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Detection of roton and phonon excitations in a spin-orbit-coupled
Bose-Einstein condensate with a moving barrier
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We propose to detect phonon and roton excitations in a two-dimensional Bose-Einstein condensate with
Raman-induced spin-orbit coupling by perturbing the atomic cloud with a weak barrier. The two excitation
modes can be observed by moving the barrier along different directions in appropriate parameter regimes.
Phonon excitations are identified by the appearance of solitary waves, while roton excitations lead to distinctive
spatial density modulations. We show that this method can also be used to determine the anisotropic critical
velocities of superfluid.
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I. INTRODUCTION

Superfluids possess the property of allowing for dissipa-
tionless flow around a barrier as long as the velocity of the
flow does not exceed a critical value. This value can famously
be determined from the slope of the excitation spectrum [1,2],
which usually can be separated into two regions, allowing
for collective excitations of phonon and roton types. Phonons
exhibit a linear dispersion near the zero momentum, and the
associated critical velocity is the so-called phonon velocity.
Rotons, on the other hand, have a parabolic dispersion at a fi-
nite momentum, and their presence in the excitation spectrum
is known to lead to critical velocities lower than the phonon
velocity. This scenario has been experimentally confirmed in
liquid helium by moving an obstacle through the stationary
superfluid [3,4].

A more tunable platform that allows one to investigate the
physics of superfluids is the atomic Bose-Einstein condensate
(BEC) [5,6]. For these systems the phonon critical velocity
has been measured with the help of a moving barrier, which
can be realized in this case by a blue detuned laser [7–9].
In fact, the moving-barrier method is widely used to detect
various different excitation modes and measure critical veloc-
ities in different systems and situations [10–17]. For standard
BECs with pointlike particle interactions, this process excites
phonon modes in the atomic cloud which manifests in the
appearance of density modulations and solitary waves [9]. Ro-
ton excitations can emerge in these systems if the dispersion
relation is engineered to possess a double-well shape, and in
one recent experiment this was achieved by loading a BEC
into a shaken optical lattice and dragging a speckle pattern
through it [18]. In this experiment it was also confirmed that
the critical velocities in the roton and nonroton directions
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are different as a result of the asymmetry of the excitation
spectrum. Recently, anisotropic superfluids were also demon-
strated in dipolar BECs [19,20], which also possess roton
excitations.

Another route to realize a double-well-shaped disper-
sion that allows for roton excitations is synthetic spin-orbit
coupling [21–23]. Spin-orbit coupling can be induced in ul-
tracold atoms by using a pair of Raman lasers to couple
two hyperfine states of the atoms which act as pseudospin
states [24–26]. Spin-orbit-coupled BECs have been studied
intensively in recent years as, since the Galilean covariance
is broken in such a system, they possess various interesting
physical phenomena [27–36]. Phonon and roton structures
have been measured by using the Bragg spectroscopy [37,38],
and collective excitations have also been observed by sweep-
ing a moving barrier through the spin-orbit-coupled BEC [38].
However, the effect of the different excitation modes on the
density distribution is still not fully explored. In addition,
the superfluid critical velocities and their dependence on the
propagation directions of the quasiparticles have not been
measured directly by the moving-barrier method in such a
system.

In this work we explore how to detect phonon and roton
excitations in a two-dimensional BEC with Raman-induced
spin-orbit coupling by using a moving barrier. We show
that different density-modulated states can be observed when
phonon and/or roton modes are excited by a barrier with
appropriately chosen parameters, which is different to what
can be done with Bragg spectroscopy. The critical velocities
can also be measured by this method, and our results provide
an alternative way to detect excitations and explore dynam-
ics in spin-orbit-coupled condensates [39–41]. The structure
of the manuscript is as follows. In Sec. II we present the
critical velocities obtained from the excitation spectrum of
a homogeneous system, and in Sec. III the different exci-
tation modes and critical velocities are studied by using a
moving barrier. The mismatch between the critical veloci-
ties calculated from the excitation spectra and moving-barrier
method is discussed, and the conclusion are presented in
Sec. IV.

2469-9926/2022/106(1)/013302(7) 013302-1 Published by the American Physical Society

https://orcid.org/0000-0003-3943-0596
https://orcid.org/0000-0003-0535-2833
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.013302&domain=pdf&date_stamp=2022-07-05
https://doi.org/10.1103/PhysRevA.106.013302
https://creativecommons.org/licenses/by/4.0/


HAO LYU, YONGPING ZHANG, AND THOMAS BUSCH PHYSICAL REVIEW A 106, 013302 (2022)

II. CRITICAL VELOCITIES OF THE HOMOGENEOUS
SYSTEM

We consider a 87Rb BEC with spin-orbit coupling along the
x direction, which can be realized by coupling two hyperfine
states of the atoms with a pair of Raman beams [24,37].
For 87Rb atoms, the differences between the spin-dependent
interactions are very small [24], and one can approximately
consider the different interactions strengths to be spin inde-
pendent. The interaction coefficients can therefore be written
as gi j = g ≡ 4π h̄2as/m (i, j = 1, 2), where the s-wave scat-
tering length is as ≈ 100a0, with a0 being the Bohr radius and
m the atom mass. For simplicity, we initially assume that the
system is homogeneous.

The mean-field energy functional of the spin-orbit-coupled
spin-1/2 BEC is given by

E[ψ] =
∫

drψ†(r)HSOCψ (r)

+ g

2

∑
i, j=1,2

∫
dr|ψi(r)|2|ψ j (r)|2, (1)

where ψ = (ψ1, ψ2)T is the spinor wave function. The spin-
orbit-coupled Hamiltonian for a single particle can be written
as

HSOC = −1

2
σ0∇2 − i

∂

∂x
σz + �

2
σx, (2)

with � being the Rabi frequency of the Raman lasers, which
depends on the laser intensity. σx,z are the standard Pauli
matrices and σ0 is the two-dimensional identity matrix. In our
dimensionless calculations the units of length, momentum,
frequency, and energy are chosen as 1/kRam, h̄kRam, h̄k2

Ram/m,
and h̄2k2

Ram/m, respectively, where kRam = 2π/λRam, with
λRam being the wavelength of the Raman lasers.

Spin-orbit-coupled BECs exhibit a rich phase diagram that
can be accessed by tuning the relative parameters [24,42,43].
In this work we only consider the plane-wave phase in which
the Z2 symmetry is broken and which, for appropriately cho-
sen parameters [23], has a double-well-shaped single-particle
dispersion. The system therefore supports the excitation of
roton modes, however, only in one specific direction, while
phonon modes can be excited in any direction [44]. The differ-
ent energy-momentum relations of phonon and roton modes
lead to anisotropic critical velocities, which have already been
observed in experiments [38].

A suitable ansatz for the ground-state wave functions of
the plane-wave phase is given by ψi(r) = √

nϕieikx, with
the normalization condition |ϕ1|2 + |ϕ2|2 = 1. Here k is the
quasimomentum of the plane wave and n is the density of
the atoms. The parameters ϕ1,2 and k can be determined by
substituting the ansatz into Eq. (1) and then minimizing the
resulting free-energy functional F = E − μN , where μ is the
chemical potential and N is the number of atoms. This leads
to the stationary Gross-Pitaevskii (GP) equations,

μψ = (HSOC + ngσ0)ψ, (3)

and the collective excitation spectrum can be calculated once
the ground state and chemical potential are known. Here the
units of the density n and interaction strength g are k3

Ram

and h̄2/mkRam, respectively. By considering the system to be
perturbed by a weak external field, one can write the total
wave function as a sum of the ground-state wave function and
perturbation terms as

	1,2 = e−iμt [ψ1,2 + u1,2(r)e−iωt + v1,2(r)eiωt ], (4)

where ω is the excitation energy. The amplitudes of the pertur-
bations are given by ui(r) and vi(r) (i = 1, 2), and they satisfy
the normalization condition∑

i=1,2

∫
dr[|ui(r)|2 − |vi(r)|2] = 1. (5)

Substituting 	1,2 into the time-dependent GP equations lets
one obtain the Bogoliubov − de Gennes (BdG) equations [5]

L[φ] = ωφ, (6)

with φ = (u1, u2, v1, v2)T and

L =
(

HSOC + A − μ B
B∗ −HSOC − A∗ − μ

)
, (7)

with

A = ngσ0 + ng

(|ϕ1|2 ϕ∗
1ϕ2

ϕ1ϕ
∗
2 |ϕ2|2

)
, B = ng

(
ϕ2

1 ϕ1ϕ2

ϕ1ϕ2 ϕ2
2

)
.

The excitation spectrum can be obtained by numerically
solving the BdG equations, from which the critical velocities
can be calculated. Figure 1(a) shows the excitation spectra
along the x direction for different Rabi frequencies. One
can see that the phonon mode softens while the roton mode
stiffens with an increasing �. In this parameter regime the
system has two degenerate ground states at the quasimomenta
±k (k > 0). We choose the ground state occupying −k and
therefore the roton mode emerges at qrot ≈ 2k in the excita-
tion spectrum [23]. Note that the roton modes can only be
excited along the +x direction, while phononic excitations
can emerge along any direction. Critical velocities can be
determined by the excitation spectrum. Figures 1(b) and 1(c)
show the critical velocities of the phonon and roton modes
with varying �, where the dimensionless density is set as n =
0.025, corresponding to 1.5 × 1013cm−3, which is accessible
in current experiments [35,45].

In Fig. 1(b) we plot the critical velocities (in the unit
of h̄kRam/m) along the −x direction (green dots) and y di-
rection (red dots) as a function of the Rabi frequency. The
numerical results show that |cph,x| decreases with � increas-
ing, while |cph,y| is nearly independent. This is due to the
one-dimensional character of the Raman-induced spin-orbit
coupling. We also compare the numerical results with the
theoretical predictions [42],

cph,x =
√

ng

(
1 − �2

4

)
, cph,y ≈ √

ng, (8)

and good agreements can be seen in Fig. 1(b). The critical
velocity of the roton mode as a function of � is shown in
Fig. 1(c). Since the roton gap can be estimated as � ≈ ng�2/4
[37], one can expect that the slope at the roton minimum is
lower than that at the origin, which is clearly confirmed in
Fig. 1(c). Again, by comparing to the analytical expression
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FIG. 1. Collective excitation spectrum and critical velocities of a two-dimensional BEC with Raman-induced spin-orbit coupling along the
x direction. (a) Excitation spectrum for various �. The inset in (a) shows the roton gap. (b) Critical velocity of the phonon modes along the x
(green dots) and y (red dots) directions. (c) Critical velocity of the roton mode. In both panels the dots represent critical velocities calculated
from the excitation spectrum of the homogeneous system, while the dashed lines are calculated directly from Eqs. (8) and (9). The atom density
is set as n = 0.025.

for the critical velocity along the roton direction [18]

crot ≈ �

2k
, (9)

the expected agreement can be found.
These calculations, based on the homogeneous system,

provide reference values of critical velocities for the exper-
imentally relevant systems trapped in an external potential.
However, the inhomogeneous density distribution of a trapped
system is known to have a significant impact on the exci-
tation modes and the critical velocities [7,46]. In the next
section we will investigate excitations in a spin-orbit-coupled
BEC trapped in a harmonic trap by dragging a weak Gaussian
barrier through it.

III. NUMERICAL SIMULATIONS OF GP EQUATIONS

Next we consider a harmonically trapped, spin-orbit-
coupled BEC with a trapping frequency ωz in the z direction
that is much larger than the ones in the x-y plane, i.e., ωz �
ωx,y. Assuming also that the potential in the x-y plane is
symmetric, ωx,y = ω⊥, one can describe the dynamics of the
system by a two-dimensional, time-dependent GP equation of
the form

i
∂	

∂t
= [H ′

SOC + Ng′(|	1|2 + |	2|2) + Vext (r, t )]	, (10)

with 	 = (	1, 	2)T being the two-component wave function.
The interaction coefficient for the two-dimensional system is
given by g′ = 2

√
2πωzas, and the external potential is ac-

counted for by Vext (r, t ) and includes the harmonic oscillator
and the moving-barrier potentials. In the two-dimensional
case, the units of the mean density n2D and interaction strength
g′ are k2

Ram and h̄2/m, respectively. To compare with the
homogeneous system, we choose the parameters ng = n2Dg′,
where n2D is determined by the Thomas-Fermi radius [45].
Therefore the excitation spectra along the x direction calcu-
lated from the homogeneous BdG equations are unchanged
for both the three-dimensional and two-dimensional cases.
For the calculations we choose N = 2000, ωz = 0.12, and
ω⊥ = 0.006, so that we have n2D = 0.18 and g′ ≈ 155.5.

Finally, the Hamiltonian for the spin-orbit coupling is

H ′
SOC = −1

2
σ0

(
∂2

∂x2
+ ∂2

∂y2

)
− i

∂

∂x
σz + �

2
σx. (11)

To obtain the initial state we consider the barrier to be far away
from the condensate and set Vext (r, t ) = Vho(r), with Vho(r) =
1
2ω2

⊥(x2 + y2) being the harmonic trap potential. The ground
state of the system can then be obtained by using imaginary
time evolution.

Next we start to move the barrier through the condensate at
a constant velocity for a single pass [9]. To avoid complex
dynamical phenomena, we consider the barrier to be weak
and of a narrow Gaussian shape. In this situation, the external
potential is written as Vext (r, t ) = Vho(r) + U (r, t ), where the
optical dipole potential is given by

U (r, t ) = U0 exp

[
− (x − x0 − vxt )2 + (y − y0 − vyt )2

2σ 2

]
,

with U0 being the barrier height and σ characterizing the
width of the barrier. The initial position and the velocity of
the barrier are given by (x0, y0) and (vx, vy), respectively.

To excite the condensate, the barrier velocity should exceed
the superfluid critical velocity, and we will use the critical
velocities calculated for the homogeneous system in Sec. II
as reference values for those of the trapped system that are
unknown.

In Fig. 2 we show the results of the real-time evolution of
the system for different barrier velocities and for fixed Rabi
frequency � = 1.2. The calculation of the ground state shows
that the quasimomentum of the initial state is k ≈ 0.8, which
means that the quasimomentum corresponding to the roton ex-
citation is qrot ≈ −1.6. We move the barrier along the +x and
−x directions to generate phonon and roton excitations, re-
spectively. Figure 2(a1) shows the condensate density ρ(x, y)
for the situation where a barrier of height U0 = 0.01 and width
σ = 2 moves with vx = 0.2 along the antiroton direction. The
snapshot is taken at the time where the barrier is at x = 30,
and one can clearly see a dip in the density distribution at
the position of the barrier due to the repulsive nature of the
potential. This can be seen more clearly in Fig. 2(a2), which
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

FIG. 2. Induced dynamics in a spin-orbit-coupled BEC by a weak moving barrier. The barrier moves from x = −60 to 60 in (a1)–(a4),
and from x = 60 to −60 in (b1)–(b4), while vy = 0 in all figures. Snapshots in (a1), (a2), and (a3) are taken at the time where the barrier is at
x = 30; snapshots (b1), (b2), and (b3) are taken when the barrier is at x = −30. (a1) Two-dimensional density of the condensate for vx = 0.2.
(a2)–(a3) Cuts of the condensate and momentum densities at y = 0 for different velocities. The inset in (a2) shows the densities at around
x = 30. (b1) Two-dimensional density of the condensate for vx = −0.008. (b2)–(b3) Cuts of the condensate and momentum densities at y = 0
for different velocities. The inset in (b2) shows the densities at around x = 30. (a4) and (b4) show the density at the origin ρ(0, 0) as a function
of the location of the barrier xb for vx = 0.2 and vx = −0.008, respectively. Other parameters are N = 2000, ωz = 0.12, ω⊥ = 0.006, and
� = 1.2.

shows a cut of the density along y = 0 for different barrier
velocities. At t = 0 the density ρ(x, 0) has a Gaussian-like
shape, and the associated momentum distribution, shown in
Fig. 2(a3) along the ky = 0 direction, has a peak at around
kx = 0.8 (green dotted lines in both plots). Both of these
quantities are also shown at the later time where the barrier
is located at x = 30 in Figs. 2(a2) and 2(a3), where the blue
dashed and red solid lines correspond to the two different
velocities vx = 0.05 and vx = 0.2, respectively.

One can see that for the lower velocity vx = 0.05, the cloud
stays in the superfluid regime and the distortion to its initial
shape is small. However, for the larger velocity of vx = 0.2,
the density is clearly changed and a peak emerges in front
of the barrier [see the red solid line in Fig. 2(a2)], which
indicates that a localized wave has been excited by the phonon
excitations. One can also see that in this situation the peak of
ρ(kx, 0) at around kx = 0.8 is broadened, which is a signal of
the excitations. In addition, we also plot the time evolution of
the density at the origin ρ(0, 0) for vx = 0.2 in Fig. 2(a4) as
a function of the location of the barrier, xb = vxt . One can see
that ρ(0, 0) is oscillating with time even after the barrier has
left the cloud. The oscillation period is approximately R/vx,
with R ≈ 100 being the spatial extension of the cloud. We
also note that a density dip emerges at xb = 0 (t ≈ 268), since
the barrier passes the origin and atoms are repelled from the
center.

Next we study roton excitations in the system by moving
the center of the barrier from (60,0) to (−60, 0). A snapshot
of the condensate density ρ(x, y) for vx = −0.008 at the time
when the barrier is at x = −30 is shown in Fig. 2(b1). One
can immediately notice a periodic stripe pattern along the x
direction that is the result of the roton excitation. The period

of the stripes is about 4.05, which agrees with the value
of theoretical prediction, d = π/|qrot| ≈ 3.92. Figures 2(b2)
and 2(b3) show the real-space and momentum densities for
different vx, again for the time when the barrier is located
at x = −30. One can see that the density is only slightly
distorted for vx = −0.002, mostly due to the presence of the
repulsive barrier [see the inset of Fig. 2(b2)]. Furthermore, one
can see some additional peaks emerging in the momentum
distribution ρ(kx, 0), which, however, are very small and do
not affect the density profile in real space. Choosing a larger
vx, as shown by the red solid lines in Figs. 2(b2) and 2(b3),
allows one to excite the roton modes and leads to a nonlocal
perturbation of the density despite the local nature of the bar-
rier. This is different from the local excitation produced in the
phonon excitation case discussed above. Correspondingly, a
peak emerges at kx ≈ −0.8 in the momentum density ρ(kx, 0),
clearly indicating the excitation of the roton mode. The wave
function of the system is therefore in a superposition of plane
waves with different quasimomenta, which can be interpreted
as a time-varying stripe phase. This is reminiscent of detection
of roton modes in a dipolar gas by using density modulations
[47]; however, here the density-modulated state is an excited
state, which does not preserve superfluidity. The density at
the origin ρ(0, 0) as a function of the location of the barrier
is shown in Fig. 2(b4). In contrast to the phonon case, ρ(0, 0)
has two oscillation periods after the barrier leaves the origin.
One period is approximately d/|vx| ≈ 506, as a result of the
spatial periodicity of the density, and the other one is about
R/|vx| ≈ 12 500, which is associated with boundaries of the
cloud.

The numerical simulations also show that roton modes can
only be excited when the barrier width is comparable with the
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FIG. 3. Snapshot of the density of the condensate along y = 0
when the barrier is at x = −30 for different barrier widths. All other
parameters are the same as in Fig. 2(b1).

width of a single stripe, and in Fig. 3 we show densities for the
same parameters as used in Fig. 2(b1) but for different barrier
widths. One can see that no excitations appear for barriers
of widths σ = 0.2, 0.5, and 2. For σ = 2, the momentum
distribution of the barrier is narrow so that the roton modes
cannot be excited. On the other hand, if the barrier width is
very small, the excitation is so weak that the contrast of the
stripes is reduced. From the calculations we find that σ = 1 is
favorable for the roton excitations.

All the above shows that phonon and roton modes can be
excited in a spin-orbit-coupled BEC by dragging a barrier
through it. This method can also be used to determine the
critical velocities along different directions [18]. We note that
the velocities chosen in Fig. 2 are beyond the critical velocities
and they lead to a visible amount of excitations. In Fig. 4(a)
we show the critical velocities along the antiroton direction
and orthogonal to it as a function of the Rabi frequency. After
preparing the ground states, we move the barrier along the +x
and +y directions to excite phonon modes in the condensate.
For every point in the figure, we choose barriers with differ-
ent speeds and observe the time-varying density. The critical
velocities cph,x and cph,y are then determined by noting when
localized waves emerge in the cloud. By increasing �, we find
that |cph,x| declines and |cph,y| is nearly unchanged, which is in
accordance with Fig. 1. Here we only show the absolute values
of the critical velocities, which can be positive or negative
and depend on the quasimomentum of the ground state. By
applying the imaginary time evolution, we find that the system
will occupy one of the two degenerate ground states randomly,
so that the signs of the quasimomenta can be different if �

is changed. The critical velocities of the roton modes can be
determined by a similar procedure and are shown in Fig. 4(b).
To determine crot, we choose the emergence of stripes as the
signal of roton excitations. By comparing Figs. 4(b) and 1(b),
we find that the magnitudes of |crot| for both cases agree
well, although we obtain larger critical velocities by using the
moving-barrier method.

While in general the critical velocities calculated by the
moving-barrier method are consistent with those obtained
from the BdG equations, the former lead to slightly larger

FIG. 4. Critical velocity of the spin-orbit-coupled BEC along
directions where no roton exists (a) and along the roton direction
(b) obtained by the moving-barrier method. The amplitude of the
Gaussian barrier is fixed as U0 = 0.01, while its width is set as σ = 2
in (a) and σ = 1 in (b). Other parameters are the same as in Fig. 2.

values. This obvious difference is that the BdG equations are
based on a homogeneous system while the moving-barrier
method is applied to a trapped system. This is in contrast to
previous works that have pointed out that an inhomogeneous
density distribution can lead to a reduced critical velocity
[7,18]. Let us also mention that although the low local density
at the edges of the cloud should lead to a reduced critical
velocity, the density modulations due to the instability are
weak when a low barrier velocity is chosen.

To reduce the effect of the inhomogeneity, from the start
we have in our simulations used narrow Gaussian barriers
with a height that is much less than the chemical potential
of the system. This means that a higher speed of the barrier
is needed to induce visible excitations. In our calculations the
critical velocity along the nonroton direction is determined by
the emergence of a localized wave, while a spatially periodic
density is treated as the signal of roton excitations. These
phenomena are hard to observe if the barrier speed is close
to the value of the homogeneous system and become more
obvious when the barrier speed is large. Therefore critical
velocities may be overestimated. Furthermore, to enhance the
accuracy of detecting the critical velocity of the rotons, a
larger Rabi frequency can be chosen, since the density period
can be raised and this makes the stripes easier to observe.
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FIG. 5. Critical velocity of the spin-orbit-coupled BEC as a func-
tion of the trapping frequency. The Rabi frequency is set as � = 1.2,
and the other parameters are the same as in Fig. 2.

The trap parameters can also have an influence on the
critical velocity. The dependence of |cph,x| and |crot| on the
trapping frequency ω⊥ is shown in Fig. 5 for a fixed Rabi
frequency. One can see that both |cph| and |crot| rise with
increasing ω⊥. This can be understood by noting that a tight
confinement of the cloud leads to an enhanced mean density,
which requires a higher speed of the barrier to create exci-

tations. In this situation, the critical velocities of the trapped
system move further and further away from the values of a
homogeneous system.

IV. CONCLUSION

In summary, we have studied the generation of phonon
and roton excitations in a two-dimensional BEC with Raman-
induced spin-orbit coupling by dragging a barrier through it.
The phonon excitations are characterized by the emergence of
a localized wave, while the roton excitations lead to a period-
ical modulation of the density distribution. These phenomena
can also be used to determine the critical velocities along
different directions that exist as a result of the anisotropic
nature of the system. These studies provide a guide for a
practical route to investigate excitations and dynamics in spin-
orbit-coupled BECs.
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