
PHYSICAL REVIEW A 105, 063517 (2022)

Optical force between two coupled identical parallel optical nanofibers
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We study the optical force between two coupled parallel identical nanofibers using the rigorous array mode
theory. We numerically demonstrate for the coupled nanofibers that the forces of the even array modes are
attractive, while the forces of the odd array modes are repulsive. We examine the dependencies of the optical
forces on the array mode type, the fiber radius, the light wavelength, and the fiber separation distance. We show
that for a given power and a given separation distance, the absolute value of the force achieves a peak when the
fiber radius and the light wavelength are appropriate.
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I. INTRODUCTION

Two coupled waveguides are essential components of
several optical devices such as optical directional couplers,
multicore fibers, polarization splitters, interferometers, and
ring resonators [1–3]. It is known that the overlap of the
modes of evanescently coupled waveguides or cavities results
in an optical gradient force [4–9], and examples of devices
where this is exploited include coupled strip waveguides [4],
a waveguide suspended over a silica substrate [8], coupled
slab waveguides [9], coupled whispering-gallery-mode micro-
spheres [10,11], coupled guiding mirrors [12], and coupled
microring resonators [13]. It has already been shown that
the optical gradient force between two coupled dielectric
structures is attractive or repulsive depending on whether a
symmetric or antisymmetric mode is excited [4–13]. The op-
tical gradient forces between coupled macroscopic structures
have been experimentally observed for a waveguide coupled
to a high-Q microresonator [14] or to a dielectric substrate
[15], coupled nanophotonic waveguides [16,17], and coupled
ring resonators [18].

Optical devices based on coupled tapered thin fibers have
been produced and studied [19–21]. Recently, miniaturized
optical devices composed of coupled twisted and knotted
optical nanofibers have been fabricated [20]. The optical
nanofibers have a subwavelength diameter and significantly
different core and cladding refractive indices [22]. Such ultra-
thin fibers allow for a guided light field, which has tight radial
confinement, to propagate along the fiber for a long distance
and to interact efficiently with nearby emitters, absorbers, and
scatterers [23–25].
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Coupling between two optical nanofibers has been studied
in the framework of the coupled mode theory [20,26]. A
rigorous theory for the guided normal modes of two coupled
dielectric rods has been developed using the circular harmon-
ics expansion method [27]. This theory has been extended
to multicore fibers [28–31] and has been used to study the
propagation constant [27,31,32], the flux density [27], the
polarization pattern [31], the mode cutoff [33], the spatial field
intensity distributions [34], and the atom trapping [35]. The
photon coupling efficiency of a twin-nanofiber structure has
recently been investigated by numerical simulations based on
the finite-difference time-domain method [36].

In this work, we study the optical force between two cou-
pled identical parallel optical nanofibers. We show that the
forces are attractive for even array modes and repulsive for
odd array modes. We examine the dependencies of the optical
forces on the array mode type, the fiber radius, the light
wavelength, and the fiber separation distance.

The paper is organized as follows. In Sec. II, we present the
model for the system of two coupled identical parallel optical
nanofibers and review the calculation methods for the optical
forces between the waveguides. In Sec. III, we calculate nu-
merically the optical force between the nanofibers. Finally, we
conclude in Sec. IV.

II. TWO COUPLED IDENTICAL PARALLEL
OPTICAL NANOFIBERS

A. Model and array modes

We study two identical vacuum-clad, optical nanofibers
that lie parallel to each other along the direction of the fiber
axis (see Fig. 1). The fibers are labeled by the indices j = 1, 2.
Each nanofiber j can be viewed as a dielectric cylinder with
a radius a and a refractive index n f > 1, surrounded by an
infinite background of vacuum or air with a refractive index
n0 = 1. The diameter of each nanofiber is taken to be a few
hundreds of nanometers and each can support either a sin-
gle or multiple modes depending on the fiber size parameter
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FIG. 1. (a) Two coupled parallel optical nanofibers and (b) the
geometry of the system.

V = ka
√

n2
f − n2

0. Here, k = ω/c is the wave number of light

with an optical frequency ω in free space.
We introduce the global Cartesian coordinate system

{x, y, z}, where z is parallel to the z1 and z2 axes of the fibers,
x is perpendicular to the z axis and connects the centers O1

and O2 of the fibers, and y is perpendicular to the x and z axes
(see Fig. 1). The plane xy is the transverse (cross-sectional)
plane of the fibers. The positions of the fiber centers O1 and O2

along x are taken to be O1 = −(a + d/2) and O2 = a + d/2,
where d is the separation distance between the two fibers.

The normal modes of the coupled fibers are termed array
modes. We study the array modes of a light field with an
optical frequency ω which propagates in the +z direction with
a propagation constant β. The electric and magnetic compo-
nents of the field can be written as E = [Ee−i(ωt−βz) + c.c.]/2
and H = [He−i(ωt−βz) + c.c.]/2, respectively, where E and H
are the slowly varying complex envelopes.

The rigorous theory for the guided normal modes of two
parallel dielectric cylinders has been formulated in Ref. [27].
The results of this theory have been summarized and dis-
cussed in detail in Ref. [34]. According to Refs. [27,34], two
coupled identical parallel fibers have four types of guided
normal modes, namely, the even Ez-cosine modes, the odd
Ez-cosine modes, the even Ez-sine modes, and the odd Ez-sine
modes. The cross-sectional profiles of the electric intensity
distributions |E|2 of the fields in these normal modes are
illustrated in Fig. 2 and are discussed in Sec. III.

B. Optical force between the nanofibers

A simple dispersion formula for the optical force between
coupled parallel waveguides has been derived in Ref. [4].
According to Ref. [4], an adiabatic change in the separation

distance d shifts the eigenmode frequency ω and results in the
optical force per unit length,

F = −
(

∂U

∂d

)
β

= −U

ω

(
∂ω

∂d

)
β

, (1)

between the waveguides. Here, U = Nh̄ω is the energy per
unit of propagation length of the field in an eigenmode of the
combined system, with N being the corresponding number of
photons. The derivative in Eq. (1) is taken at a fixed prop-
agation constant β to ensure the translational invariance of
the optical mode in the longitudinal direction. Negative and
positive values of F correspond to attractive and repulsive
forces.

Assume that the dispersion relation for the system is
�(ω, β, d ) = 0. The triple product (Euler’s chain) rule reads
(∂ω/∂β )d (∂β/∂d )ω(∂d/∂ω)β = −1. On the other hand, the
optical power transmitted through the system is given as
P = vgU , where vg = (∂ω/∂β )d is the group velocity. Hence,
Eq. (1) yields the dispersion formula [4]

F = P

c

(
∂neff

∂d

)
ω

, (2)

where neff = β/k is the effective refractive index.
The optical force between the nanofibers can also be cal-

culated from the Maxwell stress tensor. The components Tii′

with i, i′ = x, y, z of the cycle-averaged Maxwell stress tensor
T are given as [37]

Tii′ = 1
4 Re

[
ε0n2

ref (2EiE∗
i′ − δii′ |E|2) + μ0(2HiH∗

i′− δii′ |H|2)
]
,

(3)

where nref = n f inside a fiber and nref = n0 outside the fibers.
It is known that the cycle-averaged optical force F on a body
is [37]

F =
∮

S
T · dS, (4)

where S is a closed surface surrounding the body. We define
F as the optical force on nanofiber 2. The surface S for the
integral in Eq. (4) for this force surrounds nanofiber 2, but
not nanofiber 1. To calculate the surface integral, we choose
an appropriate surface and take into account the fact that the
amplitudes E and H of the electric and magnetic components
of the field in the guided array mode quickly approach 0 in the
limit r ≡

√
x2 + y2 → ∞. We find that only the component

Fx of the force F is nonzero. The optical force per unit length
between the nanofibers is given by F = Fx/L, where L is the
length of the nanofibers. We get

F = −
∞∫

−∞
Txxdy, (5)

where

Txx = 1
4

[
ε0n2

0(2|Ex|2 − |E|2) + μ0(2|Hx|2 − |H|2)
]

(6)

and the integration is taken along the y axis (see Fig. 1). It has
been shown for a variety of coupled systems that the results of
the calculations for the force from Eq. (2) are identical to that
of the calculations from Eq. (5) [4,8,9].
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FIG. 2. Cross-sectional profiles of the electric intensity distributions |E|2 of the fields in (a) the even Ez-cosine mode, (b) the odd Ez-cosine
mode, (c) the even Ez-sine mode, and (d) the odd Ez-sine mode of two identical parallel nanofibers. The fiber radius is a = 200 nm, the
wavelength of light is λ = 800 nm, and the separation distance between the two fibers is d = 100 nm. The refractive index of the fibers is
nf = 1.4533 and that of the surrounding medium is n0 = 1. The power of light is the same for the modes.

It is known that optical forces in waveguides can be gener-
ated not only by radiation pressure and the field gradient, but
also by the electrostriction effect, which can create deforma-
tions of the waveguides [38]. Equations (2) and (5) describe
only those optical forces that are produced by radiation pres-
sure and the field gradient. In the present work, we neglect the
electrostrictive forces, as in Refs. [4,8,9]. The electrostrictive
forces scale to the fourth power of the material refractive index
and can therefore be significant for a waveguide made of a
high refractive index material, such as silicon [38]. On the
other hand, the electrostrictive forces reduce with decreasing
cross-sectional size of the waveguide [38]. Since the radius
of a nanofiber is small and the refractive index of its silica
core is not large (compared to that of silicon), we expect that
the effects of the electrostrictive forces are not dramatic in the
case of nanofibers.

III. NUMERICAL CALCULATIONS

In this section, we numerically calculate the optical force F
produced by the field in a guided array mode of two identical

parallel vacuum-clad silica nanofibers. The refractive index
of the vacuum cladding is, as already mentioned, n0 = 1. To
calculate the refractive index n f of the silica cores of the
nanofibers, the four-term Sellmeier formula for fused silica
is used [39,40]. In particular, for light with the wavelength
λ = 800 nm, we have n f = 1.4533.

According to the previous section, in the case of iden-
tical fibers, there are four kinds of normal modes, denoted
as the even Ez-cosine, odd Ez-cosine, even Ez-sine, and
odd Ez-sine modes [27]. We are interested in the case
where the fiber radius is small enough that no more than
one normal mode of each kind can be supported by the
fibers.

The spatial distributions of the fields in the guided ar-
ray modes of two parallel fibers have been studied in
Refs. [27,34]. In the present paper, we are interested in the
optical forces between two nanofibers. These forces can be
calculated from the gap-dependent effective refractive index
neff (or the propagation constant β) for the array mode using
Eq. (2). They can also be obtained from the field distributions
using Eqs. (5) and (6).
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We use the technique of Refs. [27,34] to calculate the field
distributions of the guided array modes. In Fig. 2, we plot the
cross-sectional profiles of the electric intensity distributions
|E|2 of the fields in the even Ez-cosine, odd Ez-cosine, even
Ez-sine, and odd Ez-sine modes. We see that |E|2 is symmetric
with respect to the principal axes x and y. Figure 2(a) shows
that the field intensity of the even Ez-cosine mode is dominant
in the area between the fibers. We observe from Fig. 2(b) that
the field intensity of the odd Ez-cosine mode is dominant in
the outer vicinities of the left-side surface of the left-side fiber
and the right-side surface of the right-side fiber. Figure 2(c)
shows that the field intensity of the even Ez-sine mode is
dominant in the outer vicinities of the top and bottom parts of
the surfaces of the fibers, and is significant in the area between
the fiber surfaces. According to Fig. 2(d), the field intensity of
the odd Ez-sine mode is dominant in the vicinities of the top
and bottom parts of the surfaces of the fibers, significant in
the outer vicinities of the left-side surface of the left-side fiber
and the right-side surface of the right-side fiber, and small in
the area between the fibers.

It is clear from Fig. 2 that for each of the two interfacing
nanofibers, the field intensity on the inward side (the right
side of the left-side nanofiber or the left side of the right-side
nanofiber) is different from the field intensity on the outward
side (the left side of the left-side nanofiber or the right side of
the right-side nanofiber). In the case of even array modes, the
field intensity on the inward sides is stronger than that on the
outward sides, while in the case of odd array modes, the re-
lation is opposite. It is known that a polarizable microparticle
with a dipole induced by a laterally varying optical field will
be accelerated towards the region with a stronger field [41].
Nanofibers can be considered as a collection of microscopic
dipolar subunits and, hence, can also be accelerated towards
the regions with a stronger field. Consequently, we expect
that the two nanofibers will be attracted toward or repulsed
from each other by the field in an even or odd array mode,
respectively.

We use the dispersion relation (2) to calculate the optical
force F as functions of the fiber radius a, the light wavelength
λ, and the separation distance d . We note that the use of
expression (5) for F in terms of the Maxwell stress tensor
gives the same numerical results (see Fig. 8).

We plot in Figs. 3 and 4 the power-normalized optical force
per unit length, F/P, as functions of the fiber radius a and the
light wavelength λ. The figures show that the magnitude of
the optical force depends on the mode type and the sign of
the force depends on the mode parity. Indeed, the forces of
the even modes are negative (see the upper parts of the fig-
ures), while the forces of the odd modes are positive (see the
lower parts of the figures). Thus, the optical forces between
the nanofibers are attractive for the fields in the symmetric
modes and repulsive for the fields in the antisymmetric modes,
in agreement with the results for other systems of coupled
waveguides and cavities [4–13]. These features are the conse-
quences of the fact that for increasing fiber separation distance
d , the propagation constant β and, hence, the effective refrac-
tive index neff = β/k decrease in the case of the even array
modes and increase in the case of the odd array modes [34].
The negative and positive signs of the optical forces are also
in agreement with the field intensity distributions shown in

FIG. 3. Power-normalized optical force per unit length, F/P, as a
function of the fiber radius a in the cases of (a) even and (b) odd array
modes. The wavelength of light is λ = 800 nm and the separation
distance between the two fibers is d = 100 nm. The refractive index
of the fibers is nf = 1.4533 and that of the surrounding medium is
n0 = 1. The vertical dotted lines indicate the positions of the cutoffs
for the odd array modes.

Fig. 2, where the nanofibers are expected to be accelerated
towards the regions with a stronger field. Note that the typical
order of magnitude of the power-normalized force per unit
length, F/P, for coupled nanofibers is 1 pN μm−1 mW−1,
similar to that for coupled silicon strip waveguides [4], a
silicon waveguide suspended over a silica substrate [8], and
coupled silicon slab waveguides [9]. According to Ref. [4],
the electrostatic force due to trapped or induced charges in

FIG. 4. Power-normalized optical force per unit length, F/P, as
a function of the wavelength λ of light in the cases of (a) even
and (b) odd array modes. The fiber radius is a = 200 nm and the
separation distance between the two fibers is d = 100 nm. The re-
fractive index nf of the nanofibers is calculated from the four-term
Sellmeier formula for fused silica [39,40] and that of the surrounding
medium is n0 = 1. The vertical dotted lines indicate the positions of
the cutoffs for the odd array modes.
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FIG. 5. Power-normalized optical force per unit length, F/P, as
a function of the fiber separation distance d in the cases of (a) even
and (b) odd array modes. The fiber radius and the light wavelength
are a = 200 nm and λ = 800 nm, respectively. The refractive indices
of the fibers and the surrounding medium are as in Fig. 3.

coupled silicon strip waveguides is at least one order smaller
than the optical force, and the Casimir-Liftshitz is even
smaller. We expect that similar relations between the forces
can be realized in the case of nanofibers with an appropriate
and reasonable power of light. We also note that for the power
of 1 mW, the optical force between the nanofibers is about
the same as the electrostatic force between nanomechanical
optical fibers with integrated electrodes [42].

We observe from Figs. 3 and 4 that the odd Ez-cosine
and odd Ez-sine modes have cutoffs, but the even Ez-cosine
and even Ez-sine modes have no cutoff [27,33]. According to
Ref. [34], the cutoff values of the fiber radius a and the light
wavelength λ for the odd Ez-cosine and Ez-sine modes depend
on the separation distance d between the two fibers. A smaller
d leads to a larger cutoff value of the fiber radius a and to a
smaller cutoff value of the light wavelength λ [34].

Figures 3 and 4 show that the dependencies of the power-
normalized force F/P on the fiber radius a and the light
wavelength λ are not monotonic: the absolute value |F |/P of
the power-normalized force has a local maximum as functions
of a and λ. It is clear that when a is large enough or λ is
small enough, the magnitude |F |/P of the normalized force
reduces with increasing a or decreasing λ. Similarly, when a
is small enough or λ is large enough, the magnitude |F |/P of
the normalized force reduces with decreasing a or increasing
λ in the case of even modes, or has a cutoff in the case of odd
modes. Comparison between the solid red and dashed blue
curves in Figs. 3(a) and 4(a) shows that the absolute value of
the power-normalized force per unit length, F/P, for the even
Ez-cosine mode (solid red curves) is larger than that for the
even Ez-sine mode (dashed blue curves).

We plot, in Figs. 5–7, the power-normalized optical force
per unit length, F/P, as a function of the fiber separation
distance d for three different sets of values of the fiber radius
a and the light wavelength λ. We observe from Fig. 5 that
when the fiber radius a is large enough or, equivalently, the

FIG. 6. Same as Fig. 5, except for a = 150 nm.

light wavelength is small enough, there is no cutoff of the
guided normal modes for any separation distance d . How-
ever, Figs. 6(b) and 7(b) show that if the fiber radius a is
small enough or, equivalently, the light wavelength is large
enough, a cutoff of an odd guided normal mode may appear
at a nonzero fiber separation distance d . We observe from
Figs. 5–7 that the dependence of the normalized force F/P
on the fiber separation distance d is monotonic for the even
array modes, but not monotonic for the odd array modes.

Figures 5–7 show that the differences between the optical
forces for the Ez-cosine and Ez-sine modes of the same even or
odd parity reduce with increasing fiber separation distance d .
This feature arises as a consequence of the fact that the differ-
ences between the optical forces for the Ez-cosine and Ez-sine
array modes are determined by the differences between the
propagation constants of the array modes and, hence, by the
strength of the coupling between the nanofibers. This coupling
depends on the mode overlap and hence reduces with increas-
ing separation distance d . In addition, the dependence of the
coupling on the mode polarization is very weak in the limit of
large d [26,34].

FIG. 7. Same as Fig. 5, except for λ = 1000 nm.
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FIG. 8. Comparison between the results of the numerical cal-
culations for the power-normalized optical force per unit length,
F/P, using Eq. (2) (black lines) and Eq. (5) (red points). The fiber
radius and the light wavelength are a = 250 nm and λ = 780 nm,
respectively. The refractive indices of the fibers and the surrounding
medium are as in Fig. 3.

We compare in Fig. 8 the results of the numerical cal-
culations for the power-normalized optical force per unit
length, F/P, using the dispersion relation (2) (black lines)
and the Maxwell stress tensor relation (5) (red points). The
figure shows that the two methods give the same numerical
results for the optical force [4,8,9].

IV. SUMMARY

We have studied the optical force between two coupled
identical parallel nanofibers using the rigorous array mode

theory. We have numerically demonstrated for the couple
nanofibers that the forces of the even array modes are negative
(attractive), while the forces of the odd array modes are posi-
tive (repulsive). We have investigated the dependencies of the
optical forces on the array mode type, the fiber radius, the light
wavelength, and the fiber separation distance. We have shown
that the dependencies of the optical forces on the fiber radius
and the light wavelength are, in general, nonmonotonic. For
a given power and a given separation distance, the absolute
value of the force achieves a peak when the fiber radius and
the light wavelength are appropriate. Our results are important
for controlling and manipulating the optical forces between
coupled nanofibers.

The techniques used in this paper for the calculations of
the optical force between two identical nanofibers can be
extended to the case of two nonidentical nanofibers. Such an
extension would require more extensive numerical calcula-
tions and a more comprehensive analysis for the normal array
modes. Another possible extension is to consider the case
where the field is in a superposition of an even mode and an
odd mode. An appropriate manipulation of the superposition
may result in a trapping potential for the nanofibers. Due to the
complexity and rich underlying physics, the aforementioned
potential extensions deserve to be studied separately in future
work.
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