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ABSTRACT. The rapid growth of sequence databases over the past two decades means that 

protein engineers faced with optimizing a protein for any given task will often have immediate 

access to a vast number of related protein sequences. These sequences encode information about 

the evolutionary history of the protein and the underlying sequence requirements to produce 

folded, stable, and functional protein variants. Methods that can take advantage of this information 

are an increasingly important part of the protein engineering toolkit. In this perspective, we discuss 

the utility of sequence data in protein engineering and design, focusing on recent advances in three 

main areas: the use of ancestral sequence reconstruction as an engineering tool to generate 

thermostable and multifunctional proteins, the use of sequence data to guide engineering of 

multipoint mutants by structure-based computational protein design, and the use of unlabeled 

sequence data for unsupervised and semi-supervised machine learning, allowing the generation of 

diverse and functional protein sequences in unexplored regions of sequence space. Altogether, 

these methods enable the rapid exploration of sequence space within regions enriched with 
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functional proteins and therefore have great potential for accelerating the engineering of stable, 

functional, and diverse proteins for industrial and biomedical applications. 

Introduction 

Proteins have a broad range of medical, industrial, and scientific applications, but often need to 

be subjected to protein engineering to alter their function or optimize properties such as 

thermostability, catalytic activity, solubility or stereoselectivity before these applications can be 

fully realized. In most cases, this is achieved using rational design or directed evolution, an 

iterative process of random or semi-random mutagenesis followed by screening or selection to 

identify protein variants of high fitness (i.e., those that display the properties desired by the protein 

engineer). Although these strategies can be highly effective, they are generally limited to 

consideration of sequences very similar to the initial protein sequence1, because >30% of 

mutations have a negative impact on protein stability and function2–4, and simultaneous 

introduction of multiple random mutations often results in loss of function2,4,5. On the other hand, 

any method for protein engineering or design that attempts to explore regions of sequence space 

more distant from natural sequences, seeking larger or faster improvements in protein fitness, 

needs to contend with the vastness and emptiness of sequence space: there are an incomprehensibly 

large number of possible protein sequences (for example, ~10130 for a protein 100 amino acids in 

length), yet a miniscule fraction of them exhibit any given function6,7. Optimization of protein 

fitness by exhaustive exploration of sequence space, either experimentally or computationally, is 

unfeasible; complete randomization of even 10 amino acids would result in a theoretical library 

size (>1013) unattainable by most methods8. Thus, any more extensive exploration of the sequence 
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space surrounding a natural protein than can be achieved by directed evolution requires us to 

consider substitutions that can be predicted in advance to be advantageous or at least neutral. 

 

A useful source of information that can be used to guide the exploration of sequence space 

towards functional proteins is the data readily available from protein sequence databases. The 

UniProt Knowledgebase currently contains ~219 million non-redundant protein sequences 

(2021_03 release) and is continuing to experience rapid growth, driven mainly by large-scale 

eukaryotic genome sequencing projects and improved methods for metagenome assembly9. 

Although most of these sequences are not experimentally characterized, we can generally assume 

that they have experienced natural selection to maintain some kind of structure and function 

(ignoring complications such as pseudogenization, intrinsically disordered proteins, and 

sequencing errors), and can often make a reasonable prediction about their molecular function. It 

is usually possible to obtain a large and diverse set of homologous sequences (up to ~106) for any 

given protein through a simple search of protein sequence databases using tools like BLAST10 or 

HMMER11; for example, ~54% of protein families defined by the Pfam database12 (version 3.40) 

are represented by more than 500 sequences. These sequences contain valuable information about 

the evolutionary history of the protein family and the underlying sequence requirements to produce 

folded, stable, and functional proteins, such as conservation of catalytic residues and 

interdependencies between residues. Protein engineers have been taking advantage of this 

information for decades, for example, to guide the selection of consensus mutations that improve 

protein thermostability13,14 or mutations that interconvert the catalytic or binding specificities of 

two homologous proteins15,16. More recently, however, new strategies for protein engineering and 

design have been developed that take greater advantage of the vast quantity of sequence data now 
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available, allowing us to extract more information about sequence-function relationships from raw 

sequence data, explore regions of sequence space increasingly distant from natural proteins, and 

witness larger improvements in protein properties with less experimental effort. 

 

In this perspective, we discuss recent advances in three main categories of protein engineering 

and design methods where sequence data can be usefully incorporated: (i) methods based on 

phylogenetic analysis, including consensus design and ancestral sequence reconstruction (ASR), 

(ii) structure-based computational protein design, and (iii) machine learning. Recent work has 

established techniques such as ASR and sequence-guided structure-based design as reliable tools 

for generating thermostable and functionally diverse proteins that can be useful starting points for 

further engineering, and has demonstrated the enormous potential of machine learning in designing 

functional and highly diverse proteins from unexplored regions of sequence space. We limit our 

discussion of each method to approaches that incorporate data from sequence databases, and invite 

the interested reader to consult other recent reviews for broader discussions of structure-based 

design17, machine learning18,19, and data-driven protein engineering1,20–22, as well as applications 

of sequence data in genome mining and enzyme discovery23. 

 

Phylogenetic methods: consensus design and ancestral sequence reconstruction 

Consensus design is perhaps one of the oldest sequence-based approaches for protein 

engineering13,14, but remains an effective and straightforward method for engineering protein 

thermostability24. In this method, a multiple sequence alignment of homologous sequences from a 

particular protein family is constructed, and the most frequent (consensus) amino acid at each 

position is identified (Fig. 1). Deviations from the consensus sequence in any given protein are 
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considered to be, on average, destabilizing. Thus, protein variants with improved thermostability 

can be obtained through amino acid substitutions that restore the consensus amino acid at each 

position; these substitutions can be introduced individually into a single protein14, incorporated 

into libraries for directed evolution25, or combined to create a full-length consensus sequence26. 

Although there are numerous recent examples where consensus design has been used successfully 

to increase protein thermostability27–31, the method suffers from sensitivity to phylogenetic bias 

caused by inclusion of closely related sequences in the analysis, and does not account for amino 

acid covariation at different positions in the multiple sequence alignment24. Recent work has 

continued to refine, generalize, and systematically validate the consensus design methodology31–

34; for example, using a standardized workflow with very large sequence datasets (1,355 to 14,474 

sequences), Sternke et al. applied consensus design to six structurally and functionally diverse 

protein families and achieved increased thermostability over naturally occurring homologs 

(including those from thermophilic organisms) in four out of six cases31. Nonetheless, when 

proteins obtained by consensus design and ASR using the same multiple sequence alignment have 

been compared side-by-side, proteins obtained by ASR have usually shown higher 

thermostability35–37, although there are exceptions38. 

 

 

Figure 1. Consensus design and ancestral sequence reconstruction. Both methods use a 

multiple sequence alignment of sequences homologous to the protein of interest. The consensus 
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sequence is identified by calculating the most frequent amino acid at each position, while ancestral 

sequences at each node in a phylogenetic tree are inferred using a statistical phylogenetic analysis 

based on a multiple sequence alignment and a statistical model of sequence evolution. 

 

Ancestral sequence reconstruction (ASR) is another technique based on multiple sequence 

alignment of homologous sequences that is becoming widely used for protein engineering, 

particularly to improve protein thermostability39,40. This method uses maximum likelihood or 

Bayesian methods for statistical phylogenetic analysis to reconstruct plausible sequences of the 

extinct ancestors of a modern protein family, based on a multiple sequence alignment and 

phylogenetic tree of the modern proteins and a statistical model of sequence evolution39 (Fig. 1). 

The use of ASR in protein engineering was originally motivated by early studies that used this 

technique to reconstruct ancient proteins from extinct organisms (up to ~3.5 billion years old), in 

order to experimentally measure their thermostability and thereby infer trends in thermophilicity 

and environmental temperatures over geological timescales37,41–44. These studies showed that 

reconstructed ancient proteins had consistently higher thermostability (up to 40 °C) than their 

modern descendants from mesophilic organisms, which was interpreted as evidence that they 

originated from thermophilic organisms that lived in comparatively hot environments. At the same 

time, these studies established ASR as a reliable method for generating thermostable proteins 

based solely on sequence data, suggesting a possible application of this technique in protein 

engineering. 

 

ASR has now been successfully applied to a variety of protein families to engineer remarkably 

thermostable biocatalysts45–52, biopharmaceuticals53–55 and research tools56–58, including 
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carboxylic acid reductases (Tm up to 35 °C higher than characterized extant proteins)49, amino 

acid-binding proteins (30 °C)56, ketol-acid reductoisomerases (30 °C)46, haloalkane dehalogenases 

(24 °C)48,59, and diterpene cyclases (13 °C)47. Surprisingly, major improvements in thermostability 

have been observed even when reconstructing more evolutionarily recent proteins that are not 

predicted to have originated from thermophilic organisms46,57,60; for example, reconstructed 

cytochrome P450 enzymes and flavin-containing monooxygenases putatively derived from 

ancestral vertebrates showed Tm values up to 30 °C and 22 °C higher than extant homologs, 

respectively46,57. Although the origin of stabilizing mutations in such cases is not entirely 

understood, systematic biases in the commonly used maximum likelihood method for ASR may 

be partly responsible60–62; for example, sequence similarity between ancestral and consensus 

sequences based on the same sequence dataset has suggested a bias of ASR towards the consensus 

sequence at ambiguously reconstructed positions25,60, although this bias cannot fully explain the 

higher stability of ancestral proteins compared with extant proteins35,36. There is a need to better 

understand the source of stabilizing mutations in reconstructed ancestral sequences to predict 

which protein families will be amenable to ASR as a method to engineer thermostability and to 

guide the choice of ancestral nodes for experimental characterization; nonetheless, the examples 

listed above provide empirical evidence that ASR can be used to substantially increase protein 

thermostability when applied to a dataset of sufficient sequence diversity, even if the resulting 

ancestral sequences are not evolutionarily ancient (<300 million years old). 

 

When applied to functionally diverse protein families, ASR can also be used to engineer proteins 

that are more promiscuous or multifunctional than modern proteins43,47,48,50–52,59,63,64, which may 

be particularly useful for biocatalysis or to create evolvable starting points for further 
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engineering65. This application of ASR is motivated by the hypothesis that there is a general trend 

from functional promiscuity to functional specificity in protein families over evolutionary time, 

based, for example, on the observation that functionally diverse protein families often originate 

from subfunctionalization of a promiscuous or multifunctional ancestral protein66. Although the 

evidence for this hypothesis is not conclusive61,67, it is nonetheless true that ASR has been used 

successfully to engineer proteins with broader specificity that have useful applications. For 

example, Nakano et al. reconstructed an ancestral L-amino acid oxidase with broad specificity for 

L-amino acids starting from an extant enzyme specific for L-arginine and L-lysine. This enzyme 

showed oxidase activity on 13 proteinogenic L-amino acids and various non-proteinogenic L-

amino acids, enabling production of a wide range of enantiopure D-amino acids52,68. 

 

The main obstacle to the use of ASR as a protein engineering tool is perhaps the need for 

extensive manual curation of the sequence dataset and multiple sequence alignment used for 

phylogenetic tree inference and reconstruction of ancestral sequences. In particular, the quality of 

the multiple sequence alignment is critical for the accuracy of the reconstruction, and erroneous 

gaps in the alignment may lead to artefactual insertions in the ancestral proteins69–71. 

Computational tools specifically targeted towards protein engineers may be useful for increasing 

the accessibility of ASR as a protein engineering tool, in which case the careful treatment of 

statistical robustness necessary to draw evolutionary conclusions from reconstructed ancestral 

proteins72 is not strictly required. For example, the FireProtASR tool fully automates the ASR 

workflow, including sequence curation and gap reconstruction, allowing researchers without 

experience in phylogenetic analysis to use ASR for protein engineering73. However, further 
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improvements in multiple sequence alignment and gap reconstruction algorithms may be needed 

before automated methods can achieve the same performance as the standard manual approach. 

 

Structure-based design guided by sequence information 

Structure-based computational protein design has shown great success in de novo design of 

protein structures, folds, and assemblies unseen in nature17,74, and has also been used for rational 

or semi-rational engineering of protein thermostability, catalytic activity, and stereoselectivity75–

78. However, the structure-based energy calculations used for computational protein design have 

limited accuracy, because there is an inevitable tradeoff between accuracy and computational 

feasibility in the energy functions used for these calculations, making it challenging to accurately 

predict the effects of individual substitutions on protein structure or function for engineering 

purposes79,80. This is a particular problem when attempting to introduce multiple substitutions 

simultaneously, because a single deleterious substitution can jeopardize the beneficial effects of 

other substitutions80. Several computational tools have been developed that attempt to address 

these limitations of structure-based design by incorporating information from sequence data into 

the design algorithm, such that the choice of potential substitutions is restricted or biased towards 

those that are predicted to be tolerated, based on their occurrence in natural homologs of the target 

protein80–88. A particular advantage of this approach is that substitutions that improve the target 

property (e.g., thermostability) but decrease protein fitness via their effect on another property 

(e.g., solubility or function) can be avoided, because these substitutions are less likely to be found 

in natural proteins89. 
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This combination of sequence-based and structure-based design has been successfully 

implemented in two computational tools, PROSS and FireProt, that aim to redesign proteins for 

increased thermostability and expression83,84,87,90–92. PROSS uses the observed amino acid 

frequencies at each position in a multiple sequence alignment to define a set of "allowed" 

substitutions in the target protein based on their occurrence in homologous proteins87 (Fig. 2). 

Allowed substitutions that have a stabilizing effect on protein structure are predicted using 

structure-based energy calculations, and mutually compatible combinations of these substitutions 

are then predicted by combinatorial protein design in Rosetta93, yielding a small number of 

designed sequences for experimental testing with substitutions at up to ~10% of positions. 

Recently, a systematic, community-wide evaluation demonstrated the high success rate of this 

method for engineering proteins with high thermostability and expression94. In this evaluation, 12 

independent research groups used PROSS to improve soluble expression of 14 challenging, mostly 

eukaryotic, proteins in Escherichia coli, testing 1–6 designs for each protein. 9/14 proteins showed 

an increase in soluble expression, 9/10 well-expressed proteins showed an increase in Tm (5.4 °C 

to 27 °C). 6/7 functionally characterized proteins showed similar function to the wild-type protein 

for at least one design, indicating that thermostability and activity do not trade off in the designed 

proteins. The success rate of this method in achieving soluble expression of recalcitrant proteins 

in E. coli is particularly notable given that low thermostability is far from the only cause of poor 

heterologous expression. In the FireProt method, potentially stabilizing "energy-based" and 

"evolution-based" substitutions are identified separately by structure-based energy calculations 

and consensus design, respectively83,84. False positives in the energy-based substitutions are then 

filtered using an evolution-based criterion, and vice versa. Finally, compatible substitutions are 

combined to yield a small number of multipoint variants for experimental testing. In the case of 
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the haloalkane dehalogenase DhaA, combination of eight energy-based substitutions and three 

evolution-based substitutions using FireProt yielded a Tm increase of 24.6 °C83. The increase in Tm 

resulted from a near-additive contribution from each set of substitutions (16.2 °C and 9.6 °C, 

respectively), illustrating the complementarity of these two approaches95.  

 

Figure 2. The PROSS and FuncLib methods for incorporating sequence data in structure-

based protein design. Evolutionarily “allowed” substitutions at each position (or pre-defined 

positions in the active site) in the target protein (WT) are identified from a multiple sequence 

alignment (MSA), reducing the search space for combinatorial design. The allowed substitutions 

are analyzed further using structure-based energy calculations to predict stabilizing substitutions 

or eliminate destabilizing substitutions. A small number of sequence designs with multiple point 

substitutions are then predicted by combinatorial protein design in Rosetta. 

 

A similar approach of using sequence data as a restraint for structure-based engineering of 

enzyme function is used by the FuncLib method81. The aim of this method is to engineer a small 

number of stable and functionally diverse enzyme variants with multiple substitutions in the active 

site. Rather than optimizing enzyme activity explicitly (which is more challenging and requires 

detailed knowledge of enzyme mechanism), the aim is to engineer variants that have a stable, 

preorganized active site compatible with enzyme activity, which can then be subjected to low-
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throughput experimental screening. Similar to the PROSS method, a set of allowed substitutions 

within the active site is first defined based on evolutionary conservation and structure-based energy 

calculations (to exclude destabilizing substitutions); multipoint variants containing three to five 

allowed substitutions are then designed using combinatorial protein design in Rosetta (Fig. 2). In 

a recent example that takes great advantage of this method, Bengel et al. used FuncLib to redesign 

a promiscuous nicotinamide N-methyltransferase to create a panel of enzymes for regioselective 

N-alkylation of pyrazoles96. More than 90% of enzyme variants showed activity on at least one 

pyrazole substrate, and despite the low regioselectivity of the parent enzyme (57 to 67% depending 

on the substrate), different enzyme variants yielding increased activity (up to 118-fold), 

regioselectivity (up to >99%), and in some cases regiodivergence could be identified for a diverse 

range of substrates. Such large improvements in enzyme function are rarely seen in a single round 

of mutagenesis and screening using conventional strategies, even for a single substrate97. 

 

Statistical modeling of protein sequence and function: machine learning and other 

approaches 

 

Machine learning is used for analysis of large and complex datasets in many fields of biology 

and is beginning to find application in protein engineering18,98. In general, machine learning seeks 

to identify patterns in data without attempting to explicitly model the underlying physical or 

biological processes that generated the data. Currently, the machine learning methods most widely 

used in protein engineering are supervised methods, in which a quantitative model of the protein 

fitness landscape is inferred based on labeled training data (i.e., a set of protein sequences and their 

measured fitness), and then used to predict the fitness of uncharacterized proteins18,19. While this 
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approach has shown recent success99–102, it relies on experimental data for training and usually 

requires multiple iterations of model training and experimental characterization of protein 

variants101,103–105. It would be ideal if we could instead use readily available sequence data to learn 

the underlying sequence patterns or "design rules'' that define a particular protein structure or 

function, and then generate new and improved sequences that display those patterns, while 

eliminating or minimizing the need for experimental training data. Recent work has made some 

exciting progress towards this goal using unsupervised learning (which requires only unlabeled 

protein sequence data) and semi-supervised learning (which combines supervised and 

unsupervised learning). Because the topic of machine learning in protein engineering has been 

covered in recent reviews1,18,19,106–108, in this section, we focus on several key concepts and 

experimentally validated advances that are particularly relevant to the applications of sequence 

data in protein engineering and design. 

 

Whereas supervised methods in machine learning-based protein engineering are used to train 

discriminative models, which explicitly model the relationship between sequence and fitness based 

on a labeled training dataset, unsupervised machine learning is used to train generative models, 

which model the probability distribution underlying an unlabeled training set of protein sequences 

(Fig. 3). Novel sequences that recapitulate the properties of the training sequences can then be 

obtained by random sampling of sequences from the resulting probability distribution. In other 

words, generative modeling can be used to learn the region of sequence space associated with a 

particular function, allowing generation of new sequences from within this space. Various types 

of deep generative models (i.e., generative models obtained by deep learning) have been applied 

to protein sequence data, including variational autoencoders109–112, generative adversarial 
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networks113–115, and deep autoregressive models116,117. Models from the field of natural language 

processing, used for tasks such as machine translation, text summarization, and text generation, 

are frequently used, capitalizing on useful (albeit imperfect) analogies between protein sequences 

and written text117–122. For example, state-of-the-art language models are designed to capture long-

range dependencies between tokens (words or characters), which is necessary to learn how the 

probability of encountering a token at a given position varies depending on the surrounding tokens 

(e.g., how the meaning of a word changes depending on the context)123. This feature may also be 

useful for capturing long-range dependencies between amino acids within a protein sequence (i.e., 

covariation between amino acids that are distant in the protein sequence but close in the protein 

structure)118. 

 

 

Figure 3. Unsupervised and semi-supervised machine learning approaches for protein 

engineering and design. Using unsupervised learning, the probability distribution underlying an 

input sequence dataset can be learned, allowing generation of new sequences by sampling from 

the probability distribution. Some unsupervised machine learning algorithms, such as variational 

autoencoders (depicted here), are also capable of learning informative representations of protein 
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sequence. In semi-supervised methods, these representations can be used to improve the predictive 

model of the fitness landscape inferred by supervised learning. 

 

Deep generative models have been shown to capture physicochemical, structural, evolutionary, 

and functional information from protein sequences117,118 and have shown state-of-the-art 

performance on problems such as variant effect prediction111,124, but there are still few examples 

where proteins have been designed using generative models and experimentally validated by 

functional characterization112,114,116,125. In one recent example, Repecka et al. trained a generative 

adversarial network on 16,706 malate dehydrogenase sequences and used the resulting model to 

generate synthetic protein sequences114. The generated proteins were shown to reproduce various 

properties of the natural proteins at the sequence level (e.g., sequence variability at each position 

and conservation of key catalytic residues), while occupying different regions of sequence space 

and showing higher diversity compared with the natural sequences. A small subset of generated 

sequences was then experimentally characterized; 13 out of 55 (24%) of the designs were soluble 

and functional when expressed in E. coli, with the most divergent of these proteins having 66% 

sequence identity (106 substitutions) to a natural sequence. Altogether, these studies demonstrate 

that deep generative models can generate diverse, functional proteins based solely on sequence 

data. 

 

The key challenge of applying generative modeling to protein engineering is that the goal is 

usually not to generate diverse sequences that show similar properties to natural proteins, but to 

generate sequences that show improved properties. However, one application where the ability of 

generative modeling to design large numbers of diverse, functional sequences might be practically 
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useful is in library creation for the discovery of antibodies and other target-specific binders115,116. 

For example, Shin et al. recently applied this approach to design a smart library of diverse, stable 

and well-expressed nanobodies, using an autoregressive model trained on ~1.2 million naïve llama 

nanobody sequences116. A major advantage of autoregressive models in this context is that they 

use unaligned sequences rather than multiple sequence alignments; this is particularly useful in the 

case of antibody sequences, which have complementarity-determining regions of variable lengths 

and cannot be aligned accurately. A nanobody library containing ~185,000 highly diverse 

sequences generated by the model was constructed and experimentally characterized in a yeast 

display system. The designed library showed higher expression than a state-of-the-art 

combinatorial synthetic library based on position-specific amino acid frequencies, which was 

attributed to the ability of the design algorithm to account for higher-order sequence constraints. 

Another strategy for using generative models in protein engineering is to bias sequence generation 

towards sequences predicted to have some desirable property (e.g., stability or solubility)112,115. 

For example, Hawkins-Hooker et al. trained a conditional variational autoencoder on ~70,000 

luciferase sequences labeled as low, medium, or high solubility based on a computational 

prediction112. Generation of predicted medium- and high-solubility variants of the Pseudomonas 

aeruginosa luciferase LuxA using this model yielded eight functional variants with reasonable 

solubility (>10% soluble expression) out of 23 variants tested, whereas the wild-type protein did 

not display soluble expression. However, this approach relies on the availability of an accurate 

sequence-based predictor for the property of interest. Although there are currently few 

experimentally validated examples where generative models have been used for protein 

engineering, it is a promising and rapidly developing area of research (recent theoretical 

developments are reviewed in ref. 108). 
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A different application of sequence data in machine learning-guided protein engineering is semi-

supervised learning, where the performance of supervised learning with small training datasets can 

be improved using information learned from unlabeled protein sequence data (Fig. 3). To learn the 

relationship between protein sequence and fitness, supervised machine learning methods require 

the input protein sequences to be encoded as numeric vectors. This can be achieved using very 

basic representations of protein sequence (e.g., one-hot encoding, where the identity of the amino 

acid at each position is represented by a series of 19 zeroes and 1 one); however, the choice of 

representation is far from arbitrary, and more meaningful representations that summarize useful 

information about the protein sequences, for example, by representing closely related sequences 

in similar ways, can sometimes improve the performance of supervised learning126. As mentioned 

above, certain types of deep generative models trained on large sequence datasets are capable of 

learning meaningful, low-dimensional representations of protein sequence that capture 

information about amino acid properties and protein structure, phylogeny, and function117,118; these 

representations can therefore be useful for semi-supervised learning121,126–129. Using TEM-1 β-

lactamase and Aequorea victoria green fluorescent protein (GFP) as model systems, Biswas et al. 

recently applied this approach to protein engineering by training an autoregressive model on the 

UniRef50 sequence database to learn the general features of protein sequences, then fine-tuning 

the model on sequences related to the target protein to learn the specific features of the target 

protein family127. The representations from these models were then used to perform supervised 

learning with a small training dataset (24 or 96 variants), and small libraries of improved variants 

were designed by performing in silico directed evolution using the resulting model. Up to 26% of 

the designed variants (depending on the protein and training set) showed improvements over the 
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wild-type function. Additionally, GFP variants were obtained that surpassed those obtained by 

ASR and consensus design (maximum fold increase in fluorescence compared with avGFP for 

each method: semi-supervised learning, 5.67; ASR, 2.51; consensus design, 2.47), and rivalled 

state-of-the-art variants previously obtained through a laborious, iterative engineering process 

(sfGFP, 6.52). The success of this method was attributed to the division of labor between the 

unsupervised model, which was able to broadly distinguish between functional and non-functional 

sequences, and the supervised model, which was then able to discriminate mediocre sequences 

from improved sequences. 

 

An alternative to machine learning for sequence-based protein design is to use simpler statistical 

models such as those based on direct coupling analysis (DCA)130–133. This method uses a large 

multiple sequence alignment of a protein family to model the sequence probability distribution 

based on intrinsic amino acid propensities at each position and pairwise amino acid correlations at 

each pair of positions, thus explicitly accounting for covariation between residues. Russ et al. 

recently showed that this approach can be used to design enzymes with catalytic activity similar 

to natural proteins; when applied to a family of chorismate mutases, the designed enzymes showed 

a frequency of functional expression similar to natural enzymes (48% and 38% respectively) based 

on genetic complementation131. 

 

Concluding remarks 

The methods described above allow reliable engineering or design, based on readily available 

data, of diverse proteins that show favorable properties such as high thermostability and 

expression, while minimizing the need for labor-intensive and expensive high-throughput 
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screening. Some of these methods, such as ASR and structure-based design, can also provide 

functionally diverse proteins, which may be useful of themselves in applications such as 

biocatalysis, or may be useful as robust and evolvable starting points for further engineering. Even 

as alternative methodologies such as de novo computational design and machine learning continue 

to improve, we expect that large-scale sequence data will remain a useful and complementary 

source of information in protein engineering. This trend is also seen in other fields of protein 

science; for example, an important factor in the breakthrough success of AlphaFold2134 in the 

CASP14 structure prediction competition was the use of sophisticated deep learning methods to 

distill both structural and evolutionary data, including pairwise correlations encoded in multiple 

sequence alignments, together with physical and geometric restraints. 

 

Sequence-based methods allow protein engineers to focus their exploration of sequence space 

on a limited region, loosely bounded by a set of homologous natural sequences provided in a 

multiple sequence alignment or training set (Fig. 4). This region of sequence space is only a small 

portion of the total sequence space associated with a particular fold or function135, yet it 

encompasses an astronomical number of proteins that are functionally diverse and can greatly 

surpass natural proteins in terms of thermostability or other useful properties. Although the search 

strategy used in sequence-based protein engineering is conservative and may limit opportunities 

to engineer radically different functions107, it has the major advantage of providing candidate 

sequences that have a high probability of being functional. This allows us to be adventurous in 

designing sequences that have a large number of mutations relative to any known natural protein 

sequence, and can thereby accelerate the pace of protein engineering. Directed evolution, for 

example, is limited in the number of mutations that can be introduced in a single round, because 



 20 

random mutations tend on average to be destabilizing and have a negative impact on function, 

especially in combination2–5. However, there is a limit to what can be achieved with a single 

mutation; for example, an optimal single mutation identified by directed evolution usually yields 

a <10-fold improvement in catalytic activity, whereas >10 mutations are usually required to 

achieve a >103-fold improvement97. Likewise, only ~7% of stabilizing point mutations listed in 

the FireProtDB database were reported to increase Tm by >10 °C136. On the other hand, techniques 

like ASR, PROSS and FireProt routinely yield improvements in thermostability up to ~30 °C 

without sacrificing protein function, even while introducing tens or hundreds49 of substitutions 

relative to any known natural protein sequence. Importantly, the ability of sequence-based design 

to introduce multiple mutations simultaneously also addresses the problem of epistasis, where a 

mutation may be beneficial only in combination with other mutations, and may therefore be 

discarded if the mutations are introduced one at a time80,81,93,137. 

 

 

Figure 4. Schematic representation of the sequence space explored by different protein 

engineering and design methods. Using a large set of natural homologous sequences of a protein 

of interest, protein engineers can explore candidate sequences that have a high probability of being 

functional despite considerable sequence divergence from natural proteins. Sequences from 

consensus design, ASR, and structure-based approaches explore relatively close to clusters of 

natural sequences. Machine learning (ML)-guided approaches allow more systematic sampling of 

unexplored regions of sequence space further from natural sequences, although in practice, 
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sequences fairly similar to natural sequences are selected for characterization to eliminate false 

positives. This figure is based loosely on sequence space analyses from refs. 114 and 127. 

 

Research at the interface of protein engineering and protein evolution has a long history of 

informing our understanding of the mechanisms and constraints of protein evolution while 

inspiring new protein engineering strategies7,65,138; for example, directed evolution has taught us 

about the importance of factors such as thermostability139, promiscuity140, and neutral drift141 for 

protein evolvability. In the same way, sequence-based approaches to protein engineering and 

design are not only practically useful, but might extend our fundamental understanding of 

sequence-function relationships and the size, structure, and density of functional sequence space. 

For example, the design of functional proteins using coevolutionary methods such as DCA has 

shown that knowledge about amino acid conservation and pairwise correlations between amino 

acids is sufficient to specify protein structure and function131,133. These methods can also be used 

to estimate the maximum number of sequences in a protein family that possess the canonical fold 

or function131,132,142; for example, Russ et al. used their DCA model to estimate that ~1024 

sequences in the AroQ family of chorismate mutases could be functional; this estimate is made 

more persuasive by the ability of the model to consistently generate functional proteins131. Thus, 

recent developments in generative modeling that enable systematic exploration of sequence space 

are likely to provide further insight into the fundamental question of how sequence encodes 

function. 

 

We anticipate that sequence-based approaches will remain an important part of the protein 

engineering toolkit in the future and that their scope will be expanded by ongoing methodological 
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improvements. In machine learning, a key challenge is to develop and validate generative 

modeling approaches that can be used to design proteins with improved, rather than equivalent, 

properties compared with natural proteins. Various mathematical frameworks to achieve this by 

incorporating sequence-based predictors for properties such as stability or solubility are continuing 

to be developed and are awaiting experimental validation. When the property of interest cannot be 

predicted from sequence (e.g., catalytic specificity), semi-supervised learning approaches may be 

more useful, and it will be interesting to see how these approaches perform when applied more 

widely to non-model systems. There is also an ongoing need to develop tools that are accessible 

to non-experts in techniques such as structure-based design, phylogenetics, or machine learning; 

PROSS is a good example of an accessible tool that has been systematically validated across many 

laboratories. Finally, sequence databases are still growing at a rapid pace; improved methods for 

metagenomic analysis and strategic sequencing of organisms from underrepresented phylogenetic 

groups are continuing to provide useful, non-redundant protein sequences, which will extend the 

possibility of using sequence-based engineering methods to additional protein families. 
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