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1  | INTRODUC TION

The distribution of species- range sizes is a key pattern of interest in 
macroecology, providing a basic spatial profile of the earth's biodi-
versity (Gaston, 1998). Despite the broad range of biological dynam-
ics that potentially influence such a macroscopic pattern, a relatively 
consistent form is often observed across taxa and regions: Species- 
range sizes have a lognormal distribution with left skew (Brown et al., 

1996; Gaston, 1998; Gaston & Blackburn, 1996, 2008; Gaston & He, 
2002; Noonan, 1990; Orme et al., 2006; Ruggiero, 1994). Gaston 
(1998) provides skewness values from a wide range of taxonomic 
groups where 19 out of 22 range- size distributions have a skewness 
between	−1.26	and	−0.03	on	a	log-	axis	(note	right-	skewed	distribu-
tions were also reported but these were minor).

This generality in the form of the pattern raises the possibility 
of some similarly general mechanism. While there is a long list of 
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Abstract
The species- range size distribution is a product of speciation, transformation of range- 
sizes, and extinction. Previous empirical studies showed that it has a left- skewed 
lognormal- like distribution. We developed a new mathematical framework to study 
species- range- size distributions, one in which allopatric speciation, transformation of 
range size, and the extinction process are explicitly integrated. The approach, which 
we call the gain- loss- allopatric speciation model, allows us to explore the effects 
of various speciation scenarios. Our model captures key dynamics thought to lead 
to known range- size distributions. We also fitted the model to empirical range- size 
distributions of birds, mammals, and beetles. Since geographic range dynamics are 
linked to speciation and extinction, our model provides predictions for the dynam-
ics of species richness. When a species- range- size distribution initially evolves away 
from the range sizes at which the likelihood of speciation is low, it tends to cause 
diversification slowdown even in the absence of (bio)diversity dependence in specia-
tion rate. Using the mathematical model developed here, we give a potential expla-
nation for how observed range- size distributions emerge from range- size dynamics. 
Although	 the	 framework	presented	 is	minimalistic,	 it	 provides	 a	 starting	point	 for	
examining hypotheses based on more complex mechanisms.
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processes that potentially influence range- size distributions, the 
shapes of these distributions are ultimately a product of specia-
tion, extinction, and transformation of the range (Gaston, 1998). 
Therefore, exploring these patterns leads to a central question in 
ecology and biogeography: How do the processes of speciation, ex-
tinction, and transformation mutually interact to shape range- size 
distributions? (Brown et al., 1996; Gaston, 1998).

Given the large spatial and temporal scales involved, quantitative 
approaches have been central to the study of species ranges. These 
include studies with a particular focus on inferring speciation modes 
(Cardillo,	2015;	Phillimore	&	Price,	2008;	Skeels	&	Cardillo,	2019),	
phylogenesis	(Albert	et	al.,	2017;	Pigot	et	al.,	2010),	niche	evolution	
(Rangel	et	al.,	2007,	2018),	size-	age	relationship	of	geographic	ranges	
(Pigot et al., 2012), and the heritability of range size (Borregaard 
et al., 2012). In addition to the focus on individual species- range 
sizes, previous studies also shed light on the shape and the under-
lying mechanisms of the emergent distributions of range size across 
many	species	(e.g.,	Alzate	et	al.,	2019;	Anderson,	1985;	Gaston	&	He,	
2002;	Pigot	et	al.,	2010;	Rangel	et	al.,	2007).	In	early	work,	Anderson	
(1985)	 focused	on	 range-	size	distributions	using	an	algorithm	with	
nine different scenarios for range dynamics (speciation is associated 
with an extinction event in the algorithms) to generate range- size 
distributions	 resembling	 faunal	 data	 for	 North	 American	 verte-
brates.	Later,	Gaston	&	He	(2002)	developed	a	stochastic	model	that	
describes range- size dynamics driven by population dynamics of a 
single species, and they showed that the generalized equilibrium 
range- size distributions produced by the model fit well to range- size 
distributions of several taxonomic assemblages. Pigot et al. (2010) 
built a spatially explicit numerical algorithm to simulate geographic 
range evolution where new species arise via vicariance or peripatry, 
and they reproduced empirically observed range- size distributions 
across bird genera that lead to diversification slowdown in the re-
constructed phylogenetic tree.

While these efforts have been illuminating, and detailed spatially 
explicit algorithms are available (e.g., Rangel et al., 2018), we still lack 
a comprehensive understanding of the assumptions necessary and 
sufficient to realize observed patterns of range- size distributions. 
For example, we do not have concrete insight into the mutual impor-
tance of key processes, range transformation, extinction, and spe-
ciation	 (Gaston,	1998).	Also,	 there	are	contrasting	views	regarding	
the effect of range size on speciation rate (Gaston, 1998; Jablonski 
&	Roy,	2003;	Rosenzweig,	1995;	Tokeshi,	1996),	 and	 the	effect	of	
speciation rates combined with other key processes on emergent 
range- size distributions has not yet been well explored.

We develop a new class of macroecological model describing 
key processes of range- size dynamics that we call the gain- loss- 
allopatric speciation	 (GLAS)	model.	 The	GLAS	model	 accounts	 for	
the key processes shaping ranges: the gain in area through disper-
sal, the loss of area due to local extinction, and the splitting of a 
single range into multiple ranges through allopatric speciation. Our 
mathematical framework is simple and flexible to accommodate 
various assumptions, and we examine several scenarios of allopatric 

speciation. While a priori we could expect any number of range- size 
distributions to be realized, we ask whether the fact that ranges are 
subject to gain, loss, and speciation dynamics places any constraints 
on their distributions. While in principle such a modeling approach 
could become very complex when incorporating a broad range of 
pertinent processes occurring in a region (e.g., Rangel et al., 2018), 
we take a minimalist approach to address general cases. We do not 
deal explicitly with species interactions (as, e.g., Gaston & He, 2002; 
Pigot et al., 2010), the genetic mechanisms of speciation, environ-
mental heterogeneity, or change, or any number of other potential 
elaborations. Rather, we model range- size distributions in terms of 
phenomenological rates of range growth, contraction, and specia-
tion, which are implicitly affected by all those mechanisms.

The dynamics of species- range- size distributions can also affect 
the diversification process and structure of the associated phylog-
eny	(Albert	et	al.,	2017;	Pigot	et	al.,	2010).	If	speciation	and	extinc-
tion are linked to range size, then lineage diversification rates can 
be affected by dynamical changes in the range- size distribution 
itself. This can occur by concentrating species at sizes with lower 
or higher speciation and extinction rates. Hence, investigating this 
theoretically provides an opportunity to link range dynamics to 
macroevolutionary processes. The dynamics of species diversity 
are also a central focus in macroecological studies (Nee, 2006; Nee 
et al., 1992; Rabosky, 2009). Diversification slowdowns, often dis-
cussed via lineage- through- time plots (Harvey et al., 1994; Nee et al., 
1995),	are	a	common	feature	of	inferred	lineage	dynamics	(Cusimano	
& Renner, 2010; Moen & Morlon, 2014; Morlon et al., 2010; Nee, 
2006; Yoder et al., 2010), yet biological explanations for the underly-
ing mechanisms (e.g., diversity- dependent speciation) are still under 
active investigation (Condamine et al., 2019; Moen & Morlon, 2014; 
Pannetier	et	al.,	2021).	We	demonstrate	that	the	GLAS	model	pro-
vides an opportunity to examine the effect of range- size dynamics 
on the diversification rate.

We find that left- skewed distributions on a log- axis are predicted 
under various speciation scenarios and parameter sets. The left- 
skewed distributions are realized by the similar rates of the expan-
sion and contraction of geographic ranges with the moderate supply 
of new species. We demonstrate that these three parameters reg-
ulate the shape of emergent range- size distributions. Interestingly, 
our model can generate diversification slowdown in the dynamics 
of the number of species under all speciation scenarios investigated, 
even though the model has neither a diversity dependence effect 
nor a species interactions.

2  | MATERIAL S AND METHODS

2.1 | Gain- loss- allopatric speciation model

Here, we give an overview of the gain- loss- allopatric speciation 
(GLAS)	model.	See	Appendix	1	for	complete	discussion	of	the	model.	
The	GLAS	model	contains	minimal	but	essential	factors	to	describe	
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range- size dynamics and to recover empirical range- size distribution: 
allopatric speciation, extinction, and transformation of the range 
size (Gaston, 1998).

Let	us	assume	that	a	species	has	a	geographic	range	size	r at time 
t, and experiences gain in its range size by one unit (r → r + 1) or loss 
by one unit (r → r − 1) at rates g and l, respectively. In addition, allo-
patric speciation can occur at a size- dependent rate ar, causing the 
subdivision of a geographic range to produce two smaller range sizes 
r1 and r2 with one new species (Figure 1a). We assume for simplic-
ity that the sum of the two subdivided range sizes is equivalent to 
the parent range size r1 + r2 = r, and all combinations of split size are 
equally likely. We define an extinction as the event that a species 
reaches range size 0, and it only occurs from r = 1 (Figure 1b). We 
assume that each species- range size changes independently of other 
species. These assumptions are translated into the following sto-
chastic process that describes the dynamics of P(r, t), the expected 
number of species with range size r at time t:

Equation (1) describes the dynamics of geographic range- size 
distribution over time. It is a class of continuous- time random walk 

(Gardiner, 2009; Karlin & Taylor, 2012) with an additional term for 
the effect of allopatric speciation.

It is worth noting that we assume that individual processes 
within each geographic range induce change of geographic range by 
“one unit,” and hence, the size of change is a constant regardless 
of the geographic range size. However, it may also be sensible to 
assume that environmental factors cause the size shift, and lead to 
a size- dependent rate of change. We will discuss this effect in the 
Discussion and provide an example.

Because	 the	 GLAS	 model	 describes	 speciation	 and	 extinction	
events, it also generates dynamics of the total number of species, an 
exponential increase, decrease, or stable species number depending 
on	the	value	of	the	dominant	eigenvalue	(see	Appendix	1	for	details	
and	an	example	of	eigenvalues	provided	in	Figure	A1).

2.2 | Continuum limit of the GLAS model

It is reasonable to consider that the geographic range size changes 
continuously rather than in a discrete manner. When the step size 
of the range size is small (r ∼ r + 1) in Equation (1), we introduce a 
new variable u(x, t) where the number of species with range size 
between x and x + Δx at time t is described by u(x, t)Δx. Then, we 
obtain the following integro- differential equation that describes the 

(1)

dP (r, t)

dt
=gP (r−1, t) + lP (r+1, t)

+2
∑

r�>r

ar�

r� −1
P
(

r�, t
)

−
(

g+ l+ar
)

P (r, t) .

F I G U R E  1   Schematic diagram of the model. Each species has a geographic range size at given time t that is labeled by a number. (a) 
Within a small time period Δt, a species range can increase in size, decrease in size, or undergo allopatric speciation leading to two smaller 
range sizes with one new species. (b) Extinction can occur if a species has the smallest allowable range size (labeled 1 in this example) 
and then decreases in size. (c) Four scenarios for the dependence of speciation rate on normalized range size (0 ≤ x ≤ 1). The probability 
distribution is described by a beta distribution and the parameter values for each scenario are Linear increase: � = 2, � = 1 ;	Linear decrease: 
� = 1, � = 2; Parabola: � = 2, � = 2; and Constant: � = 1, � = 1. See the main text for more details

(a) (b)

(c)
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dynamics of the number of species u(x, t) with range size x at time t 
(See	Appendix):

where V = (g − l)Δx and D = (g + l)Δx2∕2. Note the assumption that 
the ancestral range is divided into two ranges with an equal prob-
ability of any split size, and so yields the average split proportion 
25:75.	 Possibility	 of	 split	 asymmetry	 in	marine	mollusks	was	 sug-
gested	 in	Pigot	et	 al.	 (2012).	Also,	Budding	 speciation,	by	which	a	
reproductively isolated smaller- ranged species is originated from a 
larger- ranged species by a highly asymmetric fashion, may be com-
mon	in	plant	species	(Anacker	&	Strauss,	2014;	Grossenbacher	et	al.,	
2014), and our model can capture this speciation mode as this is a 
potentially (spatially overlapped) subdivision of a geographic range. 
Here, without loss of generality, we set the range size to lie in the 
interval 0 ≤ x ≤ 1, with 1 being the size of the entire domain (the 
maximum	 possible	 range,	 e.g.,	 the	 size	 of	 a	 continent).	 Assuming	
that an extinction event occurs only when a range size reaches 
x = 0 and no species exits the domain from the upper bound x = 
1 (i.e., no- flux condition), we need mixed boundary conditions. 
Namely, a Dirichlet boundary condition for the lower boundary 
u(0, t) = 0 and the Robin boundary condition for the upper bound-
ary − Vu(1, t) + D�u(1, t)∕�x = 0. We can derive an analytical solution 
of Equation (2) when speciation increases linearly with range size 
by imposing extra conditions. However, the analytical form is rather 
complicated and computationally expensive due to an infinite sum-
mation. For the reader's convenience, we provide the derivation in 
Appendix	2.	In	the	following,	we	will	perform	numerical	analysis	of	
Equation	(2).	Also,	we	will	focus	on	deterministic	characteristics	of	
the	GLAS	model	to	directly	discuss	mutual	importance	of	speciation,	
transformation, and extinction events, while Equation (1) allows us 
to investigate stochastic processes.

2.3 | Scenarios of allopatric speciation

To complete the model Equations (1) and (2), we need to define the 
size dependency of speciation rate ax. However, as discussed in the 
Introduction, this is rather contentious. We assume four potential 
scenarios to capture some of the existing hypotheses, where the 
probability of speciation: (i) increases with range size (Rosenzweig, 
1995;	Tokeshi,	1996);	(ii)	decreases	with	range	size	(Jablonski	&	Roy,	
2003); (iii) peaks at an intermediate size, which is attributed to a 
hypothesis that a high dispersal ability can lead to large ranges and 
inhibit speciation (e.g., Claramunt et al., 2012; Gaston, 1998; Mayr, 
1963); or (iv) is independent of range size. We examine how these 
four speciation scenarios affect the form of the range- size distribu-
tion. We use the beta distribution to model these four probability 
distributions with a single probability distribution function (PDF). 
The PDF ax has the form ax = ax�−1(1−x)�−1∕B(�, �), where a is 
the underlying speciation rate and B(�, �) is the beta function. We 

use the simplest possible form to represent the above- mentioned 
four scenarios: (i) Linear increase: � = 2, � = 1 (ax = 2ax); (ii) Linear 
decrease: � = 1, � = 2 (ax = 2a (1 − x)); (iii) Parabola: � = 2, � = 2

(ax = 6ax (1 − x) );	 and	 (iv)	Constant: � = 1, � = 1 (ax = a). The prob-
ability distributions of these speciation models are shown in 
Figure	1c.	We	also	discuss	nonlinear	cases	in	Appendix.

2.4 | Summary of situations investigated

2.4.1 | Range-	size	distributions

Having completed Equation (2) with a speciation scenario, we can 
compute the range- size distributions and the dynamics of the total 
species number over time. To facilitate comparisons between different 
speciation scenarios, we will present range- size distributions scaled by 
the maximum possible range size (i.e., area of the domain) where all 
species- range sizes span the range 0 ≤ x ≤ 1. To quantify the range- 
size distribution, we calculate skewness and kurtosis statistics, which 
provide location-  and scale- free descriptors of distributions (e.g., nor-
mal distribution gives 0 values for both measures). Since the range size 
is scaled by the area of the domain, the relative values of parameters 
are important rather than their absolute values. Without loss of gen-
erality, we scale the gain rate and speciation rate by the loss rate, al-
lowing us to set the loss rate l = 1. This is a convenient approach to 
investigate the relative importance of multiple factors affecting range 
size.	Also,	this	facilitates	the	investigation	of	range-	size	distributions	
of two largely different taxonomic groups whose parameter values are 
of different order. Note since the model is linear, scaling each rate by 
a constant value gives the same equilibrium range- size distribution.

Although	we	use	 a	normalized	model	 to	 investigate	 range-	size	
distributions across different taxonomic groups, this approach does 
not lose any qualitative property of the original model. The same 
analysis could be applied for any specific case with empirically es-
timated parameter values. Within these settings, we examine mul-
tiple sets of gain rates g, including the case g > l, g = l, and g < l, and 
multiple orders of the underlying speciation rates including the case 
where there is no speciation a = 0. We also perform model fitting 
to	data	for	mammals	and	birds	in	the	Americas,	and	Harpalus cara-
bids	in	North	America	north	of	Mexico.	Since	empirically	observed	
range- size distributions often span multiple orders of magnitude, we 
employ	the	logarithmically	transformed	GLAS	model	(Equation	A13)	
to compute the range- size distribution in the analysis where all the 
characteristics	remain	unchanged	(see	Appendix	for	details).

2.4.2 | Species	number

Since	the	GLAS	model	characterizes	speciation	and	extinction	events,	
it produces the dynamics of total number of species N(t) = ∫

1

0
u(x, t) dx 

where the number of species is also a continuous value as u(x, t) is 
a continuous value. Given such dynamics, it is possible to calcu-
late diversification rate �(t) over time, the difference between the 

(2)

�u (x, t)

�t
= − V

�u (x, t)

�x
+ D

�2u (x, t)

�x2
+ 2

∫

1

x

ax�

x�
u
(

x�, t
)

dx� − axu (x, t) ,
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speciation rate at time t and extinction rate at time t. Since the diver-
sification rate has the following relationship �(t) = dlogN(t)∕dt and the 
extinction rate is calculated by Du� (0, t) ∕ ∫ 1

0
u (x, t) dx	(Appendix	2),	it	

is possible to compute all these time- dependent rates along with the 
lineage-	through-	time	plot.	Along	with	these	continuous	representa-
tions, we also provide the statistic r (Etienne & Rosindell, 2012; Pigot 
et al., 2010) where r < 0 and r > 0 indicate a slowdown and speedup of 
the diversification rate, respectively, over the period of calculations.

2.5 | Species- range data

Species- range data for birds (n =	365)	and	mammals	 (n = 628) in 
North	America	north	of	Mexico	were	 from	BirdLife	 International	
(BirdLife	International	&	Handbook	of	the	Birds	of	the	World,	2017)	
and	the	IUCN	Red	List	(IUCN,	2017)	databases.	Range	size	was	cal-
culated in the Eckert IV equal- area projection. We excluded sea-
birds as our focus was species in continental areas. We excluded 
parts of species ranges labeled as introduced or vagrant. For birds, 
we used only the breeding range. Data for Harpalus carabids (n = 
54)	 in	 North	 America	 north	 of	 Mexico	 are	 from	 Noonan	 (1990)	
where the range size was calculated based on occurrence data.

We	used	 17,683,892	 km2 to normalize the range sizes (i.e., to 
organize all the range sizes between 0 and 1). Note the choice of the 
size for the normalization does not affect the shape of range- size 
distributions (e.g., variance, skewness, and kurtosis), but it merely 
causes a shift on the x- axis.

2.6 | Model fitting

Although	we	do	not	have	an	explicit	form	of	the	likelihood	function	with	
arbitrary parameters for speciation scenarios α and β of Equation (2), we 
can perform data fitting via simulated annealing, an optimization algo-
rithm, based on a log- likelihood using a numerically calculated range- size 
distribution. Detailed settings of the optimization algorithm are found in 
Appendix	3.	In	this	process,	we	set	the	range	of	speciation	parameters	
α, β ∈	[1,50].	We	sampled	the	range-	size	distribution	when	the	changes	
in skewness and kurtosis between time steps become smaller than 10−5 
(i.e., convergence to equilibrium) and eliminated parameter sets which 
cause species number smaller than 0.9 until the convergence. Note the 
value to judge the numerical convergence is different from the value 
used in other numerical simulations to reduce the simulation time of the 
optimization algorithm. Since we are interested in relative significance 
of gain, loss, and speciation, we again set the loss rate to 1.

3  | RESULTS

3.1 | Model predictions

Given a speciation scenario, and the three factors affecting range- 
size dynamics, gain rate g, loss rate l, and an underlying allopatric 

speciation rate a,	 we	 can	 numerically	 solve	 the	 GLAS	model.	We	
observed that the range- size distribution approaches a unique equi-
librium distribution regardless of initial conditions after a certain 
simulation period. We sampled the range- size distribution when 
the absolute difference in skewness (kurtosis) at two arbitrary time 
points (we sampled every 1000 time steps for numerical conveni-
ence) became smaller than 10−7. Figure 1a shows example dynamics 
of the range- size distribution under the scenario of linearly increas-
ing probability of speciation with range size and underlying specia-
tion rate a = 0.1. Starting with a single species with a range size 0.1, 
the range- size distribution converges to an equilibrium distribution 
that is comparable to some existing data: a left- skewed curve on a 
log- scale (Brown et al., 1996; Gaston, 1998; Gaston & Blackburn, 
1996, 2008; Gaston & He, 2002; Noonan, 1990; Orme et al., 2006; 
Ruggiero, 1994).

Left-	skewed	 range-	size	 distributions	 are	 observed	 for	 the	
other speciation scenarios, although distributions tend to shift 
to the left- side on the x- axis for the linear decrease and constant 
speciation	 scenarios	 (Figure	 2b).	 Left-	skewed	 distributions	 are	
also observed when changing the speciation rate across multi-
ple orders of magnitude (Figure 2c,d), although its magnitude 
of influence on the shape of the range- size distribution is rela-
tively small compared with the effect of alternative speciation 
scenarios (Table 1). However, a smaller underlying speciation 
rate causes a right shift of the distribution, since it suppresses 
the chance of allopatric speciation, which is the mechanism that 
pulls	 the	distribution	 toward	 the	 left.	As	a	 result,	 the	distribu-
tions of the linear decrease and constant speciation scenarios 
come closer to the other scenarios. We provide heat maps of 
skewness and kurtosis of the species- range- size distributions 
across	 parameters	 in	 Figures	 A2	 and	 A3	 showing	 the	 robust-
ness of these summary parameters provided by the left- skewed 
distribution.

If the underlying speciation rate is zero or sufficiently small, the 
mechanism to reduce the range size by supplying a new species is 
suppressed and the number of species declines over time (if an initial 
population	size	is	larger	than	1).	As	a	result,	the	left	skew	vanishes	
and many species arrive at the largest possible range size when g ≥ l 
(Figure	A4)	and	this	corresponds	to	the	left-	top	region	of	each	panel	
in	Figures	A2	and	A3.	Figures	A2	and	A3	also	 show	 that	a	 similar	
result occurs when the gain rate is substantially larger than the loss 
rate and the underlying speciation rate, since this also suppresses 
the mechanism to reduce the range sizes.

The left- skewed range- size distribution is widely observed 
across the parameter space, including the case of nonlinear spe-
ciation	scenarios	(Figure	A5),	as	long	as	there	is	a	mechanism	that	
avoids many species growing to the maximum possible range 
size.	Although	the	gain	rate	tends	to	be	 larger	than	the	 loss	rate	
(g > l) to have a positive species growth rate, it can still show a left- 
skewed distribution even when the species growth rate is negative 
(Figure	A6)	and	when	speciation	rate	is	zero	and	with	a	smaller	gain	
rate than the loss rate (g < l;	Figure	A4)	in	the	course	of	all	species	
extinction.
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The	GLAS	model	characterizes	speciation	and	extinction	events,	
and it produces the dynamics of total number of species. Starting 
with a single species, we found the diversification rate can decrease, 

without a diversity- dependent effect, as it approaches the equilib-
rium diversification rate (Figure 3). Typically, diversification slow-
down is associated with decline of the realized speciation rate and 
increase in the extinction rate as it approaches an equilibrium. 
When the speciation rate increases over time, slowdown is less 
likely to occur but it is still possible if the extinction rate also in-
creases fast enough to suppress the effect of speciation as in Figure 
A8f.	 Speciation	 scenarios	 also	 affect	 these	 dynamics.	 The	 linear	
increase scenario tends to require larger initial range size to show 
the slowdown, while the linear decrease still can show the strong 
slowdown with a smaller range size. This trend can be explained by 
the match between the initial range size and the possibility of spe-
ciation. Namely, if an initial range has larger likelihood for speciation, 
it can produce a higher accumulation of species at an initial phase 
than the range size with lower likelihood of speciation. We provide 
these	numerical	results	with	two	other	initial	range	sizes	(0.05	and	
0.5)	 for	each	combination	of	 the	 three	underlying	speciation	rates	
(10−1, 10−2, and 10−3)	with	four	speciation	scenarios	(Figures	A7	and	
A8)	and	three	nonlinear	speciation	scenarios	with	initial	range	sizes	
(0.05,	0.1,	and	0.5;	Figures	A9–	A11).	For	nonlinear	speciation	sce-
narios, similar discussions are possible except for some situations. 
For example, the slowdown can occur when both speciation and ex-
tinction	show	a	decreasing	trend	(Figure	A11a,c)	that	is	not	observed	
with	 linear	speciation	scenarios.	Also,	nonlinear	 increasing	and	de-
creasing speciation scenarios generally induce more significant dif-
ferences compared to these linear counterparts.

3.2 | Model fits to empirical data

Figure 4 shows the empirical and fitted histograms and shape of es-
timated speciation scenarios. The estimated parameters and values 
of skewness and kurtosis are summarized in Table 2. We found that 
our model tends to show narrower equilibrium distributions (span-
ning	around	3	orders	of	magnitude)	than	the	empirical	datasets	(5	or	
more orders of magnitudes). The speciation scenarios selected are 
nonlinear- decreasing functions, but the parameter values are close 
to the domain boundaries of parameter space defined. Widening pa-
rameter spaces for speciation scenarios (i.e., α and β) allows more 
extreme, and perhaps unrealistic, speciation scenarios and may not 
improve prediction.

This casts a limitation of the model fit to a continental scale data-
set with wide taxonomic scales. However, this may not be surprising 
as the model is minimalistic and assuming homogeneous biological 
parameters between species. In fact, our model leads to a better fit 

F I G U R E  2   Normalized range- size distributions that typically 
show a lognormal feature but are left skewed. (a) The time evolution 
of a range- size distribution starting with a single species with range 
size 0.1 when the speciation scenario is linear increase. The range- 
size	distribution	is	recorded	every	25	time	units	for	visualization	
until t = 400. (b) Equilibrium range- size distributions with four 
speciation scenarios. Other parameter values used are l = 1, g = 1.2 
for (a) and (b), and g = 1.1	for	(c)	and	(d).	Also,	parameters	for	the	
speciation scenarios (α, β) are (2, 1) (linear increase); (1, 2) (linear 
increase); (2, 2) (parabola); and (1, 1) (constant)

(a)

(b)

(c)

(d)

a

Speciation scenarios

Linear increase Linear decrease Parabola Constant

10−1 (−1.016,1.913) (−0.777,1.182) (−0.996,1.847) (−0.780,1.187)

10−2 (−1.020,1.926) (−0.771,1.170) (−0.989,1.832) (−0.780,1.187)

10−3 (−1.045,2.013) (−0.732,1.100) (−0.953,1.783) (−0.780,1.187)

TA B L E  1   Summary of (skewness, 
kurtosis) from each curve in Figure 2
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to the carabid dataset, which shows narrower distribution due to 
narrower	taxonomic	scales	in	the	dataset.	Also,	the	limitation	in	the	
model fits does not reduce the model utility because the left- skewed 
distributions are observed at various taxonomic scales. Our model 

shows that homogeneous parameters are sufficient to recover this 
characteristic rather than the shape is a product of high heterogene-
ity	in	biological	parameters.	A	wider	distribution	range	may	be	the	
product of aggregating heterogeneous components from various 

F I G U R E  3   In each panel, (top) lineage- through- time plot and the associated statistic r, and (bottom) diversification, extinction, and 
realized	speciation	rates.	(a)–	(l)	correspond	to	the	scenarios	shown	in	Figure	2.	Each	simulation	is	started	with	a	single	species	with	a	range	
size 0.1. Each column shows a different speciation scenario (left to right: linear increase, linear decrease, parabola, and constant), and each 
row represents a different underlying speciation rate (top: a = 0.1; middle: a = 0.01; and bottom a = 0.001). Other parameter values used are 
l = 1 and g = 1.2	for	(a–	d)	and	g = 1.1 for the rest

Speciation scenarios (initial range = 0.1)
a 

= 
0.

1
a 

= 
0.

01
a 

= 
0.

00
1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F I G U R E  4   Model fit to the datasets for mammals (n =	365),	birds	(n = 628), and Harpalus carabids (n =	54)	in	North	America	north	of	
Mexico (left three panels), and estimated speciation scenarios (right panel). The estimated parameters are in Table 2
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taxonomic groups. Our model provides a better understanding at 
the level of such a component.

4  | DISCUSSION

4.1 | Left- skewed range- size distributions

The	gain-	loss-	allopatric	speciation	(GLAS)	model	is	a	general	mathemat-
ical framework to model the key factors of transformation, speciation, 
and extinction processes in the dynamics of range- size distributions. 
While the components of the model are ultimately phenomenological 
and not based on modeling the mechanisms driving those processes, it 
allows us to investigate how their relative rates and functional forms 
affect range- size distributions. We found a left- skewed and lognormal- 
like distribution, which has been identified as one of the general pat-
terns in previous studies (Brown et al., 1996; Gaston, 1998; Gaston 
& Blackburn, 2008; Gaston & He, 2002; Noonan, 1990; Orme et al., 
2006),	and	equivalently	a	positive	skew	on	a	normal	axis	(Albert	et	al.,	
2017;	O’Sullivan	et	al.,	2019;	Pigot	et	al.,	2010)	appears	under	multiple	
parameter	sets	and	speciation	scenarios	(Figure	2,	Figures	A5	and	A6),	
yet these parameters and speciation scenarios affect the shape statis-
tics of the range- size distributions (Table 1). Typically, this left- skewed 
pattern is observed when the rates of gain and loss of range size are 
similar in magnitude, and allopatric speciation rates are also of com-
parable order to these rates. Balanced gain and loss rates avoid a dis-
proportional chance of extinction and an arrival at the large range- size 
limit.	Allopatric	speciation	also	reduces	the	chance	of	a	species	arriv-
ing at the large limit of range size. It induces a split of a range size into 
two smaller range sizes, pushing the range- size distribution toward the 
left side, and we attribute the left- skew distribution to this mechanism. 
A	lower	rate	of	allopatric	speciation	allows	many	species	to	occupy	a	
larger	range	(Figure	A4).	It	suggests	that	the	knowledge	of	the	range-	
size distribution could be used to diagnose diversification strength rela-
tive	 to	 the	rate	of	 the	range-	size	 transformation.	Also,	a	comparable	
order of magnitude in the rate of allopatric speciation to the transfor-
mation rate is necessary to maintain the diversity. For example, a much 
larger speciation rate than the transformation rates causes increasingly 
smaller ranges and it can lead to a larger extinction rate than the spe-
ciation rate. On the other hand, biodiversity cannot be maintained with 
a too small speciation rate due to the lack of a source of new species.

4.2 | Fitting to range- size distribution datasets

Our attempts of model fitting produced narrower range- size distri-
butions than the empirical datasets for mammals, birds, and Harpalus 

carabids. The datasets of Harpalus carabids show narrower distribu-
tions than the others, and consequently, it leads to a relatively bet-
ter fit. We hypothesize potential explanations of this variable fitting 
performance.

First, we assume that all species have the same rate of changes 
in geographic range size and the speciation rate, and the same spe-
ciation scenario. This is a simplification, and wider range- size distri-
butions of birds and mammals may result in larger heterogeneity in 
these rates. The number of species is also larger for these datasets 
than the datasets of Harpalus carabids, and these may include more 
diverse functions, phenotype, evolutionary strategies, and so on, 
and it leads to more variable parameter values.

Second, we mainly focused on an equilibrium range- size distri-
bution. However, its transient range size does not yield a unique 
distribution pattern starting with an arbitrary initial range- size dis-
tribution. In reality, each rate may fluctuate over time and the ob-
served pattern may not be an equilibrium distribution.

Third, environmental factors, for example, occupancy of glaciers 
(Noonan, 1990), drive transformation of the range sizes. While we 
assume that the change in range size is based on individual processes 
where transformation of range size is by one unit, it may not be the 
case for environmental change where its increments/decrements 
are proportional to the range size. We provide an example with an 
assumption of proportional change in range size that leads to wider 
range-	size	 distributions	 in	 Figure	 A12	 in	 the	 Appendix	 and	 some	
technical details below.

4.3 | Diversification slowdown

We	show	 that	 the	GLAS	model	also	produces	 the	 signature	of	di-
versification slowdown in the phylogeny as in Pigot et al. (2010). In 
the	GLAS	model,	diversification	slowdown	occurs	during	a	transient	
phase as the diversification rate approaches a stable value. Several 
hypotheses have been discussed to explain these phenomena includ-
ing density- dependent speciation (Phillimore & Price, 2008; Rabosky 
&	Lovette,	2008;	Weir,	2006),	failure	to	adapt	to	a	changing	environ-
ment (Quental & Marshall, 2013), and protracted speciation (Etienne 
& Rosindell, 2012). In our simulations, this slowdown behavior is 
observed under a wide range of parameter sets and speciation sce-
narios when the initial range size is closer to a size with high specia-
tion probability. Since speciation tends to move species ranges away 
from the sizes with highest speciation probability, it tends to push 
the distribution away as well, slowing down the rate of speciation. 
For example, when the original species speciates under the linear in-
crease speciation scenario, the two new smaller range sizes may still 
have a high chance of producing new species before going extinct if 

Taxon g a α β Skewness (data), kurtosis (data)

Mammals 1.65 0.0013 1.01 50.00 −0.504	(−0.679),	0.166	(0.0744)

Birds 5.33 0.0062 1.08 50.00 −0.618	(−0.748),	0.244	(0.749)

Harpalus carabids 1.10 0.0004 1.03 30.97 −0.387	(−1.136),	0.104	(0.698)

TA B L E  2   Estimated parameters by the 
model fitting in Figure 4
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the initial species had a relatively large range size. Extinction events 
are more likely to occur after this transition when there are more 
species with smaller range sizes, and this eventually suppresses the 
diversification	rate.	Although	this	slowdown	 is	pervasive,	opposite	
trends	in	the	diversification	rate	can	occur	(e.g.,	Figure	A7(i)	and	(k)	in	
Appendix).	For	example,	when	the	initial	species	has	relatively	small	
range size and speciation probability increases with the range size, 
there is an initial extinction- prone period since smaller range sizes 
are	less	likely	to	speciate.	After	the	initial	transition	period,	the	spe-
ciation rate increases due to the existence of large range sizes, and 
this leads to an upward curve in the lineage- through- time plot. This 
opposite trend was reported in previous studies and was explained 
by, for example, climatic cycles and disruptive mountainous terrain 
where	rapid	recent	speciation	might	have	been	induced	(Linder	et	al.,	
2003; Weir, 2006).

4.4 | Mechanisms to extend the GLAS model

While our model is a simple approach to modeling the three key 
factors as discussed in (Gaston, 1998), the results suggest that the 
model produces widely observed range- size distributions and diver-
sification slowdown. Thus, it allows us to obtain general insight with 
minimal assumptions. However, our model can further be extended 
to investigate a wide range of assumptions, scenarios, and speciation 
modes. It is possible to assume that the range size x in Equation (2) is 
an arbitrary parameter to characterize a geometry of the range size 
(e.g., length and perimeter), not necessarily area itself. If the area is 
a nonlinear function of x, then the realized range- size distribution 
may have a wider distribution. For example, consider circular ranges, 
assuming that Equation (2) describes the dynamics of the radius (x) 
of the range, rather than range size (�x2)	itself,	Figure	A12	shows	a	
wider range- size distribution under this assumption. This simple ex-
ample induces the loss of area of the original range size after specia-
tion: If a range size with a radius x splits into two ranges with radius 
x1 and x2, then we have �x2 ≥ �(x2

1
+ x2

2
). While we do not have a 

clear idea if geographic range size is decreased after allopatric spe-
ciation, we can assume various geometries that induces different 
amounts of area loses after allopatric speciation.

Split asymmetry of ancestral species influences the range- size 
evolution (Pigot et al., 2012), and a large asymmetry may also cause 
a wider range- size distribution. While our assumption of the equal 
split	 probability	 gives	 the	 asymmetric	 split	 proportion	 25:75,	 this	
can be controlled: This effect is incorporated into Equation (2) as 
2 ∫

1

x
a2(x

′)ax′u(x
′, t)dx′, where a2(x) is any symmetric probability dis-

tribution function in 0 ≤ x ≤ x1 with original range size x1, regulat-
ing the degree of the split asymmetry. The average split proportion 
A: 1 − A is obtained from A = ∫

x1∕2

0
xa2(x)dx. In our analysis, we used 

a2(x) = 1∕x1.
We can incorporate range- size- dependent gain and loss rates by 

making them a function of range size g(x) and l(x). It would be pos-
sible to relate to population dynamics where, as in Gaston and He 
(2002), these rates are characterized by colonization and equilibrium 

phases. Similarly, diversity- dependent speciation is realized by defin-
ing the underlying speciation rate as a function of the total number 
of species a(N). Other speciation modes such as the point mutation 
(Hubbell, 2001) are possible to take into account by setting g(0) > 0 
as in (Volkov et al., 2003). Peripatry may induce larger skew in the 
range- size distribution (Pigot et al., 2010), and it can be incorporated 
by adding a term to Equation (2) that governs the rate of peripatry of 
a species with a range- size x. Finally, although diversification slow-
down is often discussed using reconstructed phylogeny with infor-
mation extracted from extant species, our discussion is based on the 
true species number. Developing a method that links to phylogenetic 
reconstructions would be beneficial for analyzing diversification 
slowdowns, to directly link to the existing insights.

The shape of species- range- size distributions helps us under-
stand the structure of biodiversity across scales. Species- range- size 
distributions are intertwined with other macroecological and com-
munity	 patterns	 such	 as	 species–	area	 and	 endemic–	area	 relation-
ships and species abundance distributions (Takashina et al., 2019). 
Thus, further developing our understanding of the dynamics of the 
range- size distribution will also promote integrated understanding 
of many basic and applied macroecological questions.
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APPENDIX 1

G AIN -  LOSS- ALLOPATRIC SPECIATION PROCE SS
Let	us	 assume	 that	 each	 species	has	 a	 geographic	 range	 size	with	
state r at time t that experiences gain in its range size by one unit 
(r → r + 1) or loss (r → r − 1) at rates g and l, respectively. In addition, 
we assume that allopatric speciation can occur at a size- dependent 
rate ar, and it produces two smaller range sizes r1 and r2 with one 
new species so as to satisfy r1 + r2 = r.	All	combinations	of	split	size	
are equally likely. These events and probabilities are summarized as 
follows:

We define an extinction as the event that a species achieves range 
size 0, which can only occur from r = 1. These events are translated 
into the following stochastic process that describes the dynamics of 
the expected number of species with range size r at time t:

where g and l are the gain and loss rate of geographic range, and ar 
are the size- dependent allopatric speciation rate. Here, we perform a 
continuum limit of Equation (1).

SOME DYNAMIC AL PROPERTIE S OF THE G L A S 
PROCE SS
Since	Equation	(A2)	is	linear,	we	can	rewrite	the	equation	with	a	ma-
trix form

where P = (P(1, t),P(2, t), ⋯ ,P(rmax , t))
T and M is the coefficient 

matrix	 of	 Equation	 (A2).	 Therefore,	 the	 real	 part	 of	 the	 dominant	

(A1)r →
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⎪

⎪
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r+1, gΔt

r, 1−
�

g+ l+ar
�

Δt

r−1, lΔt

r−1, 1,
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r−1
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r−2, 2,
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r−1
Δt

⋮

2, r−2,
ar

r−1
Δt

1, r−1,
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r−1
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(A2)

dP(r, t)

dt
=gP (r−1, t) + lP (r+1, t)

+2
∑

r�>r

ar�

r� −1
P
(

r�, t
)

−
(

g+ l+ar
)

P (r, t) ,

(A3)dP

dt
= MP,

F I G U R E  A 1   Dominant eigenvalues Re(�max) across parameters with four speciation scenarios (a) constant, (b) linear increase, (c) 
linear decrease, and (d) parabola with range size in the case of the normalized range size (0 ≤ x ≤ 1). The curve in each panel corresponds 
Re(�max) = 0, and it divides the region into Re(𝜆max) > 0 (upper) and Re(𝜆max) < 0 (lower), corresponding to species increase or decrease, 
respectively

(a) (b)

(c) (d)
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eigenvalue Re(�max) determines if the expected species number de-
scribed	 by	 the	 GLAS	 process	 in	 the	 long	 time	 limit	 exponentially	
increases (Re(𝜆max) > 0), exponentially decreases (Re(𝜆max) < 0), or 
has a stable number of species (Re(λmax) = 0).	Figure	A1	shows	such	
values. The curve in each panel corresponds to the Re(�max) = 0, 
and the upper and lower regions are Re(λmax) > 0 and Re(𝜆max) < 0, 
respectively.

APPENDIX 2

CONTINUUM LIMIT OF THE G L A S PROCE SS
It is reasonable to consider that the geographic range size changes 
continuously rather than a discrete manner. The continuum limit of 
the	GLAS	process	 is	expected	to	 inherit	dynamical	property	of	the	
GLAS	process	mentioned	above.	In	the	following,	we	will	use	a	stand-
ard procedure to obtain such a model (see, e.g., Gardiner, 2009).

First, let Δx be a small step size, and let x = rΔx. Then, we define 
the new variable u(x, t) where the number of species between range 
size x and x + Δx at time t is u(x, t)Δx. By expanding u(x, t) to the sec-
ond order of Δx, we have the following integro- differential equation:

where V = (g − l)Δx and D =
g + l

2
Δx2, and we replace Σr�>r with ∫ xmax

x
 and 

ax is the size- dependent split rate.
As	in	the	main	text,	let	us	normalize	the	range	size	x ∈ [0, 1], and 

if we assume that a loss of species only occurs when the range size 
of a species achieves x = 0. To guarantee this condition, we require 
a Robin boundary condition at the upper boundary and we have the 
following mixed boundary conditions:

where u′ indicates the derivative with respect to x.

DYNAMIC S OF TOTAL SPECIE S
The dynamics of the total number of species N(t) = ∫

1

0
u(x, t)dx is de-

rived	by	integrating	both	sides	of	Equation	(A4)	with	respect	to	x to 
obtain

(A4)

�u (x, t)

�t
=gu (x−Δx, t) + lu (x+Δx, t) +2

∫

xmax

x

ax�

x�
u
(

x�, t
)

dx� −
(

g+ l+ax
)

u (x, t) ,

= −V
�u (x, t)

�x
+D

�2u (x, t)

�x2
+2

∫

xmax

x

ax�

x�
u
(

x�, t
)

dx� −axu (x, t) ,

(A5)
⎧

⎪

⎨

⎪

⎩

u (0, t) =0

−Vu (1, t) +Du� (1, t) =0

F I G U R E  A 2   Heat map of skewness of the normalized range- size distribution under four speciation scenarios. The left- top region in each 
panel tends to show the species accumulation at the largest possible range size. The loss rate is l = 1. Parameters for the speciation scenarios 
(α, β) are (2, 1) (linear increase); (1, 2) (linear increase); (2, 2) (parabola); and (1, 1) (constant)

(a) (b)

(c) (d)
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where we have used the condition − Vu(1, t) + Du�(1, t) = 0. 
Interchanging the order of the double integral, this becomes

The	first	term	of	the	right-	hand	side	of	Equation	(A6)	corresponds	
to species loss due to extinction, and the second term represents 
species increment due to speciation events. Per- species rates of ex-
tinction and speciation events are obtained by dividing by the total 
number of species at given time N(t).
Using	Equation	(A6),	the	diversification	rate	at	time	t can be com-

puted. Diversification rate at given time �(t) is the rate of increase in the 
log- number of species dlogN(t)∕dt and has the following relationship: 
�(t) = speciation rateper species at time t − extinction rateper species at time t  .	
It is expected that the diversification rate asymptotically converges 
to the dominant eigenvalue �max = limt→∞

(

logN(t)∕t
)

 of the coeffi-
cient	matrix	in	Equation	(A3)	as	t becomes sufficiently large.

SOLUTION OF EQUATION ( A4)  IN A SPECIAL C A SE
It is possible to derive an analytical solution when the speciation sce-
nario	is	linear	increase	in	a	special	situation.	Although	the	assump-
tions allow us to analyze restricted situations, this derivation could 
help	further	analytical	development	of	the	GLAS	process	with	more	
general assumptions.

Overall, the following assumptions are made for make the analy-
sis	 of	 the	 Laplace-	transformed	 integration	 term	 possible.	 First,	
we assume the boundary condition at the upper limit is either 
Dirichlet boundary condition u(xmax, t) = 0 or bounded at infinity 
limx→∞u(x, t) = 0.	 As	 an	 example,	 we	 will	 use	 the	 Diriclet	 bound-
ary condition in the following. Next, we transform the dynamics 
of species number into fraction of species. To do this, let ũ(x, t)Δx 
be the fraction of species that range size is between x and x + Δx, 
namely

dN (t)

dt
= −Vu (1, t) +D

(

u� (1, t) −u� (0, t)
)

+
∫

1

0

[

2
∫

1

x

ax�

x�
u
(

x�, t
)

dx� −axu (x, t)

]

dx,

= −Du� (0, t) +
∫

1

0

[

2
∫

1

x

ax�

x�
u
(

x�, t
)

dx� −axu (x, t)

]

dx,

(A6)dN (t)

dt
= − Du� (0, t) +

∫

1

0

axu (x, t) dx.

(A7)ũ (x, t) Δx =
u (x, t) Δx

∫
xmax
0

u (x, t) dx
=

u (x, t) Δx

N (t)
,

F I G U R E  A 3   Heat map of kurtosis of the normalized range- size distribution under four speciation scenarios. The left- top region in each 
panel tends to show the species accumulation at the largest possible range size. The loss rate is l = 1. Parameters for the speciation scenarios 
(α, β) are (2, 1) (linear increase); (1, 2) (linear increase); (2, 2) (parabola); and (1, 1) (constant).

(a) (b)

(c) (d)
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and then �u∕�t = � ũ∕�tN + ũdN∕dt. Therefore, when 1∕NdN∕dt is suf-
ficiently small, this changes in variable holds the same form as Equation 
(A4),	and	we	assume	this	situation.	Combined	with	these	assumptions	
and the speciation scenario of linear increase (ax = 2ax), we have the 
followings

By	 Laplace	 transforming	ℒ ũ(x, t) = ∫
∞

0
ũ(x, t)e−sxdx = Ũ(s, t) both 

side in terms of x, we get

where	the	Laplace	transformation	of	 integration	term	is	obtained	by	
the integration by parts and used the above- mentioned assumptions 
∫
xmax

0
ũ(x, t)dx = 1 and ũ(xmax, t) = 0.	 Equation	 (A9)	 is	 actually	 a	 first-	

order linear ordinary differential equation, and hence, it is easy to solve. 
With an initial condition that range size of all species is concentrated 

at a single value ũ(x, 0) = �0(x0) and Ũ(s, 0) = 1, we obtain the following 
solution

To	perform	inverse	Laplace	transform,	we	further	need	to	arrange	
Equation	(A10):

where we used multi- index notations |k| = k1 + k2 + k3 + k4, 
⎛

⎜

⎜

⎝

n

k

⎞

⎟

⎟

⎠

= n !∕(k1 !k2 !k3 !k4 ! ) and k ! = k1 !k2 !k3 !k4 !. To derive the sec-

ond line, we applied the multinomial theorem to A.	Equation	(A10)	is	
now	the	form	to	be	able	to	inverse	Laplace	transform.	By	applying	the	
inverse	Laplace	operator	to	both	side,	and	calculate	 it	separately	for	
each term contains s, we get the final result

where Γ(n) is the gamma function.

LOG ARITHMIC TR ANSFORMATION OF EQUATION ( A4)
Since datasets of species- range- size distribution often show 
a diverse variations of range sizes on the logarithmic axis, it is 
convenient to employ a log- transformed model in model fitting 
where range sizes are equally spaced on a logarithmic axis. The 
logarithmic	 transformation	 of	 the	 GLAS	 process	 is	 achieved	 by	
introducing a new variable y = lnx∕x0 where x0 is the reference 
point. Under this transformation, we describe the number of spe-
cies between y and y + Δy at time t by v(y, t)Δy, and replacing u(x, t) 
in	 Equation	 (A4)	 with	v(y, t)	 provides	 the	 log-	transformed	GLAS	
process:

where	the	boundary	condition	as	Equation	(A5)	is
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� ũ (x, t)

�t
= −V
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� Ũ (s, t)

�t
= −V

(
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F I G U R E  A 4   Normalized range- size distributions with (a) 
no speciation and (b) a = 0.0001.	All	scenarios	cause	a	negative	
growth rate of the number of species. We sampled the range- size 
distribution when either species number becomes 0.01 or range- 
size distribution converged to equilibrium regardless of the negative 
species growth. Other parameter values used are l = 1 and (α, β) are 
(2, 1) (linear increase); (1, 2) (linear increase); (2, 2) (parabola); and (1, 
1) (constant).

(a)

(b)
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APPENDIX 3

TECHNIC AL DE TAIL S OF THE OP TIMIZ ATION 
ALGORITHM
We discuss here the settings of simulated annealing (Kirkpatrick et 
al., 1983) used in data fitting. This is a heuristic searching process of 
local optima of an objective function f(S) until the temperature, T, 
becomes lower than predetermined minimum temperature Tmin or an 
objective function (a log- likelihood) meets the predetermined target. 
We provide pseudocode as follows:

In our case, there are four parameters to optimize (g, s, �, �  )	and	these	
are chosen randomly at each step for updating the value. We heuris-
tically define parameters in the algorithm that induce convergence 
trends in the optimization (T , Tmin, Target, c) = (102, 10−5, − 1, 0.99) .	
For a random value � on the line 4, we used a normal dis-
tribution with mean 0 and parameter- dependent variance 
(�2

g
, �2

s
, �2

�
, �2

�
) = (5 × 10−2, 10−3, 0.5, 0.5), where the subscripts indi-

cate	a	corresponding	parameter.	A	on	the	Line	5	is	a	random	variable	
drawn	from	the	uniform	distribution	with	the	range	[0,1].	We	drawn	
initial parameters from the uniform distributions: g ∈ U[1.1, 1.6], 
s ∈ U[0.001, 1] and �, � ∈ U[1, 50], where we used a uniform distribu-
tion on a log- axis for s.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by sim-
ulated annealing. Science, 220,	671–	680.
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F I G U R E  A 5  Equilibrium	normalized	range-	size	distributions	with	nonlinear	speciation	scenarios:	Likelihood	of	speciation	monotonically	
increases with range size (left), monotonically decreases with range size (center), or peaks at intermediate range size (right). The form of each 
speciation	scenarios	is	shown	in	the	top	panels.	Skewness	and	kurtosis	of	each	equilibrium	distribution	is	provided	in	Table	A1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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F I G U R E  A 6   Normalized range- size 
distributions in case g = l = 1 (left) and 
g < l = 1	(right).	All	scenarios	cause	
negative growth rate of the number 
of species. We sampled the range- size 
distribution when either the species 
number becomes 0.01 or range- size 
distribution converged to equilibrium 
regardless of the negative species growth 
rate. Parameters for the speciation 
scenarios (α, β) are (2, 1) (linear increase); 
(1, 2) (linear increase); (2, 2) (parabola); and 
(1, 1) (constant)

(a) (b)

(c) (d)

(e) (f)
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F I G U R E  A 7   In each panel, (top) lineage- through- time plot with the initial condition and (bottom) associated diversification, extinction, 
and	speciation	rates.	Each	simulation	is	started	with	a	single	species	with	a	range	size	0.05.	Each	column	shows	a	different	speciation	
scenario (left to right: linear increase, linear decrease, parabola, and constant), and each row represents a different underlying speciation rate 
(top: a = 0.1; middle: a = 0.01; and bottom a = 0.001). Other parameter values used are l = 1 and g = 1.2 for (a)- (d) and g = 1.1 for the rest

Speciation scenarios (initial range = 0.05)
a 

= 
0.

1
a 

= 
0.

01
a 

= 
0.

00
1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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F I G U R E  A 8   In each panel, (top) lineage- through- time plot and (bottom) associated diversification, extinction, and speciation rates. 
Each	simulation	is	started	with	a	single	species	with	a	range	size	0.5.	Each	column	shows	a	different	speciation	scenario	(left	to	right:	linear	
increase, linear decrease, parabola, and constant), and each row represents a different underlying speciation rate (top: a = 0.1; middle: 
a = 0.01 ;	and	bottom	a = 0.001). Other parameter values used are l = 1 and g = 1.2 for (a)- (d) and g = 1.1 for the rest

Speciation scenarios (initial range = 0.5)
a 

= 
0.

1
a 

= 
0.

01
a 

= 
0.

00
1

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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F I G U R E  A 9   In each panel, (top) lineage- through- time plot and (bottom) associated diversification, extinction, and speciation rates. Each 
simulation	is	started	with	a	single	species	with	a	range	size	0.05.	Each	column	shows	a	different	speciation	scenario	(left	to	right:	monotonic	
increase,	monotonic	decrease,	unimodal;	see	Figure	A5	top	for	the	form),	and	each	row	represents	a	different	underlying	speciation	rate	(top:	
a = 0.1; middle: a = 0.01; and bottom a = 0.001). Other parameter values used are l = 1 and g = 1.2 for (a)- (c) and g = 1.1 for the rest. Note the 
speciation scenario shown in the panel (b) causes all species extinction, and simulation is terminated when the species number becomes 0.01

Speciation scenarios (initial range = 0.05)
a 

= 
0.

1
a 

= 
0.

01
a 

= 
0.

00
1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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F I G U R E  A 1 0   In each panel, (top) lineage- through- time plot and (bottom) associated diversification, extinction, and speciation rates. Each 
simulation is started with a single species with a range size 0.1. Each column shows a different speciation scenario (left to right: monotonic 
increase,	monotonic	decrease,	unimodal;	see	Figure	A5	top	for	the	form),	and	each	row	represents	a	different	underlying	speciation	rate	
(top: a = 0.1 ;	middle:	a = 0.01; and bottom a = 0.001). Other parameter values used are l = 1 and g = 1.2 for (a)- (c) and g = 1.1 for the rest. 
Note the speciation scenario shown in the panel (b) causes all species extinction, and simulation is terminated when the species number 
becomes 0.01

Speciation scenarios (initial range = 0.1)
a 

= 
0.

1
a 

= 
0.

01
a 

= 
0.

00
1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)



     |  23 of 24TAKASHINA eT Al.

F I G U R E  A 11   In each panel, (top) lineage- through- time plot and (bottom) associated diversification, extinction, and speciation rates. Each 
simulation	is	started	with	a	single	species	with	a	range	size	0.5.	Each	column	shows	a	different	speciation	scenario	(left	to	right:	monotonic	
increase,	monotonic	decrease,	unimodal;	see	Figure	A5	top	for	the	form),	and	each	row	represents	a	different	underlying	speciation	rate	(top:	
a = 0.1; middle: a = 0.01; and bottom a = 0.001). Other parameter values used are l = 1 and g = 1.2 for (a)- (c) and g = 1.1 for the rest. Note the 
speciation scenario shown in the panel (b) causes all species extinction, and simulation is terminated when the species number becomes 0.01
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F I G U R E  A 1 2   Normalized equilibrium range- size distributions 
when the range size x (Equation 2) is (a) the range itself; and (b) a 
diameter of the range (hence �x2 is the range). Parameter values 
used are l = 1, g = 1.2, a = 0.1.	Also,	parameters	for	the	speciation	
scenarios (α, β) are (2, 1) (linear increase); (1, 2) (linear increase); (2, 
2) (parabola); and (1, 1) (constant)

(a)

(b)

TA B L E  A 1   Summary of (skewness, kurtosis) from the each curve 
in	Figure	A5

(α, β) a = 10−1 a = 10−2 a = 10−3

Monotonic increase

(2,1) (−1.016,1.913) (−1.020,1.926) (−1.045,2.013)

(5,1) (−1.497,3.645) (−1.488,3.616) (−1.500,3.656)

(10,1) (−1.702,4.413) (−1.697,4.399) (−1.701,4.414)

Monotonic decrease

(1,2) (−0.777,1.182) (−0.771,1.170) (−0.732,	1.100)

(1,5) (−0.774,1.175) (−0.759,	1.146) (−0.674,	1.002)

(1,10) (−0.770,1.168) (−0.747,	1.123) (−0.612,	0.907)

Unimodal

(2,2) (−0.996,	1.847) (−0.989,	1.832) (−0.953,	1.783)

(5,5) (−1.425,	3.394) (−1.383,	3.249) (−1.300,	3.022)

(10,10) (−1.641,	4.202) (−1.605,	4.077) (−1.524,	3.829)


