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We develop a program package named QS3 [kjú:-és-kjú:b] based on the (thick-restart) Lanczos method 
for analyzing spin-1/2 XXZ-type quantum spin models on spatially uniform/non-uniform lattices near 
fully polarized states, which can be mapped to dilute hardcore Bose systems. All calculations in QS3, 
including eigenvalue problems, expectation values for one/two-point spin operators, and static/dynamical 
spin structure factors, are performed in the symmetry-adapted bases specified by the number N↓ of 
down spins and the wave number k associated with the translational symmetry without using the bit 
representation for specifying spin configurations. Because of these treatments, QS3 can support large-
scale quantum systems containing more than 1000 sites with dilute N↓. We show the benchmark results 
of QS3 for the low-energy excitation dispersion of the isotropic Heisenberg model on the 10 × 10 × 10
cubic lattice, the static and dynamical spin structure factors of the isotropic Heisenberg model on the 
10 × 10 square lattice, and the open-MP parallelization efficiency on the supercomputer (Ohtaka) based 
on AMD Epyc 7702 installed at the Institute for the Solid State Physics (ISSP). Theoretical backgrounds 
and the user interface of QS3 are also described.
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Solution method: Application software based on the full diagonalization method and the exact 
diagonalization method using the Lanczos and thick-restart Lanczos techniques for quantum spin S = 1/2
models such as the XXZ model.
Restrictions: Spin S = 1/2 systems with U(1) symmetry.
Unusual features: Massively large quantum spin systems with U(1) symmetry near the saturation field can 
be solved with or without considering translational symmetry, which is difficult to treat using standard 
exact diagonalization libraries with the bit representation for specifying spin configurations.
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1. Introduction

The exact diagonalization (ED) method [1] is a traditional ap-
proach and indeed one of the most powerful numerical methods 
to correctly understand the nature of quantum many-body sys-
tems from finite-size cluster calculations. This method enables us 
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to obtain directly our target eigenvectors and the corresponding 
eigenvalues of Hamiltonian Ĥ and to evaluate all of the static, dy-
namical, and thermal properties without any bias by storing in 
physical memory of computers several vectors of the size as large 
as the dimension of the Hamiltonian matrix. Moreover, in contrast 
to a quantum Monte Carlo method, which in general suffers from 
the so-called negative sign problem for fermion and quantum frus-
trated spin systems, the ED method does not have such kind of 
difficulty. Therefore, the ED method has been used at the forefront 
in the research field of quantum many-body systems.

The only disadvantage of the ED method is that the accessi-
ble system size is severely limited to small clusters. A direct way 
to alleviate this disadvantage is to introduce the message-passing-
interface (MPI) parallelization [2] and adapt the Hamiltonian sym-
metry [3]. For examples, sophisticated ED program packages such 
as ALPS [4–6], SpinPack [7], Rokko [8], and H� [9] are designed 
with MPI techniques for high performance on large-scale super-
computers and use U(1) and/or lattice symmetry to blockdiagonal-
ize the Hamiltonian matrix. Indeed, these large-scale computations 
with ingenious ways have led to new findings and many discov-
eries in the long history of studies in the quantum many-body 
systems, some of which can be found, e.g., in Refs. [10–19].

Nonetheless, the accessible system sizes are still small because 
the required computational resources increase exponentially with 
the system size. For example, for a spin S=1/2 Heisenberg model 
without magnetic field, the conventional Lanczos algorithm [20]
can treat up to 50 spins by fully using the power of a large mod-
ern supercomputer [21]. In some particular cases, the system size 
limitation to small clusters may not be an issue, e.g., in strong ran-
dom systems [22–27] and in the high-temperature limit, where the 
typical correlation lengths are usually small. However, the acces-
sible system size becomes crucial when, for example, gapless or 
incommensurate phases are discussed in various intriguing quan-
tum many-body systems.

Let us now remind a distinct advantage of the U(1) symmetry 
adaption for a quantum many-body system that can be mapped to 
a dilute particle system with a conserved number of particles, e.g., 
an S = 1/2 XXZ model near the saturation field. In such a system, 
the ED method can treat much larger system sizes with 103 sites 
and more, in principle, because the required matrix dimension is 
scaled as O (N N↓ ), instead of O (exp(N)), where N is the system 
size and N↓ is the number of particles. A protocol in previous ED 
program packages [7,9,28–30] is to use a bitwise operation and 
thus the power of the U(1) symmetry is not fully exploited. While 
the bitwise operation is essential to speedup higher-level arith-
metic operations, it requires that all basis states for expressing the 
Hamiltonian matrix are represented as binary numbers. Therefore, 
we cannot express the basis for more than 64 sites [31] in a sin-
gle binary number, e.g., when an S = 1/2 spin model is treated on 
64-bit processors.

Considering the fact that no ED program packages are currently 
available (with one exception), each researcher has to individually 
implement their own computational program to perform numeri-
cal diagonalization for analyzing quantum spin systems near satu-
rated magnetization with more than 64 sites [32–34]. We should 
however note that although it is not well known, the ALPS numer-
ical diagonalization library can treat quantum spin systems with 
more than 64 sites, but the details of the implementation are not 
documented in the ALPS manual [4] and its original paper [5,6]. 
In order to facilitate the further development of the methodology 
in this research field, it is highly desirable to establish a numerical 
diagonalization library for large-scale spin systems near the satu-
ration by providing a systematically explained algorithm with the 
open-source library that anyone can easily use.

In this paper, we develop an ED program package named QS3

(Quantum Spin Solver near Saturation). This package can treat 
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S=1/2 XXZ spin models near the saturation field where the U(1) 
symmetry is preserved with small N↓ = O (1). This is a symmetry 
adapted open source ED package developed without using the bit 
representation. QS3 also adapts the lattice symmetry of the Hamil-
tonian and thus it is able to treat O (103) sites near the saturation 
field. A prototype of QS3 has been already used for analyzing the 
ground state phase diagram of S=1/2 XXZ spin models on the tri-
angular lattice near the saturation field with system sizes up to 
1296 sites [34].

The QS3 code is based on the Lanczos and thick-restart Lanczos 
methods [35,36] to calculate the low-energy eigenvalues and the 
corresponding eigenvectors of the Hamiltonian matrix, and is sup-
ported by the external libraries BLAS and LAPACK [37]. Available 
physical quantities are the local magnetization, two-point corre-
lation functions, static spin structure factors, and dynamical spin 
structure factors. For the calculation of the dynamical spin struc-
ture factors, the continued fraction expansion is employed with the 
Lanczos method [1,38,39].

The QS3 code is specialized to the analysis for quantum mag-
nets under a high magnetic field, dilute hard-core Bose gases, and 
low-energy properties of ferromagnets. Thus, it is particularly ben-
eficial, for example, to the study of a field-induced spin nematic 
state [40–51], which often emerges in a high magnetic field. The 
QS3 code can also be used to estimate magnetic couplings of ef-
fective spin Hamiltonians for some materials by directly comparing 
the spin excitations calculated numerically and measured experi-
mentally by inelastic neutron scattering in a sufficiently high mag-
netic field. Therefore, the QS3 package is useful for both theoretical 
and experimental researchers. The QS3 package is designed to be 
executed on generally available computing resources such as lap-
tops and small workstations, and therefore only OpenMP is used 
for parallelizations. The QS3 package provides several samples for 
demonstration calculating physical quantities of S=1/2 XXZ models 
on three different lattices, the square, triangular, and cubic lattices, 
which preserve the translational symmetry. The QS3 package also 
supports the analysis for systems without the translational sym-
metry.

The rest of this paper is organized as follows. The basic usage of 
the QS3 package is first described in Sec. 2. The algorithms imple-
mented in QS3 are then explained in Sec. 3. In Sec. 4, benchmark 
results on the square and cubic lattices are provided, and the bot-
tlenecks and characteristics of the QS3 calculations are discussed. 
Finally, the paper is summarized with brief discussion of future 
extension of the QS3 package in Sec. 5.

2. Basic usage of QS3

2.1. How to download and build QS3

The QS3 package, containing the Fortran source codes, sam-
ples, and manual, is available on GitHub (https://github .com /QS -
Cube /ED). For building QS3, Fortran compiler with BLAS/LAPACK li-
brary [37] is prerequisite.

For those who have their own Git accounts, simply clone the 
repository on their local computers:

$ git clone https://github .com /QS -Cube /ED .git

Otherwise, go to the web page and click the “Code” button and 
“Download ZIP” to get “ED-main.zip”. The zip file is unpacked as

$ unzip ED-main.zip
$ cd ED-main

A simple Makefile is provided to build the executable files 
“QS3.exe” for systems preserving the translational symmetry and 
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“QS3_only_u1.exe” for systems without the translational symme-
try. The following procedures after the cloning or downloading will 
generate the executable file and execute sample programs

$ cd script
$ ./make.sh

Before executing make.sh, open this file and select the compiler 
(ARG1=gfortran/ifort) and linear algebra library (ARG2=lapack/mkl). 
After executing samples, each result is stored in the separate direc-
tory, “output_ex1”, “output_ex2”, · · · , and “output_ex5”.

2.2. Model

The QS3 package can treat the following S=1/2 XXZ-type spin 
Hamiltonian:

Ĥ =
∑
r<r′

{ J xy
r,r′(ŝx

r ŝx
r′ + ŝ y

r ŝy
r′) + J z

r,r′ ŝz
r ŝz

r′ } − hz
N∑

r=1

ŝz
r , (1)

where ŝr = (ŝx
r , ̂s

y
r , ̂sz

r ) is a spin S = 1/2 operator at site r on an 
N-site cluster, J z (xy)

r,r′ is the z (xy) component of the two-body ex-
change interaction between the rth and r′th spins, and hz is the 
uniform magnetic field applied along the z direction. Since the 
Hamiltonian Ĥ commutes with the z component of the total spin, 
i.e., [Ĥ, 

∑
r ŝz

r ] = 0, the U(1) symmetry is preserved. We also as-
sume that the Hamiltonian Ĥ is translationally invariant under 
periodic boundary conditions. In the QS3 package, the lattice struc-
tures and the range of the exchange interactions can be varied as 
long as the U(1) and translational symmetries are preserved. The 
details will be described below.

2.3. How to use QS3

Here we explain in detail how to use QS3 by providing a con-
crete and simple example of the S = 1/2 isotropic Heisenberg 
model, i.e., J xy

r,r′ = J z
r,r′ = J1 when sites r and r′ are nearest neigh-

bored and J xy
r,r′ = J z

r,r′ = 0 otherwise, on the 6×6 square lattice 
shown in Fig. 1(a). We calculate the 10 lowest eigenvalues and the 
corresponding eigenvectors in the subspace of 〈∑r ŝz

r 〉 = 15 and 
momentum k = (kx, ky) = (0, 0) by using the thick-restart Lanczos 
algorithm. Here, 〈∑r ŝz

r 〉 is the expectation value of the z com-
ponent of the total spin with respect to an eigenvector. We also 
calculate the local magnetization and the two-point correlation 
function from the obtained eigenvectors, and the dynamical spin 
structure factor S+(q, ω) at wave vector q = (qx, qy) = (0, 0) by 
means of the continued fraction method.

2.3.1. Set a main input file
One should first create several input files in the “input_ex1” 

directory. A concrete example of the main input file, input.dat, for 
the S=1/2 isotropic Heisenberg model on the 6×6 square lattice is 
shown below.

&input_parameters
NOS = 36,

NOD = 3,

LX = 6,

LY = 6,

LZ = 1,

KX = 0,

KY = 0,

KZ = 0,

NOxxz = 72,

ALG = 2,
3

cal_lm = 1,

cal_cf = 1,

cal_dsf = 1,

wr_wf = 1,

re_wf = 0,

FILExxz = “input_ex1/list_xxz_term_36.dat”,
FILEwf = “work/”,
OUTDIR = “output_ex1/”,

&end
&input_static

NOV = 2,

NOLM = 36,

NOCF = 1296,

FILElm = “input_ex1/list_local_mag.dat”,
FILECF = “input_ex1/list_cf_ss.dat”,

&end
&input_dynamic

spsmsz = 1,

itr_dsf = 200,

QX = 0.0d0,

QY = 0.0d0,

QZ = 0.0d0,

rfield = 0.495d0,

FILEpos = “input_ex1/list_site_position_36_type1.dat”,
&end
&input_lancz

lnc_ene_conv0 = 1.0d-14,

minitr = 20,

maxitr = 10000,

itrint = 5,

&end
&input_TRLan

NOE = 10,

NOK = 15,

NOM = 30,

maxitr = 10000,

lnc_ene_conv = 1.0d-14,

i_vec_min = 1,

i_vec_max = 1,

&end

The main input file given above consists of five parts, input_param-
eters, input _static, input_dynamic, input_lancz, and input_TRLan. 
The meaning of each part and the variables used there are ex-
plained below.

input_parameters
This part requires the users to set fundamental conditions, 
number of spins, number of down spins, linear dimensions 
of the cluster, momentum sector, location of the input file 
specifying the lattice structure and the exchange interactions, 
locations of outputs for the results, and an algorithm for the 
calculation of eigenvalues/eigenvectors. The details of the vari-
ables are explained below.
NOS (INTEGER): Number N of spins.
NOD (INTEGER): Number N↓ of down spins. The users can se-
lect the z component of the total spin, M = (N/2 − N↓), by 
adjusting this valuable.
LX, LY, LZ (INTEGER): Linear dimensions Lx , L y , and Lz of the 
cluster in the x, y, and z directions.
KX, KY, KZ (INTEGER): Momentum sector Kx , K y , and Kz . The 
users should set a allowed momentum value that is compat-
ible with the cluster size and shape, k · aα = 2π Kα/Lα with 
α ∈ {x, y, z}, where k is the momentum and aα is the α com-
ponent of the primitive translation vectors.
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Fig. 1. Examples of lattice structures and the corresponding momentum spaces. (a, b) The 6 × 6 square lattice cluster and (c, d) the 6 × 6 triangular lattice cluster. The 
numbers in each circle in (a) and (c) denote site numbers used in the input file. ax and ay represent the primitive translational vectors, where the lattice constant is set 
to be one. Lx (L y ) is the linear dimension of the lattice along the ax (ay ) direction (in these examples, Lx = L y = 6). In (b) and (d), the red lines indicate the first Brillouin 
Zone, and the green and white squares represent the allowed momentum points, k = (kx, ky), for the clusters in (a) and (c), respectively, under periodic boundary conditions; 
the white squares are the momentum points on the Brillouin zone boundary and pairs of momentum points located on the opposite corners and sides are equivalent. The 
QS3 package can compute eigenvalues and eigenvectors of the Hamiltonian matrix at each momentum sector, separately. These momentum points correspond to wave vector 
points, q = (qx, qy), which can be chosen for computing the dynamical spin structure factor S(q, ω). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
NOxxz (INTEGER): Number Nxxz of the two-body exchange in-
teractions.
ALG (INTEGER): The users can choose algorithms by setting 1: 
Conventional Lanczos, 2: Thick-restart Lanczos, 3: Full diago-
nalization.
cal_lm, cal_cf, cal_dsf (INTEGER): The local magnetization 
(lm), spin correlation function (cf), and dynamical structure 
factor (dsf) are calculated by setting the corresponding vari-
ables to 1. Otherwise, these variables should be 0.
wr_wf (INTEGER): If wr_wf = 1, the computed eigenvectors 
are output in the directory specified by FILEwf.
re_wf (INTEGER): If re_wf = 0, the whole diagonalization cal-
culation starts from a random initial vector. If re_wf = 1, only 
the expectation values of physical quantities are computed af-
ter reading the eigenvectors already prepared in the directory 
specified by FILEwf.
FILExxz (CHARACTER): The location of the file that defines the 
lattice structure and the two-body exchange interactions J z

r,r′
and J xy

r,r′ . The lattice structure is specified in terms of pairs 
of sites connected by the nonzero interactions. The details are 
described below.
FILEwf (CHARACTER): The location of output for the computed 
eigenvectors. The number of eigenvectors is specified by NOE 
(the number of the lowest eigenvalues/eigenvectors calculated 
by an eigensolver specified by ALG).
OUTDIR (CHARACTER): The location of output for the com-
puted expectation values such as the local magnetization, spin 
correlation function, and dynamical structure factor.

input_static
This part requires the users to set the conditions for the cal-
culation of the static physical quantities, i.e., the local magne-
tization and two-point correlation function. The users should 
prepare separately the two files that specify the sites and the 
pairs of sites for the calculation of the local magnetization and 
the two-point correlation function, respectively.
NOV (INTEGER): Number of the lowest eigenvectors used for 
computing static physical quantities.
NOLM (INTEGER): Number of sites for which the local mag-
netization is computed. If NOLM=0, the local magnetization is 
not computed.
NOCF (INTEGER): Number of pairs of sites for which the two-
point correlation function is computed. If NOCF=0, the correla-
tion function is not computed.
4

FILElm (CHARACTER): The location of the file specifying the 
site definition of the cluster for the calculation of the local 
magnetization. The details of the file are explained below.
FILECF (CHARACTER): The location of the file specifying the 
pairs of sites for the calculation of the two-point correlation 
function. The details of the file are explained below.

input_dynamic
This part requires the users to set the conditions for the calcu-
lation of the dynamical spin structure factor. The user should 
prepare the file specifying the sites of the cluster, separately.
spsmsz (INTEGER): S+(q, ω), S−(q, ω), and Sz(q, ω) are com-
puted by setting the value spsmsz = 1, 2, and 3, respectively. 
If spsmsz = 0, the dynamical spin structure factor is not com-
puted.
itr_dsf (INTEGER): Number of iterations for the continued frac-
tion method. See Sec. 3.9 for the details.
QX,QY,QZ (REAL8): Wave vector point q at which the dynami-
cal spin structure factor is computed, q · aα = Q α .
rfield (REAL8): Magnetic field value hz .
FILEpos (CHARACTER): The location of the file specifying the 
site positions. The details of the file are explained below.

input_lancz
This part requires the users to set the conditions for the con-
ventional Lanczos algorithm when the users set ALG = 1. The 
users must set NOE = 1 below because only the lowest eigen-
value with the corresponding eigenvector is computed here.
lnc_ene_conv0 (REAL8): Convergence condition for the Lanc-
zos iteration.
min(max)itr (INTEGER): The minimum/maximum number of 
iterations for the Lanczos method.
itrint (INTEGER): Every itrint iterations, the convergence of the 
Lanczos iteration is checked.

input_TRLan
This part requires the users to set the conditions for the thick-
restart Lanczos algorithm when the users set ALG = 2.
NOE (INTEGER): Number of the lowest eigenvalues/eigenvec-
tors computed by the thick-restart Lanczos method.
NOK (INTEGER): NK value. See Algorithm 10.
NOM (INTEGER): NM value. See Algorithm 10.
maxitr (INTEGER): IM value. See Algorithm 10. The maximum 
number of iterations for the thick-restart Lanczos method.
lnc_ene_conv (REAL8): Convergence condition for the thick-
restart Lanczos iteration.
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i_vec_min/max (INTEGER): Store the i_vec_min-th to
i_vec_max-th lowest eigenvectors computed by the thick-
restart Lanczos method in the location specified by FILEwf.

2.3.2. Set a file specifying the model
The users are required to specify the lattice structure and the 

exchange interactions in an input file. We provide in the input di-
rectory an example, list_xxz_term_36.dat, for the S = 1/2 isotropic 
ferromagnetic Heisenberg model on the 6×6 square lattice, which 
corresponds to the input of example 1) in QS3. The file location 
should be specified in the main input file using the FILExxz vari-
able. The first part of list_xxz_term_36.dat are shown below.

1 2 −1.0E+00 −1.0E+00
2 3 −1.0E+00 −1.0E+00
3 4 −1.0E+00 −1.0E+00
4 5 −1.0E+00 −1.0E+00

....

In this data statement, the first and second columns denote the 
pair of sites (r and r′), and the third and fourth columns represent 
the corresponding exchange interactions, J xy

r,r′ and J z
r,r′ , respec-

tively [see Fig. 1].

2.3.3. Set files for computing physical quantities
The users are required to set several input files for the calcula-

tion of physical quantities. For the local magnetization 〈ŝz
r 〉, the 

users have to specify the site r for which the local magnetiza-
tion is computed. For the two-point correlation function 〈ŝ+

r ŝ−
r′ 〉

and 〈ŝz
r ŝz

r′ 〉, the users have to specify the pair of sites (r, r′) for 
which the correlation function is computed. As concrete examples, 
we provide two files in the input directory, list_local_mag.dat and 
list_cf_ss.dat, for the local magnetization and the two-point corre-
lation function, respectively.

For the dynamical spin structure factor, the users are required 
to specify the site positions in the cluster. We also provide an 
example input file, list_site_position_36_type1.dat. Note that the 
lattice constant is set to be one [see Fig. 1(a)]. The location of these 
files is specified using FILExxz, FILElm, and FILECF variables in the 
main input file.

2.3.4. Run and results
After preparing all these files described above, the users can 

perform the calculation as follows:

$ ./QS3.exe < input_ex1/input.dat >> output_ex1/output.dat 
2>&1

Here, output.dat is the result file for the calculation, from which 
the users can check the status of the calculation. The computed re-
sults of the physical quantities are output in the directory specified 
by the OUTDIR variable in the main input file. The eigenvectors are 
output in the directory specified by the FILEwf variable in the main 
input file.

3. Implemented algorithms

3.1. Representation of states with the U (1) symmetry

The QS3 package diagonalizes the Hamiltonian matrix for Ĥ
given in Eq. (1), consisting of N spins that can be as large as 
O(103), with a small number N↓ = O(1) � N of down spins 
or equivalently with a large total magnetization value M ≡
〈φ| ∑r ŝz

r |φ〉 = N/2 − N↓ , where |φ〉 is an eigenstate of Ĥ.
5

A standard way to construct the spin basis states, and accord-
ingly represent the Hamiltonian matrix, is to use the bit repre-
sentation, where up (↑) and down (↓) spins are expressed as 0-
and 1-bit values, respectively. However, this is not a practical way 
for our purpose because a single four-byte (eight-byte) integer can 
only represent spin basis states up to N=32 (64) [31] in a stan-
dard 32 (64)-bit operating system. Furthermore, the definition and 
operation of arbitrary-byte integers are not supported in standard 
numerical programming languages.

Let us now explain how to construct the spin basis states in the 
QS3 package. We first introduce the following fully polarized state 
as a vacuum state:

|v〉 ≡ |
N spins︷ ︸︸ ︷

↑↑ · · · ↑〉. (2)

Each spin basis state |a〉 is then constructed by acting the S = 1/2
descending operator ŝ−

r on the vacuum state, i.e.,

|a〉 =
N↓∏

m=1

ŝ−
rm

|v〉, (3)

where rm is the position of the mth down spin in real space. In 
the QS3 package, a set of {rm}1≤m≤N↓ is stored in N↓-dimensional 
integer vector (array) n ≡ (n1, n2, ..., nN↓) = (r1, r2, ..., rN↓) in as-
cending order, 1 ≤ r1 < r2 < · · · < rN↓ ≤ N , implying that rm ≥ m.

We now focus on a subspace of the entire Hilbert space of Ĥ
by setting the number N↓ of down spins. The dimension of the 

subspace is equal to the binomial coefficient N CN↓ :=
(

N
N↓

)
and 

the spin basis states |a〉 in this subspace are numerated as a =
1, 2, · · · , N CN↓ . For a given set of {rm}1≤m≤N↓ , we can define an 
integer index a through the following bijective function F :

a = F (n); F (n) = 1 +
N↓∑

m=1

rm−1Cm. (4)

This one-to-one correspondence between a and {rm}1≤m≤N↓ can 
be understood as follows: When the N↓th down spin is located at 
rN↓ th site, the target spin configuration |a〉 should be listed after 
rN↓−1CN↓ patterns for arranging N↓ spins stored within sites from 
the first site to the (rN↓ − 1)-th site. We can apply the same pro-
cedure for m = N↓ − 1 down to m = 1, recursively, assuming that 
kCm = 0 if k < m.

The inverse bijective function n = F̄ (a) is given in Algorithm 1
with the binary search algorithm (Algorithm 2). It is highly in-
structive to first consider a concrete example. For example, let us 
consider the case of N = 8, N↓ = 4, and n = (2, 4, 6, 8), which 
corresponds to a = 7C4 + 5C3 + 3C2 + 1C1 + 1 = 50, according to 
Eq. (4). Now, giving s = a = 50 as the input, we explain how Al-
gorithm 1 outputs n = (2, 4, 6, 8). The algorithm first searches for 
n4 = r4 = 8 that satisfies 7C4 = 35 < s = 50 ≤ 8C4 = 70 and up-
dates s := s − 35 = 15. Second, the algorithm searches for n3 =
r3 = 6 that satisfies 5C3 = 10 < s = 15 ≤ 6C3 = 20 and updates 
s := s − 10 = 5. Third, the algorithm searches for n2 = r2 = 4 that 
satisfies 3C2 = 3 < s = 5 ≤ 4C2 = 6 and updates s := s − 3 = 2. Fi-
nally, the algorithm assigns n1 = r1 = s = 2.

More generally, Algorithm 1 first searches for nN↓ = rN↓ that 
satisfies rrN↓ −1CN↓ < a ≤ rN↓ CN↓ , followed by a research for 
nN↓−1 = rN↓−1 that satisfies rN↓−1−1CN↓−1 < a − rN↓−1CN↓ ≤
rN↓−1 CN↓−1, until a search for n2 = r2 that satisfies r2−1C2 <

a − ∑N↓
m=3 rm−1Cm ≤ r2 C2. Finally, it uses Eq. (4) to determine 

n1 = r1 = a − ∑N↓
m=2 rm−1Cm and returns n. Note that the mem-

ory cost with O (N↓N CN↓) bytes for keeping the basis sets {n}
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in a computer, which may become a memory bottleneck for the 
Lanczos method, can be reduced to O (1) by representing the spin 
basis states with |a〉 at the expense of additional numerical cost 
of O (N↓ ln(N − N↓)) for the use of the function F̄ . This additional 
computation makes the difference from the standard technique us-
ing bit representation in computational time.

Algorithm 1 Generate n for given a.
Input: integers N↓ , N , and a with 1 ≤ a ≤ N CN↓ .
Output: N↓-dimensional integer vector n with 1 ≤ n1 < n2 < · · · < nN↓ ≤ N .

1: function f_bar(a, N↓ , N)
2: s := a
3: j := N
4: for m = N↓ to 2 with m := m − 1 do
5: ( j0, f ) =binary_search(s − 1, {kCm}1≤k≤ j, m, j)

 A logical parameter f is not used in this function.
 Note that kCm = 0 if k < m.

6: j := j0

7: nm := j0 + 1
8: s := s − j Cm

9: end for
10: n1 := s
11: return (n)
12: end function

Algorithm 2 Check whether s0 is in s.
Input: integer s0, ls , and le (≥ ls), and le-dimensional integer vector s.
Output: integer p and logical f .
1: function binary_search(s0, s, ls, le)
2: Search integer p in {sk}ls≤k≤le satisfying sp ≤ s0 < sp+1 with ls ≤ p ≤ le by 

the binary search where sle+1 = ∞.

3: f :=
{

True sp = s0

False otherwise
4: return (p, f )
5: end function

3.2. Generation of the Hamiltonian matrix

The Hamiltonian matrix is block diagonal with respect to the 
number N↓ of down spins and the dimension of the block-diagonal 
matrix specified with (N, N↓) is N CN↓ . There is a nonzero diag-
onal contribution of 〈a|ŝz

r ŝz
r′ |a〉 = ±1/4 to the Hamiltonian ma-

trix, where the sign of the value is minus when either r or r′
is in n and otherwise it is plus. For this check, the QS3 pack-
age uses Algorithm 2 of the binary search. On the other hand, 
the off-diagonal operator (ŝ+

r ŝ−
r′ + ŝ−

r ŝ+
r′ ) acting on a state |a〉 can 

generate a different basis state |a′〉 and the corresponding ar-
ray n′ = F̄ (a′). We can also use the binary search to determine 
whether a new state is generated. Namely, the new state |a′〉 is 
generated when two logical variables fr and fr′ , which are given 
by (pt , ft) :=binary_search(t, n, 1, N↓) with t ∈ {r, r′}, are differ-
ent. If this is the case, the QS3 package uses Algorithm 3 to make 
the new array n′ and we can obtain the off-diagonal matrix ele-
ment 〈a′|ŝ+

r ŝ−
r′ + ŝ−

r ŝ+
r′ |a〉 = 1. To construct the full matrix elements, 

we have to consider all sets of {r, r′} compatible with the nonzero 
exchange interactions in Ĥ given in Eq. (1). For this purpose, the 
QS3 package uses Algorithm 4, where the Nxxz variable is the num-
ber of the exchange interactions, i.e., the number of pairs {r, r′}
connected via the nonzero exchange interactions, and should be 
equal to NOxxz in the input file. Note that the contribution of the 
Zeeman term in Eq. (1) is excluded in Algorithm 4 because it is 
simply constant within the subspace of a fixed N↓ .

3.3. Representative states and Hamiltonian matrix elements in 
symmetry-adapted basis sets

Not only the U(1) symmetry in spin space, but also lattice sym-
metry such as translational symmetry and point group symmetry 
6

Algorithm 3 Spin exchange interaction between sites r and r′ .
Input: integer r , p, r′ (> r), and p′ (≥ p), N↓-dimensional integer vector n, and log-

ical f , where p, p′ , and f are given by (p, f ) :=binary_search(r, n, 1, N↓) and 
(p′, f ′) :=binary_search(r′, n, 1, N↓), assuming that f ′ �= f .

Output: N↓-dimensional integer vector n′ with 1 ≤ n′
1 < n′

2 < · · · < n′
N↓ ≤ N .

1: function spin_exchange(r, p, f , r′, p′, n)
2: if f = False then
3: n′ := (n1, · · · , np , r, np+1, · · · , np′−1, np′+1 · · · , nN↓ )

4: else
5: n′ := (n1, · · · , np−1, np+1, · · · , np′ , r, np′+1 · · · , nN↓ )

6: end if
7: return (n′)
8: end function

Algorithm 4 Generation of full Hamiltonian matrix.
Input: Nxxz-dimensional integer vectors r and r′ , and Nxxz-dimensional real vec-

tors J xy and J z .
Output: N CN↓ -dimensional real matrix H = {ha,a′ }.

1: function gen_full_ham(r, r′, J xy , J z)
2: H := 0
3: for a = 1 to N CN↓ do
4: n :=f_bar(a, N↓, N)

5: for n = 1 to Nxxz do
6: (p, f ) :=binary_search(rn, n, 1, N↓)

7: (p′, f ′) :=binary_search(r′
n, n, 1, N↓)

8: if f = f ′ then
9: ha,a := ha,a + J z

n/4
10: else
11: ha,a := ha,a − J z

n/4
12: n′ :=spin_exchange(r, p, f , r′, p′, n)

13: a′ := F (n′)
14: ha,a′ := J xy

n /2
15: end if
16: end for
17: end for
18: return (H)
19: end function

can be used to reduce the dimension of the Hamiltonian matrix 
to be diagonalized and thus the computational cost. Here, we de-
scribe how to block-diagonalize the Hamiltonian Ĥ based on the 
symmetry-adapted basis sets.

First, we briefly explain how to construct the symmetry-
adapted basis sets that are the eigenstates of the lattice transla-
tional operator T̂ . A pedagogical introduction for the construction 
of the symmetry-adapted basis sets can be found in Ref. [3]. For 
simplicity, we consider a periodic chain with N spins, namely 
(Lx, L y, Lz) = (N, 1, 1), in which the translational operator T̂ is de-
fined by shifting the position of the spin one site right, T̂ |a〉 =∏N↓

m=1 ŝ−
rm+1|v〉, with ŝL+1 = ŝ1 under periodic boundary conditions. 

Note that the translational operator T̂ commutes with the Hamilto-
nian, i.e., [T̂ , Ĥ] = 0, and the accessible eigenvalues of T̂ are given 
as {eik | k = 2π K/N, 0 ≤ K < N} with momentum k or momentum 
sector K .

The symmetry-adapted basis states with a given momentum k
are given as

|a,k〉 = 1√
Na,k

N∑
j=1

e−ikj T̂ j|a〉, (5)

where |a〉 is a single reference state with a fixed number N↓ of 
down spins and it is defined in Eq. (3). One can easily confirm 
that |a, k〉 in Eq. (5) is an eigenstate of the translational operator, 
i.e., T̂ |a, k〉 = eik|a, k〉. If the reference state |a〉 is not compatible 
with the momentum k, the state |a, k〉 generated in Eq. (5) van-
ishes. The compatibility of the chosen reference state |a〉 and the 
normalization factor Na,k can be determined as
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Na,k =
N

∣∣∣〈a|∑N
j=1 e−ikj T̂ j|a〉

∣∣∣2

〈a|∑N
j=1 T̂ j|a〉 . (6)

If this quantity is zero, it implies that the chosen reference state |a〉
is not compatible with the momentum k. Otherwise, this quantity 
gives the normalization factor of the state |a, k〉.

Considering the cyclicity of the translated states, {|a j〉 ≡
T̂ j |a〉}1≤ j≤N , we can simply choose only one state as a represen-
tative among {|a j〉}1≤ j≤N . The QS3 package chooses one state with 
the smallest integer a, i.e., |a〉 ≡ | min j a j〉, which is used to gen-
erate |a, k〉 in Eq. (5). We have to check all possible N CN↓ -states, 
{|a〉}, in this way, and determine which states and how many states 
are representatives in the target subspace specified with (k, N↓). 
The QS3 package uses Algorithm 5 to check whether or not a state 
is representative and evaluate the corresponding normalization 
factor, and uses Algorithm 6 to make a list of the representative 
states {|a〉} and a list of the corresponding normalization factors 
{Na,k}, representing the symmetry-adapted basis sets {|a, k〉}.

Algorithm 5 Check whether a state |a〉 is representative, and eval-
uate the corresponding normalization factor.
Input: integer a with 1 ≤ a ≤ N CN↓ , and real k ∈ {2π K/N}0≤K<N

Output: real Na,k ≥ 0.
1: function check_state(a, k)
2: n =f_bar(a, N↓, N)

3: Na,k := 0; c∗ := 0; nc := 0
4: for j = 1 to N do
5: n :=shift_func(n)

 The function shift_func(n) gives a N↓-dimensional vector corresponding to 
a translated state, T̂ |a〉.

6: n :=insertion_sort(n)

 The function insertion_sort(n) sorts the vector elements in ascending order 
by using the insertion sort algorithm. When N↓ is O(1), we confirm that the 
insertion sort algorithm is generally faster than the quick sort algorithm.

7: a′ := F (n)

8: if a′ < a then
9: return (Na,k = 0)

10: else
11: if a′ = a then
12: c∗ := c∗ + eikj ; nc := nc + 1
13: end if
14: end if
15: end for
16: Na,k = |c∗|2 N/nc

17: return (Na,k)
18: end function

Algorithm 6 Making lists of representative states and the corre-
sponding normalization factors.
Input: real k
Output: integer d with 0 ≤ d ≤ N CN↓ , d-dimensional integer vector σ , and d-

dimensional non-negative real vector R
1: function mk_list(k)
2: d := 0
3: for a = 1 to N CN↓ do
4: Na,k :=check_state(a, k)

5: if Na,k > 0 then
6: d := d + 1
7: σd := a
8: Rd := √

Na,k

9: end if
10: end for
11: return (d, σ , R)
12: end function

We are now ready to construct the Hamiltonian matrix based 
on the symmetry-adapted basis sets {|a, k〉}. A state obtained after 
operating the Hamiltonian Ĥ to each basis state |a, k〉 is given by
7

Ĥ|a,k〉 = 1√
Na,k

∑
n

N∑
j=1

e−ikj T̂ jĥn|a〉, (7)

where

ĥn|a〉 = J xy
n

2
(ŝ+

rn
ŝ−

r′
n
+ ŝ−

rn
ŝ+

r′
n
)|a〉 + J z

n ŝz
rn

ŝz
r′

n
|a〉. (8)

Note that the Zeeman term in Eq. (1) can be treated separately be-
cause the U(1) symmetry is adapted in the basis sets. We should 
also note that the off-diagonal term in Eq. (8) flips a spin in the 
representative state |a〉 and the generated state, |a(n)〉 = (ŝ+

rn
ŝ−

r′
n

+
ŝ−

rn
ŝ+

r′
n
)|a〉, is not necessarily a representative state. Therefore, we 

have to check if the flipped state |a(n)〉 is compatible with the mo-
mentum k. If it is the case, we have to seek the representative 
state |a(n)〉 ≡ | min j a(n)

j 〉 by applying translational operations onto 
|a(n)〉, i.e., |a(n)

j 〉 ≡ T̂ j|a(n)〉.
Consequently, we can write Eq. (7) as

Ĥ|a,k〉 =
∑

n

J xy
n

2
e−ik�n

√
Na(n),k

Na,k

(
1 − δ fn,a, f ′

n,a

)
|a(n),k〉

+
∑

n

〈a| J z
nŝz

rn
ŝz

r′
n
|a〉 |a,k〉 , (9)

where �n is obtained from the relationship |a(n)〉 = T �n |a(n)〉 with 
1 ≤ �n ≤ N . The two variables fn,a and f ′

n,a are logical ones 
given by (pn,a, fn,a) :=binary_search(rn ,f_bar(a, N↓, N), 1, N↓)

and (p′
n,a, f ′

n,a) :=binary_search(r′
n ,f_bar(a, N↓, N), 1, N↓),

respectively. These variables are used to judge if each off-diagonal 
term in the Hamiltonian contributes. In the QS3 package, Algo-
rithm 7 is used to search the representative state |a(n)〉 for the 
off-diagonal matrix elements and to obtain the corresponding �n

value, and Algorithm 8 is to construct the Hamiltonian matrix. 
Note the order of two for-loops associated with a and n in Algo-
rithm 8 that is chosen to enhance the performance of open MP 
parallelization applying to a.

Algorithm 7 Seeking the representative state a(n) and the �n value 
for operations in Eq. (9).
Input: integer a(n) and N↓
Output: integer a(n) and �n .

1: function representative(a(n), N↓)
2: a(n) := a(n)

3: n :=f_bar(a(n), N↓, N)

4: for j = 1 to N do
5: n :=shift_func(n)

6: n :=insertion_sort(n)

7: a := F (n)

8: if a ≤ a(n) then
9: a(n) := a; �n := j

10: end if
11: end for
12: return (a(n), �n)
13: end function

3.4. Full diagonalization

One can full diagonalize the whole Hamiltonian to obtain all 
eigenvalues {Eν} and the corresponding eigenvectors {|ν〉} by sep-
arately diagonalizing block diagonalized Hamiltonian matrices con-
structed via Algorithm 4 or Algorithm 8 with different symmetry 
sectors. Accordingly, one can for example compute the tempera-
ture dependence of any physical quantity Â based on the thermal 
average,
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Algorithm 8 Generation of Hamiltonian matrix with the 
symmetry-adapted basis sets.
Input: Nxxz-dimensional integer vectors r and r′ , Nxxz-dimensional real vectors 

J xy and J z , d-dimensional integer vector σ and real vector R for the lists 
of the representative states and their normalization factors, respectively, and 
real k

Output: d-dimensional complex matrix H = {ha,a′ }.
1: function gen_full_ham_sym_adapt(r, r′, J xy , J z, σ , R, k)
2: H := 0
3: for a = 1 to d do
4: n =f_bar(σa, N↓, N)

5: for n = 1 to Nxxz do
6: (p, f ) :=binary_search(rn, n, 1, N↓)

7: (p′, f ′) :=binary_search(r′
n, n, 1, N↓)

8: if f = f ′ then
9: ha,a := ha,a + J z

n/4
10: else
11: ha,a := ha,a − J z

n/4
12: a′ := F (spin_exchange(r, p, f , r′, p′, n))

13: (a′, �) :=representative(a′, N↓)

14: (a′, f ) :=binary_search(a′, σ , 1, d)

15: if f = True then

16: ha,a′ := ha,a′ + J xy
n
2 eik�

√
Ra′ /Ra

17: end if
18: end if
19: end for
20: end for
21: return (H)
22: end function

〈 Â〉ens
β,N =

∑
ν

e−βEν

Z(β)
〈ν| Â|ν〉, (10)

where β is the inverse temperature, Z(β) = ∑
ν e−βEν is the par-

tition function, and the summation of ν runs over all symmetry 
sectors with different values of N↓ and/or k. However, note that 
the accessible matrix dimension is very limited in the full diago-
nalization calculation, typically up to O (104) on a currently avail-
able standard computer. Therefore, one may not be able to treat all 
subspaces of the Hamiltonian even when the Hamiltonian matrix 
is block diagonalized with different symmetry sectors.

The QS3 package is specialized for the system under a high 
magnet field, in which one can treat much larger system sizes 
near the saturation field. This implies that one may access the fi-
nite temperature physics of large systems but at sufficiently low 
temperature where the low-energy eigenvalues are reasonably sep-
arated from those for the symmetry sectors with larger N↓ and 
thus the latter contribution to the thermal average 〈 Â〉ens

β,N can be 
simply discarded.

The QS3 package uses DHEEVR/ZHEEVR routine in LAPACK [37]
for the full diagonalization to obtain all eigenvalues and eigenvec-
tors of the Hamiltonian matrix constructed with the symmetry-
adapted basis sets.

3.5. Multiplying Hamiltonian to state vectors (matrix-vector product)

In order to calculate the lowest eigenvalue (and also the several 
lowest eigenvalues) and the corresponding eigenvector(s) of the 
Hamiltonian matrix, one can also employ the conventional Lanc-
zos method, instead of the full diagonalization, which allows us to 
treat larger system sizes. The main and most time-consuming part 
in the Lanczos method is a matrix-vector product, and the QS3

package does this operation based on the symmetry-adapted ba-
sis sets. Assuming that both the U(1) and translational symmetries 
are adapted, the resulting vector after the matrix-vector product 
operation Ĥ|φ〉 is expressed with the basis sets {|a, k〉} and each 
element ψa,k can be obtained as

ψa,k = 〈a,k|ψ〉 = 〈a,k|Ĥ|φ〉

8

=
∑

n

J xy
n

2
eik�n

√
Na(n),k

Na,k

(
1 − δ fn,a, f ′

n,a

)
φa(n),k

+
∑

n

〈a| J z
n ŝz

rn
ŝz

r′
n
|a〉 φa,k , (11)

where a state vector |φ〉 = ∑
a φa,k|a, k〉 is an input vector. The 

QS3 package uses Algorithm 9 to do this procedure. Note that the 
calculation of each element is done on the fly and hence the ac-
cessible vector dimension can be enlarged up to O (108).

Algorithm 9 Perform ψ := Hφ.
Input: integer vectors σ , r, and r′ , real k, real vectors R , J xy , and J z as in Algo-

rithm 8, and d-dimensional complex vector φ.
Output: d-dimensional complex vector ψ .

1: function ham_to_vec(r, r′, J xy , J z, σ , k, R, φ)
2: ψ := 0
3: for a = 1 to d do
4: n =f_bar(σa, N↓, N)

5: for n = 1 to Nxxz do
6: (p, f ) :=binary_search(rn, n, 1, N↓)

7: (p′, f ′) :=binary_search(r′
n, n, 1, N↓)

8: if f = f ′ then

9: ψa := ψa + J z
n

4 φa

10: else
11: ψa := ψa − J z

n
4 φa

12: a′ := F (spin_exchange(r, p, f , r′, p′, n))

13: (a′, �) :=representative(a′, N↓)

14: (a′, f ) :=binary_search(a′, σ , 1, d)

15: if f = True then

16: ψa := ψa + J xy
n
2 eik�

√
Ra′ /Raφa′

17: end if
18: end if
19: end for
20: end for
21: return (ψ )
22: end function

3.6. Calculating expectation values

The QS3 package can evaluate the local magnetization 〈φ|ŝz
r |φ〉

and the two-point spin correlation function 〈φ|ŝαr ŝβ

r′ |φ〉 where 
(α, β) ∈ {(z, z), (±, ∓)} after computing eigenvectors |φ〉 of the 
Hamiltonian matrix. When the eigenvector |φ〉 = ∑

a φa,k|a, k〉 re-
spects the translational symmetry with the momentum k, the 
expectation value of a operator preserving the translational sym-
metry can be evaluated simply by reusing Algorithm 8, where 
the matrix elements of the Hamiltonian matrix are evaluated in 
the symmetry-adapted basis sets. Therefore, in the QS3 pack-
age, the translationally-symmetrized operators 1

N

∑N
j=1 T̂ j Ô T̂ − j

with Ô = ŝz
r and ŝαr ŝβ

r′ are used, instead of directly treating 
the local operators Ô , for the expectation values: 〈φ|Ô |φ〉 =
1
N 〈φ| 

(∑N
j=1 T̂ j Ô T̂ − j

)
|φ〉.

3.7. Thick-restart Lanczos method

The calculation of the lowest NK eigenvalues of the Hamilto-
nian represented by the d(� NK )-dimensional matrix H is often 
required when the low-energy physics of the quantum system is 
analyzed. When the lowest energy eigenvalue, namely NK = 1, is 
focused, the Lanczos method is often used because it is simple 
to implement and also very powerful. In the Lanczos method, H
is mapped to a NM(> NK )-dimensional tridiagonal matrix T with 
d × NM -dimensional projection matrix � = {ψ x}1≤x≤NM through 
procedures called the Lanczos process described in lines 1–8 and 
10–13 in Algorithm 10. It is known that the lowest NK eigenval-
ues of T obtained through a sufficient number of Lanczos processes 
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(i.e. d � NM � NK ) in principle reproduce those of the origi-
nal Hamiltonian matrix H. However, generally the Lanczos vectors 
{ψx}1≤x≤NM becomes non-orthogonal to each other as the Lanczos 
process progresses due to the round-off error, resulting in prob-
lems of pseudo-eigenvalues. Therefore, the low-energy eigenvalues 
cannot be obtained correctly in the standard Lanczos method.

To mitigate this round-off error, we need to introduce a restart 
procedure into the method, in addition to a reorthogonalization 
procedure for Lanczos vectors. There are many variants to intro-
duce these procedures in the Lanczos method, and the thick-restart 
Lanczos method [35,36] employed in Q S3 is one of them. An al-
gorithm for the thick-restart Lanczos method is provided in Algo-
rithm 10. In the first part (the lines 1–13) of this algorithm, the 
procedure of the conventional Lanczos method with a reorthog-
onaliztion process in the line 9 is employed to generate NM + 1
Lanczos vectors, � and ψNM+1, and construct the tridiagonal ma-
trix

T = �†H� :=

⎛
⎜⎜⎜⎜⎜⎝

α1 β1
β∗

1 α2 β2
. . .

. . .
. . .

β∗
NM−2 αNM−1 βNM−1

β∗
NM−1 αNM

⎞
⎟⎟⎟⎟⎟⎠ , (12)

where αx = ψ
†
xHψx , βx = ψ

†
xHψx+1, and other elements are zero. 

Then, as shown in the line 13, this tridiagonal matrix T is diago-
nalized to obtain the eigenvalues e = {ex} in ascending order and 
the unitary matrix C = {cx,x′ } such that T = C

(
diag[e])C†.

The thick-restart Lanczos method focuses on the lowest NK (<

NM) eigenvalues and the corresponding eigenvectors by the keep-
ing NK + 1 vectors as shown in the lines 15 and 26,
{{ψ y}1≤y≤NK , ψNK +1} := {�{cx,y}1≤y≤NK , ψNM+1}. Then, the
method generates the NM − NK Lanczos vectors {ψNK +2, · · · ,

ψNM+1}, as shown in the lines 29–33, according to the procedures 
in the conventional Lanczos method with the initial vector ψ NM+1, 
and also the matrix T through the procedures in the lines 34–37, 
namely

T :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e1 β1
. . .

...

eNK βNK

β∗
1 . . . β∗

NK
αNK+1 βNK+1

. . .
. . .

. . .

β∗
NM−2 αNM−1 βNM−1

β∗
NM−1 αNM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where {βy}1≤y≤NK := {βNM cNM,y} and only elements not generally 
zero are shown. This matrix T is then diagonalized to obtain the 
eigenvalues e = {ex} in ascending order and the corresponding uni-
tary matrix C = {cx,x′ } as shown in the line 38. This procedure is 
repeated until the lowest NK eigenvalues are converged within the 
specified convergence ratio ε or the total number of iterations ex-
ceeds a given integer IM. This is the second part (the lines 14–40) 
of the algorithm described in Algorithm 10. Therefore, the thick-
restart Lanczos method requires maximally the NM(> NK) dimen-
sional Krylov subspace. The integer numbers NM and IM and the 
real number ε are input parameters, which determine the quality 
of the calculation.

3.8. Multiplying an operator to state vectors represented with the 
symmetry-adapted basis sets

The QS3 package computes the static and dynamical spin struc-
ture factors after obtaining a target eigenvector |φ〉 of the Hamil-
9

Algorithm 10 Thick-restart Lanczos method.
Input: integer NK (> 0), NM (> NK), d, and IM (> 0), and real ε � 1
Output: real e = {ex}1≤x≤NM and complex � = {ψax}1≤a≤d

1≤x≤NM
.

1: function thick_restart_lanczos(NK, NM, IM, ε)
2: ψ x = {ψax}1≤a≤d ; ψ1 :=random_vec(d)

 The function random_vec(d) returns d-dimensional complex random vector.
3: β0 := √|ψ1|2
4: for x = 1 to NM do
5: ψx := ψ x/βx−1

6: v :=ham_to_vec(r, r′, J xy , J z, σ , k, ψx)

7: αx := ψ
†
x · v

8: ψx+1 :=
{

v − αxψ x (x = 1)

v − αxψ x − βx−1ψ x−1 (x > 1)

9: ψx+1 :=reorthogonalization(�, x + 1)

 The function reorthogonalization(�, x) performs reorthogonalization, for 
example, with the modified Gram-Schmidt procedure, to numerically keep the 
orthogonality ψ†

x′<x · ψ x = 0.

10: βx :=
√

|ψ x+1|2
11: end for
12: ψNM+1

:= ψNM+1
/βNM

13: (e, C = {cx,x′ }) :=diag_tri({αx}, {βx})


The function diag_tri({αx}, {βx}) returns eigenvalues e (ascending order) and 
the corresponding eigenvectors C of a real symmetric tridiagonal matrix with 
diagonal elements {αx} and sub-diagonal elements {βx}.

14: for I = 1 to IM do
15: {ψ y}1≤y≤NK := �{cx,y}
16: if I = 1 then
17: e′ = {e y}1≤y≤NK

18: else
19: if max1≤y≤NK |e′

y/e y − 1| < ε then
20: Exit
21: else
22: e′ = {e y}1≤y≤NK

23: end if
24: end if
25: {αy}1≤y≤NK := {e y}
26: ψNK+1 := ψNM+1
27: {βy}1≤y≤NK := {βNM cNM,y}
28: lines 6 and 7 with x = NK + 1.
29: v := v − ∑

y βyψ y
30: ψNK+2 := v − αNK+1ψNK+1
31: ψNK+2 :=reorthogonalization(�, NK + 2)

32: βNK+1 :=
√

|ψNK+2|2
33: lines 4-12 with the starting value of x = NK + 2.
34: T := 0
35: {txx}1≤x≤NM = {αx}
36: {t y,NK+1}1≤y≤NK = {t∗

NK+1,y} := {βy}
37: {tz,z+1}NK+1≤z≤NM−1 = {t∗

z+1,z} := {βz}
38: (e, C) :=diag(T)

 The function diag(T) returns eigenvalues (ascending order) and the 
corresponding eigenvectors of Hermitian matrix T.

39: end for
40: return (e, �)
41: end function

tonian matrix. Considering a periodic chain with N spins, as an 
example, the Fourier transform of the spin operator at wave num-
ber q with α = ±, z is given as

Ŝα
q = 1√

N

N∑
j=1

e−iqj T̂ j ŝα1

(
T̂ j

)†
. (14)

One can easily show that the operator Ŝα
q satisfies the following 

relation:

Ŝα
q T̂ j = e−iqj T̂ j Ŝα

q . (15)

Using this relation, one of the basic operations, Ŝα
q |φ〉, necessary 

for computing the static and dynamical spin structure factors can 
be rewritten as

Ŝα
q |φ〉 =

∑
φa,k Ŝα

q |a,k〉 (16)

a
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with

Ŝα
q |a,k〉 = 1√

Na,k

∑
j

e−ikj Ŝα
q T̂ j|a〉

= 1√
Na,k

∑
j

e−i(k+q) j T̂ j Ŝα
q |a〉

= 1√
Na,k N

∑
j, j′

e−i(k+q) j T̂ je−iqj′ T̂ j′ ŝα1
(

T̂ j′
)† |a〉, (17)

where |φ〉 = ∑
a φa,k|a, k〉 is an eigenvector of the Hamiltonian ma-

trix and it is in the subspace specified with momentum k and the 
number N↓ of down spins. Note that in computing the transverse 
components of the spin structure factors with α = ± in Eq. (17), 
we have to consider a transition between states with different 
U (1) symmetry sectors, i.e., from a state |a〉 with N↓ down spins 
to a state Ŝα=±

q |a〉 with N↓ ∓ 1 down spins.
Let us now introduce the spin state |b〉 defined as

T̂ j′ ŝα1
(

T̂ j′
)† |a〉 = c|b〉 (18)

with c = 〈b|T̂ j′ ŝα1

(
T̂ j′

)† |a〉. Note that |b〉 as well as c depends 
on α, j′ , and a. In general, the state |b〉 is not the representative 
state |b〉 ≡ | min j b j〉 for states 

{
|b j〉 ≡ T̂ j |b〉

}
1≤ j≤N

, and |b〉 can be 

translated to |b〉 by repeatedly applying the translational operator 
T̂ , i.e., |b〉 = T̂ �|b〉 with 1 ≤ � ≤ N , where � depends on |b〉. There-
fore, we can rewrite Eq. (17) using the representative state |b〉 as

Ŝα
q |a,k〉 = 1√

Na,k N

∑
j, j′

e−i(k+q) j T̂ je−iqj′cT̂ −�|b〉.

= 1√
Na,k N

∑
j, j′

e−i(qj′+(k+q)�)ce−i(k+q)( j−�) T̂ j−�|b〉.

= 1√
Na,k N

∑
j′

√
Nb,k+qe−i(qj′+(k+q)�)c|b,k + q〉. (19)

A concrete procedure for performing Ŝ−
q |φ〉 is shown in Algo-

rithm 11. In the same manner, we can perform Ŝ+
q |φ〉 and Ŝ z

q|φ〉.

3.9. Continued fraction expansion based on the Lanczos algorithm

Using the continued fraction expansion based on the Lanczos 
algorithm [1,38,39], the QS3 package computes the dynamical spin 
structure factor

Sα
q (ω) = − 1

π
Im〈φ| Ŝα†

q
1

ω − Ĥ + E0 + iη
Ŝα

q |φ〉, (20)

where E0 is the ground state energy (i.e., lowest eigenvalue) with 
the corresponding ground state |φ〉 of the Hamiltonian Ĥ and pos-
itive real number η is the broadening factor. We can rewrite the 
above equation as

Sα
q (ω) = − 1

π
Im

〈φ| Ŝα†
q Ŝα

q |φ〉

z − α1 − β2
1

z − α2 − β2
2

z − α3 − · · ·

(21)

with z = ω− E0 + iη. α and β in Eq. (21) are obtained by the tridi-
agonalization procedure of the Hamiltonian matrix in the Lanczos 
iteration shown in lines 3-11 of Algorithm 10 with the initial state 
|ψ〉1 = Ŝα

q |φ〉 that can be prepared by the procedure shown in Al-
gorithm 11.
10
Algorithm 11 Perform |ψ ′〉 := Ŝ−
q |φ〉.

Input: real k and q ∈ {2π K/N}0≤K<N , d-dimensional integer vector σ and real vec-
tor R for the lists of representative states specified with N↓ down spins and 
their normalization factors, respectively, d-dimensional complex vector φ, and 
d′-dimensional integer vector σ ′ and real vector R ′ for the lists of representa-
tive states specified with N↓ + 1 down spins and their normalization factors, 
respectively.

Output: d′-dimensional complex vector ψ ′ .
1: function smq_to_vec(σ , R, k, φ, σ ′, R ′, q)
2: ψ ′ := 0
3: for r = 1 to N do
4: for a = 1 to d do
5: n =f_bar(σa, N↓, N)

6: (p, f ) :=binary_search(r, n, 1, N↓)

7: if f = False then
8: n′ := (n1, · · · , np , r, np+1, · · · , nN↓ )

9: b := F (n′)
10: (b, �) :=representative(b, N ′↓)

11: (b, f ) :=binary_search(b, σ ′, 1, d′)
12: if f = True then

13: ψ ′
b := ψ ′

b +
√

R ′
b

Ra N e−i(qr+(k+q)�)φa

14: end if
15: end if
16: end for
17: end for
18: return (ψ ′)
19: end function

4. Benchmark results

4.1. Parallelization efficiency with openMP

Here we show a benchmark result of the QS3 package for the 
numerical diagonalization. The most time consuming part in the 
Lanczos algorithm is the Hamiltonian-vector multiplication in Al-
gorithm 9 with computational complexity O (N CN↓ NxxzN↓ ln N↓). 
The QS3 package adopts OpenMP to parallelize this procedure. 
For a typical benchmark, we consider an S = 1/2 isotropic anti-
ferromagnetic Heisenberg model on a simple cubic lattice of 216 
sites (Lx = L y = Lz = 6) and calculate the ground state in the sub-
space with momentum k = (0, 0, 0) and N↓ = 5, by setting the 
parameters (Kx, K y, Kz) = (0, 0, 0), using the conventional Lanczos 
algorithm. The dimension of the Hilbert space (i.,e, the Hamil-
tonian matrix) is 216C5 (=3,739,729,608) with only adapting the 
U (1) symmetry and can be reduced 1/N times smaller down to 
17,313,563 when the translational symmetry is also adapted. Fig. 2
shows the efficiency of the parallelization of the QS3 package ex-
ecuted using the supercomputer (Ohtaka) in ISSP with AMD Epyc 
7702 2.0 GHz. We confirm almost linear acceleration with increas-
ing the number of threads up to 128, although the slope becomes 
somewhat smaller when the number of threads exceeds around 
20.

4.2. Energy-dispersion relation

One of the essential physical quantities to understand the low-
energy physics of a quantum spin model is the energy-dispersion 
relation E0(k), the ground state energy at each momentum k. 
Most of the currently available exact diagonalization libraries com-
pute this quantity but are sufficient for practical use only in one-
dimensional systems because of the severe limitations of the ac-
cessible system sizes. The QS3 package can evaluate the energy-
dispersion relation around the saturation field even in three-
dimensional systems.

For demonstration, we show the energy-dispersion relation for 
an S = 1/2 isotropic antiferromagnetic Heisenberg model on a 
simple cubic lattice of 1000 sites (Lx = Lr = Lz = 10) in Fig. 3. 
When only the U(1) symmetry is used, the dimension of the 
Hilbert space with N↓ = 3 is 1000C3 = 166, 167, 000 and approx-
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Fig. 2. Parallelization efficiency of the QS3 package. The conventional Lanczos algo-
rithm is used to calculate the ground state of an S = 1/2 isotropic antiferromagnetic 
Heisenberg model on a simple cubic lattice of 216 sites with (Kx, K y , Kz) = (0, 0, 0)

and N↓ = 5. The vertical axis means multi-thread efficiency in the Lanczos iteration 
compared to the single-thread. The dark-green line indicates an ideal speed-up.

Fig. 3. Energy-dispersion relation E0(k) of an S = 1/2 isotropic antiferromagnetic 
Heisenberg model on a simple cubic lattice of 1000 sites (Lx = L y = Lz = 10) with 
N↓ down spins along the high symmetric momentum k line indicated in the in-
set. The lowest eigenenergies E0(k) with N↓ = 1, 2, and 3 near the saturation 
field are plotted relative to the ground state energy E0 of the fully polarized state 
with N↓ = 0. The high symmetric momentum points are indicated by �: (0, 0, 0), 
M: (0, π, π), R: (π, π, π), and X: (0, 0, π). Solid lines are the cubic-spline inter-
polation in each path, i.e., � → M, M → R, R → X, and X → �. Note that the 
ground-state momentum alternates between � and R for N↓ even and odd, re-
spectively, leading to a corresponding alternation of the minimum of the dispersion 
relation.

imately 2.5 GByte of physical memory is required to store a state 
vector with the double-complex precision. This implies that the 
total physical memory up to about 8 GByte is required to obtain 
the ground state by means of the conventional Lanczos method. 
This is rather expensive to perform on a standard laptop com-
puter. However, by incorporating the translational symmetry, the 
required storage per a state vector is reduced down to around 
2.5 MByte, and thus the computation can be executed easily with 
a laptop computer.

4.3. Static and dynamical structure factors

In Fig. 4, we also demonstrate the calculation of the static and 
dynamical spin structure factors for an S = 1/2 isotropic anti-
ferromagnetic Heisenberg model on a square lattice of 100 sites 
(Lx = L y = 10) with N↓ = 2. The static spin structure factor Sα

q is 
defined as

Sα
q = 〈φ| Ŝα†

q Ŝα
q |φ〉 (22)

with |φ〉 being the ground state and it is related to the dynamical 
spin structure factor Sα

q (ω) via
11
Fig. 4. (a) The z-component of the static spin structure factor S̃ z
q and (b) the z-

component of the dynamical spin structure factor S̃ z
q(ω) along the high symmetric 

momentum line for an S=1/2 isotropic antiferromagnetic Heisenberg model on a 
square lattice of 100 sites (Lx = L y = 10) with N↓ = 2 near the saturation field. 
Note that the trivial component in the structure factors is subtracted for visibility 
(see the text). The high symmetric momenta are indicated by �: (0, 0), X: (π, 0), 
and M: (π, π).

Sα
q =

∫
Sα

q (ω)dω. (23)

A nearly fully polarized state always displays a trivial but domi-
nant sharp peak in the longitudinal structure factor at the � point 
and the symmetrically equivalent momenta. For ease of visibility, 
this trivial component is subtracted from the calculated static and 
dynamical longitudinal spin structure factors, denoted respectively 
as S̃ z

q and S̃ z
q(ω) in Fig. 4. Here, the dynamical spin structure factor 

S̃ z
q(ω) at q = 0 is given as

S̃ z
q=0(ω) ≡ Sz

q=0(ω) − η

π(ω2 + η2)

M2

N
(24)

and S̃ z
q(ω) at q �= 0 is exactly the same as Sz

q(ω).

5. Summary

We have developed the exact diagonalization package QS3 for 
analyzing spin-1/2 quantum lattice models with XXZ interactions 
near the saturation field. The QS3 package employs the symmetry-
adapted basis sets with respect to the translational symmetry as 
well as the U(1) symmetry. In order to access large system sizes 
up to O (1000), the QS3 package does not use the traditional bit 
representation for spin configurations. Introducing OpenMP paral-
lelization, the bottleneck of the calculation, i.e., large dimension 
matrix-vector multiplication, is efficiently accelerated by the paral-
lelization. The QS3 package computes fundamental physical quan-
tities such as the local magnetization, two-point spin correlation 
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function, and the dynamical spin structure factor. These quantities 
are essential and observable in experiments. As demonstrated in 
the benchmark, the QS3 package can treat three-dimensional sys-
tems to understand the ground state as well as the low-energy 
excitations with potentially interesting properties.

For the future development, the QS3 package will be extended 
to treat the point-group symmetry in addition to the translational 
symmetry. We will also introduce the multiple degrees of freedom 
per unit cell, i.e., multiple spins per unit cell, to treat more gen-
eral lattice geometries such as the kagome and pyrochlore lattices. 
In addition, we will extend the application of the QS3 packages to 
dilute fermionis, soft-core bosons, and higher-spin systems. These 
extensions are straightforward in terms of the coding employed in 
the QS3 package and most likely increase a value of the QS3 pack-
age as a research tool not only in condensed matter physics but 
also in quantum chemistry. For example, the QS3 package will be 
able to handle the full configuration interaction (full CI) calculation 
for molecules with a small number of electrons occupying many 
orbitals, which are difficult to treat by an available open-source 
package, e.g., given in Ref. [52].

Furthermore, we can implement a function to simulate quan-
tum circuits with symmetry constraints. This direction of develop-
ment is important to provide reference data for benchmark results 
of future large-scale universal quantum computers and to inves-
tigate quantum accelerated algorithms for quantum many-body 
systems. These extensions are in part under progress and will be 
reported in the near future.
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