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A B S T R A C T

Wormlike micellar solutions possess complex rheology: when exposed to a flow field, the wormlike micelles
may orientate, stretch, and break into smaller micelles. Entangled wormlike micellar solutions exhibit shear
banding characteristics: macroscopic bands with different local viscosities are organized and stacked along the
velocity gradient direction, leading to a non-monotonic flow curve in simple shear. We present a systematic
analysis of four commonly used constitutive models that can predict a non-monotonic flow curve and
potentially describe the rheology of entangled wormlike micellar solutions with shear-banding characteristics:
the Johnson–Segalman, the Giesekus, the thixotropic viscoelastic, and the Vasquez–Cook–McKinley (VCM)
models. All four constitutive models contain a stress diffusion term, to account for a smooth transition
between the shear bands and ensure a uniqueness of the numerical solution. Initially, the models are fitted
to shear and extensional experimental data of a shear-banding wormlike micellar solution. Subsequently, they
are employed to solve three non-homogeneous flows: the Poiseuille flow in a planar channel, the flow in
a cross-slot geometry, and the flow past a cylinder in a straight channel. Each of these flows exposes the
wormlike micellar solution to different flow kinematics (shear, extensional, and mixed), revealing different
aspects of its rheological response. The predictive capability of each model is evaluated by directly comparing
the numerical results to previously published experimental data obtained from microfluidic devices with
corresponding flow configurations. While all the models can describe qualitatively the characteristic features
observed experimentally in the benchmark flows, such as plug-like velocity profiles and elastic instabilities,
none of them yields a quantitative agreement. Based on the overall performance of the models and also
accounting for their differing numerical complexity, we conclude that the Giesekus model is at present the most
suitable constitutive equation for simulating shear banding wormlike micellar solutions in flows that exhibit
both shear and extensional deformations. However, the quantitative mismatch between model predictions and
experiments with wormlike micellar solutions demand that improved constitutive models be developed in
future works.
. Introduction

Surfactants are amphiphilic molecules that consist of a hydropho-
ic tail and a bulky hydrophilic headgroup, which can be neutrally,
ositively, or negatively charged [1]. In aqueous solution, when the
urfactant concentration is increased above a critical micellar concen-
ration (CMC), surfactant monomers will spontaneously self-assemble
nto large aggregates known as micelles in order to shield the hy-
rophobic tails from water [2,3]. There is a wide variety of possible
orphologies that micelles can adopt, depending on factors such as the

emperature, pH, concentration, salinity, surfactant packing parameter,
nd flow conditions [4]. For certain surfactants, as the concentration
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is increased above the CMC, spherical micelles form and further grow
into elongated rod-like surfactant aggregates with increasing surfac-
tant concentrations [1]. Wormlike micelles (WLMs) are formed as the
micellar length grows above the persistence length, thus rendering
the micelles semi-flexible and in many ways similar to semi-flexible
polymer molecules [1]. Wormlike micelles can be described as long,
semi-flexible cylindrical aggregates that can entangle, and similarly
to polymer chains, attribute viscoelasticity to the solution [5–7]. In
contrast to polymers, WLMs exist in a dynamic equilibrium, undergoing
reversible scission and recombination; this provides additional stress
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relaxation mechanisms, which can cause flow-induced morphological
changes (e.g., gel formation), or lead to recovery of their bulk vis-
coelastic properties after micellar degradation that may occur in strong
flows [8,9]. The fact that WLMs exhibit such highly tunable properties
is mirrored in their extensive industrial use as drag-reduction agents,
in oil recovery processes, and also as rheology modifiers in cosmet-
ics, personal care, and food products [10–13]. Given the plethora of
their applications, a comprehensive understanding of the rheological
behaviour of these fluids under different flow kinematics is of crucial
importance.

From a rheological perspective, experimental observations [10,14,
15] have shown that the linear viscoelastic response of entangled WLMs
at low and medium frequencies can be described by a single-mode
Maxwellian relaxation spectrum. The addition of a Newtonian solvent
or a second Maxwellian mode can describe the high frequency upturn
usually observed in the loss modulus. In some cases, the shape of the
loss modulus curve at very high frequencies suggests shear thinning
effects, making the two mode-approximation necessary. Nevertheless,
the fact that WLMs can be adequately fitted with a single-mode consti-
tutive equation, plus a viscous contribution, makes them ideal model
viscoelastic fluids [16]. Despite their simplicity in the linear regime,
their rheological fingerprint becomes more complicated in the regime
of nonlinear deformations. The flow curve (shear stress versus shear rate
in simple shear) of a WLM solution under certain conditions of tem-
perature, concentration, and salinity [17], exhibits a so-called ‘‘stress
plateau’’ (see Fig. 1). At low shear rates, the stress grows proportionally
to the shear rate, but after a critical value of the shear rate (�̇� > �̇�1),
a plateau in the stress is observed, often spanning a wide range of
shear rates. As discussed by Vasquez et al. [18], sheared WLM solutions
in a circular Couette geometry (Taylor–Couette, TC) have revealed
the formation of two primary ‘‘shear bands’’. A high shear rate band
near the inner or moving wall consisting of broken, short, and aligned
micelles. A low shear rate band near the outer or fixed wall consisting of
unbroken entangled micelles [19–21]. With increasing imposed shear
rate, more micelles break and the high shear rate band increases in
width, at the cost of a decreasing width of the low shear rate band.
At very high shear rates (�̇� > �̇�2), the flow curve rises again because
all the micelles are broken and the solution behaves like a Newtonian
fluid. This non-monotonicity in the flow curve constitutes a hysteresis
and is the most characteristic feature of shear-banding fluids. Finally,
experiments with WLMs under uniaxial and planar extension [22–25]
suggest that WLMs exhibit extension hardening when the WLM micelles
start to stretch, followed by extension thinning at higher extension
rates, due to micelle breakage.

In the limit of vanishing inertia, the combination of extreme shear-
thinning with extension-hardening effects triggers a wide variety of
elastic instabilities in various flows. These unexpected flow config-
urations are caused by the interaction of the stretching, breaking,
and reforming micelles with the macroscopic flow. Some of the most
representative examples are the oscillations in the velocity of a sphere
sedimenting in a WLM solution [26–28], the asymmetric flow profiles
in cross-slot geometries [24,25,29,30], the onset of secondary vortex
flows [31,32] and waves [33] in TC flow, the asymmetric flow profiles
past a single or an array of cylinders in a channel [34–39], and the
synchronization phenomena in flows where WLMs interact with flexible
structures [40–42].

Based on the aforementioned rheological characteristics of WLMs,
one can envision that the constitutive modelling of such fluids is a
very challenging task. Many sophisticated models, which are based on
microstructural theories, have been proposed over the last decades. The
‘‘living polymers’’ model by Cates [5] is considered to be a starting
point for the majority of studies that focus on the derivation of con-
stitutive equations for WLMs. This concept, along with several other
relevant improvements, have led to the development of constitutive
models that, presumably, can describe the flow of WLMs in both linear
and nonlinear regimes [43–47]. Recent studies [48,49] have introduced
2

Fig. 1. Qualitative representation of a non-monotonic flow curve (shear stress versus
shear rate in simple shear). The horizontal dashed line shows a possible stress for shear
banded flow, with material on either the low or high shear rate branches. The negative
slope portion of the curve represents mechanically unstable homogeneous flows.

population balances in constitutive equations for WLM solutions; these
new models provide more accurate descriptions of nonlinear stress
relaxation dynamics. However, the problem with all these models is
that they can only be used in very simple flows; in general, they are
too complicated to be solved when coupled with the momentum and
mass conservation in computational fluid dynamics (CFD) simulations.
According to Bird et al. [50], an ideal model should predict the realistic
properties of the relevant fluid, feature the minimum possible number
of material parameters, and be computationally manageable in complex
flows. In almost any case of a non-Newtonian fluid, the satisfaction of
all these conditions seems to be impossible. Nevertheless, in favour of
gaining some insight into the response of WLMs in complex flows, sev-
eral assumptions must be made in the choice of constitutive equations
in CFD simulations. Thus, we can identify two possible strategies for the
simulation of shear-banding WLMs: (1) adopting a phenomenological
constitutive equation that can predict a non-monotonic flow curve, or
(2) making the necessary assumptions to derive a constitutive equation
that is based on microstructural theories, but is simple enough to be
solved in a complex flow. Some characteristic examples from the first
group are the Johnson–Segalman (JS) model [51] and the Giesekus
(GS) model [52], while two characteristic examples from the second
group are the Vasquez–Cook–McKinley (VCM) model [18] and the
simplified living Rolie-Poly model [53].

In this paper, we aim to answer which is the most suitable exist-
ing constitutive model for CFD simulations with shear-banding WLM
solutions. We choose to examine the JS, GS, and VCM models because
they are the most frequently encountered models in CFD simulations
of WLM solutions [54–60]. Despite their popularity, they have never
been directly compared to experimental data in 2-dimensional flows,
where both shear and extensional deformations take place; instead,
their predictive capabilities versus real fluids have only been assessed
in planar and cylindrical Couette flows [61–64]. Finally, we include
a phenomenological, thixotropic viscoelastic (TVE) constitutive equa-
tion [65] as a cheaper alternative to the VCM model. The paper is
organized as follows: in Section 2, we present and discuss the various
constitutive models. In Section 3, we fit the models to shear and
extensional rheometric data of an entangled WLM solution and estimate
the relevant material parameters of each model. In Section 4, we de-
scribe the flow geometries, state the governing equations and boundary
conditions of the flow, and discuss the numerical method used to solve
them. In Sections Section 5, 6, and 7, we solve the models in three
benchmark flows: (1) the purely shear flow in a planar channel, (2)
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the extension dominated flow in the cross-slot extensional rheometer,
and (3) the flow past a cylinder in a channel with low blockage ratio.
The predictions of the models are directly compared to experimental
data. Finally, conclusions are drawn in Section 8.

2. Constitutive models

2.1. The Johnson–Segalman (JS) model

Based on the continuum theory of viscoelasticity [51], the Johnson–
Segalman (JS) model was introduced as a generalization of the consti-
tutive equation for viscoelastic fluids obtained from the network theory
by Lodge [66]. The fundamental difference between the JS and the
Upper Convected Maxwell constitutive equations is the definition of the
objective derivative that attributes frame invariance to the model. The
JS constitutive equation expressed in terms of the conformation tensor
𝐂 is given as:

1 + 𝜁
2

▿
𝐂 +

1 − 𝜁
2

▵
𝐂 + 𝐂 − 𝐈

𝜆
= 𝐷∇2𝐂, (1)

where 𝜆 is the relaxation time of the fluid, 𝜁 is a nonlinear parameter
that governs the definition of the objective derivative, and 𝐷 is the
tress diffusion coefficient. Additionally, the symbols ▿ and ▵ over the
onformation tensor denote the upper and lower convected derivatives,
espectively, and 𝐈 denotes the unit tensor. The extra stress tensor is
iven as the sum of the contributions from the macromolecules (or, in
his case micelles) and the solvent:

= 𝐺
𝜁
(𝐂 − 𝐈) + 𝜂𝑠�̇�𝛾𝛾, (2)

where 𝐺 is the elastic modulus, 𝜂𝑠 is the viscosity of the solvent, and
̇ = ∇𝐮 + ∇𝐮𝑇 is the deformation rate tensor, with 𝐮 denoting the
elocity of the fluid. The nonlinear parameter 𝜁 governs the degree
f shear thinning and the ratio of the first to second normal stress
ifference in simple shear. For −1 < 𝜁 < 1 and 0 < 𝜂𝑠 < 1∕9 the

model always predicts a non-monotonic flow curve, and thus, shear-
banding. In terms of physical interpretation, the downturn in the flow
curve (Fig. 1) occurs due to non-affine deformation of the junctions
of the network. The presence of the stress diffusion term [67] in
the constitutive equation is necessary because it provides a smooth
transition between the shear bands and a uniqueness of the numerical
solution when the flow is shear banded [68]. The JS model is meant
to describe polymer solutions and melts, but because of its ability to
predict a non-monotonic flow curve, it has also been employed to
model WLM solutions. Its main advantage is its simplicity; the JS model
is quasi-linear, meaning that for a given velocity field, the resulting
equation is linear. Its major drawbacks are that it predicts unphysical
results in step strain and infinite stresses in purely extensional flows
beyond a critical value of the extension rate [4].

2.2. The Giesekus (GS) model

Giesekus [52] proposed the GS model based on the dumbbell kinetic
theory by including anisotropic hydrodynamic drag and Brownian
motion to account for polymer–polymer interactions in concentrated
polymer solutions or polymer melts. The GS constitutive equation is
given as:

▿
𝐂 + 𝐂 − 𝐈

𝜆
+

𝛼
(

𝐂 − 𝐈
)2

𝜆
= 𝐷∇2𝐂. (3)

n this nonlinear model, 𝛼 is the mobility parameter, which controls
he degree of shear thinning, the ratio of the second to first normal
tress difference, and the maximum value of extensional viscosity.
q. (2) with 𝜁 = 1 is used to obtain the extra stress tensor. For
.5 < 𝛼 < 1 and relatively small values of the solvent to total
iscosity ratio 𝛽 = 𝜂𝑠∕(𝐺𝜆 + 𝜂𝑠), the model can predict a non-

monotonic flow curve (Fig. 1). From a physical point of view, the
3

f

downturn in the flow curve is attributed to an effective reduction of the
drag coefficient on each chain due to the modification of the flow field
by the flow of the surrounding chains. The GS model is a well-known,
widely used, and studied model that can predict inhomogeneous flows
of a wide class of non-Newtonian fluids [69–71]. Its ability to predict
a non-monotonic flow curve along with its numerical stability have
made it a popular choice for CFD simulations of WLM solutions, and
a point of reference for the present study. While the GS model can
describe accurately almost any flow curve, it usually fails to describe
the extensional rheology of the same sample using the same set of
parameters and a single-mode approximation.

2.3. The thixotropic viscoelastic (TVE) model

The TVE model is a simplified version of the nonlinear constitutive
equation recently proposed by Varchanis et al. [65]. The aforemen-
tioned constitutive model, referred to as the TEVP model, is a very
general phenomenological constitutive equation that can describe a
wide class of thixotropic elasto-visco-plastic materials [65,72]. In the
present work, the plastic effects in the model are neglected, resulting
to a thixotropic viscoelastic (TVE) model, and the set of the simplified
equations are given as:
▿
𝐂 + 𝐂 − 𝐈

𝜆𝑒𝑓
= 𝐷∇2𝐂, (4)

𝐷𝑠
𝐷𝑡

= 𝑘1(1 − 𝑠) − 𝑘2(�̇�𝛾𝛾 ∶ 𝐂)𝑠 +𝐷∇2𝑠. (5)

ere 𝑠 is a non-dimensional structure parameter, which is introduced
o indicate the instantaneous degree of ‘‘structure’’ of the micelles in
he solution, and 𝐷∕𝐷𝑡 denotes the material derivative. It varies in

predetermined range (0 < 𝑠 ≤ 1) with limits corresponding to the
wo extreme cases regarding the rheological response of the solution;
hen 𝑠 = 1, the micelles are assumed to behave as in equilibrium,

orming long cylindrical structures, when 𝑠 → 0, the micelles are
ssumed to be fully broken into very short structures. The structure
f the micelles directly affects the relaxation time of the solution; this
s taken into account by introducing an effective relaxation time that
s proportional to the relaxation time of the solution and the structure
arameter: 𝜆𝑒𝑓 = 𝜆𝑠𝑚, where 𝑚 is a positive adjustable parameter.
he positive constants 𝑘1 and 𝑘2 govern the magnitude of the rate of
eforming and breakage of the micelles. Eq. (2) with 𝜁 = 1 is used to
btain the extra stress tensor. In fact, this model belongs to the family
f modified Bautista–Manero (MBM) constitutive equations [73–77]
see Appendix A). Although the TVE and the MBM models are derived
rom slightly different phenomenological arguments, setting 𝑚 = 1 and
onsidering that 𝑠 ≡ 𝐺𝜆∕𝜙 (𝜙 is the so-called ‘‘fluidity’’ parameter used
n the MBM models, see Appendix A) will yield an identical set of
quations: an Oldroyd-B fluid with a thixotropic relaxation time and
olymeric viscosity [78]. Their basic difference is how shear-banding
s induced in each model. In the TVE model, the non-monotonicity
n the flow curve is driven by an extreme reduction of the relaxation
ime of the fluid due to breakage of the micelles (exponential decay
f 𝑠). Note that the TVE model can predict a non-monotonic flow
urve only if 𝑚 > 1. On the other hand, a term proportional to the
agnitude of the deformation rate is added at the destruction term of
BM model [74] (see Appendix A) to make the curve non-monotonic.
s we will demonstrate in the next section, a major advantage of the
VE model is that it can fit both the shear and extensional rheometric
ata with the same set of material parameters. However, this gain is
ounterbalanced by the increased number of material parameters when
ompared to the previous two models, and the extra computational cost

or solving Eq. (5).
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2.4. The Vasquez-Cook-McKinley (VCM) model

The VCM model is inspired by Cates’ ‘‘living polymer’’ model [5,8,
43] and is derived based on principles of the kinetic theory [18]. In
this model, the WLMs are represented by species A and species B. The
micelles that are longer than the statistical average in the equilibrium
state of rest are represented by species A. On the other hand, species
B represent the shorter micelles. A micelle that belongs to species A is
allowed to break in half and form two micelles that belong to species
B. Additionally, two micelles that belong to species B can recombine
and form one micelle that belongs to species A, satisfying the detailed
balance. The VCM model is given as:

𝜇𝜆
𝐷𝑛𝐴
𝐷𝑡

=
𝑐𝐵𝑛2𝐵
2

− 𝑐𝐴𝑛𝐴 + 2𝐷𝐴𝜆𝐴∇2𝑛𝐴, (6)

𝜆
𝐷𝑛𝐵
𝐷𝑡

= 2𝑐𝐴𝑛𝐴 − 𝑐𝐵𝑛
2
𝐵 + 2𝐷𝐵𝜆𝐵∇2𝑛𝐵 , (7)

𝜆
▿
𝐀 + 𝐀 − 𝑛𝐴𝐈 + 𝑐𝐴𝐀 − 𝑐𝐵𝑛𝐵𝐁 = 𝐷𝐴𝜆𝐴∇2𝐀, (8)

𝜇𝜆
▿
𝐁 + 𝐁 −

𝑛𝐵
2
𝐈 + 2𝜖

(

𝑐𝐵𝑛𝐵𝐁 − 𝑐𝐴𝐀
)

= 𝜖𝐷𝐵𝜆𝐵∇2𝐁. (9)

ere 𝑛𝐴 and 𝑛𝐵 denote the dimensionless number densities for species
and B, respectively. The configuration tensors for species A and B

re denoted as 𝐀 and 𝐁. The interested reader may refer to Vasquez
t al. [18] for a detailed definition of the variables (𝑛𝐴, 𝑛𝐵 ,𝐀,𝐁) and

the derivation of the VCM model. The relaxation time for species A and
species B are given as 𝜆𝐴 and 𝜆𝐵 , and the stress diffusion coefficients
s 𝐷𝐴 and 𝐷𝐵 . The effective relaxation time of the fluid is given as 𝜆,

as in the previous models. The dimensionless breakage rate of the long
micelles is defined as 𝑐𝐴 = 𝑐𝐴,0 + 𝜇𝜆𝜉

3 (�̇�𝛾𝛾 ∶ 𝐀
𝑛𝐴

) and the dimensionless
eforming rate is defined as 𝑐𝐵 = 𝑐𝐵,0, where 𝑐𝐴,0 and 𝑐𝐵,0 are their
alues at equilibrium. We also define the ratios 𝜇 = 𝜆𝐴∕𝜆 = 1+ 𝑐𝐴,0 and
= 𝜆𝐵∕𝜆𝐴. Finally, the extra stress tensor is retrieved by the relation:

= 𝐺(𝐀 − 𝑛𝐴𝐈 + 2𝐁 − 𝑛𝐵𝐈). (10)

n this model, shear-banding arises because of the alignment of the
LMs and their flow-induced breakage [61]. Although there have been

ome refinements to the VCM model [79,80], we will stick to its initial
ersion, because it is the most popular choice in CFD simulations [54,
5,57]. The main advantage of the VCM model is that it is expected to
escribe, at least qualitatively, the physics related to the flow of WLMs
ecause it is derived from microstructural arguments. Its disadvantage
s the high computational cost related to its solution; one must solve
wo tensorial and two scalar equations to obtain the extra stress tensor.

. Fluid rheology

The various constitutive models described above are used to mimic a
hear-banding wormlike micellar solution composed of 100 mM CPyCl
nd 60 mM NaSal dissolved in deionized water. This is a well stud-
ed surfactant/counterion system known to form entangled wormlike
icelles [14,81].

The fluid has been characterized in prior literature in small ampli-
ude oscillatory shear (SAOS), simple shear, and steady planar exten-
ion [24,25,37,38,41]. The storage modulus, 𝐺′(𝜔), the loss modulus,
𝐺′′(𝜔), the steady shear stress, 𝜏𝑥𝑦(�̇�), and the steady first planar ex-
ensional viscosity, 𝜂𝑒(�̇�), are shown in Figs. 2–4. Note that 𝜔 is the

angular frequency in SAOS, �̇� is the shear rate in simple shear, and �̇� is
the extension rate at the stagnation point in planar extension.

The estimation of the material parameters of the constitutive models
is performed as follows. Initially, the relaxation spectrum of each model
is estimated from the SAOS experiment. The remaining nonlinear pa-
rameters of each model are next fitted simultaneously to the rheometric
flows (simple shear and steady planar extension). A description of the
nonlinear regression process is given by Varchanis et al. [69]. The
4

Table 1
Material parameters of the models.

Model JS GS TVE VCM

𝐺 [Pa] 33 33 33 33
𝜆 [s] 3 3 3 3
𝜂𝑠 [Pa s] 0.01 0.01 0.01 –
𝜆𝐵 – – – 0.00032
𝜁 0.97 – – –
𝛼 – 0.83 – –
𝑚 – – 2.16 –
𝑘1 [s−1] – – 0.0058 –
𝑘2 – – 0.0017 –
𝑐𝐴,0 – – – 1.78
𝑐𝐵,0 – – – 3.92
𝜉 – – – 0.35
𝐷 [m2 s−1] (10−11) (10−11) (10−11) (10−11)

material functions used for the determination of material parameters
are the storage and loss moduli, 𝐺′ and 𝐺′′, the steady shear stress,
𝜏𝑥𝑦(�̇�), and the steady first planar extensional viscosity, 𝜂𝑒(�̇�). The
djustable parameters are the relaxation spectrum, 𝐺, 𝜆, 𝜂𝑠 for JS, GS,

and TVE models and 𝐺, 𝜆,
√

2𝑐𝐴,0∕𝑐𝐵,0, 𝜆𝐵 for the VCM model, and each
model’s nonlinear parameters. The stress diffusion coefficient cannot
be estimated from the homogeneous rheometric experiments, and its
determination will be discussed at the end of this section. The values
of the material parameters that yielded the best curve fit are given in
Table 1.

3.1. Small amplitude oscillatory shear (SAOS)

In the linear regime, the JS, GS, and TVE models reduce to a single-
mode Maxwell model plus a viscous contribution in parallel. Thus, the
corresponding expressions of the storage and loss moduli are given as:

𝐺′ = 𝐺
(𝜆𝜔)2

1 + (𝜆𝜔)2
, (11)

′′ = 𝐺 𝜆𝜔
1 + (𝜆𝜔)2

+ 𝜂𝑠𝜔. (12)

The VCM model reduces to a double-mode Maxwell model, and the
corresponding expressions are [18]:

𝐺′ = 𝐺
(𝜆𝜔)2

1 + (𝜆𝜔)2
+ 𝐺

√

2𝑐𝐴,0
𝑐𝐵,0

(𝜆𝐵𝜔)2

1 + (𝜆𝐵𝜔)2
, (13)

𝐺′′ = 𝐺 𝜆𝜔
1 + (𝜆𝜔)2

+ 𝐺

√

2𝑐𝐴,0
𝑐𝐵,0

𝜆𝐵𝜔
1 + (𝜆𝐵𝜔)2

. (14)

In order to compare the models on equal basis, 𝐺 and 𝜆 are com-
on among all models. Note that 𝜂𝑠 (JS, GS, TVE) and the product

𝐺𝜆𝐵
√

2𝑐𝐴,0∕𝑐𝐵,0 (VCM) are restricted by the asymptotic value of the
shear viscosity, 𝜂𝑠ℎ = 𝜏𝑥𝑦∕�̇�, at the limit of very high shear rates in
simple shear. Thus, based on the high shear rate plateau (see Fig. 3(b)),
𝜂𝑠 and 𝐺𝜆𝐵

√

2𝑐𝐴,0∕𝑐𝐵,0 cannot attain values more than 0.01 Pa s. Fig. 2
presents the fittings of the storage and loss moduli to the experimental
data from [25]. Note that the value of 𝜆𝐵 is very small (see Table 1(b))
and the curves produced by JS, GS, and TVE models (Eqs. (11) and
(12)) and those by the VCM model (Eqs. (13)–(14)) collapse. As we
observe, all the models can capture the relaxation spectrum of this
WLM solution well, except for the upturn of 𝐺′′. This happens because
the values of 𝜂𝑠 and 𝐺𝜆𝐵

√

2𝑐𝐴,0∕𝑐𝐵,0 are restricted by the high shear
rate plateau in the flow curve (see Fig. 3). Nevertheless, the frequency
at which the upturn takes place is well captured by the models.

3.2. Simple shear

The velocity field of a WLM solution under simple shear flow is
assumed to obey the well-known kinematics, 𝐮 = (�̇�𝑦, 0, 0), while the
stress field is assumed to be homogeneous. These assumptions probably
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Fig. 2. Fittings of the storage and loss moduli (lines) to the experimental data
from [25] (symbols). Note that the value of 𝜆𝐵 used in the VCM model is very small
and the curves produced by JS, GS, and TVE models (Eqs. (11)–(12)) and those by the
VCM model (Eqs. (13)–(14)) collapse.

Fig. 3. (a) Shear stress versus shear rate. (b) Shear viscosity versus shear rate.
Comparison between experimental results [25] (symbols) and the predictions from the
four constitutive models (lines).
5

do not hold in the experiment because the flow is expected to be shear-
banded at the plateau region, and thus, non-homogeneous. However,
the homogeneous stress assumption will not affect the fit of the mod-
els; previous studies [62–64,82] have shown that even when spatial
distributions of the stresses are considered, the average value of the
shear stress in the gap always lies in between the limits defined by the
hysteresis in the homogeneous flow curve.

Fig. 3 presents the predictions of the models regarding the steady
shear stress and the steady shear viscosity (𝜂𝑠ℎ = 𝜏𝑥𝑦∕�̇�) versus the shear
rate (assuming flow homogeneity), superimposed to the experimental
data. First of all, we observe that the fluid is strongly shear-banding; the
stress plateau spans almost four decades in the logarithmic distribution
of the shear rate. The shape of the hysteresis in simple shear can pro-
vide valuable information regarding inhomogeneous flows. The larger
the difference between �̇�2 and �̇�1 (𝛥�̇� = �̇�2 − �̇�1, see Fig. 1), the sharper
the boundary layer on the velocity profile between two shear bands
in inhomogeneous flows will be. This happens because for a given
interface thickness, the shear rate difference will be larger, leading to
a higher velocity gradient, and a sharper boundary layer. Moreover,
a large difference between the maximum and minimum stress values
along the hysteresis (𝛥𝜏 = 𝜏𝑚𝑎𝑥 − 𝜏𝑚𝑖𝑛, see Fig. 1) promotes metastable
states, for which a metastable, unbanded flow can be maintained
indefinitely [83]. In Fig. 3, the JS model (black solid curve) predicts
huge 𝛥�̇� and 𝛥𝜏 along the hysteresis. Thus, we expect that the JS model
will predict a very sharp boundary layer in the velocity distributions
and promoted metastability, leading to abrupt transitions between
unbanded and banded flow configurations. Proceeding to the GS model
(blue dashed curve), we observe that 𝛥�̇� is smaller, while 𝛥𝜏 is barely
visible. This means that the velocity boundary layers will be milder and
the transitions from unbanded to banded flows smoother. The TVE and
VCM models (red dotted and green dashed curves, respectively) give
similar predictions, which exhibit smaller 𝛥�̇� and 𝛥𝜏 than the JS model
and larger than the GS model. Therefore, their inhomogeneous response
is expected to lie in between the JS and GS models, assuming that the
interface thickness is the same in all models.

3.3. Steady planar extension

Extensional flows are a very crucial part of the calibration process of
the constitutive models to experimental data. The fitting of the models
to extensional data provides the information on how the fluid behaves
under tension and complements the information obtained from the
fitting to the shear data. In the case of ideal steady planar extension,
the velocity field is given as 𝐮 = (�̇�𝑥,−�̇�𝑦, 0), while the stress field is
homogeneous.

Fig. 4 illustrates the comparison between the experimental data for
the steady first planar extensional viscosity and the predictions of each
model. It is well known [18,23] that WLM solutions exhibit extension
hardening at low extension rates (𝜆�̇� ≈ 0.5), followed by extension
thinning at higher extension rates. This is clearly illustrated in the
experimental data by Haward et al. [25]. The extensional viscosity
predicted by the JS model becomes infinite as 𝜆�̇� = 0.5 is approached,
and the model completely fails to describe the experimental data.
Although the addition of the stress diffusion term will remove the
singularity in non-homogeneous flows [67], the JS model will still
overpredict the extensional response of the solution. In contrast to the
JS model, the GS model underpredicts the extensional viscosity for the
whole range of �̇�. Proceeding to the TVE model, we observe that it
can predict the correct shape of the curve, but still underestimates the
extensional viscosity. Finally, the VCM model yields the best agreement
with the experimental data in steady planar extension.

Before proceeding to the next section, it is very important to
discuss the value that we chose for the stress diffusion coefficient,
𝐷. As we mentioned above, one cannot fit the value of 𝐷 to rheo-
metric data because the stress Laplacian term vanishes in homoge-
neous flows. Experimental studies regarding the value of the stress
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Fig. 4. First planar extensional viscosity versus extension rate. Comparison between
experimental results [25] (symbols) and the predictions from the four constitutive
models (lines).

diffusion coefficient in WLM solutions report values in the range
10−13 < 𝐷 < 10−8 m2 s−1 [84–87]. Some studies have also reported
that 𝐷 can depend on the shear rate [87] and on the lengthscale [85]
of the flow. However, in terms of CFD simulations, the main role of 𝐷
is to provide a smooth transition between the shear bands, removing
the discontinuity from the shear rate profiles, and to provide a unique
numerical solution. The thickness of the interface between the shear
bands is proportional to the quantity

√

𝐷𝜆 [68,88]. Thus, the value of
𝐷 should be large enough to guarantee a unique numerical solution, but
also small enough so that it does not affect the rheological properties
of the fluid, producing nonphysical diffusive effects in the constitutive
equation. A simple and efficient rule for choosing 𝐷 in numerical
simulations is given by Fielding and coworkers [89,90],

√

𝐷𝜆 ∼ 10−2𝐻 ,
where 𝐻 is the width of the flow channel. Based on the channels that
we are going to study, 𝐻 ∼ (10−4 m), and the relaxation time of the
fluid (𝜆 = 3 s), we find that 𝐷 ∼ (10−11 m2 𝑠−1); note that this value
of 𝐷 is consistent with the experimental measurements in similar WLM
solutions [84].

4. Modelling of non-homogeneous flows

4.1. Flow geometries

In the numerical simulations, we consider the 2D creeping flow of
a WLM solution in three geometries: (1) a planar straight channel, (2)
a cross-slot that is formed by the intersection of two planar channels,
and (3) a planar channel that contains a circular cylinder located mid-
way between the walls [see Fig. 5]. The fluid is incompressible with
constant density 𝜌, solvent viscosity 𝜂𝑠, polymeric viscosity 𝜂𝑝 = 𝐺𝜆,
and zero shear viscosity 𝜂0 = 𝜂𝑝 + 𝜂𝑠 at zero shear rate. The width of
the channel is denoted 𝐻 and the radius of the cylinder 𝑅. The length
of the channel in the Poiseuille flow is equal to 30𝐻 and the length
of the inflow and outflow channels in the cross-slot is equal to 10𝐻 .
In the case of the cylinder, the width of the channel is 𝐻 = 20𝑅 and
the total length of the channel is equal to 250𝑅. The average velocity
of the solution in each channel is denoted as 𝑈 . In the case of the
Poiseuille flow and the cross-slot we scale all lengths with the width
of the channel (𝐿 ≡ 𝐻), while in the case of the cylinder we scale all
lengths with the radius of the cylinder (𝐿 ≡ 𝑅). All velocities are scaled
with the average flow velocity 𝑈 , and all times with the characteristic
flow time 𝐿∕𝑈 . In addition, both the pressure and stress components
are scaled with the viscous scale, 𝜂 𝑈∕𝐿. The dimensionless groups that
6

0

arise are the Weissenberg number, 𝑊 𝑖 = 𝜆𝑈∕𝐿, the Newtonian solvent-
to-total viscosity ratio 𝛽 = 𝜂𝑠∕𝜂0, and the dimensionless diffusivity
𝐷𝑖 = 𝐷𝜆∕𝐻2. Based on the selection of the stress diffusion coefficient,
𝐷 (see Section 3), 𝐷𝑖 = 10−3 in all the flows that we present with the
GS, TVE and VCM models. In the simulations with the JS model we
used 𝐷𝑖 = 3 × 10−3, because we could not obtain numerically stable
solutions in the shear-banded regime with smaller values of 𝐷𝑖. Any
gravitational phenomena are neglected, due to the small lengthscale of
the flow cells.

4.2. Governing equations

The non-Newtonian flow is described by the incompressible and
isothermal Cauchy equations coupled with a constitutive equation,
which accounts for the contribution of the non-Newtonian stresses.
Neglecting inertia, the forms of the continuity, momentum, and con-
stitutive equations are expressed, respectively, as:

∇ ⋅ 𝐮 = 0, (15)

∇ ⋅
(

−𝑃 𝐈 + 𝜏𝜏𝜏 + 𝜂𝑠�̇�𝛾𝛾
)

= 𝟎, (16)

𝐠(𝜏𝜏𝜏,∇𝐮) = 𝟎, (17)

where 𝑃 is thermodynamic pressure and the operator 𝐠 corresponds to
any of the constitutive models presented in Section 2.

The no-slip and no-penetration boundary conditions (𝐮 = 𝟎) are
imposed on the channel walls and the cylinder surface. At the inflow
boundaries, we impose fully developed velocity and stress fields for
the JS, GS and TVE models. Regarding the VCM model, we impose
a plug velocity profile (𝐮 = [𝑈, 0]) and zero stresses (𝑛𝐴 = 1, 𝑛𝐵 =
√

2𝑐𝐴,0∕𝑐𝐵,0, 𝐀 = 𝐈, 𝐁 = 0.5
√

2𝑐𝐴,0∕𝑐𝐵,0𝐈) along the inflow bound-
aries; we employ this technique to avoid the specification of 𝑛𝐴 and
𝑛𝐵 via conservation integrals at the inflow boundaries. In order to
eliminate any additional numerical error that could arise due to the
truncation of the domain, the open boundary condition (OBC) [91] has
been applied along the outflow boundaries. According to the OBC, the
fluid velocities and stresses are not imposed at the outflow boundary
but are calculated from the weak form of the equations for both
velocity unknowns (extrapolated from the bulk). Finally, additional
boundary conditions are needed regarding the stress field, the structure
variable, and the dimensionless number densities at the walls of the
geometries; this happens because of the presence of the stress Lapla-
cian term in the constitutive equation. Although the correct type of
boundary conditions for the stress field is still under discussion [92],
we will adopt the simplest possible choice, viz, zero gradient for
the stresses, structure variable and dimensionless number densities
(𝐧 ⋅ ∇ 𝜏𝜏𝜏 = 𝟎, 𝐧 ⋅ ∇ 𝑠 = 0, 𝐧 ⋅ ∇ 𝑛𝐴,𝐵 = 0), where 𝐧 is the
unit normal vector on the fluid–solid interfaces.

4.3. Numerical method

The Petrov–Galerkin stabilized Finite Element Method for viscoelas-
tic flows (PEGAFEM-V), proposed by Varchanis et al. [93–95], is used
to solve the governing equations. The aforementioned finite element
(FE) method makes use of linear interpolants for all variables. The
variational formulation along with a detailed explanation of the FE
method is given by Varchanis et al. [95]. Note that we did not use
any transformation to enforce the positive definiteness of the confor-
mation tensor (e.g. log-conformation reformulation) because the stress
Laplacian term facilitates the simulations at high values of 𝑊 𝑖. In
all simulations, we use a structured mesh, composed by triangular
elements. A mesh convergence study is presented in Appendix B.

For a given set of flow parameters (𝑊 𝑖, 𝛽, and the remaining mate-
rial parameters of each model), we first perform transient simulations.
If a steady state is obtained by the transient simulation, then it is
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Fig. 5. Schematic of the flow geometries. (a) Planar channel flow. (b) Cross-slot flow. (c) Flow past a cylinder in a straight channel.
used as the initial guess for direct steady state simulations at the same
values of the flow parameters. In the direct steady state simulations,
the time derivatives in the governing equations (Eqs. (16)–(17)) are
neglected, and the 𝑊 𝑖 number is gradually altered; this process is called
parameter continuation. In order to trace the families of the steady
solution branches in the parametric space, we employ the pseudo-
arc-length continuation algorithm [96], as implemented in the FEM
framework by Varchanis et al. [97]. This handling enables efficient
tracking of pitchfork and saddle–node bifurcations in the parametric
space. Furthermore, using the bifurcation theory and the fact that the
parameter continuation starts from a steady state obtained by transient
simulations, we can determine whether a solution branch is stable or
unstable.

5. Shear flow

After evaluating in detail the predictions of each model in simple
rheometric flows, the next step is to test them in more complex prob-
lems of practical importance. In this section, we consider the steady
channel flow of the model WLM solution under the imposition of a
constant flow rate per unit depth, 𝑄 = 𝑈𝐻 (Fig. 5(a)). The width of the
channel is 𝐻 = 400 𝜇𝑚. This flow resembles a simple shear flow since
only shear deformations are experienced by the fluid, but in this case,
the velocity field is not provided externally; instead, it is calculated by
solving the mass and momentum balances along with the constitutive
model (Eqs. (15) and (17)). Another crucial difference between this
channel flow and simple shear flow is that the shear rate in the former
is not constant but exhibits a spatial variation. Thus, shear-banding can
arise, enabling us to evaluate the predictive capability of each model
by directly comparing their predictions with the experimental data by
Haward et al. [37].

Fig. 6 presents the predictions of each model for the velocity pro-
files, superimposed to the experimental ones (square symbols). The
experimental flow profiles were obtained by particle image velocimetry
(PIV) [37]. Two values of 𝑊 𝑖 are examined, both of which lead to
shear-banding and plug-like velocity profiles. Regarding the experi-
ment, the velocity profile features a finite curvature for the low flow
rate (𝑊 𝑖 = 2.1), with the maximum value of the dimensionless velocity
being equal to 𝑢𝑥,𝑚𝑎𝑥∕𝑈 ≈ 1.1. Almost perfect plug flow is observed at
higher flow rates (𝑊 𝑖 = 10.4), with the dimensionless velocity being
equal to 1 across the channel. The predictions by the JS, GS, and VCM
models match nicely with the experimental profiles velocity profiles for
both values of 𝑊 𝑖. All three of them predict plug-like flow and similar
high shear rate bands near the wall. As expected by the shape of the
7

Fig. 6. Gapwise distribution of the 𝑥-component of velocity in the channel for (a)
𝑊 𝑖 = 2.1 and (b) 𝑊 𝑖 = 10.4. Comparison between experimental results [37] (symbols)
and the predictions of each model.

hysteresis in simple shear (see Fig. 3), the GS model yields a smoother
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transition between the bands than JS and VCM. The TVE model does
not predict shear banded flow for 𝑊 𝑖 = 2.1 and the predicted velocity
distribution for 𝑊 𝑖 = 10.4 is smoother than the other models. These
observations are related to the stress diffusion term. Note that although
𝐷𝑖 is the same among GS, TVE, and VCM, this does not mean that it has
the same effect on the flow fields. The constitutive equations are highly
nonlinear and the presence of diffusive terms affects significantly the
interface thickness. For example, if we assign 𝐷𝑖 = 10−4 in the TVE
model, the predictions in the channel flow will match the experiment
(see Appendix C). However, in order to compare the models under
equal basis, we used 𝐷𝑖 = 10−3 in all models (except for the JS, where
we used 𝐷𝑖 = 3 ⋅ 10−3 because we could not solve it in mixed flows
when using 𝐷𝑖 = 10−3.

6. Extensional flow

The cross-slot extensional rheometer (CSER) device is designed to
generate planar extensional flow in a finite region around the stag-
nation point at the centre of the geometry (Fig. 5(b)). It is therefore
employed to probe the performance of the models under shear-free
deformations. The width of the channels is 𝐻 = 200 μm. It is well-
known that the flow field in the CSER remains symmetric only for low
values of the flow rate [24,25,30,98,99]. In this stable flow regime the
fluid displays a localized and elongated birefringent strand extending
along the outflow streamline from the stagnation point. Above a critical
value of the flow rate and for negligible inertial effects, the flow
bifurcates into a steady asymmetric state, where more fluid prefers
to pass from the one side of the stagnation point than the other.
The flow remains steady, but becomes increasingly asymmetric with
increasing flow rate, eventually achieving a steady state of complete
anti-symmetry characterized by a dividing streamline and birefringent
strand connecting diagonally opposite corners of the cross-slot. At even
higher flow rates, the flow becomes time-dependent. This pattern has
been observed both in polymer solutions and WLM solutions [24,25,
30,98,99]. The onset and evolution of this elastic instability can serve
as an additional benchmark test for the constitutive equations because
it can probe whether the constitutive models encapsulate the necessary
physics to predict these asymmetric flow states.

First, we present a qualitative comparison of the stress fields when
the flow is steady and symmetric. Fig. 7 illustrates a visual compar-
ison between the measured birefringence and predicted stress profiles
around the stagnation point for 𝑊 𝑖 = 0.3. The experimentally measured
birefringence (𝛥𝑛) is related to the numerically calculated principal
stress difference (𝛥𝜎) via the stress optical rule [101]:

𝛥𝑛 = 𝐶0𝛥𝜎 = 𝐶0

√

(𝜏𝑥𝑥 − 𝜏𝑦𝑦)2 + 4𝜏2𝑥𝑦, (18)

where 𝐶0 is called the stress-optical coefficient. The value of 𝐶0 for
this WLM solution has been determined by Ober et al. [100] to be
𝐶0 = −1.1 ⋅ 10−7 Pa−1. The best qualitative prediction is achieved by
GS model, because it is the only model that can reproduce the stretched
hexagonal shape of the high valued stress contours around the stagna-
tion point. The JS and the TVE models predict a diamond-like shape
which does not match well with the experiment. The stress contours
of the VCM model around the stagnation point exhibit a butterfly-like
shape and are not even qualitatively similar to the experimental ones.

To gain a deeper insight into the predictive capability of the models,
we proceed to a quantitative comparison of the predicted velocity
profiles with the experimental ones. Fig. 8 presents the distribution of
the dimensionless x-component of velocity (𝑢𝑥) versus 𝑥−coordinate at
the 𝑦 = 0 plane for (a) 𝑊 𝑖 = 0.15 and (b) for 𝑊 𝑖 = 0.25. Obviously, the
GS model makes a very good prediction for both flow rates, capturing
precisely the slope of the velocity at the stagnation point and the
overshoots for 𝑊 𝑖 = 0.25. The JS and TVE models underestimate
the slope of the velocity for both flow rates and cannot predict the
overshoots for 𝑊 𝑖 = 0.25. The VCM model captures the slope of the
velocity for 𝑊 𝑖 = 0.15 and predicts the overshoots for 𝑊 𝑖 = 0.25, but
8

Fig. 7. Contours of the dimensionless principal stress difference 𝛥𝜎𝐻∕𝜂0𝑈 for 𝑊 𝑖 = 0.3
as measured in the (a) experiment [24] and as predicted by the (b) JS, (c) GS, (d)
TVE, and (e) VCM models. The experimental 𝛥𝜎 has been calculated using Eq. (18)
and 𝐶0 = −1.1 ⋅ 10−7 Pa−1 [100]. The colour scale represents dimensionless principal
stress difference in the range 0–200 in (a), 0–50 in (b), 0–14 in (c), 0–39 in (d), and
0–14 in (e).

the extension rate is severely overestimated in the high flow rate case.
Based on the comparison with the experimental data, the GS model
makes the best prediction in the symmetric flow regime, followed by
the TVE, JS, and VCM models.

After having evaluated the performance of the models in the sym-
metric flow regime, we focus on the asymmetric flow regime. In or-
der to quantify the degree of flow asymmetry in the bifurcated flow
regime, we introduce the asymmetry parameter (𝐼), defined similarly
to previous authors [24,25,99]:

𝐼 =
𝑄1 −𝑄2
𝑄1 +𝑄2

, (19)

where 𝑄1 describes the amount of fluid that enters via one entry
channel and exits via one exit channel and 𝑄2 describes the amount
that enters via the same entry channel and exits via the opposite exit
channel (see Fig. 5(b)). For completely symmetric flow 𝐼 = 0 and for
completely asymmetric flow 𝐼 = ±1. Fig. 9(a) presents a comparison
between the predictions of each model and the experimental data
regarding the steady asymmetry parameter versus the 𝑊 𝑖 number. The
critical value of 𝑊 𝑖 at which the flow becomes asymmetric is denoted
as 𝑊 𝑖𝑐,1. The last symbol or point of each line in Fig. 9(a) corresponds
to the highest value of 𝑊 𝑖 for which we could obtain a steady state;
after that value (𝑊 𝑖𝑐,2) the flow becomes time-dependent. Fig. 9(b)-(e)
presents a qualitative comparison between the experimental results and
the predictions from the four constitutive models for 𝐼 = 0.4.

Starting from the JS model, we observe that it underestimates both
𝑊 𝑖𝑐,1 and 𝑊 𝑖𝑐,2. However, the shape of the curve predicted by the JS
model is qualitatively similar to the experiment and the maximum val-
ues of 𝐼 are relatively close. This underestimation of 𝑊 𝑖𝑐,1 is attributed
to the fact that the JS model predicts an unphysically high extensional
viscosity (see Fig. 4). In turn, this leads to an increased flow resistance
when compared to the experiment. Thus, the pitchfork bifurcation
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Fig. 8. Comparison the experimental [24] and predicted dimensionless x-component of
velocity versus 𝑥−coordinate at the 𝑦 = 0 plane for (a) 𝑊 𝑖 = 0.15 and (b) for 𝑊 𝑖 = 0.25.

arises at lower values of 𝑊 𝑖, ‘‘relieving’’ the high tensile stresses around
the stagnation point, and leading to shear dominated flow profiles and
a lower energy state [99]. The shape of the asymmetric birefringent
strand is smoother and less stretched than the one observed in the
experiment.

In contrast to the JS model, the GS model overestimates 𝑊 𝑖𝑐,1.
Nevertheless, the shape of the curve and the maximum values of 𝐼 are
again similar to those observed in the experiment. This overestimation
of 𝑊 𝑖𝑐,1 by the GS model can be explained again by the extensional
viscosity (see Fig. 4); the GS model predicts weaker extension-rate
hardening effects than those measured in the experimental WLM so-
lution, and thus, 𝑊 𝑖𝑐,1 is translated to higher values of 𝑊 𝑖. We also
have to mention that we did not find any time-dependent solutions up
to 𝑊 𝑖 = 2 using the GS model. Despite the overprediction of 𝑊 𝑖𝑐,1,
the GS model gives a very good qualitative agreement regarding the
contours of birefringence around the stagnation point, reproducing the
asymmetric stretched hexagonal shape.

Proceeding to the TVE model, we observe a very nice agreement
between the predicted and the experimental values of 𝑊 𝑖𝑐,1. Although
the onset of flow asymmetry is predicted at the correct value of the flow
rate and the evolution of the asymmetry parameter up to 𝑊 𝑖 ≈ 0.75 is
well captured by the model, we can see a clear mismatch regarding the
maximum value of 𝐼 . The TVE model predicts a 20% lower value of 𝐼
than the one observed in the experiment at high values of 𝑊 𝑖. Taking
under consideration that the fit of the TVE model to the extensional
9

Fig. 9. (a) Absolute value of the steady asymmetry parameter versus 𝑊 𝑖. Comparison
between experimental results [24] (symbols) and the predictions from the four
constitutive models (lines). The flow predicted by the VCM model becomes time
dependent at 𝑊 𝑖 ≈ 0.355. (b) Contours of the experimentally measured dimensionless
principal stress difference 𝛥𝜎𝐻∕𝜂0𝑈 for 𝑊 𝑖 = 0.8 and |𝐼| = 0.4 [24]. The experimental
𝛥𝜎 has been calculated using Eq. (18) and 𝐶0 = −1.1 ⋅ 10−7 Pa−1 [100]. Contours of
the dimensionless principal stress difference 𝛥𝜎𝐻∕𝜂0𝑈 for |𝐼| = 0.4 as predicted by the
(a) JS (𝑊 𝑖 = 0.33), (b) GS (𝑊 𝑖 = 1.48), and (c) TVE (𝑊 𝑖 = 0.56). The colour scale
represents dimensionless principal stress difference in the range 0–200 in (b), 0–50 in
(c), 0–14 in (d), and 0–14 in (e).

data (see Fig. 4) is quite good, and that shear thinning promotes
asymmetric states in the CSER [102], we relate this discrepancy to the
inability of the TVE model to describe the strong shear thinning effects
in non-homogeneous flows of this WLM solution (see Fig. 6). Moreover,
the TVE model cannot predict time-dependent flow profiles up to 𝑊 𝑖 =
2. The TVE model gives a better prediction than the JS model regarding
the distribution of the birefringence at the central region of the cross
slot, but still fails to capture the shape of the experimental contours.

Finally, the VCM model, fitted to the rheology of this WLM solution,
does not predict any steady asymmetric flow profiles. Instead, the
flow becomes time dependent at 𝑊 𝑖 ≈ 0.355 and a different type of
flow asymmetry is observed, which is completely different from the
one observed in the experiment. In this type of flow instability, the
stagnation point moves periodically on the plane 𝑦 = 0 and the flow
rates at the outflow arms alternate periodically in time. Fig. 10(a)
presents the outflow asymmetry parameter

𝐼𝐼 =
𝑄𝑙 −𝑄𝑟 , (20)

𝑄𝑙 +𝑄𝑟
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Fig. 10. Predictions of the VCM model in the CSER. (a) Outflow asymmetry parameter (𝐼𝐼) versus dimensionless time (𝑡𝑈∕𝐻) for 𝑊 𝑖 = 0.36. (b) Contours of the dimensionless
magnitude of the velocity |𝐮|∕𝑈 around the stagnation point with streamlines superimposed on them for 𝑊 𝑖 = 0.36 and 𝑡𝑈∕𝐻 = 1471. (c) Same as (a) but for 𝑊 𝑖 = 0.45. (d) Same
as (b) but for 𝑊 𝑖 = 0.45 and 𝑡𝑈∕𝐻 = 1095. See also Movies 1–2.
versus time, where 𝑄𝑙 and 𝑄𝑟 are the flow rates at the left and right
outflow arms, respectively. When the flow rates at both outflow arms
are equal, 𝐼𝐼 = 0, and when the fluid exits only from left(right) outflow
arm, 𝐼𝐼 = +1(−1). As we observe, the phenomenon is purely periodic,
featuring a distinct frequency. Moreover, Fig. 10(b) and Movie 1 depict
contours of the magnitude of the velocity |𝐮| around the stagnation
point with streamlines superimposed on them. A similar type of flow
instability has been observed by Haward et al. [103] in an optimized
cross slot geometry [104] and by Lanzaro et al. [105] in a 3D CSER,
but with dilute and semi-dilute polymer solutions, which have com-
pletely different rheological properties (mildly shear-thinning, strongly
extension-hardening) than the VCM model with this set of parameters
(extremely shear- and extension-thinning). For higher values of 𝑊 𝑖 we
observed a second type of periodic flow instability, as can be seen in
Figs. 10(c)–(d) and Movie 2. The flow is still periodic and the stagnation
point oscillates around the origin of axes on the plane 𝑦 = 0, but more
fluid prefers to exit from the left outflow arm than the right outflow
arm. This is mirrored on the value of 𝐼𝐼 , which attains a time averaged
value around 0.64. This flow configuration can be sustained because
the fluid is shear-banding; the flow in the left outflow arm is shear-
banded while the flow in the right outflow arm is parabolic. Thus, the
same value of the pressure can be sustained at the outflow boundaries.
We also did simulations where we imposed equal flow rates between
the two outflow boundaries, and observed the same type of instability,
with the maxima of the velocity alternating in each outflow arm.
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At first sight, one may think that our findings contradict a previous
work with the VCM model in the same cross-slot geometry [54], where
the authors reported steady asymmetric flow profiles, similar to those
observed with the experimental WLM solution [24,25]. However, the
authors in that study [54] assigned a set of parameters to the VCM
model (𝜇 = 2.6, 𝜖 = 0.005, 𝑐𝐴,0 = 1.6, 𝑐𝐵,0 = 0.8706, 𝜉 = 0.01 − 0.1)
without comparing to the experimental rheometric data of a real WLM
solution. Fig. 11 presents a comparison between the predictions of
the VCM model with the parameter set that we calculated by fitting
the VCM model to a shear-banding WLM solution (set1) and with the
parameter set assigned by Kalb et al. [54] (set2). We have also included
the predictions of the Upper Convected Maxwell (UCM) model. It seems
that the behaviour of the VCM model with set2 is identical to the UCM
fluid in simple shear up to 𝜆�̇� ≡ 𝑊 𝑖𝑠ℎ ≈ 10 and in planar extension
up to 𝜆�̇� ≡ 𝑊 𝑖𝑒𝑥 ≈ 0.5, explaining the observation of the steady
asymmetric flow profiles. The authors [54] conclude that the reported
steady asymmetric flow profiles are caused by the high extensibility of
the micelles and are suppressed by the scission of the micelles. We agree
with this statement and would like to add that when the instability
happens (𝑊 𝑖𝑐,1 = 0.44) using the VCM model with set2, the response
of the fluid is very close to a UCM fluid. Observing Fig. 11, some flow
curves, and extensional data for both non-shear-banding and shear-
banding WLM solutions [25], we can realize that the VCM model with
set2 does not represent a shear-banding WLM solution, but instead it
could represent a semi-dilute polymer solution. When Kalb et al. [54]
used the VCM model with set2 and 𝜉 = 0.1, which is somewhat closer
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Fig. 11. (a) Shear stress versus shear rate in simple shear for the VCM model with the
parameter set used in this study (set1), the parameter set used in [54] (set2), and for
the UCM model. (b) Tensile stress difference versus extension rate in planar extension
for the VCM model with the parameter set used in this study (set1), the parameter set
used in [54] (set2), and for the UCM model.

to a real WLM solution (less extension-rate hardening), they could not
find the steady asymmetric states. Additionally, when we use the VCM
model with a parameter set that describes a real shear-banding WLM
solution, the steady instability does not arise at all. Instead, we get
a different type of flow instability (Fig. 10) from that observed in
the experiment and predicted by the other three models. We believe
that this discrepancy in the VCM model is related to the extreme
extension-rate thinning that it predicts (Figs. 4, 11) when it is fitted
to a shear-banding WLM solution. In fact, the tensile stress difference
in extension becomes non-monotonic (Fig. 11(b)); this means that the
flow resistance decreases as we increase the flow rate in the CSER,
stong extensional stresses do not build up around the stagnation point,
and the steady asymmetric instability is suppressed. This argument is
in line with the findings of Kordalis et al. [106] who reported that they
could not find the steady asymmetry in the CSER with elasto-visco-
plastic fluids that do not exhibit extension-rate hardening. In the same
trend, Cromer et al. [58] performed filament stretching simulations
with the VCM model and a parameter set that corresponds to a shear
banding WLM solution and reported the absence of an elastocapillary
thinning regime. Instead, they observed an elastic rupture of the fil-
ament, which was attributed to the breakage of the micelles and the
pronounced extensional thinning response. Furthermore, the onset of
11
periodic elastic instabilities was recently linked with strong extension-
rate thinning effects [107], something that could also apply in the
present case with the VCM model. At this point we have to mention
that the Germann–Cook–Beris (GCB) variant [80] of the VCM model
suffers from the same problem: it cannot predict shear-banding without
also predicting a strongly non-monotonic tensile stress difference in
extension. A possible solution could be to adopt a different expression
for the breakage rate of species A that would resolve this problem, but
this is a separate project that could be addressed in a future study.

One may wonder why the TVE model is so much better than the
VCM model at predicting the flow in the CSER, despite the extensional
flow curves (see Fig. 4) being rather similar. This happens because
the TVE predicts strong overshoots in the startup extensional viscosity,
which can enhance flow resistance and trigger the flow asymmetry. A
detailed explanation is given in Appendix D.

To conclude with this section we find that the GS model yields the
best prediction in the symmetric flow regime, followed by the TVE, JS,
and VCM models. In the asymmetric regime, the TVE model performs
best, followed by the JS and GS models. Only the JS model can predict
the transition to the time-dependent regime. The VCM model cannot
predict the steady asymmetric flow regime.

7. Mixed flow

After investigating the behaviour of the models in shear and ex-
tensional flows, we now examine the case where a combination of
both shearing and extensional deformations influence the rheological
properties of the micelles in the fluid. In analogy to the benchmark
experiment of the flow around a sphere, we employ a microfluidic
cylinder [37]. The flow past a cylinder generates strong compressional
and extensional kinematics upstream and downstream of the cylin-
der, respectively, with strong shearing flow around the sides of the
cylinder. The most important geometrical characteristic of the flow
past a cylinder in a channel is the blockage ratio 𝐵𝑅 = 2𝑅∕𝐻 . The
flow in microchannels with high 𝐵𝑅 resembles a constriction flow,
because it is dominated by compressional deformations around the
upstream stagnation point of the cylinder. At the other limit, the flow in
microchannels with low 𝐵𝑅 is dominated by extensional deformations
and long residence times around the downstream stagnation point of
the cylinder. The effect of the blockage ratio on the flow kinematics can
also be related to two different types of elastic instabilities that have
been observed in creeping flows of WLM solutions around microfluidic
cylinders: (1) the onset of time dependent flow, accompanied by up-
stream vortices in channels with high blockage ratio [36], and (2) the
onset of characteristic steady flow asymmetry, with more fluid choosing
to pass from the one side of the cylinder, in channels with low blockage
ratio [37]. Note that the second type of elastic instability has also been
observed in polymer solutions and has been related to the interplay
of elasticity and shear-thinning [108–110]. In this study we will focus
on the later case, and more specifically, we will test the constitutive
models in a microfluidic cylinder device with 𝐵𝑅 = 0.1. The dimensions
of the microchannel are 𝐻 = 400 𝜇𝑚 and 𝑅 = 20 𝜇𝑚.

First, we present a visual comparison of the velocity fields when
the flow is steady and symmetric. Fig. 12 illustrates a qualitative com-
parison between the measured and predicted velocity profiles around
the cylinder for 𝑊 𝑖 = 3.75. The experimental velocity profiles were
measured using particle image velocimetry (PIV). For the comparison
with the experimental data, we had to normalize the calculated veloc-
ities with the maximum value of the velocity magnitude |𝐮|𝑚𝑎𝑥, which
is different for each model (|𝐮|𝑚𝑎𝑥,𝐽𝑆∕𝑈 = 1.579, |𝐮|𝑚𝑎𝑥,𝐺𝑆∕𝑈 = 1.358,
|𝐮|𝑚𝑎𝑥,𝑇 𝑉 𝐸∕𝑈 = 1.627). The GS model makes the best prediction in the
steady and symmetric flow regime; it is the only model that can predict
correctly the shape of the low-velocity contours around the cylinder
and also downstream of the cylinder. The JS and the TVE models
cannot capture these trends, yielding qualitatively different velocity
contours, especially at the low-velocity region close to the cylinder.
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Fig. 12. Contours of the dimensionless velocity magnitude 𝑈𝑚 = |𝐮|∕|𝐮|𝑚𝑎𝑥 for 𝑊 𝑖 =
3.75. (a) Experiment [37], (b) JS, (c) GS, (d) TVE. The VCM model does not predict a
steady state for 𝑊 𝑖 = 3.75.

We do not present contours for the VCM model because it does not
predict a steady state; instead, it predicts a transient flow state for
𝑊 𝑖 = 3.75 (Movie 3). Subsequently, we proceed to a quantitative
comparison of the flow profiles for 𝑊 𝑖 = 3.75. Fig. 13 presents a
quantitative comparison of the scaled 𝑥−component of the velocity at
the sides of the cylinder (𝑥 = 0) versus the 𝑦−coordinate. As expected
by the qualitative comparison, the prediction by the GS models is
closer to the experimental data; it can predict very nicely the velocity
profile close to the cylinder, but fails to describe the plug-like velocity
profile near the walls. However, this is equally likely to be a failure
of the PIV experiment; in PIV measurements it is very difficult to
resolve very close to the boundaries. The JS and the TVE models yield
similar parabolic-like velocity distributions, with the former predicting
a sharper boundary layer in the velocity close to the cylinder. Once
again, the GS model performs best in the symmetric flow regime.

Finally, we proceed to the last benchmark test for the constitutive
models: the capability to predict the elastic instability in the flow past
a cylinder in a channel. As shown by Haward et al. using the present
model WLM solution [37], this instability, which is steady in time over
a range of 𝑊 𝑖 > 𝑊 𝑖𝑐,1, is characterized by the preferential passage
of fluid around one side of the cylinder (i.e., a lateral asymmetry of
the flow field). Moreover, it has been proven to be a supercritical
pitchfork bifurcation with a random selection of the preferred side
of passage [108,109]. In some cases, the degree of asymmetry is so
extreme that all the fluid is observed to pass on only one side of the
cylinder, with a region of stagnant fluid developing on the opposite
side. As in the CSER, the flow becomes time dependent at higher values
of 𝑊 𝑖 > 𝑊 𝑖𝑐,2. The asymmetry parameter (𝐼∗) will be employed to
quantify the flow asymmetry in the microchannel:

𝐼∗ =
𝑢𝑥|𝑥=0,𝑦∕𝑅=5.5 − 𝑢𝑥|𝑥=0,𝑦∕𝑅=−5.5 , (21)
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𝑢𝑥|𝑥=0,𝑦∕𝑅=5.5 + 𝑢𝑥|𝑥=0,𝑦∕𝑅=−5.5
Fig. 13. Distribution of the dimensionless 𝑥−component of the velocity at the sides of
the cylinder (𝑥 = 0) versus the 𝑦−coordinate for 𝑊 𝑖 = 3.75. (a) Experiment [37], (b)
JS, (c) GS, (d) TVE. The VCM model does not predict a steady state for 𝑊 𝑖 = 3.75.

which compares the values of the streamwise velocities at each side of
the cylinder, calculated at the mid-distance between the cylinder and
the walls of the channels.

Fig. 14 illustrates the exact same pattern observed in the CSER. The
JS and GS models predict the correct shape of the curve but under-
estimate and overestimate 𝑊 𝑖𝑐,1, respectively. The TVE model makes
the best prediction regarding 𝑊 𝑖𝑐,1 but underestimates the degree of
flow asymmetry at higher values of 𝑊 𝑖. The GS model achieves the
best qualitative match of the dimensionless magnitude of velocity (see
Figs. 14(b)–(d)). The VCM model does not predict steady asymmetric
profiles; instead, the flow becomes time dependent at 𝑊 𝑖 ≈ 2.1, the
flow variables vary periodically in time, the stresses pulsate at the wake
of the cylinder, but the flow field remains laterally symmetric (see
Movie 3). Note that Khan and Sasmal [56] have found this instability
using the VCM model, but they were using the same set of parameters
as Kalb et al. [54], which does not correspond to a real shear-banding
WLM solution (see Fig. 11 and Section 6). Keeping in mind that both
extension-rate hardening and shear-thinning promote the asymmetric
flow states [108–110], these observations can be justified by the same
arguments that we used in the CSER. The JS model is extremely strain-
hardening, triggering the instability at very low values of 𝑊 𝑖. The
TVE model is more extension-hardening than the GS model, thus, the
instability arises at lower values of 𝑊 𝑖. However, the fact that the TVE
model is less shear-thinning than the GS model leads to a smoother
evolution of 𝐼 versus 𝑊 𝑖. Ultimately, the breakage of the micelles,
predicted by the VCM model, prevents stretch and the development of
strong tensile stresses, thus, suppressing the instability.

To sum up with the flow past a cylinder in a channel, we find that
the GS model yields the best prediction in the symmetric flow regime,
followed by the TVE, JS, and VCM models. In the asymmetric regime,
the TVE model performs best, followed by the JS and GS models. The
VCM model predicts time dependent flow profiles at very low values of
𝑊 𝑖 and cannot predict the steady asymmetric flow regime.

8. Summary and conclusions

We investigated the performance of four constitutive models for
shear-banding WLM solutions by directly comparing their predictions
with existing experimental data. All the models were first calibrated
to a strongly shear-banding WLM solution, under SAOS, simple shear
and steady planar elongation. The conclusions of our analysis may be
summarized as follows:
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Fig. 14. (a) Absolute value of the steady asymmetry parameter versus 𝑊 𝑖. Comparison
between experimental results [37] (symbols) and each model’s predictions (lines). The
flow predicted by the VCM model becomes time dependent at 𝑊 𝑖 ≈ 2.1. (b) Contours
of the experimental dimensionless velocity magnitude 𝑈𝑚 = |𝐮|∕|𝐮|𝑚𝑎𝑥 for 𝑊 𝑖 = 93.8
and |𝐼∗

| = 0.72 [37]. Contours of the dimensionless velocity magnitude 𝑈𝑚 = |𝐮|∕|𝐮|𝑚𝑎𝑥
for |𝐼∗

| = 0.72 as predicted by the (a) JS (𝑊 𝑖 = 10), (b) GS (𝑊 𝑖 = 410), and (c) TVE
(𝑊 𝑖 = 211).

• The JS, GS, and VCM models yielded quantitative agreement re-
garding the shear-banded velocity profiles in the planar Poiseuille
flow. The TVE model did not capture correctly the plug-like flow
profiles.

• In the extension-dominated flow in the CSER, we found that the
GS and TVE models yielded the best predictions in the symmetric
and asymmetric regimes, respectively. The JS model made only
qualitative predictions in the CSER. The VCM model did not
predict the correct flow profiles when it was adjusted to the
rheology of the model WLM solution; one could find a set of
parameters for the VCM that would yield steady asymmetric flow
profiles in the CSER, but these parameters would not correspond
to the rheological fingerprint of shear-banding WLM solutions.
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• The models displayed the same trends in the flow past a cylinder
in a channel: the GS and TVE models gave the best description
of the symmetric and asymmetric flow regimes, respectively. The
JS model provided only qualitative predictions of the flow. The
VCM model did not agree with the experimental data, predicting
a different type of elastic instability, which has not been observed
in experiments with WLM solutions.

• Regarding numerical stability, we encountered divergence of the
numerical scheme only when the JS model was predicting time-
dependent solutions.

Based on the overall performance of the models and also account-
ing for the factor of simplicity, our results point to the GS model
as the current best candidate for CFD simulations of shear-banding
WLM solutions. However, the GS model cannot provide a complete
picture of the microscopic and mesoscopic physics of WLMs. On the
other hand, the VCM model encapsulates realistic physical mechanisms
but these seem to apply only in shear flows. The VCM model makes
correct predictions in rheometric (where the flow field is imposed)
and inhomogeneous purely shear flows but fails to predict the correct
trends in mixed flows, where the flow interacts with the material
properties. Based on our analysis, this happens because the VCM model
underpredicts extension hardening effects. A possible explanation could
be that the rate of micelle breakage is different in shear and extension.
Current models assume that the micelle breakage ratio is proportional
to a scalar quantity, namely the double dot product of the stress and
deformation rate tensors. A model that would incorporate a micelle
breakage ratio that depends also on the flow type and direction (some-
thing proportional to kinematic hardening) could potentially solve this
problem. However, new experiments and molecular or mesoscopic
simulations are necessary to validate this assumption. We must note
that recent population balance-based constitutive equations do not
predict non-monotone extension curves [48]. To conclude, the reported
quantitative mismatch between the models and the experiment stresses
the necessity for adjustments in existing models, or the derivation of
new ones, which will be capable of predicting more accurately the
rheological response of shear-banding WLM solutions.
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Table B.2
Main characteristics of the meshes used in the CSER.

Mesh Element size ℎ𝑒∕𝐻 No. of triangles No. of nodes

M1 0.014 41200 20857
M2 0.007 166400 83817
M3 0.0035 668800 335437

Appendix A. Modified Bautista–Manero (MBM) model

The set of equations, expressed in terms of the conformation tensor,
are given as:
▿
𝐂 + 𝐺𝜙(𝐂 − 𝐈) = 0, (A.1)

𝐷𝜙
𝐷𝑡

= ( 1
𝐺𝜆2

−
𝜙
𝜆
) − 𝑘0(1 + 𝜇|�̇�|)(𝜙 − 𝜙∞)(�̇�𝛾𝛾 ∶ 𝐂), (A.2)

where 𝜙 is the fluidity parameter and 𝑘0, 𝜇, and 𝜙∞ are adjustable
parameters of the model [74].

Appendix B. Mesh convergence study

Fig. B.15 illustrates the effect of mesh refinement (a) on the fully
developed velocity profile at the lower inflow arm (𝑦∕𝐻 = −0.5) and (b)

Fig. B.15. The effect of mesh refinement on (a) the fully developed velocity profile at
the lower inflow arm and (b) the asymmetry parameter for the GS fluid in the CSER.
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on the asymmetry parameter (|𝐼|) for the GS fluid (see Table 1) in the
CSER. The mesh convergence test was performed by solving the flow
in three different meshes, whose characteristics are given in Table B.2.
M2 and M3 are generated by sequentially doubling the elements of M1
in each direction. Mesh M2 was used in all simulations in the CSER.

Fig. C.16. Predictions of the TVE model in the channel flows for different values of
𝐷𝑖.

Fig. D.17. Comparison of the homogeneous extension curves and the tensile stress
difference versus the extension rate, measured from the 2D simulations in the CSER,
for the TVE and VCM models.
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Fig. D.18. (a) Streamline located close to the stagnation point, superimposed to
contours of 𝜕𝑢𝑥∕𝜕𝑥 for creeping Newtonian flow. (b) Extension rate as a function of
the arclength, d, along the streamline.

A mesh convergence study for the flow past a cylinder in a straight
channel can be found in [109]. Here, we used a mesh with element
size ℎ𝑒∕𝑅 = 0.007 on the cylinder surface and the walls of the channel
for all the simulations in Section 7.

Appendix C. TVE model predictions in channel flow with 𝑫𝒊 =
𝟏𝟎−𝟒

The TVE model does not predict shear banded flow for 𝑊 𝑖 = 2.1
and the predicted velocity distribution for 𝑊 𝑖 = 10.4 is smoother
than the rest of the models. These observations are related to the
stress diffusion term. Note that although 𝐷𝑖 is the same among GS,
TVE, and VCM, this does not mean that it has the same effect on the
flow fields. The constitutive equations are highly nonlinear and the
presence of diffusive terms affects significantly the interface thickness.
For example, if we assign 𝐷𝑖 = 10−4 in the TVE model, the predictions
in the channel flow will match the experiment (see Fig. C.16). However,
in order to compare the models under equal basis, we used 𝐷𝑖 = 10−3
15
Fig. D.19. Tensile stress difference versus time for startup of homogeneous planar
extension.

in all models (except for the JS, where we used 𝐷𝑖 = 3 ⋅ 10−3 because
we could not solve it in mixed flows when using 𝐷𝑖 = 10−3).

Appendix D. Difference between TVE and VCM models in the CSER

Fig. D.17 compares the homogeneous extension curves and the
tensile stress difference versus the extension rate, measured from the
2D simulations in the CSER, for the TVE and VCM models. Note that
the curves from the CSER stop when the flow becomes asymmetric.
Regarding the VCM model, a good agreement is reached between
the homogeneous extension curve and the measurements from the
CSER. As explained in the manuscript, this extension thinning re-
sponse suppresses the asymmetry and instead leads to time-dependent
flow. However, we observe a striking difference between the curves
in the case of the TVE model. The measurement from the CSER re-
veals a strong strain-hardening response that can justify the onset of
asymmetry but does not match the homogeneous curve.

To understand why this happens, we must follow the path of a fluid
parcel that enters the CSER and flows very close to the stagnation point,
as seen in Fig. D.18(a). While the parcel flows in the arm of the CSER,
it experiences negligible shear rates because it is located close to the
symmetry plane, where the shear rate is zero. As the parcel approaches
the stagnation point, it feels an increase in the extension rate. The
experienced extension rate maximizes next to the stagnation point and
decreases to zero as the parcel heads to the exit of the outflow arm.
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Fig. D.20. Tensile stress difference versus time for homogeneous planar extension,
imposing a triangular step in the extension rate for the TVE and VCM models.

Fig. D.18(b) quantifies this effect by plotting the extension rate as a
function of the arclength along the streamline.

The flow is steady in the Eulerian description but is always transient
in the Lagrangian description. Consequently, startup planar extension
(followed by cessation) is the most relevant material function to the
deformation history of the fluid parcel. Fig. D.19 plots the startup
tensile stress differences for the TVE and VCM models at different
extension rates. The TVE model predicts strong overshoots in the tensile
stresses that are not predicted by the VCM model at these extension
rates. This causes the difference between the homogeneous extension
curves and those measured in the CSER, and is what extension curves
and triggers the flow asymmetry.

To further verify our explanation, we solved the TVE and VCM
models in homogeneous planar extension, imposing a triangular step
in the extension rate for various extension rates (Fig. D.20). For low
extension rates, both models predict the same response. However,
at higher extension rates, the TVE model predicts strong extension-
hardening which is caused by the overshoots discussed above. The
same happens around the downstream stagnation point in the flow
past the cylinder. To conclude with this matter, we have shown that
extension-hardening in the TVE model comes from the overshoots
in the extensional response and the asymmetric flow states can be
predicted.
16
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