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a b s t r a c t

In this paper we explore a neural control architecture that is both biologically plausible, and capable
of fully autonomous learning. It consists of feedback controllers that learn to achieve a desired state
by selecting the errors that should drive them. This selection happens through a family of differential
Hebbian learning rules that, through interaction with the environment, can learn to control systems
where the error responds monotonically to the control signal. We next show that in a more general
case, neural reinforcement learning can be coupled with a feedback controller to reduce errors that
arise non-monotonically from the control signal. The use of feedback control can reduce the complexity
of the reinforcement learning problem, because only a desired value must be learned, with the
controller handling the details of how it is reached. This makes the function to be learned simpler,
potentially allowing learning of more complex actions. We use simple examples to illustrate our
approach, and discuss how it could be extended to hierarchical architectures.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Understanding animal motor control holds the promise of
mproving therapies for people with motor deficits. Moreover,
omplex motor control in animals remains superior to current
rtificial systems, so insights from animal motor control may
ne day improve state-of-the-art artificial control. To reach such
nderstanding, we need models that obey strong biological plau-
ibility constraints, but still perform increasingly complex motor
asks.

We believe that serious attempts at biological plausibility
hould consider the following points:

• Modeling the full sensorimotor loop with a controller that
only uses neurons. Learning consists of adjusting the
weights of their synaptic connections.

• Learning rules use only information locally available at the
postsynaptic neuron.

• The agent learns as its body interacts in real time with the
environment. Rather than relying on labeled data, learning
takes advantage of correlation between signals, and rein-
forcement learning mechanisms.

• Transmission delays and response latencies should be con-
sidered.

• No element of the model goes against current consensus in
neuroscience.
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We are not aware of motor control models that follow all
these guidelines, and only a few follow most of them. This is
because complications arise in biological models. The worst com-
plication may be the one recently dubbed as the supraspinal
attern formation problem (Bizzi & Ajemian, 2020): how are the
pinal cord components coordinated in time to generate goal-
irected movements? A closely related complication is that many
otor patterns may achieve the same motor outcome. This was
riginally known as the DOF problem (Bernstein, 1967), or more
ommonly as the redundancy problem.
In this paper we lay a framework for motor control that

ncorporates all the biological constraints above, while offering a
iable solution to supraspinal pattern formation and redundancy.
he key is to cast the problem in terms of finding the input–
utput structure of a Multiple-Input Multiple-Output (MIMO)
eedback control system (Seborg, Edgar, Mellichamp, & III, 2016,
h.18), or in other terms, solving the input–output decoupling
roblem (Nijmeijer & van der Schaft, 1990). This problem is about
hoosing the right actuator (controller output) in order to reduce
he error for each controlled variable (controller input). Its main
omplication is that the actuators may affect several controlled
ariables, so using one of them to control a variable may cause
nwanted interference in the state of other variables. In engineer-
ng systems this is usually addressed during the design stage, but
t least in primates this is likely learned through experience.
The approach we use to find the input–output structure in

IMO feedback control relies on learning sensitivity derivatives
sing differential Hebbian learning with synaptic competition.

he sensitivity derivatives are the values dei/dcj, where c =
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c1, . . . , cN ] is the output vector produced by the controller in
rder to reduce an error vector e = [e1, . . . , eM ].
We will find that this can be an effective solution, but that

t fails in cases where the relation between input and output
hanges for different contexts. To handle this scenario we will
ombine our feedback controller with a variant of the actor–critic
rchitecture, which will allow it to self-configure for handling
ifferent contexts.
Most animal motor control models use a fixed input–output

tructure (e.g. Hayashibe & Shimoda, 2014; Kawato & Gomi, 1992;
orrill, Dean, & Anderson, 2013; Todorov, 2000). When asking
ow are motor errors defined and used, they assume that this
s either genetically determined, or adjusted through an internal
odel. There is extensive evidence for the presence of inter-
al forward models predicting the consequences of motor com-
ands, and that they adapt when those consequences change
ue to perturbations (e.g. McNamee & Wolpert, 2019; Miall &
olpert, 1996; Tanaka, Ishikawa, Lee, & Kakei, 2020). It is thus of-

en assumed that motor corrections arising from errors are caused
y a correction to a forward model (Jordan & Rumelhart, 1992;
olpert, Ghahramani, & Jordan, 1995). An alternative that is not
ften considered is that the motor corrections are independent
rom the corrections to the forward models. Recent experiments
uggest that this may be the case: errors in the sensory do-
ain seem to generate motor corrections without using forward
odels (Hadjiosif, Krakauer, & Haith, 2021).
Sensitivity derivatives constitute a linear forward model, not

f the system being controlled, but of the errors, which contain
nformation about the desired outcome. As will be shown later,
stimating a form of these values will directly produce error
orrections, and adjust the control structure of the system. In
ontrast, approaches using internal models of the system be-
ng controlled (called the plant) need to train such models, and
make them produce corrections; this usually requires a pre-
existing control structure (e.g. Miyamoto, Kawato, Setoyama, &
Suzuki, 1988; Porrill, Dean, & Stone, 2004), or a form of error
backpropagation (Jordan & Rumelhart, 1992).

In addition of not depending on a forward model, the model
we present consists entirely of neurons. Four control architec-
tures using biologically-plausible neural networks are well known
(Rokni, 2009), each presenting its own strengths and limitations.
Direct inverse learning (Kuperstein, 1988) uses the correlations
between muscle outputs and afferent inputs in order to approxi-
mate an inverse function that maps from desired afferent inputs
to the muscle activity that produces them. A major drawback is
that the relation between muscle activity and afferent inputs may
not be invertible (e.g. many muscle activities producing the same
results).

Distal supervised learning (Jordan & Rumelhart, 1992) is an-
other neural network architecture for control. It relies on both
forward and inverse models of the plant. In order to produce
learning signals for the inverse model, the errors in the for-
ward model must be backpropagated. Feedback error learning
(Miyamoto et al., 1988) also uses an inverse model of the plant,
but instead of relying on a forward model, it uses the error of a
closed-loop feedback controller to train it. This avoids the need
of a forward model as in distal supervised learning, but it relies
on a pre-existing closed-loop controller.

The fourth architecture is Reinforcement Learning (RL), which
avoids the limitations of the other architectures, but is generally
slower to find a solution. Given the close ties between RL and
differential Hebbian learning (Kolodziejski, Porr, & Wörgötter,
2008b), it is interesting to ask whether the correlations between
inputs and outputs to the controller can be used to obtain a
control law that is adaptive and biologically plausible. As far

as we know this has not been attempted in order to obtain
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the sensitivity derivatives in closed-loop control (cf. Kolodziejski,
Porr, & Wörgötter, 2008a).

We are aware of one single work concerned with finding
sensitivity derivatives in a biologically plausible manner. In Ab-
delghani, Lillicrap, and Tweed (2008) the sensitivity derivatives
are represented as the firing rates in a separate network doing
expansive recoding of appropriate context variables, together
with a variant of the LMS learning rule. The authors in this work
were unable to represent the sensitivity derivatives without using
fast weight transport (which is biologically implausible), so they
had to represent them as firing rates. The approach that we will
present below is capable of using synaptic weights to represent
something analogous to the sensitivity derivatives. This permits
memory of the learned variables. Moreover, we show that in a
feedback architecture many learning rules can achieve this, with
approaches within and outside of the RL framework.

There are in fact four models presented in this paper. In the
Methods we first show a heuristic derivation of the differential
Hebbian learning rules, and then describe each of the four models.

The learning rules we derive allow a proportional feedback
control system to adjust so as to reduce an arbitrary error, as long
as the error and the motor commands have a monotonic relation.
In other words, the motor command should not cause the error
to increase in one context, and to decrease in a different one.

The first model we present is a direct application of these
learning rules to find the input–output structure of high-
dimensional linear plants with varying levels of redundancy in
the actuators. From this we will observe that the tolerance to
redundancy is on par with some offline analytical approaches.

The second model uses one of our learning rules to control the
angle of a pendulum. The pendulum is a 2-dimensional plant, so
finding the input–output structure of a controller is not partic-
ularly hard. On the other hand, even if our feedback controller
has the right input–output structure, it only provides propor-
tional control, which is insufficient to deal with the pendulum’s
momentum. We thus modify the architecture of the feedback
controller to incorporate velocity in the error through the input
correlation learning rule (Porr & Wörgötter, 2006), resulting in
a biologically-plausible, self-configuring proportional-derivative
controller.

The third model illustrates a way that the limitation of mono-
tonic errors mentioned above may be overcome. We again control
a pendulum, but the signal that represents its angle has a discon-
tinuity as the pendulum completes a full revolution, something
that negative feedback control cannot compensate by changing
its input–output structure. We thus enhance the controller with
a critic component that indicates which angle representation to
use for each context.

The RL methods we use in the third model are fairly standard:
a neural implementation of TD-learning (Schultz, Dayan, & Mon-
tague, 1997), and reward-modulated Hebbian learning. However,
the times at which the reward-modulated Hebbian rule updates
are non-standard. The fourth model in this paper is meant to
show that this is not arbitrary, as it can be useful in solving
temporal credit assignment problems. To this end, in the fourth
model a very simple controller uses reward-modulated Hebbian
learning to solve the inverted pendulum problem.

The Results section illustrates the performance of the four
models described in the Methods.

All models in this paper are meant to illustrate and provide
proof-of-concept for the ideas in our approach to motor control.
Application to the control of a more realistic biological system is
presented in a subsequent paper Verduzco-Flores and De Schutter
(2021).
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Fig. 1. A negative feedback controller. The circles represent populations of
neural units whose output is a scalar value between 0 and 1 (e.g. firing rate
neurons). Excitatory connections end with a closed circle, inhibitory connec-
tions with a bar. Connections with arrows can have inhibitory and excitatory
components.

2. Methods

Simulations for all models were implemented in the Dracu-
ab neural simulator (Verduzco-Flores & De Schutter, 2019). The
alues for parameters appearing in this paper are reported in
ppendix E. The Supplementary Material to this paper includes
he source code, where these and other parameter values are
ontained within Python dictionaries.

.1. Differential hebbian learning rules

Consider a negative feedback controller as depicted in Fig. 1.
he goal of this controller is to make the activity of the SP neural
opulation equal to that of a population SD that provides desired
alues. The output of the SDP population is an M-dimensional
rror vector e = [e1, . . . , eM ]. Population C contains N units
hose activity is in the vector c = [c1, . . . , cN ]. We assume that

c ċi = σ

⎛⎝ M∑
j=1

ωijej

⎞⎠− ci, (1)

where:

σ (x) =
1

1 + e−β(x−η) . (2)

The parameter τc is a time constant controlling the response
latency of the controller’s units. ωij is the synaptic weight for
the connection from ej to ci. β is the ‘‘slope’’ of the sigmoidal
ctivation function, and η is its ‘‘threshold’’.
For this derivation we assume that internal connections within

eurons of the same population have a negligible effect (although
his restriction is not necessary, Verduzco-Flores & De Schutter,
021). All synaptic connections are static, except those from SDP
o C , where we assume all-to-all connectivity. The result of this
ubsection will be two different alternatives for learning in the
eights ωij of these connections. These learning rules are in the

ollowing two equations:

˙ ij(t) = −α

(
ėj(t) − ⟨ė(t)⟩

)(
ċi(t − ∆t) − ⟨ċ(t − ∆t)⟩

)
, (3)

ω̇ij(t) = −α

(
ëj(t) − ⟨ë(t)⟩

)(
ċi(t − ∆t) − ⟨ċ(t − ∆t)⟩

)
. (4)

In both equations α is a learning rate parameter, and ∆t is
a parameter that approximates the time required for a control
signal to propagate around the loop. In other words, a change ċi
in one of the controller outputs will roughly take ∆t seconds to
anifest as a change ėj or ëj in the errors. The brackets used in

he equations indicate an average over all the units in the same
opulation: ⟨ė(t)⟩ ≡

1 ∑ ė (t), ⟨ċ(t)⟩ ≡
1 ∑ ċ (t).
M k k N k k
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Rather than coming from a loss function, the rules in Eqs. (3)
and (4) are the result of an informal heuristic procedure, which
is described next.

First, we should notice that setting the ωij weights so they
minimize the error is in fact solving the input–output structure
problem for the proportional controller in Fig. 1. To reduce the
error, we want ej to activate ci when ci’s activity reduces ej. This is
tantamount to having the weight ωij from ej to ci be proportional
to the negative of their sensitivity derivative:

ωij ∝ −∂ej/∂ci. (5)

In this way the errors that arise will trigger an action to cancel
them.

We remain agnostic about the properties of the plant and how
its state is transformed into perceived values in SP , but we assume
that the sensitivity derivatives maintain their signs, and that the
propagation constant ∆t does not change significantly.

Our aim is not to have accurate estimates ωij ≈ −∂ej/∂ci, but
rather to give ωij a magnitude that is appropriate for feedback
control. The Relative Gain Array (RGA) criterion (Bristol, 1966) is a
classical method to achieve this, inspiring some of the procedure
below (see Appendix A for more details), but due to reasons of
biological plausibility we do not exactly implement it.

The most straightforward way to obtain estimates for ωij may
be to let the system settle into a fixed point, and then to produce a
perturbation ∆ci, resulting in a change ∆ej for the errors. Weights
can be adapted as ∆ωij ∝ −∆ej/∆ci. While this is feasible, and
suggestive of possible learning taking place in unborn mammals
(e.g. Brumley, Kauer, & Swann, 2015; Hamburger, 1973) we are
interested in the case of online learning, where ωij is adapted
during performance of a behavior.

A simple approach to online learning is to use the correlation
of the first derivatives. This provides a measure of whether ci and
ej change together, in a way that is invariant to their mean values.
The resulting learning rule is:

ω̇ij(t) = −αėj(t)ċi(t − ∆t).

where ∆t is an approximation to the time it takes ci to change
the perceived error ej, and α is a learning rate.

This approach has three main limitations. Firstly, during be-
havior the whole ċ vector acts as the perturbation, so it is unclear
which of the ci units is responsible for an observed change ėj.
Secondly, an observed change ėj may not be the effect of any
recent ċi change, but rather part of the normal flow in state space
for the current state. Thirdly, the magnitudes ∂ej

∂ci
are functions

of the state xP of the plant (and potentially of c), so they could
change sign for different contexts.

We will address each of these 3 limitations. In short, to miti-
gate the first one we will introduce synaptic competition in the
learning rule, and the second one will be handled by introducing
a second order derivative, turning Eq. (3) into Eq. (4). The third
limitation is more subtle, and will require that we divide our
approach into the case when ∂ej

∂ci
does not change sign (monotonic

control), and the case when the sign changes. Nonmonotonic
control will be handled by introducing a reinforcement learning
mechanism that changes the configuration of the controller in
different regions of state space.

Next we introduce synaptic competition in the learning rule.
Using the term (ċi − ⟨ċ⟩) rather than ċi we expect that on aver-
age, weights corresponding to the largest sensitivity derivatives
will be enlarged, whereas weights with below-average sensitivity
derivatives will shrink. This should allow for errors to be reduced
by the ci units that have the largest effect on them. Notice that
lateral connections among the C units is what make the ck values
locally available.
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As explained in Appendix A, the RGA criterion relies on a vec-
tor perturbation ∆cj that alters only one of the errors (e.g. ∆el =

for l ̸= j). The gain of this perturbation is used to select the in-
uts to the controller, with the idea that when the ej error arises,
he controller response that causes the least interference should
e aligned with ∆cj. A simple, biologically plausible version of
his approach does not seem likely, but a further application of
ynaptic competition may achieve a similar purpose.
By using (ėj − ⟨ė⟩) in the learning equation rather than just

˙j we may select only the controller units that have a large effect
n ej. Together with the previous use of synaptic competition, this
reates a sparser response that hopefully mitigates the creation of
ew errors when reducing ej. Introducing this change leads us to
q. (3).
The rule in Eq. (3) can effectively configure the feedback loop

f simple MIMO systems (see Section 3.1), but it can further
e improved. In particular, we may replace ėj by ëj in order to

remove the effect of changes where ėj comes from momentum in
the plant rather than the action of a controller. The resulting rule
is also what we would obtain from the previous discussion, if we
had assumed that a change ċi in the output produced a response
ëj in the jth error. This simple change leads to Eq. (4).

Eq. (4) is better suited for the control of systems where the
plant’s dynamics are important. For example, c may be a force,
and e a displacement or a velocity, so if the plant follows New-
ton’s laws we should expect the correlations to appear among
derivatives of different orders.

For the models in this paper, Eqs. (3) and (4) include two
additional modifications: connection weights do not change sign,
and the sum of weights remains constant. In order to maintain
the initial sign of the weights, the whole learning equation is
multiplied by ωij, a strategy called ‘‘soft weight-bounding’’. To
maintain the sum constant, a normalization term was included
in the equation.

The normalization term leveraged two requirements. First,
that all weights from projections starting from the same SDP
unit should add to wsa. Second, the sum of all SDP -to-C weights
terminating in the same C unit should add to wsb. Let ζ sa

j ≡

sa/
∑

k ωkj, and ζ sb
i ≡ wsb/

∑
k ωik. Eqs. (3) and (4), using

soft-weight bounding and normalization, had the form:

ω̇ij = ωij

(
Ω + αλ

[
1 −

ζ sa
j + ζ sb

i

2

])
, (6)

where Ω is the right-hand side of either Eq. (3) or Eq. (4), and
λ is a scalar parameter. This type of normalization is meant to
reflect the competition for resources among synapses, both at the
presynaptic and postsynaptic level.

To obtain the derivatives used in the learning rules in a
biologically-plausible manner, we approximated rates of change
as the difference of two first-order low-pass filters. We assumed
ċ(t) ∝ cfast − cslow , where

τf ċfast = c − cfast , (7)

τsċslow = c − cslow, (8)

and τf ≪ τs.
Elements like cfast and cslow can come from feedback connec-

tions (cf. Eq. 19 in Lim & Goldman, 2014), but it is also possible
that they could represent the concentration of molecules involved
in the postsynaptic depolarization, and the subsequent chemical
cascades. For example, intracellular calcium concentration has
been described as a possible indicator of firing rate, using leaky
integrator dynamics (Helmchen, 1999).

Eqs. (3), and (4) are by no means the only options to self-
configure a feedback loop. In Appendix B we present two alter-

native derivations. The first one is meant to explore whether the
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Fig. 2. Negative feedback controller with dual populations, and synaptic weights
that are either excitatory or inhibitory. Connections inside the gray dashed
oval are adjusted using the learning rules of Section 2.1. Blue circles indicate
excitatory connections, red bars inhibitory connections, and arrows are afferent
inputs that can be excitatory or inhibitory, but do not change sign. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

established reinforcement learning methods are adequate for this
problem. The other derivation in Appendix B is based on stability
considerations. It is shown that neither of those rules was more
effective than Eqs. (3) and (4).

2.2. Linear MIMO system controller

The first application of our learning rules (Eqs. (3), (4), (6)) is
in the control of a linear plant.

2.2.1. The controller
Unit activities are non-negative, but the controller needs to

know the sign of the error. Two basic options for this are: (1)
to have units in the SDP population signal negative values as de-
viations below a baseline level, and positive values as deviations
above this level; or (2) to have two separate populations, one for
each sign of the error. In other words, this last option amounts
to have one population with activity monotonically related to
max(0, sD−sP ), and another population whose activity is a mono-
tonic function of max(0, sP − sD), where sD, sP are the activities
of SD and SP , respectively.

We believe our learning rules can work with either solution,
but for the purpose of this paper we found the second option to
be more appropriate. Accordingly, we modified the architecture
of Fig. 1 by separating SDP and C into two separate populations
each, resulting in the architecture of Fig. 2. In this figure SDP is
excited by SD, and inhibited by SP . We assume this inhibition
appens through local interneurons, not explicitly modeled. SPD

receives the opposite activation of SDP , so that when an error
has a positive sign (e.g sD > sP ), a unit in SDP will activate,
hereas a negative error will activate a corresponding unit in

PD. In this way the error activities ej will always be positive,
but also capable of signaling errors in either direction. Having
two separate populations to represent sensory events, one being
inhibited while the other is excited, is termed dual representation
in this paper.

Units in the SP , SDP , and SPD populations use sigmoidal units
whose activity follows dynamics like those in Eq. (1). To in-
crease biological plausibility and help avoid synchronization, the
threshold and slope of sigmoidals in these 3 populations used
heterogeneous values, with a random component that ranged
from −10% to 10% of their original value.

It can be shown that using linear units and a learning rule as
in Eq. (3) in a feedback controller allows convergence to fixed
points with non-zero error (see Appendix C). To avoid this the
architecture of Fig. 2 uses CE and CI units that output the integral
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quations are:

xẋ(t) = x(t)(IDP + ICx(t))(1 − x(t)), (9)

τc ċ(t) = x(t) − c(t) + ζ . (10)

IDP ≡
∑

k ωPD
k sk, representing the sum of inputs from SDP , SPD

times their synaptic weights. IC ≡
∑

k ωC
k ck is the sum of inputs

arising from CE, CI times their weights; τx, τu are time constants,
and ζ is a white noise process.

Integration of inputs is a basic neuronal computation (Izhike-
vich, 2000). In Eq. (9) this integration is combined with soft
weight bounding to keep the integration factor x between 0 and
1. The term (IDP + xIC ) is an input sum where ‘‘lateral’’ inputs
are reduced for small x values. This avoids ‘‘winners-take-all’’
dynamics in C . Eq. (10) simply slows down convergence of the
firing rate to the integral, and adds noise. This Langevin equation
was solved using the Euler–Maruyama method, whereas all the
other equations were solved with the forward Euler method.

One undesired consequence of soft weight-bounding as in
Eq. (9), is that when x(t) is very close to 0 or 1 the inputs have
little effect, and the unit may stay stuck at that value. To avoid
this, if x(t) ever surpassed 0.97 its derivative would become 0.9−

x(t). Furthermore, to enhance numerical stability, the derivative
of c(t) was clipped if its absolute value became larger than 1.

2.2.2. The plant
The linear plant P is defined by associating each unit cej in

CE with a vector vj, whereas the corresponding unit c ij in CI is
associated with −vj. The plant’s response was updated as:

τpṗ =

⎡⎣∑
j

(cej − c ij )vj

⎤⎦− p, (11)

where cej , c
i
j are also used to denote the activity of those units.

The amount of redundancy in the controller can be adjusted
through the number of units in CE, CI , and by the specific values
of the vj vectors. This information is contained in the connection
matrix from C to P , denoted by WCP . Notice that the columns of
WCP come from the vj vectors.

We used 4 different WCP matrices for our tests. The first one
tests the performance of the learning rules in a system with
no redundancy. Because of dual representation, WCP was the
following block matrix:

W id
CP =

[
IN −IN

]
, (12)

where IN is the N × N identity matrix, and N is the dimension of
the plant.

The second WCP matrix was built by using the vectors of
an N-dimensional Haar basis (Strang, 1993) as the vj vectors .
These vectors form an orthogonal basis with positive and negative
entries. It is defined for linear spaces where the dimension is a
power of 2, so we tested the cases where N is equal to 2, 4, and
8. Quite importantly, all the vectors of the Haar basis have several
non-zero entries, so the action of any unit cj will affect several of
the plant variables, but the plant should still be controllable.

Let HN represent the N-dimensional Haar matrix where the
columns are normalized to have unit norm. Our second WCP
matrix is the following N × 2N block matrix:

WHaar
CP =

[
HN −HN

]
. (13)

The third WCP matrix we used is meant to increase the redun-
ancy in WHaar

CP . To this end we increased the number of units in

he CE and CI populations, from N to 2N . Let RN be an N × N
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matrix whose columns are random vectors with unit norm. We
used the following connection matrix:

W oc
CP =

[
RN HN −RN −HN

]
. (14)

The fourth matrix, W oc2
CP , is used to test a worst-case scenario,

where redundancy is high, and controllability is not ensured. In
this case CE and CI each had 3N units. The vj vectors were random
vectors with unit norm.

All the other static connections used either the identity weight
matrix IN (P-to-SP , SP -to-SPD, SD-to-SDP ), or its negative −IN (SP -
to-SDP , SD-to-SPD).

2.2.3. Analytical approaches
In order to evaluate the performance of our learning rules, we

compared it with two analytical approaches. The first one is based
on the Moore–Penrose pseudoinverse. Let WSC be the connection
matrix from (SPD, SDP ) to (CE, CI). If we set WSC = −W−1

CP ,
then, ignoring the sigmoidal nonlinearities, the joint action of
the controller and the plant would be akin to the applying the
linear transformation WSCWCP = −W−1

CP WCP = −IN . Therefore, if
WCP is invertible, the controller may be able to achieve decoupled
proportional control. Since WCP may not be invertible, or square,
we set WSC as the negative of the Moore–Penrose pseudoinverse.

The second approach to obtain WCP is the RGA criterion, as de-
scribed in Appendix A. In this procedure the designer personally
assigns a controller output for each plant variable that requires
control. This is done by searching entries that are close to 1 in
the relative gain array matrix. The values chosen, however, are to
some degree arbitrary. For example, these are the RGA matrices
corresponding to the Haar matrices of dimensions 2 and 4:

WRGA2 =

[
.5 .5
.5 .5

]
,

WRGA4 =

⎡⎢⎣.25 .25 .25 .25
.25 .25 .25 .25
.5 .5 0 0
0 0 .5 .5

⎤⎥⎦ .

In order to create WSC connection matrices from the RGA matri-
ces, for each error in SPD, SDP we assigned one C unit. To choose
this unit, for each column in the RGA matrix (corresponding to
one error) we chose the row whose value was closest to one, and
had not been chosen before. If a unit ci in CE was chosen for error
ej in SDP then the connection from ej to ci was 1, and otherwise
it was zero. ci also received a −1 connection from the dual of ej
in SPD. Moreover, a unit c ′

i in CI received the same connections
as ci, but with the signs of the weights reversed. When there
were more rows than columns, rows not chosen corresponded to
units in C that were not assigned to control an error, and received
inhibition (a −1 connection weight) from all SPD, SDP units.

The RGA matrices came from this expression:

WRGA = WCP ⊗ (W−1
CP )T , (15)

where W−1
CP is the Moore–Penrose pseudoinverse of WCP , and ⊗

denotes the element-by-element product.

2.3. Monotonic pendulum controller

The second plant model we tested consisted of a pendulum
that cannot rotate across a certain angle. This means it bounces
back when approaching ±π radians, so the angles stay in the
(−π, π ) range.

The pendulum was modeled after a homogeneous rod of 1
kilogram mass, and 50 centimeters length. Gravity was only in-
cluded for the simulations in Appendix A. Angular acceleration

is equal to a torque divided by an inertia moment. The torque
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Fig. 3. Basic architecture for control of a pendulum. Each circle represents a
single neuron, whereas the square represents the plant P . Blue connections are
xcitatory, red ones are inhibitory. θ represents the current angle in radians,
hereas θ̇ is the angular velocity. θ̇ is transformed into positive values by

logarithmic units in the A population (Eq. (17)). Both units in the M population
eceive all A signals. The connections from A to M (green dotted ovals) evolve
following the input correlation rule, and the connections from M to C units
(gray dotted ovals) evolve using the rule from Eq. (4). The output of the C units
is mapped into either a positive or a negative torque (τ ). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

had four components: (1) torque generated from the inputs,
(2) viscous friction; (3) and (4) extra torque and viscosity ap-
pearing when the angle approached π . These last two torques
prevented the pendulum from going across the π angle, causing it
to bounce, and increasing the friction while it bounced. Denoting
these torques as τ3, τ4, their equations are:

τ3 = −0.001 tan ((θ%(2π ))/2)3 ,

τ4 = −
0.05 θ̇[

(θ + π )%(2π ) + 10−5
]2 ;

here θ is the angle, and % represents the modulo operator.
As explained in Section 3.2, the architecture of Fig. 3 is used

or pendulum control. C uses two units, one providing clockwise,
nd another counterclockwise torque. The value in SD represents
given angle, and the task is to move the pendulum to that

ngle so activity in SP and SD can be equal. SD does not specify
desired velocity. In order to adaptively incorporate the velocity

nformation into the control loop we introduced a population M
receiving the afferent activity A, consisting of the angular velocity
θ̇ in its non-negative (dual) representation. In addition, each M
unit received one error signal, either sDP , or sPD. The M units used
the input correlation rule (Porr & Wörgötter, 2006) (Eq. (16)) to
potentiate angular velocity inputs that correlate with their error
input. This allows M to send C a composite error, resulting in a
self-configuring proportional-derivative controller.

The input correlation rule is:

ẇ = αICwIA İDP , (16)

where IA is the scaled sum of inputs from the A population, αIC
is the learning rate, and IDP is either sDP or sPD times a synaptic
weight.

The basic rule in Eq. (16) was modified to avoid weights
changing signs, and to keep the sum of the weights constant. To
make the sum of weights for connections from A to M equal to
ws, at every simulation step we multiplied the weight times ζs ≡

ws/
∑

k ωk. Weight clipping was used to keep individual weights
from becoming too large. This means that on every simulation
step we set w = min(w, wmax), where wmax is the largest weight
value allowed.
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Connections from M to C populations used the learning rule
of Eq. (4), with the modifications of Eq. (6).

All the units (including CE, CI) in the architecture of Fig. 3 were
sigmoidals as in Eqs. (1) and (2), with the exception of SD, A1, and
A2. The SD unit was a predefined function of time containing the
values that should appear in SP for a random sequence of pen-
dulum angles in the range (−0.7π, 0.7π ). The A population had
units with a rectified logarithmic activation, modeling sensory
transducers. Their dynamics followed this equation:

τaȧ = log([1 + I − T ]+) − a, (17)

where I is the scaled input sum, T is a constant threshold, and
[·]+ is the ‘‘positive part’’ function (e.g. the identity function for
positive arguments, zero for negative arguments).

The CE, CI units of the pendulum controller had an additional
noise term in the dynamics of Eq. (2). They were integrated with
the Euler–Maruyama method. Other units were integrated with
the forward Euler method, but for the pendulum we used SciPy’s
(https://scipy.org/) explicit Runge–Kutta 5(4) method.

2.4. Nonmonotonic pendulum controller

The third plant model in this paper is the same pendulum de-
scribed in Section 2.3, but the torques restricting the pendulum’s
rotation were removed.

As described in Section 3.3, the architecture of Fig. 3 is limited
in how well it can perform under these conditions, but this can be
improved if the controller can switch the angle representation it
uses depending on the current and desired angles. This is done
through an architecture with ‘‘actor’’ and ‘‘critic’’ components,
shown in Fig. 4.

The actor component in the architecture of Fig. 4 is the same
as the network of Section 3.2, but the torques restricting the
pendulum’s rotation were removed, and additional units were
introduced in order to have an extra coordinate system that could
be switched using the input from the X unit. The T unit of Fig. 4
transforms the θ angle provided by the plant so it uses the second
coordinate system. S1P and S2P are just like the SP unit of Fig. 3,
but they differ in the coordinate system used in their inputs (S1P
is identical to SP from Fig. 3, but S2P is not). The two coordinate
systems used are described in Fig. 5.

S∗

P is a unit that receives inputs from both S1P and S2P ; its output
is one of those two inputs, selected according to the value of the
X unit. In engineering terms, S∗

P acts like a multiplexer. When the
input from X is smaller than 0.5 S∗

P outputs the value from S1P , and
otherwise it outputs the value from S2P . The dynamics of S∗

P follow
this equation:

τP ṡ = I − s, (18)

where I is S1P when X < 0.5, and S2P when X > 0.5. One
way multiplexing can be achieved is through localized dendritic
inhibition (Jadi, Polsky, Schiller, & Mel, 2012, e.g.).

S∗

D is the analog of S∗

P , providing the desired SP using one of
two possible angle representations. For simplicity, the S1D and S2D
units were not included in Fig. 4. Desired angles were chosen in
the (0, 2π ) range.

The first component in the critic is a distributed representation
of the current perceived angle SP , and desired angle SD, provided
by the S1, and S2 populations, respectively. S1 and S2 both con-
sist of 20 units, each of which has a bell-shaped response that
increases as the input gets closer to their preferred angle.

The information in S1 and S2 (and potentially other inputs)
constitutes the state or context characterizing the current situ-
ation. The state information is combined in a single population
L, with the purpose of associating its activity with the right
configuration for the controller. To decide which configuration is

https://scipy.org/
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Fig. 4. Actor–critic architecture used in Section 3.3. The actor component (left, red box) is similar to the feedback controller in Fig. 3, but the desired and perceived
ngle (SD and SP ) can use one of two different coordinate systems, selected by the input from the unit X in the critic. Moreover, the pendulum can rotate freely. The
ritic (right, green box) has distributed representations of the desired (S2) and perceived (S1) angles, which project to a state representation layer L. S1 and S2 also
end projections to a unit R that provides a reward based on the similarity of their activation patterns (e.g. the reward is larger when s1 ≈ s2). L sends projections
o units V and X . V associates each state of the L layer with a value, using the TD-learning rule with the reward of unit R. X uses the value from V to implement a
ersion of reward-modulated Hebbian learning that associates each state in L with an output. When the output of X is smaller than 0.5 the actor uses a coordinate
ystem where the zero degree angle lies on the positive X-axis. Conversely, when X ’s output is smaller than 0.5 the actor’s coordinate system has a zero degree
ngle aligned with the negative X-axis (see Fig. 5). The perceived angle in the coordinate system used when X < 0.5 is provided by the S1P unit. The S2P unit provides
he perceived angle in the alternate coordinate system, which in the simulation is obtained by having a unit T that transforms the angle θ . The S∗

P unit outputs
ither S1P or S2P depending on the value of X . The S∗

D units performs a similar function for the desired angle.
Fig. 5. The two coordinate systems used in the architecture of Fig. 4, and how they affect the activity in SP and SD . (A) Top: When the output of the X unit is
maller than 0.5 the first coordinate system is used. In this coordinate system the plant outputs an angle in the range (−π, π] where the zero-degrees direction is
ligned with the positive X-axis, as shown in the circle. The thickness of the red band inside the circle indicates that the system can have a higher effective gain
hen the desired angle is close to zero degrees. Bottom: the output of the SP and SD units as a function of the pendulum’s angle, in the coordinate system shown

n the center panel. (B) The plots in this figure, and the angles in Fig. 8 panels B and C are reported with respect to this coordinate system, where the angles are in
he [0, 2π ] range. (C) Top: When the X output is larger than 0.5 the coordinate system undergoes a 180-degree rotation, so that the activity of the SD and SP units
s a function of the pendulum’s location is now as shown in the plot at the bottom of this panel.
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est, we rely on reinforcement learning techniques. In particular,
provides inputs to a unit V that learns a value associated with
he state using a version of the temporal differences learning
ule (Schultz et al., 1997). The value provided by the V unit is
sed by another unit, called X in Fig. 4.
X learns to associate the state in L with an output that con-

igures the feedback controller. So that X provides configurations
hat increase the value, the connections from L to X use a version
f reward-modulated Hebbian learning, where the output of V is
sed as the reward (Eqs. (23), (24)).
The V unit has dynamics:

V v̇ = σ

(∑
wV

j Lj − ⟨IV ⟩

)
− v, (19)
j w
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whereas the X unit has dynamics:

τX ẋ = σ

(∑
j

wX
j Lj − ⟨IX ⟩

)
− x. (20)

V and τX are time constants, σ (·) is the sigmoidal function, Lj is
the activity of the jth unit in L, and ⟨IV/X ⟩ is a low-pass filtered
ersion of

∑
j w

V/X
j Lj.

In the Temporal Differences (TD) learning rule (Sutton & Barto,
018) the value function is V (st ) = ⟨

∑
t=1 γ t−1R(t)⟩, where γ

s a discount factor that reduces the importance of later versus
mminent rewards. The V unit learns to approximate this function
n continuous time by adjusting its synaptic weights with the
ollowing equation:

˙ (t) = α
[
R̄ + γ v(t) − v(t − ∆t )

]
L (t − ∆t ), (21)
j V v j v
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here R̄ = (R(t)+R(t−∆tv))/2 approximates the integral of R for
he past ∆tv seconds. Two additional terms were added to this
quation in order to provide weight normalization and to have
he sum of the weights near zero. The final equation had the form:

˙ j(t) = Ω + η1wj

(
W∑
k |wk|

− 1
)

− η2w̄, (22)

here Ω is the RHS in Eq. (21), W is the desired value for the sum
f the absolute value of the weights, η1, η2 are constants, and w̄

s the mean of all wj weights for connections from L.
To adjust the weights from L to X we introduce a version of

eward-modulated Hebbian learning capable of handling the tem-
oral credit assignment problem associated with tracking a target
ngle in real time. For this purpose the weights were updated
ntermittently, whenever the SD value changed (e.g. whenever
ts derivative crossed a threshold), an event that we will call a
ransition. Let t i be the time when a transition happens, and t i−1

e the time of the previous transition. Whether a weight is poten-
iated or depressed depends on two factors. The first one is the
(t i)− V (t i−1) difference, indicating whether the value increased
etween transitions. The second factor is whether a sufficiently
igh reward was reached, and how quickly. The concrete update
quation is:

ẇj(t) = αX∆V (t)
(
Lj(t i−1) − L̄(t i−1)

) (
X(t i−1) − 0.5

)
, (23)

V (t) ≡
[
V (t) − V (t i−1) + ηX (t − tR)

]
, (24)

here ηX , αX are constant parameters, and tR is the last time
hen the reward value was above a given threshold. tR is reset
fter each transition. L̄ denotes the average over all the Lk inputs.
t is assumed that X maintains a constant value between transi-
ions, and the term X(t i−1) refers to the value that X has in the
nterval (t i−1, t i).

The advantage of learning only at transition times for the
roblem of distal rewards is discussed Section 3.4.
Since the states in L must be associated with values or config-

rations, it greatly helps if the representations in L are linearly
eparable. To this end L does an expansive recoding of its in-
uts (Illing, Gerstner, & Brea, 2019) that permits V and X to
earn functions of the state using a single layer. The L layer
onsisted of 100 units, arranged in a 10 × 10 grid. Each unit in
was maximally responsive to a particular combination of the
esired and current angles, with its response decreasing expo-
entially according to the distance between the current state and
ts preferred angles.

The last component of the critic is the R unit, which provides
reward value based on how similar the patterns in S1 and

2 are. Computation of this reward is straightforward when S1
nd S2 have the same structure, meaning that for each unit in
1 there is a corresponding unit in S2, and vice versa. This is
ossible, for example, when S1 and S2 are two different layers of
he same cortical area, and their corresponding units are different
opulations from the same microcolumn (Mountcastle, 1997).
The critic, as originally designed, significantly slowed the sim-

lation. We describe its original implementation, and how this
as simplified.
In the original implementation of the critic the S1 and S2

opulations were units that responded maximally when their
nput is close to a preferred value Imax. Their dynamics followed
he equation:

sṡ = e−b(I−Imax)2 − s, (25)

here τs is a time constant, b controls the sharpness of the tuning,
nd I is the scaled sum of inputs. The units in L were sigmoidals
Eqs. (1), (2)), but the connection matrices from S and S to L
1 2
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nsure that each unit in L responds maximally to a particular
ombination of S1 and S2 inputs. The resulting representation is
imilar to radial basis functions.
Both S1 and S2 had 20 units each, whereas L contained

00 units. Independently simulating the dynamics and delayed
ransmissions for these 140 units slowed down the simulation
y an order of magnitude. Thus, for practical reasons, the im-
lementation of the network used multidimensional ODEs that
ncapsulated the response of L in a vector function. The variables
n the multidimensional ODEs do not represent the activation
f the L units; instead they directly model the evolution of the
ynaptic weights from L to V , and from L to X . The V and X units
have consequently 101-dimensional dynamics: 100 variables for
the synaptic weights, and one variable for the output of the unit.

The activity of the L ‘‘units’’ in the multidimensional ODEs was
calculated with:

aL = e−bd2 , (26)

where b controls the width of the tuning, and d is a measure of the
distance between the current ‘‘state’’, and the preferred ‘‘state’’ of
the system. This ‘‘state’’ is the pair (θ, θD), containing the current
and desired angle. The distance was obtained using the L2 norm,
but taking into account that the angles are periodic.

The V and X units had dynamics as in Eqs. (19) and (20),
respectively.

The R unit provides a reward value that indicates when the
desired angle θD and the current angle θ are close. This unit was
implemented as the function r = e−d2 . Given θ and θD in the
[0, 2π ] interval:

d = min
(
|θ − θD|, 2π − max(θ, θD) + min(θ, θD)

)
.

Learning in the connections from L to V used the version of
TD-learning in Eqs. (21), (22). Learning in the connections from
L to X relied on Eq. (23). The software implementation of this
equation uses slightly modified terms to deal with the fact that
updates should happen during transitions (e.g. at time t i), but
they cannot happen instantaneously. In particular, the learning
rate is modulated by a term that decays exponentially after a
transition. As with learning of the weight in the V unit, Eq. (23)
receives the additional terms in Eq. (22) to normalize the sum of
weights and to make the weights have zero mean.

2.5. Inverted pendulum controller

The fourth plant model has the same pendulum with unre-
stricted rotation of the third model, but gravity is included.

The architecture used to control the pendulum is also much
simpler, as described in Section 3.4 and in Fig. 9.

The output of the X unit approaches either 1 or −1, depending
n whether the sum of its inputs times their synaptic weights is
ositive or negative, respectively:

X ẋ = tanh
(

β

[∑
j

wX
j Sj − ⟨IX ⟩

])
− x. (27)

τX is a time constant, β is a slope parameter, Sj is the activity of
he jth unit in S, and ⟨IX ⟩ is a low-pass filtered version of

∑
j w

X
j Lj.

An output of 1 produces a positive (counterclockwise) torque
, and −1 produces a torque of −τ . τ is not sufficient to raise
he pendulum from its rest position (at 3π

2 radians) to an angle
beyond the horizontal line. X only changes its output value at
the transition times. The reward unit R has sin(θ ) as its output,
providing vertical height. The S population provides a distributed
representation of the angle using 20 units, in the same manner
as before.
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Learning in the connections from L to X relies on Eq. (23). An
additional term was used to maintain the sum of absolute weight
values close to a value W , leading to the equation:

ẇj(t) = Ω + αXwj

(
W∑
k |wk|

− 1
)

, (28)

here Ω is the RHS in Eq. (23).
As described in Section 3.4, this rule was applied at the times

hen R′′ and R′ were negative, and the time since the last tran-
ition was at least ttrans seconds.

.6. Parameter adjustment

Parameters for all models were manually adjusted to obtain a
easonable dynamic range for each of the neuronal populations,
nd learning rates were adjusted so the task could be learned
elatively fast. Any other parameter adjustments were done by
rial and error, although little parameter search was required.
here were two exceptions for this.
The delays in the learning rules were obtained by an analytical

rocedure described below.
The delay ∆t in the ċi(t − ∆t) terms of the learning rules is

eant to synchronize an action in ci with the consequent reaction
n ej. To this end, ∆t should contain 4 transmission delays as the
signal from C goes through P , SP , SDP , and back to C . Moreover,
the units at each of these stages have a response latency. Since
the equations of these units resemble those of a linear first-
order low-pass filter (e.g. Eq. (1)), its phase shift can be used
to approximate the response latency of the units. In particular,
a signal sin(υt) has a filtered response x(t) that is the solution
of: τ ẋ = sin(υt) − x. This equation can be solved exactly, and
its solution is a sinusoidal whose time delay with respect to
the input is arctan(τυ)/υ . Using the most dominant frequency
observed in the activity of the units as υ , a term like this can be
obtained for each of the populations that the signal goes through,
providing response latencies that are added into the ∆t delay.

Parameters for the X and V units were first tuned manually,
and then further adjusted using 6 generations of a standard
genetic algorithm, included in the source code.

3. Results

3.1. Adaptive control of a linear MIMO plant

As described in the Methods, we produced 2 learning rules
(Eqs. (3), (4)) to infer the input–output structure of a feedback
system. We now show how those rules performed when used to
implement proportional control of a linear plant.

As described in the Methods (Section 2.2), the controller used
the architecture in Fig. 2. The plant’s response came from a linear
combination of vectors vj, where each vector is scaled by the
activity of a unit in CE or CI . These vectors defined the connection
matrix WCP from C to P , and the degree of redundancy in the
controller would depend on that matrix.

We used 4 types of WCP matrices. W id
CP created a controller

where each unit in C affects only one error. This connection
matrix tests the simplest scenario, where the controller can act
as several independent 1-dimensional controllers; it just needs
to decide which output corresponds to which error.

The matrix WHaar
CP tests the next scenario, in which the number

of units in CE (or CI) is equal to the dimension of the plant, but the
activity of each unit in the controller has an effect on more than
one of the errors. The vj vectors form an orthonormal basis (the
Haar basis, Strang, 1993) so in theory C can produce any desired
vector output in P , but our system must do it by choosing the
right weights in the connections from (S , S ) to (CE, CI).
DP PD
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For the third connection matrix (W oc
CP ), the number of units

in CE and CI is twice the dimension of the plant. Half of the vj
vectors in CE to P connections are random unit vectors, and the
other half are the vj vectors used in WHaar

CP . This increases the
redundancy, not only in the sense of one controller activity ci
affecting more than one error signal ej, but also in the sense that
there are countless ways to achieve a desired output in the plant.

For the final type of connectivity (W oc2
CP ), all vj vectors are

random, and there are 3 for each unit in SP . This is in general
a much harder case, with greater redundancy and no guarantees
of being solvable, used to illustrate a worst-case scenario.

Simulations are shown for 1, 2, 4, and 8 units in SP , which
is also the dimension of the plant, denoted as N in this sec-
tion. Results are summarized in Fig. 6. The third and fourth
types of connectivity are respectively labeled overcomplete, and
overcomplete2 in this figure.

In panel A of Fig. 6 the performance of the rules is measured
as the norm of the ∥SD−SP∥ error for the second half of the 400 s
simulation. The norm of the difference of two unit vectors with
random entries in the (0, 1) range is expected to be around 0.5.
This is a first order approximation to the error we should expect
for a system that has done no learning. We refine this control
by running simulations with random initial weights and static
synapses, resulting in the gray markers of the first two plots.

In order to put the performance of our learning rules into
context, we also determined the input–output structure of the
controller using two analytical methods (see Section 2.2.3). The
first one places the Moore–Penrose pseudoinverse of the WCP
matrix in the WSP matrix connecting (SDP , SPD) to (CE, CI). The
second one uses a simple, automated version of the RGA criterion
(Bristol, 1966).

Quite remarkably, panel A of Fig. 6 shows that the learning
rules perform almost the same as the pseudoinverse method, and
outperform the version of the RGA method we implemented.

Both the analytical methods and the learning rules perform
almost optimally with the system that has no redundancy (the
‘‘identity’’ case, with the W id

CP matrix). The error increases slightly
for larger values of N , because proportional control is being done
in a MIMO system with delays, response latencies, and noise, so it
is inevitable that some error will accumulate for each controlled
variable.

The type of error that accumulates can be observed in panels
B–E of Fig. 6, showing simulation data for the ‘‘overcomplete’’
case (with the W oc

CP connection matrix) with dimension N = 2,
both for the pseudoinverse method, and for the rule of Eq. (3).
The intrinsic noise of the CE, CI units causes most of the noisy
appearance of the activity traces. Without this noise the system
may not learn due to insufficient exploration.

In the case of WHaar
CP (red triangles in panel A of Fig. 6), the

pseudoinverse method and the two learning rules have virtually
the same performance. From here on the RGA method largely
fails, because in the simple form that we use each error is to be
controlled by a single controller unit. This is unfeasible when each
ci unit affects many ej values due to the structure of WCP .

For the system with the W oc
CP connection matrix, the pseudoin-

verse method and the learning rules also have similar perfor-
mance. Despite redundancy, the local rules can perform a com-
putation that is tantamount to inverting the connection matrix
from C to P .

In the case of the redundant, random connection matrix W oc2
CP ,

none of the methods performs well, as would be expected from
a scenario with such level of random redundancy.

The amount of error in the system (panels B–E) is what should
be expected for simple proportional control in this scenario. Ani-
mal motor control does not seem to rely on one monolithic con-

troller that does both the input–output mapping, and ensures fast
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Fig. 6. (A) Simulation results for 4 types of connectivity matrices in a linear plant model for the two learning rules in Section 2.1, and for two analytical methods.
The number of values in SP is labeled N in the x-axis. The y-axis indicates the time average of the norm ∥sP − sD∥ for the second half of the 400 s simulation,
here sP is the vector of activities in SP , normalized so it has a unit norm for N > 1, and likewise for sD . Each marker is the average from 20 individual simulations
ith different random initial weights. Gray markers indicate the same mean error when a simulation with the same characteristics was run with static synapses.

n the case N = 1 only the identity matrix is tested. (B) Activity of the SD and SP units for the first 400 s of an example case with N = 2 units in SD and SP , an
‘‘overcomplete’’ WCP matrix, and the learning rule of Eq. (3), resulting in an average ∥SD − SP∥ value of approximately 0.18 for the first half of the simulation, and
0.1 for the second half of the simulation. (C) ∥SD − SP∥ norm for the simulation in panel B. (D) A simulation as in panel B, but the connection matrix from SDP , SPD
to C comes from the pseudoinverse method. The ∥SD − SP∥ average value was around 0.12 for both halves of the simulation. (E) ∥SD − SP∥ norm for the simulation
in panel D.
and accurate performance. Instead, there is a cerebellar system to
compensate for things such as timing, momenta, and interaction
torques (Bastian, Martin, Keating, & Thach, 1996; Manto et al.,
2012). Many cerebellum models perform this type of supplemen-
tary control (e.g. Dean & Porrill, 2008; Kawato & Gomi, 1992;
Porrill et al., 2004; Verduzco-Flores & O’Reilly, 2015), relying on
a pre-existing feedback control structure.

Although these two learning rules do not explicitly consider
the full error ∥e∥, reducing the components of e individually
works well together with a type of weight normalization that
keeps the L1 norm (sum of absolute values) of the e vector con-
stant. Normalizing incoming and outgoing weights (see Methods,
Section 2.1) allows the network to scale its size without requir-
ing parameter changes, and also maintains the balance between
excitation and inhibition due to the architecture of Fig. 2.

One limitation of the approach in Section 2.1 is that it requires
some knowledge of the ∆t delays inherent in the system. This is
reasonable for neurons that receive the effects of their activation
with a short, and relatively fixed latency. This would be the case,
for example, of spinal interneurons receiving feedback from mus-
cle afferents and motor cortex. The fact that the delay can also
depend on the frequency of the oscillation (see Methods) does
not seem to impair the system, as only few dominant frequencies
tend to naturally emerge.

3.2. Monotonic control of a pendulum

The linear plants in Section 3.1 show how that the learning
rules can resolve moderate amounts of redundancy in the con-
troller, but they are not representative of physical systems. Next
we consider feedback control of a pendulum.

The error signal in this case is the difference between desired
and current angles. So that this error remains monotonic we
make the pendulum stop when it approaches ±π radians (see
Methods). This, however, does not change the fact that simple
proportional control (as in the architecture of Fig. 2) may be
unstable, despite the addition of viscous friction. This is due to
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the delay in the control response, which is similar to the delays
observed in human reflexes (Capaday, Forget, & Milner, 1994).
Such an effect highlights the usefulness of including transmission
delays and response latencies in this study.

As discussed previously, most cerebellar models assume a pre-
existing feedback controller, whose performance they improve.
And as discussed in Section 4.3, configuration of this feedback
controller may not be innate. If this is the case, the feedback
controller cannot rely on the cerebellum while it is learning its
input–output structure, and must somehow compensate for its
unstability.

In systems where proportional control is unstable, often-
times proportional-derivative control can restore stability (Son-
tag, 2013). Animals can receive muscle contraction velocity and
tension information from their muscle afferents (Shadmehr &
Wise, 2005). We extended the architecture of Fig. 2 to include an-
gular velocity information while still allowing for self-
configuration using the learning rules of Section 2.1. The result
is the architecture in Fig. 3.

The SD population in Fig. 3 does not specify a desired velocity,
so a velocity error cannot be produced in the same way as the
angle error. In order to adaptively incorporate the velocity infor-
mation into the control loop we created a network resembling
the long-loop reflex of the animal motor system, which includes
not only the spinal cord, but also the primary motor and sensory
cortices.

In Fig. 3 we introduced a population M receiving the afferent
activity A, consisting of the angular velocity θ̇ in its non-negative
(dual) representation. In addition, each M unit received one error
signal, either sDP , or sPD. The M units used the input correlation
rule (Porr & Wörgötter, 2006) (Eq. (16)) to potentiate angular
velocity inputs that correlate with their error input. This allows
M to send C a composite error, resulting in a self-configuring
proportional-derivative controller.

C uses two units, one providing clockwise, and another coun-
terclockwise torque. The value in SD represents a given angle, and
the task is to move the pendulum to that angle so activity in SP
and S can be equal.
D
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Fig. 7. First 150 s of a simulation where the architecture of Fig. 3 is used so a pendulum can track a desired angle (no gravity). The system learns to track the
desired angle in about 60 s. (A) Activity of the SP unit, with the perceived angle, and SD , with the desired value for SP . (B) Angle of the pendulum, and the desired
ngle. (C) Activities of the two units in population M . (D) Activities of the two units in population C . (E) Synaptic weights for the connections from the two M units
o the CE unit. (F) Synaptic weights for the connections from the two A units to one of the M units.
3

(

Fig. 7 shows a representative simulation result, where the sys-
em learns to perceive a desired SD angle in SP using the learning
ule from Eq. (4) in a pendulum with no gravity. A similar figure
or the case when gravity is present is in Appendix D (Fig. D.12).
ig. 7 shows the appropriate weights emerging in seconds; this
ime depends on the initial conditions and the learning rates.
fter a couple of minutes the weights reach their final values,
hich remain stable thereafter.
An interesting feature of this system is the interplay between

ntagonist (dual) units, seeking a balance between excitation
nd inhibition. Panel B of Fig. 7 shows how each time the tar-
et changes one of the M units activates more than its dual,
roducing a correction. The magnitude of the error determines
ifference in the activity of dual M units. In the absence of
ravity the error can remain close to zero without exerting any
orque, and at this equilibrium point both M units have the same
ctivation level, sending no net excitation to CE and CI .
All the units in Fig. 3 have a sigmoidal activation function,

xcept for those in population A, which have a logarithmic activa-
ion (Eq. (17)). Sigmoidals have a non-zero output in the absence
f input (Eq. (2)). Thus, in the absence of error the units may still
ave an output, but antagonist units will have the same activation
evel, resulting in no action. When gravity is present a constant
orque is required to keep the error close to zero. Since the system
xerts no action in the absence of error, gravity implies that either
e will have a steady state with non-zero error, or the angles
ill oscillate around their target values. Which of these scenarios
resents depends on the gain of the system, with higher gains
ending to produce oscillations around the target. Moreover, the
units present intrinsic noise, used so the system can produce
lasticity-inducing movements when learning begins. All of these
actors explain the oscillations observed in Figs. 7 and D.12.
247
.3. Non-monotonic control of a pendulum

The two terms in the synaptic learning rules of Eqs. (3) and
4) are monotonic functions of ė (or ëj) and ċi. If ci activity
can make ej either grow or decrease depending on the context,
correlations will be inconsistent, making the approach used by
these equations unlikely to succeed.

A further complication is that the representation of sensory
signals may not always be germane for negative feedback control.
Muscle afferents use a firing rate code that provides information
about the muscle’s length, speed, and tension, but other afferents
may provide a distributed representation, using a population of
neurons where each one is tuned to a particular range of values
(e.g. direction tuning in somatosensory cortex Pei, Hsiao, Craig,
& Bensmaia, 2010, or retinotopic location tuning in posterior
parietal cortex, Andersen, Essick, & Siegel, 1985).

It is evident that learning a static input–output structure for
a feedback controller is not sufficient for the control of arbi-
trary plants. Much flexibility could be gained if the input–output
structure could adapt according to the context. To this end, we
borrow concepts from the actor–critic architecture used in rein-
forcement learning (Sutton & Barto, 2018). The general idea is to
have a feedback controller as an actor component that can adapt
its input–output structure. When entering a context where the
current controller structure is not appropriate, a critic component
can indicate this, so the controller alters its configuration.

The meaning of ‘‘altering the controller configuration’’ can
have several interpretations (see Discussion, Section 4.2). We
present one illustrative example in this section.

Consider the architecture in Fig. 3, and suppose the pendulum
was able to rotate without restrictions. Given our choice of angle
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epresentation in the SP and SD units (selected to mimic the
epresentation of length and velocity used in muscle afferents),
etting the pendulum rotate freely will produce a discontinuity
round π radians, where a small variation in the angle creates a
arge variation in the firing rate. This simple change greatly alters
he pendulum control problem from the previous section, in the
ense that an optimal solution can no longer be achieved by a
ontroller that responds proportionally to (θD − θ ), where θD is
a desired angle, and θ is the current angle. This is because the
proportional controller will not cross the angle where it has a
representation discontinuity, so even if θD and θ are very close
(say, 179◦and 181◦), the controller may not move the pendulum
through the shortest path. An optimal solution is thus beyond the
reach of the learning rules in Section 2.1, which cannot handle the
non-monotonicity present in the angle discontinuity.

Because of this phenomenon we can test our ideas directly
on the pendulum controller of the last section, with minimal
modifications. In particular, we allow the pendulum to rotate
freely, but we also add the possibility of using a different angle
representation (inspired by how corticospinal signals can modu-
late ascending afferents through presynaptic inhibition (Goulding,
Bourane, Garcia-Campmany, Dalet, & Koch, 2014)). In this way
the synaptic learning rules from Section 2.1 can still be used as
before. We also add a ‘‘critic’’ component to the architecture, used
to select which angle representation is used. The result is shown
in Fig. 4, and details are in the Methods section.

In abstract terms, the ‘‘critic’’ has a representation of the state,
including the desired and perceived angles for the controllers.
From this, it produces a value associated with each state, and this
value is used to configure the controller, which in this case means
selecting an angle representation (Fig. 5).

Allowing the critic to select the coordinate system for each
state significantly increases the average value of the reward (the
output of the R unit) in the case where the gain of the inputs
from CE and CI to P is reduced. Optimal performance in this
task has to leverage two limitations. First, as mentioned above,
when the shortest path between the current and desired angles
crosses either 0 or π radians, one of the angle representations
makes the controller follow the longer path. This affects the time
to approach the desired angle. Second, due to the limited dynamic
range of the sigmoidal units, the gain of the controller is greatly
reduced when the desired angle is away from the zero-degree
direction (Fig. 5). The critic must thus choose a coordinate system
that has enough gain near the desired angle. This affects the error
in the steady state.

Fig. 8 shows the results of 20 simulations where the network
was first run for 800 s with random X values (either X ≈ 0 or
X ≈ 1 on each reach) to provide a mean reward R1. Next the
etwork was run for 400 s with the X output being driven by the
nputs from L, providing a mean reward R2. The average increase
n reward was approximately 0.136 (p < 1−10, paired T-test), and
he largest R1 value in the 20 simulations was smaller than the
smallest R2 value.

In the simulations presented in Fig. 8 a different SD value was
resented every 4 s. In the first 800 s the feedback controller
ould attempt to make SD = SP using one of the two angle
epresentations, selected randomly, and as it did so learning took
lace in the connections from L to V and from L to X . The V unit
as learning to estimate the value of different states, and the X
nit was learning which output was associated with an increase
n this value.

The strategy that emerged through learning can be glimpsed
rom the weights in the projections from L to X , and the outputs
hat they implied, as shown in panels B and C of Fig. 8. In this
igure the horizontal axis represents the current angle, and the

ertical axis represents the desired angle. Each of the squares in
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his 10 × 10 grid correspond to the unit in L that is maximally
esponsive to the corresponding combination of angles. In panel
the color of the square encodes the magnitude of the synaptic
eight in the projection of that L unit to X , with brighter squares
aving a larger weight. In panel C (right half) yellow squares
ndicate an output close to 1, which causes the second coordinate
ystem to be used (Fig. 5C). As can be observed, this second
oordinate system is preferred when the desired angle is close to
radians, whereas the first coordinate system is preferred when

he desired angle is close to 0 or 2π radians. The effect that this
as on the tracking performance can be observed by contrasting
anels D and F.

.4. Control of an inverted pendulum

In the actor–critic architecture of Section 3.3 the weights of
he unit X are updated when the desired angle changes. We
efer to these events as transitions. Let t1 denote the time when
transition happens, and let t0 be the time when the previous

ransition occurred. The weight update rule (Eq. (23)) only cares
bout the difference in values V (t1) − V (t0), with a possible time
enalization to discourage large (t1 − t0) periods. Ignoring the
ntermediate V (t) values allows the controller to explore the
radient of the value function in larger steps. In this subsection
e present a simple example to illustrate how this idea can be
xploited.
Consider the inverted pendulum problem, where the goal is

o make the pendulum reach the vertical position, at π
2 radians

in the coordinate system of panel B in Fig. 5. This problem is
trivial using a controller as in the previous subsections, with
enough gain to overcome gravity. To make this example illustra-
tive we removed the controller and most of the critic from the
architecture of Fig. 4, leading to the reduced system in Fig. 9A.

Learning in this model happens in the connections from S to X ,
sing the reward-modulated Hebbian rule of Eqs. (23), (24). This
ystem will generally not learn to point the pendulum upwards
sing random transition times; it is necessary to have a particular
trategy. Denoting the output of X as the configuration, we outline
ur strategy as follows:

1. Adopt a configuration (e.g. give X a fixed output value).
2. Predict the time t∗ when V (t) will attain its maximum

(updating the prediction online).
3. Perform a transition at time t = t∗.

The inverted pendulum problem is simple enough that a value
function V and a controller C as those in Fig. 4 are not required.
In the case of Fig. 9 R takes the place of V , and X takes the place
of C . For this particular case the strategy above can be adapted
into a simple rule: if both R′′ < 0 and R′ < 0, do a transition every
ttrans seconds.

This rule comes from estimating V (t) (in our case, R(t)) as a
quadratic polynomial function of time: V (t) = V ′′(t)t2 + V ′(t)t +

V (t0), using the latest observed values of V ′′(t) and V ′(t). If we
want to maximize V (t), having V ′′ > 0 means that eventually
the value will grow as time increases, so no transition should
be made. On the other hand, if V ′′ < 0, the polynomial attains
its maximum value at the point when V ′ becomes negative, so
no transition should be done while V ′ > 0. The parameter ttrans
(which could be a random value) determines how much time the
controller is allowed to explore a configuration before a different
one is potentially adopted.

The result of using this rule to decide when to apply weight
updates with Eq. (23) is shown in Fig. 9. The controller only
has two possible torques, the angle representation is not very
precise, and there are temporal delays, so the best that can be
expected is oscillations near the π/2 angle. Still, the system learns
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Fig. 8. Performance of the reinforcement learning model. (A) average reward in 20 simulations when the X value is randomly selected (R1, red circles) compared to
he reward when the X value is produced by the inputs from L after training (R2, blue triangles). (B) Left: Connection weights for the projections from L to V after
training. These weights were selected arbitrarily from one of the 20 simulations used for panel A. Right: Connection weights for the projections from L to X after
training. (C) Left: Steady-state activation values for the V unit when the desired and current angles are those preferred by each of the 100 units in L. Right: the
corresponding steady-state activation values for X . (D) The desired (red) and current (blue) angles through a 30 s simulation. This panel shows tracking of the desired
angles after 800 s of learning with random X values. After this learning period the X values were determined by the input from L, and the 30 s simulation in this
plot began. The desired angles were selected to illustrate the difference when using the actor–critic system, compared to simple feedback control as in Section 3.2.
Angles in the y-axis are in the coordinate system of panel A in Fig. 5. (E) The output of X during the 30 s simulation of panel D. (F) A simulation with the same
desired values as in panel D, but this time the output of X was fixed near 0, forcing the use of a single coordinate system. (G) The output of X during the 30 s of
he simulation in panel F. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
o maintain the pendulum near the vertical position for extended
eriods of time, and it brings it back on top soon after it falls
Fig. 9B).

. Discussion

.1. From correlations to reinforcement learning

In this paper we presented synaptic learning rules that au-
omatically configure a feedback control system. This control
ystem is entirely agnostic about the plant being controlled, so
ts configuration involves finding the input–output structure of
he controller, which is akin to finding the sensitivity derivatives,
r the control Jacobian of the system.
In Section 2.1 we derived 2 different learning rules to find

his input–output structure in the case of a monotonic relation
etween the control signals and the error, and 2 other variations
re in Appendix B. The basic form of those four equations can be
ritten as:

˙ ij = −αΨ (e(t))Γj(e(t))Hi(c(t)), (29)

here α is a learning rate, Ψ (e(t)) is an operator to measure the
error gradient, Γj(e(t)) quantifies the input activity, and Hi(c(t))
uantifies the postsynaptic activity. In the case of Eqs. (3), and (4)
e have Ψ = 1 because the input is an error, and the term Γj can
lay the parts of both error gradient and input activity.
249
From this optic, the rules in this paper are not far from
previous forms of node perturbation (Mazzoni, Andersen, & Jor-
dan, 1991; Williams, 1992), reward modulated Hebbian learning
(e.g Frémaux, Sprekeler, & Gerstner, 2010; Legenstein, Chase,
Schwartz, & Maass, 2010), or Hebbian descent
(Melchior & Wiskott, 2019). We went beyond previous
approaches in order to deal with complications from continuous-
time control with delays. This required using other elements like
derivatives, time delays, and normalization.

The rules in Section 2.1 and Appendix B have two obvious
drawbacks. One is that the error gradients do not take distal
outcomes into account. In other words, the learning rules can only
reduce errors that happen soon afterwards (on the order of ∆t),
but errors that happen later cannot be preemptively corrected.
The second drawback is the restriction to monotonic control,
since Eq. (29) has no context information beyond the e and c
vectors.

Under this perspective, the actor–critic architecture in Sec-
tion 3.3, through Eq. (23), improves over Eq. (29) by providing
modulation that can handle temporal credit assignment, and can
consider a more general context in order to produce an output.

Learning in Eq. (23) can solve the temporal credit assignment
problem because of two traits. The first trait is the use of a value
function, which considers future rewards when the discount fac-
tor is not zero. The second trait is that updates are performed
intermittently, only during the transition times. This allows to
flexibly span arbitrary lengths of time, but it opens the question
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Fig. 9. An architecture for the inverted pendulum problem, and simulation results. (A) The network consists of a population S, plus units X , and R. S represents
the angle of the pendulum using 20 units, each with a preferred angle. Unit R outputs the sine of the angle, which is received by unit X as a reward value. Unit X
uses reward-modulated Hebbian learning (Eq. (23)) with the right update times to adjust the weights in the connections from the population S. (B) The pendulum’s
angle through the first 300 s of a simulation. Initially the pendulum oscillates at the bottom, around the 3π/2 angle (black dotted line). Eventually the pendulum
manages to complete a revolution, and begins to spin, until it starts to balance at the top, around the π/2 angle (red dotted line). (C) Output of the X unit, which
is proportional to the torque applied. (D) Weights in the connections from S to X after 300 s. Each square corresponds to the weight of a particular unit in S, and
the label at the top indicates the preferred angle of that unit. (E) Steady-state output of X when the angle is one of the preferred angles of the 20 units in S. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. (A) A reinterpretation of the architecture of Fig. 4 as a 2-level hierarchical control system. Arrowheads denote afferent connections, squares modulatory
connections, and circles all other synaptic connections. The population C is considered as a final controller, possibly in the spinal cord. The loop from C to P and
ack represents a first-level controller using an error representation amenable to negative feedback control. The level on top of this provides the ability to use a
istributed representation for the desired and perceived values. (B) A 3-level hierarchy of feedback controllers. A high-level desired perception SD , together with
he current perception SP are expanded into a high-level state S, which is used to produce a value VS . This value, the state S, and the current perception SP can
potentially be used to configure a controller lower in the hierarchy, whose target value is expressed by the ZD population. The dotted connection from ZP to SP
expresses that the representation in SP could be constructed using lower level representations rather than state variables of the plant.
of when should the transitions happen. We began to address this
question in Section 3.4.

Eq. (23) can handle general context dependencies because the
state information is present in layer L, which uses an expansive
recoding so that X can approximate arbitrary functions of the
state. A possible problem with expansive recoding is that the
number of units required scales poorly with the dimension of the
input. Other possibilities could include special versions of self-
organizing maps (Kohonen, 1995), or a more biological version
of the state representations used in deep reinforcement learning.
Notice also that the layer L is reminiscent of the sensory maps
used in direct inverse learning (Kuperstein, 1988) to associate
afferent inputs with muscle activities. L could be seen as a more
general version of these maps, also representing desired values,
and not necessarily being used to produce muscle activations, but
control signals at a higher hierarchical level.

4.2. Hierarchies of feedback controllers

As mentioned in the Introduction, a promising idea on how
to generate flexible motor control is to have a hierarchy of feed-
back controllers that ultimately regulate the value of homeostatic
250
variables for the organism (Powers, 2005). A clear complication
is that higher levels of the sensorimotor hierarchy may deal with
abstract representations, where an error cannot be obtained by a
mere subtraction operation. The architecture we have introduced
in Section 3.3 may open the path to exert feedback control with
complex representations.

The basic idea of a general feedback controller can be ex-
plained with the diagram in panel A of Fig. 10. SP and SD can
use arbitrary distributed representations, but because these two
layer have the same structure we can always detect when their
activity is very similar, an event that would produce the reward
signal used by V to learn. All of the relevant state information is
present in a population S, and this is used by V , as well as by the
controller C . The C circle in Fig. 10 is not a unit; it encompasses a
feedback controller, and the elements that allow its configuration.
In the case of the architecture of Fig. 4 this would include the
actor and the X unit. C uses the value provided by V in order
to learn its configuration, and the information in S in order to
perceive the state.

In our example we set SD to be the desired activation caused
by the target angle in the controller C , but other things could
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e encoded in SD, such as the target in a different coordinate
ystem for a more complex controller. The network comprising
he SD, SP , S, and V populations could be considered as a separate
ontrol system, where V provides a measure of the distance in the
ctivities of SD and SP , and this is used either to configure, or to set
he target value of the controller C . Learning happens in stages,
here the lower-level controllers learn first, and the higher-level
ontrollers perform significant learning after the lower levels
an match their target values. In the example of Section 3.3 the
eedback controller is already operating while the reinforcement
earning system refines its operation, a trait that should be useful
or biological organisms.

Configuration of a controller using a value function can have
everal interpretations. In the example of Section 3.3 this meant
electing the afferent input. Alternatively, this could mean se-
ecting a different controller altogether, which would provide a
ifferent implementation of ideas in the MOSAIC-MR model (Sug-
moto, Haruno, Doya, & Kawato, 2011), where different RL con-
rollers are used depending on the context. Controller selection
as also been suggested as the main role of the basal ganglia (Yin,
017; Yin & Knowlton, 2006).
Most interestingly, the architecture of Fig. 4, being a feedback

ontroller that configures a feedback controller, naturally has a
ierarchical extension, shown in the panel B of Fig. 10. A high-
evel controller with ‘‘S’’ populations is used to configure a lower
evel controller with ‘‘Z ’’ populations, possibly setting the desired
alue ZD. Transforming the pair SD, SP into a ZD value is akin
o a coordinate transformation, but in this setting it can also
e conceived as a process of subgoal selection. By generating
ewards for level S when a ‘‘sP = sD’’ event occurs we can learn
value function for the VS unit. The output of VS can be used

to modulate plasticity in the descending connections from the
S level to the Z level. This last level receives rewards when the
‘‘zP = zD’’ event happens. Having a natural reward function at
each level, and the ability to deal with distal rewards gives the
model the potential of tackling the problem of finding subgoals,
which is common in the hierarchical reinforcement learning lit-
erature (e.g. Kulkarni, Narasimhan, Saeedi, & Tenenbaum, 2016;
Vezhnevets et al., 2017).

One promising idea is to create sensory representations by
grouping states that succeed with similar controller configura-
tions. A direction of future research is thus to use the hierarchical
architecture of this model to test whether this controllability
criterion can facilitate the formation of perceptual categories.

4.3. The dividends of biological plausibility

Our model suggests a coherent set of hypotheses regarding
animal motor control. We outline this below.

• Spinal cord plasticity, and how it coordinates with plastic-
ity at other cortical and subcortical sites is a challenging
issue (Brumley, Strain, Devine, & Bozeman, 2018; Norton &
Wolpaw, 2018; Wolpaw, 1997). Plasticity rules like those of
Section 2.1, if present in the spinal cord, could enable it to
become a self-configuring feedback controller. This idea has
been suggested before (Raphael, Tsianos, & Loeb, 2010), but
a plausible plasticity mechanism has been missing. Further-
more, the model of Section 3.3 shows how plasticity at four
different sites can coordinate in a hierarchical manner.

• Some motor control models, such as feedback error learn-
ing (Miyamoto et al., 1988), posit that knowledge about sen-
sitivity derivatives de

dc is innate, rather than learned. How-
ever, there is significant evidence that some systems recover
when the relation between motor command and error is
reversed, so de changes sign (Abdelghani & Tweed, 2010;
dc
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Kuang & Gail, 2015; Lillicrap et al., 2013; Richter et al.,
2002; Sachse et al., 2017; Sekiyama, Miyauchi, Imaruoka,
Egusa, & Tashiro, 2000; Yamashita et al., 2012). Our model
is consistent with this, and it further predicts that in some
cases animals may be able learn to use opposite estimates
of de

dc depending on the context, but this learning should
be much slower, as it depends on a reinforcement learning
mechanism (cf. Lillicrap et al., 2013).

• Feedback control is naturally limited by response laten-
cies, and gains that saturate, so a cerebellar module to
improve performance is an ideal complement. We empha-
size 3 facts: (1) the cerebellum is involved in estimating
the timing of events (Bareš et al., 2019), (2) the cerebellum
contains predictive signals in the scale of tens of millisec-
onds (Bareš et al., 2019; Ebner, 2013; Herzfeld, Kojima,
Soetedjo, & Shadmehr, 2015; Tanaka et al., 2020; Tseng,
Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007), and (3)
disynaptic or monosynaptic projections from the cerebellum
can be found in spinal cord, as well as cerebral cortex
and basal ganglia (Bostan & Strick, 2018; Liang, Paxinos, &
Watson, 2011; Middleton & Strick, 1997; Nudo & Masterton,
1989). If the cerebellum relays signals anticipating events at
the spinal cord, they could be inputs to the C units in our
model, and learning would enable the spinal controller to
use these signals to drive anticipated responses. An inverse
model in the cerebellum is thus not required for this type of
adaptation. On the other hand, supraspinal projections from
the cerebellum could be involved in signaling transition
times when particular events are anticipated. We thus hy-
pothesize that cerebellar signals to the spinal cord can drive
anticipatory responses, and that signals to the cortex and
basal ganglia can change the timing of reward-modulated
plasticity.

• Using only positive activations and weights that do not
change sign motivates the use of dual representations,
where the excitation in one neural population caused by a
sensorimotor event should come together with inhibition
in another population. This is not only consistent with
experimental observations (e.g. Najafi et al., 2020; Shafi
et al., 2007; Steinmetz, Zatka-Haas, Carandini, & Harris,
2019), but it also permits the function of learning rules
as the ones in Section 2.1. When controllable signals exist
in antagonistic pairs, it is natural that the activity of a
unit does not necessarily produce an action; what matters
is the balance between excitation and inhibition. Balance
between excitation and inhibition (E/I balance) has received
extensive experimental validation, and has been largely
recognized as necessary for theoretical models to reproduce
observed neuronal dynamics (Dehghani et al., 2016; Haider,
Duque, Hasenstaub, & McCormick, 2006; Okun & Lampl,
2008, 2009). Our framework explains why concomitant ex-
citatory and inhibitory responses to sensory events should
be prevalent, and links it to the E/I balance using a functional
model.

We took all these insights into a more comprehensive model of
mammalian arm reaching, where the complexity of the plant and
the biological realism of the controller were enhanced (Verduzco-
Flores & De Schutter, 2021). While the detailed findings of this
follow-up paper are outside the scope of this work, we can
briefly mention that using the learning rule in Eq. (4) as a self-
configuration mechanism for signals in the spinal cord, we can
produce 2D reaching from scratch, and explain the emergence of
directional tuning in motor cortex, among other phenomena.
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.4. Comparison with previous work

As mentioned in the Introduction, the closest approach to our
ork is in Abdelghani et al. (2008). This work required a separate
etwork, and represented the sensitivity derivatives using firing
ates. It does not address delays or response latencies, was imple-
ented in discrete time steps, and also controls simple systems

the vestibulo-ocular reflex, and the forearm angle of a 2-joint
rm). The learning times are similar to our models.
The review in Kolodziejski et al. (2008a) describes learning

ules working in simple open-loop circuits. Two of these learn-
ng rules could potentially be compared to our own, namely
he ISO (Porr, Ferber, & Wörgötter, 2003), and the ICO (Porr
Wörgötter, 2006) rules. When applied to control problems,

oth rules begin by assuming that there is an already estab-
ished feedback control system whose performance is hindered
y response delays. Both rules can autonomously learn how to
mprove the system’s performance by applying predictive feed-
orward responses. The system is thus not learning sensitivity
erivatives, or in other words, it does not learn which control
ignals are capable of reducing particular errors in the MIMO
losed-loop setting, which is what our rules achieve. The ISO and
CO rules could thus be used in conjunction with our rules, which
ould be used to configure the underlying feedback control sys-
em.

A similar observation applies to work based on feedback-
rror learning (Kawato & Gomi, 1992), and on the recurrent
rchitecture (Porrill et al., 2004) as they rely on a previously
xisting feedback controller whose output is used to train an
nverse model. This feedback controller must already have the
ight input–output structure, or learning will fail. Finding this
nput–output structure can be done by our learning rules when
his is not explicitly specified.

The distal learning approach of Jordan and Rumelhart (1992)
oes have the potential to fully perform controller configuration,
ut this relies on backpropagating an error signal through a
orward model, which strains biological plausibility.

There is also a relatively large number of neurobiomechanical
odels that perform simple motor tasks. In general they are not

elevant here due to one or more of the following reasons:

1. They do not address the problem of input–output config-
uration (e.g. finding sensitivity derivatives), or control a
single degree of freedom, which sidesteps this problem.

2. Use non-neural systems to produce motor commands.
3. Do not model a biologically plausible form of synaptic

learning.

For these reasons the approach we presented towards motor
earning may be the most capable yet, in its ability to self-
onfigure actuators while still respecting a large amount of bi-
logical constraints. Moreover, there is a clear vision on how
o extend this model so it can tackle more complex tasks and
ontrollers.

. Conclusion

In this paper we have introduced the main ideas required for
class of motor control models that maintain a large degree
f biological plausibility, while still being capable of performing
on-trivial tasks. There are 3 key characteristics that make this
ossible: a feedback control architecture using dual excitatory–
nhibitory representations, synaptic rules that find the direction
f sensitivity derivatives, and a critic component that config-
res the controller using reinforcement learning mechanisms. The
act that these models have hierarchical extensions that could
otentially be used to control homeostatic variables opens the
ossibility of our ideas producing highly adaptable autonomous
gents. We will work towards this goal.
252
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Appendix A. Analogy with the Relative Gain Array criterion.

When presenting Eq. (3) in Section 2.1 it was mentioned that
this has similarities to the Relative Gain Array (RGA) criterion. We
explain that comment.

Assume a Multi-Input Multi-Output (MIMO) system where the
plant is M-dimensional, and the controller has an N-dimensional
output. Further assume that we want to create a decentralized
control system, consisting of N individual feedback loops. In a
control system like the one in Fig. 1 of the main text, the problem
we face is knowing which controller should be assigned to control
each state variable. Since control loops will be interacting with
each other, performance will be degraded, but a good loop config-
uration (also called input/output selection) can largely attenuate
this.

The RGA criterion (Bristol, 1966) offers a measure of the in-
teraction between control variables and plant outputs (or in our
case, elements of the error vector) that, among other things, has
the desirable property of scale invariance. Consider a linearized,
time-invariant control system ˙̄y = Aȳ + Bū, where ū is the N-
dimensional control vector, and ȳ is the M-dimensional observed
plant output. To simplify the presentation we use a 2 × 2 system:[
ẏ1
ẏ2

]
=

[
a11 a12
a21 a22

][
y1
y2

]
+

[
b11 b12
b21 b22

][
u1
u2

]
.

By assumption, the system is stable for constant ū∗ controls,
so that at a fixed point we have Aȳ∗

+ Bū∗
= 0. We may thus

write:

ȳ∗
= A−1Bū∗

≡ Kū =

[
k11 k12
k21 k22

][
u1
u2

]
,

where K is a steady-state gain matrix. The RGA method uses K to
roduce a matrix Λ whose entries are defined to be:

i,j =
(∆yi/∆uj)∆uj

(∆yi/∆uj)∆yi
.

λi,j is a measure of the interaction between yi and uj, arising from
he ratio of two gains. The gain (∆yi/∆uj)∆uj is (∆yi/∆uj) when
ul = 0 for l ̸= j. In other words, this gain is produced from

he plant’s outputs when ∆uj is the only non-zero perturbation.
∆yi/∆uj)∆yi is (∆yi/∆uj) when ∆yl = 0 for l ̸= i. For example,
o find (∆y1/∆u1)∆u1 we set the equation:

y∗

1 + ∆y1
y∗

2 + ∆y2

]
=

[
k11 k12
k21 k22

][
u∗

1 + ∆u1
u∗

2

]
,

inding that ∆y1 = k11∆u1, so (∆y1/∆u1)∆u1 = k11.
To find (∆y1/∆u1)∆y1 we set

y∗

1 + ∆y1
∗

]
=

[
k11 k12

][
u∗

1 + ∆u1
∗

]
.
y2 k21 k22 u2 + ∆u2

https://gitlab.com/sergio.verduzco/public_materials
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ome simple algebra shows that ∆y1 =

(
k11 −

k12k21
k22

)
∆u1.

herefore λ1,1 = k11
(
k11 −

k12k21
k22

)−1
. It is easy to show that, in

general: Λ = K ⊗ (K−1)T , where ⊗ is the element-by-element
product. It is not difficult to prove that the rows and columns
of Λ add to one. Moreover, Λ is invariant to scaling of the
gain in any controller, and permutation of the controllers only
causes the same permutation in Λ. Some stability properties of
the controller can be proven when integral action dominates, but
these are not the focus of the current exposition.

Returning to our 2 × 2 example, we had calculated λ1,1 =

11

(
k11 −

k12k21
k22

)−1
. The appearance of k11 is simple to interpret:

t is the ratio of the reaction ∆yi divided by the perturbation ∆uj,
s implied by the steady state gain matrix. This ratio of reaction
o perturbation could be captured in a learning rule where ω̇ij =

αėi(t)u̇j(t − ∆t). This would work if controllers did not interact
e.g. columns of K only had a single non-zero element), but in
eneral the action of one controller may disrupt the action of the
thers.
To handle interaction among controllers the RGA criterion

onsiders the vector c̄i that is orthogonal to every row of K , save
or the ith one. If we wanted to control yi without perturbing
ny other variable, then a control output along the direction of

¯i could do this. The term
(
k11 −

k12k21
k22

)
is the value of the first

ntry in c̄i for the 2 × 2 case. It would be ideal if this value was
of the same magnitude as k11. In general, values of λj,k ≫ 1 are a
ign that the kth controller would cause excessive interference if
sed to control the jth variable, whereas λj,k ≪ 1 indicates that
his controller has little effect on yj.

It is not obvious how to calculate (∆yi/∆uj)∆yi using a
iologically-plausible network. Instead, we could approximate
j,k by making the weight of the connection from ej to ck increase
ccording to how much ej changes in reaction to ck, but down-
rade or upgrade this increase according to how much the other
ontrollers are also changing ej. This is the aim of the synaptic
ompetition introduced in Eq. (3) of the main text.

ppendix B. Alternative learning rules for monotonic control

The rules we derive here have a Hebbian-like form where the
ynaptic weight ωij for the connection from ej to ci has a time
erivative:

˙ ij(t) = −αGj(e(t))Hi(c(t)), (B.1)

here α is a learning rate, and Gj,Hi are delay-differential op-
rators. In this appendix we present two more equations of this
ype, and show a test of their performance.

For a different approach to produce a learning rule, consider
sing some form of reinforcement learning in order to train the
ontroller of Fig. 2. We have to consider that the method we
hoose has to act in continuous time, learn on-policy (e.g. as it
erforms its task), and result in the adjustment of the ωij weights.
As a first consideration, providing rewards only when SD = SP

ould result in very slow learning, so a form of reward shaping is
esirable. For this purpose we can use ∥e∥ as a measure of dis-
ance to the target, which can be a negative reward. Training in-
ividual synapses can be addressed by a policy gradient method,
ith synaptic weights being the parameter, and presynaptic rates
eing the state. The weight perturbation method (Werfel, Xie, &
eung, 2005) uses this logic: a perturbation in the ωij weights
auses a change in the error, which allows to estimate the gra-
ient of the error with respect to the weights. As pointed out
n Werfel et al. (2005), weight perturbation can be much slower
han node perturbation, which can still be relatively slow when

sed to find sensitivity derivatives (Abdelghani et al., 2008). t
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To explain the node perturbation scheme (as in the REINFORCE
ramework, Williams, 1992), consider a linear system with M-
imensional inputs x, and N dimensional outputs y, related by an
× Mweight matrixW , so that y = Wx. For each input xwe have
desired output d, and we assume that there is a teacher matrix
∗ such that d = W ∗x. The error function is E =

1
2 |y − d|2 =

1
2 |(W − W ∗)x|2 =

1
2 |∆Wx|2, where ∆W ≡ W − W ∗.

Node perturbation consists of adding noise to the outputs y
o we can get a new error E ′

NP , and then we change the weights
ollowing the gradient of that error. More precisely, let ξ be an
-dimensional vector drawn from a Gaussian distribution with 0
ean and variance σ 2. Define E ′

NP =
1
2 |∆Wx + ξ |. Weights are

hanged according to ∆WNP = −
α

σ2 (E ′

NP − E)ξxT .
A problem that comes with an on-policy, continuous-time

implementation of this would be to produce the same inputs
twice so we can observe the error gradient (E ′

NP − E) using errors
with and without the ξ output perturbation. The scheme we
propose is to use ċ as a proxy for ξ , and d∥e(t)∥

dt ≡ ∥e(t)∥′ as a
proxy for (E ′

NP − E), leading to a rule like:

ω̇ij = −α∥e(t)∥′ċi(t − ∆t)ej(t − ∆t).

Simulations show that this rule is still not effective. In the
first place, the ej inputs are always positive, which is unlike node
perturbation in the REINFORCE framework. This can be addressed
by using the term (ej(t−∆t)−⟨e⟩) instead, where ⟨e⟩ =

∑
k ek(t−

∆t). Secondly, this rule tends to produce much better results
when heterosynaptic competition is also introduced for the ċi
term, in as in the previous cases. The rule we will test in this
paper is thus:

ω̇ij = −α∥e(t)∥′
(
ċi(t − ∆t) − ⟨ċ⟩

)(
ej(t − ∆t) − ⟨e⟩

)
. (B.2)

We will derive one final rule. To understand it we must first
consider that the units in population C may act as integrators
of their input, a design that is justified in Appendix C, but can
also be understood from the following discussion. We will write
simplified equations for the system of Fig. 1. Assume that the
plant P is linear, with an output p = WPc. Let the output of the
C population consist of the vector

∫
W (sD(ξ ) − sP (ξ ))dξ , where

W is a matrix of synaptic weights, for which we want to find a
learning rule. If we assume the transmission delays and latencies
of the system can be absorbed into the response latency of the SP
population with dynamics τsṡP (t) = p−sP , the simplified system’s
quations can be written as:

sṡP (t) = WP

∫ t

0
W (sD(ξ ) − sP (ξ ))dξ − sP (t), (B.3)

wẆ (t) = G(sD(t) − sP (t))H
(∫ t

0
W (sD(ξ ) − sP (ξ ))dξ

)
, (B.4)

here G,H are the matrix versions of the operators in Eq. (B.1).
e would like to have a stable fixed point such that sD = sP

(looking at Eq. (B.3), this fixed point may not make sense without
integration in the units of C). This implies there is a time t∗ so
that e(t∗) = sD(t∗) − sP (t∗) ≈ 0. Stability of this fixed point
hould imply that if there is a perturbation δe away from the
ixed point e = 0, then the control signal would move e(t) back
owards 0, which would be the case if ė(t + ∆t) ≈ −δe for
ome small enough ∆t . A different way to state this condition
s that the vector c(t) =

∫ t
0 W (ξ )e(ξ )dξ is in the space generated

y all eigenvectors of WP with negative eigenvalues. Assuming
(0) = 0, it is necessary that W (ξ )e(ξ ) is also in this negative
igenspace for most values of ξ ∈ (0, t).
In short, we want to modify W (t) so that WPW (t)e(t) aligns

ith −e(t). A measure of that alignment can come from the inner
roduct e(t) · ė(t + ∆t), where ∆t is roughly the time it takes

he e signal to go through a loop in the feedback system, causing
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Fig. B.11. Simulation results for 4 types of connectivity matrices using the two learning rules of this section. The format of this figure is the same as of Fig. 6 in
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a change ė. In practice it is better to use e(t + ∆t) · ė(t + ∆t),
hich states that we want the controller response to correct the
(t + ∆t) error, rather than the outdated e(t) error. Ideally we
ould like to have this inner product close to its minimum value
∥e∥∥ė∥. On the other hand, when the inner product is positive,

we want to change W so it produces the opposite change.
Assume that an error signal e(t) causes a controller response

ċ(t + ∆0t), and this activity eventually creates a change in the
error signal with rate ė(t + ∆2t). When the inner product e(t +

2t) · ė(t + ∆2t) is positive, we can attempt to reduce it by
ubtracting the outer product ċ(t + ∆0)eT (t) from W , leading to
he following rule:

ωω̇ij(t) = −α [e(t) · ė(t)] ċi(t − ∆1t)ej(t − ∆2t).

In this equation the time shifts were made negative to avoid
sing future values. ∆1t is the time it takes for the activity in C to
ause a change in the input to C , and ∆2t is ∆1t plus the response
atency in C . The result is similar to Eq. (B.2) with a different
easure of the error gradient. As before, from the activities in

˙ and e we can subtract the mean values ⟨ċ⟩ =
∑

k ċk, and
⟨e⟩ =

∑
k ek:

τωω̇ij(t) = −α [e(t) · ė(t)] (ċi(t−∆1t)−⟨ċ⟩)(ej(t−∆2t)−⟨e⟩). (B.5)

The rules in Eqs. (B.2) and (B.5) were tested with the same
inear plant as used in Section 3.1, Fig. 6. Results can be observed
n Fig. B.11.

The worst performance is obtained with Eq. (B.2), which scales
oorly to larger values of N . We still have to pinpoint the exact
ause of this, although we do not discard that different parame-
ers could change the outcome. This rule is included because it is
he best adaptation we have found of an established RL method
hat can be used within our framework. A general understand-
ng of why performance degrades will require a comprehensive
onvergence analysis.

ppendix C. Non-convergence of a simple linear model

In Section 3.1 of the main text it is stated that using the archi-
ecture of Fig. 1, together with linear units and plastic synapses
s in Eq. (3) will lead to a network that can converge to states
ith non-zero error. This is shown next for the first learning rule
f Section 2.1.
Consider the system of Fig. 1, with the first plant of Section 3.1.

amely, each unit cj of the controller has a vector vj associated
ith it, and the output of the plant is p =

∑
k ckvk, where ck is

also used to denote the activity of the kth unit. We define V as
254
the M × N matrix whose N columns are the vj vectors, so we may
write p = Vc.

We assume that SP has an M-dimensional activity vector sp =

p(t−d), where d incorporates the transmission delays. SDP activity
is a 2M-dimensional vector with elements sDPj = sgn(j)(sDj − sPj ),
where sgn(j) = 1 for j ≤ M , and sgn(j) = −1 for j > M . In vector
notation this can be written sDP = sD(2)−WsP , where sD(2) is a 2M
column vector with two stacked copies of sD, and W is a 2M × M
atrix consisting of the M × M identity matrix stacked on top of

ts negative.
We also define Ω to be the N × 2Mmatrix of connections from

DP to C .
The system has the following equations

C ċj(t) =

(∑
k

ωjksDPk (t − d1)

)
− cj(t),

ωω̇jk(t) = (ċj(t − d2) − ⟨ċ(t − d2)⟩)
(
ṡDPk (t − d1) − ⟨ṡDP (t − d1)⟩

)
hich in vector notation become:

C ċ(t) = ΩsDP (t − d1) − c(t), (C.1)

ωΩ̇(t) =

(
IN −

1
N
1N

)
ċ(t − d2)

×

[(
I2N −

1
2M

12M

)
ṡDP (t − d1)

]T
, (C.2)

where IN is the N × N identity matrix, 1N is the N × N matrix
where all entries are 1, I2M is a M × 2M matrix of the form [IMIM],
and 12M is an M × 2M matrix of the form [1M1M].

Eq. (C.2) is proportional to derivatives on both sides, and will
vanish in steady state. Also, from Eq. (C.1) it is evident that if
sDP = 0 in the steady state, this implies c = 0, which in turn
implies sD = 0. Clearly this is not a general solution.

The actual fixed point can be found by replacing sDP with
sD(2) − WVc in Eq. (C.1):

τC ċ(t) = 0 = ΩsD(2)(t − d1) − (ΩWV − IN) c(t),

so c = (ΩWV − IN)−1 ΩsD(2). Whether this fixed point is attrac-
tive depends on the eigenvalues of the system of Eqs. (C.1), (C.2),
where (C.1) is used to write ċ and ṡDP in terms of c. This analysis,
however, would provide little further insight.

One final point is that Eq. (C.2) shows that homogeneous
derivatives will cause similar changes for all weights, reducing
learning in the network. It is thus necessary to avoid synchro-
nization, which is aided by the use of heterogeneous parame-
ters for the sigmoidal units, as well as heterogeneous oscillation

frequencies for the controllers (see Methods).
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Fig. D.12. First 200 s of a simulation where the architecture of Fig. 3 is used so a pendulum can track a desired angle (gravity is present). (A) Activity of the SP unit,
with the perceived angle, and SD , with the desired value for SP . (B) Angle of the pendulum, and the desired angle. (C) Activities of the two units in population M . (D)
Activities of the two units in population C . (E) Synaptic weights for the connections from the two M units to the CE unit. (F) Synaptic weights for the connections
from the two A units to one of the M units.
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Appendix D. Simulations of the pendulum with gravity

Simulation of the systems in Section 3.2 was done when
the pendulum experienced gravity. All other parameters in the
system were identical, with the exception of the input gain of the
plant, which was increased (see Appendix E).

Fig. D.12 is the analog of Fig. 7, but simulated with gravity.
The gravity force accelerates the pendulum towards the angle

−π/2. Target angles near this value require a lower gain in order
to be reached, whereas targets near 0 and π require a larger gain.
As explained in Section 3.2, the system is driven by error, and as
the error decreases the torque produced is not sufficient to fully
reach the target. It is for this reason that for certain targets the
system presents a larger steady-state error.

The gain of the system is closely related to the slope in the
sigmoidal activation functions for the units in the feedback loop.
Steep slopes will produce high gain, but reduce the dynamic
range of the system. In other words, when the slope is steep,
large or small angles will produce values very close to 1 or 0
respectively, and angle differences in these ranges will not be
perceived, leading to imprecise responses. This is a challenge that
is often not addressed by non-neural models.

A related problem with the system in Section 3.2 is that for
certain initial conditions the pendulum will initially rotate close
to π radians until the forces that restrict pendulum rotation bring
it to a stop. At this point movement of the pendulum is very
limited, slowing down learning. This is compounded by the fact
that close to π the angle is at a range where, due to the sigmoidal
255
activation functions, oscillation amplitudes are greatly reduced.
Both of these factors can make learning extremely slow, and leave
the pendulum ‘‘stuck’’ at π or −π radians.

Certain parameter regimes can be used to avoid this problem.
In particular, very fast learning rates in the connections fromM to
, large plant input gains, and desired values that change slowly,
ll contribute to make the arm avoid getting stuck at a limit
ngle. This motivated some of the parameter selection, and for
his reason the first target presentation lasts 50 s, whereas the
ubsequent targets are presented for 10 s. It should be noticed
hat this problem is a particular trait of using a pendulum as our
est system, and is probably not relevant in a biological setting.

When the pendulum is not constrained in its rotation this
roblem once again emerges, although with a different form.
hen the pendulum crosses π radians the sP value experiences a

udden shift between 0 and 1. For certain initial conditions, cross-
ng π causes the error to change its sign, making the pendulum
eturn to π , again changing the sign of the error. The result is that
he pendulum oscillates around π radians indefinitely. The same
arameter regimes as before can help avoid this problem, which
s once more irrelevant for biological learning.

ppendix E. Parameter values

Note: for parameters with heterogeneous values, the reported
alue is the one before noise is added. All dual populations use
he same parameters.



S. Verduzco-Flores, W. Dorrell and E. De Schutter Neural Networks 150 (2022) 237–258

f
g

i
4
g
o

R

A

A

A

B

B

B

B

B

B

B

B

For the learning equations in Section 2.1:

Parameter Equations Sections Value
∆t (3), (4),

(B.2), (B.5)
All 140 [ms]

α (3), (4),
(B.2), (B.5)

3.1 .15

(4) 3.2 2.5
3.3 .5

λ (3), (6) All 0.05
(4), (6) All 0.03

τf (7) 3.1, 3.2 and 3.3 10 [ms]
3.1 for ċj; 3.2 for İDP ; 5 [ms]
3.3 for İDP

τs (7) 3.1, 3.2 and 3.3 50 [ms]
3.1 for ėj 200 [ms]

For the model in Section 3.1:

Parameter Equation Population Value
τs (2) SP , SPD 50 [ms]
β (2) SP 1

SPD 4
η (2) SP 0

SPD 0.4
τx (9) CE, CI 200 [ms]
τc (10) CE, CI 200 [ms]
τp (11) P 50 [ms]

For the model in Section 3.2:

Parameter Equation Population Value
τs (2) CE, CI, SP , SPD 20 [ms]

M 10 [ms]
β (2) CE, CI 2

M 2.5
SP 1.5
SPD 5

η (2) CE, CI 0.2
M, SPD 0.5
SP 0

τa (17) A 10 [ms]
T (17) A 0
αIC (16) — 0.025

For the model in Section 3.3:

Parameter Equation Population Value
τs (2) CE, CI, SP , SPD, V , X 20 [ms]

M 10 [ms]
β (2) CE, CI, SP 2

M 2.5
SPD, X 5
V 1.5

η (2) CE, CI 0.2
M, SPD 0.5
SP 0
V , X 0

τV (19) V 20 [ms]
τX (20) X 20 [ms]
αV (21) — 0.005
∆tv (21) — 3 [s]
256
γ (21) — 0.6
αX (23) — 0.15
ηX (24) — 0.2
τa (17) A 10 [ms]
T (17) A 0
αIC (16) — 0.025
τP (18) S∗

P 10 [ms]
b (26) V , X 1.59
η1 (22) V , X 0.1
η2 (22) V , X 0.005

For the model in Section 3.4:

Parameter Equation Population Value
τX (27) X 20 [ms]
β (27) X 5
αX (23) — 0.4
ηX (24) — 0.1
b (25) X 5

For the models in Section 3.2, Section 3.3, and 3.4, the plant
was a homogeneous pendulum with mass 1 [kg], and length
0.5 [m]. The viscous friction coefficient was 1 [kg · m2/s], except
or Section 3.4, where the value 0.2 [kg · m2/s] was used. When
ravity is present, its value is 9.81 [m/s2].
For the model in Section 3.2, the gain was 4, meaning that an

nput of magnitude one would produce a torque of
[kg· m2/s2]. The equivalent simulation in Appendix D used a
ain of 7. Section 3.3 used a gain of 2, and Section 3.4 used a gain
f 1.5.
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