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Abstract
The difference between the differential geometric concept of an isometry between two given
surfaces as purely mathematical objects and the kinematical concept of an isometric defor-
mation of a single unstretchable material surface as a physical object is discussed. We clarify
some misunderstandings that have been promoted in recent works concerning the mechan-
ics of unstretchable material surfaces and we discuss this issue within the context of two
specific examples. A revealing distinction between isometries and isometric deformations
in two space dimensions is reviewed, and the use of rectifying developable surfaces to char-
acterize the isometric deformation of rectangular material strips is analyzed.

Keywords Inextensible surface · Inextensional surface · Two-dimensional Riemannian
manifold · Embedding · Developable surface · Rectifying developable · Internal constraint
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1 Introduction

From a kinematical perspective, a material surface is considered to be unstretchable as a
physical two dimensional object if the intrinsic length between each pair of its material
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points cannot be changed during any deformation. Intuitively, the material surface can bend
and twist, but its material filaments can never extend or contract. The constraint that models
this intense kinematical idealization must affirm that no surfacial strain can be developed
in any possible deformation, and it must allow for the existence of suitable constraint re-
actions in any deformation process. Because the operative internal constraint characterizes
a physical restriction for a material surface, it is necessary to express it in terms of the
material points of that surface. So, if D ⊂ E3 represents the reference configuration of an
unstretchable two dimensional material surface whose points are denoted as x ∈ D, and D is
deformed (smoothly) to a configuration S ⊂E3 whose points y ∈ S are given by y = ỹ(x),
then the deformation ỹ must satisfy the constraint

|dx| = |dy| = |(gradDỹ)dx| ∀ dx ∈ Dtan, (1)

where Dtan is the tangent space of D at x ∈ D, and ‘gradD’ denotes the surface gradient on
D. The deformation from D to S that satisfies (1) is said to be an ‘isometric deformation’.

The literature abounds with papers aimed at studying deformations of unstretchable
ribbon-like material surfaces, but which incorrectly identify the concepts of ‘developabil-
ity’ and ‘isometry’ from differential geometry with the concepts of ‘unstretchability’ and
‘isometric deformation’ from the kinematics of continuous material surfaces. This is under-
standable because even within the differential geometry community there are differences
in the usage and meaning of ‘isometry’ and ‘isometric’. Specifically, do Carmo [1, p. 219]
uses the expression that ‘two surfaces are (locally) isometric’ to mean the same thing as
Kreyszig’s [2] notion of ‘an isometry between two surfaces’, as embodied in what he refers
to as his ‘criterion for isometry’ of Theorem 51.1 and in the language of his Sect. 52. In
this case, it is clear that both authors have two a priori given primitive surfaces in mind.
On the other hand, do Carmo’s notion of an ‘isometry’ is equivalent to Kreyszig’s notion
of an ‘isometric mapping’, both commonly referred to as an ‘isometric deformation’ in the
kinematics of material surfaces, and, here, it is clear that both authors are considering the
mapping of a single a priori given primitive surface to its deformed image. Unfortunately,
it is the common use of the word isometry in the settings of both differential geometry and
the kinematics of material surfaces that contributes to the basis for a misunderstanding —
along with the seemingly casual acceptance that there is no distinction between its meaning
in these two different contexts. The misunderstanding is compounded by the occasional use
of the conjoining construction ‘isometric deformation’ in differential geometry texts (see,
for example, Pressley [3, p. 132]), where it is mentioned within the subject of ‘isometry’
but is not clearly distinguished as a particular kind of mapping of a given fixed surface con-
figuration, whose geometrical elements (i.e., points, curves, and areas) are once and for all
assigned material identity, to another surface configuration which preserves the length of
every material curve.

An early work by Jellett [4] is often cited in connection with the mechanics of unstretch-
able material surfaces. However, the ideas of a reference configuration D of a material sur-
face and a finite isometric deformation of that reference to a surface S are absent from his
work. Although Jellett [4] correctly concludes that any deformational variation of a given
unstretchable surface must leave the Gaussian curvature pointwise unchanged and he studies
the ramifications of fixing the shape of a curve on a given unstretchable surface and subject-
ing the surface to an unstretchable variation, his work neither recognizes nor clarifies the
distinction that we seek to address here.

Subsequent to Jellett’s [4] contribution, studies of the mechanics of unstretchable mate-
rial surfaces have mostly dealt with situations in which the material reference configuration
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D is flat and rectangular and have operated under the presumption that the targeted configu-
ration S of any isometric deformation of D can be parametrized as a portion of a rectifying
developable surface with its domain of definition being D. With reference to the distinc-
tion between ‘isometry’ and ‘isometric deformation’ that we employ throughout this work,
which follows that of Kreyszig [2], this presumption exaggerates the importance of condi-
tions that characterize an ‘isometry between surfaces’ D and S over those that characterize
an ‘isometric deformation’ of D into S .

Having recognized that any (smooth) deformation of an unstretchable rectangular ma-
terial strip must have the shape of a developable surface, Sadowsky [6, 7] formulated a
variational problem for determining the equilibrium shape of a rectangular strip of paper
twisted and bent without stretching into a Möbius band as a minimizer of its bending en-
ergy. However, his formulation involves a dimension reduction argument predicated on the
assumption that the deformation of the material strip, written parametrically in terms of two
coordinates, to the band produces a configuration that is given in terms of those coordinates
by a rectifying developable mapping, the strip being its domain of definition. Because there
is no stated restriction that the ends of the material strip must correspond to rulings as a
necessary condition to prevent stretching, the corresponding class of deformations differs
from the set of all possible (smooth) deformed configurations of an unstretchable rectangu-
lar strip. Consequently, there is no reason to believe that a minimizer belonging to that class
would constitute a possible deformed configuration of the unstretchable rectangular strip
and, worse still, a genuine local or global minimizer over the set of all possible deformed
configurations of the strip might not admit a parametrization of the rectifying developable
type based on the rectangular reference material strip as its domain of definition and, thus,
might be overlooked.

Although Sadowsky [6, 7] restricted attention to strips with infinitesimally small width-
to-length ratios, Wunderlich [8, 9] reconsidered the dimensional reduction of Sadowsky for
material strips with finite length-to-width ratios but continued the practice of allowing only
deformed surfaces which are represented by rectifying developable parametrizations defined
on the strip. While it is true that the isometrically deformed configuration of a given mate-
rial reference strip must be associated with a portion of a rectifying developable surface, the
deformed ends of the material strip need not be rulings. In particular, if the reference ma-
terial strip is rectangular, then a rectifying developable parametrization of the isometrically
deformed material configuration based on the rectangular reference strip as its domain of
definition is highly restrictive, and cannot, for example, include the isometric deformation
onto the surface of a right circular cone, though such a deformation is clearly possible. As
a consequence, the Wunderlich dimensionally reduced functional does not provide a cor-
rect measure of the bending energy of an open ribbon unless its short edges are rulings,
meaning that only certain boundary conditions can be considered on those edges. In par-
ticular, any boundary condition which involves bending one of the short edges cannot be
accommodated. While Wunderlich’s dimensional reduction of the bending energy is correct
for closed, unknotted ribbons without self intersection, independent of their orientation, as
Seguin, Chen and Fried [5] have explained, the variational problem associated with mini-
mum bending energy for such a ribbon must be carried out over an appropriate collection of
competitors that differs from the class of rectifying developables, that class being the col-
lection of isometric deformations ỹ defined on the reference region D. This can be achieved
by introducing suitable Lagrange multipliers to account for the constraint of unstretchabil-
ity. The main oversight in the Wunderlich [8, 9] approach is that no reference configuration
for an undistorted material surface is introduced so as to locate and distinguish the particles
of the ribbon that is deformed and thereby properly track the deformation of the ribbon.
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Wunderlich’s [8, 9] approach to formulating a dimensionally reduced variational problem
for determining the shape of a developable half-twist Möbius band is purely spatial.

Related contributions focused on the differential geometric features of Möbius bands
as isometric immersions and embeddings in E3 have been published by Schwarz [10, 11],
Randrup and Røgen [12], Chicone and Kalton [13], Sabitov [14], Kurono and Umehara [15],
Solvesnov [16], and Naokawa [17]. Although the immersions and embeddings considered
in the cited works are flat in the sense that their Gaussian curvatures vanish pointwise and,
therefore, may qualify as isometric deformations of a rectangular flat strip, the points of E3

that define them are not assigned with material identity and therefore they are not correlated
with an isometric deformation of any a priori given rectangular flat material reference strip.
To identify the shape of an isometric flattening, by severing and deformation, of any such
immersion or embedding as the reference configuration of any single unstretchable material
surface would therefore be misleading. Indeed, there is no unique way of isometrically flat-
tening a developable Möbius band (or, for that matter, even the seemingly trivial alternative
embodied by a right circular cylindrical ring) into a planar region. A developable Möbius
band of uniform width can be severed along any of its rulings and isometrically flattened
to produce a family of equilateral trapezoids, only one of which is rectangular. Moreover,
such a band can be severed along paths that are not rectilinear, leading to a multitude of
other flat shapes. A developable Möbius band can thus be thought of as the result of join-
ing two opposing edges of a continuous equivalence class of flat reference shapes. Each
such reference shape arises from an isometric flattening of a developable surface and thus,
from a differential geometric perspective, forms an isometry with any other viable refer-
ence shape. The deformation from any reference shape to another cannot, however, be an
isometric deformation. Each reference shape is consequently a reference configuration of a
distinct unstretchable material surface. If a Möbius band is to be viewed as a material ob-
ject constructed by smoothly joining the short edges of an unstretchable material strip with
a flat rectangular reference configuration, this degeneracy reveals the compulsory impor-
tance of establishing a reference configuration which defines the location of all its material
points, and which is used to maintain the identity of those points when the material strip is
isometrically deformed.

It is largely the prevailing confusion in the literature that motivated us to prepare the
present work concerning the conditions that characterize an isometry between given sur-
faces interpreted as purely mathematical objects and an isometric deformation of a given
material surface interpreted as a single physical object, and, in particular, the consequential
omission of a clear description of the deformation of an unstretchable material surface from
its reference to any of its possible isometrically deformed configurations.

From a fundamental theorem in differential geometry, it is known that a (smooth) surface
is developable if and only if the Gaussian curvature of the surface vanishes pointwise. From
another fundamental theorem in differential geometry, it is also known that surfaces that
form an isometry relation must have the same Gaussian curvature at corresponding coordi-
nate pairs, along with the corollary that if the Gaussian curvature of different surfaces has
the same constant value then the surfaces form an isometry relation. As a consequence, sur-
faces that are developable form an isometry relation with one another. An understanding of
the differential geometric definition of an isometry relation between surfaces is inescapably
crucial to making any sense out of the connections drawn in these last three sentences. More-
over, the critical difference between the notion of an isometry relation between surfaces as
understood in differential geometry and the notion of isometrically deforming a single sur-
face as understood kinematically will emerge only with such an understanding.

In Sect. 2, we discuss the concept of an isometry relation between surfaces in differen-
tial geometry, and its relationship to the possible isometric deformation of a given material
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surface. In Sect. 3, we consider the example of a half-catenoidal reference configuration D.
In addition to an isometric deformation ŷ of D to a configuration S of right half-helicoidal
form, we present a non-isometric deformation ȳ of D to a configuration S̄ with the same
right-half helicoidal form as S . The purpose of this example is to emphasize that the de-
formation may or may not be an isometric deformation even though the two surfaces form
a mutual isometry relation. A figure shows that although S̄ occupies the same right-half
helicoidal surface as S , the deformation ȳ subjects every material curve on D to stretching
and/or contraction. In Sect. 4, we discuss the distinction between the concepts of an ‘isome-
try relation between surfaces’ and an ‘isometric deformation’ of a given surface. Illustrative
examples are provided in Sect. 5. In the example of Sect. 5.1, we briefly review a well-known
observation concerning an isometry relation and an isometric deformation. The message of
Sect. 5.2 is more substantial. Here, we consider an example from the literature whose goal
is to determine the isometrically deformed shape of a Möbius band by minimizing the Wun-
derlich [8, 9] functional over the class of rectifying developable surfaces. Our purpose is
to discuss certain major deficiencies in this approach — deficiencies that arise because no
fundamental attention is given to the unstretchable material constraint of the strip and to the
definition of a flat, rectangular or otherwise, fixed material reference configuration. Since
the minimizing Möbius band is assumed a priori to have a rectifying developable form rep-
resented in terms of two parameters not connected to any particular fixed reference state, a
definitive description of how the parameters relate to the material points of the strip and to
its deformation from a fixed reference configuration becomes problematic. This brings into
question how the two parameters are to serve as a coordinate cover for locating the material
points of a fixed material reference strip, a question that was not sufficiently addressed in the
published accounts of this example. We emphasize that minimizing the Wunderlich [8, 9]
functional over the set of rectifying developable Möbius bands of fixed length and width
in an effort to determine the configuration that results from the isometric deformation of a
fixed, rectangular or otherwise, material strip is inadequately formulated because the set of
admissible configurations does not take into account the material constraint of unstretchabil-
ity. A discussion of why this variational problem and its proposed minimization strategy is
incompatible with the constraint of unstretchability is given. It is noted that if the constraint
is compromised, as has been the case, the variational problem leads to a purely geometri-
cal problem in the differential geometry of rectifying developable Möbius bands that stands
apart from the mechanical problem of interest. Finally, we briefly explain why any study
based in mechanics of the isometric deformation of a given rectangular reference strip into
a rectifying developable surface has limited physical application.

2 Isometry of Surfaces

In differential geometry a (smooth) two dimensional surface, a portion of which we denote
as A, is considered to be a compact two dimensional Riemannian manifold endowed with
a Riemannian metric. As is common, the elements x of A may be parametrized by coor-
dinates (u1, u2), in which case each element x ∈ A is equivalent to a pair (u1, u2) ∈ R2,
and it is well-known that the surface to which A belongs may be embedded in three
dimensional Euclidean point space E3. In this case, A may be represented by points
x = x̂(x) = x̂(u1, u2) ∈E3, and its corresponding Riemannian metric coefficients are given
by

gij := ∂x̂

∂ui
· ∂x̂

∂uj
, i, j ∈ {1,2}. (2)
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Similarly, let us suppose that the elements y of a second surface, a portion of which we
denote as B, are parameterized by the coordinate pairs (v1, v2) ∈R2, and that the embedding
of the surface to which B belongs intoE3 has the representation y = ȳ(y) = ȳ(v1, v2) ∈E3.
Corresponding to this embedding of B, the Riemannian metric coefficients are given by

hij := ∂ȳ

∂vi
· ∂ȳ

∂vj
, i, j ∈ {1,2}. (3)

A clear differential geometric definition of isometry between two given smooth surfaces
is given by Kreyszig [2, p. 161]. In the present context, a given surface A whose elements x

are parametrized by coordinates (u1, u2) ∈R2 and another given surface B whose elements
y are parametrized by coordinates (v1, v2) ∈R2 are said to form an isometry relation if there
exists a single coordinate parametrization (z1, z2) ∈ R2 for the elements x ∈ A and y ∈ B
such that gij = hij . Thus, if all elements x ∈ A and y ∈ B of two surfaces are parametrized
by the same coordinate pairs and the metric coefficients of these parametrizations are equal
then those surfaces are related by an isometry. While this provision guarantees that distances
in the two surfaces may be measured by the same Riemannian metric coefficients, it does
not suffice to ensure that a material surface, defined by the location of its material particles
x ∈E3 in a given fixed reference configuration D, and its deformed image S , defined by the
mapping x �→ y ∈E3, both of which are exact copies of, respectively, two surfaces A and
B that form an isometry relation, must be connected through an isometric deformation. It is
true, though, that because of the isometry relation, there is an isometric deformation of D
onto B, as the following proposition shows.

Proposition Let A and B be surfaces whose elements x ∈ A and y ∈ B share a coordinate
parametrization (z1, z2) over some subset Π of R2, so that they have representations in
terms of points x ∈E3 and y ∈E3 of the respective forms

x = x̂(z1, z2), (z1, z2) ∈ Π, (4)

and

y = ȳ(z1, z2), (z1, z2) ∈ Π. (5)

Suppose, also, that the parametrizations x̂ and ȳ satisfy

∂x̂

∂zi
· ∂x̂

∂zj
=: gij = hij := ∂ȳ

∂zi
· ∂ȳ

∂zj
(6)

on Π . Let D ⊂E3 be the reference configuration of a material surface that is an exact copy
of A, so that D = A and that x ∈ D denotes the location of a material point. Then, there
exists an isometric deformation ỹ : D →E3, such that S := ỹ(D) is an exact copy of B.

Proof By the requirements for a parametrization of a surface, there exists a one-to-one cor-
respondence between the material points x ∈ D and the parameter pairs (z1, z2) ∈ Π . This
implies that there exist z̃1 : D →R and z̃2 : D →R, such that

x̂(z̃1(x), z̃2(x)) = x ∀x ∈ D. (7)

Applying the surface gradient to both sides of (7) then yields

∂x̂

∂zi
⊗ gradD z̃i = I ,
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where gradD z̃i is the surface gradient of z̃i and I is the identity tensor in the tangent space
Dtan of D. Thus, it follows that

( ∂x̂

∂zi
· ∂x̂

∂zj

)
gradD z̃i ⊗ gradD z̃j = I . (8)

Now, define a deformation ỹ : D →E3 of the material surface D by

y = ỹ(x) := ȳ(z̃1(x), z̃2(x)). (9)

Under ỹ, D is deformed into a configuration S := ỹ(D) that is an exact copy of B, and an
arbitrary material filament dx deforms to dy, which, in accordance to (9), is given by

dy =
( ∂ȳ

∂zi
⊗ gradD z̃i

)
dx. (10)

It then follows from (6), (8), and (10) that

|dy|2 = dx ·
[( ∂ȳ

∂zi
· ∂ȳ

∂zj

)
gradD z̃i ⊗ gradD z̃j

]
dx

= dx ·
[( ∂x̂

∂zi
· ∂x̂

∂zj

)
gradD z̃i ⊗ gradD z̃j

]
dx = |dx|2,

which shows that ỹ is an isometric deformation. �

To illustrate the meaning of the differential geometric interpretation of an isometry rela-
tion between surfaces and how such a relation differs from the isometric deformation of a
given material surface, let {ı1, ı2, ı3} denote a positively oriented basis for E3, and consider
two surfaces, well-studied in differential geometry, given as follows:

(i) A is the half-catenoid whose representation in E3 is given by

x = x̂(r, θ) := r cos θ ı1 + r sin θ ı2 + a arccosh
( r

a

)
ı3,

r ∈ [a,
√

2a], θ ∈ [0,2π),

⎫⎬
⎭ (11)

wherein we have taken the coordinate parameters (u1, u2) noted in (2) to be the standard
polar coordinates (r, θ) with polar axis ı3 and a > 0 is a fixed measure of length. In this
case, the Riemannian metric coefficients of A are given by

g11 = r2

r2 − a2
, g12 = 0, g22 = r2. (12)

(ii) B is the right half-helicoid whose representation in E3 is given by

y = ȳ(v1, v2) := v1 cosv2ı1 + v1 sinv2ı2 + av2ı3,

v1 ∈ [0, a], v2 ∈ [0,2π),

}
(13)

and whose Riemannian metric coefficients, according to (3), are

h11 = 1, h12 = 0, h22 = (v1)2 + a2. (14)
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The coordinate parametrization (v1, v2) in the representation (13) of surface B is not
the same as the coordinate parametrization (u1, u2) := (r, θ) in the representation (11) of
surface A. Thus, to determine if the two surfaces A and B form a mutual isometry relation,
we must be able to reparametrize and cover the right half-helicoid B in terms of (r, θ),
the same coordinates involved in the representation (11) of the surface A, such that the
Riemannian metric coefficients of A are equal to those of B. This is accomplished by the
smooth one-to-one change of variables

v1 = √
r2 − a2, v2 = θ,

r ∈ [a,
√

2a], θ ∈ [0,2π),

}
(15)

with the consequence, from (13), that the reparametrized representation of B in terms of
(r, θ) is given by

y = ŷ(r, θ) := √
r2 − a2 cos θ ı1 + √

r2 − a2 sin θ ı2 + aθ ı3,

r ∈ [a,
√

2a], θ ∈ [0,2π),

}
(16)

because it readily follows, using (3), that under this reparametrization the Riemannian metric
coefficients of B are given by

h11 = r2

r2 − a2
, h12 = 0, h22 = r2, (17)

exactly as in (12). With the reparametrization (15) of B, gij = hij and the surfaces A and
B, from the differential geometric point of view, form a mutual isometry relation. Conse-
quently, under this reparametrization the Gaussian curvatures of the two surfaces are equal
at corresponding elements. It is well known, however, that the right half-helicoidal surface B
is ruled but not developable — as can be confirmed by computing the Gaussian curvature of
B from either (13) and the metric coefficients (14) or (16) alone; in either case, the Gaussian
curvature of B can be expressed in terms as −a2/r4, which indicates that the tangent plane
to B along a ruling is not fixed (as must be so for a developable surface) but, instead, varies
with r .

3 Isometry Versus Isometric Deformation

An isometry in the differential geometry of surfaces is a special relation that exists between
two given surface forms. In Sect. 2 we concentrated on the isometry relation between sur-
faces A and B of (11) and (13), respectively. In the kinematics of material surfaces, the
reference configuration D ⊂ E3 of a material surface is given with its material points de-
noted as x ∈ D, and the surface is deformed into another configuration S ⊂E3 whose points
are denoted as y ∈ S such that x �→ y ∈E3. Only the reference configuration D of a single
material surface is given, and the deformation of the material points of that given surface
is the object of interest. For example, let us suppose that we identify the elements x of the
half-catenoidal surface A, as parametrized by (r, θ) in (11), with the material points x ∈ D;
that is, suppose that

x = x(x) := r cos θ ı1 + r sin θ ı2 + a arccosh
( r

a

)
ı3,

r ∈ [a,
√

2a], θ ∈ [0,2π).

⎫⎬
⎭ (18)
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Fig. 1 (a): The surface A, of (11), occupied by the half-catenoidal reference configuration D determined by
(18). The material curve C on D, defined in (25), is shown in black and the material curve on D corresponding
to setting θ = π in (18) is shown in white. (b): The right half-helicoidal surface B, of (13), occupied by
the deformed configuration S determined by the isometric deformation ŷ defined in (19). The deformed
images of C and the material curve corresponding to setting θ = π in (18) are shown in black and white,
respectively. (c-d): The right half-helicoidal surface B, of (13), occupied by the deformed configuration S̄ of
D determined by the non-isometric deformation ȳ defined in (20). The color bar ranges between the minimum
and maximum values, Err (a) ≈ −0.50 and Err (

√
2a) ≈ 0.96, of the radial strain Err on [a,

√
2a]. Since

Eθθ satisfies −0.07 � Eθθ ≤ 0 on [a,
√

2a], the variations of color in (d) are not as obvious as those in (c).
The deformed images of C and the material curve corresponding to setting θ = π in (18) are again shown
in black and white, respectively. Consistent with the observation that ȳ subjects C to a uniform azimuthal
contraction, its position in (c–d) is markedly shifted toward the axis of B of (13) relative to its position as
shown in (b) for the configuration S determined by the isometric deformation ŷ

In doing this, we have identified the reference configuration D of a material surface with the
image of the surface A as it is embedded in E3, and the reference configuration D of this
material surface has the form of the half-catenoidal surface A of (11). This is illustrated in
Fig. 1(a).

Now, suppose that the material surface is deformed from its half-catenoidal reference
configuration D, given in (18), to the right half-helicoidal deformed configuration S ⊂E3,
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via the deformation x �→ y ∈E3, where in parametric form

y = ŷ(r, θ) := √
r2 − a2 cos θ ı1 + √

r2 − a2 sin θ ı2 + aθ ı3,

r ∈ [a,
√

2a], θ ∈ [0,2π).

}
(19)

We emphasize that (19) represents the deformed configuration S of the material surface D,
and that the parameters (r, θ) in (19) are not associated with the reparametrization of any
given surface, but, rather, define the location of the material points x ∈E3 of the reference
configuration D through (18), and the location y ∈E3 of the corresponding material points
of the deformed surface S through (19). However, by comparison with (16), we see that the
form of S is an exact copy of the right half-helicoidal surface B of (13). This is illustrated
in Fig. 1(b). Thus, (18) and (19) represent the deformation of a half-catenoidal surface into
a right half-helicoidal surface. Moreover, since

|dy|2 =
∣∣∣∂ŷ(r, θ)

∂r
dr

∣∣∣
2 +

∣∣∣∂ŷ(r, θ)

∂θ
dr

∣∣∣
2 = r2

r2 − a2
(dr)2 + r2(dθ)2 = |dx|2 (20)

for (18) and (19), ŷ is an isometric deformation of a material surface with reference configu-
ration D (an exact copy of the form of A) into the configuration S (an exact copy of the form
of B), and we confirm the notion expressed in Proposition 2 that for two surfaces that satisfy
an isometry relation there is an isometric deformation of one of the surfaces, considered as
the reference configuration of a material surface, onto the form of the other.

Now, suppose that the half-catenoidal reference configuration D, given in (18), is subject
to the deformation x �→ y ∈E3, where in parametric form

y = ȳ(r, θ) := r − a√
2 − 1

cos θ ı1 + r − a√
2 − 1

sin θ ı2 + aθ ı3,

r ∈ [a,
√

2a], θ ∈ [0,2π).

⎫⎪⎬
⎪⎭

(21)

By setting v1 = (r − a)/(
√

2 − 1) and v2 = θ , we see that, like S , the form of the surface
S̄ defined in (21) represents an exact copy of the right half-helicoidal surface B as defined
in (13). However, while the two surfaces A of (11) and B of (13) form an isometry relation
from the differential geometry point of view, the deformation of D (an exact copy of the
form of A) to S̄ (an exact copy of the form of B) is not an isometric deformation.

The parameters (r, θ) in (18) and (21) implicitly define the deformation x �→ y of the
half-catenoidal configuration D to the right half-helicoidal configuration S̄ . However, be-
cause

|dy|2 =
∣∣∣∂ȳ(r, θ)

∂r
dr

∣∣∣
2 +

∣∣∣∂ȳ(r, θ)

∂θ
dr

∣∣∣
2

= 1

(
√

2 − 1)2
(dr)2 +

[( r − a√
2 − 1

)2 + a2
]
(dθ)2 �= |dx|2 (22)

for (18) and (21), we see that (1) does not hold and, thus, that ȳ is not an isometric deforma-
tion. Even though surfaces A of (11) and B of (13) form an isometry relation, it is therefore
evident that there are many non-isometric deformations of the half-catenoidal reference con-
figuration D to an exact copy of the form of the right half-helicoidal surface B, all differing
by surfacial stretching and, thus, having identical distributions of Gaussian curvature.
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The distinction between the deformed configurations (19) and (21), whose surfaces S and
S̄ form an isometry relation, can be illustrated with recourse to the Green–Saint Venant strain
tensor E for each deformation, ŷ or ȳ, of the reference configuration D defined through (18).
For the isometric deformation from (18) to (19), E ≡ 0. In contrast, for the deformation from
(18) to (21), E is given by

E(r, θ) = (Err (r) cos θ − Eθθ (r) sin θ)ı1 + (Err (r) sin θ + Eθθ (r) cos θ)ı2,

r ∈ [a,
√

2a], θ ∈ [0,2π),

}
(23)

where the radial and azimuthal Err and Eθθ components of strain are defined by

Err(r) = 1

2

( r2 − a2

(
√

2 − 1)2r2
− 1

)
,

Eθθ (r) = 1

2

( (r − a)2

(
√

2 − 1)2r2
+ a2

r2
− 1

)
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

r ∈ [a,
√

2a]. (24)

Let C be the circular material curve defined by

C =
{
x ∈E3 : x = a

(cos θ ı1 + sin θ ı2√
2(

√
2 − 1)

+ arccosh
( 1√

2(
√

2 − 1)

)
ı3

)
, θ ∈ [0,2π)

}
. (25)

By (24): Err increases monotonically on [a,
√

2a] and satisfies Err(r) = 0 at r =
a/

√
2(

√
2 − 1); Eθθ is negative on (a,

√
2a) and satisfies Eθθ (r) = 0 on C at r = a and

r = √
2a. Since Err = 0 and Eθθ ≈ −0.06 on C, then C is subjected to a pure azimuthal

contraction. Hence, even though the deformation ȳ defined in (21) takes the reference con-
figuration D to the right half-helicoidal configuration S̄ , it subjects every material curve
on D to extension and/or contraction. More specifically, the deformation ȳ subjects any
open, connected part of the reference configuration D that is strictly below C to radial and
azimuthal contraction and any open, connected part of D that is strictly above C to radial
extension and azimuthal contraction. These effects are illustrated in Fig. 1, where the sur-
face A of (11) corresponding to the half-catenoidal reference configuration D in Fig. 1 is
accompanied by three images, in Figs. 1(b–d), of the right half-helicoidal surface B of (13).
Figure 1(b) shows the configuration S obtained from the isometric deformation from (18)
to (19), for which E ≡ 0. Figures 1(c–d) show the configuration S̄ obtained from the defor-
mation from (18) to (21), for which E �= 0. Here, the color coding for Err in Fig. 1(c) and
for Erθ in Fig. 1d) derives from (24).

4 Discussion

Within the subject of differential geometry, it is well known that surfaces that form a mutual
isometry relation have the same Gaussian curvature at corresponding points, that corre-
sponding curves on such surfaces have the same geodesic curvature at corresponding points,
and that a surface that forms a mutual isometry with a subset of a plane is developable.
From a physical perspective, within the subject of kinematics, a reference configuration D
of a material surface may be considered to be an identification between the surface elements
x ∈ A and the points x ∈ D ⊂E3. In addition, a (smooth) deformation of D to the deformed
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configuration S is a mapping x �→ y ∈ S ⊂E3. Such a mapping is an isometric deformation
if the length of any curve in D and the length of the corresponding curve in S under the de-
formation are equal; clearly this may be expressed as in (1). What makes things somewhat
confusing in the case of two dimensions is that because of the properties of embeddings,
the Riemannian manifold which is used to define A can be embedded in E3 and, also, the
configurations of a two-dimensional material surface which undergoes deformation are em-
bedded in E3. Thus, unless special care is taken to distinguish the differential geometric
notion of an isometry between two surfaces considered as purely mathematical objects from
the kinematical notion of an isometric deformation of a single material surface considered
as a physical object, the distinction may easily be missed. In particular, while it is necessary
that under an isometric (smooth) deformation of x ∈ D ⊂ E3 to y ∈ S ⊂ E3 the Gaussian
curvature at x ∈ D and the Gaussian curvature induced by the deformation at y ∈ S be equal,
the equality of Gaussian curvatures between two given surfaces does not guarantee that the
deformation of one onto the other is isometric — the possibility that the two surfaces are
related only by a mutual isometry cannot generally be dismissed.

In the above descriptions, within the overall context of the kinematics of material sur-
faces, it is perhaps useful to distinguish the notion of a ‘body’ as a (smooth) two-dimensional
Riemannian manifold, namely a surface with Riemannian metric structure whose elements
happen to be material points, from the notion of ‘configuration’ which is used to character-
ize the placement image of a body, namely a positioning of a material surface in E3 so as to
describe its state of deformation. In the present setting, we have used the noun ‘isometry’,
or ‘isometry relation’, in the differential geometric sense, which is where the notion of a
‘body’ resides, and we have used the conjunction ‘isometric deformation’ of the adjective
‘isometric’ and the noun ‘deformation’ in the kinematical sense, which is where the notion
of ‘configuration’ resides.

5 Examples and Discussion

5.1 Deformation of a Surface and an Isometry Relation

According to the elements of differential geometry as presented in do Carmo [1] and
Kreyszig [2], any two planar surfaces in E2 form a mutual isometry relation. While these
two surfaces, considered as material surfaces, may be deformed into one another with an
appropriate in-plane shear and area dilatation field, if the surfaces are unstretchable the de-
formation must be isometric and, in E2, the surfaces must be exact copies of one another.1

More generally, any deformation of a material surface embedded in E3 with a curved refer-
ence shape into the same shape in a way that alters the intrinsic distances between its interior
material points forms an isometry relation with its deformed image from a differential geo-
metric perspective but is not an isometric deformation from the perspective of the kinematics
of material surfaces. For example, S and S̄ defined respectively by (19) and (21) describe
the same right half-helicoidal surface B but involve different arrangements of the material
points of the referential half-catenoid D of (18), as is plainly evident from Fig. 1. As an-
other example, a material surface in a configuration that coincides with some portion of the
surface of a right circular cone can be internally stretched by a non-isometric deformation
into another configuration while coinciding with the same portion of the conical surface,
in which case the two configurations form an isometry relation but one is not the isometric
deformation of the other.

1See the remarks of Chen and Fried [18, §6].
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5.2 Rectifying Developables and Isometric Deformations of Flat Material Strips

There are examples in the mechanics literature where the distinction between the isometric
deformation of a reference material surface into its deformed image and a mutual isometry
relation between the two surfaces are not identified and properly distinguished. To illustrate
the importance of this circumstance, we consider the classical variational problem posed, but
not solved, by Sadowsky [6] and Wunderlich [8, 9] of determining the shape of the deformed
surface S ⊂ E3 of a 180◦ twist Möbius band as formed by the isometric deformation of a
given flat, undistorted and unstretchable rectangular material strip of length L and width
2w. A strategy for solving this classical problem that has been advanced in the literature
is based on minimizing the Wunderlich [8, 9] functional over the set of smooth rectifying
developable Möbius bands S , each of which is parametrized by

y = ȳ(s, t) = r(s) + t[b(s) + η(s)t(s)],
τ (s) = η(s)κ(s), s ∈ [0,L], t ∈ [−w,w],

}
(26)

for fixed L and w. In (26), r is the midline directrix, and t , b, κ , and τ are the corresponding
unit tangent, unit binormal, curvature, and torsion. Of course, t := r ′, b := t × p, κ := |t ′|,
and τ := t · (p × p′), where the normal to the directrix is given by p := t ′/κ , and the
Frenet–Serret equations hold: t ′ = κp, p′ = −κt + τb, b′ = −τp. The elements y ∈ S are
denoted by the parameter pair y := (s, t), and y ∈ E3 are points which define the form
of S as being a portion of a rectifying developable surface. The parametrized lines s =
constant are the generators g of S which intersect the midline directrix r at each s ∈ [0,L]
and which are given by g(s, t) := t[b(s) + η(s)t(s)] for t ∈ [−w,w]; they form an angle
β = arctan(1/η) with the positive tangent direction. The shape of the surface S is thus
completely determined by its midline directrix r , which is smooth and satisfies r(0) = r(L)

with smooth connection at its closure point. To assure closure with a 180◦ twist, t(L) = t(0)

and b(L) = −b(0). For S to be smooth, it is thus necessary that g(L, t) = −g(0, t) for
t ∈ [−w,w] and, consequently, that η(L) = −η(0). According to (3), the Riemannian metric
coefficients associated with S are given by

h11 = (1 + tη′(s))2,

h12 = η(s)(1 + tη′(s)),

h22 = 1 + η2(s),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

s ∈ [0,L], t ∈ [−w,w]. (27)

Unfortunately, the problem as stated with its proposed minimization strategy is a purely
geometrical one that stands apart from the mechanical problem of interest. It provides a
way of finding an optimal mutual isometry relation between a rectangular region of length
L and width 2w and a 180◦ twist Möbius band, among all rectifying developable Möbius
bands of the form (26), but not an optimal isometric deformation from a given unstretchable
rectangular material strip to a 180◦ twist Möbius band. Justification for this observation will
be presented below.

A noticably missing element in the purely geometrical problem formulated above is the
essential introduction of a fixed, undistorted reference configuration R for the unstretchable
rectangular material strip relative to which all deformations of the strip into a 180◦ twist
Möbius band of the rectifying developable form (26) are to be measured. To rectify this
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omission, we unambiguously, and once and for all, identify the fixed material points z of R
through

z = z(z1, z2) = z1ı1 + z2ı2, z1 ∈ [0,L], z2 ∈ [−w,w]. (28)

This is done modulo an essential uniquely defined relationship between the parameter pairs
(s, t) in (26) and the parameter pairs (z1, z2) in (28), a relationship which we now discuss.

Since S is a rectifying developable surface, it can be severed along the generator g(0, t),
t ∈ [−w,w], through its closure point and isometrically rolled out onto a plane. This shows
that the corresponding subset of the plane and S satisfy a mutual isometry relation. Thus,
due to the earlier stated Proposition, there is an isometric mapping of S into a planar strip D
of midline length L and width 2w and it is given by the parametrization

x = x̂(s, t) = (s + tη(s))ı1 + tı2 ∈E3,

τ (s) = η(s)κ(s), s ∈ [0,L], t ∈ [−w,w],

}
(29)

where {ı1, ı2} denotes an orthonormal basis in the plane of D.2 Here, the elements x ∈
D are denoted by the parameter pair x := (s, t), and x ∈ E3 are points which define the
form of D as being a portion of a planar surface. According to (2), the Riemannian metric
coefficients gij associated with D satisfy gij = hij in (27). The isometric mapping x ∈ D �→
y ∈ S ⊂E3 is defined implicitly via the parameter pair (s, t), together with the assignment
that the single closure point r(0) = r(L) of the midline directrix in S corresponds to the two
points x(0,0) := o and x(L,0) = Lı1 in D. The ends of the strip D in (29) are thus given,
respectively, by tη(0)ı1 + tı2 and (L+ tη(L))ı1 + tı2 for t ∈ [−w,w], where η(L) = −η(0),
which has the consequence that D has the shape of an isosceles trapezoid, being rectangular
only if η(L) = −η(0) = 0, which, for definiteness, we shall assume unless noted otherwise.
With this assumption, the shape of the planar strip D is a rectangle of length L and width
2w, and so the points x ∈ D may be identified uniquely with the material points z ∈ R by
enforcing the invertible relation

z1 = s + tη(s), z2 = t, s ∈ [0,L], t ∈ [−w,w], (30)

between (z1, z2) in (28) and (s, t) in (29). Based upon this observation, it is true that the
rectifying developable Möbius band S of (26) is the isometric deformation of the particu-
lar undistorted material rectangular reference configuration R of (28) in which the material
points z are identified in terms of the pair (s, t) by (30). It is important to observe, however,
that the location of each material point in this now specially structured configuration R
depends upon the particular Möbius band S because of the presence of the function η in
(30). Although the deformation of each specially structured reference configuration R to its
particular corresponding S is isometric, this only confirms that each rectifying developable
Möbius band S of the form (26) has an isometry relation with the planar rectangular strip
of shape D with length L and width 2w. The minimization strategy of the proposed purely
geometrical problem is based on the admissible set of all (smooth) rectifying developable
Möbius bands parametrized as in (26) and this requires the involvement of a different set
of material points z ∈ R for each choice S because of the presence of η in the linking re-
lation (30). For an unstretchable material the specially structured reference configuration R
required by (30) does not serve to identify one fixed set of material points in a rectangu-
lar reference configuration relative to which the deformation of all rectifying developable

2The mapping (s, t) �→ x in (29) is injective provided 1 + tη′(s) > 0 for s ∈ [0,L] and t ∈ [−w,w].
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Möbius bands S parametrized as in (26) is determined. With the exception of one Möbius
band, all others in the minimization strategy of the proposed purely geometrical problem do
not qualify as an isometric deformation from a single fixed rectangular material reference
configuration. However, because all are developable and all can be rolled out to cover the
same rectangular overall shape as does R then all of the Möbius bands in the variational
scheme form a mutual isometry relation with one another. However, it is worth emphasiz-
ing that all, with the exception of one, are not isometric deformations from the same fixed
rectangular material reference configuration R as was introduced in (28).

To explain further, suppose that

y∗ = ȳ∗(s, t) = r∗(s) + t[b∗(s) + η∗(s)t∗(s)],
τ ∗(s) = η∗(s)κ∗(s), s ∈ [0,L], t ∈ [−w,w]

}
(31)

represents the form of the Möbius band S∗ that is determined from the minimization strategy
of the proposed purely geometrical problem among all competing rectifying developable
Möbius bands S as parameterized in (26). Then, since S∗ is in the set of all admissible S
that are considered, we know that η∗(0) = η∗(L) = 0 and, analogous to (29), that there is an
isometric mapping of S∗ into a planar rectangular strip D∗ of midline length L and width
2w and it is given by the parametrization

x∗ = x̂
∗
(s, t) = (s + tη∗(s))ı1 + tı2 ∈E3,

τ ∗(s) = η∗(s)κ∗(s), s ∈ [0,L], t ∈ [−w,w],

}
(32)

Moreover, based upon the hypothesis (31), the points x∗ ∈ D∗, D∗ being fixed, may be
identified uniquely with the material points z ∈ R via

z = (s + tη∗(s))ı1 + tı2, s ∈ [0,L], t ∈ [−w,w], (33)

by enforcing the invertible relation3

z1 = s + tη∗(s), z2 = t, s ∈ [0,L], t ∈ [−w,w], (34)

between (z1, z2) in (28) and (s, t). Thus, it follows that the deformation of the material points
z ∈ R �→ y ∈ S may be considered to be the composition of the deformation of the material
points z ∈ R �→ x ∈ D followed by the isometric mapping of the points x ∈ D �→ y ∈ S , as
noted above in relation to (29) and (26). Clearly, from (29) and (33), the deformation of the
material points z ∈ R �→ x ∈ D may be written as

x − z = t (η(s) − η∗(s))ı1, s ∈ [0,L], t ∈ [−w,w], (35)

where (s, t) is determined in terms of z through (33) and (34). Because η(L) = −η(0) =
η∗(L) = −η∗(0) = 0, this deformation corresponds to an internal shear of the undistorted
fixed rectangular material reference configuration R.

Granted that the minimization strategy of the proposed purely geometrical problem de-
termines a rectifying developable Möbius band S∗ and a related flat reference configuration
D∗ such that S∗ is the isometric deformation of D∗. However, the admissible set of Möbius
bands in the variational scheme is based upon the class of rectifying developable forms and

3Note that footnote 2 applies also to η∗.
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this class includes non-isometric deformations. Thus, the proposed purely geometrical prob-
lem is related to the differential geometry of rectifying developable surfaces and does not
apply to the mechanics of unstretchable material surfaces. It identifies the Wunderlich [8, 9]
functional, which is based in mechanics and determines the bending energy for rectifying
developable surfaces, as a convenient dimensionally reduced functional to minimize within
the class of rectifying developable surfaces in order to determine an optimal rectifying de-
velopable Möbius band of given length L and width 2w. The constraint that the admissible
surfaces must be unstretchable material surfaces is not accounted for in this scheme.

If a specific flat rectangular configuration is chosen as the undistorted and unstretchable
material strip into which, by an isometric deformation, a Möbius band is to be formed by
smoothly connecting its two short ends together after a 180◦ twist, and the band is considered
to be a closed unknotted ribbon without self contact, then the Wunderlich [8, 9] functional is
a correct dimensional reduction for accurately representing the bending energy and for for-
mulating an appropriate minimization problem to determine its equilibrium form. However,
to determine the optimal form the functional cannot be extremized over the class of rec-
tifying developable surfaces as parametrized in (26). One acceptable approach, as Seguin,
Chen and Fried [5] have noted, is to extremize an augmented functional that incorporates
the constraints that ensure that the deformation is isometric through the introduction of suit-
able reactions in the form of Lagrange multiplier fields defined on the midline of the band.
Of course, the appropriate conditions of smoothness at the connection of the two ends must
be stated when defining the class of admissible variations that are used for determining the
governing Euler–Lagrange equations — equations which ultimately will provide the field of
generators. The minimization strategy of the proposed purely geometrical problem does not
mention such concern about preserving the isometric deformation property of the ribbon as
well as these constraints.

As a final observation, we note that the set of rectifying developable surfaces parametrized
as in (26) is not a sufficiently rich set of surfaces to consider for the purpose of determining
an energy minimizing isometric deformation of an unstretchable rectangular material strip.
In particular, we demonstrated herein that the classical variational problem of determining
the shape of an unstretchable Möbius band within that class of competitors is incompatible
with the constraint that the reference rectangular material strip is unstretchable. More gener-
ally, other mechanics based studies have noted limited applicability when using a rectifying
developable parameterization (26) to represent the isometrically deformed configuration of
a given rectangular material strip. For example, if the deformed configuration lies on the
surface of a right circular cylinder, then following this usage the strip must be wrapped
onto the cylinder so that two of its parallel edges are coincident with the generators of the
cylinder. However, a helical wrapping onto the surface of the cylinder is also isometric.
Even more exclusive is the observation of Chen, Fosdick and Fried [19, §4.3] that if the
deformed surface of a given unstretchable rectangular material strip is supposed to lie on the
surface of a right circular cone then it cannot be described using the rectifying developable
parameterization (26). However, such a deformation exists and it is isometric.
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