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Abstract
We continue the study of the fractional variation following the distributional approach
developed in the previousworks Bruè et al. (2021), Comi and Stefani (2019), Comi and
Stefani (2019). We provide a general analysis of the distributional space BV α,p(Rn)

of L p functions, with p ∈ [1,+∞], possessing finite fractional variation of order
α ∈ (0, 1). Our two main results deal with the absolute continuity property of the
fractional variation with respect to the Hausdorff measure and the existence of the
precise representative of a BV α,p function.
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1 Introduction

1.1 The fractional variation

For a parameter α ∈ (0, 1) and an exponent p ∈ [1,+∞], the space of L p functions
with bounded fractional variation is

BV α,p(Rn) = {
f ∈ L p(Rn) : |Dα f |(Rn) < +∞}

, (1.1)

where

|Dα f |(Rn) = sup

{∫

Rn
f divαϕ dx : ϕ ∈ C∞

c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}

(1.2)
is the (total) fractional variation of the function f ∈ L p(Rn). Here and in the follow-
ing, for sufficiently smooth functions and vector-fields, we let

∇α f (x) = μn,α

∫

Rn

(y − x)( f (y) − f (x))

|y − x |n+α+1 dy, x ∈ R
n,

and

divαϕ(x) = μn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy, x ∈ R
n,

be the fractional gradient and the fractional divergence operators respectively, where
μn,α is a suitable renormalizing constant depending on n and α only. The above
fractional operators are dual, in the sense that

∫

Rn
f divαϕ dx = −

∫

Rn
ϕ · ∇α f dx . (1.3)

The fractional variation was considered by the first and the third authors in the
work [7] in the geometric framework p = 1, also in relation with the naturally asso-
ciated notion of fractional Caccioppoli perimeter. The fractional variation of an L p

function for an arbitrary exponent p ∈ [1,+∞] was then studied by the same authors
in the subsequent paper [8], in connection with some embedding-type results arising
from some optimal inequalities proved by the second author [31, 32].

Since the first appearance of the fractional gradient [16], the literature around ∇α

and divα has been rapidly growing in various directions, such as the study of PDEs
[25, 26, 28, 29] and of functionals [4, 5, 17] involving these fractional operators, the
discovery of new optimal embedding estimates [27, 31, 32] and the development of a
distributional and asymptotic analysis in this fractional framework [6–8, 30]. We also
refer the reader to the survey [33] and to the monograph [24].

At the present stage of the theory, the fine properties of functions having finite
fractional variation are not completely understood and, to our knowledge, only some
results [7] in the geometric regime p = 1 are available in the literature.

Besides providing a general treatment of the space BV α,p(Rn), in the present paper
we aim to develop the existing theory in this direction. On the one side, we study the
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relation between the fractional variation and the Hausdorff measure. On the other side,
we establish the existence of the precise representative of a BV α,p function.

1.2 The Hausdorff dimension of the fractional variation

The natural idea behind the definition of the space BV α,p(Rn) is that a function
f ∈ L p(Rn) belongs to BV α,p(Rn) if and only if there exists a finite vector-valued
Radon measure Dα f ∈ M (Rn;Rn) such that

∫

Rn
f divαϕ dx = −

∫

Rn
ϕ · dDα f

for all ϕ ∈ C∞
c (Rn;Rn), generalizing the integration-by-parts formula (1.3).

In the classical integer case α = 1, the variation of a function f ∈ BV (Rn) is
known to satisfy

|Df | � H n−1, (1.4)

where H s is the s-dimensional Hausdorff measure. If f = χE for some measurable
set E ⊂ R

n , then it actually holds that

|DχE | = H n−1 F E, (1.5)

where F E is the De Giorgi reduced boundary of E , see the monographs [3, 20].
Roughly speaking, formulas (1.4) and (1.5) mean that the variation measure of a

BV function in R
n lives on sets with Hausdorff dimension n − 1 at least. By the

analogy between the integer and the fractional settings, one may expect that a similar
phenomenon should occur also for the fractional variation of order α ∈ (0, 1) on a
set of Hausdorff dimension n − α at least. In [7,Corollary 5.4], the first and the third
authors confirmed this parallelism by showing that, for a measurable set E ⊂ R

n such
that χE ∈ BV α(Rn) (or, more generally, for any measurable set having locally finite
fractional Caccioppoli perimeter, see [7,Definition 4.1]), it holds that

|DαχE | ≤ cn,α H
n−α F αE, (1.6)

where cn,α > 0 depends on n and α only and F αE is the fractional analogue of the
De Giorgi reduced boundary (1.5), the so-called fractional reduced boundary of E ,
see [7,Definition 4.7]. However, as shown in [7,Lemma 3.28] by the same authors, if
f ∈ BV α(Rn) then the function u = I1−α f (where Is is the Riesz potential of order
s ∈ (0, n), see below for the precise definition) does satisfy |Du|(Rn) < +∞, with

Du = Dα f in M (Rn;Rn). (1.7)

In particular, by combining (1.4) with the above (1.7), we immediately get that

|Dα f | � H n−1 (1.8)
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for all f ∈ BV α(Rn), thus ruling out the existence of a coarea formula in this fractional
setting, see [7,Corollary 5.6].

Equations (1.6) and (1.8) illustrate the richness arising from the innocent-looking
definition (1.2) and lead to the idea that the behavior of the fractional variation of a
function f ∈ L p(Rn) may depend on its integrability exponent p ∈ [1,+∞]. Our
first main result provides a rigorous formulation of this intuitive idea and can be stated
as follows.

Theorem 1 (Absolute continuity properties of the fractional variation) Let α ∈
(0, 1), p ∈ [1,+∞] and assume that f ∈ BV α,p(Rn). We have the following cases:

(i) if p ∈
[
1, n

1−α

)
, then |Dα f | � H n−1;

(ii) if p ∈
[

n
1−α

,+∞
]
, then |Dα f | � H n−α− n

p .

As shown by Theorem 1, the fractional variation in the subcritical regime p < n
1−α

is comparablewith theHausdorffmeasure of dimensionn−1, in accordancewith (1.8).
In fact, we can actually prove a deeper property, in analogy with the relation (1.7).
Precisely, the Riesz potential operator

I1−α : BV α,p(Rn) → BV 1, np
n−(1−α)p (Rn)

is continuous whenever p < n
1−α

(see Proposition 4(i) below for the detailed state-
ment), from which item (i) in Theorem 1 immediately follows. Here and in the
following, for any p ∈ [1,+∞], we let

BV 1,p(Rn) = {
f ∈ L p(Rn) : |Df |(Rn) < +∞}

be the space of L p functions having finite variation, extending the definition in (1.1)
to the integer case α = 1.

In the supercritical regime p ≥ n
1−α

instead, the fractional variation is comparable
with the Hausdorff measure of dimension n−α − n

p , thus recovering (1.6) in the case
p = +∞. The proof of item (ii) of Theorem 1 is more delicate and requires a finer
analysis. The overall idea is to adapt the strategy developed in [7,Section 5] for sets
with (locally) finite fractional Caccioppoli perimeter to the present more general L p

framework. The key role in this approach is played by the following decay estimate
for the fractional variation of a function f ∈ BV α,p(Rn) with p ≥ n

n−α
,

|Dα f |(Br (x)) ≤ cn,α,p‖ f ‖L p(Rn) r
n−α− n

p , (1.9)

valid for |Dα f |-a.e. x ∈ R
n and all r > 0 sufficiently small, where cn,α,p > 0 is

a constant depending on n, α, and p only (see Theorem 10 below for the precise
statement). The validity of (1.9) is suggested by the following heuristic argument,
valid for all f ∈ BV α,p(Rn) such that

(Dα f ) j ≥ 0 for all j ∈ {1, . . . , n} . (1.10)
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If ϕ ∈ C∞
c (B2) is such that ϕ ≥ 0 and ϕ ≡ 1 on B1, then

(Dα f ) j (Br (x)) ≤
∫

Rn
ϕ

(
y − x

r

)
d(Dα f ) j (y)

= −r−α

∫

Rn
f (y) (∇αϕ) j

(
y − x

r

)
dy,

thanks to (1.3) and the α-homogeneity of the fractional gradient ([30,Theorem 4.3]),
so that

(Dα f ) j (Br (x)) ≤ ‖ f ‖L p(Rn)

(∫

Rn
|∇αϕ(y)| p

p−1 rn dy

)1− 1
p

r−α

= ‖ f ‖L p(Rn)‖∇αϕ‖
L

p
p−1 (Rn;Rn)

rn−α− n
p ,

which gives (1.9). Without (1.10), the decay estimate (1.9) is a consequence of some
new integrability properties in Lorentz spaces of the fractional gradient and of an
integration-by-parts formula of BV α,p functions on balls which may be of some
independent interest (see Theorems 8 and 9, respectively).

We note that Theorem 1 still holds even in the limit as α → 1−. Indeed, for all
p ∈ [1,+∞] and f ∈ BV 1,p(Rn) we get that |Df | � H n−1, since point (i) now
applies to all p ∈ [1,+∞), while point (ii) refers only to p = +∞, for which we have
n− 1− n

p = n− 1. This is in fact a well-known result for functions in BVloc(Rn), see
[3,Lemma 3.76] for instance. On the contrary, Theorem 1 is not optimal in the limit
as α → 0+. Indeed, in virtue of [6,Theorem 3.3 and Remark A.3], if p ∈ [1,+∞)

and f ∈ BV 0,p(Rn), then |D0 f | � L n (where the space BV 0,p(Rn) is defined as
in (1.1) with α = 0, see [6] for a more detailed presentation).

1.3 The precise representative of a BV˛,p function

Formulas (1.4) and (1.5) suggest that the set of discontinuity points (in the measure-
theoretical sense) of a BV function should have Hausdorff dimension n − 1. In more
precise terms, if f ∈ BV (Rn), then the limit

f �(x) = lim
r→0+ −

∫

Br (x)
f (y) dy (1.11)

exists forH n−1-a.e. x ∈ R
n . In fact, the limit in (1.11) can be strengthened as

lim
r→0+ −

∫

Br (x)
| f (y) − f �(x)| n

n−1 dy = 0

for H n−1-a.e. x ∈ R
n \ J f , see [11,Section 5.9] for example, where J f ⊂ R

n is the
so-called jump set of the function f ∈ BV (Rn) (if f ∈ W 1,1(Rn), then J f is empty).
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The function f � defined by (1.11) is the so-called precise representative of the
function f (by convention, we set f ∗(x) = 0 if the limit in (1.11) does not exist).
The well-posedness of the precise representative (1.11) of a BV α,p function is not
known at the present moment. Our second main result moves in this direction and
can be briefly stated as follows (for a more precise statement, we refer the reader to
Corollary 5 below).

Theorem 2 (The precise representative of a BV α,p function) Let α ∈ (0, 1), p ∈
[1,+∞] and ε > 0. If f ∈ BV α,p(Rn), then the limit f �(x) exists for H n−α+ε-a.e.
x ∈ R. Moreover, for any such point x ∈ R

n, it holds that

lim
r→0+ −

∫

Br (x)
| f (y) − f �(x)|q dy = 0

for any q ∈ [1, q̄ε], where q̄ε ∈
[
1, n

n−α

)
is such that lim

ε→0+ q̄ε = n
n−α

.

The idea behind the proof of Theorem2 is very simple and relies on three ingredients
naturally arising fromour general investigationof the BV α,p(Rn) space. First,we show

that C∞
c functions are dense in energy in BV α,p(Rn) provided that p ∈

[
1, n

n−α

)
,

extending the approximation [7,Theorem 3.8] already proved by the first and the
third author in the geometric regime p = 1. Second, by combining this approx-
imation with an optimal embedding inequality [32] due to the second author, we
establish a fractional analogue of the Gagliardo–Nirenberg–Sobolev inequality, that
is, BV α,p(Rn) ⊂ L

n
n−α (Rn) with continuous inclusion. Third, we exploit this frac-

tional embedding inequality to prove the continuous inclusion of BV α,p(Rn) into
some Bessel potential space of suitable fractional order. At this point, the existence of
the precise representative of a BV α,p function for p < n

n−α
can be inferred from the

known theory of Bessel potential spaces, see [1,Section 6.1] for example. The remain-
ing exponents p ≥ n

n−α
can be recovered from the previous analysis by a simple

cut-off argument that may be of some separate interest (see Lemma 1 for the detailed
statement).

1.4 Future developments

Generally speaking, the precise representative of a function turns out to be the correct
object when dealing with the product between the function itself and a sufficiently
well-behaved measure.

For example, the precise representative allows to state the general Leibniz rule
for the product of two BV functions. Precisely, if f , g ∈ BV (Rn) ∩ L∞(Rn), then
f g ∈ BV (Rn) with

D( f g) = g� Df + f � Dg in M (Rn;Rn). (1.12)

Note that the two products appearing in right-hand side of (1.12) are well posed thanks
to the combination of the absolute continuity property of the variation (1.4) and the
existence of the precise representative (1.11).
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With Theorems 1 and 2 at hand, the analysis developed in the present work naturally
leads to study the interactions between the fractional variation measure and the precise
representative of BV α,p functions, aiming at amore general formulation of the Leibniz
rule and of the Gauss–Green formula in this fractional setting. These results are the
main topic of the subsequent paper [9].

1.5 Organization of the paper

The paper is organized as follows.
In Sect. 2, we quickly set up the notation used throughout the entire work and recall

the elementary features of the fractional operators involved.
In Sect. 3, we carry out the general analysis of the BV α,p(Rn) space. On the one

side,we dealwith the approximation in energy by smooth functions and the consequent
embedding theorems in Lebesgue and Bessel potential spaces, preparing the ground
for the proof of Theorem 2. On the other side, we treat some integration-by-parts
formulas of BV α,p functions against rough test vector-fields and on balls, developing
the tools needed for the proof of the decay estimate (1.9) and thus of Theorem 1.

In Sect. 4, we prove our first main result Theorem 1. We divide the proof into two
parts, dealingwith the subcritical regime (i) and the supercritical regime (ii) separately,
see Proposition 4(i) and Corollary 3 respectively. At the end of this section, we provide
two examples to show the sharpness of our result in the one-dimensional case n = 1.

In Sect. 5, after having recalled some known properties of the fractional capacity in
Bessel potential spaces and having proved a localization lemma for BV α,p functions,
we end our paper with the proof of our second main result Theorem 2.

2 Preliminaries

2.1 General notation

We start with a brief description of the main notation used in this paper. In order to
keep the exposition the most reader-friendly as possible, we retain the same notation
adopted in the previous works [6–8].

Given an open set Ω ⊂ R
n , we say that a set E is compactly contained in Ω , and

we write E � Ω , if the E is compact and contained in Ω . We let L n and H α be
the n-dimensional Lebesgue measure and the α-dimensional Hausdorff measure on
R
n , respectively, with α ∈ [0, n]. Unless otherwise stated, a measurable set is a L n-

measurable set. We also use the notation |E | = L n(E). All functions we consider in
this paper are Lebesgue measurable, unless otherwise stated. We denote by Br (x) the
standard open Euclidean ball with center x ∈ R

n and radius r > 0.We let Br = Br (0).

For all β > 0, we set ωβ = π
β
2 /Γ

(
β+2
2

)
, where Γ is Euler’s Gamma function, and

we recall that |B1| = ωn and H n−1(∂B1) = nωn .
For k ∈ N0 ∪{+∞} andm ∈ N, we letCk

c (Ω;Rm) and Lipc(Ω;Rm) be the spaces
of Ck-regular and, respectively, Lipschitz-regular, m-vector-valued functions defined
on Rn with compact support in the open set Ω ⊂ R

n .
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For m ∈ N, the total variation on Ω of the m-vector-valued Radon measure μ is
defined as

|μ|(Ω) = sup

{∫

Ω

ϕ · dμ : ϕ ∈ C∞
c (Ω;Rm), ‖ϕ‖L∞(Ω;Rm ) ≤ 1

}
.

We thus let M (Ω;Rm) be the space of m-vector-valued Radon measure with finite
total variation on Ω . We say that (μk)k∈N ⊂ M (Ω;Rm) weakly converges to μ ∈
M (Ω;Rm), and we write μk⇀μ inM (Ω;Rm) as k → +∞, if

lim
k→+∞

∫

Ω

ϕ · dμk =
∫

Ω

ϕ · dμ (2.1)

for all ϕ ∈ C0
c (Ω;Rm). Note that we make a little abuse of terminology, since the

limit in (2.1) actually defines the weak*-convergence inM (Ω;Rm).
For any exponent p ∈ [1,+∞], we let L p(Ω;Rm) be the space ofm-vector-valued

Lebesgue p-integrable functions on Ω .
We let

W 1,p(Ω;Rm) = {
u ∈ L p(Ω;Rm) : [u]W 1,p(Ω;Rm ) = ‖∇u‖L p(Ω;Rn+m ) < +∞}

be the spaceofm-vector-valuedSobolev functions onΩ , see for instance [18,Chapter 11]
for its precise definition and main properties. We also let

w1,p(Ω;Rm) = {
u ∈ L p

loc(Ω;Rm) : [u]W 1,p(Ω;Rm ) < +∞}
.

We let

BV (Ω;Rm) =
{
u ∈ L1(Ω;Rm) : [u]BV (Ω;Rm ) = |Du|(Ω) < +∞

}

be the space of m-vector-valued functions of bounded variation on Ω , see for
instance [3,Chapter 3] or [11,Chapter 5] for its precise definition and main properties.
We also let

bv(Ω;Rm) =
{
u ∈ L1

loc(Ω;Rm) : [u]BV (Ω;Rm ) < +∞
}

.

For α ∈ (0, 1) and p ∈ [1,+∞), we let

Wα,p(Ω;Rm) = {
u ∈ L p(Ω;Rm) : [u]Wα,p(Ω;Rm ) < +∞}

,

where

[u]Wα,p(Ω;Rm ) =
(∫

Ω

∫

Ω

|u(x) − u(y)|p
|x − y|n+pα

dx dy

) 1
p

,
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be the space of m-vector-valued fractional Sobolev functions on Ω , see [10] for its
precise definition and main properties. We also let

wα,p(Ω;Rm) = {
u ∈ L p

loc(Ω;Rm) : [u]Wα,p(Ω;Rm ) < +∞}
.

For α ∈ (0, 1) and p = +∞, we simply let

Wα,∞(Ω;Rm) =
{

u ∈ L∞(Ω;Rm) : sup
x,y∈Ω, x �=y

|u(x) − u(y)|
|x − y|α < +∞

}

,

so that Wα,∞(Ω;Rm) = C0,α
b (Ω;Rm), the space of m-vector-valued bounded α-

Hölder continuous functions on Ω .
In order to avoid heavy notation, if the elements of a function space F(Ω;Rm) are

real-valued (i.e., m = 1), then we will drop the target space and simply write F(Ω).
Given α ∈ (0, n), we let

Iα f (x) = 2−απ− n
2
Γ

( n−α
2

)

Γ
(

α
2

)
∫

Rn

f (y)

|x − y|n−α
dy, x ∈ R

n, (2.2)

be the Riesz potential of order α of f ∈ C∞
c (Rn;Rm). We recall that, if α, β ∈ (0, n)

satisfy α + β < n, then we have the following semigroup property

Iα(Iβ f ) = Iα+β f (2.3)

for all f ∈ C∞
c (Rn;Rm). In addition, if 1 < p < q < +∞ satisfy 1

q = 1
p − α

n , then
there exists a constant Cn,α,p > 0 such that the operator in (2.2) satisfies

‖Iα f ‖Lq (Rn;Rm ) ≤ Cn,α,p‖ f ‖L p(Rn;Rm ) (2.4)

for all f ∈ C∞
c (Rn; Rm). As a consequence, the operator in (2.2) extends to a linear

continuous operator from L p(Rn;Rm) to Lq(Rn;Rm), for which we retain the same
notation. For a proof of (2.3) and (2.4), we refer the reader to [34,Chapter V, Section 1]
and to [14,Section 1.2.1].

Given α ∈ (0, 1), we also let

(−Δ)
α
2 f (x) = νn,α

∫

Rn

f (x + y) − f (x)

|y|n+α
dy, x ∈ R

n, (2.5)

be the fractional Laplacian (of order α) of f ∈ Lipb(R
n;Rm), where

νn,α = 2απ− n
2
Γ

( n+α
2

)

Γ
(−α

2

) , α ∈ (0, 1).
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Finally, we let

R f (x) = π− n+1
2 Γ

( n+1
2

)
lim

ε→0+

∫

{|y|>ε}
y f (x + y)

|y|n+1 dy, x ∈ R
n, (2.6)

be the (vector-valued) Riesz transform of a (sufficiently regular) function f .
We refer the reader to [14,Sections 2.1 and 2.4.4], [34,Chapter III, Section 1]
and [35,Chapter III] for a more detailed exposition. We warn the reader that the def-
inition in (2.6) agrees with the one in [35] and differs from the one in [14, 34] for a
minus sign, so that R = ∇ I1 on C∞

c (Rn) in particular. The Riesz transform (2.6) is a
singular integral of convolution type, thus in particular it defines a continuous operator
R : L p(Rn) → L p(Rn;Rn) for any given p ∈ (1,+∞), see [13,Corollary 5.2.8]. We
also recall that its components Ri satisfy

n∑

i=1

R2
i = −Id on L2(Rn),

see [13,Proposition 5.1.16].

2.2 The operators∇˛ and div˛

Webriefly recall the definitions and the essential features of the non-local operators∇α

and divα , see [6–8, 31] and [24,Section 15.2].
Let α ∈ (0, 1) and set

μn,α = 2α π− n
2

Γ
( n+α+1

2

)

Γ
( 1−α

2

) .

We let

∇α f (x) = μn,α lim
ε→0+

∫

{|y|>ε}
y f (x + y)

|y|n+α+1 dy, x ∈ R
n,

be the fractional α-gradient of f ∈ Lipc(R
n) and, similarly, we let

divαϕ(x) = μn,α lim
ε→0+

∫

{|y|>ε}
y · ϕ(x + y)

|y|n+α+1 dy, x ∈ R
n,

be the fractional α-divergence of ϕ ∈ Lipc(R
n;Rn). The non-local operators ∇α

and divα are well defined in the sense that the involved integrals converge and the
limits exist. Moreover, since

∫

{|z|>ε}
z

|z|n+α+1 dz = 0, ∀ε > 0,
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it is immediate to check that ∇αc = 0 for all c ∈ R and

∇α f (x) = μn,α

∫

Rn

(y − x)( f (y) − f (x))

|y − x |n+α+1 dy, x ∈ R
n,

for all f ∈ Lipc(R
n). Analogously, we have

divαϕ(x) = μn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))

|y − x |n+α+1 dy, x ∈ R
n,

for all ϕ ∈ Lipc(R
n). From the above expressions, it is not difficult to recognize that,

given f ∈ Lipc(R
n) and ϕ ∈ Lipc(R

n;Rn), it holds that

∇α f ∈ L p(Rn;Rn) and divαϕ ∈ L p(Rn)

for all p ∈ [1,+∞], see [7,Corollary 2.3]. Finally, the fractional operators ∇α and
divα are dual, in the sense that

∫

Rn
f divαϕ dx = −

∫

Rn
ϕ · ∇α f dx

for all f ∈ Lipc(R
n) and ϕ ∈ Lipc(R

n;Rn), as proved in [30,Section 6]
and [7,Lemma 2.5].

With a slight abuse of notation, in the following we let ∇1 and div1 be the usual
(local) gradient and divergence. Note that this notation is coherent with the asymptotic
behavior of the fractional operators∇α and divα when α → 1− for sufficiently regular
functions, see the analysis made in [8].

3 The BV˛,p(Rn) space

In this section we study the main properties of the BV α,p functions, following the
strategy adopted in [7,Section 3].

3.1 Definition of BV˛,p(Rn)

Let α ∈ (0, 1] and p ∈ [1,+∞]. We say that a function f ∈ L p(Rn) belongs to the
space BV α,p(Rn) if |Dα f |(Rn) < +∞, where

|Dα f |(Rn) = sup

{∫

Rn
f divαϕ dx : ϕ ∈ C∞

c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
,

(3.1)
see [7,Section 3] for the case p = 1 and the discussion in [8,Section 3.3] for the case
p ∈ (1,+∞]. In the case p = 1, we simply write BV α,1(Rn) = BV α(Rn). The
resulting linear space

BV α,p(Rn) = {
f ∈ L p(Rn) : |Dα f |(Rn) < +∞}
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endowed with the norm

‖ f ‖BV α,p(Rn) = ‖ f ‖L p(Rn) + |Dα f |(Rn), f ∈ BV α,p(Rn),

is a Banach space and that the fractional variation defined in (3.1) is lower semicon-
tinuous with respect to the L p-convergence. Similarly as it was proved in the case
p = 1 in [7,Theorem 3.2], it is possible to show the following result relating non-local
distributional gradients of BV α,p functions to vector valued Radon measures.

Theorem 3 (Structure Theorem for BV α,p functions) Let α ∈ (0, 1), p ∈ [1,+∞]
and f ∈ L p(Rn). Then, f ∈ BV α,p(Rn) if and only if there exists a finite vector
valued Radon measure Dα f ∈ M (Rn;Rn) such that

∫

Rn
f divαϕ dx = −

∫

Rn
ϕ · dDα f (3.2)

for all ϕ ∈ C∞
c (Rn;Rn). In addition, for any open set U ⊂ R

n it holds

|Dα f |(U ) = sup

{∫

Rn
f divαϕ dx : ϕ ∈ C∞

c (U ;Rn), ‖ϕ‖L∞(U ;Rn) ≤ 1

}
.

3.2 Approximation by smooth functions

Here and in the rest of the paper, we let (�ε) ⊂ C∞
c (Rn) be a family of standard

mollifiers as in [7,Section 3.3]. The following approximation theorem is the extension
to BV α,p functions of [7,Lemma 3.5 and Theorem 3.7]. We leave its proof to the
interested reader.

Theorem 4 (Approximation by C∞ ∩ BV α,p functions) Let α ∈ (0, 1] and p ∈
[1,+∞]. Let f ∈ BV α,p(Rn) and define fε = f ∗ �ε for all ε > 0. Then ( fε)ε>0 ⊂
BV α,p(Rn) ∩ C∞(Rn) with Dα fε = (�ε ∗ Dα f )L n for all ε > 0. Moreover, the
following properties hold.

(i) If p < +∞, then fε → f in L p(Rn) as ε → 0+; if p = +∞, then fε → f in
Lq
loc(R

n) as ε → 0+ for all q ∈ [1,+∞);
(ii) Dα fε⇀Dα f inM (Rn;Rn) and |Dα fε|(Rn) → |Dα f |(Rn) as ε → 0+.

The following result extends the approximationby test functions given in [7,Theorem3.8]

to functions in BV α,p(Rn) for α ∈ (0, 1) and all exponents p ∈
[
1, n

n−α

)
. In the proof

below and in the following, we let

Dα f (x) =
∫

Rn

| f (x + h) − f (x)|
|h|n+α

dh, x ∈ R
n, (3.3)

for any f ∈ Lipc(R
n;Rm),m ∈ N. Note that |∇α f (x)| ≤ μn,αDα f (x) for all x ∈ R

n

and that Dα f ∈ L p(Rn) for all p ∈ [1,+∞].
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Theorem 5 (Approximation by C∞
c functions) Let α ∈ (0, 1) and p ∈

[
1, n

n−α

)
. If

f ∈ BV α,p(Rn), then there exists ( fk)k∈N ⊂ C∞
c (Rn) such that

(i) fk → f in L p(Rn) as k → +∞;
(ii) |Dα fk |(Rn) → |Dα f |(Rn) as k → +∞.

Proof Let (ηR)R>0 ⊂ C∞
c (Rn) be a family of cut-off functions such that

0 ≤ ηR ≤ 1, ηR = 1 on BR, supp(ηR) ⊂ B2R, Lip(ηR) ≤ 2

R
.

We can also assume that ηR(x) = η1(
x
R ) for all x ∈ R

n and R > 0. The proof now
goes as the one of [7,Theorem 3.8] with minor modifications.We simply have to check
that

lim
R→+∞

∫

Rn
| f (x)|

∫

Rn

|ηR(y) − ηR(x)|
|x − y|n+α

dy dx = 0. (3.4)

Indeed, by Hölder’s inequality, we have

∫

Rn
| f (x)|

∫

Rn

|ηR(y) − ηR(x)|
|x − y|n+α

dy dx ≤ ‖ f ‖L p(Rn)‖DαηR‖Lq (Rn),

where 1
p + 1

q = 1, and a simple change of variables shows that

‖DαηR(x)‖Lq (Rn) = R
n
q −α ‖Dαη1‖Lq (Rn)

for all R > 0. The claim in (3.4) thus follows provided that n
q − α < 0, which is

equivalent to p ∈
[
1, n

n−α

)
, and the proof is complete. ��

For the sake of completeness, we also treat the case α = 1 of the previous result.

Proposition 1 Let n ∈ N and p ∈ [1,+∞) be such that p ≤ n
n−1 for n ≥ 2. If

f ∈ BV 1,p(Rn), then there exists ( fk)k∈N ⊂ C∞
c (Rn) such that

(i) fk → f in L p(Rn) as k → +∞;
(ii) |Dfk |(Rn) → |Df |(Rn) as k → +∞.

Proof Thanks to Theorem 4, we can assume f ∈ C∞(Rn) ∩ BV 1,p(Rn) without loss
of generality. Now let (ηR)R>0 ⊂ C∞

c (Rn) be a family of cut-off functions as in the
proof of Theorem 5. Clearly, ηR f → f in L p(Rn) as R → +∞. Moreover, since
∇(ηR f ) = ηR∇ f + f ∇ηR , we thus just need to check that ‖ f ∇ηR‖L1(Rn;Rn) → 0+
as R → +∞. Indeed, by Hölder’s inequality, we can estimate

‖ f ∇ηR‖L1(Rn;Rn) =
∫

B2R\BR

| f | |∇ηR | dx ≤ 2

R

∫

B2R\BR

| f | dx

≤ 2

R
|B2R \ BR |1− 1

p ‖ f ‖L p(B2R\BR)

≤ 2 |B2 \ B1|1−
1
p ‖ f ‖L p(Rn\BR) R

n−1− n
p
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and the conclusion immediately follows. ��

3.3 Gagliardo–Nirenberg–Sobolev inequality

Thanks to the approximation by test functions given by Theorem 5, we can
extend [7,Theorem 3.9] and prove the analogue of the Gagliardo–Nirenberg–Sobolev

inequality for the space BV α,p(Rn) whenever p ∈
[
1, n

n−α

)
.

Theorem 6 (Gagliardo–Nirenberg–Sobolev inequality) Let α ∈ (0, 1) and let p ∈[
1, n

n−α

)
. There exists a constant cn,α > 0, depending on n and α only, such that

‖ f ‖
L

n
n−α ,r

(Rn)
≤ cn,α|Dα f |(Rn)

for all f ∈ BV α,p(Rn), where r = +∞ if n = 1 and r = 1 if n ≥ 2. As a

consequence, BV α,p(Rn) ⊂ Lq(Rn) continuously for all q ∈
[
p, n

n−α

)
, with also

q = n
n−α

if n ≥ 2.

Proof Assume that f ∈ C∞
c (Rn) to start. Arguing as in the proof of [8,Theorem 3.8],

we can estimate | f | ≤ cn,α Iα|∇α f | for some constant cn,α > 0 depending only on n
and α (possibly varying from line to line). Thanks to the Hardy–Littlewood–Sobolev
inequality, we immediately deduce that

‖ f ‖
L

n
n−α ,∞

(Rn)
≤ cn,α ‖∇α f ‖L1(Rn;Rn)

for all f ∈ C∞
c (Rn). Moreover, if n ≥ 2, then we can apply [32,Theorem 1.1] to the

vector field F = ∇α f in order to get that

‖Iα∇α f ‖
L

n
n−α ,1

(Rn;Rn)
≤ cn,α ‖∇α f ‖L1(Rn;Rn)

for all f ∈ C∞
c (Rn). Since Iα∇α f = R f for all f ∈ C∞

c (Rn) and

R : L n
n−α

,1(Rn) → L
n

n−α
,1(Rn;Rn)

strongly (recall the definition in (2.6) and the properties of the Riesz transform), we
immediately deduce that

‖ f ‖
L

n
n−α ,1

(Rn)
≤ cn,α ‖∇α f ‖L1(Rn;Rn)

for all f ∈ C∞
c (Rn), with n ≥ 2. The conclusion then follows by combining a standard

approximation argument exploiting Theorem 5 with Fatou’s Lemma. ��
For α = 1, the previous result can be stated as follows.
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Proposition 2 (Alvino’s inequality) Let n ∈ N and p ∈ [1,+∞). If n ≥ 2 and
p ≤ n

n−1 , then there exists a dimensional constant cn > 0 such that

‖ f ‖
L

n
n−1 ,1

(Rn)
≤ cn |Df |(Rn)

for all f ∈ BV 1,p(Rn). If n = 1, then ‖ f ‖L∞(R) ≤ |Df |(R) for all f ∈ BV 1,p(R).

Proof While the case n = 1 is a well-known property of functions having bounded
variation, the case n ≥ 2 follows fromAlvino’s inequality [2] for functions in BV (Rn)

(also see [33,Section 5]) in combination with Proposition 1. We leave the details to
the interested reader. ��

3.4 The space S˛,p(Rn) and the embedding BV˛,p ⊂ Sˇ,q

Let α ∈ (0, 1) and p ∈ [1,+∞]. We define the weak fractional α-gradient of a
function f ∈ L p(Rn) as the function ∇α f ∈ L1

loc(R
n;Rn) satisfying

∫

Rn
f divαϕ dx = −

∫

Rn
∇α f · ϕ dx

for all ϕ ∈ C∞
c (Rn;Rn). We hence let the linear space

Sα,p(Rn) = {
f ∈ L p(Rn) : ∃ ∇α f ∈ L p(Rn;Rn)

}

endowed with the norm

‖ f ‖Sα,p(Rn) = ‖ f ‖L p(Rn) + ‖∇α f ‖L p(Rn;Rn), f ∈ Sα,p(Rn),

be the distributional fractional Sobolev space.
As shown in [7,Proposition 3.20], (Sα,p(Rn),‖ · ‖Sα,p(Rn)) is a Banach space for

all p ∈ [1,+∞]. Thanks to [7,Theorem 3.23] for p = 1 and to [6,Theorem A.1]
for p ∈ (1,+∞) (we refer the reader also to [17,Theorem 2.7] for a simpler proof),
the set C∞

c (Rn) is dense in Sα,p(Rn). As a consequence, for p ∈ (1,+∞) it is
possible to identify Sα,p(Rn) with the fractional Bessel potential space Lα,p(Rn),
see [6,Corollary 2.1] and the discussion therein.

We now want to provide a rigorous formulation of the naïve intuition that

if the order of differentiability decreases,

then the order of integrability increases,

that is to say, if ∇α f ∈ L p(Rn;Rn) for some α ∈ (0, 1) and p ∈ [1,+∞), then
∇β f ∈ Lq(Rn;Rn) for some lower fractional differentiation order β < α and some
higher integrability exponent q > p (depending on β).

For p > 1, the above principle is a simple consequence of the known embedding
theorems between the fractional Bessel potential spaces, thanks to the aforementioned
identification Sα,p(Rn) = Lα,p(Rn).

123



The fractional variation and the precise... 535

The more delicate case p = 1 is covered in Theorem 7 below. We refer the reader
also to [7,Theorem 3.32] and to [8,Propositions 3.2(i), 3.3 and 3.12] for similar results
in this direction.

Theorem 7 (BV α,p ⊂ Sβ,q for p < n
n−α

) Let α, β ∈ (0, 1], with β < α, and

let p, q ∈ [1,+∞] be such that p ≤ q < n
n+β−α

. Then BV α,p(Rn) ⊂ Sβ,q(Rn)

continuously.

Proof Assume that f ∈ C∞
c (Rn) and let R > 0. Arguing as in the proof

of [8,Proposition 3.12], we can estimate

|∇β f |(x) ≤ μn,1+β−α

n + β − α

( ∫

|h|<R

|∇α f |(x + h)

|h|n+β−α
dh +

∣∣∣∣

∫

|h|≥R

∇α f (x + h)

|h|n+β−α
dh

∣∣∣∣

)

for all x ∈ R
n . On the one side, we can write

∫

|h|<R

|∇α f |(x + h)

|h|n+β−α
dh =

(
χBR

| · |n+β−α
∗ |∇α f |

)
(x)

for all x ∈ R
n , so that

∥∥∥∥

∫

|h|<R

|∇α f |(x + h)

|h|n+β−α
dh

∥∥∥∥
Lq (Rn)

=
∥∥∥∥

χBR

| · |n+β−α
∗ |∇α f |

∥∥∥∥
Lq (Rn)

≤
(

nωn

n − (n + β − α)q

)1/q ‖∇α f ‖L1(Rn;Rn)

Rn+β−α− n
q

byYoung’s inequality.On the other side, arguing as in the proof of [8,Proposition 3.12],
we can write

∫

|h|≥R

∇α f (x + h)

|h|n+β−α
dh =

∫

Rn

f (x + Ry)

Rβ
dDαχB1(y)

− (n + β − α)

∫ +∞

R

f (x + r y)

rβ+1 dr dDαχB1(y)

for all x ∈ R
n , so that

∥∥∥∥

∫

|h|≥R

∇α f (· + h)

|h|n+β−α
dh

∥∥∥∥
Lq (Rn;Rn)

≤ cn,α,β R−β ‖ f ‖Lq (Rn)

byMinkowski’s integral inequality, for some constant cn,α,β > 0 depending only on n,
α and β. Hence we get that

‖∇β f ‖Lq (Rn;Rn) ≤ cn,α,β,q

(
R

n
q −n−β+α ‖∇α f ‖L1(Rn;Rn) + R−β ‖ f ‖Lq (Rn)

)
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whenever R > 0, for some constant cn,α,β,q > 0 depending only on n, α, β and q.

Choosing R =
(

‖ f ‖Lq (Rn )

‖∇α f ‖L1(Rn ;Rn )

) 1
n
q −n+α

, we get that

‖∇β f ‖Lq (Rn;Rn) ≤ cn,α,β,q ‖ f ‖1−
βq

n−q(n−α)

Lq (Rn)
‖∇α f ‖

βq
n−q(n−α)

L1(Rn;Rn)

for all f ∈ C∞
c (Rn). The conclusion thus follows from Theorems 5 and 6 (Proposi-

tions 1 and 2 in the case α = 1) via a routine approximation argument, since clearly
p < n

n−α
. ��

3.5 Generalized integration-by-parts formula for BV˛,p functions

The following result is a generalization of the fractional integration-by-parts formula
(3.2) (the case p = 1 was actually already analyzed in [8,Proposition 2.7]). This result
will be useful for integrating by parts BV α,p functions on balls, see Theorem 9 below.

Proposition 3 (W 1,q ∩ Cb-regular test) Let α ∈ (0, 1) and let p, q ∈ [1,+∞] be
such that 1

p + 1
q = 1. If f ∈ BV α,p(Rn), then

∫

Rn
f divαϕ dx = −

∫

Rn
ϕ · dDα f (3.5)

for all ϕ ∈ W 1,q(Rn;Rn) ∩ Cb(R
n;Rn) if q > 1, and for all ϕ ∈ BV (Rn;Rn) ∩

Cb(R
n;Rn) if q = 1.

Proof Wedivide theproof into two steps and adopt the same strategyof [7,Theorem3.8]
and [8,Proposition 2.7] with minor modifications.

Step 1. Assume ϕ ∈ W 1,q(Rn;Rn) ∩ Lipb(R
n;Rn) ∩ C∞(Rn;Rn) and let

(ηR)R>0 ⊂ C∞
c (Rn) be a family of cut-off functions as in [7,Section 3.3]. On the

one hand, since
∣∣∣∣

∫

Rn
f ηR div

αϕ dx −
∫

Rn
f divαϕ dx

∣∣∣∣ ≤ ‖divαϕ‖Lq (Rn)‖ f (1 − ηR)‖L p(Rn)

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
R→+∞

∫

Rn
f ηR div

αϕ dx =
∫

Rn
f divαϕ dx .

On the other hand, by [8,Lemmas 2.2 and 2.5] we can write

∫

Rn
f ηR div

αϕ dx =
∫

Rn
f divα(ηRϕ) dx −

∫

Rn
f ϕ · ∇αηR dx

−
∫

Rn
f divα

NL(ηR, ϕ) dx
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for all R > 0. Since ϕηR ∈ C∞
c (Rn;Rn), (3.5) implies that

∫

Rn
f divα(ηRϕ) dx = −

∫

Rn
ηRϕ · dDα f

for all R > 0. Since
∣∣∣∣

∫

Rn
ηRϕ · dDα f −

∫

Rn
ϕ · dDα f

∣∣∣∣ ≤ ‖ϕ‖L∞(Rn;Rn)

∫

Rn
(1 − ηR) d|Dα f |

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the
finite measure |Dα f |) we have

lim
R→+∞

∫

Rn
ηR ϕ · dDα f =

∫

Rn
ϕ · dDα f .

Finally, on the one side we can estimate

∣∣∣∣

∫

Rn
f ϕ · ∇αηR dx

∣∣∣∣ ≤ μn,α

∫

Rn
| f (x)| |ϕ(x)|

∫

Rn

|ηR(y) − ηR(x)|
|y − x |n+α

dy dx

for all R > 0, while, on the other side,

∣∣∣∣

∫

Rn
f divα

NL(ηR, ϕ) dx

∣∣∣∣≤μn,α

∫

Rn
| f (x)|

∫

Rn
|ηR(y) − ηR(x)| |ϕ(y) − ϕ(x)|

|y − x |n+α
dy dx

for all R > 0. We claim that

lim
R→+∞

∫

Rn
| f (x)| |ϕ(x)|

∫

Rn

|ηR(y) − ηR(x)|
|y − x |n+α

dy dx = 0. (3.6)

Indeed, f ϕ ∈ L1(Rn;Rn) and (3.6) follows by Lebesgue’s Dominated Convergence
Theorem. We also claim that

lim
R→+∞

∫

Rn
| f (x)|

∫

Rn
|ηR(y) − ηR(x)| |ϕ(y) − ϕ(x)|

|y − x |n+α
dy dx = 0. (3.7)

Indeed, since ϕ ∈ Lipb(R
n;Rn) and ‖ηR‖L∞(Rn) ≤ 1 for all R > 0, by Lebesgue’s

Dominated Convergence Theorem we get that

lim
R→+∞

∫

Rn
|ηR(y) − ηR(x)| |ϕ(y) − ϕ(x)|

|y − x |n+α
dy = 0 (3.8)

for all x ∈ R
n . Moreover, for a.e. x ∈ R

n we have

∫

Rn
|ηR(y) − ηR(x)| |ϕ(y) − ϕ(x)|

|y − x |n+α
dy ≤ 2Dαϕ(x). (3.9)

123



538 G. E. Comi et al.

Therefore, combining (3.8) and (3.9), again by Lebesgue’s Dominated Conver-
gence Theorem we get (3.7). Thus (3.5) is proved whenever ϕ ∈ W 1,q(Rn;Rn) ∩
Lipb(R

n;Rn) ∩ C∞(Rn;Rn).
Step2.Nowassumeϕ ∈ W 1,q(Rn;Rn)∩Cb(R

n;Rn) (ifq = 1, thenwe instead take
ϕ ∈ BV (Rn;Rn) ∩ Cb(R

n;Rn)) and let (�ε)ε>0 ⊂ C∞
c (Rn) be a family of standard

mollifiers as in [7,Section 3.3]. Then ϕε = �ε ∗ ϕ ∈ W 1,q(Rn;Rn) ∩Lipb(R
n;Rn) ∩

C∞(Rn;Rn) and so, by Step 1, we can write

∫

Rn
f divαϕε dx = −

∫

Rn
ϕε · dDα f

for all ε > 0. On the one hand, it is not difficult to see that divαϕε = �ε ∗ divαϕ for
all ε > 0, so that

lim
ε→0+

∫

Rn
f divαϕε dx =

∫

Rn
f divαϕ dx .

On the other hand, since ϕ ∈ Cb(R
n;Rn), we get

lim
ε→0+

∫

Rn
|ϕε − ϕ| d|Dα f | = 0

by Lebesgue’s Dominated Convergence Theorem (with respect to the finite measure
|Dα f |). This concludes the proof of (3.5). ��

3.6 Integrability ofD˛ in Lorentz space for BV1,p functions

We now need to focus on the weak integrability properties of the operatorDα defined
in (3.3)when applied to functions belonging to BV 1,p(Rn). This analysiswill be useful
for studying the integrability properties of the fractional gradient of the characteristic
function of a ball, see Corollary 1 below. This result, in turn, will be useful in the proof
of the integration-by-parts formula of BV α,p functions on balls in Theorem 9.

Theorem 8 (Weak integrability of Dα) Let α ∈ (0, 1), p ∈ [1,+∞] and define

pα =
{

p
1−α+α p if p ∈ [1,+∞),
1
α

if p = +∞.

The operator Dα : BV 1,p(Rn) → L pα,∞(Rn) is well defined and satisfies

‖Dα f ‖L pα,∞(Rn) ≤ cn,α,p ‖ f ‖1−α
L p(Rn)

|Df |(Rn)α (3.10)

for all f ∈ BV 1,p(Rn), where cn,α,p > 0 is a constant depending on n, α and p only.

Proof The case p = 1 is easy, since (3.10) holds in the following stronger form

‖Dα f ‖L1(Rn) ≤ cn,α ‖ f ‖1−α

L1(Rn)
|Df |(Rn)α
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for all f ∈ BV (Rn), whose simple proof is left to the reader (for instance, one can
follow the strategy of the proof of [10,Proposition 2.2]). In the following, we thus
assume that p > 1. We now divide the proof into three steps.

Step 1. Assume f ∈ W 1,1(Rn) ∩ C∞(Rn) ∩ Lipb(R
n). By [32,Lemma 3.2], there

exists a constant Cn,α > 0 such that

Dα f (x) ≤ Cn,α(M f (x))1−α (M |∇ f |(x))α

for all x ∈ R
n . Since f ∈ L p(Rn), by Hölder’s inequality in Lorentz spaces

(see [23,Theorem 3.4] and [33,Theorem 5.1]) and the well-known continuity proper-
ties of the maximal function, we get that

‖Dα f ‖L pα,∞(Rn) ≤ Cn,α ‖(M f )1−α (M |∇ f |)α‖L pα,∞(Rn)

≤ Cn,α pα

pα−1 ‖(M f )1−α‖
L

p
1−α (Rn)

‖(M |∇ f |)α‖
L

1
α ,∞(Rn)

≤ cn,α,p ‖ f ‖1−α
L p(Rn) |Df |(Rn)α,

where cn,α,p > 0 is a constant depending only on n, α and p.
Step 2. Now assume f ∈ BV (Rn) ∩ L p(Rn) and define fε = f ∗ �ε for all ε > 0.

Then fε ∈ W 1,1(Rn) ∩ C∞(Rn) ∩ Lipb(R
n) with ‖ fε‖L p(Rn) ≤ ‖ f ‖L p(Rn) for all

ε > 0 and |Dfε|(Rn) → |Df |(Rn) as ε → 0+. Moreover, by the Fatou Lemma, we
have

Dα f (x) ≤ lim inf
ε→0+ Dα fε(x)

for a.e. x ∈ R
n . Hence, by [13,Exercise 1.1.1(b)], we get

‖Dα f ‖L pα,∞(Rn) ≤ lim inf
ε→0+ ‖Dα fε‖L pα,∞(Rn)

≤ cn,α,p lim
ε→0+ ‖ fε‖1−α

L p(Rn)
|Dfε|(Rn)α

≤ cn,α,p ‖ f ‖1−α
L p(Rn)

|Df |(Rn)α

thanks to Step 1.
Step 3. Finally, assume f ∈ BV 1,p(Rn). Let (ηR)R>0 ⊂ C∞

c (Rn) be a family of
cut-off functions as in [7,Section 3.3] and define fR = f ηR for all R > 0. Then fR ∈
BV (Rn) ∩ L p(Rn) with ‖ fR‖L p(Rn) ≤ ‖ f ‖L p(Rn) for all R > 0 and |DfR |(Rn) →
|Df |(Rn) as R → +∞. Moreover, by the Fatou Lemma, we have

Dα f (x) ≤ lim inf
R→+∞Dα fR(x)

for a.e. x ∈ R
n . Inequality (3.10) thus follows again by [13,Exercise 1.1.1(b)], thanks

to Step 2. This concludes the proof. ��
From Theorem 8, we immediately deduce the following integrability properties of

the fractional gradient of the indicator function of a ball.

123



540 G. E. Comi et al.

Corollary 1 (Integrability of ∇αχBr (x)) Let α ∈ (0, 1) and let p ∈ [
1, 1

α

)
. There

exists a constant cn,α,p > 0, depending on n, α and p only, such that

‖∇αχBr (x)‖L p(Rn;Rn) = cn,α,q r
n
p −α (3.11)

for all x ∈ R
n and r > 0.

Proof Let x ∈ R
n and r > 0 be fixed. Since

∇αχBr (x)(y) = r−α(∇αχB1(0))

(
y − x

r

)

by the rescaling property of ∇α , we immediately get that

‖∇αχBr (x)‖L p(Rn;Rn) = ‖∇αχB1‖L p(Rn;Rn) r
n
p −α

.

Since ∇αχB1 ∈ L1(Rn;Rn) ∩ L
1
α
,∞(Rn;Rn) by [7,Proposition 4.8] and Theorem 8,

the conclusion follows by observing that L1(Rn)∩L
1
α
,∞(Rn) ⊂ L p(Rn)with contin-

uous inclusion for all p ∈ [
1, 1

α

)
. This interpolation result can be proved for instance

by arguing as in the proof of [13,Proposition 1.1.14] with some minor modifications.
We leave the simple details to the interested reader. ��
Remark 1 (The case n = 1 in Corollary 1) The estimate in (3.11) in the case n = 1
can be obtained by a direct computation from the explicit formula

∇αχ(x−r , x+r)(y) = μ1,α

α

(|y − x + r |−α − |y − x − r |−α
)
, y ∈ R,

given by [7,Example 4.11]. In particular, we deduce that

∇αχ(x−r , x+r) ∈ L
1
α
,∞(R;R) \ L

1
α
,s(R;R)

for all s ∈ [1,+∞).

From Proposition 2, we immediately deduce the following improvement of Theo-
rem 8. We leave its simple proof to the reader.

Corollary 2 (Improved weak integrability of Dα) Let α ∈ (0, 1), n ∈ N and p ∈
[1,+∞) be such that p ≤ n

n−1 for n ≥ 2. If f ∈ BV 1,p(Rn), then

Dα f ∈ L
p

1−α+α p ,∞
(Rn) ∩ L

n
n+α−1 ,∞(Rn).

3.7 Integration by parts of BV˛,p functions on balls

We are now ready to state and prove the following integration-by-parts of BV α,p

functions on balls, which is a generalization of [7,Theorem 5.2] to BV α,p functions
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for p ∈
(

1
1−α

,+∞
]
. This result will be the central ingredient of the proof of the

decay estimates for BV α,p functions in Theorem 10 below.

Theorem 9 (Integration by parts on balls) Let α ∈ (0, 1) and p ∈
(

1
1−α

,+∞
]
. If

f ∈ BV α,p(Rn), ϕ ∈ Lipc(R
n;Rn) and x ∈ R

n, then

−
∫

Br (x)
ϕ · dDα f =

∫

Br (x)
f divαϕ dy +

∫

Rn
f ϕ · ∇αχBr (x) dy

+
∫

Rn
f divα

NL(χBr (x), ϕ) dy (3.12)

forL 1-a.e. r > 0.

Proof Let x ∈ R
n and ϕ ∈ Lipc(R

n;Rn) be fixed. We divide the proof into two parts,

dealing with the cases p = +∞ and p ∈
(

1
1−α

,+∞
)
separately.

Case 1: p = +∞. Let ε > 0 and define the function hε,r ,x ∈ Lip(Rn) by setting

hε,r ,x (y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 0 ≤ |y − x | ≤ r ,
r + ε − |y − x |

ε
if r < |y − x | < r + ε,

0 if |y − x | ≥ r + ε,

for all y ∈ R
n . By [7,Lemma 5.1], we know that ∇αhε,r ,x ∈ L1(Rn;Rn) with

∇αhε,r ,x (y) = μn,α

ε(n + α − 1)

∫

Br+ε(x)\Br (x)
x − z

|x − z| |z − y|1−n−α dz (3.13)

forL n-a.e. y ∈ R
n . On the one hand, since hε,r ,x ϕ ∈ Lipc(R

n;Rn), by Proposition 3
we have ∫

Rn
f divα(hε,r ,x ϕ) dy = −

∫

Rn
hε,r ,x ϕ · dDα f . (3.14)

Since hε,r ,x (y) → χBr (x)
(y) as ε → 0+ for all y ∈ R

n and |Dα f |(∂Br (x)) = 0 for

L 1-a.e. r > 0, we can compute

lim
ε→0+

∫

Rn
(hε,r ,x ϕ) · dDα f =

∫

Br (x)
ϕ · dDα f

forL 1-a.e. r > 0. On the other hand, by [8,Lemma 2.5], we have

divα(hε,r ,x ϕ) = hε,r ,x div
αϕ + ϕ · ∇αhε,r ,x + divα

NL(hε,r ,x , ϕ). (3.15)

We deal with each term of the right-hand side of (3.15) separately. For the first term,
since 0 ≤ hε,r ,x ≤ χBr+1(x) for all ε ∈ (0, 1) and hε,r ,x → χBr (x) in Lq(Rn) as
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ε → 0+ for any q ∈ [1,+∞), by [7,Corollary 2.3] and Lebesgue’s Dominated
Convergence Theorem we can compute

lim
ε→0+

∫

Rn
f hε,r ,x div

αϕ dy =
∫

Br (x)
f divαϕ dy. (3.16)

For the second term, by (3.13) we have

∫

Rn
f (y) ϕ(y) · ∇αhε,r ,x (y) dy

= μn,α

ε(n + α − 1)

∫

Rn
f (y) ϕ(y) ·

∫

Br+ε(x)\Br (x)
x − z

|x − z| |z − y|1−n−α dz dy.

By Fubini’s Theorem, we can compute

∫

Rn
f (y) ϕ(y) ·

∫

Br+ε(x)\Br (x)
x − z

|x − z| |z − y|1−n−α dz dy

=
∫

Br+ε(x)\Br (x)
x − z

|x − z| ·
∫

Rn
f (y) ϕ(y) |z − y|1−n−α dy dz

=
∫ r+ε

r

∫

∂B�(x)

x − z

|x − z| ·
∫

Rn
f (y) ϕ(y) |z − y|1−n−α dy dH n−1(z) d�.

By Lebesgue’s Differentiation Theorem, we have

lim
ε→0

1

ε

∫

Rn
f (y) ϕ(y) ·

∫

Br+ε(x)\Br (x)
x − z

|x − z| |z − y|1−n−α dz dy

= lim
ε→0

1

ε

∫ r+ε

r

∫

∂B�(x)

x − z

|x − z| ·
∫

Rn
f (y) ϕ(y) |z − y|1−n−α dy dH n−1(z) d�

=
∫

∂Br (x)

x − z

|x − z| ·
∫

Rn
f (y) ϕ(y) |z − y|1−n−α dy dH n−1(z)

=
∫

Rn
f (y) ϕ(y) ·

∫

∂Br (x)

x − z

|x − z| |z − y|1−n−α dH n−1(z) dy

=
∫

Rn
f (y) ϕ(y) ·

∫

Rn
|z − y|1−n−α dDχBr (x)(z) dy

forL 1-a.e. r > 0. Therefore, by [7,Theorem 3.18, equation (3.26)], we get that

lim
ε→0

∫

Rn
f ϕ · ∇αhε,r ,x dy

= μn,α

n + α − 1

∫

Rn
f (y) ϕ(y) ·

∫

Rn
|z − y|1−n−α dDχBr (x)(z) dy

=
∫

Rn
f ϕ · ∇αχBr (x) dy (3.17)
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forL 1-a.e. r > 0. Finally, for the third term, we note that

∣∣∣∣
(z − y) · (ϕ(z) − ϕ(y))(hε,r ,x (z) − hε,r ,x (y))

|z − y|n+α+1

∣∣∣∣ ≤ 2
|ϕ(z) − ϕ(y)|
|z − y|n+α

∈ L1
z (R

n)

for all y ∈ R
n , so that

lim
ε→0

divα
NL(hε,r ,x , ϕ)(y) = divα

NL(χBr (x), ϕ)(y)

forL n-a.e. y ∈ R
n by Lebesgue’s Dominated Convergence Theorem. Since

∣∣divα
NL(hε,r ,x , ϕ)(y)

∣∣ ≤ 2
∫

Rn

|ϕ(z) − ϕ(y)|
|z − y|n+α

dz ∈ L1
y(R

n),

again by Lebesgue’s Dominated Convergence Theorem we can compute

lim
ε→0

∫

Rn
f divα

NL(hε,r ,x , ϕ) dy =
∫

Rn
f divα

NL(χBr (x), ϕ) dy. (3.18)

Combining (3.14), (3.15), (3.16), (3.17) and (3.18), we obtain (3.12).

Case 2: p ∈
(

1
1−α

,+∞
)
. Let (�ε)ε>0 be a family of standard mollifiers

(see [7,Section 3.3]) and define fε = f ∗ �ε for all ε > 0. By Theorem 4, we
have that

fε ∈ BV α,p(Rn) ∩ L∞(Rn) ∩ C∞(Rn) with Dα fε = (�ε ∗ Dα f )L n (3.19)

for all ε > 0. Hence, by Step 1, for each ε > 0 we have

−
∫

Br (x)
ϕ · dDα fε =

∫

Br (x)
fε div

αϕ dy +
∫

Rn
fε ϕ · ∇αχBr (x) dy

+
∫

Rn
fε div

α
NL(χBr (x), ϕ) dy

forL 1-a.e. r > 0. We now need to study the convergence as ε → 0+ of each term of
the above equality. By Theorem 4, we know that Dα fε⇀Dα f as ε → 0+, so that

lim
ε→0+

∫

Br (x)
ϕ · dDα fε = lim

ε→0+

∫

Rn
χBr (x) ϕ · dDα fε =

∫

Rn
χBr (x) ϕ · dDα f

=
∫

Br (x)
ϕ · dDα f

for L 1-a.e. r > 0 thanks to [3,Proposition 1.62]. Since divαϕ ∈ L1(Rn) ∩ L∞(Rn)

by [7,Corollary 2.3] and divα
NL(χBr (x), ϕ) ∈ L1(Rn)∩ L∞(Rn) by [7,Lemma 2.7 and
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Remark 2.8], we have

lim
ε→0+

∫

Br (x)
fε div

αϕ dy =
∫

Br (x)
f divαϕ dy

and

lim
ε→0+

∫

Rn
fε div

α
NL(χBr (x), ϕ) dy =

∫

Rn
f divα

NL(χBr (x), ϕ) dy

thanks to the fact that fε → f in L p(Rn) as ε → 0+. Finally, thanks to Corollary 1,

we have ∇αχBr (x) ∈ L p′
(Rn;Rn) for any p ∈

(
1

1−α
,+∞

)
and so

lim
ε→0+

∫

Rn
fε ϕ · ∇αχBr (x) dy →

∫

Rn
f ϕ · ∇αχBr (x) dy

again by the convergence fε → f in L p(Rn) as ε → 0+. The conclusion thus follows.
��

4 Absolute continuity of the fractional variation

In this section, we prove our first main result Theorem 1. We divide the proof into two
parts, dealingwith the subcritical regime (i) and the supercritical regime (ii) separately,
see Proposition 4(i) and Corollary 3 respectively. At the end of this section, we provide
two examples to show the sharpness of our result in the one-dimensional case n = 1.

4.1 The subcritical regime p ∈
[
1, n

1−˛

)

Thanks to [7,Lemma 3.28], if f ∈ BV α(Rn) then u = I1−α f ∈ bv(Rn) ∩
L

n
n−1+α

,∞(Rn), with Du = Dα f inM (Rn;Rn). As a consequence, we immediately
deduce that |Dα f | � H n−1 for all f ∈ BV α(Rn).

In the following result, which is a generalization of [7,Lemma 3.28] to the present
setting, we show that this phenomenon is typical of the functions belonging to

BV α,p(Rn) in the subcritical regime p ∈
[
1, n

1−α

)
.

Proposition 4 (Relation between BV α,p(Rn) and BV 1,p(Rn)) Let α ∈ (0, 1), p ∈(
1, n

1−α

)
and q = np

n−(1−α)p .

(i) If f ∈ BV α,p(Rn), then u = I1−α f ∈ BV 1,q(Rn) with

‖u‖Lq (Rn) ≤ cn,α,p ‖ f ‖L p(Rn) and Du = Dα f inM (Rn;Rn).

As a consequence, we have |Dα f | � H n−1 for all f ∈ BV α,p(Rn) and the
operator I1−α : BV α,p(Rn) → BV 1,q(Rn) is continuous.
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(ii) If p ∈
(
1, n

n−α

)
and u ∈ BV 1,p(Rn), then f = (−Δ)

1−α
2 u ∈ BV α,p(Rn) with

‖ f ‖L p(Rn) ≤ cn,α,p‖u‖BV α,p(Rn) and Dα f = Du inM (Rn;Rn).

As a consequence, the operator (−Δ)
1−α
2 : BV 1,p(Rn) → BV α,p(Rn) is contin-

uous.

Proof Let s = p
p−1 and note that r = ns

n+(1−α)s ∈
(
1, n

1−α

)
. We prove the two

properties separately.
Proof of (i). Let f ∈ BV α,p(Rn). By the Hardy–Littlewood–Sobolev inequality,

we immediately get that

u = I1−α f ∈ Lq(Rn).

Given ϕ ∈ C∞
c (Rn;Rn), we clearly have I1−α|divϕ| ∈ Ls(Rn), because |divϕ| ∈

Lr (Rn). Hence, by Fubini Theorem, we have

∫

Rn
f divαϕ dx =

∫

Rn
f I1−αdivϕ dx =

∫

Rn
u divϕ dx (4.1)

for all ϕ ∈ C∞
c (Rn;Rn), proving that Dα f = Du inM (Rn;Rn). The remaining part

of the statement in (i) follows easily.

Proof of (ii). Let p ∈
(
1, n

n−α

)
and u ∈ BV 1,p(Rn). Since p < n

n−α
, we can apply

Theorem 7 to get that BV 1,p(Rn) ⊂ S1−α,p(Rn) with continuous inclusion, so that

f = (−Δ)
1−α
2 u ∈ L p(Rn) (thanks to the identification S1−α,p(Rn) = L1−α,p(Rn)

following from [6,Corollary 2.1], also see the discussion in [6,Section 2.1]) and thus
I1−α f ∈ Lq(Rn) by the Hardy–Littlewood–Sobolev inequality. Since p < n

n−α
, we

also have that p < q < n
n−1 and thus BV

1,p(Rn) ⊂ Lq(Rn)with continuous inclusion
by Proposition 2.Hence u ∈ Lq(Rn) andwe can nowclaim that I1−α f = u in Lq(Rn).
Indeed, this is easily verified if u ∈ C∞

c (Rn) by applying the Fourier transform
(see [19,Lemma 2.3] for instance), so that the claim follows by a plain approximation
argument. Therefore, by applying Fubini Theorem again, we can write (4.1) and prove
that Dα f = Du inM (Rn;Rn), reaching the conclusion. ��
Remark 2 (About Proposition 4(ii)) The validity of Proposition 4(ii) when p = 1 was
already proved in [7,Lemma 3.28]. We also refer the reader to [17,Proposition 3.1],
in which the authors prove that, if u ∈ W 1,p(Rn) for some p ∈ [1,+∞], then
f = (−Δ)

1−α
2 u ∈ Sα,p(Rn) with ∇α f = ∇u in L p(Rn;Rn).

4.2 The supercritical regime p ∈
[

n
1−˛ ,+∞

]

We now focus on the absolute continuity property of the fractional variation with
respect to the Hausdorff measure for functions belonging to BV α,p(Rn) in the super-

critical regime p ∈
[

n
1−α

,+∞
]
. The crucial tool in this case is provided by the
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following important consequence of Theorem 9, which extends [7,Theorem 5.3] to
the present setting.

Theorem 10 (Decay estimates for BV α,p functions for p > 1
1−α

) Let α ∈ (0, 1)

and p ∈
(

1
1−α

,+∞
]
. There exist two constants An,α,p, Bn,α,p > 0, depending on

n, α and p only, with the following property. If f ∈ BV α,p(Rn) then, for |Dα f |-a.e.
x ∈ R

n, there exists rx > 0 such that

|Dα f |(Br (x)) ≤ An,α,p‖ f ‖L p(Rn) r
n
q −α (4.2)

and
|Dα( f χBr (x))|(Rn) ≤ Bn,α,p‖ f ‖L p(Rn) r

n
q −α (4.3)

for all r ∈ (0, rx ), where q ∈ [1,+∞) is such that 1
p + 1

q = 1.

Proof Since f ∈ BV α,p(Rn), by the Polar Decomposition Theorem for Radon mea-
sures there exists a Borel vector valued function σα

f : Rn → R
n such that

Dα f = σα
f |Dα f | with |σα

f (x)| = 1 for |Dα f |-a.e. x ∈ R
n . (4.4)

We divide the proof into two steps, dealing with the two estimates separately.
Step 1: Proof of (4.2). Let σα

f : Rn → R
n be as in (4.4) and let x ∈ R

n be such
that |σα

f (x)| = 1. Given r > 0, we define the vector field ϕ : Rn → R
n by setting

ϕx,r (y) =

⎧
⎪⎪⎨

⎪⎪⎩

σα
f (x) if y ∈ Br (x),

σα
f (x)

(
2 − |y−x |

r

)
if y ∈ B2r (x) \ Br (x),

0 if y /∈ B2r (x),

(4.5)

for all y ∈ R
n . We clearly have that ϕx,r ∈ Lipc(R

n;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1.
Thus, on the one hand, we can find rx ∈ (0, 1) such that

∫

Br (x)
ϕx,r (y) · dDα f (y) =

∫

Br (x)
σ α
f (x) · σα

f (y) d|Dα f |(y) ≥ 1

2
|Dα f |(Br (x))

(4.6)
for all r ∈ (0, rx ). On the other hand, by (3.12) we can write

∫

Br (x)
ϕx,r · dDα f ≤

∣∣∣∣

∫

Br (x)
f divαϕx,r dy

∣∣∣∣ +
∣∣∣∣

∫

Rn
f ϕx,r · ∇αχBr (x) dx

∣∣∣∣

+
∣∣∣∣

∫

Rn
f divα

NL(χBr (x), ϕx,r ) dy

∣∣∣∣ (4.7)
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forL 1-a.e. r ∈ (0, rx ). We now estimate the three terms in the right-hand side of (4.7)
separately. For the first term, recalling the definition of ϕx,r in (4.5), we have

∣∣∣∣

∫

Br (x)
f divαϕx,r dy

∣∣∣∣ ≤ μn,α

∫

Br (x)
| f (y)|

∫

Rn\Br (x)

|ϕx,r (z) − σα
f (x)|

|z − y|n+α
dzdy

≤ μn,α‖ f ‖L p(Br (x))

(∫

Br (x)

(∫

Rn\Br (x)

|ϕx,r (z) − σα
f (x)|

|z − y|n+α
dz

)q

dy

) 1
q

≤ 2μn,α‖ f ‖L p(Br (x)) r
n
q −α

(∫

B1

(∫

Rn\B1
1

|z − y|n+α
dz

)q

dy

) 1
q

.

After some elementary computations, we get

(∫

Rn\B1(−y)

1

|z|n+α
dz

)q

dy ≤ Cn,α

∫ 1

0

tn−1

(1 − t)αq
dt (4.8)

for some constantCn,α > 0 depending only onn andα. Note that the integral appearing
in the right-hand side of (4.8) converges if and only if αq < 1, that is, p > 1

1−α
. We

thus get ∣∣∣∣

∫

Br (x)
f divαϕx,r dy

∣∣∣∣ ≤ Cn,α,q ‖ f ‖L p(Rn) r
n
q −α (4.9)

for some constant Cn,α,q > 0 depending only on n, α and q. For the second term in
the right-hand side of (4.7), we have

∣∣∣∣

∫

Rn
f ϕx,r · ∇αχBr (x) dy

∣∣∣∣ ≤ ‖ f ‖L p(B2r (x))‖∇αχBr (x)‖Lq (Rn;Rn)

≤ Cn,α,q‖ f ‖L p(B2r (x)) r
n
q −α (4.10)

thanks to Corollary 1, for some constant Cn,α,q > 0 depending only on n, α and q.
Finally, observing that ϕx,r (x + r y) = ϕ0,1(y) for all y ∈ R

n , a simple change of
variables gives

‖divα
NL(χBr (x), ϕx,r )‖Lq (Rn) = r

n
q −α ‖divα

NL(χB1, ϕ)‖Lq (Rn). (4.11)

Thus, for the third and last term in the right-hand side of (4.7), we have

∣∣∣∣

∫

Rn
f divα

NL(χBr (x), ϕx,r ) dy

∣∣∣∣ ≤ Cn,α,q ‖ f ‖L p(Rn)r
n
q −α

, (4.12)

where Cn,α,q = ‖divα
NL(χB1, ϕ)‖Lq (Rn) (which is finite thanks to [7,Lemma 2.7 and

Remark 2.8]). Combining (4.6) with (4.7), (4.9), (4.10) and (4.12), we get (4.2) with
a simple continuity argument.

123



548 G. E. Comi et al.

Step 2: Proof of (4.3). Let x ∈ R
n be such that |σα

u (x)| = 1. Given ϕ ∈
Lipc(R

n;Rn) such that ‖ϕ‖L∞(Rn;Rn) ≤ 1, from (3.12) we deduce that

∣∣∣∣

∫

Br (x)
f divαϕ dy

∣∣∣∣ ≤ |Dα f |(Br (x)) + ‖ f ‖L p(Rn) ‖∇αχBr (x)‖Lq (Rn;Rn)

+ ‖ f ‖L p(Rn)‖divα
NL(χBr (x), ϕ)‖Lq (Rn)

forL 1-a.e. r ∈ (0, rx ). Exploiting (4.2), (3.11) and (4.11), we conclude that

|Dα( f χBr (x))|(Rn) ≤ Cn,α,q r
n
q −α

forL 1-a.e. r ∈ (0, rx ), where Cn,α,q > 0 is a constant depending only on n, α and q.
Inequality (4.3) thus follows for all r ∈ (0, rx ) by a simple continuity argument. ��

Thanks to Theorem 10 and extending [7,Corollary 5.4] to the present setting, we
are now ready to state and prove the following absolute continuity property of the

fractional variation for BV α,p functions with p ∈
(

1
1−α

,+∞
]
. Note that the result

below is truly interesting only for p ∈
[

n
1−α

,+∞
]
, due to Theorem 1(i) (see also

Proposition 4) and the fact that

n − α − n

p
≥ n − 1 ⇐⇒ p ≥ n

1 − α
.

Corollary 3 (|Dα f | � H
n
q −α for p > 1

1−α
) Let α ∈ (0, 1) and p ∈

(
1

1−α
,+∞

]
. If

f ∈ BV α,p(Rn), then there exists a |Dα f |-negligible set Zα,p
f ⊂ R

n such that

|Dα f | ≤ 2
n
q −α An,α,p

ω n
q −α

‖ f ‖L p(Rn) H
n
q −α

R
n \ Zα,p

f , (4.13)

where An,α,p is as in (4.2) and q ∈ [1,+∞) is such that 1
p + 1

q = 1.

Proof By Theorem 10, there exists a set Zα,p
f ⊂ R

n such that |Dα f |(Zα,p
f ) = 0 and

(4.2) holds for any x /∈ Zα,p
f . Thanks to the Borel regularity of the Radon measure

|Dα f |, we can assume that Zα,p
f is a Borel set without loss of generality. Hence, for

all x ∈ R
n \ Zα,p

f , we have

Θ∗
n
q −α

(|Dα f |, x) = lim sup
r→0+

|Dα f |(Br (x))
ω n

q −αr
n
q −α

≤ An,α,p

ω n
q −α

‖ f ‖L p(Rn).

Inequality (4.13) thus follows from [3,Theorem 2.56]. ��
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Remark 3 (The case n = 1 and p = 1
1−α

)Note that Corollary 3 covers the supercritical

regime p ∈
[

n
1−α

,+∞
]
for n ≥ 2, while for n = 1 the boundary case p = 1

1−α
is

missing. However, if n = 1 and p = 1
1−α

, then q = p
p−1 = 1

α
and soH

n
q −α = H 0,

so that |Dα f | � H 0 for all f ∈ BV α, 1
1−α (R) trivially. We do not know if this result

is sharp.

Remark 4 (The limit as α → 1−) It is somewhat interesting to observe that Corollary 3
still holds true if we send α → 1−. Indeed, such a limit case would apply only
to functions f ∈ BV 1,∞(Rn), for which it is well known (see [3,Theorem 3.77,
Theorem 3.78 and equation (3.90)], for instance) that

|Df | ≤ 2‖ f ‖L∞(Rn)H
n−1 J f ,

where J f is the jump set, so that Z1,∞
f could be any |Df |-negligible subset ofRn \ J f .

4.3 Two examples in one dimension

We conclude this section by discussing the optimality of the absolute continuity prop-
erties of the fractional variation stated in Theorem 1 in the one-dimensional case
n = 1.

We begin with the following example, which is borrowed from [7,Theorem 3.26].

Example 1 (Proposition 4(i) is sharp for n = 1) Let α ∈ (0, 1) and consider

fα(x) = μ1,−α

(
|x |α−1 sgn x − |x − 1|α−1 sgn(x − 1)

)
, x ∈ R.

By [7,Theorem 3.26], we have fα ∈ BV α(R) with Dα fα = δ0 − δ1. Moreover,

by [8,Theorem 3.8 and Remark 3.9], we have fα ∈ L
1

1−α
,∞(R) \ L

1
1−α

,q(R) for all

q ≥ 1. In particular, since fα ∈ L1(R) ∩ L
1

1−α
,∞(R), by interpolation we get that

fα ∈ L p(R) for all p ∈
[
1, 1

1−α

)
. Hence fα ∈ BV α,p(R) for all p ∈

[
1, 1

1−α

)
with

|Dα fα| �� H ε for all ε > 0. This proves that the absolute continuity property of the
fractional variation stated in Theorem 1(i) is sharp for n = 1.

We now prove the following result, which combines the properties of the function
fα introduced in Example 1 with the decay properties of a finite Radon measure.

Proposition 5 (The function uα = fα ∗ ν) Let α ∈ (0, 1), let fα be as in Example 1,
and let ν ∈ M (R). Then we have

uα = fα ∗ ν ∈ BV α,p(R) for all p ∈
[
1,

1

1 − α

)
,

with
Dαuα = ν − (τ1)#ν, (4.14)
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where τx (y) = y + x for all x, y ∈ R. In addition, if there exist C, ε > 0 such that

ν
(
(x − r , x + r)

) ≤ Crε for all x ∈ R and r > 0, (4.15)

then

uα ∈ BV α,p(R) for all p ∈

⎧
⎪⎪⎨

⎪⎪⎩

[
1, 1−ε

1−α−ε

)
if ε ∈ (0, 1 − α),

[1,+∞) if ε = 1 − α,

[1,+∞] if ε ∈ (1 − α, 1].
(4.16)

Proof We divide the proof into two steps.
Step 1. Let ν ∈ M (R). We start by showing that uα ∈ BV α,p(R) for all

p ∈
[
1, 1

1−α

)
and that it satisfies (4.14). Indeed, by Young’s inequality (for Radon

measures) we can estimate

‖uα‖L1(R) ≤ ‖ fα‖L1(R)|ν|(R).

Moreover, thanks to the translation invariance of divα and exploiting the explicit
expression of fα given in Example 1, we can write

∫ ∞

−∞
uα(x) divαϕ(x) dx =

∫ ∞

−∞

∫ ∞

−∞
fα(x − y) divαϕ(x) dν(y) dx

=
∫ ∞

−∞

∫ ∞

−∞
fα(x − y) divαϕ(x) dx dν(y)

= −
∫ ∞

−∞

∫ ∞

−∞
ϕ(x + y) d (δ0(x) − δ1(x)) dν(y)

= −
∫ ∞

−∞
(ϕ(y) − ϕ(y + 1)) dν(y)

for all ϕ ∈ C∞
c (R). Thus uα ∈ BV α,1(R) with Dαuα = ν − (τ1)#ν. In addition, by

Jensen’s inequality and Tonelli’s Theorem we can estimate

∫ ∞

−∞
|uα(x)|p dx ≤

∫ ∞

−∞
|ν|(R)p−1

∫ ∞

−∞
| fα(x − y)|p d|ν|(y) dx

= |ν|(R)p ‖ fα‖p
L p(R)

< +∞

for all p ∈
[
1, 1

1−α

)
, thanks to the integrability properties of fα given in Example 1.
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Step 2. We prove that (4.15) implies (4.16). To this aim, let δ > 0 and q = p
p−1 .

Since | fα| = | fα| δ
q | fα|1− δ

q , by Hölder’s inequality we get

|uα(x)|p ≤
(∫ ∞

−∞
| fα(x − y)| δ

q | fα(x − y)|1− δ
q d|ν|(y)

)p

≤
(∫ ∞

−∞
| fα(x − y)|δ d|ν|(y)

) p
q

(∫ ∞

−∞
| fα(x − y)|p

(
1− δ

q

)

d|ν|(y)
)

for x ∈ R. We now recall the explicit expression of fα in Example 1 and write

∫ ∞

−∞
| fα(x − y)|δ d|ν|(y) =

∫
(
−∞,x− 3

2

)
∪

(
x+ 1

2 ,∞
) | fα(x − y)|δ d|ν|(y)

+
∞∑

j=1

∫

I j
(
x, 12

)
∪I j

(
x−1, 12

) | fα(x − y)|δ d|ν|(y), (4.17)

where we have set

I j (x, r) = (x − r j , x + r j ) \ (x − r j+1, x + r j+1)

for all x ∈ R, r ∈ (0, 1) and j ∈ N for brevity. Now, on the one hand, if y ∈(−∞, x − 3
2

) ∪ (
x + 1

2 ,∞
)
, then x − y ∈ (−∞,− 1

2

) ∪ ( 3
2 ,∞

)
, so that

| fα(x − y)| ≤ μ1,−α

(
21−α + 21−α

)
= μ1,−α2

2−α

for all y ∈ (−∞, x − 3
2

) ∪ (
x + 1

2 ,∞
)
. Therefore, we can estimate

∫
(
−∞,x− 3

2

)
∪

(
x+ 1

2 ,∞
) | fα(x − y)|δ d|ν|(y) ≤

(
μ1,−α2

2−α
)δ |ν|(R) (4.18)

for all x ∈ R. On the other hand, for all x ∈ R and j ∈ N, we have

∫

I j
(
x, 12

) | fα(x − y)|δ d|ν|(y) (4.19)

≤ μδ
1,−α

∫

I j
(
x, 12

)

(
|x − y|α−1 + |x − y − 1|α−1

)δ

d|ν|(y)

≤ μδ
1,−α

(
2( j+1)(1−α) +

(
1 − 2− j

)α−1
)δ

|ν|
(
(x − 2− j , x + 2 j )

)

≤ μδ
1,−α

(
2( j+1)(1−α) + 21−α

)δ

C 2− jε. (4.20)
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Reasoning analogously, we obtain

∫

I j
(
x−1, 12

) | fα(x − y)|δ d|ν|(y) ≤ Cμδ
1,−α

(
2( j+1)(1−α) + 21−α

)δ

2− jε (4.21)

for all x ∈ R and j ∈ N. Therefore, inserting (4.18), (4.20) and (4.21) in (4.17), we
conclude that ∫ ∞

−∞
| fα(x − y)|δ d|ν|(y) ≤ Cα,ε,δ (4.22)

for all x ∈ R, where Cα,ε,δ > 0 is constant depending on α, ε, and δ which is finite
provided that we choose δ < ε

1−α
, as we are assuming from now on. We thus get

∫ ∞

−∞
|uα(x)|p dx ≤ C p−1

α,ε,δ

∫ ∞

−∞

∫ ∞

−∞
| fα(x − y)|p

(
1− δ

q

)

d|ν|(y) dx

= C p−1
α,ε,δ |ν|(R)

∫ ∞

−∞
| fα(x)|p

(
1− δ

q

)

dx .

Now, recalling Example 1, we immediately see that

∫ ∞

−∞
| fα(x)|p

(
1− δ

q

)

dx < +∞ ⇐⇒
{
p < 1

(1−α)(1−δ)
− δ

1−δ
= 1−δ+αδ

(1−α)(1−δ)
,

p > 1
(2−α)(1−δ)

− δ
1−δ

= 1−2δ+αδ
(2−α)(1−δ)

.

(4.23)
Since one easily recognizes that

1 − 2δ + αδ

(2 − α)(1 − δ)
< 1 for all α ∈ (0, 1) and δ > 0,

the second condition on p in (4.23) can be dropped. As for the first condition on p
in (4.23), it is readily seen that

ε ∈ (0, 1 − α) �⇒ δ <
ε

1 − α
< 1 �⇒ p ∈

[
1,

1 − ε

1 − α − ε

)

and, similarly,

ε ∈ [1 − α, 1] �⇒ δ(1 − α) < ε for all δ ∈ (0, 1) �⇒ p ∈ [1,+∞).

Finally, in the case ε ∈ (1 − α, 1], we exploit (4.22) for δ = 1 in order to conclude
that

|uα(x)| ≤
∫ ∞

−∞
| fα(x − y)| d|ν|(y) = Cα,ε < +∞

for all x ∈ R, which implies that uα ∈ L∞(R). The conclusion thus follows. ��
Thanks to Proposition 5, we can now give the following example.
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Example 2 (Corollary 3 is sharp for n = 1) Let α ∈ (0, 1) and let ν and uα be as in
Proposition 5. By [12,Corollary 4.12], there exists a compact set K ⊂ R such that
ν = H ε K , so that Dαuα �� H s for all s > ε. Now we observe that, by (4.16),
we have the following situations:

– if ε ∈ (0, 1 − α), then p < 1−ε
1−α−ε

< 1
1−α−ε

and thus ε > 1
q − α;

– if ε = 1 − α, then p ∈ [1,+∞) and thus ε > 1
q − α;

– if ε ∈ (1 − α, 1], then p ∈ [1,+∞] and so, for p = +∞, if s > 1 − α then we
can take ε ∈ (1 − α, s).

Therefore, the absolute continuity property of the fractional variation stated in Theo-
rem 1(ii) is sharp for n = 1.

5 Fractional capacity and precise representative

In this last section, we study the fractional capacity and the existence of the precise
representatives of BV α,p functions.

5.1 The (˛, p)-capacity

We begin with the definition of fractional capacity, see [1,Chapter 2]. For the clas-
sical integer case α = 1, we also refer the reader to [11,Sections 4.7 and 5.6.3],
[15,Chapter 2], [21,Section 2.1] and [22,Section 2.2]. Here and in the following,
we repeatedly use the identification Sα,p(Rn) = Lα,p(Rn) for α ∈ (0, 1) and
p ∈ (1,+∞) proved in [6,Corollary 2.1].

Definition 1 (The (α, p)-capacity) Let α ∈ (0, 1) and p ∈ [1,+∞). We let

Capα,p(K ) = inf
{
‖ f ‖p

Sα,p(Rn)
: f ∈ C∞

c (Rn), f ≥ χK

}

be the (α, p)-capacity of the compact set K ⊂ R
n .

ThemappingCapα,p can be extended tomore general sets via the following standard
routine. If A ⊂ R

n is an open set, then we set

Capα,p(A) = sup
{
Capα,p(K ) : K ⊂ A, K compact

}

and so, given any set E ⊂ R
n , we let

Capα,p(E) = sup
{
Capα,p(A) : A ⊃ E, A open

}
.

We now recall the notion of (α, p)-quasievery point, see [1,Definition 2.2.5].

Definition 2 ((α, p)-quasievery point) Let α ∈ (0, 1) and p ∈ [1,+∞). We say that
a property P(x) is true for (α, p)-quasievery x ∈ R

n if

Capα,p(
{
x ∈ R

n : P(x) is false
}
) = 0.
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Recall that, if α ∈ (0, 1) and p ∈ ( n
α
,+∞)

, then Sα,p(Rn) ⊂ Cb(R
n) continu-

ously by the fractional Sobolev Embedding Theorem, see [1,Theorem 1.2.4(c)] for
instance. For this reason, the notion of (α, p)-capacity becomes interesting only when
α p ≤ n (see the discussion below [1,Proposition 2.6.1]). Precisely, if α ∈ (0, 1) and
p ∈ (

1, n
α

]
, then H n−α p+ε � Capα,p for all ε > 0, see [1,Theorem 5.1.13 and

Corollary 5.1.14].

5.2 The precise representative

Wenow study the precise representatives of BV α,p functions by combining the embed-
ding proved in Theorem7with the results already known in the literature for the precise
representatives of functions in fractional Bessel potential spaces.

We begin by recalling the definition of quasicontinuity. For the integer case α = 1,
we refer the reader to [1,Definition 6.1.1] and [11,Definition 4.11].

Definition 3 ((α, p)-quasicontinuity) We say that a function f : Rn → [−∞,+∞]
defined (α, p)-quasieverywhere is (α, p)-quasicontinuous if, for each ε > 0, there
exists an open set Aε ⊂ R

n such that Capα,p(Aε) < ε and f |Rn\Aε
is continuous.

Here and in the following, the precise representativeof a function u ∈ L1
loc(R

n;Rm)

is defined as

u�(x) = lim
r→0+ −

∫

Br (x)
u(y) dy, x ∈ R

n,

if the limit exists, otherwise u�(x) = 0 by convention. The following result provides
a precise description of the continuity properties of the precise representative of a
function in Sα,p(Rn) for p ∈ (

1, n
α

]
. We refer the reader to [1,Theorem 6.2.1] for the

proof.

Theorem 11 (Quasicontinuity of Sα,p functions) Let α ∈ (0, 1) and p ∈ (
1, n

α

]
. If

f ∈ Sα,p(Rn), then f � is an (α, p)-quasicontinuous representative of f and

lim
r→0+ −

∫

Br (x)
| f (y) − f �(x)|q dy = 0

for (α, p)-quasievery x ∈ R
n, where

q ∈
{[

1, np
n−α p

]
if α p < n,

[1,+∞) if α p = n.

Thanks to the embedding proved in Theorem 7, we immediately deduce the fol-
lowing result concerning the quasicontinuity of the functions in BV α,p(Rn).

Corollary 4 (Quasicontinuity of BV α,p functions for p < n
n−α

) Let α, β ∈ (0, 1),
with β < α, and let p, q ∈ [1,+∞] be such that p ≤ q < n

n+β−α
, with q > 1. If

f ∈ BV α,p(Rn), then f � is a (β, q)-quasicontinuous representative of f and

lim
r→0+ −

∫

Br (x)
| f (y) − f �(x)|t dy = 0
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for (β, q)-quasievery x ∈ R
n and for all t ∈

[
1, nq

n−βq

]
.

In order to provide an extension of Corollary 4 also for all exponents p ∈ [1,+∞],
we need the following localization result for BV α,p functions.

Lemma 1 (Localization for BV α,p functions for p ∈ [1,+∞]) Let α ∈ (0, 1) and
let p ∈ [1,+∞]. If f ∈ BV α,p(Rn) and η ∈ Lipc(R

n), then f η ∈ BV α,q(Rn) for
all q ∈ [1, p], with

Dα( f η) = η Dα f + f ∇αηL n + ∇α
NL( f , η)L n in M (Rn;Rn). (5.1)

Proof By Hölder’s inequality, we clearly have that f η ∈ Lq(Rn) for all q ∈ [1, p], so
that we only need to prove (5.1). First of all, note that the right-hand side of (5.1) is well
posed because η ∈ Lipc(R

n). In particular, we have∇αη ∈ L1(Rn;Rn)∩L∞(Rn;Rn)

by [7,Corollary 2.3] and ∇α
NL( f , η) ∈ L1(Rn), since by Minkowski’s and Hölder’s

(generalized) inequalities we can estimate

‖∇α
NL( f , η)‖L1(Rn;Rn) ≤ μn,α

∫

Rn

‖| f (· + h) − f | |η(· + h) − η|‖L1(Rn)

|h|n+α
dh

≤ 2μn,α ‖ f ‖L p(Rn)

∫

Rn

‖η(· + h) − η‖L p′ (Rn)

|h|n+α
dh

≤ cn,α,p ‖ f ‖L p(Rn) ‖η‖W 1,p′ (Rn)
(5.2)

(for the validity of the last inequality, see [18,Theorem 17.33] for instance). Now let
ϕ ∈ Lipc(R

n;Rn) be given. By [7,Lemma 2.7], we can write

divα(ηϕ) = η divαϕ + ϕ · ∇αη + divα
NL(η, ϕ),

so that
∫

Rn
f η divαϕ dx =

∫

Rn
f divα(ηϕ) dx −

∫

Rn
f ϕ · ∇αη dx

−
∫

Rn
f divα

NL(η, ϕ) dx .

In addition, since ηϕ ∈ Lipc(R
n;Rn) and f ∈ BV α,p(Rn), we immediately see that

∫

Rn
f divα(ηϕ) dx = −

∫

Rn
ηϕ · dDα f .

Finally, let ( fε)ε>0 ⊂ BV α,p(Rn) ∩ C∞(Rn) be such that fε = f ∗ �ε for all ε > 0
as in Theorem 4. Note that fε ∈ Lipb(R

n;Rn), so that

∫

Rn
fε div

α
NL(η, ϕ) dx =

∫

Rn
ϕ · ∇α

NL( fε, η) dx .
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for all ε > 0 by [8,Lemmas 2.4 and 2.5]. Now, arguing as in the proof of (5.2), we

can infer that
lim

ε→0+ ∇α
NL( fε, η) = ∇α

NL( f , η) in L1
loc(R

n;Rn), (5.3)

so that we can pass to the limit as ε → 0+ in (5.3) to get that

∫

Rn
f divα

NL(g, ϕ) dx =
∫

Rn
ϕ · ∇α

NL( f , g) dx .

In conclusion, we have that

∫

Rn
f η divαϕ dx = −

∫

Rn
ηϕ · dDα f −

∫

Rn
f ϕ · ∇αη dx −

∫

Rn
ϕ · ∇α

NL( f , η) dx

for any given ϕ ∈ Lipc(R
n;Rn) and the proof is complete. ��

Corollary 5 (Quasicontinuity of BV α,p functions for p ∈ [1,+∞])Letα, β ∈ (0, 1)

be such that β < α and let p ∈ [1,+∞] and q ∈
[
1, n

n+β−α

)
. If f ∈ BV α,p(Rn),

then f � is a (β, q)-quasicontinuous representative of f and

lim
r→0+ −

∫

Br (x)
| f (y) − f �(x)|t dy = 0 (5.4)

for (β, q)-quasievery x ∈ R
n and for all t ∈

[
1, nq

n−βq

]
. In particular, the precise

representative of f is well defined H n−α+ε-a.e. for all ε > 0.

Proof By Lemma 1, we know that f η ∈ BV α,1(Rn) for all η ∈ Lipc(R
n). Hence,

Corollary 4 implies the existence of a (β, q)-quasicontinuous representative of f η for

all β ∈ (0, α) and q ∈
(
1, n

n+β−α

)
. In particular, if η(x) = 1 for all x ∈ BR for some

given R > 0, then we get the existence of ( f η)�(x) = f �(x) for (β, q)-quasievery
x ∈ R

n , together with (5.4). Since R > 0 is arbitrary, f �(x) must exist for (β, q)-
quasievery x ∈ R

n . Finally, since q < n
β
, we haveH n−βq+δ � Capβ,q for all δ > 0.

Thus, by optimizing in β ∈ (0, α) and in q ∈
(
1, n

n+β−α

)
, the existence of f �(x)

follows forH n−α+ε-a.e. x ∈ R
n and the proof is complete. ��
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