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The d ¼ 2 critical Ising model is described by an exactly solvable conformal field theory (CFT). The
deformation to d ¼ 2þ ϵ is a relatively simple system at strong coupling outside of even dimensions.
Using novel numerical and analytical conformal bootstrap methods in Lorentzian signature, we show that
the leading corrections to the Ising data are more singular than ϵ. There must be infinitely many new states
due to the d-dependence of conformal symmetry. The linear independence of conformal blocks is central to
this bootstrap approach, which can be extended to more rigorous studies of nonpositive systems, such as
nonunitary, defect/boundary and thermal CFTs.

DOI: 10.1103/PhysRevD.105.L091902

I. INTRODUCTION

The d-dimensional Ising model is a fundamental model
in statistical physics and condensed matter physics.
Historically, it was proposed by Lenz to describe ferro-
magnetism and the case of d ¼ 1 was solved by Ising. This
simple model displays rich physics and captures some main
traits of phase transitions and many-body problems. At
criticality, it belongs to one of the simplest universality
classes, characterized by the global Z2 symmetry. For
d > 4, the critical behavior of the Ising model is described
by Landau’s mean-field theory [1], in which fluctuations
are neglected due to the averaging effects of many adjacent
spins. At lower d, fluctuations play a more significant role.
The mean-field description is not sufficient for d ≤ 4 and
the Ising critical exponents have nontrivial d-dependence
[2]. As a natural continuation of Landau’s theory, Wilson
and Fisher calculated the critical exponents in d ¼ 4 − ϵ
dimensions using the perturbative ϵ expansion [4]. The ϵ
expansion has proved to be a valuable tool in the studies of
critical phenomena [5,6].
At d ¼ 2, it is well known that the Ising model is solvable

since Onsager’s groundbreaking results [7]. The critical
behavior is described by the fixed point of renormalization
group flows. In particular, scale invariance of the fixed point
is promoted to conformal invariance. As another natural
continuation, it would be interesting to deform the 2d exact

solution to d ¼ 2þ ϵ dimensions. The ϵ expansion usually
concerns weakly coupled systems [8–11], but the case here
remains strongly coupled [12], so the intriguing strong
coupling physics becomes more manifest. More recently,
the ϵ ¼ d − 2 expansion has also been used to study
deconfined quantum criticality [13,14]. (See [15] for a
numerical conformal bootstrap study.) We notice a decep-
tively simple question:
Is the ϵ expansion of a strongly coupled system given by

integer power series?
In the standard ϵ expansion, the corrections to the d ¼ 4

data can be computed order by order in ϵ, given by
asymptotic series [16]. It has been argued that they are
integer power series based on the renormalization group
(RG) analysis in the minimal subtraction scheme [17,18].
Naively, one might think that the ϵ ¼ d − 2 expansion
should also be the case. For instance, the scaling dimension
of the lowest Z2-even operator was assumed to receive
integer power corrections in the study of disorder effects in
2þ ϵ dimensions [19]. However, the standard ϵ expansion is
around a Gaussian theory. The weak coupling techniques
and arguments do not easily extend to the strong coupling
situation. For theOðnÞmodel, Cardy and Hamber performed
an elegant analysis around n ¼ d ¼ 2 based on some
analyticity assumptions on the RG equations [20], but these
results do not apply for d ¼ 2þ ϵ with n < 2.
In this paper we will study the d ¼ 2þ ϵ Ising model

using the conformal bootstrap. The conformal bootstrap
program aims to classify and solve conformal field
theories (CFTs) by general principles and consistency
conditions [21,22], without resorting to the weak coupling
expansion. For d ¼ 2, conformal symmetry becomes
infinite dimensional and this program can be carried
out rather successfully [23,24]. The studies in d > 2
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dimensions are more challenging as conformal symmetry
is less constraining. Nevertheless, considerable progress
has been achieved due to the seminal work [25], in which
the unitarity assumption and the crossing equations are
formulated as inequalities. This modern bootstrap
approach has led to rigorous bounds on the space of
unitary CFTs, such as the most precise determinations of
the d ¼ 3 Ising critical exponents [26–29]. We refer to
[30–34] for useful reviews and lecture notes.
The critical Ising model can be viewed as a continuous

family of Z2-covariant CFTs parametrized by d. The case of
noninteger d has also been studied by the unitary bootstrap
methods in [35–37]. The bounds exhibit similar features as
those at d ¼ 2, 3 and the results are consistent with the
(4 − d) expansion. However, a subtlety is that the Wilson-
Fisher fixed point is nonunitary in noninteger dimensions,
because the spectrum contains descendant states of complex
scaling dimensions [38]. It would be helpful to consider
complementary approaches that are not based on unitarity,
such as the flowmethod [39] and the truncation method [40].
The truncated bootstrap approach has been applied to the
study of nonpositive problems [41–52]. In the original
formulation [40], the truncated problem is encoded in
determinants. In [53], we proposed some new ingredients,
which we believe are important to a more systematic
formulation. We emphasized the essential role of linear
independence and introduced the concept of norm to the
truncation approach. (See [54,55] for the recent implemen-
tation using reinforcement-learning algorithms.) We will
apply these notions to the numerical bootstrap study of
the d ¼ 2þ ϵ Ising CFT.
On the other hand, it was noticed in [37] that the tentative

spectrum from the unitary numerical approach exhibits a
transition at d ¼ 2þ ϵ with ϵ ∼ 0.2 small but finite. Such a
transition is expected since d ¼ 2 is special. At d ¼ 2,
the spectrum is organized into Virasoro multiplets and
the corresponding Regge trajectories have constant twists
τ ¼ Δ − l with integer spacing. At d ¼ 3, the twist spec-
trum of the Ising CFT is additive and the Regge trajectories
have more interesting dependence on spin. Infinitely many
high spin operators have twists asymptotic to the sum of two
lower twists [56,57]. For example, the Regge trajectories
½σσ�n are associated with the lowestZ2-odd scalar σ and they
have twist accumulation points at 2Δσ þ 2n. Wewill discuss
the location of the transition to the double-twist spectrum
using analytic bootstrap techniques.
To address our question, we will study the 4-point

function of the lowest Z2-odd scalar operator σ. We focus
on the leading corrections and assume:
(1) The critical Ising model is conformally invariant in

d ¼ 2þ ϵ dimensions with jϵj ≪ 1.
(2) The leading corrections to the 2d data are linear in ϵ:

Δσ ¼ Δð0Þ
σ þ ϵΔð1Þ

σ þ…; ð1Þ

Δi ¼ Δð0Þ
i þ ϵΔð1Þ

i þ…; ð2Þ

λi ¼ λð0Þi þ ϵλð1Þi þ…; ð3Þ

where Δi ¼ ΔOi
and λi ¼ λσσOi

are the scaling
dimension and operator product expansion (OPE)
coefficient of Oi. The zeroth order values can be
derived from the exact solution at d ¼ 2. We will

further assume that Δð1Þ
i , λð1Þi do not grow too rapidly

with Δð0Þ
i , so the conformal block summation is

convergent [58].
In the first assumption, scale invariance of the Ising fixed
point is enhanced to conformal invariance. There is ample
evidence for conformal invariance in d ¼ 2, 3, 4 − ϵ
dimensions, so we expect that this property extends to
d ¼ 2þ ϵ [59]. In the second assumption, the leading
corrections cannot be more singular since they have positive
integer powers. They cannot start from second or higher
orders in ϵ because the d-dependence of conformal blocks
leads to first-order terms in the crossing equation.
Below we will examine if this is a consistent scenario. It

turns out that the assumptions 1 and 2 are not consistent, so
the corrections are expected to be more singular than ϵ1.

II. THE CROSSING EQUATION

We consider the 4-point function of the lowest Z2-odd
operator σ,

hσðx1Þσðx2Þσðx3Þσðx4Þi ¼
Gðz; z̄Þ
x2Δσ
12 x2Δσ

34

: ð4Þ

The conformally invariant cross ratios are

u ¼ zz̄ ¼ x212x
2
34

x213x
2
24

; v ¼ ð1 − zÞð1 − z̄Þ ¼ x214x
2
23

x213x
2
24

: ð5Þ

The crossing equation for Gðz; z̄Þ reads,
vΔσGðz; z̄Þ ¼ uΔσGð1 − z̄; 1 − zÞ: ð6Þ

In the ϵ ¼ d − 2 expansion, we have

Gðz; z̄Þ ¼ Gð0Þðz; z̄Þ þ ϵGð1Þðz; z̄Þ þ � � � ; ð7Þ

where the 2d solution reads

Gð0Þðz; z̄Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ffiffiffi

u
p þ ffiffiffi

v
pp

ffiffiffi
2

p
v1=8

; ð8Þ

and Gð1Þðz; z̄Þ can be written as convergent power series in
z, z̄ in the regime 0 ≤ z, z̄ < 1. After the conformal block
decomposition, the crossing equation becomes

X
i

λ2i Fiðz; z̄Þ ¼ 0; ð9Þ
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where Fiðz; z̄Þ ¼ vΔσGΔi;liðz; z̄Þ − ðz ↔ 1 − z̄Þ and GΔi;li
is the global conformal block for the conformal multiplet
labeled by the primary operator Oi. To first order in ϵ, the
crossing equation reads

X
i

λð0Þi ðλð0Þi Δð1Þ
σ ∂Δσ

þ λð0Þi Δð1Þ
i ∂Δi

þ 2λð1Þi ÞFiðz; z̄Þ

¼ ð−1Þ
X
i

λ2i ∂dFiðz; z̄Þ; ð10Þ

which will be written more compactly in (13). Note that the
derivative ∂d extracts the d-dependence of GΔ;l. After

taking the derivatives, we set fd;Δi; λig → f2;Δð0Þ
i ; λð0Þi g.

We do not make any assumptions about the signs

of fΔð1Þ
σ ;Δð1Þ

i ; λð1Þi g.
Although the left-hand side of (10) involves an infinite

number of free parameters, the building blocks are the
simple 2d conformal blocks [71]

Gd¼2
Δ;l ðz; z̄Þ ¼

1

1þ δl;0
ðkΔþlðzÞkΔ−lðz̄Þ þ ðz ↔ z̄ÞÞ; ð11Þ

where kβðxÞ ¼ xβ=22F1ðβ=2; β=2; β; xÞ is the SLð2;RÞ
block with identical external scaling dimensions. Since

each term is multiplied by λð0Þi , the intermediate states are
the same as those in 2d and their twists are given by

fτð0Þi g ¼ f4n; 4nþ 1g; ð12Þ

where n ¼ 0; 1; 2;… but τð0Þ ≠ 5. Note that the twist-5
trajectory and the twist-1 spin-2 state are absent in the 2d-
intermediate spectrum of the σ × σ OPE. New states cannot
contribute to the OPE at order ϵ1 because their squared OPE
coefficients are at least of order ϵ2. This applies to both
primary and descendant states [78]. Since the 2d Ising
model is unitary, we do not need to worry about potential
cancellation of finite mixed contributions. On the contrary,
the right hand side of (10) has no free parameter. We can
compute the sum based on the 2d data using the general d
formula of conformal blocks [79]. Then we take the d
derivative and set d → 2.
In the “bra–ket” notation, the crossing equation (10)

reads

Δð1Þ
σ jΔσi þ

X
i

ðΔð1Þ
i jΔii þ λð1Þi jλiiÞ ¼ −jdi; ð13Þ

where jai denotes the contribution generated by the change
in a. Our question in the introduction becomes: Do
jΔσi; jΔii; jλii form a complete set of basis for jdi? It turns
out that the answer is negative [80]. The target jdi does not
belong to the vector space spanned by fjΔσi; jΔii; jλiig.
Before analyzing the crossing equation (13), let us

discuss the building blocks jΔσi, jλii, jΔii, jdi. The first

one can be easily derived from (8). Then a global conformal
block takes a factorized form at d ¼ 2, given in (11). (See
[81] for a general d generalization.) According to the z
dependence, we have

X
i

ðΔð1Þ
i jΔiiþ λð1Þi jλiiÞ

¼
X
β

v
1
8ðAβðz̄ÞkβðzÞþBβðz̄Þ∂βkβðzÞÞ− ðz↔ 1− z̄Þ; ð14Þ

where β ∈ fτð0Þg is defined in (12) and Aβðz̄Þ, Bβðz̄Þ
encode the dependence on z̄. We can use the general d
formula in [79] to compute numerically jdi order by order
in z at any z̄ in [0, 1) [82]. The analytic computation of jdi
based on [83] is described in the Supplemental
Material [84].

III. NUMERICAL CONFORMAL BOOTSTRAP

Let us perform a numerical study of the crossing equa-
tion (13), which has no solution if fjdi; jΔσi; jΔii; jλiig are
linearly independent. We can detect the linear independence
by a norm,

η ¼
����jdi þ Δð1Þ

σ jΔσi þ
X
i

Δð1Þ
i jΔii þ

X
i

λð1Þi jλii
����; ð15Þ

which is the distance between the target point determined
by jdi and a point in the space spanned by jΔσi, jλii, jΔii.
If there exists at least one crossing solution, then we
should find ηmin ¼ 0. We define the norm in terms of
sampling points [85]

kHk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hHjHi

p
¼
�
1

N

XN
i¼1

μðzi; z̄iÞjHðzi; z̄iÞj2
�

1=2
; ð16Þ

where the measure μðz; z̄Þwill be specified later. The inner
product hH1jH2i is defined as a weighted sum of the
product H�

1H2. We consider the Lorentzian regime, so z, z̄
are independent, real variables. We further concentrate on
the region near the double-lightcone limit with 0 < z ≪ 1
and 0 ≪ z̄ < 1, which will also be studied analytically. We
use sampling rather than derivative equations because it is
easier to assign a proper measure μðz; z̄Þ.
In practice, we need to truncate the conformal block

summation to a finite sum in the numerical studies. This is
sometimes called OPE truncation [86]. Then we need to
know if a finite ηmin is due to the OPE truncation or absence
of crossing solution. Since we are sampling in a subregion,
the prefactor of ηmin is scheme-dependent and the finite ηmin
becomes smaller as we increase the truncation cutoff. To
distinguish between the two origins, we examine the
dependence of ηmin on the local sampling regions labeled
by z0. If ηmin > 0 is mainly due to the OPE truncation, then
the functional form of ηminðz0Þ will change dramatically
with the cutoff. Otherwise, ηminðz0Þ will only get a smaller
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prefactor as more intermediate states are introduced. Near
the light cone, we can readily distinguish between them
based on the scaling behavior.
Near the light cone z ¼ 0, we can truncate the sum (14)

to low β. But we will not truncate the spin sum, so Aβðz̄Þ,
Bβðz̄Þ in (14) remain arbitrary [90]. They will be evaluated
near the other light cone z̄ ¼ 1. In the η minimization,
Aβðz̄Þ and Bβðz̄Þ are approximated by truncated Taylor
series about the center of the sampling region. We use high-
order Taylor polynomials to make the associated errors
negligible. We can also view Aβðz̄Þ, Bβðz̄Þ at different z̄ as
independent parameters, but the results remain the same in
the cases examined.
Now we discuss the choice of μ. A simple measure is

μsimpleðz; z̄Þ ¼ 1: ð17Þ

In Fig. 1 we show the dependence of ηmin on the sampling
region labeled by z0. One can notice the scaling behavior

ηminðz0Þ ∝ z0α; ð18Þ

which becomes more precise at small z0. The exponent α is
about 1.13(1) in the regime 10−6 < z0 < 10−3, in which jdi
can be computed by a direct summation over spin. For
z0 < 10−6, we use the analytic expression of jdi in the
Supplemental Material [84] to obtain a more precise value
α ≈ 1.125. These results imply that jdi contains a vector
that scales as λ1.125 under fz; 1 − z̄g → fλz; λð1 − z̄Þg.
Furthermore, it does not belong to the space spanned by
fjΔσi; jλii; jΔiig, so no crossing solution can be found. We
will give an analytic understanding of the linear independ-
ence later.
We can also consider a refined norm with a cutoff

dependent measure. Near the light cone, the lowest β
contribution dominates the OPE truncation error, so we use

μrefinedðz; z̄Þ ¼ jzβ�=2 − ð1 − z̄Þβ�=2j−2; ð19Þ

where β� is the cutoff for the β summation in (14). If a
crossing solution exists, the exponents should always be
positive because the OPE truncation errors are of higher

order in z, 1 − z̄ than μ−1=2� . In Fig. 2, we compare the results
of different β�. One can see that the exponent α decreases
with the cutoff β� and becomes negative, implying that the
OPE truncation is not the main origin of ηmin > 0. The
approximate values of the scaling exponents are 0.63(1),
−0.87ð1Þ, −2.87ð1Þ, where the latter two are consistent with
αrefined ≈ αsimple − β�=2. A negative exponent also implies a
divergent ηmin in the double light cone limit z, 1 − z̄ → 0,
providing a clear signature for the absence of a crossing
solution.
The η minimization results have a geometric interpreta-

tion, as it induces a special vector jNi orthogonal to the basis
vectors. The squared minimal distance η2min is precisely the
inner product of jNi and jdi. When ηmin > 0, there is no
crossing solution due to a finite distance between the target
point and the space spanned by the basis vectors.

IV. ANALYTICAL CONFORMAL BOOTSTRAP

For a deeper understanding, let us study the crossing
equation (13) in the analytic light cone expansions. We will
find obstructions from both regular and bisingular terms.
First, we discuss the inconsistency from regular terms.

Near the double light cone limit, the target vector can be
well approximated by

jdi ¼ z

4
ffiffiffi
2

p −
3zð1 − z̄Þ18

16G
− ðz ↔ 1 − z̄Þ þ � � � ; ð20Þ

where G ¼ Γð1=4Þ2ð2πÞ−3=2 is Gauss’s constant and …
indicates higher order terms. The scaling behavior

FIG. 1. Log-log plot of ηminðz0Þ with a simple measure (17),
where z0 labels the sample region. The sampling points are at z,
1 − z̄ ¼ z0 × 10−k=10 with z ≠ 1 − z̄ and k ¼ 0; 1; 2;…; 10. The
scaling behavior is not sensitive to the β truncation. A larger β
cutoff reduces the prefactor, but does not modify the leading
scaling behavior. Therefore, a finite ηmin is mainly due to the
absence of crossing solution, not the β truncation.

FIG. 2. Log-log plot of ηminðz0Þ with a refined measure (19).
Here the measure depends on the cutoff β� ¼ 1, 4, 8. The
sampling points are the same as those in Fig. 1. The scaling
exponents decrease with the β cutoff and become negative, so the
β truncation is not the main source and a finite ηmin is due to
absence of crossing solution.
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ηminðz0Þ ∝ z1.1250 in the numerical analysis is associated
with the leading regular term in (20),

zð1 − z̄Þ18 − z
1
8ð1 − z̄Þ: ð21Þ

In the light cone limit z → 0, the exponents of z are
associated with the half twists of primary and descendant
states in the direct-channel OPE. In the double light cone
expansion, we expect that the exponents of u, v are
associated with intermediate twists [91]: vΔσGðz; z̄Þ ¼P

i;j ci;ju
τi=2vτj=2, such as (8). Since the double-

twist trajectories ½σσ�n are absent in 2d, the first term
zð1 − z̄Þ1=8 can only come from the direct-channel contri-
bution. One can show that the structure of kβðzÞ in (14) is
inconsistent with the explicit expression of jdi, so the
crossing equation (13) has no solution.
The d ¼ 2 solution is very special. All the regular terms

have vanishing coefficients, so the double-twist trajectories
½σσ�n can be absent. At first order in ϵ ¼ d − 2, the
d-dependence of conformal symmetry requires the pres-
ence of double twist states in the σ × σ OPE. From this
analytic perspective, the spectrum transition takes place at
d ¼ 2þ 0þ. Usually, the presence of double-twist states is
based on the assumption of a twist gap [56,57], but here
we show that they are required by conformal symmetry
even if the twist gap vanishes. Furthermore, we expect
the existence of other double/multitwist states, but the
more complicated ones should be suppressed by higher
powers of ϵ.
Second, we consider the inconsistency associated

with bi-singular terms. The presence of double-twist
trajectories is not sufficient. Another obstruction to
solving (13) is the large spacing of the twist spectrum
(12). We can simplify the analysis by focusing on the
bi-singular terms. To match the power laws in jdib:s:,
the functions Aβðz̄Þ, Bβðz̄Þ in (14) should take
the form

P∞
k¼0ða0;k þ a1;k logð1 − z̄ÞÞð1 − z̄Þk=2−1=8, with

an;k replaced by bn;k for Bβðz̄Þ. We introduce logð1 − z̄Þ
because ∂βkβðzÞ involves log z. The exponents take the
expected values and there is no double-twist exponents, so
naively we may try to solve the crossing equation order by
order. Let us count the total power of z, 1 − z̄. For
example, the first line of Eq. (10) in the Supplemental
Material [84] contains terms of order 1, 3=2. After solving
the crossing equation to order 2, we substitute the
solutions of an;k, bn;k into the 5=2 order equation. We
find that the sum below has a fixed coefficient

�
Δð1Þ

σ jΔσi þ
X
i

Δð1Þ
i jΔii þ

X
i

λð1Þi jλii þ jdi
�

b:s:

¼ −
6

ffiffiffi
2

p

539
ðzð1 − z̄Þ3=2 − z3=2ð1 − z̄ÞÞ þ � � � ; ð22Þ

so the bisingular part of the crossing equation (13) has no
solution beyond order 2. To construct a crossing solution,
one can reduce the spacing of the twist spectrum from 4 to
2, as in the standard case of generalized free theory.
The d ¼ 2 solution is possible because of the special

structure of 2d conformal blocks. As 2d global conformal
blocks are invariant under l → −l, the spectrum is
symmetric in twist Δ − l, and conformal spin Δþ l.
This explains the large spacing in intermediate twist
spectrum, which is dual to that of 2l [92]. As only even
spin states appear in the σ × σ OPE, the 2d twist spacing is
4. This large spacing is inconsistent with the general d
structure of conformal blocks.

V. DISCUSSION

We have investigated the d ¼ 2þ ϵ critical Ising model
using novel numerical and analytical conformal bootstrap
methods. Our analyses of the crossing equation (13)
disprove the naive expectation that the leading corrections
are linear in ϵ. The d-dependence of global conformal
symmetry implies the existence of new intermediate states,
such as double twist trajectories. But the intermediate
spectrum is the same as the d ¼ 2 case at order ϵ if the
naive expectation is correct. No solution to the crossing
equation can be found due to the linear independence of
conformal blocks. Since the obstructions are related to the
speciality of d ¼ 2, we expect them to appear also in other
2d CFTs.
A direct consequence is that the leading corrections to

the 2d data should be more singular than ϵ1. The presence
of ϵa corrections with 0 < a < 1 will imply strong
nonunitarity of the Ising CFT below d ¼ 2. This is
consistent with the observation of two kinks in the
d < 2 unitary bootstrap bounds in [94]. The leading
corrections may take the form of order ϵ1=k with
k ¼ 2; 3;…. One can rule out the possibility that only
scaling dimensions receive ϵ1=k corrections by adding
higher β derivatives of kβðzÞ to (14), then there should be
infinitely many new states. Similar to the XY model
results in [95], the simplest resolution could be that the
leading corrections are of order ϵ1=2. For d < 2, the scaling
dimensions can be complex conjugate pairs and the OPE
coefficients of new states can be imaginary numbers. For
perturbative RG fixed points, the ϵ1=2 behavior has also
been found in the cases with two marginal operators, such
as the d ¼ 4 − ϵ random Ising model [96]. In general, the
square root behavior can appear around a bifurcation point
at which two fixed points collide [97–100].
Although we show there are infinitely many new states,

it is still unclear if the low-lying scaling dimensions
receive singular corrections. It may be helpful to learn
from other analytical insights [61–70,101–106]. It would
also be fascinating to study other strongly coupled CFTs
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in 2þ ϵ dimensions. For more complex problems, it could
be useful to assume a hierarchical structure in operator
product expansion [53,107].
Many statistical physics models violate reflection

positivity. Similarly, the boundary/defect bootstrap
[42,108–112] and thermal bootstrap [113–115] problems
do not obey positivity constraints. In the usual numerical
bootstrap, the positivity constraints are crucial to the
derivation of rigorous bounds. Here we show that the
inconsistent theory space can be ruled out without using
positivity. We plan to revisit the nonpositive bootstrap
problems from the new perspective.
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