencies respectively, Ered and Eblue are the
electric fields of the red- and the blue-detuned HE11 mode propagating in the ONF,
and �red is the propagation constant of the red-detuned HE11 mode. The relevant
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field expression of a HE11 mode is given in Appendix A. The cos2(�redz) term gives a
standing wave pattern, which creates the lattice array along the fiber axis. Note that
the polarizabilities, in general, depend on the polarizations of the fields. The ground
state potential and the shift of the optical transition energies of the cooling transition
of 87Rb atoms near the nanofiber are shown in Figure 6.2 for two configurations of the
trapping fields: (i) a parallel-configuration, when the red- and blue-detuned trapping
fields are quasi-linearly polarized parallel to each other, and (ii) a cross-configuration,
when the fields are quasi-linearly polarized orthogonal to each other. While the cross-
configuration results in stronger confinement, it requires higher power for the blue-
detuned field. To generate Figure 6.2, we used double the power of blue (762 nm) light
for the cross-configuration than for the parallel-configuration. Figure 6.3 shows the
differential shift of the cooling transition for different mF 0 levels.

All the fiber-guided beams were quasi-linearly polarized along the x-axis using the
method described in Section 3.2.2. The polarization compensator was simplified by
removing variable retarders and only keeping a pair of QWPs for each beam. In the
case when full polarization control is not required, mapping a linear input polarization
to a quasi-linearly polarized HE11 mode in the fiber can be achieved by using only a
pair of QWPs. For parallel-polarized red- and blue-detuned beams, we would expect
the vector light shifts to be large, but this configuration reduced the amount of power
needed in the blue-detuned beam [179]. The trapping fields were turned on for (at
least) 2 hours to heat up the fiber before setting up the polarizations. The trapping
fields were kept on at constant powers throughout the experiment in order to prevent
thermal stresses from causing movement of the ONF, except during the molasses-phase
when the 1064 nm laser power was slightly ramped away from and back to the set
constant value. Note that we manually adjusted the polarization of each beam slightly
to maximize the probe beam absorption (in other words, the number of atoms within
the evanescent field region) prior to conducting any experiments.

Absorption measurement: Experimental sequence A weak probe beam (⇠5 pW)
near-resonant with the cooling transition 5S1/2(F = 2) ! 5P3/2(F 0 = 3) at 780 nm
and also quasi-linearly polarized along the x-axis was sent through the ONF counter-
propagating to the 762 nm light and was used to measure the absorption profiles using
an in-fiber technique analogous to free-space absorption spectroscopy. In a typical
experimental sequence (2 s duty-cycle, illustrated in Figure 6.4), which was computer-
controlled via LabVIEW, the 87Rb atoms were first laser-cooled in a MOT to satura-
tion which we call the MOT-phase (⇠1.6 s long). This was followed by a sweep-phase
(⇠200 ms), during which the cooling laser frequency was ramped down to a set value,
determined manually. Following this, there was a molasses-phase during which the
trapping magnetic fields were quickly switched off, the cooling laser frequency was
ramped further away from the cooling transition, and the cooling and repump beam
powers were ramped down. For finer control, the molasses-phase was divided in to
two independent subperiods of variable durations and variable slopes of the ramps.
The durations and the slopes were determined via the optimization process. The tem-
perature of the atom cloud at the end of the molasses-phase was estimated, via the
imaging method described in Section 3.1.4, to be ⇠40 µK. The atoms were loaded into
the fiber dipole trap array mainly during this molasses-phase. Once the dipole trap
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Figure 6.2: Comparison of parallel- (a,c,e) and cross-configuration (b,d,f) fiber traps
with red- and blue-detuned trapping fields quasi-linearly polarized parallel and or-
thogonal to each other, respectively. (a,b) trapping potential in the x � y plane with
contours 50, 100 and 150 µK above the minima positions; (c,d) potential along x-axis;
(e,f) shift of the 5S1/2(F = 2,mF = 0)! 5P3/2(F 0 = 3,mF 0 = 0) transition frequency
due to the trapping fields.



6.1 Implementation of an Uncompensated Fiber Trap for 87Rb 73

0.2 0.4 0.6 0.8 1.0

-10

0

10

20

30

40

x (µm)

Fr
eq
ue
nc
y
sh
ift
(M
H
z)

0.4 0.5 0.6
-16

-12

-8
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cooling transition 5S1/2(F = 2) ! 5P3/2(F 0 = 3) for trapping in the parallel config-
uration. Differential shift within the hyperfine manifold of the 5P3/2 sublevels can be
observed in the zoomed plot.

loading was achieved, the cooling and the repump beams were switched off, thereby
extinguishing the laser-cooling process and initiating the measurement-window. During
the measurement-window, the probe beam was switched on (after certain delays) for
absorption measurements. A typical measurement signal for a probe switched on at
zero delay is shown in Figure 6.5. Recording the probe transmission for several delays
allowed us to estimate the lifetime of the trap. Each absorption data point was aver-
aged over 25 experimental cycles. The absorption spectrum was obtained by repeating
the experiment for different frequencies of the probe laser, scanned around the cool-
ing transition. Figure 6.6 shows an absorption spectrum obtained from fiber-trapped
atoms.

Timed analog and TTL2 voltages were used to control AOM frequencies and am-
plitudes (thereby controlling the laser frequencies and powers), and to open/close coil
circuits to switch the MOT’s magnetic field on and off. A GPIB3 controller set the
programmable current supplies for the coils. The probe transmission through the ONF
was measured using an SPCM. A volume Bragg-grating (VBG, BG-762-10 F3, Opti-
Grate) and ruled grating (GR, GR25-1208, Thorlabs) were placed before the SPCM to

2Transistor-transistor logic
3General purpose interface bus
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Figure 6.4: Experimental timing diagram and the set of numbered experimental
parameters used for trap optimization. The experimental parameters could be set
in-loop with the ML generated values during the machine optimization. 1-4: control
currents in the MOT magnetic field coils; 5-12: intensities of the 780 nm cooling and
repump beams, and the 1064 nm red-detuned trapping beams at different times; 13-16:
cooling laser detunings at different times; 17: duration of the cooling laser detuning
sweep, i.e., the sweep-phase, 18-19: durations of the two sub-periods of the molasses-
phase.

filter the trapping fields (see Figure 6.1).

Manual optimization Manual optimization of the dipole trap loading took us sev-
eral months of constant fine-tuning of the experimental parameters. During this pro-
cess, we adjusted essentially the same set of experimental parameters (see Figure 6.4)
and followed the same timing sequence as was later used for the ML optimization,
described in the next section. However, manually, we could also adjust the cooling
and repump beam alignments and the polarizations of the trapping beams. A typical
manual optimization consisted of first maximizing the geometric overlap of the cold
atom cloud with the ONF during the optical molasses phase by adjusting the magnetic
field amplitude and the position of the zero magnetic field, then slightly realigning the
cooling and repump beams. Finally, absorption of the probe through the ONF by the
dipole-trapped atoms was maximized by adjusting the 1064 nm and 762 nm trapping
beam powers and their relative polarizations.

6.2 Machine Learner Optimization of a Fiber Trap

As mentioned in Section 1.3, the difficulty in measuring the number of trapped atoms
in real-time makes the optimization of a trap essentially impossible if one tries to do
this manually. Additionally, a complete quantitative description of atom dynamics for
the optimal loading of evanescent field dipole traps from a MOT does not exist. The
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Figure 6.5: Typical SPCM count during the measurement-window. Probe transmis-
sion was measured for up to 500 ms. A resonant cooling beam was then briefly switched
on for 100 ms to kick-out any remaining trapped atoms. The slight increase in photon
counts between the vertical red lines was due to the resonant cooling beam coupling
to the nanofiber. The photon counts during the 550-650 ms window correspond to the
total probe transmission without any absorption. The probe was then switched off at
650 ms, after which the recorded photon counts correspond to the background counts.

complex dynamics involve many-body interactions, light polarization and intensity
gradients, and complex scattering processes [181, 182] making it highly intractable
when extended to 3 dimensions. As such most applications with trapped atoms revolve
around the use of deep traps (⇠1 mK).

One can adapt a tractable approach to optimizing a physical system by using online
optimization, which does not require access to the system’s quantitative description.
Such an approach has previously been used to optimize the loading of atoms into a
Bose-Einstein condensate using a Gaussian process learner [183, 184], for example.
This technique allows a learner (or agent) to directly interact with the physical system
in an in-loop setting, providing it with new parameters to implement while receiving
feedback on its response. For larger parameter spaces, it is better to leverage methods
which are computationally more expensive so as to minimize the time spent measuring
the physical system. One possibility is the use of deep learning methods, which have
been successfully demonstrated for high dimensional problems such as image classifica-
tion [185] and regression [186]. Here, we employed a deep learning-based optimization
protocol developed by Tranter et al. [178], in which a predictive agent, in this case a
stochastic artificial neural network (SANN), explored a parameter space by predicting
new optima based on the results of its previous predictions.
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Figure 6.6: Absorption spectrum of fiber-trapped atoms when probed immediately
after the molasses-phase. All the trapping fields were quasi-linearly polarized along
the x-axis as set by the polarization compensation method described in Section 3.2.2.
The absorption spectrum obtained was not optimum (shown in blue). The absorption
spectrum for a manually optimized trap (red) after polarizations of the trapping fields
were adjusted.

6.2.1 Deep learning and stochastic artificial neural networks
Deep learning is extremely good at extracting structures in high dimensional data sets
[187]. This realization, coupled with efficient methods for training and evaluation
makes it an ideal candidate for representation of a cost landscape4, as is done in
surrogate methods5. Deep learning, in essence, refers to the representation of a mapping
from input to output data using multiple layers (see Appendix D for more details).
This is done by constructing an artificial neural network (ANN), composed of multiple
layers of simple and connected nonlinear elements that can be used to approximate
functions [188].

One of the main problems with optimization is determining the ratio between ex-
ploration and exploitation. This is handled by the use of multiple ANNs and their
stochastic nature. Multiple ANNs, when trained on a sparsely sampled data set, often
predict different global minima. Each predicted minimum can be tested in succession,
facilitating exploration. A discovery of a steep minimum will bias all the ANNs toward
exploring that region thereby effecting exploitation.

4Cost is a measure of distance of the approximated model function from the target function. Cost
landscape refers to the function mapping cost in the parameter space.

5In engineering, when an outcome of interest cannot be easily measured or computed, an approxi-
mate model is used instead. Methods of constructing approximate models, in the absence of objective
functions, are collectively known as surrogate methods.



6.2 Machine Learner Optimization of a Fiber Trap 77

Stochastic artificial neural networks (SANN) SANN is an ensemble of iden-
tical artificial neural networks acting as surrogate models that constitute the mapping
from parameter space to a physical cost, which represents the experimental output to
be optimized. Stochasticity arises from the independent random initialization of the
ANNs in the ensemble which generates multiple unique representations of the experi-
mental response landscape. This provides multiple regions of the parameter space to
be explored and allows further optimization or dismissal of those regions as the neural
network model is refined. This provides a balance in the exploration versus exploita-
tion trade-off. In our case, the SANN is composed of five ANNs with an identical
structure characterized by an input layer of dimension n, followed by five densely con-
nected layers. Each dense layer has 64 neurons per layer with Gaussian error linear unit
(GELU) activation6 [189]. L2 regularization7 [190] is applied to moderate overfitting
behavior. The networks are trained by minimizing the mean squared error using the
Adam optimizer8 [191].

Initial sampling and in-loop optimization An initial sampling policy is used
to build a training set to learn an initial representation of the cost landscape. After
this initial training, the SANN prediction loop is instantiated. Each network in the
SANN generates a set of test parameters by performing a minimization search of the
surrogate landscape using parallel L-BFGS9 instances [192]. Each prediction is tested
experimentally, with the resulting cost being added to the training data. With SANN
operating in-loop, the search for global minima is more efficient by biasing the search
with experimental values. The networks within the SANN are trained and minimized
asynchronously to reduce the time taken to generate predictions. This feedback loop
continues until some stopping criterion is met. For nonconvex optimization problems
the idea of convergence is ill defined without prior knowledge of the problem.

6.2.2 Experimental implementation
The conceptual diagram of the application of the deep learning algorithm to the ex-
perimental setup is outlined in Figure 6.7. The machine learner optimization process
employs the same experimental sequence used for absorption measurements as de-
scribed in Section 1.3 and follows an iterative adjustment of n = 19 parameters (see
Figure 6.4), corresponding to timings, magnetic field amplitudes, optical field powers,
and detunings. During an overall 2 s long experimental cycle, the MOT was oper-
ated with constant optical and magnetic fields set by the ML during the MOT-phase
(⇠1.6 s). The SANN controlled the cooling beam detuning (12-20 MHz) and intensity
(4-8 mW/cm2), repump intensity (0.1-0.3 mW/cm2), the magnetic quadrupole field
gradient (13-15 G/cm), the zero magnetic field position along the x-axis (±5 mm), and
the magnetic field generated by the compensation coils (upt to 1 G). Numbers in paran-

6GELU(x) = x� (x), where � (x) is the cumulative distribution function of a standard normal
distribution.

7Undesirabe training outcomes are penalized in proportion to the sum of the squares of the weight
magnitudes.

8Adam is a gradient-based optimization algorithm which requires only first-order gradients with
little memory requirement.

9Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
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Figure 6.7: Conceptual diagram for online machine learner optimization based on
deep learning, showing iterative training of the SANN and the experimental sequence.
(a) A set of experimental parameters are generated by the SANN, and the experiment
is run with these parameters. (b) A cost value is calculated by averaging the probe
transmission, and appended to the cost-parameter data. (c) The data set is used to
train the SANN to map the parameter sets to the corresponding costs. The experiment
is run iteratively with new parameter sets found by running a minimization algorithm
on each ANN in turn.

theses indicate the range of values the SANN was allowed to use when exploring the
parameter space. Next, in Sweep-phase, the cooling laser frequency was swept (to 12-
36 MHz) for the duration tsweep (10-2400 ms) before the magnetic field anti-Helmholtz
coils were switched off. The cooling beam frequency/intensity and the repump beam
intensity were ramped during the two-step Molasses-phase, with the parameters and
the durations being set by the ML. The 1064 nm trapping field power was also ramped
during this time window, but was otherwise kept constant during the experiment.

We aimed to maximize the number of atoms (Ntrapped) trapped in the fiber dipole-
trap and as such measuring Ntrapped as a physical cost would be a correct technique.
However, for reasons discussed earlier, a direct measurement of Ntrapped after each
experimental cycle would have been too time-consuming and would have significantly
impacted the usefulness of the ML optimization process itself. For this method to work
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we do not require an exact measure of Ntrapped, but simply a fast measure of some quan-
tity that is related to it. Transmission of an off-resonant probe beam through the ONF
provides us with a straightforward measurement, and is inversely proportional to the
number of trapped atoms. Our cost function was set as the average transmission of
the probe beam through the ONF, C(X ) = Tprobe (where X represents a point in the
parameter space), and hence the aim of the optimization was to minimize this value.
Correspondingly, this increased the probe’s absorption, which increased with the num-
ber of trapped atoms. Predictions from the SANN were used for online optimization,
according to the method of [178] with some modifications.

A dummy cycle was run each time the parameters were changed to equilibriate the
capture of atoms in the MOT. The transmission of the probe was integrated over the
10 ms window, normalized, and averaged over the following 3 cycles. The experiment
was run 2n + 1 times (where n is the number of parameters being adjusted) using
random sets of parameters within the allowed space and measuring the cost each time.
This parameter-cost data was used to train the ANNs. The first ANN was then used to
predict a set of optimal parameters and the experiment was run with these parameters,
generating a new parameter-cost pair to add to the data. The entire data set was used
to train the next ANN, which was then used to predict a new set of optimal parameters.
This process was continually iterated and, if the ML detected convergence (predicted
optima continually lying within a small parameter range), local cost minima outside
this region were explored to improve the model around any other possible global minima
in the parameter space.

On completion of a preset number (usually 300) of iterations by the ML, the ex-
perimental parameters that yielded the largest measured absorption signal (due to the
minimized cost) were tested in a second series of experiments to determine the num-
ber of trapped atoms and their average temperature. An absorption spectrum of the
trapped atoms over the entire absorption window of the 5S1/2(F = 2)! 5P3/2(F 0 = 3)
transition is shown in Figure 6.8. By recording the absorption spectra with the probe
switched on at different delay times after the molasses-phase (see Figure 6.9), we esti-
mated the lifetime of the trap to be ⇠26.5 ms.

6.3 Modeling the Trapped Atom Spectra

We model the absorption of the fiber-guided probe by the dipole trapped atoms in
terms of an average optical depth, OD (!), of the trapped atoms according to the
following equation, which is modified from [96]:

OD (!) = N ·

X

mF

Z

Trap
Volume

OD1 (mF ,Eprobe)

⇥ L (! � � (mF ,Eprobe)) ⇢ (Udip + UvdW,mF , Tavg) dr. (6.2)

The optical depth then relates to the transmission, T (!), via the relation

T (!) = exp {�OD (!)}. (6.3)
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Figure 6.8: Absorption spectrum (blue) of atoms trapped in an ML-optimized fiber
trap when probed immediately after the molasses-phase. For comparison, an absorption
spectrum (blue) from manually-optimized trap is shown.

The atoms were assumed to have a thermal ensemble density, ⇢, with an average
temperature, Tavg, due to an approximate van der Waals potential, UvdW, and an optical
dipole potential, Udip, induced by trapping fields. OD1 (mF ,Eprobe) is the optical depth
per atom for each transition. We assumed only Lorentz broadening due to the natural
linewidth, L, and a local optical transition shift, � (mF ,Eprobe), due to the light shifts
of the ground and the excited state of the cooling transition (as the probe was tuned
to the cooling transition). Integrating over the trap volume produces the observed
broadening.

OD1 was calculated for the local probe intensity and polarization, with transition
strengths given by the Clebsch-Gordon coefficients and the transition cross-section. The
atoms were assumed to have an mF population distribution due to optical pumping by
the probe field. The mF distribution was determined by the steady-state population
transfer due to the probe polarization at the trapping potential minimum, with CG
coefficients for the various transitions to the 5P3/2(F 0 = 3,mF 0) levels and instantaneous
spontaneous decay back to the 5S1/2(F = 2) (ignoring stimulated emission and other
excitation processes).

We calculated the absorption of the probe beam by the trapped atoms for a range
of frequencies to compare it with the experimental data. Because the experimental
trap intensities and polarizations were only approximately known, a range of these pa-
rameters was tested and trends were found to assist with matching to the experimental
data. The integral in Equation 6.2 was carried out only over one lobe of the trap to
avoid having to use different mF occupations for the other lobe, where the polariza-
tion is different but the absorption symmetry is the same due to the reversal of the
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Figure 6.9: Absorption spectrum of atoms trapped in an ML-optimized fiber trap
when probed at different delay times after the Molasses-phase. (a) Probe transmission
as a function of probe detuning; (b) Optical depth as a function of probe detuning;
(c) Peak of the logarithm of the OD for each delay. Note: The peak is obtained after
fitting the OD in (b) with a skewed Gaussian function.

mF occupation. The integral was performed with a Monte Carlo sampling method in
Mathematica, which is significantly faster than a grid recursion method, for a small
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optical depth is fitted with a skewed Gaussian function. The solid lines are the fitted
functions to the data points.

sacrifice in precision.
In the experiment, the quantization axis was not well-defined and we assumed an

initial unpolarized state of trapped atoms. The model was calculated for a variety of
quantization axes. The inclusion of the optical pumping by the probe greatly reduced
the effect on the modeled OD due to the choice of quantization axis. A quantization
axis in the x- (optical polarization axis) or y-axis gave a fit that predicts roughly the
same atom number.

Effects neglected in the model include the change in the linewidth of the atoms due
to the presence of the fiber, rescattering into the fiber, motion of the atoms during
absorption, detuning of the probe with respect to individual mF levels within the
optical pumping scheme.

Trends for fitting Absorption spectra of the dipole trapped atoms were modeled
for a range of different powers and polarizations of the trapping fields, atom tempera-
tures, and fiber diameters. The spectrum that most closely matched the experimental
result was selected. The match was quantified fitting the modeled and experimental
spectra with a skewed Gaussian function and then choosing the modeled spectrum
whose fitted asymmetry, central frequency, and broadening parameters most closely
matched the experimental spectrum fitting. The Gaussian fit width increases with
temperature, the central frequency increases with overall trap power, and the asym-
metry increases as the trap minima move closer to the fiber. These trends make us
confident in matching of the modeled spectra to the experimental data, clearly indicat-
ing an increase in the optical depth for the ML-optimized system. Figure 6.10 shows
the fitted functions for the manual and ML optimized trap spectra.

The skewed Gaussian fits the model data more closely than the experimental data.
In the experimental data, the absorption at around 50 MHz detuning is possibly due
to atoms that are trapped in tight orbits around the fiber by a combination of van der
Waals forces and repulsive blue-detuned light. The maximum positive light shifts close
to the fiber surface are around 50 MHz and the absorption from just a few atoms this
close to the nanofiber is enough to explain that part of the spectrum.
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6.4 Results and Discussion

In Figure 6.11(a) we plot the probe beam transmission as a function of detuning for both
the manually optimized (red) and ML-optimized (blue) fiber traps. The theoretical
model was fitted using 300 trapped atoms for the manually optimized trap and 450
atoms for the ML-optimized trap. The atoms loaded into the ML-optimized trap were
also at a slightly lower temperature of 140 µK compared to 150 µK for the manual trap.
The increase in atom number and decrease in temperature in the ML-optimized trap
are likely due to improved cooling and increased atomic density in the vicinity of the
ONF. Notably, the ML chose non-intuitive experimental parameters in achieving the
optimization. For example, the inset to Figure 6.11(a) shows the final position of the
atom cloud in relation to the ONF; the ML was inclined to position the cloud to one side
of the fiber, in stark contrast to our manual optimization where we centered the cloud
on the ONF. While the achieved diferences may appear unremarkable, a 50% increase
in the number of trapped atoms has been observed. Figure 6.11(b) plots the same
data as optical depth of the probe absorption, showing more clearly the fitting of the
model at intermediate detunings. The powers of the dipole trap light fields used to fit
the spectra were based on the fitting of the modelled spectra to the transmission data,
and are significantly different to experimentally measured dipole trap transmissions at
the output of the nanofiber. Losses at the waist due to fiber degradation after being
used for about five year (see Figure 6.12), particularly for the 1064 nm light, mean the
actual powers at the waist were likely higher than those measured. For example, the
measured 1064 nm output power was 2.1 mW and 1.8 mW at either end of the ONF,
whereas the modeled absorption spectrum fit a power of 3.25 mW in each direction.
For 762 nm light, the measured output power was 1.23 mW whereas 1.3 mW was fitted
by the model.

Figure 6.11(c) shows the trapping potential in the x�y plane for the modeled trap.
The quasi-linear polarization of the trapping fields in the model was adjusted to fit the
experimental spectrum. Contour lines emphasize that this resulted in an asymmetric
trap. This configuration was previously shown to increase the OD per atom by moving
the trapping sites closeer to the ONF [96]. Figure 6.11(d) shows the corresponding light
shifts of a probe transition mF = 0! mF 0 = 0, with the potential minima marked by
dots.

Figure 6.13 shows the dependence of the learned cost on a selection of the exper-
imental parameters, centered on the best observed value. This data is not entirely
accurate as the slices represent mostly unsampled areas of parameter space. However,
these plots are somewhat useful as they indicate which of the parameters played an
important role and which had little role in the ML optimization, and can therefore be
neglected. They indicate if the parameter range is needed to be changed to explore
a different landscape. For example, the repump laser intensity (i), the cooling laser
detuning (iv) and the gradient magnetic field along the z-axis (v) have the strongest
effect over their allowed ranges, showing the sensitivity of the cost to these param-
eters. The numbers in parantheses correspond to the labels in Figure 6.13. Due to
this sensitivity, we set the magnetic quadrupole parameters as a gradient and position
offset to allow the ML to quickly explore this space (in contrast to setting parameters
for individual currents through the two quadrupole coils). Learned parameters were
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Figure 6.11: (a) Probe transmission spectra after manual optimization (red dots)
and ML optimization (blue dots) of loading atoms into the fiber dipole trap. The solid
curvers are the theory fits for manual optimization (red: 300 atoms at 150 µK) and
ML optimization (blue: 450 atoms at 140 µK). Inset: Image of atom cloud at the end
of ML-optmized loading, with the ONF highlighted in green. (b) Same data plotted
as absorption spectra. (c) Trapping potential in the x � y plane used to produce the
theory fits in (a) and (b), with contours of 50, 100 and 150 µK above the minima
positions. (d) Modeled frequency shift of the probe transition due to the trapping light
fields. Black dots mark the trapping potential minima in (c) and (d).
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Figure 6.12: Scanning electron microscope (SEM) images of the taper region of
the optical nanofiber that was used in our experiments. The images were taken by
Dr. D. Brown after the ONF was removed from the vacuum chamber after being in use
for about 5 years. The large bumps are possibly dust particles and the small speckles
are, we assume, due to RbO2 deposition on the surface.

stable over time, and reusing the parameters from a single optimization produced a
reasonably constant number of trapped atoms over a period of about one month, with
no more than ±10% change observed.

Given the sensitivity of the ML to the magnetic fields, we hypothesize that optimal
positioning of the MOT as well as the position of zero magnetic field for polarization-
gradient cooling are the largest improvements given by the ML. By increasing the
number of parameters available to the ML beyond 19, we would expect further improve-
ments. In particular, experimental improvements including a time-varying magnetic
field to compress the atomic cloud and thereby increase density before loading, and
the ability to change the dipole trapping powers more during loading without causing
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Figure 6.13: Cost predictions from one of the ANNs after 300 training steps. The
cost prediction is the output of the neural network while varying individual (a) optical
and (b) magnetic field parameters, keeping the remaining parameters constant at the
predicted optimum. The optical parameters are those used during the Molasses-phase.
The corresponding parameters are: (i) repump laser intensity, (ii) cooling laser inten-
sity, (iii) 1064 nm laser intensity, (iv) cooling laser detuning; magnetic field strength
of the compensation coils along the (v) y-axis, and (vi) x-axis, (vii) quadrupole field
gradient, (viii) magnetic field offset along y-axis. Parameters are scaled to range from
0 to 100.

movement of the fiber, should allow more atoms to be loaded.
A direct measurement of atom number, by measuring the total absorbed power of

a strong probe saturating the trapped atoms, was not possible. The force due to the
light shift by the strong probe beam pushed atoms from the dipole trap array before a
reliable measurement could be taken. A heterodyne measurement setup should make
this type of measurement possible, due to more sensitive detection of coherent light.
This would also allow a more direct measurement of trap properties using the method
in [193]. We tried but failed to set up this type of detection.

6.5 Conclusion

We used a machine learner optimizer to increase the number of 87Rb atoms trapped
in nanofiber-based evanescent field dipole traps from 300 (for manual optimization)
to 450 in a proof-of-principle experiment. We derived a microscopic theoretical model
that fit the experimental probe transmission spectra and enabled us to determine the
number and average temperature of trapped atoms. When ML optimized, we increased
the number of trapped atoms by 50% and optical depth by 66%. We expect this to be
further improved by (i) increasing the number of parameters controlled by the machine
learner and (ii) using a new ONF in the experimental setup. Additional investigations of
the capabilities of this setup are planned, including optimizing the loading of atoms for a
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collective atom-light interactions such as four-wave mixing, and increasing the number
of nearest-neighbor interactions in a 1D lattice of Rydberg atoms. The techniques
developed here can be extended to any atomic species where it is desirable to increase
the atom number.
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Chapter 7

Degenerate Four-Wave Mixing with

Paraxial Beams in Rubidium Vapor

Until this point, we have focussed our studies on interactions of cold 87Rb atoms with
the evanescent field of a nanofiber. We studied the dependence of a two-photon tran-
sition rate in rubidium (hot vapor) on the polarization of a 993 nm free-space pump
beam (described in Chapter 5), but it was also in the context of comparison with the
transition rate in case of nanofiber-guided pump light. Here, we focus our attention
onto a degenerate four-wave mixing (FWM) interaction with free-space beams in a
rubidium vapor cell. Our goal was to study the transfer of orbital angular momentum
(OAM) between fields involved in a degenerate FWM process, where the two-step ex-
citation with 780 nm and 776 nm light was replaced by a single-frequency, two-photon
excitation with 778 nm in the widely studied diamond energy structure in Rb (see
Figure 7.1) [194–202]. While this is an incomplete work, we discuss the motivation
and report the current status of the experiment, the limitations encountered, and the
improvements that could be made.

7.1 Four-Wave Mixing

Four-wave mixing is a nonlinear interaction between light and matter, associated with
the third-order susceptibility �(3), that permits the transfer of energy and momentum
between four optical modes via interaction with a medium. The susceptibility tensors,
�(n), relate to the polarizability of the medium; as such the response of a dielectric
material to the applied optical fields is written as [203]

P = ✏0
�
�(1)E+ �(1)EE+ �(1)EEE+ · · ·

�
, (7.1)

where E is the electric field and P is the polarization of the material. Typically,
nonlinear susceptibilties (�(n), n > 1) are negligibly small for neutral atoms [203] and
a high intensity pump laser is required to induce a strong nonlinear polarization. The
�(2) term vanishes in neutral atoms due to inversion symmetry and the lowest nonlinear
response of an atomic medium comes from the �(3) term.

Phase matching Efficient FWM requires the four optical fields to remain in phase
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Figure 7.1: Energy level diagram relevant to diamond four-wave mixing in rubidium.
The dashed line represents a virtual energy level.

throughout the mixing process in order to avoid any destructive interference. This
amounts to the requirement of energy and momentum conservation across a single
FWM cycle [204]. Under energy and momentum conservation, two excitation optical
fields result in the generation of two additional coherent fields, via FWM interactions.
The conservation of energy requirement is naturally met in the case of the diamond
energy structure in Rb (see Figure 7.1) as

2 · !778 = !780 + !776 = !5.2 + !420, (7.2)

where ! represents the angular frequencies of the field given in subscript. Momentum
conservation leads to the following criterion

2 · k778 = k780 + k776 = k5.2 + k420, (7.3)

where k represents the wave-vectors associated with the fields given in the subscript.
A spatially extended atomic ensemble provides translational symmetry, which thereby
leads to momentum conservation. The constraints imposed by phase-matching are
responsible for the highly directional nature of optical fields produced by FWM. This
has proven useful for efficient frequency conversion [194, 205, 206] and in the generation
of correlations [73, 207–210] and entanglement [74, 211] in quantum optics.

Conservation of orbital angular momentum The phase matching condition
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leads to OAM conservation in the FWM process, resulting in the transfer of transverse
phase structure between the pump and generated fields [197, 199]. Deviations from
perfect phase matching conditions lead to the large spatial bandwidth of the OAM
shared between the generated fields [202]. For the diamond configuration considered
here (see Figure 7.1), the probability amplitude to generate a specific combination of
blue (420 nm) and infrared (5.2 µm) modes is given by the overlap with the pump
profiles. The transfer of OAM is a signature of such a nonlinear interaction and has
been exploited as a tool to distinguish nonlinear processes in an atomic medium [212].

7.1.1 Motivation
One of our interests has been in studying collective light-atom interactions, including
FWM in an ensemble of atoms coupled to an optical nanofiber mode. This is a sub-
ject for future study for which a crucial stepping stone was the implementation and
optimization of the ONF-based trap presented in Chapter 6. It is desirable to utilize
FWM in an ONF system as it has the obvious advantage of being directly compatible
with the standard optical fiber network - the dominant optical transmission platform.
FWM utilizing the inherent �(3) nonlinearity of optical fibers has been studied [213]
and exploited to generate correlated photon pairs [214–217].

The diamond energy level structure in Rb (see Figure 7.1) has been widely studied
by now. The atoms are pumped to the 5D5/2 excited level with 780 nm and 776 nm
pump fields. The cascaded decay through the 6P3/2 level generates 5.2 µm infrared
light and coherent blue light (CBL) at 420 nm via the parametric FWM process due
to the strong atomic coherences in the energy level structure. Replacing the two-step
excitation by a single-frequency two-photon excitation with 778 nm, we can, in princi-
ple, achieve two competing diamond degenerate FWM interactions with one producing
fields at 776 nm and 780 nm in case of cascaded decay through the 5P3/2 level and
another producing fields at 5.2 µm and 420 nm in case of decay through the 6P3/2

level. This scheme is appealing, particularly the decay through 5P3/2, as all the wave-
lengths involved (776 nm, 778 nm and 780 nm) are very close to 780 nm for which
the ONF (⇠400 nm diameter) was optimized for studies with Rb. Additionally, all
these fields propagate with a similar HE11 mode profile in the ONF, facilitating better
phase-matching. The other diamond structure producing 5.2 µm and 420 nm fields is
also interesting as 5.2 µm cannot propagate through the ONF while 420 nm will have
several guided modes available, namely, HE11, HE21 (even and odd), TE01 and TM01.
This elicits further studies on this transition in the context of optical nanofibers. The
higher order modes in nanofibers can carry OAM and the possibility to transfer high-
density information encoded on OAM [218] to a cold atomic ensemble [219] coupled to
an ONF is particularly interesting.

Inspired by these interests, we started to investigate degenerate FWM with a 778 nm
single-frequency pump. In particular, we focused on studying the angular momentum
distribution of the coherent blue light generated by an OAM-carrying pump. A recent
study [202] showed the OAM distribution between the infrared (5.2 µm) light and
the CBL depends on the pump modes and the overlap between them. Any mismatch
in overlapping of pump modes should also manifest in the OAM distribution. The
use of a single pump (in our case at 778 nm) simplifies the mode-matching condition,
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Figure 7.2: Two-photon spectroscopy signal for the 5S1/2 ! 5D5/2 two-photon transi-
tion in Rb at 778 nm. (a) The 778 nm pump laser is scanned across the 87Rb and 85Rb
transitions. (b) Hyperfine peaks of F = 2 ! F 0 transitions in 87Rb. The detuning is
relative to the 87Rb (F = 2! F 0 = 4) transition.

allowing us to remove any possibility of pump mode mismatch. To study the OAM
transfer in the FWM process we used Laguerre-Gaussian (LG) pump modes, which
are characterized by their azimuthal (l, integer) and radial (p, non-negative integer)
indices, with each mode carrying l~ of OAM per photon [220].

7.2 Experiment

Figure 7.3 shows a schematic of the experimental setup. A 778 nm beam output from a
fiber-coupled TA (BoosTA, Toptica) was split with one part (10%) going to a reference
spectroscopy setup and the other (90%) going to the FWM experimental setup.

A reference two-photon spectroscopy signal (see Figure 7.2) was obtained from a Rb
vapor cell (VC1, 75 mm in length and 25 mm in diameter, with natural abundances
of the Rb isotopes) maintained at 60�C using a Thorlabs heater assembly (GCH25-
75) with a temperature controller (TC300, Thorlabs). The 420 nm fluorescence was
filtered with an interference filter centered at 420 nm and detected by a PMT through
a telescope arrangement of two plano-convex lenses (f1 = 50 and f2 = 100 mm).

The 90% part of 778 nm beam output was collimated to produce a clean Gaus-
sian beam through a 7.5 mm triplet collimator and then diffracted from a LabVIEW-
controlled spatial light modulator (SLM, Exulus HD, Thorlabs) to generate LG beams
with different l indices. The LG beam was focused into a second heated Rb vapor cell
(VC2, 75 mm in length and 25 mm in diameter) through a 125 mm lens. The waist
diameter at the focus was calculated to be ⇠16.5 µm using a simple lens equation [221].
The Rb cell was heated by wrapping the cell with aluminium foil and a resistive heating
tape whose temperature was controlled by AWP 1000 controller.

The CBL emission at 420 nm was filtered using a combination of dichroic mirrors
(long pass at 650 nm) and interference filters (shortpass filter at 500 nm and bandpass
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Figure 7.3: Schematic of the experimental setup. BD: Beam dump, CM: Concave
mirror, ECDL: Extended cavity diode laser, FC: Fiber coupler, FL: A shortpass filter
at 500 nm with a bandpass filter at 420 nm, H: Half-wave plate, I: Iris, L1-L7: Plano-
convex lenses, M: Mirror, NPBS: Non-polarizing beam-splitter, PBS: Polarizing beam-
splitter, PD: Photodetector, PMT: Photo-multiplier tube, Q: Quarter-wave plate, SLM:
Spatial light modulator.

filters at 420 nm). The CBL power was measured with a photodetector (DET25K/M
150-500 nm, Thorlabs) and imaged with an EMCCD (iXon Ultra 897, Andor). Since
the pump light was very intense, it was imaged with another camera (DCC1645C,
Thorlabs).

7.2.1 CBL generation with a Gaussian pump beam
The 778 nm transition two-photon transition is about 1000 times weaker than the two-
step 5S1/2 ! 5D5/2 transition using 780 nm and 776 nm [222], thus requiring higher
intensities of the 778 nm pump light and higher atom density for efficient CBL gen-
eration. We observed CBL generation as a function of pump power and temperatures
(see Figure 7.4) for a Gaussian beam input. This is equivalent to pump intensity and
atomic density, respectively. For this we bypassed the SLM setup to use the maximum
available power 470 mW of 778 nm from the TA output. No signal was observed for a
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Figure 7.4: CBL signal from a heated Rb cell with 87Rb and 85Rb in natual abun-
dances. (a) For different 778 nm pump beam power when the cell was maintained
at 200�C. (b) For different cell temperatures with 778 nm pump power of 450 mW.
Bottom panel shows the scale of the frequency-reference spectrum obtained from the
reference cell.

pump power less than 100 mW when the Rb cell was maintained as hot as 200�C. Note
that the location of the interaction region within the vapor cell was also crucial for the
observation of the signal. The signal was observed only when the effective interaction
region, i.e., the pump beam focus, was close to the exit window of the vapor cell. The
optimum signal was obtained by translating the vapor cell along beam propagation
axis and finding a suitable point of focus. This is perhaps due to the re-absorption of
the generated blue light by the Rb atoms.

It is clear from Figure 7.4 that the CBL generation efficiency was typically higher
at a certain detuning from the transition and that the detuning at which maximum
efficiency was observed shifted for different temperatures. In addition, we notice that
the spectra are well overlapped for the two isotopes. For a simpler system, we replaced
the Rb vapor cell (VC2) with a 87Rb enriched vapor cell. Figure 7.5(a) shows the
measured CBL generation as a function of vapor cell temperature. While we saw peaks
centered around the reference transition peaks for lower temperatures (100�C), we
observed peak splitting for higher temperatures, with the peak separations increasing
as a function of temperature. See, for example, the red (120�C) curve. In terms of
efficiency, we measured higher peak CBL power for 370 mW pump power as compared
to that with the mixed vapor cell. We observed consistent peak splittings and peak
separations for different input pump powers (see Figure 7.5(b)). The signal was also
increased due to improved detection of the CBL by focusing it on to the detector. We
observed CBL for a pump power as low as 40 mW.

Note the vapor cells were not suitable for operation at temperatures higher than
120�C. Higher temperatures caused the adsorption of Rb by the glass cell wall.
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Figure 7.5: CBL signal from a heated 87Rb enriched vapor cell. (a) For different cell
temperatures with 778 nm pump power of 370 mW. (b) For different 778 nm pump
beam power when the cell was maintained at 140�C. Bottom panel shows the scale
of the frequency-reference spectrum obtained from the reference cell. Reference peaks
corresponding to only 87Rb are shown.

7.2.2 Generation and identification of LG modes
We used a phase-only SLM with a fork-hologram pattern [223] to impart a desired
phase (controlled with a LabVIEW program) onto the collimated pump Gaussian beam,
thereby generating LG modes. While this is straightforward and a widely used method,
where the first diffracted order is the useful phase-imprinted beam, it was challenging
to find a balance between the quality and power of the beam. Both factors were very
important in our case: the quality of the beam determined the purity of the generated
modes which is crucial for the study of OAM transfer and high pump beam power was
required for the transition we considered. We could obtain up to 180 mW in the first
diffracted order (which translates to a diffraction efficiency of ⇠38% for 470 mW input);
however, we could not obtain good beam shape quality (as shown in the left panel of
Figure 7.6). To improve the beam quality we added an intensity mask (approximating
the intensity profile of a desired LG mode) to the LabVIEW generated SLM hologram.
The right panel in Figure 7.6 shows the intensity profiles of the first two (l = 0, 1)
LG modes. However, the maximum power we could get was ⇠90 mW for l = 1 and
decreased monotonically for higher l order LG modes.

The quality of generated LG beams could be improved further by introducing a
lens before the SLM to slightly focus the input beam. This worked perhaps due to
the inherent curvature of the SLM surface. The maximum first-order efficiency that
could be obtained was about ⇠32%, which translates to 150 mW in LG beams with the
maximum available power of 470 mW in the input beam. Also, the obtained power was
consistent for higher l modes. Images of beams generated with and without the lens at
the SLM input are shown in Figure 7.7. To determine l, the beams were passed through
a Mach-Zehnder interferometer containing a Dove prism in one of the arms. The Dove
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l=1

l=2

Figure 7.6: Images of non-optimal l = 1 and l = 2 LG modes. Left: Beams generated
with a simple fork-hologram on the SLM. Right: Beams generated with additional
intensity mask on the fork-hologram.

       l=0       l=1        l=2        l=3        l=4                 l=5 
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Figure 7.7: Images of different l-order LG beams. (a) Beams generated with a colli-
mated Gaussian input onto SLM. (b) Beams generated with slightly focused Gaussian
input onto SLM. (c) Interference pattern obtained when the LG beams are imaged
through a Mach-Zehnder interometer with Dove prism in one of the arms.

prism flipped the phase effectively converting a +l mode to a �l mode. The resulting
superposition of ±l modes exhibits 2l lobes in the interference pattern, as shown in
Figure 7.7(c). This offers identification of the modes either by visual inspection (for
simple cases) or by analyzing the Fourier components of the image [202, 224].
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Figure 7.8: Measured CBL signal for an LG pump input beam with different l indices.
The images on the right panel show transverse intensity profiles of the CBL output
corresponding to different LG pumps. The bottom panel shows a reference two-photon
transition spectrum.

7.2.3 CBL generation with LG pump beams

The generated 150 mW LG beams were focused into the 87Rb enriched vapor cell
maintained at 130�C1 and the CBL output was measured for different l orders of
the pump (see Figure 7.8). The CBL output decreased as the order of l increased,
with no signal observed beyond l = 2. Beam shape imaging revealed an unexpected
superposition mode for the l = 1 LG pump.

7.3 Conclusion

We observed some interesting effects in the 778 nm degenerate FWM process, in partic-
ular the peak splitting observed in the coherent blue light emission for higher tempera-
tures of the vapor cell (shown in Figure 7.5) and the intensity profile of the CBL beam
(shown in Figure 7.8). For studying the OAM distribution in this diamond FWM pro-
cess, the main limitations were the maximum available pump power and the maximum
working temperature for the vapor cell. We have already obtained vapor cells, from
the University of Stuttgart, Germany, which could potentially sustain temperatures up
to 200�C. With this, we expect to see signal for higher l order inputs. A higher pump
power could also be obtained, if needed, either by using a Ti:Sapphire laser or with a
new TA chip that could output up to 4 W of optical power.

1The experiment was performed before we realized 120�C was the upper limit of safe operating
temperature for the cell.
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As outlined in Section 7.1.1, it is worth investigating the 778 nm degenerate FWM
process further for its relevance in fiber-based correlated photon pair sources and high-
dimensional OAM-encoded quantum memories. The scheme could be used for storing
optical phase information in cold atoms coupled to an ONF. Further, this opens a path
toward OAM-enabled hyperentanglement. Additionally, this could provide a method
to attain fiber-based novel wavelength lasers.



Conclusions and Outlook

The work presented in this thesis has largely been motivated by the usefulness of the op-
tical nanofiber-atom system toward quantum technology developments, in particular for
quantum information applications where a fiber-based system that naturally integrates
in the optical fiber network (a backbone for any information sharing and distribution
channel) is advantageous. We sought to extend the applications of the atom-nanofiber
platform for light-atom interactions, in particular with cold 87Rb atoms.

We demonstrated an electric quadrupole transition in a cold 87Rb atom cloud inter-
acting with 516.6 nm pump light facilitated by the intense gradient of the evanescent
field of the nanofber. This established ONFs as an excellent and accessible platform to
drive such quadrupole-allowed transitions. Direct access to electric quadrupole transi-
tions might be benefical for fiber-based clocks. In the specific case of the 5S1/2 ! 4D3/2

transition in 87Rb that we addressed, the allowed dipole cascaded decay may gener-
ate correlated photons at 1529 nm and 780 nm via the 5P3/2 state and at 1476 nm
and 795 nm via the 5P1/2 state. This could open up a possibility to develop a
fiber-integrated source of correlated photon-pairs relevant to telecommunications (as
1529 nm is a useful wavelength in the telecom C-band) and quantum information ap-
plications.

Typically in a MOT-ONF system, less than 10 atoms contribute to the signal. This
could be improved by trapping atoms in a dipole array close to the ONF. For fiber-
based traps, one of the crucial and non-trivial parameters is the polarization of the
fiber-guided light in the evanescent field on which the trapping potential depends. As
such the first important step to optimize fiber-based traps was to be able to determine
and control the polarization of the fiber-guided mode at the ONF. For this we adopted
a method of polarization control of the HE11 mode [97], based on imaging scattered
light (from the nanofiber) with a single lens. Notably, the use of a single imaging
lens to observe the angular distribution of Rayleigh scattered light emitted from the
nanofiber is a very useful technique for applications in situations with limited optical
access, like in our case.

With accurate polarization control, we were able to study the transition rate of a
single-frequency two-photon excitation process in 87Rb atoms as a function of helicity
of the excitation field. We first developed a theoretical framework for the transition
rate in an S ! S transition, which dictates a quadratic dependence on the helicity of
the excitation light field. While the transition rate is extinguished for paraxial exci-
tation with circularly polarized light, the transition rate is always non-zero owing to
the finite contribution of the longitudinal field in the ONF-guided field. The transition
rate, however, is minimized for the ONF-guided excitation field with quasi-circular
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polarization. These findings could potentially find applications in atom-based hybrid
quantum technologies where full control of quantum state selection is vital and could
open new ways of selecting transition pathways for frequency references and compact
optical clocks [157], novel fiber-based trapping schemes [28] and transfer of spin or
orbital angular momentum between light and atoms [130, 174]. State-selective excita-
tions [119] and spin-orbit coupling [225] could be further explored in the context of the
chiral nature of the evanescent field interactions.

Bringing our focus back to the implementation of a nanofiber trap, we implemented
a 1D lattice trap for 87Rb atoms near the nanofiber surface using a combination of a
red-detuned counter-propagating light field and a blue-detuned traveling light field in
the fiber-guided HE11 mode. The presence of the inherent elliptical polarization of
the fiber modes coupled with the lack of a suitable magic-wavelength for 87Rb for use
in nanofiber-based traps, due to either being too close to resonant transitions causing
heating or due to absorption by silica, makes it difficult to implement a deep trap at
submicron distances from the fiber surface. Loading of atoms in such a shallow trap
is not an easy problem to optimize manually. We used a machine learner optimizer
that leverages deep learning methods to increase the number of trapped 87Rb atoms
by 50% in a proof-of-principle experiment. We developed a theoretical model of the
absorption of a fiber-guided probe by atoms trapped in the evanescent field of the
nanofiber that enabled us to determine the number and average temperature of the
trapped atoms. We expect the number to be improved further by using a new ONF in
the experimental setup and by increasing the number of experimental parameters given
to the ML algorithm for optimization. In addition, we estimated the trap lifetime, an
important parameter for many applications, to be around 26 ms which could as well be
improved by an appropriate choice of cost function. Investigations of the capabilities
of this setup are planned, including optimizing the loading of atoms for collective
atom-light interactions which requires a large optical depths and appropriate phase-
matching, and increasing the number of nearest-neighbor interactions in a 1D lattice of
highly-excited Rydberg atoms. We envision that this will be feasible with the obtained
number of atoms trapped in the 1D array.

Rydberg atoms with their large electric dipole moments and long lifetime have been
the subject of intense research for their potential use in quantum information processing
and fundamental light-matter interaction studies. Rydberg atoms are versatile systems
for many-body physics studies owing to their strong dipole-dipole interactions [226],
for example numerical study on thermal-effects on a Rydberg blockaded atomic array
showing thermalization gives insights into many-body quantum thermodynamics [227].
Toward the integration of Rydberg atoms with an optical nanofiber system, our unit
has already demonstrated the generation of cold Rydberg atoms close to a nanofiber
surface [228]. In the vicinity of a surface, surface interactions plays a critical role. It is
advantageous to control the distance of Rydberg atoms from the nanofiber surface to
avoid ion deposition and our implementation of fiber trap serves as a stepping stone
for this goal. Furthermore with a new, thinner ONF (diameter ⇠350 nm) installed in
the MOT chamber, allowing for higher relative intensities of the blue-detuned trapping
field, we should be able to push the trapping sites further away reducing the surface
effects and the ion deposition.

Aside from the endeavors to integrate the Rydberg atoms to the ONF, the possibil-
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ity of developing correlated photon pairs at wavelengths relevant to telecommunications
and atomic transitions in the nanofiber-atom system needs to be further investigated. A
four-wave mixing process in an atomic medium is an efficient way to generate correlated
photon pairs in well-defined modes. We have performed preliminary investigations in
a FWM process involving two-photon excitations with 778 nm light that may have po-
tentials for application in a nanofiber system. With the availability of a Rb vapor cell
that can withstand temperatures up to 200�C, we would be able to achieve a regime of
high atomic density required to study this transition further. The LG beam generation
could also be improved by using Zernike polynomials and sophisticated algorithms like
the Gerchberg-Saxton algorithm. Entanglement of orbital angular momentum states is
worth exploring for its promising potential toward high-density quantum information
applications. Toward the study of correlated photon pair generation, further inves-
tigations in ONF-mediated 993 nm two-photon transition in cold Rb atoms are also
warranted. The ability to detect the infrared emissions (1324 nm and 1367 nm) with
recently purchased infrared detectors should allow us to explore the coherence aspects
of the transition.

In another direction, the strong atom-light coupling due to tightly confined mode
volume of the guided mode could be substantially enhanced with the addition of a
moderate finesse fiber in-line cavity, thereby improving single atom optical depth.
Coupled with fiber-based trapping this could open routes toward cavity-enhanced fiber-
connected quantum nodes. With this in mind, our unit has been studying and fabricat-
ing different nanofiber-cavity structures with focused ion-beam (FIB) milling [65, 229]
as a new tool in the ONF-based toolbox for atom manipulation and control.
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Appendix A

Guided Modes of a Step-Index Fiber

A.1 Eigenvalue Equations

We consider a step-index fiber that is a dielectric cylinder of radius a and refractive
index n1 surrounded by an infinite background medium of refractive index n2, where
n2 < n1. The wave equation of light propagation in such a fiber can be derived from
Maxwell’s equations and is given by [113],

r
2
E � µ0✏(r)

@2E

@t2
= �~r

✓
E

✏(r)
· ~r✏(r)

◆
. (A.1)

Here, E denotes the electric field vector, µ0 the vacuum permeability, and ✏ the electric
permittivity of the medium. The wave equation for the magnetic field H takes the
same form as Equation A.1. For a cylindrical symmetric waveguide, it is convenient
to derive the field components in cylindrical coordinates (r, ✓,'), and the solutions of
Equation A.1 for the axial component take the simple form of


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Hz(r, t)
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=
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�
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where � is the axial propagation constant of the field. Moreover, employing Maxwell’s
equations in cylindrical coordinates, the radial and azimuthal components can be ex-
pressed in terms of Ez and Hz
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The solution of the whole problem can now be reduced to solving the wave equation
for the z-component,


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+
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r
@r +

1

r2
@2
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+ 2
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Ez(r,')
Hz(r,')

�
= 0, (A.4)

where 2 = µ0✏!2
� �2 = n2k2

0 � �
2. The equation is separable with ansatz


Ez(r,')
Hz(r,')

�
= R(r)e±il', l 2 {0, 1, 2, . . .}. (A.5)

Inserting Equation A.5 into Equation A.4 gives a Bessel differential equation for R(r)
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◆�
R(r) = 0. (A.6)

For any lossless modes confined to the core, the axial propagation constant � is re-
stricted as given by

n2k0 < � < n1k0. (A.7)

The general solutions of Equation A.6 are Bessel functions of order l depending on the
sign of 2 such that

R(r) = AJl(r) + BYl(r),
2 > 0, (A.8)

R(r) = CIl(r) +DKl(r),
2 < 0. (A.9)

Here, Jl(r) and Yl(r) are the Bessel functions of the first and second kind, and Il(r)
and Kl(r) are the modified Bessel functions of the first and second kind, respectively,
all of order l. Since, Yl is singular at r = 0 and Il diverges as r ! 1, B = C = 0 for
physically reasonable solutions. The field components Ez and Hz can now be expressed
inside the core (r < a) as

Ez(r, t) = AEJl(hr) exp {i (!t± l'� �z)}, (A.10)
Hz(r, t) = AHJl(hr) exp {i (!t± l'� �z)}, (A.11)

with h =
q

n2
1k

2
0 � �

2, (A.12)

and outside the core (r > a) as

Ez(r, t) = DEJl(qr) exp {i (!t± l'� �z)}, (A.13)
Hz(r, t) = DHJl(qr) exp {i (!t± l'� �z)}, (A.14)

with q =
q
�2 � n2

2k
2
0. (A.15)

The normalization constants AE, AH , DE and DH as well as � can be obtained by con-
sidering the boundary conditions. The tangential components E',z, H',z are continuous
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at the core-cladding boundary, i.e.,

E',z(r = a)|core = E',z(r = a)|cladding,

H',z(r = a)|core = H',z(r = a)|cladding. (A.16)

These considerations together with Equations A.1, A.2, A.3, A.12, and A.15 yield the
following relations for the constants AE, AH , DE and DH
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(A.17)

Equation A.17 has a solution only when the determinant of the coefficients vanishes.
This requirement leads to the mode condition that determines the propagation constant
� of each mode
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(A.18)
The coefficients AE, AH , DE and DH can be determined by employing the solution for
� and the power of the electromagnetic field.
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(A.19)

The factor AE can be determined from the total transmitted power P via the relation,

AE =

s
4µ0!P

⇡a2�
(Din +Dout)

�1/2, (A.20)

with
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2 (ha)� J1(ha)J3(ha)), (A.21)
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To write the above expressions we used the notation s given by
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A.1.1 Fundamental mode HE11

The expression of the electric field components for a quasi-circularly polarized funda-
mental mode are given as follows.
Outside the fiber (where r > a):

Er(r,', z, t) = �iAE

�

2h
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Ez(r,', z, t) = AEJ1(hr) exp i(!t± '� �z). (A.24)

Inside the fiber (where r < a):
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Appendix B

Explicit expressions for u
(q)
ij matrices

The expressions for the u(q)
ij

matrices are taken directly from [123].
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Appendix C

Explicit expressions for {A⌦B}Kq
tensors

{A⌦B}0,0 = �
1
p
3
(A ·B) ,

{A⌦B}1,�1 =
1
p
2
(A0B�1 � A�1B0) ,
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1
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2
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{A⌦B}1,1 =
1
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2
(A1B0 � A0B1) ,

{A⌦B}2,�2 = A�1B�1, (C.1)
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Appendix D

Deep Learning

In general machine learning refers to any process that attempts to find an algorithmic
solution to a particular problem using computational means. This is typically achieved
by starting with some mathematical model representing a map from inputs to out-
puts and iteratively adjusting the free parameters until a desired output is achieved.
The process of incrementally adjusting the model parameters is referred to as train-
ing/learning. This will not necessarily be a unique model, but it is a model with some
measure of accuracy. A model is good if it is able to generalize and perform well on
task outside the set of training data.

Construction of a model that can represent data in some meaningful way and po-
tentially provide a useful mapping is a problem that has existed in machine learning
since its conception. Deep learning techniques provide a convenient and computation-
ally efficient means to perform such a mapping. Deep learning in essence refers to
the representation of a mapping from input to output data using multiple layers of
adaptive nonlinear elements.

D.1 Artificial neural networks (ANNs)

The building blocks of deep learning approaches are known as ANNs, which are layers
of connected elements which can be used to approximate functions. The term neural
network has its origins in attempts to find mathematical representations of information
processing in biological brains [230]. A base structure of such a neural network is an
artificial neuron that performs the mapping

f(X ) = h(X ·W +B), (D.1)

where X is the input data, f(X ) is the output, h is some nonlinear activation function
where the input is scaled by some weight matrix W, and B is a bias term. This struc-
ture can be used to represent a function through a feed-forward neural network model
also known as multilayer perceptron, where multiple layers of the base structure with
adaptive parameters describe a series of functional transformations to approximate a
target function. The function can be represented in the form of a network diagram
as shown in Figure D.1. Typically as the complexity of the function we wish to ap-
proximate increases so will the number of layers and neurons needed to represent this
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Figure D.1: Neural network diagram for a fully-connected five layers network. The
input to output mapping is achieved through three hidden layers consisting neurons
connected with weight parameters represented by links between the nodes. The output
of the network together with the target values determines the cost function for the
network.

function.

D.2 Network training

The goal of training is to be able to find the set of network parameters for which
the model function approximates an arbitrary target function. Let us suppose we
have some model f(X ;✓) such that the mapping f : X ! Y is subject to the model
parameters ✓. The goal is to be able to determine ✓. In particular, for each parameter
✓i 2 ✓, the aim is to find a set of rules that can be iteratively applied to reach an
accurate representation of the desired function. A simple rule is gradient descent that
adds small corrections to the parameters proportional to the gradient of a cost function
at each time step

✓t+1
i

= ✓t
i
� ⌘

@C (X , ✓t
i
)

@✓i
, (D.2)

where the t in the superscript denotes the time step, C (X , ✓t
i
) is the cost function and

⌘ is an adaptive scaling factor that describes the learning rate [191]. A cost function is
some measure of accuracy of the model, rather its deviation from actual target value,
the choice of which depends on the specific application. One such choice of cost function
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is the mean squared error (MSE) given by

MSE =
1

N

mX

i=1

(Yi � Ỹi)
2
, (D.3)

where Ỹ are the target values and m is the number of samples of training data.

D.3 Backpropagation

It is clear from Equation D.2 that we need an efficient technique for evaluating the
gradient of the cost function for a neural network. In a general feed-forward network
(see Figure D.1), each unit (neuron) computes a weighted sum of its inputs of the form

am+1
j

= h
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i

wm

ji
am
i
+ bm

i

!
(D.4)

where h is a nonlinear activation function, am
i

are the neurons in the m-th layer, bm
i

are the associated biases, and wm

ji
are the weights representing the strengths of the

connections between the neurons in the consecutive layers. Our aim is to determine
@C/@✓ where the parameters, ✓, are the weights, biases, and values of each neurons.
We introduce a notation zm+1

j
, such that

zm+1
j

=
X

i

wm

ji
am
i
+ bm

i
. (D.5)

Now consider the evaluation of the derivative of the cost, C, with respect to a weight
wl�1

ji
associated with the final layer, l. The partial derivative of the cost function can

be expressed explicitly using chain rule as
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@zl

j
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j

@zl
j

@C

@al
j

. (D.6)

Each of these terms can be calculated easily. The first term is simply the output from
the previous neuron, al�1

i
. The second term is the derivative of the activation function.

And the final term is the change in cost with respect to the output of the network. For
mean squared error with a single training it is simply reduces to 2(al

k
� ỹk).

Similarly the partial derivative of the cost with respect to weights, wl�2
ji

can be
expressed as

@C

@wl�2
ji

=
@zl�1

j

@wl�2
ji

@al�1
j

@zl�1
j

@C

@al�1
j

. (D.7)

The expression is similar to the one in Equation D.6, with the first term simply be-
ing the output of neuron in the previous layer, al�2

i
, and the second term being the

derivative of the activation function. The third term corresponds to the change in cost
due to change in the neuron al�1

j
. Any change in al�1

j
affects the cost through all the

connections in l-th layer. The third term is then obtained by summing over all the
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neurons in the final layer,

@C

@al�1
j

=
X

k

@zl
k

@al�1
j

@al
k

@zl
k

@C

@al
k

. (D.8)

The first term is wl�1
kj

. The second and the third term are common to the ones in
Equation D.6 and are calculated to find the gradient of the cost for final layer. Once
calculated these terms could be propagated backwards to subsequently calculate the
gradients with respect to the parameters in every preceding layers. This is how back-
propagation works. Starting with the final layer, the gradients with respect to all the
network parameters could be computed.
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