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Abstract 58 

The phylogenetic history of termites has been investigated using mitochondrial genomes and 59 

transcriptomes. However, both sets of markers have specific limitations. Mitochondrial 60 

genomes represent a single genetic marker likely to yield phylogenetic trees presenting 61 

incongruences with species trees, and transcriptomes can only be obtained from well-preserved 62 

samples. In contrast, ultraconserved elements (UCEs) include a great many independent 63 

markers that can be retrieved from poorly preserved samples. Here, we designed termite-64 

specific baits targeting 50,616 UCE loci. We tested our UCE bait set on 42 samples of termites 65 

and three samples of Cryptocercus, for which we generated low-coverage highly-fragmented 66 

genome assemblies and successfully extracted in silico between 3,426 to 42,860 non-duplicated 67 

UCEs per sample. Our maximum likelihood phylogenetic tree, reconstructed using the 5,934 68 

UCE loci retrieved from upward of 75% of samples, was congruent with transcriptome-based 69 

phylogenies, demonstrating that our UCE bait set is reliable and phylogenetically informative. 70 

Combined with non-destructive DNA extraction protocols, our UCE bait set provides the tool 71 

needed to carry out a global taxonomic revision of termites based on poorly preserved 72 

specimens such as old museum samples. The Termite UCE database is maintained at: 73 

https://github.com/oist/TER-UCE-DB/. 74 

Key words: Data Mining; Isoptera; Phylogenomics; Mitochondrial genome; Nuclear genome; 75 

Taxonomy.  76 

https://github.com/oist/TER-UCE-DB/
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1. Introduction 77 

Termites are the most ancient lineage of social insects, with a fossil record dating back to the 78 

Early Cretaceous ~135 million years ago (Ma) (Thorne et al., 2000; Grimaldi & Engel, 2005; 79 

Engel et al., 2009; Zhao et al., 2019; Barden & Engel, 2021). All modern termites share a 80 

common ancestor that most time-calibrated phylogenetic trees estimated at ~150 Ma, around 81 

the Jurassic-Cretaceous boundary (Bourguignon et al., 2015; Legendre et al., 2015; Bucek et 82 

al., 2019; Evangelista et al., 2019). A few time-calibrated phylogenetic trees estimated an 83 

earlier origin of termites, around the Triassic-Jurassic boundary (Ware et al., 2010; Jouault et 84 

al., 2021), a scenario implying a ~70 million years gap in the fossil record. However, the bulk 85 

of the modern termite species diversity belongs to the Termitidae, a lineage that originated 86 

during the early Eocene ~50 Ma according to both time-calibrated phylogenetic reconstructions 87 

(Bourguignon et al., 2015, 2017; Bucek et al., 2019; Jouault et al., 2021) and the fossil record 88 

(Engel et al., 2011). While the backbone of the phylogenetic tree of termites is now largely 89 

resolved, most termite species are still awaiting to be placed on the tree of life. 90 

 Our understanding of the phylogenetic history of termites was mostly based on 91 

mitochondrial markers until Bucek et al. (2019) published a phylogenetic tree of termites based 92 

on transcriptome data. The first phylogenetic trees of termites were based on a couple of PCR-93 

amplified mitochondrial markers, sometimes combined with nuclear 18S or 28S sequences 94 

and/or morphological characters (e.g., Lo et al., 2004; Inward et al., 2007; Legendre et al., 95 

2008). These phylogenies provided a good overview of the relationships among the main 96 

termite lineages but lacked the robustness of phylogenetic trees inferred from full mitochondrial 97 

genomes (e.g., Cameron et al., 2012; Bourguignon et al., 2015, 2017). Full mitochondrial 98 

genomes, which became easy to sequence with the rise of second-generation sequencing 99 

technologies, resolve both shallow and deep divergences in the evolutionary history of termites 100 

and other insect lineages (Cameron, 2014), making them a marker of choice for phylogenetic 101 
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reconstructions. However, mitochondrial genomes form a single marker, as all mitochondrial 102 

genes are linked and maternally inherited as a single package. Consequently, mitochondrial 103 

phylogenies are sometimes discordant with species phylogenies, especially for closely related 104 

species and short internal branches that diverged in periods of time too brief for alleles to 105 

coalesce (Whitfield & Lockhart, 2007; Degnan & Rosenberg, 2009). One example of such 106 

discordance is provided by Sphaerotermitinae, the unambiguous sister group of 107 

Macrotermitinae according to transcriptomic data (Bucek et al., 2019), which is supported as 108 

sister to non-macrotermitine non-foraminitermitine Termitidae by mitochondrial genome 109 

phylogenies (Figure 2B) (Bourguignon et al., 2017). Phylogenies based on multiple 110 

independent nuclear markers are needed to resolve the evolutionary history of organisms 111 

accurately. 112 

Transcriptomes, the snapshot of genes expressed by an organism during tissue sampling, 113 

include many independent nuclear markers that can be used to build robust phylogenetic trees. 114 

Transcriptome-based phylogenies, reconstructed using up to ~4,000 single-copy orthologous 115 

nuclear genes spanning over 7.7 million nucleotide positions, have provided a robust picture of 116 

the ancient evolutionary history of termites (Bucek et al., 2019). The sequencing of 117 

transcriptomes is now affordable, but, unfortunately, RNA is unstable and can only be extracted 118 

from samples that have been adequately preserved and stored, preventing the use of most 119 

samples collected before the genomic era began and making the approach impractical for large-120 

scale studies. One alternative is to mine the conserved genetic markers present in whole-121 

genome shotgun sequencing datasets, such as some datasets generated to sequence 122 

mitochondrial genomes (Allio et al., 2020). 123 

Ultraconserved Elements (UCEs) are highly conserved nuclear regions found across 124 

animal genomes, including the exonic, intronic, and intergenic regions. While their functions 125 

remain largely unknown in vertebrates (Bejerano et al., 2004; Faircloth et al., 2012), recent 126 
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analyses indicated that the UCEs of arthropods are mostly found in exons (Hedin et al., 2019; 127 

Van Dam et al., 2021). Phylogenetic trees inferred from UCEs enabled to resolve both shallow 128 

and deep divergences, and have contributed to our understanding of the evolutionary history of 129 

various animal lineages spanning across the animal tree of life (Faircloth et al., 2012; Ryu et 130 

al., 2012; Smith et al., 2014; Branstetter & Longino, 2019; White & Braun, 2019; Zhang et al., 131 

2019). Unlike transcriptomes, UCEs can readily be obtained from museum samples through 132 

baiting conserved elements and their phylogenetically-informative flanking regions from 133 

fragmented genome assemblies (Blaimer et al., 2016; Faircloth, 2017; Derkarabetian et al., 134 

2019). No UCE bait set has been designed for termites so far. We filled this gap as follows: (i) 135 

we designed in silico baits to capture UCEs; (ii) we compared phylogenetic trees reconstructed 136 

using mitochondrial genomes, nuclear ribosomal RNA genes, and UCEs; and (iii) we showed 137 

that UCEs obtained from low-coverage shotgun genome assemblies allow for the reconstruction 138 

of multi-gene phylogenies with robustness similar to transcriptome-based phylogenies. Finally, 139 

we set up a Termite UCE Database, thereby ensuring a long-term re-usability of published data. 140 

 141 

2. Material and Methods 142 

Biological samples and sequencing 143 

We used sequence data from 42 samples of termites and three samples of Cryptocercus, the 144 

wood-feeding subsocial cockroach genus forming the sister group of termites. The species were 145 

selected to include all main termite lineages, as was the case for the transcriptome-based 146 

phylogeny of Bucek et al. (2019). The sequencing data of 14 species were retrieved from 147 

previous studies (for details, see Table S1). The sequencing data from the remaining 31 species 148 

were obtained from samples preserved in 80% ethanol stored at room temperature or from 149 

samples preserved in RNA-later and stored at temperatures ranging between -20C and -80C 150 



UCEs in termites 

 8 

until DNA extraction. DNA was extracted using the DNeasy Blood & Tissue extraction kit 151 

(Qiagen). Libraries were prepared using the NEBNext Ultra™ II FS DNA Library 152 

Preparation Kit (New England Biolabs) and the Unique Dual Indexing Kit (New England 153 

Biolabs), with reagent volumes reduced to one-fifteenth of recommended volumes. For samples 154 

preserved in 80% ethanol, libraries were prepared without the enzymatic fragmentation step as 155 

the DNA of these samples is typically highly fragmented. Libraries were pooled in equimolar 156 

concentration and paired-end sequenced using the Illumina HiSeq X or Novaseq platforms at a 157 

read length of 150 bp. 158 

 159 

UCE loci identification and in silico bait design 160 

The identification of UCE loci was carried out using PHYLUCE v1.6.6 (Faircloth, 2016) 161 

following the recommendations of the tutorial (https://phyluce.readthedocs.io/en/stable/) and 162 

outlined workflow (Faircloth, 2017). Four publicly available genomes belonging to distantly 163 

related termite species were used to design baits: Zootermopsis nevadensis (Archotermopsidae), 164 

Cryptotermes secundus (Kalotermitidae), Coptotermes formosanus (Rhinotermitidae), and 165 

Macrotermes natalensis (Termitidae) (Poulsen et al., 2014; Terrapon et al., 2014; Harrison et 166 

al., 2018; Itakura et al., 2020). Genome completeness was assessed using BUSCO v4.1.2 167 

(Simão et al., 2015) and QUAST v5.0.2 (Gurevich et al., 2013). The genome of M. natalensis 168 

was chosen as the base genome for bait design due to its comparatively higher QUAST and 169 

BUSCO scores (for details, see Table S1). 170 

Repetitive elements, retroelements, transposons, and small RNAs were masked from 171 

genome assemblies using RepeatMasker v4.1.1 (Smit et al., 2015) with the command line “-172 

species eukaryota -div 50”. Assemblies were converted in the 2-bit format using the 173 

faToTwoBit tool of the BLAT suite of programs (Kent, 2002). We simulated 100 bp error-free 174 

https://phyluce.readthedocs.io/en/stable/
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paired-end sequencing reads from the three genome assemblies other than that of M. natalensis 175 

using art_illumina Q v2.5.8 (Huang et al., 2012) with the command line “--fcov 2 --mflen 200 176 

--sdev 150”. In order to identify orthologous loci representing putative UCEs, the reads 177 

simulated from the three termite genome assemblies were mapped independently on the 178 

genome assembly of M. natalensis with a 0.05 substitution rate onto the base genome using the 179 

permissive raw-read aligner Stampy v1.0.32 (Lunter & Goodson, 2011). The three alignment 180 

maps were handled with SAMtools v1.9 (Li et al., 2009) and converted into BED files with 181 

bedtools v2.29.2 (Quinlan & Hall, 2010). In each BED file, putative conserved regions 182 

overlapping by at least one nucleotide were merged using bedtools. Conserved sequences 183 

shorter than 80 bp or containing over 25% of masked nucleotides were discarded using the 184 

phyluce program phyluce_probe_strip_masked_loci_from_set. The putative orthologous loci 185 

found across the four termite genomes were combined into a database using 186 

phyluce_probe_get_multi_merge_table (Supplementary Data 1). A total of 175,535 loci shared 187 

by the four termite genomes were identified and extracted using 188 

phyluce_probe_query_multi_merge_table and 189 

phyluce_probe_get_genome_sequences_from_bed, respectively. Extracted UCE sequences 190 

shorter than 180 bp were buffered to 180 bp by including 5’ and 3’ flanking regions in equal 191 

amounts with phyluce_probe_get_genome_sequences_from_bed (Supplementary Data 2). 192 

A preliminary set of 120 bp baits was designed from the base genome of M. natalensis 193 

using phyluce_probe_get_tiled_probes. Baits targeted a region of 180 bp and overlapped in its 194 

center by 60 bp (at 2X tiling density). UCEs with ambiguous base calls and GC-content above 195 

70% or below 30% were discarded from the bait set. Duplicates, defined as sequences having 196 

50% identity over half of their length, were also removed from the bait set using LASTZ (Harris, 197 

2007) implemented in the programs phyluce_probe_easy_lastz and 198 

phyluce_probe_remove_duplicate_hits_from_probes_using_lastz. In order to further identify 199 
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and remove non-specific baits, we aligned the bait set (Supplementary Data 3) to the four 200 

genomes with phyluce_probe_run_multiple_lastzs_sqlite using a minimum identity threshold 201 

of 80% and minimum coverage of 83%. Sequences shorter than 180 bp were buffered to 180 202 

bp by including 5’ and 3’ flanking regions in equal amounts and extracted from the alignments 203 

using phyluce_probe_slice_sequence_from_genomes. The loci shared by the four termite 204 

genomes were identified using phyluce_probe_get_multi_fasta_table and 205 

phyluce_probe_query_multi_fasta_table (Supplementary Data 4). The final UCE bait set was 206 

designed with phyluce_probe_get_tiled_probe_from_multiple_inputs, and duplicates were 207 

removed using LASTZ as described above (397,910 baits targeting 50,616 loci; Supplementary 208 

Data 5). This final set of loci was tentatively annotated using the GFF file (NCBI Annotation 209 

Release 100) from the Z. nevadensis genome assembly (GCF_000696155). 210 

 211 

Genome assembling and mining of phylogenetic markers 212 

The general steps for data mining and analyses are outlined in Figure 1. Adapters and low-213 

quality bases were trimmed from raw reads using fastp v0.20.1 (Chen et al., 2018), resulting in 214 

a total of 4.55 to 448.64 million paired-end reads per sample (for details, see Table S1). 215 

Trimmed reads were assembled using metaSPAdes v3.13 (Nurk et al., 2017). The quality and 216 

completeness of assemblies were assessed with QUAST and BUSCO (Table S1). 217 

Mitochondrial genome scaffolds were identified in metaSPAdes assemblies and annotated 218 

using MitoFinder v1.4 (Allio et al., 2020). Nuclear ribosomal RNA genes (5S, 5.8S, 18S, and 219 

28S) were extracted from metaSPAdes assemblies using barrnap v0.9 220 

(https://github.com/tseemann/barrnap). UCE loci were extracted from metaSPAdes assemblies 221 

using the final set of termite baits we designed and the PHYLUCE suite of programs with 222 

parameter values set as recommended in the tutorial and previously published studies (Faircloth 223 

https://github.com/tseemann/barrnap
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et al., 2015; Faircloth, 2017; Quattrini et al., 2018). Briefly, baits were aligned to the 224 

metaSPAdes assemblies at a minimum similarity threshold of 50% with 225 

phyluce_probe_run_multiple_lastzs_sqlite. Sequences of the metaSPAdes assemblies 226 

matching baits were extracted with the flanking 200 bp situated at both the 5’ and 3’ ends using 227 

phyluce_probe_slice_sequence_from_genomes. Extracted sequences were mapped back to the 228 

baits using phyluce_assembly_match_contigs_to_probes with a minimum identity of 80% over 229 

67% of bait length to remove duplicates and sequences matching multiple UCE loci 230 

(Supplementary Data 6; Contribution #1 to the Termite UCE Database available at: 231 

https://github.com/oist/TER-UCE-DB/). The average coverage of UCE loci per sample was 232 

obtained using the mapping workflow of PHYLUCE v1.7.1. 233 

 234 

Sequence alignment 235 

The 13 mitochondrial protein-coding genes, two mitochondrial rRNA genes, 22 mitochondrial 236 

tRNA genes, four nuclear rRNA genes, and UCEs were aligned using MAFFT v7.305 (Katoh 237 

& Standley, 2013). For mitochondrial protein-coding genes, we translated DNA sequences into 238 

the corresponding amino acid sequences using the transeq function from EMBOSS v6.6.0 (Rice 239 

et al., 2000) and aligned protein sequences with MAFFT. Protein alignments were back-240 

translated into codon alignments using PAL2NAL v14 (Suyama et al., 2006). The other four 241 

types of genes, the mitochondrial rRNA and tRNA genes, nuclear rRNA genes, and UCEs, 242 

were aligned as DNA sequences. UCE loci were aligned using MAFFT implemented in 243 

phyluce_align_seqcap_align, and internal trimming was performed under default parameters 244 

with Gblocks (Castresana, 2000; Talavera & Castresana, 2007) implemented in 245 

phyluce_align_get_gblocks_trimmed_alignments_from_untrimmed. Loci absent in more than 246 

25% of taxa were filtered out with phyluce_align_get_only_loci_with_min_taxa. The final 247 

UCE supermatrix was exported using phyluce_align_format_nexus_files_for_raxml 248 

https://github.com/oist/TER-UCE-DB/
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(Supplementary Data 7: alignments; Supplementary Data 8: corresponding reduced bait set). 249 

Mitochondrial and nuclear gene alignments were concatenated using FASconCAT-G_v1.04.pl 250 

(Kück & Longo, 2014). 251 

 252 

Phylogenetic analyses 253 

We ran one separate phylogenetic analysis for the mitochondrial genome alignment, the nuclear 254 

rRNA alignment, and the UCE alignment. We also ran one phylogenetic analysis for the 255 

combined UCE and mitochondrial genome alignments. The mitochondrial genome alignment 256 

was separated into five distinct partitions: combined rRNAs, combined tRNAs, and combined 257 

first, second, and third codon positions of protein-coding genes. Nuclear rRNA gene and UCE 258 

alignments were given a single partition each. Phylogenetic trees were reconstructed in a 259 

maximum likelihood (ML) framework using IQ-TREE v1.6.12 with 1,000 ultrafast bootstrap 260 

replicates (UFB) to assess branch supports (Nguyen et al., 2015; Chernomor et al., 2016; Hoang 261 

et al., 2018). The best-fit nucleotide substitution model was selected for each partition with the 262 

Bayesian Information Criterion using ModelFinder implemented in IQ-TREE 263 

(Kalyaanamoorthy et al., 2017). We calculated a global bootstrap support (GBS) value for each 264 

tree by averaging bootstrap values of all nodes. To assess concordance among UCEs, we carried 265 

out a multi-gene coalescence analysis with ASTRAL-III v5.7.7 (Zhang et al., 2018) using 266 

individual gene trees obtained with IQ-TREE as described above. We allowed polytomies to 267 

reduce gene tree biases. Branch supports calculated with ASTRAL represent local posterior 268 

probabilities (LPP), which are based on gene tree quartet frequencies (Sayyari & Mirarab, 2016). 269 

Topological conflicts between individual gene trees and the ASTRAL species tree were 270 

assessed with PhyParts (Smith et al., 2015) and visualized with PhyPartsPieCharts 271 

(https://github.com/mossmatters/phyloscripts/tree/master/phypartspiecharts). Additionally, we 272 

evaluated whether merging cogenic UCEs (i.e., non-overlapping UCEs occurring within a 273 

https://github.com/mossmatters/phyloscripts/tree/master/phypartspiecharts
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single gene) improved the ASTRAL multi-gene coalescence tree by comparing the averaged 274 

GBS (aGBS) of all individual gene trees between analyses. 275 

 276 

3. Results 277 

In silico data mining 278 

The mitochondrial genomes were retrieved from all 42 termite metaSPAdes assemblies. We 279 

also retrieved the four nuclear rRNA genes from 84% of the samples (see Table S1). 280 

Our termite UCE bait set targeted a total of 50,616 loci distributed across 1,094 scaffolds 281 

of the Z. nevadensis genome assembly (GCF_000696155). Of these 50,616 loci, 6,325 (12.5 %) 282 

were found in the non-coding (intergenic) regions of 787 scaffolds (Supplementary Data 9). 283 

The remaining 44,291 loci (including 3,325 with more than one possible annotation) were found 284 

in genes distributed across 886 scaffolds. The 40,966 coding loci annotated once were spread 285 

over 7,910 genes, of which 6,053 (76.52 %) contained more than one ultraconserved loci and 286 

31,329 loci (76.48 %) were in exons. When including loci with multiple annotations, the 287 

number of genes with UCEs potentially reaches 9,105. 288 

From the 50,616 targeted loci, we extracted between 3,426 and 42,860 non-duplicated 289 

UCE loci from 42 termite metaSPAdes assemblies (Figure 2A; Table S1). The number of 290 

extracted UCEs among the 38 termite samples was independent of the preservation method 291 

(Kruskal-Wallis test: H2 = 3.72, p = 0.16), with a median of 37,629 loci for samples in RNA-292 

later® (n = 12, range = 3,426-42,117), 23,951 in ethanol 100% (n = 4, range = 21,257-41,278), 293 

and 23,476 in ethanol 80-85% (n = 22, range = 6,602-40,520). The number of non-duplicated 294 

UCE loci extracted from the assemblies of Cryptocercus roaches varied between 13,480 and 295 

16,331. The average coverage of UCE loci per sample was between 8.38 to 134.71x (Table S1). 296 

The final supermatrix, complete at 75% and containing loci present in at least 33 of the 45 taxa, 297 
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was composed of 5,934 loci spanning over 1,677,394 nucleotide positions, 591,343 of which 298 

were parsimony-informative. The 45 taxa were represented by 939 to 5,928 loci (Figure 2A). 299 

 300 

Phylogenetic reconstructions 301 

Many deep and shallow relationships within termites were poorly resolved by the nuclear rRNA 302 

phylogenetic tree (GBS = 72.12) (Figure S1). Only 11 of the 44 nodes harbored a UFB > 95. 303 

The nuclear rRNA phylogenetic tree did not recover well-established relationships, such as the 304 

sister position of Mastotermes with respect to all other termites. Because of its poor 305 

performance, we excluded the rRNA alignment from the analysis performed on combined 306 

marker classes. The phylogenetic reconstruction based on mitochondrial genomes resolved 307 

most relationships (GBS = 87; 27 nodes with UFB > 95), except for several nodes within the 308 

Serritermitidae, the Rhinotermitidae, and the Termitinae (Figure S2), as previously reported 309 

(Bourguignon et al., 2015). The phylogenetic analysis performed exclusively on UCEs 310 

provided the most robust phylogenetic tree among the analyses performed on separate marker 311 

classes (Figure S3; GBS = 98.59; 42 nodes with UFB > 95, four with UFB < 100). Combining 312 

UCEs and mitochondrial genomes marginally improved the overall support of the phylogenetic 313 

reconstruction (Figure 2; Figure S4; GBS = 99.02; 43 nodes with UFB > 95, three with UFB < 314 

100). Analyses on UCEs alone or combined with mitogenomes resolved all nodes with high 315 

supports, except for the position of the rhinotermitid Termitogeton planus (Figures S3, S4: UFB 316 

= 52 and 65, respectively). The phylogenetic analysis with ASTRAL revealed minimal 317 

discordance among the 5,934 UCE markers (Figure S5; final normalized quartet score of 0.89), 318 

except for five of the 44 nodes that presented conflicts among UCE markers (LPP < 1). Within 319 

the Rhinotermitidae, the nodes corresponding to the split of T. planus and Prorhinotermes 320 

simplex displayed moderate concordance among UCE markers (LPP of 0.89 and 0.83, 321 
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respectively). Within the Termitidae, the nodes corresponding to the split of Neocapritermes 322 

utiariti, Pericapritermes sp. 4, and Nitiditermes + Cavitermes showed moderate to high levels 323 

of discordance (LPP of 0.66, 0.98, and 0.39, respectively). PhyParts analyses on a subset of 324 

1,000 gene trees revealed some levels of topological discordances (Figure S6). Nodes with 325 

discordance were mostly dominated by a plethora of topologies rather than by a single 326 

alternative and uninformative gene trees. Using the functional annotation of the Z. nevadensis 327 

genome assembly (Supplementary Data 9) to filter the loci in the 75%-completeness 328 

supermatrix, 4,941 loci (from the pool of 40,966 singly-annotated markers) were merged into 329 

2,635 genes. The ASTRAL tree reconstructed using this refined set presented significantly 330 

higher overall support (final normalized quartet score of 0.90; aGBS = 76.16) compared with 331 

the unfiltered analysis (aGBS = 73.69; Welch two-sample t-test: t = –16.70, df = 5250.6, p < 332 

0.001). However, nodes with low LPP remained unresolved (Figure S7). 333 

 334 

4. Discussion 335 

We reconstructed phylogenetic trees for 42 species of termites and three species of 336 

Cryptocercus using three classes of markers: nuclear rRNA genes, mitochondrial genomes, and 337 

UCEs. The performance of the three types of phylogenetic markers decreased along the 338 

sequence: UCEs, mitochondrial genomes, and nuclear rRNA genes. The phylogenetic tree 339 

inferred from the latter class of markers, the nuclear rRNA genes, was poorly resolved and did 340 

not recover well-established relationships, such as the sister position of Mastotermes with 341 

respect to all other termites. The phylogenetic tree inferred from mitochondrial genomes was 342 

robust but failed to retrieve Sphaerotermitinae as sister to Macrotermitinae, as previously 343 

reported (Bourguignon et al., 2015; Bucek et al., 2019). The best phylogenetic tree was that 344 

reconstructed using the 75%-occupancy matrix comprised of 5,934 UCE loci (Figures 2; S3). 345 
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This phylogenetic tree was almost fully resolved and largely congruent with the phylogenetic 346 

trees inferred from transcriptomic data (Bucek et al., 2019). Therefore, our results indicate that 347 

the termite UCE bait set we designed performs very well when reconstructing phylogenetic 348 

relationships among termite species. The addition of mitochondrial genome data (Figure S4), 349 

which, as UCEs, can be recovered from shotgun genome assemblies, slightly improved the 350 

global bootstrap support of the termite phylogenetic tree. 351 

We ran our analyses on samples for which we generated low coverage genome 352 

assemblies. The final bait set targeting a total of 50,616 orthologous loci was obtained from 353 

four termite genomes, belonging to four families. Such a high number of UCE loci was 354 

previously reported in other groups of arthropods (e.g., Buenaventura et al., 2021). We retrieved 355 

numerous UCE sequences for all samples, including many that produced highly fragmented 356 

assemblies with low BUSCO scores (for details, see Table S1). All samples were accurately 357 

placed on the phylogenetic tree reconstructed with the 5,934 loci present in the 75%-occupancy 358 

supermatrix. Therefore, our UCE bait set has the potential to be used for mining 359 

phylogenetically informative genetic data from assemblies obtained from shotgun sequencing 360 

experiments. We established a centralized termite UCE database (https://github.com/oist/TER-361 

UCE-DB/), which we plan to use to reference all UCE data extracted with the presently 362 

designed bait set, thereby ensuring the long-term re-usability of the available data. 363 

The analysis with ASTRAL revealed a few cases of discordance among UCE markers 364 

for lineages of Rhinotermitidae and Termitidae whose phylogenetic position was also 365 

unresolved with transcriptomic data (Bucek et al., 2019). We used 5,934 UCE loci, a large 366 

number of markers that inevitably led to topological discordances between individual UCE 367 

trees and the species tree. These discordances are possibly caused by the lack of phylogenetic 368 

signal present in a single UCE marker and by population-level processes, such as incomplete 369 

lineage sorting and introgression, which frequently occurs during the emergence of new 370 

https://github.com/oist/TER-UCE-DB/
https://github.com/oist/TER-UCE-DB/


UCEs in termites 

 17 

lineages (Degnan & Rosenberg, 2009; Blom et al., 2017; Parins-Fukuchi et al., 2021). Recent 371 

studies indicated that the phylogenetic resolution can be improved by merging loci localized 372 

within the same gene (Hedin et al., 2019; Van Dam et al., 2021). Indeed, treating cogenic UCEs 373 

as independent units violates the assumptions of multi-species coalescence analyses (Szöllősi 374 

et al., 2015; Jennings, 2017). We used the annotation report of Z. nevadensis to identify and 375 

merge cogenic UCEs. Although merging cogenic UCEs significantly improved our results, 376 

several unresolved relationships with low overall support remained (Figure S7). Other methods 377 

could be used to tackle the duplicity of cogenic UCEs, such as the random selection of UCEs 378 

within a gene, or their separation using an intrachromosomal distance threshold to take into 379 

account recombination (Jennings, 2017; Van Dam et al., 2021). In termites, however, it might 380 

be difficult to apply such a threshold due to the variable numbers of chromosomes (2n♂ = 22 381 

to 98) and large genome size variations across species (C-value = 0.57 to 1.86Gb) (Koshikawa 382 

et al., 2008; Jankásek et al., 2021). The actual relationships among termite lineages with 383 

unresolved positions remain unclear, possibly reflecting intricate evolutionary history that 384 

cannot be satisfactorily resolved by molecular phylogenetic techniques. Overall, 66% of UCE 385 

loci in the termite bait set were found in exonic regions, confirming that UCEs are often part of 386 

the coding regions in arthropods (Hedin et al., 2019; Van Dam et al., 2021). The similar 387 

resolution of transcriptomic-based and UCE-based phylogenies reflects the similar nature of 388 

the markers involved. 389 

While producing low-coverage genomes is more costly than targeting UCEs through 390 

synthetized baits, low-coverage genome data can be used to investigate a broad range of 391 

questions in addition to phylogenetic reconstruction. Nevertheless, we provide two sets of baits, 392 

one targeting all 50,616 UCE loci and one targeting the reduced set of 5,934 UCE loci 393 

(Supplementary Data 5 and 8). These bait sets can be used for data-mining of full genome 394 

assemblies as we did, or synthetized for a traditional hybridization approach. We showed that 395 
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UCEs could be extracted from samples collected in RNA-later®, ethanol 100%, and ethanol 396 

80-85%. Hence, used in combination with non-destructive DNA extraction protocols, our UCE 397 

baits could be used to obtain sequence data from material that cannot be damaged, such as 398 

specimens from type series. This approach was successfully applied to centuries-old museum 399 

specimens of Opiliones, carpenter bees, and weevils (Blaimer et al., 2016; Van Dam et al., 400 

2017; Derkarabetian et al., 2019). We recently obtained the full mitogenome of a Syntype of 401 

the termite Archotermopsis wroughtoni collected at the end of the 19th century using shotgun 402 

sequencing data (Wang et al., 2021). Termite UCEs could be extracted using the same 403 

procedures. Termite taxonomy, which is led by a shrinking pool of experts and is largely based 404 

on soldier and worker gut morphology, could benefit from the use of the many UCE markers 405 

designed in this study (Eggleton, 1999; Korb et al., 2019). UCE baiting from whole-genome 406 

shotgun sequencing is an excellent tool to carry out a global taxonomic revision of termites.  407 
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Figure captions 625 

Figure 1: Overview of datasets and main analyses performed in this study. Abbreviations: CDS, 626 

protein-coding sequence; mito, mitochondrial; n, number of species; nuc, nuclear; UCEs75%: 627 

UCEs present in the 75% completeness supermatrix; UCEsmerged: merged cogenic UCEs. 628 

 629 

Figure 2: (A) Maximum likelihood phylogenetic tree of termites reconstructed with IQ-TREE 630 

using 5,934 UCE loci and complete mitochondrial genomes (phylogenetic tree displayed in 631 

Figure S4). Only UCE loci present in more than 75% of species were used (the number of loci 632 

baited and kept in the matrix is indicated for each sample). Support values are indicated for 633 

non-fully resolved nodes: ultrafast bootstrap (UFB; summarized from the phylogenetic trees 634 

reconstructed using UCE only and UCE + mitochondrial DNA displayed in Figures S3 and S4, 635 

respectively) and ASTRAL-III local posterior probabilities values (LPP; Figure S5). 636 

Assemblies from which UCEs were designed are indicated in bold, and the conservation 637 

methods are indicated in front of each species label (RNA-later®, R; ethanol 100%, E100; 638 

ethanol 80-85%, all remaining samples). (B) Family-level summary topology of termites 639 

supported by both UCEs (this study) and transcriptomic data (Bucek et al., 2019), with the 640 

indication of alternative topologies inferred from mitochondrial genome data alone 641 

(Bourguignon et al., 2015, 2017). Unsupported splits were summarized as polytomies 642 

(branches in red). 643 
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RLabritermes buttelreepeni

Cornitermes pugnax

RAllognathotermes hypogeus

Macrotermes natalensis

RForaminitermes rhinoceros

Labiotermes labralis

Pericapritermes sp. 4

Leptomyxotermes doriae

Dolichorhinotermes longilabius
Termitogeton planus

RProrhinotermes simplex

Dentispicotermes n. sp. 2

E100Microcerotermes sp.

RHodotermopsis sjostedti

E100Cavitermes tuberosus

RGlossotermes oculatus

Coptotermes formosanus
Heterotermes tenuis

Promirotermes redundans

Glyptotermes pubescens

RMastotermes darwiniensis

Amitermes californicus

Reticulitermes flavipes

Cryptotermes secundus

Neocapritermes utiariti

Sphaerotermes sphaerothorax

RNeotermes castaneus

RCryptocercus meridianus

RKalotermes flavicollis

Nasutitermes corniger

Embiratermes neotenicus

RNitiditermes sp.

Rhinotermes hispidus

Stylotermes halumicus
Cryptotermes cavifrons

Constrictotermes cyphergaster

RCryptocercus punctulatus

Coptotermes testaceus

Anoplotermes banksi

RPorotermes quadricollis

E100Odontotermes formosanus

RCryptocercus hirtus

RAstalotermes sp. D

90≤UFB≤99
90>UFB
1>LPP

R RNA-later®

E100 Ethanol 100%

939 (3,426)

1,313 (5,007)

5,137 (35,429)

5,219 (35,656)

5,585 (38,150)

3,513 (11,915)

3,920 (18,994)

4,253 (23,406)

4,941 (26,968)

5,403 (30,583)

5,435 (32,336)

5,474 (34,001)

3,310 (19,394)

4,256 (24,367)

3,886 (21,257)

4,209 (23,053)

5,069 (23,546)

1,928 (7,637)
4,477 (18,854)

5,309 (24,978)

4,180 (23,535)

1,925 (6,602)

4,837 (21,240)

4,348 (16,240)

5,804 (40,941)

5,878 (41,508)

5,899 (42,117)

5,875 (41,813)

5,466 (35,273)

5,876 (41,278)

5,787 (40,520)

5,761 (39,895)

2,876 (17,316)

5,774 (38,121)

1,640 (9,378)

Mastotermitidae

Apicotermitinae

Cubitermitinae

Nasutitermitinae

Syntermitinae

Stolotermitidae
Hodotermopsidae
Archotermopsidae

Kalotermitidae

Stylotermitidae
Serritermitidae

Rhinotermitinae

Termitogetoninae
Prorhinotermitinae

Reticulitermes
+ Heterotermes
+ Coptotermes

group
Sphaerotermitinae

Macrotermitinae

Foraminitermitinae

Polyphyletic

Microcerotermitinae

Termitinae

Termitinae

Termitinae

Term
itidae

R
hinoterm

itidae

Mastotermitidae

Apicotermitinae

Cubitermitinae

Nasutitermitinae

Syntermitinae

Stolotermitidae

Hodotermopsidae

Archotermopsidae

Kalotermitidae

Stylotermitidae

Serritermitidae

Rhinotermitinae

Termitogetoninae

Prorhinotermitinae

Reticulitermes+Heterotermes
+Coptotermes-group

Sphaerotermitinae

Macrotermitinae

Foraminitermitinae

Microcerotermitinae

Termitinae

Termitinae

Termitinae

BA

Serritermitidae

Rhinotermitinae

Termitogetoninae

Prorhinotermitinae

Macrotermitinae

Foraminitermitinae

Sphaerotermitinae

5,906 (42,542)

5,928 (42,860)

5,917 (42,297)

5,897 (42,388)

2,450 (13,480)

2,419 (13,958)

2,837 (16,331)

5,531 (37,108)

5,709 (39,588)

5,818 (40,077)

nloci in the 75%-completeness matrix (nloci extracted)


