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Abstract

Controlling Superfluid and Insulating States in Interacting Quantum Gases

In this thesis, I present two studies on controlling the state and properties of both
single-species and composite quantum gases by tuning the various interaction strengths.
In the first work, I derive a shortcut to adiabaticity (STA) for tuning a Feshbach
resonance in repulsively interacting Bose-Einstein condensates (BECs) in the Thomas-
Fermi regime. This shortcut mimics an adiabatic evolution and allows one to compress
and expand a BEC without friction within an almost arbitrarily short time interval. I
then use this technique to show how it can boost the performance of the so-called Fesh-
bach quantum engine and also determine its limits and the instabilities it can lead to.
The first part is complemented by a study demonstrating the general ineffectiveness of
STAs as a tool to increase the attainable precision in critical quantum metrology at the
example of two critical toy models. In the second part, I show that a strongly correlated
one-dimensional quantum gas in the Tonks-Girardeau (TG) limit that is immersed into
a BEC can undergo a transition to a crystal-like insulator state without any externally
imposed lattice potential. I develop a model that accurately describes the system in
the pinned insulator state, even if the TG gas has a finite temperature. Additionally, I
study the superfluid state that can persist in the gas for finite interactions away from
the TG limit and uncover the full phase diagram of the system.
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Nomenclature

ℏ reduced Planck constant (1.054 571 817× 10−34 Js)
kB Boltzmann constant (1.380 649× 10−23 JK−1)
a0 Bohr radius (5.291 772 109× 10−11 m)
mu unified atomic mass unit (1.660 539 066× 10−27 kg)
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Introduction

In the last century, the first quantum revolution developed a theory that helped us
understand the laws of physics on a microscopical scale and brought technologies like
lasers or transistors that now govern our day-to-day life. Right now, we are in the
middle of a second quantum revolution [4]. Where in the first quantum revolution we
simply made use of the newly found quantum materials, the second quantum revolution
is about actively controlling, engineering and designing quantum systems to our liking.
While there is a general consensus which milestones need to be achieved in order to
construct, for example, a universal quantum computer [5], which is often viewed as
the primary goal for this second quantum revolution, they all pose great challenges to
physicists both on the experimental and theoretical level.

One particular aspect of this is the precise control of interacting many-body or even
macroscopic quantum systems, which often behave quite different from their individual
constituents [6]. Control, the ability to not just scientifically explain your surround-
ings, but to actually engineer them to your liking, is the key factor that leads from the
scientific understanding of a physical phenomenon to its use in technological applica-
tions [7]. In the case of quantum systems, obtaining this control is particularly hard
since they need to be cooled down and isolated from their surroundings at all times in
order to shield them from unwanted interactions.

In this thesis, I will present two studies of quantum systems, where in order to
control their properties, we can use the intrinsic interaction of a many-body quantum
system as well as the interaction with its environment to our advantage instead. The
first study is situated in the field of quantum thermodynamics [8]. Technological ad-
vancements have allowed for continuous progress in the miniaturization of classical heat
engines [9, 10] and yet the first successful operation of a heat engine using a quantum
object as its working medium was only demonstrated in 2016 in the group of Ferdinand
Schmidt-Kaler in Mainz [11] with their single-ion heat engine in a specifically designed
Paul trap based on a theoretical proposal in 2012 [12]. This strikingly demonstrates
the difficulties associated with achieving the necessary control for an intricate process
like a quantum engine cycle and since then only a handful of other engines have been
realized, e.g. using spin degrees of freedom [13, 14].

As opposed to technological improvements, in the first study I investigate how
novel protocols, which in principle allow to reach a desired target state with perfect
fidelity and in almost arbitrarily short times, are able to improve the operation of
quantum heat engines. This is done at the example of a so-called Feshbach engine,
which performs work by modulating the interaction strength of its superfluid Bose-
Einstein condensate working medium. The protocols I use are shortcuts to adiabaticity

1



2 Introduction

(STA) [15]. Similar to how optimal control methods can be used to find the fastest
path for moving a quantum system from one point to another while minimizing losses
and unwanted excitations, i.e. finding the ‘quantum brachistochrone’ [16], STA work
by finding the path between an initial and a final state that mimics adiabatic evolution,
i.e. avoids excitations altogether, for a given duration. Additionally, I show that there
are other fields of quantum physics in which STA can be even detrimental in contrast,
by demonstrating their ineffectiveness for increasing the attainable precision in critical
quantum metrology.

The second study is an example of indirectly controlling a quantum system via its
environment in the form of a quantum phase transition [17]. Phase transitions as a
collective phenomenon of many individual constituents are one of the most interesting
aspects of physics and the famous example of Bose-Einstein condensation [18, 19] is
a central aspect of this thesis. Usually, phase transitions at finite temperature result
from the competition between energy and entropy contributions to the free energy
[20]. At zero temperature, the competition between two distinct energy contributions
in the system can still lead to quantum phase transitions, driven purely by quantum
fluctuations. In the field of ultracold atoms, one of the most prominent ones is the
superfluid to Mott insulator transition for a Bose-Einstein condensate (BEC) trapped
in an optical lattice potential [21]. If the system is dominated by the kinetic energy
contribution, it remains in a spread out and phase-coherent superfluid state, while for
stronger repulsive interactions, the energy is minimized by transitioning to a localized
Mott insulator state with an integer number of atoms per lattice site and a gapped
energy spectrum.

Such a behavior is reminiscent of metal to insulator transitions in solid state physics
and this control over the fundamental character of the system, together with the high
degree of tunability, their accessible length and time scales as well as their purity
compared to condensed matter systems, is what makes neutral atoms in optical lattice
potentials to ideal quantum simulators of such systems [22–25].

In the second study, I describe a novel superfluid-insulator transition in a one-
dimensional, strongly repulsive quantum gas in the Tonks-Girardeau (TG) regime, in
which the necessary periodic trapping potential is created by the TG gas itself via the
backaction it exerts onto a homogeneous BEC into which it is immersed. I develop an
effective model for accurately describing this self-pinned state even at finite temper-
atures and I also cover the case of finite repulsion in the immersed component, away
from the Tonks-Girardeau limit, where a superfluid state can persist and an additional
first-order phase transition is present. The non-rigid nature of the matter-wave trap-
ping potential in the self-pinned state also enables phonon-like excitations, a crucial
feature of condensed matter systems that has been lacking in quantum simulators until
last year [26] and I provide an outlook to possible applications.

This thesis is structured into three parts, containing chapters built around the three
peer-reviewed publications and the one preprint that have resulted from my work. The
first part provides the necessary theories and methods used in this work. The second
one focuses on quantum control, particularly on shortcuts to adiabaticity, both as a tool
to boost the performance of Feshbach engines and in the context of critical quantum
metrology. The third part describes the novel superfluid-insulator transition in a one-
dimensional mixture of strongly correlated and weakly correlated systems mentioned
above.



3

The following provides a brief overview over each part and its chapters:

• Part I: Fundamentals

– Chapter 1 introduces the theory of cold atoms and interacting quantum
gases that this thesis is based on. A particular focus is on the concept
of superfluidity and its absence in insulating states as well as on lower-
dimensional systems.

– Chapter 2 introduces the numerical methods that have been used to obtain
a majority of the results presented in this thesis, namely the Fourier split-
step method and exact diagonalization, as well as ways to benchmark the
numerical results.

• Part II: Quantum Control, Shortcuts to Adiabaticity & Feshbach En-
gines

– Chapter 3 introduces the concept of shortcuts to adiabaticity and presents
derivations for various shortcuts for interaction ramps in several quantum
many-body systems.

– Chapter 4 presents the context and possible extensions of Publication [1]

Tim Keller, Thomás Fogarty, Jing Li, and Thomas Busch
Feshbach engine in the Thomas-Fermi regime
Physical Review Research 2, 033335 (2020),

where a novel shortcut presented in the preceding chapter was used to boost
the performance of a Feshbach quantum heat engine.

– Chapter 5 presents the context and impact of Publication [2]

Karol Gietka, Friederike Metz, Tim Keller, and Jing Li
Adiabatic critical quantum metrology cannot reach the Heisenberg

limit even when shortcuts to adiabaticity are applied
Quantum 5, 489 (2021),

where it was shown at the example of two toy models that counterintuitively
shortcuts to adiabaticity are not able to improve the obtainable precision in
critical quantum metrology.

• Part III: Interacting Two-Component Systems in 1D

– Chapter 6 introduces the pinning or commensurate-incommensurate tran-
sition of a strongly-interacting, one-dimensional quantum gas in a lattice
potential as well as important results from the study of atomic mixtures.

– Chapter 7 presents the context and possible extensions of Publication [3]

Tim Keller, Thomás Fogarty, and Thomas Busch
Self-Pinning Transition of a Tonks-Girardeau Gas

in a Bose-Einstein Condensate
Physical Review Letters 128, 053401 (2022) (Editor’s Suggestion),



4 Introduction

where a novel self-pinning transition of a strongly correlated gas in the
Tonks-Girardeau limit immersed into a Bose-Einstein condensate was de-
scribed and an effective model capturing the physics both at zero and at
finite temperature was developed.

– Chapter 8 presents a study of the self-pinning transition away from the
Tonks-Girardeau limit, where a superfluid state of the immersed component
can persist at finite intraspecies repulsion. The effective model is extended
to include this superfluid state and the phase diagram is calculated in the
numerically tractable case of two and three immersed atoms.



Part I

Fundamentals
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Chapter 1

Interacting Quantum Gases

In order to study the quantum behavior of matter, the thermal de Broglie wavelength
λT [27] of a particle needs to be comparable to a characteristic length scale, like the
average interparticle spacing of its constituents

λT =

√
2πℏ2
mkBT

≳ n−1/3 .

Here n is the density of the system, m the mass of the particle, kB the Boltzmann
constant and T the system temperature. Dilute clouds of neutral alkali atoms are
often the system of choice when trying to reach these regimes where quantum effects
become relevant [28]. They possess a single valence electron in their outermost elec-
tronic shell and the resulting optical transitions in combination with their magnetic
moments make them suitable for manipulation with electromagnetic fields. These fields
allow for great flexibility to engineer and tune the geometry, dimensionality and even
the interaction strength between particles [29] in the system. Fundamentally, such
interacting quantum gases comprised of N atoms are described by a wave function
ψ(r, t) = ψ(r1, r2, . . . , rN , t) obeying the Schrödinger equation

iℏ
∂ψ(r, t)

∂t
= Ĥψ(r, t) =

[
N∑
i=1

(
− ℏ2

2m
∇2

ri
+ V (ri)

)
+
∑
i<j

Vint(ri, rj)

]
ψ(r, t) ,

where the Hamiltonian Ĥ, besides the kinetic energy term, contains potential terms
V (ri) for each particle as well as the interaction potential Vint(ri, rj) [30].

This chapter introduces the theory of cold atoms and interacting quantum gases
that my thesis is based on. A particular focus is on tuning interaction strengths via
Feshbach resonances, the phenomenon of Bose-Einstein condensation and its treatment
in a mean-field description, the concept of superfluidity and its absence in insulating
states as well as lower-dimensional systems.
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8 Interacting Quantum Gases

1.1 Interactions between Cold Atoms
Neutral atoms can interact with each other via scattering processes if their spatial
separation becomes comparable to their size. A good measure for their size is given by
the thermal de Broglie wavelength λT mentioned earlier [27].

In order to describe the interaction between two cold atoms, we will focus on radially
symmetric interactions, depending solely on their relative distance r = |r1−r2|. Making
use of the spherical harmonics to describe the angular dependence, the Schrödinger
equation for the remaining radial part Rl(r) of the wave function can be rewritten as[

− ℏ2

2mr

(
∂2

∂r2
+

2

r

∂

∂r

)
+ Veff(r)

]
Rl(r) = ERl(r) , (1.1)

where mr is the reduced mass pertinent to the relative motion of the atoms and E is the
energy [30]. The effective potential contains both the actual interaction potential Vint(r)
as well as the rotational energy for a certain angular momentum quantum number l,

Veff(r) = l(l + 1)
ℏ2

2mrr2
+ Vint(r) . (1.2)

A good model for the actual interaction potential between neutral atoms is given by
the Lennard-Jones potential [31], which describes the repulsive force due to the hard
core potential at short distances as a term ∼ r−12 and the attraction at long ranges
due to the van-der-Waals force by a term ∼ r−6

Vint(r) =
A

r12
− B

r6
, (1.3)

where A and B are constants. At large distances r, these terms are dominated by the
r−2 dependence in the rotational energy term. Accordingly, for scattering processes
with l ̸= 0 at some energy E = ℏ2k2/2mr the atoms will never ‘see’ the interaction
potential, as the classical turning point rcl =

√
l(l + 1)/k for their motion as they

encounter this centrifugal barrier lies far beyond the interaction range. Therefore, it
is sufficient to focus on the l = 0 case to study the interaction between cold neutral
atoms, the so-called s-wave scattering [30].

Since we are dealing with elastic collisions that leave the wavenumber k unchanged,
the interaction can only affect the phase of the wave function. This collisional phase
shift η0 generally depends on the exact form of the interaction potential, but using
model potentials to represent certain aspects of the interaction, we can obtain expres-
sions for these cases [31].

Focusing, for example, on the repulsive part of the Lennard-Jones potential and
modeling it as a hard sphere potential with a diameter a, the phase shift is given by
η0 = −ka for the incoming particle with wavenumber k. Modeling the attractive part as
a potential well with depth V0 and width r0, we obtain an effective hard sphere diameter
a(k) = −η0(k)/k which gives rise to a scattering length as in the long-wavelength limit
k → 0

as ≡ lim
k→0

a(k) = − lim
k→0

η0(k)

k
= r0

(
1− tan(κ0r0)

κ0r0

)
, (1.4)
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where κ20 = −2mrV0/ℏ2. More generally, in the long-wavelength limit k → 0 in which
the scattered particle is not able to resolve the exact form of the scattering potential,
the scattering length for an arbitrary short-range potential is given by

1

as
= − lim

k→0
k cot (η0(k)) , (1.5)

recovering the hard-sphere result η0 = −ask in the absence of any resonance or open
scattering channel that might modify the phase shift. Since it cannot resolve the ex-
act scattering potential, the scattered particle cannot distinguish between an arbitrary
short-range potential and a hard sphere. This behavior is reminiscent of electrostat-
ics, where both a spherically symmetric charge distribution and a point charge with
corresponding properties generate the same far field [32]. Thus, we can represent the
interaction of cold atoms in the s-wave regime with a so-called pseudo potential in
the form of a point interaction that will produce the desired phase shift for a given
scattering length [33]. In the case of two identical atoms with mass m scattering off
each other, one obtains

Vint(r1, r2) =
4πℏ2as
m

δ (r1 − r2)
∂

∂r
(r·) ≡ gδ (r1 − r2)

∂

∂r
(r·) , (1.6)

with the interaction strength g only depending on the scattering length as. The deriva-
tive term is needed to regularize any singularities that might appear in the wave func-
tion as r → 0.

1.2 Feshbach Resonances
We have seen how the interaction between cold atoms can be expressed as a simple
contact potential whose strength depends on the scattering length for two-particle col-
lisions. The great advantage and versatility of cold atom systems becomes apparent
when recognizing that Feshbach resonances [34] allow one to tune the scattering length
almost arbitrarily, making it possible to realize practically any attractive or repulsive
interaction strength, as first demonstrated experimentally in 1998 [35, 36]. Taking into
account that alkali metals like rubidium have a single valence electron with an addi-
tional spin-1

2
degree of freedom leads to a different interaction potential and therefore

a different scattering length depending on if both electron spins of the identical atoms
scattering off each other form a singlet state with total spin S = 0 or a triplet state
with S = 1. The degeneracy of the triplet state with respect to the magnetic quantum
number mS = {−1, 0, 1} can be lifted by applying an external magnetic field, which
will change the energy of the state depending on mS.

A Feshbach resonance occurs if the energy E of two atoms colliding in the respective
magnetic substate is brought close to a bound state at energy Ec in the interaction
potential of the singlet state, resulting in a diverging scattering length. This is also
known as a magnetically induced Feshbach resonance. The general principle for such
Feshbach resonances involving an open channel with some background scattering po-
tential Vbg and a closed channel with some scattering potential Vc and a bound state
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Figure 1.1: (a) A Feshbach resonance occurs when two atoms scattering with energy
E in the background potential Vbg(r), the so-called open channel, resonantly couple
to a bound state at energy Ec in the so-called closed channel Vc(r). (b) The resulting
s-wave scattering length as, according to Eq. (1.7), for a magnetic Feshbach resonance
where the open and closed channels are given by different internal spin states whose
energy can be tuned by an external magnetic field via the Zeeman effect.

at Ec is demonstrated in Fig. 1.1 (a). The channel is called closed since its asymptotic
energy at large atomic separation r lies above the incident energy E and it is therefore
only accessible during the resonant coupling throughout the scattering process.

The dependence of the scattering length on the magnetic field B can be written as

as(B) = abg

(
1− ∆

B −B0

)
, (1.7)

highlighting the Feshbach resonance around a field strength of B0, where abg is the scat-
tering length of the background potential outside the resonance and ∆ is the resonance
width [37]. The resonance is plotted in Fig. 1.1 (b). In the case of a quasi-one-
dimensional system, in which dynamics in two directions are essentially frozen out,
e.g. via a tight confinement by a trapping potential in these directions, the effective
one-dimensional interaction strength can be changed both via Feshbach resonances and
by changing the frequency of the trapping potential [38], see also Section 1.6.

1.3 Bose-Einstein Condensation and Gross-Pitaevskii Equation

Let us consider a non-interacting ideal Bose gas at low temperatures. In the grand
canonical ensemble the partition function of the system is simply given by [39]

Z =
∏
i

∞∑
ni=0

eβ(µ−ϵi)ni =
∏
i

1

1− eβ(µ−ϵi)
, (1.8)
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where β = 1/kBT , µ is the chemical potential, ϵi are the single particle eigenenergies,
depending on the environment, and ni are the corresponding occupation numbers for
each state. Calculating the grand canonical potential gives

Ω = −kBT ln(Z) = kBT
∑
i

ln
(
1− eβ(µ−ϵi)

)
, (1.9)

from which one can obtain the total number of particles as

⟨N⟩ = −∂Ω
∂µ

=
∑
i

1

eβ(ϵi−µ) − 1
=
∑
i

n̄i . (1.10)

This yields the average occupation numbers n̄i for each single particle state, according
to the Bose-Einstein statistics. Since the occupation numbers need to be positive, this
creates the constraint µ < ϵ0 for the chemical potential, assuming the eigenenergies
fulfill ϵ0 ≤ ϵi. As µ → ϵ0, the ground state occupation diverges, revealing the mech-
anism behind Bose-Einstein condensation [27]. If we split the total number of atoms
into a condensed part N0 ≡ n̄0 and a thermal component NT

⟨N⟩ = N0 +NT = N0 +
∑
i ̸=0

n̄i , (1.11)

then as µ → ϵ0 or as the temperature is lowered below some critical value Tc, Bose-
Einstein condensation manifests itself as a macroscopic occupation of the ground state
N0 = ⟨N⟩ − NT . Let us assume the environment is given by a square box of length
L with volume V = L3 and periodic boundary conditions, then the eigenenergies
are of the form ϵ = p2/2m, where the momentum p is quantized according to p =
2πℏ(nx, ny, nz)/L with integer nx,y,z. We make the replacement

∑
p ̸=0 → V

(2πℏ)3
∫
dp,

obtaining

NT =
V

λ3T
g3/2

(
eβµ
)
, (1.12)

where λT is again the thermal de Broglie-wavelength and

g3/2(z) =
2√
π

∫ ∞

0

dx
x1/2

z−1ex − 1
. (1.13)

The lowest eigenenergy is ϵ0 = 0, therefore condensation will occur for µ → 0 and we
can calculate an expression for the critical temperature Tc from the previous equation
(1.12), giving

kBTc =
2πℏ2

m

(
n

g3/2(1)

)2/3

, (1.14)

where n = N/V and g3/2(1) ≈ 2.61. So for non-interacting particles with fixed mass
m in a box, Bose-Einstein condensation can be reached by lowering the system tem-
perature below a critical value Tc for fixed density n, or equivalently by increasing its
density beyond some critical value nc for a fixed temperature T .
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As we have seen, even for an ideal, non-interacting gas of ultracold atoms Bose-
Einstein condensation occurs. In general, the situation is more complicated considering
external trapping potentials V (r) in experimental realizations as well as usually weak
interactions between the atoms in the dilute quantum gas. The latter are needed for
the gas to thermalize, allowing it to be cooled down.

These effects can be taken into account in second quantization, where the many-
body Hamiltonian of an interacting quantum gas, using bosonic field operators Ψ̂(r),
reads

Ĥ =

∫
drΨ̂†(r)

[
− ℏ2

2m
∇2 + V (r)

]
Ψ̂(r) +

1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)Vint (r, r

′) Ψ̂(r′)Ψ̂(r) ,

(1.15)
where the first integral contains the single particle Hamiltonian, while the second term
describes the interaction between atoms [40]. We assume a dilute gas of cold atoms,
allowing us to use the contact potential Vint (r, r′) = gδ(r− r′) derived in the previous
section, where g = 4πℏ2as/m, and yielding

Ĥ =

∫
drΨ̂†(r)

[
− ℏ2

2m
∇2 + V (r) +

g

2
Ψ̂†(r)Ψ̂(r)

]
Ψ̂(r) . (1.16)

In the fully condensed state, all atoms have the same single-particle wave function.
Therefore, it is convenient to treat the system with a mean-field approach

Ψ̂(r) = ⟨Ψ̂(r)⟩+ δΨ̂(r) , (1.17)

separating the field operator into its mean-field value ψ(r) ≡ ⟨Ψ̂(r)⟩ and fluctuations
δΨ̂(r) around this value, scaling as 1/N with the number of condensed particles N .
If we restrict our treatment to almost fully condensed systems with large N , we can
neglect these fluctuations and the system evolves in time according to

iℏ
∂Ψ̂(r)

∂t
=
[
Ψ̂(r), Ĥ

]
. (1.18)

Plugging ansatz (1.17) into Eqs. (1.16) and (1.18), using the commutation relations[
Ψ̂(r), Ψ̂†(r′)

]
= δ(r− r′)[

Ψ̂(r), Ψ̂(r′)
]
=
[
Ψ̂†(r), Ψ̂†(r′)

]
= 0

(1.19)

for the bosonic field operators and neglecting all terms proportional to δΨ̂(r), we obtain
a mean-field equation for the BEC wave function ψ, called the Gross-Pitaevskii equation
(GPE) after Eugene Gross and Lev Pitaevskii who both derived it independently in
1961 [41, 42]

iℏ
∂ψ(r, t)

∂t
=

(
− ℏ2

2m
∇2 + V (r) + g|ψ(r, t)|2

)
ψ(r, t) . (1.20)
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It is also called the nonlinear Schrödinger equation since in the limit g → 0, where
the nonlinear interaction proportional to the density n(r) = ⟨Ψ̂†(r)Ψ̂(r)⟩ = |ψ(r)|2
vanishes, the linear Schrödinger equation is recovered. The normalization of the con-
densate wave function is determined by the density as well, giving the number of atoms
in the condensate as ∫

drn(r) =

∫
dr |ψ(r)|2 = N . (1.21)

Another important effect of finite interactions is the lowering of the critical temperature
for condensation compared to the ideal gas case in Eq. (1.14), see e.g. Ref. [43] for an
in-depth discussion.

1.4 Thomas-Fermi Limit
One of the most relevant regimes for the study of Bose-Einstein condensates, both
experimentally and theoretically, is the limit of large system sizes and repulsive inter-
actions Nas/x0 ≫ 1, where the repulsion leads to an expansion of the atomic cloud
and x0 =

√
ℏ/mω is the length scale associated with the typically harmonic trapping

of the cloud at a frequency of ω. The ratio of kinetic energy per particle to interac-
tion energy per particle in such a cloud is on the of order ∼ N−4/5 [44] and therefore
becomes insignificant for large particle numbers.

Neglecting the kinetic energy term in the Gross-Pitaevskii equation (1.20) and
assuming a time-dependence ψ(r, t) = ψ(r)e−iµt/ℏ with the chemical potential µ leads
to

µψ(r) =
(
V (r) + g|ψ(r)|2

)
ψ(r) , (1.22)

from which we can immediately solve for the density to obtain the Thomas-Fermi
approximation

ψTF(r, t) =

{√
1
g
(µ− V (r))e−iµt/ℏ for µ ≥ V (r)

0 otherwise
. (1.23)

The BEC density mirrors its trapping potential up to the point µ = V (r). Assuming
for example an isotropic harmonic oscillator potential V (r) = 1

2
mω2r2 leads to a cloud

radius of RTF = 2µ/mω2 in each direction. The chemical potential is determined in
terms of particle number and interaction strength from the normalization condition

N
!
=

∫
dr |ψTF(r)|2 , (1.24)

which leads to

µTF =

(
15Ng (mω2)

3
2

16π
√
2

) 2
5

=
ℏω
2

(
15N

as
x0

)2/5

. (1.25)
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Calculating the total system energy in the Thomas-Fermi approximation yields

ETF =

∫
dr

(
1

2
mω2r2|ψ(r)|2 + g

2
|ψ(r)|4

)
=

5

7
NµTF . (1.26)

The Thomas-Fermi approximation provides excellent agreement with experimentally
and numerically observed condensate densities in many cases. The most notable dif-
ference occurs at the condensate edges, where ψTF exhibits an unphysical kink with
diverging spatial derivative at the point of vanishing density, but it is possible to calcu-
late better approximations to the smooth vanishing of the physical wave function [45].
Experimentally, the definition of the Thomas-Fermi radius RTF = 2µTF/mω

2 provides
a convenient way to obtain accurate estimates for the number of condensed particles
via Eq. (1.25) for an atomic cloud with a certain radius observed e.g. via absorption
imaging.

1.5 Superfluid and Insulating States
In order to discuss superfluidity in the context of ultracold atomic gases, it is advan-
tageous to switch to a hydrodynamic description for the BEC wave function ψ(r, t) =√
ρ(r, t)eiϕ(r,t) in terms of its real-valued amplitude |ψ(r, t)| =

√
ρ(r, t) and phase

ϕ(r, t). Starting from the Gross-Pitaevskii equation (1.20), multiplying it with ψ∗(r, t)
and then subtracting the complex conjugate of the resulting expression from the orig-
inal equation leads to the continuity equation

∂ρ(r, t)

∂t
+∇ · j(r, t) ≡ 0 (1.27)

for the density ρ(r, t) = |ψ(r, t)|2 and where the probability current is defined as

j(r, t) = − iℏ
2m

(ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)) . (1.28)

From this quantity we can also obtain the velocity field via

v(r, t) =
j(r, t)

ρ(r, t)
=

ℏ
m
∇ϕ(r, t) . (1.29)

This simple expression shows that the velocity only depends on the phase gradient of
the wave function and also that the flow of the condensate must be irrotational since

∇× v =
ℏ
m
∇×∇ϕ(r, t) ≡ 0 . (1.30)

This only holds if the phase is ‘well-behaved’ however, since there are condensates
exhibiting rotational flow caused by vortices that are characterized by singularities in
the phase ϕ(r, t) and corresponding vanishing densities ρ(r, t). The study of vortices
in BEC is a large field in itself with topics ranging from triangular Abrikosov vortex
lattices in highly rotating condensates [46] to the spontaneous formation of vortices
during Bose-Einstein condensation as a result of the Kibble-Zurek mechanism [47].
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One obtains an equivalent to the continuity equation (1.27) for the phase respec-
tively the velocity from taking the imaginary part of the Gross-Pitaevskii equation
(1.20) in terms of the new quantities and then calculating the gradient according to

m
∂v(r, t)

∂t
= −∇

(
− ℏ2

2m
√
ρ(r, t)

∇2
√
ρ(r, t) +

1

2
m|v(r, t)|2 + V (r) + gρ(r, t)

)
.

(1.31)
The first term inside the parentheses is often referred to as ‘quantum pressure’ [27].
We want to describe the elementary excitations in the condensate in this description
and consider a density ρ = ρ0+ δρ with a homogeneous background ρ0 and some small
fluctuations δρ(r, t) in a constant potential V (r) ≡ const.. After linearizing Eqs. (1.27)
and (1.31), i.e. discarding terms of order larger equal two in both δρ and v, which is
also assumed to be small, we combine them into a single equation of motion

m
∂2δρ(r, t)

∂t2
= ∇ ·

[
ρ0∇

(
− ℏ2

4mρ0
∇2δρ(r, t) + gδρ(r, t)

)]
. (1.32)

Assuming that the solution has a form of a travelling wave δρ(r, t) ∼ exp [i(q · r− ωt)]
with wave vector q and frequency ω yields

mω2δρ(r, t) =

(
ℏ2q4

4m
+ gρ0q

2

)
δρ(r, t) , (1.33)

from which we obtain the dispersion relation for the elementary excitations according
to

ϵ(q) = ℏω =

√
ℏ2q2

2m

(
ℏ2q2

2m
+ 2gρ0

)
. (1.34)

Interestingly, this result in the hydrodynamic description is identical to the spectrum
first obtained by Bogoliubov from a microscopic theory for the Bose-Einstein con-
densate [48]. For small quasi-momenta, the spectrum is approximately linear and
proportional to the speed of sound cs =

√
gρ0/m, while for larger momenta the free-

particle spectrum with an additional mean-field shift from the interactions is obtained
according to

ϵ(q) ≈


√

ℏ2gρ0
m

q = csℏq for q ≪ 1/ξ

ℏ2q2
2m

+ gρ0 for q ≫ 1/ξ
(1.35)

with q = |q|. The change in asymptotic behavior occurs around q ∼ 1/ξ, where
ξ =

√
ℏ/2mgρ0 is the healing length. The spectrum is plotted in Fig. 1.2 (a).
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Figure 1.2: (a) Bogoliubov excitation spectrum (solid line) of a BEC according to
Eq. (1.34) together with its asymptotic phonon-like (dotted line, valid for small q)
and free particle-like (dashed line, valid for large q) approximations according to Eq.
(1.35). The behavior changes once the quasi-momentum q becomes larger than the
inverse healing length ξ. The speed of sound cs =

√
gρ0/m and the critical velocity

for superfluidity according to the Landau criterion (1.38) are identical. (b) Schematic
excitation spectrum for 4He. Due to the roton minimum at some quasi-momentum q0
leading to excitations with decreased energy ∆ compared to the phonon-like branch,
the critical velocity for superfluidity is smaller than the speed of sound.

1.5.1 The Landau Criterion for Superfluidity

Consider a fluid of total mass M in its ground state with energy E = E0 in a reference
frame in which the fluid is at rest, i.e. in which its momentum vanishes such that
p = 0. If an obstacle is moved through the fluid at a relative velocity v, then a
Galilean transform p′ = p−Mv and E ′ = E0 + p′2/2M yields

E ′ = E0 +
1

2
M |v|2 (1.36)

for the energy of the fluid in the reference frame moving with the obstacle. If now a
single excitation with momentum p and energy ϵ(p) is present, then the energy in the
moving reference frame reads

E ′ = E0 + ϵ(p)− p · v +
1

2
M |v|2 . (1.37)

From the perspective of the obstacle it is therefore energetically favorable to create
an excitation in the fluid once the change in energy ∆E = ϵ(p) − p · v < 0 becomes
negative. Therefore, there exists a critical velocity

vcrit = min
p

=
ϵ(p)

|p| (1.38)
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beyond which the system can lower its energy by creating excitations, corresponding
to the dissipation of kinetic energy due to friction in a classical fluid, and thereby
destroying superfluid or frictionless behavior. Exactly at the critical velocity the quasi-
particle momentum p is parallel to the velocity v of the perturbation, but for higher
velocities they may have a finite angle between them as long as ∆E < 0 is fulfilled.
Eq. (1.38) is commonly known as the Landau criterion [27].

From the Landau criterion one can directly see that the ideal, non-interacting Bose
gas with ϵ(p) = p2/2m is not superfluid since vcrit = 0 and therefore any finite-velocity
flow will immediately create excitations in the fluid, while a Bose-Einstein condensate
with dispersion relation (1.34) is superfluid with a critical velocity identical to the
speed of sound vcrit = cs. Atomic interactions and the resulting linear dispersion for
long wavelengths therefore seem to play a crucial role for the existence of superfluidity.
In the case of a strongly interacting liquid like 4He, the infamous roton minimum [27]
leads to a critical velocity smaller than the speed of sound, vcrit < cs, as shown in Fig.
1.2 (b).

The notions of Bose-Einstein condensation and superfluidity are closely related but
not synonymous. As described above, there are systems like the ideal Bose gas that
can have large condensate fractions below the critical temperature and yet they are not
superfluid. On the other hand, close to absolute zero 4He has a superfluid fraction near
unity while its condensate fraction is less than 10% [39]. In general, experimentally
determining superfluid behavior of quantum gases is highly non-trivial [49].

Throughout this thesis I only consider Bose-Einstein condensates of finitely inter-
acting gases and therefore all of the systems studied in Part II are also superfluids.
In Part III I also consider strongly interacting systems in one dimension. They are
sometimes referred to as quasi-condensates since they are not Bose condensed but they
still exhibit some degree of phase coherence. In particular, some degree of ‘off-diagonal
long-range order’ (ODLRO), which is the term coined by Yang [50] for the general cri-
terion proposed by Penrose and Onsager [51] for Bose-Einstein condensation. Namely,
if the reduced single-particle density matrix (RSPDM) ρ(r, r′) = ⟨Ψ̂†(r)Ψ̂(r′)⟩, which
only depends on the relative distance |r − r′| for a translationally invariant system,
tends to some non-vanishing value

lim
|r−r′|→∞

ρ(r, r′) =
N0

V
̸= 0 (1.39)

in the limit |r − r′| → ∞, where N0 is the number of atoms in the zero-momentum
state and V is the volume. Most physical systems as well as the systems studied
numerically in this thesis have a finite size and therefore it is necessary to slightly
adapt the Penrose-Onsager criterion. The RSPDM is Hermitian and positive definite
which means that it can be diagonalized according to

ρ(r, r′) =
∑
n

λnφ
∗
n(r

′)φn(r) (1.40)

in terms of its real and positive eigenvalues λn, also known as occupation numbers,
and its eigenstates φn(r), also known as natural orbitals [52]. The Penrose-Onsager
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criterion now translates to

λ0 ∼ O(N) and λn>0 ∼ O(1) , (1.41)

i.e. the lowest single-particle orbital is macroscopically occupied, while in bosonic gases
above the critical temperature for condensation as well as in fermionic gases we have
λn ∼ O(1) ∀ n. In the case of a degenerate ground state, one can have multiple
macroscopically occupied orbitals in the form of fragmented Bose-Einstein condensates
[53]. The quasi-condensates studied in Part III exhibit a behavior in between these two
limiting cases. For example in the Tonks-Girardeau limit of infinitely strong repulsion,
in which the one-dimensional bosons ‘fermionize’, we have λ0 ∼ O(N1/2) [54, 55].

1.5.2 Absence of Superfluidity: Insulating States

As we have seen in the previous sections, superfluidity is characterized by a spatially
extended state with long-range phase coherence, hinting towards the spontaneously
broken continuous U(1) symmetry of the underlying Hamiltonian, and also at a finite
compressibility of the system [56]. In contrast, the absence of superfluidity implies the
existence of a localized, incoherent state with vanishing compressibility. In analogy to
metal-insulator transitions in solid-state physics [57], such states are known as insu-
lating states and often they are also studied in the same context, e.g. if the quantum
gas is confined to a periodic lattice potential similar to electrons in a crystal. There
are several mechanisms that can cause a system to localize, aptly termed ‘enemies
of Bose-Einstein condensation’ by Nozières [56], with the most prominent ones being
Mott localization and Anderson localization. Both of them assume the presence of
a lattice potential and their exact interplay is still an active topic in the research of
metal-insulator transitions [58, 59]. An introduction in the context of one-dimensional
quantum gases can be found in Ref. [60].

Mott localization [61, 62] is caused by strong repulsive interactions between the
particles, preventing them from moving between different lattice sites and therefore
resulting in an insulating state with one particle per lattice site in the case of fermions
or an integer number of particles per site in the case of bosons if additionally the
number of particles and lattice sites is commensurate [63].

Anderson localization [64] is caused by disorder or randomness in the underlying
lattice potential due to e.g. impurities or lattice defects. Beyond a critical degree of
disorder, destructive interference of the wave function destroys the long-range phase
coherence, resulting in an insulating state.

A hallmark of these insulating states is the emergence of a gap in the energy spec-
trum. In one-dimensional fermionic or ‘fermionized’ systems like the ones I am studying
in Part III of this thesis, another mechanism for localization is the Peierls instability
[65], which is triggered by electron-phonon interactions in its original context of con-
densed matter physics. Here, the system is able to lower its energy by creating an
energy gap in the spectrum exactly at the Fermi wave vector kF, if a suitable phononic
excitation with wave vector 2kF is present.

The gap is created because the electron-phonon coupling lowers (raises) the energy
of states in the vicinity of kF with k < kF (k > kF) by the same mechanism that leads
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Figure 1.3: (a) A linear chain of atoms with regular spacing a between them and
one electron per atom results in a constant charge density ρ(x) and a half-filled band
structure up to the Fermi energy ϵF at wave vector kF = π/2a. The periodicity causes
an energy gap with vanishing slope at the edge of the Brillouin zone at q = π/a.
This configuration in unstable since the system can lower its energy by dimerizing and
forming a crystal with twice the spacing 2a after undergoing the Peierls transitition as
shown in panel (b). This creates a new energy gap ∆E exactly at the Fermi surface and
thereby lowers the energy of the states just below it and also forms a charge density
wave ρ(x) ∼ cos(2kF).

to the development of energy bands in periodic potentials. But since only states up
to wave vector kF are occupied in the fermionic system, this leads to a net decrease
in energy. Peierls used this argument to show that a one-dimensional crystal with one
electron per atom is unstable. If the crystal has a lattice spacing of a, then this situation
corresponds to a half-filled lattice up to kF = π/2a [see Fig. 1.3 (a)]. The system can
lower its energy by dimerization, i.e. creating a new crystal structure with twice the
spacing 2a that now contains 2 atoms per Brillouin zone [see Fig. 1.3 (b)]. The new
periodicity 2a leads to the emergence of an energy gap at the edge of the new Brillouin
zone which corresponds exactly to the Fermi edge of the original crystal kF, thereby
leading to a net decrease in energy. The resulting spatial modulation ρ(x) ∼ cos(2kFx)
of the electrons in the dimerized state is known as charge-density wave [66].

1.6 Lower-Dimensional Systems
So far, we only discussed three-dimensional quantum gases. Lower-dimensional systems
are interesting because they offer a behavior often fundamentally different from their
three-dimensional counterparts, as we will see in the following section, and particularly
in the one-dimensional case they often allow for analytic solutions [67].
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Experimentally, they can be realized by trapping atoms in highly anisotropic ge-
ometries that freeze out the dynamics along one or two axes. For example, if in a
harmonic potential the trapping frequencies fulfill ω⊥ := ωy,z ≫ ωx =: ω and if addi-
tionally the chemical potential of the system does not exceed ℏω⊥, then it remains in
the ground state of the trap in the y- and z-directions. Since the ground state has a size
on the order of d⊥ =

√
ℏ/mω⊥ ≪ d =

√
ℏ/mω in these directions, the system can be

considered to be quasi-one-dimensional. Often optical lattices are employed to create
arrays of quasi-one-dimensional tubes with this technique. In this way, it was possible
to successfully demonstrate the fermionization of strongly repulsive interacting bosons
in one dimension [68, 69] or to study the equilibration properties of a 1D Bose gas [70].

First, let us examine the effect of dimensionality on Bose-Einstein condensation. In
general, Eq. (1.12) in Section 1.3 for the number of thermal atoms can be written as
[27]

NT =

∫ ∞

0

dϵ
ρ(ϵ)

eβϵ − 1
=

∫ ∞

0

dϵ
Cαϵ

α−1

eβϵ − 1
= Cα (kBT )

α

∫ ∞

0

dx
xα−1

ex − 1
= Cα (kBT )

α Γ(α)ζ(α) ,

(1.42)
where we assume that the density of states is of the form ρ(ϵ) = Cαϵ

α−1 with some
coefficient α depending on the dimension of the system and where Γ(α) and ζ(α) denote
the gamma function and the Riemann zeta function respectively.

For a uniform, non-interacting Bose gas in free space in d dimensions we have
α = d/2 and therefore the integral in Eq. (1.42) diverges for d < 3, preventing the
existence of Bose-Einstein condensates in true one-dimensional and two-dimensional
systems. If the non-interacting Bose gas is harmonically trapped instead, we have
α = d, which means that the integral now converges at least for the d = 2 case, in
principle allowing for the existence of a true 2D BEC in a harmonic trap.

For the uniform case, these observations are a direct result of the Mermin-Wagner-
Hohenberg theorem, which states that in one-dimensional and two-dimensional ho-
mogeneous systems continuous symmetries cannot be spontaneously broken at finite
temperatures T > 0 [71, 72], which prevents the existence of off-diagonal long-range
order necessary for Bose-Einstein condensation. However, in two dimensions there is
another type of superfluid quasi-condensate (see the discussion in the previous section)
even in uniform systems, which is reached by a topological, infinite-order phase transi-
tion of Berezinskii-Kosterlitz-Thouless (BKT) type that does not involve a spontaneous
breaking of a continuous symmetry [73, 74]. In a spherically symmetric 2D system of
area A = πR2 and density n2D, the energy of a single vortex with a radius on the order
of the healing length ξ is up to a constant given by [27]

E ≃ πn2D
ℏ2

m
ln

(
R

ξ

)
. (1.43)

The number of different possible locations for the vortex ∼ R2/ξ2 results in an entropy
S = 2kB ln(R/ξ). Creating a vortex therefore changes the free energy of the system by
an amount

∆F = E − TS =

(
πn2D

ℏ2

m
− 2kBT

)
ln

(
R

ξ

)
(1.44)
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and one can immediately see that there is a phase transition indicated by ∆F = 0,
where above a temperature

TBKT =
πn2Dℏ2

2mkB
(1.45)

the change in free energy becomes negative and it is favorable for the system to create
a vortex. However, once there is more than one vortex their interactions need to be
taken into account as well. The total energy of two vortices with vorticity l1 and l2 at
a distance ξ ≪ d≪ R is [75]

E ≃ πn2D
ℏ2

m
(l1 + l2)

2 ln

(
R

ξ

)
+ 2πn2D

ℏ2

m
l1l2 ln

(
ξ

d

)
. (1.46)

This expression is minimized for a vortex-antivortex pair with l1 = −l2, with the
added benefit that the unphysical divergence of the energy in the thermodynamic limit
R → ∞ disappears. The system will therefore always prefer states with vanishing
total vorticity

∑
i li = 0 and the BKT transition can be understood as the breaking

up of bound vortex pairs of opposite circulation into independent vortices above a
temperature TBKT. In a quasi-2D quantum gas a Berezinskii-Kosterlitz-Thouless type
transition was first observed by Hadzibabic et al. in 2006 [76].

In the presence of interactions, a 2D superfluid quasi-condensate can also be reached
at finite temperatures and the critical temperature can be related to the interaction
strength for an extremely dilute system as shown in Ref. [77]. The question of how
interactions affect the existence of a true 2D BEC in trapped systems according to
Eq. (1.42) and how this relates to the BKT transition was at the center of a lengthy
debate, see e.g. Ref. [29] and references therein. Eventually, the existence of two
distinct superfluid phases, a true condensate for low temperatures 0 < T < Tc and
a quasi-condensate for intermediate temperatures Tc < T < TBKT, were predicted
theoretically [78] and confirmed with numerical simulations [79].

Finally, in one-dimensional cold atomic systems one of the most striking differences
can be seen in the interaction strength

g1D = − 2ℏ2

ma1D

=
4πℏ2as
m

1

πd2⊥

(
1− C as

d⊥

) ≈ 2ℏω⊥as

(1.47)

of an ultracold bosonic gas in a one-dimensional geometry [38]. It is inversely pro-
portional to the 1D scattering length a1D and has the opposite sign compared to g3D
in Eq. (1.6). The second line in Eq. (1.47) shows the relation to the physical three-
dimensional scattering length as, where C ≈ 1.46 is a constant and d⊥ =

√
ℏ/mω⊥

is the radial confinement. The final approximation nicely shows how increasing the
radial trapping frequency ω⊥ and making the system ‘more one-dimensional’ results in
a stronger interaction.

Furthermore, since particles in one dimension can only move along a single axis
without being able to avoid each other, any excitation in 1D has to be of a collective
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nature. Without further trapping potentials along the axis of motion, the Hamiltonian
of this situation reads

Ĥ = − ℏ2

2m

∑
i

∂2

∂x2i
+ g1D

∑
i<j

δ (|xi − xj|) (1.48)

and was solved by Lieb and Liniger [80, 81]. The system is fully characterized by the
Lieb-Liniger parameter γ = mg1D/ℏ2n1D relating the interaction energy to the kinetic
energy via the line density n1D. The reduced dimensionality has the peculiar effect
that counterintuitively the limit of strong interactions γ ≫ 1 can also be reached for
low densities n1D.

In the limit of infinitely strong repulsion γ → ∞, the probability of finding two
bosons at the same position x1 = x2 vanishes. This is reminiscent of the behavior
of two non-interacting, identical fermions obeying the Pauli exclusion principle. The
bosons can be thought of as impenetrable spheres in this case and the system is known
as a Tonks-Girardeau gas. Their wave function can be obtained by symmetrizing
the wave function of the corresponding system comprised of non-interacting, identical
fermions, as described by the Bose-Fermi mapping theorem [82]. The bosonic wave
function ΨB is therefore calculated as

ΨB(x1, x2, . . . , xN) = A(x1, x2, . . . , xN)ΨF(x1, x2, . . . , xN)

=
∏

1≤i<j≤N

sgn(xi − xj)ΨF(x1, x2, . . . , xN)
(1.49)

with the symmetrizing function A(x1, x2, . . . , xN) and where the fermionic wave func-
tion ΨF is obtained from the single-particle eigenstates ϕn of the corresponding Hamil-
tonian via the Slater determinant

ΨF(x1, x2, . . . , xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1 (x1) ϕ1 (x2) · · · ϕ1 (xN)
ϕ2 (x1) ϕ2 (x2) · · · ϕ2 (xN)

...
... . . . ...

ϕN (x1) ϕN (x2) · · · ϕN (xN)

∣∣∣∣∣∣∣∣∣ . (1.50)

For example, the ground state of a simple two-particle Tonks-Girardeau gas is
therefore given by

ΨB
0 (x1, x2) = |ΨF

0 (x1, x2)| =
1√
2
|ϕ0(x1)ϕ1(x2)− ϕ0(x2)ϕ1(x1)| , (1.51)

and most importantly, the line densities of a bosonic Tonks-Girardeau and a spin-
polarized fermionic gas in an equivalent setting are identical

ρ(x) = |ΨB(x)|2 = |ΨF(x)|2 =
∫
dx2 . . . dxN |ΨF(x, x2, . . . , xN)|2 =

N∑
n=1

|ϕn(x)|2

(1.52)
and simply obtained from summing up all occupied single-particle eigenstates, which
we will use in Part III of this thesis.
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While in general all local properties of the bosonic Tonks-Girardeau gas are identical
to their fermionic counterparts, they differ for example in their momentum distributions
n(k) [52], which can be calculated from the RSDPM as

n(k) =
1

2π

∫
dxdx′ρ(x, x′)eik(x−x′) =

∑
i

λiϕ̃
∗
i (k)ϕ̃i(k) (1.53)

with the Fourier transforms ϕ̃i(k) of the natural orbitals and where we express the
momentum p in units of ℏ according to p = ℏk. The fermionic momentum distribution
nF(k) = (Θ(k+kF)−Θ(k−kF))/2kF is simply constant up to the Fermi momentum kF,
while the bosonic Tonks-Girardeau momentum distribution is strongly peaked around
k = 0 and decays as

nB(k → ∞) ∼ 1

k4
(1.54)

at large momenta as a result of the δ-function pseudo-potential for the interactions [83–
85]. The fermionized Tonks-Girardeau gas has already been observed experimentally
[68, 69], even for just two particles [86]. A detailed review of one-dimensional bosonic
systems that covers many of the topics touched upon in this thesis can be found in
Ref. [87].





Chapter 2

Numerical Methods

This chapter introduces the numerical methods that have been used to obtain a ma-
jority of the results presented in this thesis, namely the Fourier split-step method and
exact diagonalization, as well as ways to benchmark the numerical results.

2.1 Fourier Split-Step Method
The (nonlinear) Schrödinger equations studied in quantum mechanics cannot be solved
analytically in most cases, particularly in three-dimensional systems, and therefore
need to be solved numerically. There are a variety of methods available for solving
such partial differential equations, e.q. implicit Euler methods or Crank-Nicholson and
Runge-Kutta schemes [88, 89]. Throughout this thesis, I will mostly use the simple
and efficient Fourier split-step method, which provides sufficient accuracy at reasonable
numerical cost and is widely used for cold atomic systems [90–95], but also in other
areas of physics like fiber optics, where the propagation of wave packets through an
optical fiber is also described by a nonlinear Gross-Pitaevskii type equation [96].

We are considering a general Schrödinger equation

iℏ
∂Ψ(r, t)

∂t
= ĤΨ(r, t) =

(
K̂ + V̂

)
Ψ(r, t) (2.1)

consisting of a kinetic energy term K̂ = p̂2/2m acting in momentum space and a local
potential term V̂ (r) acting in position space, whose formal solution is given by

Ψ(r, t) = e−iĤt/ℏΨ(r, t) = e−i(K̂+V̂ )t/ℏΨ(r, t) . (2.2)

The central idea of split-step methods is now to separate the sum of momentum and
potential operators in the exponent of Eq. (2.2) into a product of exponential func-
tions since their individual effects on the wave function can be calculated explicitly, in
contrast to their combined effect. Position and momentum in quantum mechanics are
canonical conjugate quantities and due to the non-vanishing commutator [K̂, V̂ ] ̸= 0
such a decomposition generally involves an infinite product, which can be obtained
e.g. via the Baker-Campbell-Hausdorff formula [30]. For computational purposes it is
necessary to find a truncated finite product that provides a good compromise between

25
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numerical effort and accuracy compared to the exact expression. If we evolve the wave
function by a small time step dt, then a Taylor expansion of the exact expression reads

e−i(K̂+V̂ )dt/ℏ = 1̂+dt

(−i
ℏ

)(
K̂ + V̂

)
+
dt2

2

(−i
ℏ

)2 (
K̂2 + K̂V̂ + V̂ K̂ + V̂ 2

)
+O(dt3) ,

(2.3)
while a naive separation of the exponentiated product into a product of exponents
yields

e−iK̂dt/ℏe−iV̂ dt/ℏ ≈ 1̂+ dt

(−i
ℏ

)(
K̂ + V̂

)
+
dt2

2

(−i
ℏ

)2 (
K̂2 + 2K̂V̂ + V̂ 2

)
, (2.4)

which differs in the second-order term compared to Eq. (2.3). Therefore, this approx-
imation introduces an error on the order of O(dt2) and is also known as first-order
accurate asymmetric Lie-Trotter splitting due to its similarity with the Lie-Trotter
product formula in the limit dt → 0 [97]. A more accurate scheme is given by the
second-order accurate symmetric Strang splitting [98]

e−i(K̂+V̂ )dt/ℏ = e−iV̂ dt/2ℏe−iK̂dt/ℏe−iV̂ dt/2ℏ +O(dt3) , (2.5)

which only differs from Eq. (2.3) starting with the third-order term.
The time steps in position space can simply be evaluated by expressing both the

wave function and the potential term on a discrete position grid r ∈ {r1, . . . , rN} and
computing the resulting element-wise or Hadamard product exp(−iV̂ dt/2ℏ) ◦ Ψ(r, t)
[99]. If using a first-order accurate scheme, it is also possible to compute the momentum
term in position space within the same order of accuracy since exp(−iK̂dt/ℏ) = 1̂ −
idtℏ

p̂2

2m
+O(dt2). The momentum operator p̂2 = −ℏ2∇2 is then evaluated by explicitly

performing the spatial derivative on the chosen position grid, e.g. by using a finite
difference scheme similar to the one introduced in the following section about exact
diagonalization. However, this method introduces an additional error based on the grid
size and is not very practical except for one-dimensional systems. A better approach is
to Fourier transform the wave function to momentum space Ψ(k, t) = F [Ψ(r, t)], where
the momentum term can be evaluated with the same simple element-wise Hadamard
product

exp(−iK̂dt/ℏ)Ψ(r, t) =⇒ exp

(
−idt

ℏ
ℏ2k2

2m

)
◦Ψ(k, t) (2.6)

due to the formal mapping of derivation and multiplication ∂xf(x) ↔ ikf̃(k) during
Fourier transformation. The momentum grid cannot be chosen freely but depends on
the used position grid according to

kimax =
2π

∆ri
for i ∈ {x, y, z} (2.7)

as a direct result of the uncertainty relation. Furthermore, as a result of the Nyquist
sampling theorem [100] the grid spacings ∆ri need to be chosen smaller than half
the size of the smallest spatial structure present in the wave function in order to
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be able to faithfully resolve and simulate the system on the grid. For example, a
harmonically trapped BEC in the Thomas-Fermi regime has an extent on the order of
2RTF = 2

√
2µTF/mω2 (see Section 1.4), while the smallest spatial features are on the

order of the healing length ξ = (8πnas)
−1/2 ≈

√
ℏ2/2mµTF [40]. The required number

of grid points in each spatial direction is therefore on the order of

Ngrid ≳
2RTF

ξ/2
=

8µTF

ℏω
= 4

(
15N

as
x0

)2/5

, (2.8)

with the harmonic oscillator length scale x0 =
√
ℏ/mω. For a typical 87Rb-BEC of

N = 105 atoms with a scattering length of approximately as ≈ 100 a0 Bohr radii and
x0 ≈ 1.5µm [101], this leads to Ngrid ≳ 123. Ideally Ngrid is chosen as a power of
two however, in order to considerably speed-up the numerical Fast Fourier Transforms
(FFT) [102], e.g. Ngrid = 27 = 128 in that case.

Finally, the complete procedure for evolving the wave function in time via the
symmetric Strang splitting method is then given by repeatedly advancing it first by
half a time step in position space, Fourier transforming it to momentum space and
advancing it by a full time step before Fourier transforming back to position space and
advancing by another half time step. Or expressed in equation form

Ψ(r, t+ dt) ≈ Ûr

(
dt

2

)
F−1

[
Ûk(dt)F

[
Ûr

(
dt

2

)
Ψ(r, t)

]]
, (2.9)

where F denotes the Fourier transform and where we introduce the shorthand notation
Ûr(dt) = exp(−iV̂ dt/ℏ) and Ûk(dt) = exp(−iK̂dt/ℏ) for the evolution operators in
position and momentum space respectively.

If a nonlinear term such as in the Gross-Pitaevskii equation is present in the poten-
tial part V̂ , the accuracy of the split-step method crucially depends on which version of
the wave function during a combined evolution step is used for evaluating the density
in the nonlinear term as Javanainen and Ruostekoski show in Ref. [93]. They find
that always using the most recent wave function for calculating the density, i.e. updat-
ing the nonlinear term after the momentum space step and before the final position
space half-step when using the symmetric Strang splitting, guarantees the same order
of accuracy as for the linear Schrödinger equation. Since the nonlinear term can be
considered as a time-dependent addition to the external potential, the same argument
should also hold in general if the external potential itself is time-dependent.

Most of the results presented in Part II of this thesis were obtained using the
Fourier split-step method described above for studying the dynamics of a quantum
system and evolving a known initial state in time. An equally important application of
this method is to find unknown ground states of quantum systems whose Schrödinger
equations cannot be solved analytically by performing a so-called Wick rotation [103]
for the time operator according to t → −it, which is akin to evolving the system in
imaginary time. Most of the results presented in Part III of this thesis were obtained
using this imaginary time evolution. Any wave function that has a finite overlap
with the unknown ground state can be expressed in terms of eigenstates |ϕn⟩ of the
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Hamiltonian, so that the formal solution (2.2) after applying the Wick rotation reads

Ψ(r,−it) = e−Ĥt/ℏΨ(r, t) =
∑
n

cne
−Ent/ℏ |ϕn(r)⟩ , (2.10)

with eigenenergies En and basis coefficients cn. The imaginary time evolution works
because the contributions from different eigenstates decay exponentially in time at
different rates according to their corresponding energy En. The ground state, i.e.
the state with the lowest energy E0, decays the slowest and should therefore become
the dominant contribution the longer the system is evolved in imaginary time, while
renormalizing the wave function after each time step to account for the gradual loss of
density. If the imaginary time evolution with subsequent renormalization is continued
until the wave function converges, then ideally the system has reached its ground state
according to Ψ(r,−it → ∞) −→ |ϕ0(r)⟩ and we can immediately obtain both the
corresponding wave function and energy.

The rate of convergence depends on the quality of the chosen initial state in terms
of similarity to the unknown ground state and on the energy level structure of the
underlying Hamiltonian. There is a risk of not obtaining the true ground state if the
Hamiltonian has many eigenstates with similar energy or if there is a higher lying
metastable state.

We also use the Fourier split-step method in Chapters 3 and 8 for real and imaginary
time propagation of the many-body wave function of two-particle and three-particle
systems with finite interactions in one spatial dimension. Interpreting the particle
coordinates as spatial dimensions allows one to use the same numerical framework for
the algorithm as for the wave function of a BEC obeying the Gross-Pitaevskii equation
in two or three dimensions. In this case, there is no nonlinear term and depending
on the numerical platform it can be cumbersome to properly transform the potential
terms for each particle along the correct dimension. However, for two particles the
contact interaction becomes a simple diagonal matrix

(Vint)ij = [gδ(x1 − x2)]ij = gδ [∆x(i− j)] =
g

∆x
δij , (2.11)

where the finite position grid with spacing ∆x leads to a rescaling of the interaction
strength.

When implementing the split-step Fourier method, the main numerical cost is
caused by repeatedly Fourier transforming the wave function. The element-wise mul-
tiplications both in position and momentum space have a complexity on the order
of O(Ngrid), while commonly used Fast-Fourier-Transform algorithms like the Cooley-
Tukey method [104] have a higher complexity on the order of O(Ngrid log(Ngrid)). Par-
ticularly for longer evolutions in real-time or when simulating fast dynamic processes
that require small time steps in 2D and 3D systems, this can quickly result in very
time-consuming numerical simulations. For this reason, I used a modified version of
the open-source GPUE codebase [105] developed by Schloss and O’Riordan for simu-
lating the long-time dynamics of a three-dimensional BEC after applying interaction
ramps in Chapter 4. The codebase implements the split-step Fourier method on graph-
ics processing units (GPUs), making use of their highly parallel architecture especially
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in order to speed-up the FFT calculations and resulting in about two orders of magni-
tude faster execution times compared to e.g. a Matlab implementation [106].

2.2 Exact Diagonalization
The density of the immersed Tonks-Girardeau gas in Chapter 7 can be constructed by
summing up the lowest eigenstates of the corresponding single-particle Hamiltonian,
since the Bose-Fermi mapping theorem states that all local properties of the TG gas are
equivalent to an identical gas made up of fermions instead. These eigenstates can be
obtained by the so-called ‘exact diagonalization’ of the single-particle Hamiltonian in
which its Hilbert space is truncated to a finite dimension by discarding certain elements
of the chosen basis, expressing the Hamiltonian in the truncated basis and then in most
cases numerically diagonalizing the resulting matrix.

When exact diagonalization is used for solving Hamiltonians of interacting many-
body systems, the treatment is often restricted to very small basis sets due to the
exponential growth of the Hilbert space dimension with particle numbers and the tech-
nical limitations for the size of numerically diagonalizable matrices [107]. In such cases
it can be advantageous to work in a basis in which the single-particle part of the
Hamiltonian is already diagonal, e.g. the harmonic oscillator basis for a harmonically
trapped system, in order to achieve higher precision for the numerical results, despite
the limited basis set [108, 109]. In our case, this issue is not a concern, since we are
only dealing with a single-particle Hamiltonian in one spatial dimension

Ĥ = − ℏ2

2m

∂2

∂x2
+ V (x) . (2.12)

We can therefore work in the position basis and achieve nearly arbitrary precision sim-
ply by using smaller and smaller rasterizations when discretizing position space. The
Hilbert space truncation is achieved by restricting the position axis to some physically
relevant interval, e.g. between [−a, a], and dividing it into Ngrid − 1 identical parts of
length ∆x = 2a/(Ngrid−1) which yields Ngrid equidistant position grid points according
to xi = −a + (i − 1)∆x for i = 1, . . . , Ngrid. The kinetic energy term in Eq. (2.12) is
approximated in this truncated position basis by means of a finite difference scheme
[110] for the second spatial derivative according to

∂2ψ

∂x2

∣∣∣∣
x=xi

≈ ψi+1 − 2ψi + ψi−1

∆x2
(2.13)

and using the values of the wave function ψi = ψ(xi) at the grid points, which leads to
an error on the order of O(∆x2). The potential term is already diagonal in this basis
and simply expressed at the grid points as Vi = V (xi).
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This leads to a tridiagonal Ngrid ×Ngrid-matrix

Ĥ = − ℏ2

2m∆x2


−2 1 0 · · · 0

1 −2 1
. . . ...

0 1
. . . . . . 0

... . . . . . . . . . 1
0 · · · 0 1 −2

+ diag(V1, V2, · · · , VNgrid
) (2.14)

which is then diagonalized in order to obtain the eigenvalues and eigenstates. The
accuracy of this numerical scheme is determined by the grid spacing ∆x and can be
improved by increasing the number of grid points for a fixed position interval or by
using a higher order finite difference scheme [110] for fixed grid spacing, e.g.

∂2ψ

∂x2

∣∣∣∣
x=xi

=
−ψi+2 + 16ψi+1 − 30ψi + 16ψi−1 − ψi−2

∆12x2
+O(∆x4) . (2.15)

However, this has the disadvantage that the resulting matrix is no longer tridiagonal,
which generally increases the effort resp. duration of numerically diagonalizing it [111].

2.3 Benchmarking: Analytically Solvable Models
In order to test the accuracy of numerical solutions, one can benchmark the results
against known analytical solutions in certain limiting cases. I will not provide explicit
benchmarks here, as the split-step and exact diagonalization methods used in this
thesis are commonly known and simple enough that their accuracy can be controlled
essentially entirely via the position grid spacing as well as the time step. Instead, I
will just describe the general approach and some suitable models for benchmarking.

Using the Fourier split-step method with imaginary time propagation for the Gross-
Pitaevskii equation of a harmonically trapped system, one can for example check if the
obtained ground state and energy are close to the values expected from the Thomas-
Fermi approximation in Section 1.4 in the limit of large systems and reasonably strong
repulsion and similarly if they give the appropriate harmonic oscillator ground state for
the ideal gas in the limit of vanishing interaction. In the case of real-time propagation,
one needs to check that the energy of the system is conserved if one of its eigenstates
is propagated.

For the exact diagonalization method for a single particle, one can also make use
of the well-known harmonic oscillator solutions, particularly to check the accuracy of
higher lying states, which are not immediately accessible with the split-step method,
or similarly the analytic solutions for a particle in an infinite box.

Another important benchmark for the exact diagonalization scheme in the presence
of interactions, but also for the split-step method if used for a many-body wave-function
in the way described in the paragraph above Eq. (2.11), involves the analytic solution
of two harmonically trapped interacting atoms.

The interaction between two cold atoms in a quasi-one-dimensional harmonic trap
can be described by the pseudo-potential introduced previously and a Hamiltonian that
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Figure 2.1: (a) Eigenenergies for the one-dimensional relative motion of two harmon-
ically trapped cold atoms interacting with strength g1D. The eigenenergies belonging
to even states (solid lines) become degenerate with the unperturbed odd states (dashed
lines) as |g1D| → ∞. (b) Groundstate density |ψ0|2 (solid line) for the relative motion
and an interaction strength of g1D = 1. The δ-barrier causes a notable cusp around
x = 0 compared to the unperturbed Gaussian ground state (dashed line).

reads

Ĥ =
2∑

i=1

(
− ℏ2

2m

∂2

∂x2i
+

1

2
mω2x2i

)
+ g1Dδ(x2 − x1) , (2.16)

where the interaction strength g1D ≈ ℏω⊥as can be tuned both by the original three-
dimensional scattering length as and the transverse confinement ω⊥ [38]. For con-
venience we switch to dimensionless harmonic oscillator units in the following and
express all lengths in units of x0 =

√
ℏ/mω, energy in units of ℏω and the interac-

tion strength in units of ℏωx0. By changing to center-of-mass and relative coordinates
X = 1√

2
(x1+x2) and x = 1√

2
(x1−x2), the problem can be separated into a simple har-

monic oscillator Hamiltonian for the center-of-mass motion and a harmonic oscillator
with an additional δ-shaped barrier in its center for the relative motion

Ĥ =

(
−1

2

∂2

∂X2
+

1

2
X2

)
+

(
−1

2

∂2

∂x2
+

1

2
x2 +

g1D√
2
δ(x)

)
, (2.17)

which can both be solved analytically [112]. The odd eigenstates of the Hamiltonian for
the relative motion vanish at the position of the barrier at x = 0 and they are therefore
given by the unperturbed harmonic oscillator eigenstates. The even eigenstates are
given by

ψi(x) = NiU

(
1

4
− Ei

2
,
1

2
, x2
)
e−x2/2 , i = 0, 2, 4, . . . , (2.18)

with a normalizing constant Ni and the confluent hypergeometric function of the second
kind U(a, b, z), also known as Kummer or Tricomi function [113]. The corresponding
eigenenergies Ei are given by the relation

g1D = −2
√
2
Γ
(
−Ei

2
+ 3

4

)
Γ
(
−Ei

2
+ 1

4

) , i = 0, 2, 4, . . . , (2.19)
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and are plotted in Fig. 2.1 (a). They become degenerate with the unperturbed odd
eigenenergies Ei = i+ 1

2
, i = 1, 3, 5, . . ., as |g1D| → ∞. Fig. 2.1 (b) shows the perturbed

ground state for g1D = 1. The δ-barrier causes a visible cusp around x = 0 and the
wave function eventually vanishes at that point ψ(x = 0) → 0 in the limit |g1D| → ∞.

Another important application of these exact solutions is the effective interaction
approach in exact diagonalization schemes. By rescaling the interaction strength in an
appropriate way, one can exactly reproduce the correct low-lying spectrum [114, 115].
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Chapter 3

Shortcuts to Adiabaticity

According to the adiabatic theorem, a quantum system subject to some perturbation
will remain in its instantaneous eigenstate if the perturbation is applied slow enough
[116]. This entails that in order to control quantum systems with a high degree of
fidelity and avoid unwanted excitations, any manipulation needs to be performed on
a timescale that is slow compared to the intrinsic one determined by its energy levels.
This leaves very little room to achieve the simple, fast and reliable control that is needed
e.g. for the development of quantum technologies [4] as the lifetime of quantum systems
is limited by their susceptibility to decoherence if they are not perfectly isolated from
the environment.

Besides improving said technology for confining and isolating them from the en-
vironment, another approach for enhancing the control over quantum systems is to
develop novel protocols for their manipulation. One prominent type of such protocols
are so-called shortcuts to adiabaticity (STA), which allow the system to mimic adia-
batic evolution in a finite time. The term STA was first coined by Chen et al. in Ref.
[117], but similar concepts have been applied already earlier, most notably by Demir-
plak and Rice [118] and Berry [119]. The goal they try to achieve is closely related to
optimal control theory [120] and there is a wide variety of different techniques to con-
struct such shortcuts, usually using approaches well suited for a specific target system.
Detailed reviews of the most common techniques and examples of their experimental
applications can be found in Refs. [15, 121].

For instance, successful realizations of shortcuts to adiabaticity include improving
the fidelity of processes important for the operation of quantum computers such as ex-
ecuting quantum gates on a single superconducting qubit [122] or transporting trapped
ions as a means of quantum information transfer [123]. Fast and controlled transport
has also been realized in cold atomic systems [124, 125] as well as the compression and
expansion of Bose-Einstein condensates via their trapping potentials [126, 127].

In this chapter I introduce the concepts of counterdiabatic driving and inverse
engineering that are the basis of the results presented in the subsequent Chapters
4 and 5 as well as a class of general shortcuts for scale-invariant interacting many-
body systems that require the driving of both trapping frequencies and interaction
strengths. I then extend a known pure interaction shortcut for attractive 1D Bose-
Einstein condensates to higher dimensions and derive a novel interaction shortcut for
repulsive BECs in the Thomas-Fermi regime.

35
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3.1 Counterdiabatic Driving, Inverse Engineering and
Quantum Speed Limits

One of the most straightforward approaches for constructing a shortcut to adiabatic-
ity is counterdiabatic driving (CD), in which an extra term Ĥ ′ that perfectly can-
cels all non-adiabatic contributions is added to the original Hamiltonian Ĥ0. In this
way, implementing the counterdiabatic Hamiltonian ĤCD = Ĥ0 + Ĥ ′ ensures that
the system remains adiabatic at all times. For a time-dependent Hamiltonian Ĥ0 =∑

nEn(t) |n(t)⟩ ⟨n(t)| with instantaneous eigenvalues En(t) and instantaneous eigen-
states |n(t)⟩ the counterdiabatic Hamiltonian can be computed to be [119]

ĤCD = Ĥ0 + Ĥ ′

=
∑
n

En(t) |n(t)⟩ ⟨n(t)|+ iℏ
∑
n

[|∂tn(t)⟩⟨n(t)| − ⟨n(t)|∂tn(t)⟩ |n(t)⟩⟨n(t)|] .

(3.1)

This simple and general expression comes with the large drawback that it requires
exact knowledge of the instantaneous eigenstates at all times, which essentially limits
its application to simple and exactly solvable models like the harmonic oscillator or the
Landau-Zener two-level system and the quantum Rabi model treated in Chapter 5.

Another approach that also works for more complicated systems and which is at
the basis of the results presented in Chapter 4 is the so-called inverse engineering [15].
Whereas counterdiabatic driving takes the system from an initial to a final state along
the adiabatic path between them, inverse-engineering works by constructing alternative
paths that coincide with the adiabatic paths at its start and end points but may differ
in between.

A simple illustrative example is a harmonic oscillator with time-dependent fre-
quency, where such a path can be constructed based on the theory of Lewis-Riesenfeld
invariants that were developed in 1969 to solve time-dependent Hamiltonians with the
help of time-dependent invariants [128]. The Hamiltonian reads

Ĥ(t) =
p̂2

2m
+

1

2
mω2(t)x̂2 (3.2)

and one can find a time-dependent invariant Î(t) fulfilling the equation

dÎ(t)

dt
=
∂Î(t)

∂t
− 1

iℏ

[
Ĥ(t), Î(t)

]
= 0 (3.3)

in the form of a generalized harmonic oscillator

Î(t) =
π̂2

2m
+

1

2
mω2

i q̂
2

= a2(t)
p̂2

2m
+

1

2
m

(
ω2
i

a2(t)
+ ȧ2(t)

)
x̂2 − ȧ(t)a(t)

2
(x̂p̂+ p̂x̂) ,

(3.4)



3.1 Counterdiabatic Driving, Inverse Engineering and QSL 37

where π̂(t) = a(t)p̂−mȧ(t)x̂ is the conjugated momentum to q̂(t) = x̂/a(t), the initial
oscillator frequency is ωi := ω(t = 0) and the scaling factor a(t) has to fulfill the
Ermakov equation

ä+ ω2(t)a =
ω2
i

a3
. (3.5)

Lewis and Riesenfeld showed that a general solution of the original time-dependent
Schrödinger equation is given in terms of an expansion in dynamical modes |ψn(t)⟩ as

|Ψ(t)⟩ =
∑
n

cn |ψn(t)⟩ =
∑
n

cne
iαn(t) |ϕn(t)⟩ , (3.6)

with time-independent constants cn, the orthonormal eigenstates |ϕn(t)⟩ of the invari-
ant Î(t) and some phases αn(t) defined as

αn(t) =
1

ℏ

∫ t

0

dt′ ⟨ϕn(t
′)|iℏ ∂

∂t′
− Ĥ(t′)|ϕn(t

′)⟩ . (3.7)

For the time-dependent harmonic oscillator one finds

ψn(x, t) = ⟨x|ψn(t)⟩

=
e
−i(n+ 1

2
)ωi

∫ t
0 dt′ 1

a2(t′)√
2nn!a(t)

(mωi

πℏ

)1/4
ei

mȧ(t)
2ℏa(t)x

2

e−
mωix

2

2ℏ Hn

(√
mωi

ℏ
x

a(t)

)

=
1√
a(t)

eiφ(x,t)ψHO
n

(
x

a(t)

)
e−iEnτ(t)/ℏ ,

(3.8)

with the rescaled eigenfunctions ψHO
n of a time-independent harmonic oscillator with

Hermite polynomials Hn, eigenenergies En = ℏωi(n + 1/2), evolving in a rescaled
time τ(t) =

∫ t

0
dt′a−2(t′) and multiplied with a position and time-dependent phase

φ(x, t) = mȧ(t)
2ℏa(t)x

2.
The shortcut to adiabaticity, e.g. for driving the oscillator from one frequency ωi

to another ωf in some time Tf , can then be constructed by inverse engineering the
time-dependence of ω(t). By imposing the boundary conditions

a(0) = 1 , a(Tf ) =

√
ωi

ωf

and ȧ(0) = ȧ(Tf ) = ä(0) = ä(Tf ) = 0 (3.9)

one ensures that [Î(0), Ĥ(0)] = [Î(Tf ), Ĥ(Tf )] = 0 and therefore that Ĥ and Î have
common eigenstates at t = 0 and t = Tf . As a result, any initial eigenstate of Ĥ(0) will
evolve according to Eq. (3.6) and be identical to the corresponding eigenstate of the
final trap with frequency ωf at time Tf , apart from the phase factors αn(Tf ) in each
mode. This means that, while Ĥ and Î generally do not commute during intermediate
times, the population levels of the final oscillator are the same as the initial ones,
fulfilling the condition for an adiabatic process.

The exact form of the scaling function a(t) can then be determined e.g. via a
polynomial with an order high enough to fulfill the boundary conditions in Eq. (3.9)
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and the driving function for ω(t) is obtained via the Ermakov equation (3.5). In this
way, a shortcut to adiabaticity is constructed, which will take the harmonic oscillator
from an initial frequency ωi to a final frequency ωf in a finite time Tf , while preserving
the initial level populations, thus mimicking an adiabatic process.

Extending this approach to many-body systems or mean-field approximations like
the nonlinear Gross-Pitaevskii equation is not straightforward, especially since it still
requires the knowledge of an exact solution. But as I will show in the following sections,
it is still possible to find exact or at least approximate shortcuts to adiabaticity in
these cases by making use of a scaling ansatz similar to the solution in Eq. (3.8) for
the time-dependent harmonic oscillator. Then either the Ermakov equation and the
time rescaling τ(t) are modified to include the nonlinear interaction wherever possible
or the Gross-Pitaevskii equation is reformulated in terms of a Lagrangian, including
the phase of the wave function and the scaling factor a(t) as independent variables that
are determined via the Euler-Lagrange equations. A general framework for the design
of shortcuts to adiabaticity in a large class of such scale-invariant systems is presented
in Ref. [129].

Finally, it is important to keep in mind that, even though the shortcut duration Tf
seems arbitrary, the time evolution of a quantum system cannot be sped up arbitrarily.
The time-energy uncertainty relation

∆t∆E ≳ ℏ (3.10)

gives a fundamental limit on the amount of time ∆t in which the energy of a state
can be changed by ∆E [130, 131]. This is known as the quantum speed limit (QSL).
Considering for example an initial state |ψi⟩ evolving according to some Hamiltonian
Ĥ with eigenenergies En and eigenstates |n⟩, the time-dependent overlap between the
initial state and its time-evolution at time t is

ν(t) = ⟨ψi|ψ(t)⟩ =
∑
n

|cn|2 e−iEnt/ℏ , (3.11)

with cn = ⟨n|ψi⟩. Using trigonometric identities, it can be shown that

Re ν(t) ≥ 1− 2

π

⟨Ĥ⟩
ℏ
t+

2

π
Im ν(t) , (3.12)

where ⟨Ĥ⟩ =∑n |cn|2En and Re ν and Im ν denote the real and imaginary part of the
overlap respectively. So if we want to evolve the initial state during some time period
τ to a final state that is orthogonal to it with ν(τ) = 0, then Eq. (3.12) gives the
minimal amount for τ as

τ ≥ τQSL =
π

2

ℏ
⟨Ĥ⟩

. (3.13)

A more detailed review on different expressions of this speed limit for different
physical situations, including the Margolus-Levitin type limit used in the original Fes-
hbach engine with a bright solitonic BEC working medium [132], can be found in Ref.
[133]. Furthermore, contrary to the fact that the shortcut is usually designed such
that the energy contributions from the driving vanish at t = Tf , giving the adiabatic
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Hamiltonian in the end, implementing the shortcut requires a certain amount of energy
beyond the truly adiabatic process, depending on its duration [134]. In other words,
while shortcuts to adiabaticity based on Lewis-Riesenfeld invariants can be performed
arbitrarily quickly in theory, doing so requires an infinite amount of energy as τ → 0 as
a consequence of the time-energy uncertainty relation. This additional energetic cost
needs to be accounted for when evaluating the performance of a heat engine making
use of shortcuts.

3.2 Shortcuts in Interacting Many-Body Systems
The main focus of this thesis are interacting many-body systems for which finding
shortcuts to adiabaticity is usually only possible under specific conditions. In Ref.
[135] del Campo shows how to derive shortcuts for a large class of many-body systems
fulfilling certain scaling laws by counterdiabatic driving. The starting point is the
many-body Hamiltonian

Ĥ =
N∑
i=1

[
− ℏ2

2m
∇2

ri
+

1

2
mω2(t)r2i + U(ri, t)

]
+ ϵ(t)

∑
i>j

V (ri − rj) (3.14)

with time-dependent harmonic trapping, additional time-dependent trapping U(ri, t)
and a time-dependent two-body interaction ϵ(t). If the potentials fulfill

V (r) = λαV (λr) and U(r, t) =
1

γ2(t)
U(σ, 0) (3.15)

with a rescaled position σ = r/γ(t) and e.g. α = d for the usual pseudo-potential
describing s-wave scattering in a d-dimensional cold atom system, then the ansatz

ψ(t) = γ(t)−Nd/2e−iµτ(t)/ℏϕ(r1/γ(t), . . . , rN/γ(t); 0) with
∂τ

∂t
=

1

γ2(t)
(3.16)

is a solution of the Hamiltonian in rescaled variables

γ2(t)Ĥ ′
CD =

N∑
i=1

[
− ℏ2

2m
∇2

σi
+

1

2
mω2(t)γ4(t)σ2

i + U(σi, 0)

]
+

ϵ(t)

γα−2(t)

∑
i>j

V (σi − σj)

− iℏ
N∑
i=1

∂τγ(t(τ))

2γ(t)
(σi · ∇σi

+∇σi
· σi) ,

(3.17)

which has the form of a counterdiabatic Hamiltonian with the auxiliary term given by
the expression in the second line. As a result of the scaling ansatz, this auxiliary term
is proportional to ∝ (x̂p̂ + p̂x̂)/2, which is the generator of scaling transformations or
dilations [136]. Deffner, Jarzynski and del Campo later showed that this is generally
fulfilled if the single-particle potential U(r, t) satisfies condition (3.15) as is the case
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for a harmonic potential [129]. By choosing

ω2(t)γ4(t) = ω2
i and ϵ(t)γ2−α(t) = 1 (3.18)

the Hamiltonian becomes time-independent and ϕ(σ, 0) remains a stationary solution
with chemical potential µ.

However, this expression is not very practical since the counterdiabatic driving term
is nonlocal and it is generally not clear how such a driving term could be implemented
in cold atom experiments and even implementing it numerically poses difficulties.

del Campo circumvents this problem by applying the unitary transformation Û =∏N
i=1 exp

(
imγ̇
2ℏγ r

2
i

)
, which leaves the positions unaffected but transforms the momenta

according to

pi → ÛpiÛ
† = pi −m

γ̇(t)

γ(t)
ri , (3.19)

which then yields a new counterdiabatic Hamiltonian

ĤLCD = ÛĤ ′
CDÛ

† − iℏÛ∂tÛ †

=
N∑
i=1

[
− ℏ2

2m
∇2

ri
+

1

2
mΩ2(t)r2i + U(ri, t)

]
+ ϵ(t)

∑
i>j

V (ri − rj)
(3.20)

that does not contain nonlocal terms anymore and only consists of terms also appearing
in the original Hamiltonian. This is also known as local counterdiabatic driving (LCD)
[137]. The time-dependent harmonic trapping frequency is modified to

Ω2(t) = ω2(t)− γ̈(t)

γ(t)
. (3.21)

So by fulfilling the consistency equations (3.18) and choosing boundary conditions such
that Ĥ and ĤLCD as well as Ψ and ϕ are identical at initial and final times t = {0, Tf},
one can mimic an adiabatic evolution by driving the system with Ω(t) instead of ω(t).

As an example, we want to construct a shortcut to adiabaticity for tuning the
interaction strength g(t) from some initial value gi to some final value gf in some time
Tf . For demonstration purposes, we consider a one-dimensional system with α = 1. In
that case the consistency equations (3.18) yield

g(t) =
gi
γ(t)

and Ω2(t) =
ω2
i

g4i
g4(t) +

g̈(t)

g(t)
− 2

ġ2(t)

g2(t)
(3.22)

for the local counterdiabatic driving. The interaction ramp g(t) can be chosen arbi-
trarily as long as the boundary conditions

g(0) = gi , g(Tf ) = gf and ġ(0) = ġ(Tf ) = g̈(0) = g̈(Tf ) = 0 (3.23)

are fulfilled, for example by a fifth-order polynomial g(t) = gi+(gf − gi)(10s
3− 15s4+

6s5) with s = t/Tf in the form of a ‘smoother step’ function [138]. One important
restriction of this protocol is that the trap frequency of the final state differs from
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Figure 3.1: Accompanying modulation of the trapping potential according to Eq.
(3.22) for a ‘smoother step’ interaction ramp g(t) between gi = 1 and gf = 2. Initially
Ω2(0) = ω2

i = 1 and at the end Ω2(Tf ) = ω2
i (gf/gi)

4 = 16. For decreasing ramp
durations the harmonic trap needs to be inverted intermittently as Ω2(t) becomes
negative at times.

the initial one, ensuring the scale-invariance of the system, and is determined by the
change in interaction strength according to ω2

f = ω2
i (gf/gi)

4. Additionally, for short
ramp durations the harmonic trapping potential needs to be inverted for a certain time
during the ramp in order to accomplish the shortcut goal, since Ω2(t) turns negative
intermittently. This can be seen in Fig. 3.1, which shows the modulation of the
trapping frequency according to Eq. (3.22) for a ‘smoother step’ interaction ramp and
several values of Tf .

We can confirm the efficiency of the shortcut by studying the numerically tractable
case of N = 2 particles for which we additionally know analytic expressions for the
ground state wave function

ψ0(x1, x2) = N0 exp

[
−1

2

(
x21 + x22

)]
U

(
1

4
− Erel

2
;
1

2
;
1

2

(
x21 − 2x1x2 + x22

))
(3.24)

with normalizing constanst N0, Kummer function U(a; b; z) and where Erel solves

gi = −2
√
2
Γ
(
−Erel

2
+ 3

4

)
Γ
(
−Erel

2
+ 1

4

) (3.25)

as introduced in Section 2.3 and where again all quantities are expressed in dimension-
less harmonic oscillator units for a frequency ωi. The ground state energy is given by

E0(ωi, gi) = Erel +
1

2
. (3.26)

The energy and the wave function of the ground state with final trap frequency ωf

and interaction gf in the original dimensionless units for a trap frequency ωi can be
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Figure 3.2: (a) Difference in energy to the target state after driving the interaction
strength of two harmonically trapped bosons in 1D from gi = 1 to gf = 2 in time
Tf both via a shortcut to adiabaticity (STA) and a time-rescaled adiabatic reference
(TRA) ramp without the local counterdiabatic modulation of the trapping frequency.
(b) The infidelity 1 − | ⟨ψ(Tf )|ψf⟩ |2 after the same interaction ramps. The shortcut
breaks down around Tf ∼ 0.01 when the required modulations of the potentials become
too large for the employed numerics. See text for details.

conveniently obtained from the initial ones via

Ef = E0(ωf , gf ) =
g2f
g2i
E0(ωi, gi) and

ψf (x1, x2) = ψ0(ωf , gf , x1, x2) =

√
gf
gi
ψ0(ωi, gi,

gi
gf
x1,

gi
gf
x2)

(3.27)

due to the relation (ωf/ωi)
2 = (gf/gi)

4 mentioned above.
Figure 3.2 shows (a) the difference in energy E(Tf ) − Ef and (b) the discrepancy

between the final state and target state quantified by the infidelity 1 − | ⟨ψ(Tf )|ψf⟩ |2
after ramping the interaction strength in the two-particle system from gi = 1 to gf = 2
as a function of ramp time Tf , both for the shortcut to adiabaticity (STA) using the
time-varying local counterdiabatic trapping frequency Ω(t) as well as for a time-rescaled
adiabatic reference ramp (TRA). The reference ramp is a pure interaction ramp of equal
duration and using the same smooth function, but without the trap modulation, i.e.
how one might try to control the system without the shortcut. Note that Ef and |ψf⟩
are different in both cases due to Eq. (3.18) affecting the final trap frequency. For
both ramps the ‘smoother step’ function mentioned above was used.

The shortcut works as intended, reaching very small values for both the energy
difference and infidelity independent of ramp duration, limited only by the chosen nu-
merical accuracy. However, below ramp times of around Tf ∼ 0.01 the shortcut breaks
down in our case since the required modulations of the trapping potential become too
large in magnitude compared to the chosen time step in the employed numerics. For
the time-rescaled adiabatic reference, we need to choose ramp times longer than at
least one or two trap oscillations in order to consistently see comparably small levels
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of energy difference and infidelity. The modulations seen in the infidelity are a result
of the underlying harmonic trap and nicely reflect the factor of ωf = (gf/gi)

2ωi = 4ωi

in the rescaled final trapping frequency for the STA case.

3.3 Coherent Control of Bose-Einstein Condensates
In general, controlling a system like a Bose-Einstein condensate via the external po-
tential or the interparticle interaction strength will lead to changing length- and/or
timescales [139, 140] which have already been observed experimentally [126, 127]. As
we have seen in the previous section, it is possible to construct an exact shortcut to
adiabaticity based on such scaling properties for changing the interaction strength of
a quantum many-body system. This comes at the cost of having to simultaneously
modulate the trapping frequency.

In this section I will introduce two approaches that accomplish the same on a
mean-field level for Bose-Einstein condensates in different interaction regimes purely by
tuning the interaction strength without the need for additional control fields. The first
approach is a variational ansatz used by Li et al. in Ref. [132] for a one-dimensional
bright solitonic BEC. I extend this approach to higher dimensional bright solitons
which are in general not stable in free space [141], although, for example, in 2D they
can be stabilized by changing the interaction strength in an STA-like fashion [142]. If
an additional harmonic trapping potential is present, like in most BEC experiments,
(meta)-stable bright solitons can exist as long as the particle number and interaction
strength do not exceed certain thresholds. The second approach is based on the scaling
ansatz that we have encountered in the previous section and which allowed me to derive
an exact interaction shortcut for BECs in the experimentally common Thomas-Fermi
regime that is at the basis of the publication in Chapter 4.

3.3.1 Attractive Interactions: Bright Solitons

We consider a one-dimensional Bose-Einstein condensate confined to a harmonic trap
with frequency ω and described via the Gross-Pitaevskii equation

iℏ
∂ψ

∂t
=

(
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 + g(t)|ψ|2

)
ψ , (3.28)

with the condensate wave function ψ, atomic mass m and time-dependent attractive
interatomic interaction strength g(t) < 0. In the absence of the harmonic trapping
potential, the GPE has an exact solution in the form of a bright soliton wave function

ψ =
√

N2|g|m
4ℏ2 sech(Nm|g|

2ℏ2 x), which is normalized to the number of particles N in the
condensate [27]. In order to portray an experimentally more realistic situation, the
authors in Ref. [132] assume a regime in which the trapping potential is present but
weak and that the bright soliton wave function is still a good approximation to the
true ground state of the system.
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The shortcut to adiabaticity is then constructed by first choosing a suitable trial
function ψ for the variational ansatz, given by the hyperbolic secant

ψ(x, t) = A(t)sech

(
x

a(t)

)
eib(t)x

2

, (3.29)

with soliton width a(t) and a chirp b(t), allowing the wave function to change shape
during the ramp [143, 144] and subsequently calculating the Lagrangian density

L =
iℏ
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− ℏ2

2m
|∂xψ|2 − V (x)|ψ|2 − g(t)

2
|ψ|4 , (3.30)

similarly to Ref. [145]. For simplicity, I present the procedure only for the one-
dimensional case but give the results for two and three dimensions at the corresponding
points. They are obtained from an analogous calculation assuming an isotropic system
in 2D and 3D respectively. If we require the wave function to be normalized to the
number of particles in the condensate N , the amplitude A(t) is fixed to

√
N/2a(t),√

N/2πa2(t) ln(2) and
√

3N/π3a3(t) in 1D, 2D and 3D respectively.
In the following we switch to dimensionless units, displaying energies in multiples

of ℏω, time in multiples of ω−1 and lengths in multiples of x0 =
√

ℏ/mω, meaning the
interaction strength is given in units of ℏωxd0 in d dimensions. Using the ansatz from
Eq. (3.29), the Lagrangian L =

∫
drL is calculated and the soliton width a(t) and the

chirp b(t) are determined via the Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , (3.31)

with qi = {a, b}. Independent of the system dimension, the shape of the phase chirp
b(t) is given by

ȧ = 2ab , (3.32)

which in combination with the x2 term in the ansatz is identical to the unitary trans-
formation in Section 3.2 for obtaining a local version of the nonlocal counterdiabatic
term. Combining this with the equation for ḃ gives us the equations of motion (EOM)
for the soliton width

1D : ä(t) + a(t) =
4

π2a3(t)
+

2Ng(t)

π2a2(t)
(3.33a)

2D : ä(t) + a(t) =

(
4(1 + ln(4))

27ζ(3)
+Ng(t)

2(ln(16)− 1)

27π ln(2)ζ(3)

)
1

a3
(3.33b)

3D : ä(t) + a(t) =
20(π2 + 12)

21π4

1

a3
+

60(π2 − 6)

7π7

Ng(t)

a4
, (3.33c)

where ζ(s) is the Riemann zeta function. In general, there is no analytical solution to
these equations, although in 2D the equation of motion has the form of an Ermakov
equation, which has an analytical solution for constant g(t) [146]. Similarly to the
previous section, the shortcut to adiabaticity is inverse-engineered by solving the EOM
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Figure 3.3: Shortcut to adiabaticity for ramping the interaction in a 1D bright soliton
consisting of N = 100 atoms from gi = −0.1 to gf = −0.2 in a time Tf according to
g(t) = π2a2(t)

2N
[ä(t) + a(t)− 4

π2
1

a3(t)
], inverse engineered from Eq. (3.33a) and where a(t)

is a ‘smoother step’ function.

in Eqs. (3.33) for g(t) and choosing an arbitrary function a(t) fulfilling the boundary
conditions

a(0) = ai , a(Tf ) = af and ȧ(0) = ȧ(Tf ) = ä(0) = ä(Tf ) = 0 , (3.34)

e.g. again by the ‘smoother step’ function a(t) = ai + (af − ai)(10s
3 − 15s4 + 6s5)

with s = t/Tf and where except for the 2D case ai and af need to be determined
numerically from g(0) = gi and g(Tf ) = gf . Figure 3.3 shows exemplary ramps for the
1D case. For fast ramps, the shortcut requires to increase the interaction beyond the
initial and final values (see Tf = 0.1 curve). The ramps for the 2D and 3D cases are
qualitatively similar, but this behavior might lead to a collapse of the bright soliton if
their respective limits of stability, discussed in the following, are crossed.

In contrast to the one-dimensional case, there is a limit to the size respectively
interaction strength of the bright soliton in order to ensure its stability in 2D and
3D [141]. Calculating its energy using the ansatz wave functions in Eq. (3.29) and
integrating the energy density

E =

∫ ∞

−∞
dx

[
1

2

∣∣∣∣∂ψ∂x
∣∣∣∣2 + 1

2
x2|ψ|2 + g

2
|ψ|4

]
, (3.35)

leads to the expressions

1D : E = N

[
1

6

1

a2
+
π2

24
a2 +

1

6

Ng

a

]
(3.36a)

2D : E = N

[
1 + ln(4)

12 ln(2)

1

a2
+

9ζ(3)

16 ln(2)
a2 +

ln(16)− 1

24π ln2(2)

Ng

a2

]
(3.36b)
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Figure 3.4: Bright soliton energy in 1D, 2D and 3D according to Eqs. (3.36) for
different values of Ng between Ng = −10 (lowest line) and −0.1 (highest line) as
a function of the soliton width a. The 2D and 3D plot include the graph for the
respective (Ng)max value in Eq. (3.37) below which there is no more stable minimum
for the soliton width (red lines).

3D : E = N

[
π2 + 12

6π2

1

a2
+
π

2
a2 +

π2 − 6

π5

Ng

a3

]
(3.36c)

for the energies as a function of the soliton width. Since we are considering attractive
interactions g < 0, this results in a condition for the product Ng in 2D and 3D to
ensure the existence of the extrema and therefore the stability of the bright soliton.

Fig. 3.4 shows a plot of the soliton energy in different dimensions as a function of
its width for different values of Ng. The graphs for the two- and three-dimensional
case include the respective value (Ng)max at which the soliton becomes unstable. They
are given by

|(Ng)max|2D = 2π ln(2)
ln(4) + 1

ln(16)− 1
≈ 5.86 and |(Ng)max|3D ≈ 7.25 , (3.37)

where the 3D value was determined numerically.
Evaluations of the shortcut efficiency in the one-dimensional case can be found in

Ref. [132]. There it is mainly used to boost the efficiency of a so-called Feshbach
heat engine, which will be the topic of Chapter 4. It is important to note that this
type of shortcut based on a variational principle is only approximate and yields greatly
improved but not perfect results for the target energy and fidelity which also depend
on the ramp duration in contrast to the exact shortcut in the previous section.

3.3.2 Repulsive Interactions: Thomas-Fermi Regime

The bright solitons studied in the previous part are prone to collapse due to their
attractive interactions. Therefore, in the final part of this chapter I will now derive
the exact shortcut to adiabaticity for interaction ramps of a Bose-Einstein condensate
in the Thomas-Fermi regime of large system sizes and strong repulsive interactions
introduced in Section 1.4, which is at the basis of the publication in the following
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Chapter 4. The starting point is again the Gross-Pitaevskii equation

iℏ
∂ψ

∂t
=

(
− ℏ2

2m

∂2

∂x2
+

1

2
mω2x2 + g(t)|ψ|2

)
ψ (3.38)

of a one-dimensional Bose-Einstein condensate in a harmonic trapping potential. Based
on our experience in the previous sections, we are again interested in scaling solutions
in the form of

ψ(x, t) =
1√
a(t)

eiφ(x,t)ϕ(y(x, t), τ(t)) , (3.39)

with some rescaled coordinate y(x, t) = x/a(t) and a yet to be determined rescaled
time τ(t). Inserting this ansatz into the Gross-Pitaevskii equation (3.38) yields

iℏ
∂ϕ

∂τ

∂τ

∂t
=

[
− ℏ2

2m

1

a2
∂2

∂y2
+

1

2
mω2x2 +

g

a
|ϕ|2
]
ϕ+

[
iℏ
ȧ

a2
x− iℏ2

m

1

a

∂φ

∂x

]
∂ϕ

∂y

+

[
iℏ
2

ȧ

a
+ ℏφ̇− iℏ2

2m

∂2φ

∂x2
+

ℏ2

2m

(
∂φ

∂x

)2
]
ϕ .

(3.40)

By choosing the phase just like in previous examples of scale-invariant systems accord-
ing to

φ(x, t) =
m

2ℏ
ȧ(t)

a(t)
x2 , (3.41)

we can eliminate the term proportional to ∂ϕ/∂y. It can be interpreted physically as
a gauge transformation Û = eiφ(x,t) which subtracts the momentum of the expanding
or shrinking system according to

p̂→ Û p̂Û † = p̂−m
ȧ

a
x̂ , (3.42)

where ȧx/a is the local velocity in the system. This leads to a modified Gross-Pitaevskii
equation in the rescaled coordinates

iℏ
∂ϕ

∂τ

∂τ

∂t
=

[
− ℏ2

2m

1

a2
∂2

∂y2
+

1

2
m
(
ä+ ω2a

)
ay2 +

g

a
|ϕ|2
]
ϕ . (3.43)

Choosing the rescaled time τ and the term ä + ω2a in such a way that it leads to a
solvable Gross-Pitaevskii equation allows one to design control pulses for a frictionless
evolution of the BEC, e.g. under varying the trap frequency ω [147, 148].

Many experiments involving Bose-Einstein condensates are carried out in a regime
of repulsive interaction and high particle numbers, which fulfills the condition Ng ≫
ℏωxd0, meaning that the potential energy and the interaction energy are much larger
than the kinetic energy [40]. Neglecting the kinetic energy term in the Gross-Pitaevskii
equation in this so-called Thomas-Fermi (TF) limit allows to obtain an analytical
solution in the form

ψ(x, t) =

√
1

g
(µ− V (x))e−iµt/ℏ for µ > V (x) (3.44)
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and ψ(x, t) ≡ 0 otherwise, where the chemical potential µ is determined via the nor-
malization condition. Considering the TF limit and neglecting the kinetic energy term
in the scaling GPE Eq. (3.43) and choosing scaling functions according to [149]

ä+ ω2a = ω2 g(t)

gi

1

a2
and τ =

∫ t

0

dt′
g(t′)

gia(t′)
, (3.45)

with some initial interaction strength gi, leaves us with

iℏ
∂ϕ

∂τ
=

[
1

2
mω2y2 + gi|ϕ|2

]
ϕ , (3.46)

which has the aforementioned Thomas-Fermi solution

ϕ(y, τ) = e−iµiτ/ℏ

√
1

gi

(
µi −

1

2
mω2y2

)
with µi =

(
9

32
mω2N2g2i

)1/3

. (3.47)

Inserting this back into the scaling ansatz gives us an analytic expression for the time
evolution of the wave function

ψ(x, t) =
1√
a(t)

ei
m
2ℏ

ȧ(t)
a(t)

x2

e
−i

µi
ℏ

∫ t
0 dt′ g(t′)

gia(t
′)

√
1

gi

(
µi −

1

2
mω2

x2

a2(t)

)
. (3.48)

So by changing the interaction strength according to

g(t) = gi
a2(t)

ω2

(
ä(t) + ω2a(t)

)
(3.49)

and requiring

a(0) = 1 , a(Tf ) =

(
gf
gi

)1/3

and ȧ(0) = ȧ(Tf ) = ä(0) = ä(Tf ) = 0 , (3.50)

we can drive the system from an initial interaction strength gi to a final value gf in
an almost arbitrarily short time Tf while mimicking an adiabatic evolution. Similarly
to the previous examples, the scaling factor a(t) can be determined by choosing a
polynomial ansatz of sufficient order according to the conditions in Eq. (3.50). The
final state after this shortcut, apart from an irrelevant phase depending on the duration
Tf , perfectly coincides with the state after an adiabatic evolution.

Analogous calculations for a d-dimensional BEC in an isotropic harmonic trap in
the Thomas-Fermi limit allow to generalize the shortcut ramp which then stipulates a
driving of the interaction strength according to

g(t) = gi
ad+1(t)

ω2

(
ä(t) + ω2a(t)

)
, (3.51)

while requiring a(Tf ) = (gf/gi)
1/(d+2). Additionally, in the time scaling τ in Eq. (3.45)

the term gia(t
′) needs to be replaced with giad(t′).
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The performance of the shortcut is evaluated in Publication [1], where it is used to
boost the performance of a Feshbach engine (see the following chapter). It is an exact
shortcut but only within the Thomas-Fermi approximation, which means that similarly
to the variational shortcut for bright solitons there are finite energy differences and
infidelities after the ramp, stemming from the deviations of the BEC wave function from
the Thomas-Fermi approximation, particularly around the condensate edges. Another
point to note is that the system exhibits an intrinsic quantum speed limit in the form
of a modulational instability that occurs for ultrashort ramp durations, where the
shortcut requires to drive the system at attractive interactions intermittently. This is
not obvious from the exact solution and in Publication [1] I derive an analytic expression
for the minimum shortcut time.

Finally, even in the general case, where we cannot neglect the kinetic energy con-
tribution, it is still possible to transform the scaling ansatz into a time-independent
Gross-Pitaevskii equation. To this end, we choose

ä+ ω2(t)a =
ω2
i

a3
, τ =

∫ t

0

dt′
1

a2(t′)
and g(t) =

gi
a(t)

, (3.52)

which leads to
iℏ
∂ϕ

∂τ
=

[
− ℏ2

2m

∂2

∂y2
+

1

2
mω2

i y
2 + gi|ϕ|2

]
ϕ , (3.53)

where we have assumed a time-dependent trap frequency ω(t) for the original system.
Therefore, the solution to the original GPE is given by

ψ(x, t) =
1√
a(t)

ei
m
2ℏ

ȧ(t)
a(t)

x2

e
−i

µi
ℏ

∫ t
0 dt′ 1

a2(t′)ϕi

(
x

a(t)

)
, (3.54)

where ϕi(x/a(t)) is a solution to the rescaled GPE (3.53) with chemical potential µi.
The additional third condition, needed to transform the rescaled GPE into a time-
independent one, means that we cannot drive the system anymore just by changing
the interaction strength alone, but that we need to assume a time-dependent trapping
potential ω(t) as well [149], similarly to the exact many-body shortcut in Section 3.2.





Chapter 4

Feshbach engine in the Thomas-Fermi
regime (Publication [1])

This chapter is based on the publication of the same name and presents its context,
a connection to experimentally relevant parameter regimes and prospects for future
work.

4.1 Introduction
Nearly two hundred years ago Sadi Carnot’s work laid the foundations of modern
thermodynamics and gave the first general description of a heat engine in the form
of the Carnot cycle, connecting the concepts of heat and work [150]. Although steam
engines had been powering the industrial revolution even fifty years before that, only
this idealized description of a heat engine gave the necessary control to increase their
efficiency reliably. In 1959 Schulz-DuBois and Scovil realized that the gain medium of
a maser, which is typically described as a three level system pumped via an external
source to create a population inversion, can also be viewed as a heat engine [151]. This
was the first description of a heat engine whose working medium made use of the purely
quantum mechanical property of discrete energy levels in contrast to the continuous
energy spectrum of a classical working medium and therefore gave rise to the concept
of quantum heat engines.

The temperatures Th and Tc (Th > Tc) of the hot and cold heat baths limit the
efficiency of both classical and quantum heat engines according to the standard Carnot
bound ηCarnot = 1 − Tc/Th, as long as thermodynamic reversibility is ensured and the
working medium is always in an equilibrium state [152]. For quantum heat engines,
this was only proven rigorously recently in Ref. [153]. In 2003 Scully et al. proposed
a quantum Carnot engine with an efficiency surpassing this bound by using atoms for
the heat bath at high temperature that possess a certain degree of coherence, i.e. atoms
whose wave functions have a fixed phase relation [154]. This surplus of efficiency means
that even in the case Tc → Th, where ηCarnot → 0, work can be extracted from two heat
baths at the same temperature or essentially from a single heat bath. However, the
second law of thermodynamics is not violated since work has to be provided in order
to prepare the coherent heat bath.

51
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Since then, many works extended the idea of extracting work from quantum effects,
like quantum correlations [155], in order to demonstrate a supremacy of quantum heat
engines over classical ones, e.g. by surpassing the Carnot bound. While work can also be
extracted from a quantum mechanical measurement process, without the need for any
heat bath [156], most of them suggest the use of specifically engineered, non-thermal
heat baths [157–161], for example by using squeezed states [162]. Klaers et al. were
able to achieve such a heat engine surpassing the Carnot bound experimentally with an
oscillating nanobeam coupled to squeezed thermal noise [163]. Quantum supremacy due
to a coherent working medium, but using standard thermal baths, was demonstrated
recently with nitrogen vacancy centers in diamond [164]. Other possibilities of achieving
quantum supremacy include the exploitation of the quantum nature of a many-particle
working medium and its intrinsic interactions [165–167] or operating the engine for
many cycles [168].

The concept of the Feshbach engine, which is the topic of this chapter, was intro-
duced in Ref. [132]. There, Li et al. proposed an Otto-like engine cycle in which a
one-dimensional Bose-Einstein condensate with attractive nonlinear interactions is used
as the working medium. Work is performed by compressing and expanding the BEC
via modulating the nonlinear interaction strength e.g. via Feshbach resonances (see Sec-
tion 1.2), hence the name, and the authors showed how the engine performance can be
boosted by using shortcuts to adiabaticity and by increasing the nonlinear interaction
strength. Both the original Feshbach engine and its extension presented here consider
BECs described by Gross-Pitaevskii equations on the mean-field level. Therefore, any
coherence or correlations, which are possibly present in the system as a consequence of
its quantum nature and which could lead to quantum supremacy in its performance,
are neglected. The focus is purely on enabling high fidelity quantum control for an
intricate process. Nonetheless, the Feshbach engine is conceptually interesting for the
still young and growing field of quantum thermodynamics. Also especially because the
BECs are considered at zero temperature, meaning that the heat baths of an ordinary
engine cycle are replaced by another resource, namely particle baths.

In this chapter I extend the concept of the Feshbach engine to the Thomas-Fermi
regime of large, repulsively interacting condensates that are commonly produced in
experiments (see Section 1.4). After a brief introduction to quantum thermodynamics
and the working principle of the Feshbach engine, I show in Publication [1] how the
shortcut to adiabaticity derived in the previous chapter is able to boost the engine
performance. The control pulse for the interaction strength can take on attractive
values intermittently if the pulse length is short or the change in interaction strength is
large. We find that if the duration or strength of this attractive part is large enough, it
can lead to a modulational instability of the condensate [169], rendering the shortcut
useless.

Experimentalists have taken advantage of this instability by successfully creating
trains of bright solitons, forming as a result of suddenly quenching the interaction
strength in a BEC from the repulsive to the attractive regime [170–172]. This prompted
many theoretical investigations on the exact mechanisms behind the modulational in-
stability and the soliton formation in different situations, see for example references
[173, 174], and how to apply it to create a pulsed atomic soliton laser [175]. In a similar
setting for the manipulation of Bose-Einstein condensates in the Thomas-Fermi regime
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via the external trap, optimal control theory was used to show that ‘bang-bang’ proto-
cols of sudden quenches between piece-wise constant trap frequencies provide the fastest
possible shortcut to adiabaticity in this case, while adhering to predefined constraints
on allowed trap frequencies [148].

In a related fashion I perform a stability analysis to derive an analytical expression
for a lower bound on the cycle duration for given condensate parameters, similar to
a quantum speed limit. The chapter concludes with some considerations regarding
experimental requirements for a realization of the Feshbach engine and the shortcut
strokes as well as considerations about future work regarding an implementation of the
isochoric strokes and extracting useful work from the engine.

4.2 Quantum Thermodynamics and Feshbach Engines
Thermodynamics usually deals with quasi-static processes in which the system can
be considered to be in internal equilibrium at all times. If additionally no entropy
is produced during the process, it is called reversible. In other words, it deals with
the change in energy of a working medium like the ideal gas by means of external
manipulation. In the framework of thermodynamics, these energy flows can be classified
into two categories, namely heat and work [152]. Heat Q is defined as the energy that
spontaneously flows from one object to another as a consequence of a temperature
difference between these objects. Any other transfer of energy to or from the system
which involves for example an agent like a mechanical piston actively changing the
energy of the system, is classified as work W . The conservation of energy can then
be expressed as the first law of thermodynamics ∆U = Q +W . The change in total
energy U equals the heat added plus the work done.

In order to define these thermodynamic quantities for a quantum system, let us
consider an arbitrary system with discrete energy levels En and corresponding eigen-
states |n⟩ in thermal equilibrium at some finite temperature T . Its Hamiltonian can
be written as H =

∑
nEn |n⟩ ⟨n| and the internal energy U of the system is given by

U = ⟨H⟩ = ∑
n pnEn. The occupation probabilities pi are determined via the Boltz-

mann distribution [176] pi = e−βEi∑
n e−βEn with the partition function Z =

∑
n e

−βEn and
where β−1 = kBT with the Boltzmann constant kB. A change in the internal energy
can therefore be written as

dU =
∑
n

pndEn +
∑
n

Endpn . (4.1)

We know from classical thermodynamics that δQ = TdS. At the same time, the
entropy of the system can be calculated via S = −kB

∑
n pn log pn [177]. We can

therefore make the connection

δQ = TdS = −kBT
∑
n

(log pn + 1) dpn = −kBT
∑
n

(−βEn − logZ + 1) dpn

=
∑
n

Endpn + kBT (logZ − 1)
∑
n

dpn =
∑
n

Endpn ,
(4.2)
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Figure 4.1: Classical Otto cycle displayed in the pressure-volume plane. It consists
of an adiabatic compression (1) → (2), an isochoric heating (2) → (3), an adiabatic
expansion (3) → (4), and an isochoric cooling (4) → (1).

since the condition
∑

n pn = 1 at all times requires
∑

n dpn = 0. Therefore, a quantum
version of the first law of thermodynamics dU = δQ + δW can be established by
identifying [8]

δQ =
∑
n

Endpn and δW =
∑
n

pndEn . (4.3)

An adiabatic process δQ = 0 is one that leaves the occupation probabilities pn of a
system unchanged, and therefore also its entropy S, while a change in its eigenenergies
results in work being performed on or by the system.

The Feshbach engine uses an engine cycle reminiscent of a classical Otto cycle, which
is the working principle of most modern combustion engines. Let us therefore first
briefly recall its main characteristics. Assuming an ideal gas as the working medium,
the classical Otto cycle is displayed in Fig. 4.1. The ideal gas consists of N point-
like, non-interacting particles enclosed in a volume V at some temperature T which
exerts a pressure p on the container walls. The equation of state is the ideal gas law
pV = NkBT [176]. The cycle consists of

1. an adiabatic compression from volume V1 to volume V2, increasing the tempera-
ture from T1 to T2.

2. an isochoric heating from T2 to T3 at constant volume of V2.

3. an adiabatic expansion from volume V2 back to volume V1, while decreasing the
temperature from T3 to T4.

4. an isochoric cooling from temperature T4 back to T1 at a constant volume of V1.

The efficiency of the Otto cycle can be computed as [152]

ηOtto = 1−
(
V2
V1

)γ−1

= 1− T1
T2

= 1− T4
T3
, (4.4)
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where the adiabatic exponent γ = (f + 2)/f depends on the degrees of freedom f of
the working medium constituents, e.g. f = 3 for a monatomic gas. In order to increase
the efficiency of the Otto engine, one needs to increase the compression ratio V1/V2. It
is also apparent that ηOtto < ηCarnot, since the ratios T1/T2 and T4/T3 are larger than
the minimal ratio T1/T3 that would appear in the corresponding Carnot efficiency.

According to Eq. (4.3), we need to change the energy of the system in order to
perform work. In analogy with the compression and expansion strokes in a classical
Otto cycle, this is accomplished by changing the interaction strength g in the Feshbach
engine, which also results in a compressed or expanded wave function of the quantum
system. Finally, we need to close the engine cycle by fixing the interaction strength
and varying the remaining parameter, which is the number of particles N since we are
dealing with a system at zero temperature as mentioned in the introduction.

In a classical Otto cycle these would correspond to isochoric heating and cooling
strokes putting the working medium into contact with two finite-temperature heat
baths. For the Feshbach engine, we need to have ‘particle baths’ with the ability to
add or remove atoms from the condensate assuming the role of the classical heat baths.
However, recalling from Part I of this thesis that the condensate fraction and therefore
the particle number N depends on the temperature of the non-condensed part of the
atomic gas, the connection with the classical Otto cycle is restored. So even though
the working medium itself is considered at T = 0, temperature indirectly plays a role
via the surrounding thermal cloud.

Nonetheless, the Feshbach engine can also be operated entirely at T = 0 if the
particle exchange is realized via a chemical potential gradient between the working
medium and another condensate also at zero temperature acting as a reservoir for
example. On the other hand, if either finite temperature or finite correlation effects
are included in the working medium description as well, the engine performance is
expected to decrease compared to the zero temperature, mean-field results derived in
the following.

From the previous section we know that the Gross-Pitaevskii equation in free space
has a stable, self-focusing bright soliton solution in one dimension [27]. In the presence
of a harmonic trap, its energy is modified to the expression given in Eq. (3.36a) as a
function of soliton width a. For the Feshbach engine in Ref. [132], the authors assume
that the soliton width is still approximately given by the free space value a = 2/N |g|
so that the system energy in harmonic oscillator units reads

E(N, g) =
π2

6

1

N |g|2 − N3|g|2
24

. (4.5)

Figure 4.2 (a) shows a schematic Feshbach engine cycle for a bright solitonic working
medium based on Eq. (4.5). After an adiabatic compression by increasing the modulus
of the attractive interaction from |gi| to |gf | performs some work ⟨WC⟩ = E(Ni, gf )−
E(Ni, gi), ‘heat’ ⟨QN−⟩ = E(Nf , gf )−E(Ni, gf ) is added to the system by decreasing the
particle number from Ni to Nf . By providing some work ⟨WE⟩ = E(Nf , gi)−E(Ni, gf )
the wave function is expanded again to the initial interaction strength before some
‘heat’ ⟨QN+⟩ = E(Ni, gi) − E(Nf , gi) is dissipated by increasing the particle number
back to Ni.
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Figure 4.2: Schematic Feshbach engine cycles for (a) a harmonically trapped one-
dimensional bright solitonic BEC and (b) a three-dimensional harmonically trapped
BEC in the Thomas Fermi regime as the working medium. Note the clockwise and
counterclockwise cycle operation in (a) and (b) respectively and see text for details.

In Publication [1] I extend this concept to repulsively interacting working media in
the Thomas-Fermi regime. We know from Eq. (1.26) that in three dimensions the TF
energy reads

E(N, g) =
5

7
NµTF with µTF =

(
15Ng

16π
√
2

)2/5

(4.6)

and the corresponding Feshbach engine cycle is shown in Figure 4.2 (b). In contrast
to the bright solitonic working medium, where the engine cycle is performed in a
clockwise fashion, the Thomas-Fermi engine cycle is performed counterclockwise in
order to achieve finite values for the efficiency η and power P of the engine, which can
be computed according to

η = −⟨WC⟩+ ⟨WE⟩
⟨QN−⟩

and P = −⟨WC⟩+ ⟨WE⟩
τ

(4.7)

as a function of cycle time τ . Assuming that the isochoric strokes are performed a lot
faster than the adiabatic strokes, the complete cycle duration is assumed to be τ ≈ 2Tf .
The maximum attainable adiabatic efficiency of the Feshbach engine is given to a good
approximation by

ηAD ≈ 1−
( |gi|
|gf |

)2

, (4.8)

for the one-dimensional bright solitonic working medium, after ignoring negligible con-
tributions from the potential energy, and for a working medium in the Thomas-Fermi
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regime we have

ηAD = 1−
(
gf
gi

)γ

, (4.9)

with γ = 2/3 (1D BEC), γ = 1/2 (2D BEC), and γ = 2/5 (3D BEC).
The shortcuts to adiabaticity that we derived in the previous chapter come into

play if we want to actually run the engine. If the adiabatic compression and expansion
strokes are performed in some finite time Tf , their work output is modified by some
amount known as irreversible work

Wirr = ⟨WTf

C/E⟩ − ⟨W ad
C/E⟩ = E(Tf )− Ef (4.10)

compared to the maximum attainable adiabatic amount, as a result of the adiabatic
theorem. Similarly, the fidelity

F = |⟨ψ(Tf )|ψtarget⟩|2 (4.11)

at the end of the stroke might be less than unity. It measures how close the state |ψ(Tf )⟩
with energy E(Tf ) after the evolution is to the desired target state |ψtarget⟩ with energy
Ef . But if we simply increase the ramp duration to bring the efficiency of the engine
closer to the adiabatic value, the power output will vanish as τ → ∞, thereby rendering
the engine useless. In classical engines one generally aims for maximum power output
in this trade-off between power and efficiency. Fundamentally, the Curzon-Ahlborn
bound ηCA = 1−

√
Tc/Th provides a limit to this efficiency at maximum work output

[178, 179], where again Tc and Th are the temperatures of the cold and hot heat baths.
The main focus of the publication presented in the following chapter is on evalu-

ating the performance boost achieved by using the shortcuts to adiabaticity derived
in the previous chapter for running a Feshbach engine cycle in finite time and for a
repulsively interacting working medium in the Thomas-Fermi regime. In order to per-
form the numerically demanding simulations of the three-dimensional BEC dynamics
on long timescales, I implemented the Fourier split-step method presented in Chap-
ter 2 on a GPU, based on the open-source GPUE codebase [105]. Numerically, the
minimum ramp duration Tmin

f resulting from the onset of the modulational instability
was determined by the sharp increase in irreversible work, in particular from the point
where it crosses the threshold Wirr > 104 chosen based on the system parameters.

4.3 Publication
The main results of this chapter are published in Reference [1]:

Tim Keller, Thomás Fogarty, Jing Li, and Thomas Busch
Feshbach engine in the Thomas-Fermi regime
Physical Review Research 2, 033335 (2020).

I have derived all of the analytical results, performed all of the numerical simulations
and wrote a first draft of the manuscript. All authors contributed to the discussion
and interpretation of the results and to the writing of the final version.
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4.4 Experimental Considerations
An experimental realization of even just a single Feshbach engine cycle might prove
too challenging for current experiments, particularly because it is difficult to achieve
the faithful control over BEC particle numbers required for the isochoric strokes. Also,
at the moment the engine is not coupled to an external environment and there is
no mechanism for extracting useful work from it. I will expand on this below and
discuss several ideas for engineering such a coupling that would allow one to harness its
power. Nonetheless, the main novelty of this work, which is the shortcut to adiabaticity
for interaction ramps of Bose-Einstein condensates in the commonly found Thomas-
Fermi regime and the associated analytical expression for the minimal ramp duration,
might prove useful for improving the experimental control of BECs and are well within
experimental reach. In order to enable precise tunability of the atomic interactions
over a wide range, it is favorable to have a broad Feshbach resonance such as in 85Rb
[180] or particularly in 7Li where the scattering length can be tuned over seven orders
of magnitude [181].

Using Lithium as an example, we can translate the dimensionless quantities back
into physical units. For the trapping potential we assume an isotropic harmonic trap
with a frequency of roughly ω ≈ 2π × 40 Hz, which is a typical value for the 7Li
experiment in the group of Prof. David Weld at UCSB in California with whom we
have recently started to explore a collaboration [182]. The cycle endpoints for the three-
dimensional BEC working medium presented in the publication were mainly chosen for
numerical convenience. Using Eq. (1.6) to transform the dimensionless interaction
strengths g according to gℏωx30 = 4πℏ2as/m leads to

as =
g

4π

√
ℏ
mω

. (4.12)

With the mass m = 7.016 mu of 7Li, the endpoints translate to scattering lengths of
gi = 1 −→ as ≈ 9025 a0 and gf = 0.8 −→ as ≈ 7220 a0 in units of the Bohr radius
a0. Those are rather large values but still within reach of the Feshbach resonance. The
system size of Ni = 104 and Nf = 8 × 103 is rather small. An experimentally more
common system size of e.g. N ≈ 105 has the added benefit of being able to ‘trade’
atom number for interaction strength and equivalently reduce the scattering length by
an order of magnitude to a more commonly found value of several hundreds of Bohr
radii, while still remaining in the Thomas-Fermi regime to the same degree.

In this setup the interaction ramps presented in the publication therefore translate
to e.g. ωTf = 2 −→ Tf ≈ 7.96 ms for a moderate, still nearly linear ramp that does not
require any modulation of the interaction strength beyond the initial or final values.
The minimal duration before triggering the modulational instability is Tmin

f ≈ 200 µs
and the minimum time to ensure g(t) ≥ 0 at all times, i.e. remaining on the positive
branch of the Feshbach resonance is Tmin

f ≈ 2 ms. These ramp times would enable
nearly perfect adiabatic control over the interaction strength in a BEC on one to two
orders of magnitude faster time scales than typical experimental state preparation times
[182].
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4.5 Conclusion & Outlook
I have derived a shortcut to adiabaticity for interaction ramps of the interparticle re-
pulsion in a Bose-Einstein condensate in the Thomas-Fermi limit by exactly solving the
dynamics using a scaling ansatz and showed how using this shortcut for the adiabatic
strokes of a Feshbach engine can boost its performance. Numerical simulations of the
full condensate dynamics unveiled that the need to drive the condensate at increasingly
attractive interactions may trigger a modulational instability, leading to a condensate
collapse and limiting the speed-up. Furthermore, I performed a stability analysis and
determined an analytic criterion providing an accurate limit Tmin

f for given ramp and
condensate parameters. Finally, the shortcut has good prospects of providing real-
world benefits for experimental high-fidelity state preparation in systems with broad
Feshbach resonances such as 7Li.

Regarding future work, two things that come to mind immediately are the actual
implementation of the isochoric engine strokes and engineering ways to harness the
work of the engine. Both points are addressed in the following subsections.

4.5.1 Isochoric Strokes

In the presented work we have neglected the dynamics of the isochoric strokes in the
Feshbach engine cycle in order to focus on the benefit provided by the shortcuts to adi-
abaticity for the engine operation. A natural extension to this work, also considering
possible experimental implementations, is therefore to explicitly model these isochoric
strokes as well. As shown in Chapter 1, the number of condensed atoms in a BEC
mainly depends on the temperature of the system, which is determined from the ther-
mal cloud of non-condensed atoms surrounding the BEC. The change in the number
of condensed atoms during the isochoric strokes could therefore be modeled by includ-
ing the thermal cloud and changing its temperature, which would also be the likely
experimental procedure for these strokes.

There are several well-established models incorporating finite-temperature effects
into the BEC description, see e.g. Refs. [183] and [184] for detailed and accessible
reviews on the topic. There are two main approaches for modelling particle exchange
between condensed and non-condensed fraction: one is the hydrodynamic quantum
Boltzmann equation, commonly referred to as the Zaremba-Nikuni-Griffin or short
ZNG formalism after the authors of Refs. [185, 186]. It uses two distinct equations
for modeling the BEC and for modeling the thermal cloud. Another approach, which
does not rely on this somewhat artificial separation and which is also able to capture
other essential physics like the spontaneous symmetry breaking of the order parameter
phase during the condensation, is the stochastic projected Gross-Pitaevskii equation
(SPGPE) formalism. Most importantly, this approach includes number-conserving
energy damping in the form of collisions between thermal and condensed atoms, which
might play an important role during the fast shortcut strokes at fixed particle number
[187]. In its present form, it was first introduced by Gardiner and coauthors in Refs.
[188, 189] and detailed reviews of the SPGPE and related c-field techniques can be
found in Refs. [190, 191].
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Experimentally, it might be advantageous to use the concept of a dimple trap that
made it possible e.g. to reach Bose-Einstein condensation purely by laser cooling [192]
and that is currently used to create continuously replenished BECs [193]. It consists
of a large cloud of harmonically trapped, pre-cooled atoms which acts as a particle
reservoir for the BEC in the tight dimple potential at the center of the trap. This
mechanism could allow one to reliably perform the changes in BEC size during the
isochoric strokes.

4.5.2 Extracting Work from the Engine

The main purpose of an engine is to perform usable work. Using the mostly mechanical
work supplied by classical heat engines is generally not a problem. For quantum heat
engines however, coupling their working medium to the environment means introducing
an additional channel for noise and decoherence. These are effects that experimentalists
usually try to minimize at all costs in order to successfully study quantum systems.
Nonetheless, finding ways to make the work of quantum heat engines usable without
impairing their performance too much is a crucial step in the further development of
these, up to now, mostly conceptual devices. One approach, which focuses on storing
the work output in a flywheel [194] instead of using it directly, has recently been
demonstrated experimentally for a single ion heat engine [195].

In the case of the Feshbach engine, different approaches for coupling the engine to
a mechanical system and making its work usable can be conceived. First, an imme-
diate coupling between the BEC and the system, directly converting the work of the
engine into mechanical motion. Mechanical coupling between a BEC and an oscillating
micro-cantilever was already demonstrated experimentally [196]. The coupling relies
on the Casimir-Polder force [197] that arises from changes in vacuum fluctuations of
the quantized electromagnetic field as two objects are brought in close proximity to
each other. A more sophisticated approach suggests using a nano-cantilever equipped
with a magnetic tip as well as a spinor or multi-component BEC, introduced in more
detail in Section 6.2, and coupling them via the Zeeman effect [198].

An experimentally less challenging approach could be realized via an indirect cou-
pling, e.g. by placing the BEC in an optomechanical cavity, containing a vibrating
cavity mirror and driven by a pump laser. This system gives rise to an indirect cou-
pling between the BEC working medium and the mechanical motion of the cavity
mirror, mediated by the cavity field. In the dispersive limit, i.e. for a large atomic
detuning between the laser frequency and an atomic transition frequency, the atoms
can be regarded as linearly polarizable particles coherently scattering cavity photons
[199, 200]. The BEC changes the optical path length inside the cavity, leading to a
reduction in the effective cavity frequency proportional to ∼

∫
dx|ψ(x)|2 cos(kx) with k

being the wave vector of the cavity. However, preliminary calculations suggest that for
typical cavities k is too large to resolve the compression and expansion of the atomic
cloud by several µm considered in this work and the integral simply averages to the
same value, independent of |ψ(x)|2.

Therefore, one would need to find a way to circumvent this problem, possibly by
making use of additional internal atomic states or collective effects available in driven-
dissipative optomechanical cavities such as superradiance or bistability [201].



Chapter 5

Adiabatic critical quantum metrology
cannot reach the Heisenberg limit
even when shortcuts to adiabaticity
are applied (Publication [2])

This chapter is based on the publication of the same name and presents its context,
additional unpublished results based on my contribution to this work and its impact.

5.1 Introduction
The process of measuring is at the core of science itself and the field of metrology
addresses the problem of obtaining both accurate and precise measurements. The
acquired values are affected by systematic and stochastic errors. By repeating the
same measurement on N identically prepared, independent probes and calculating the
mean value Θ̄N =

∑
i Θi/N of the outcomes Θi, the stochastic error can be reduced.

As a result of the central limit theorem [202], the standard deviation σmean of the
discrepancy between the measured mean and the desired quantity, i.e. the true mean
µ, scales as

σmean =
√
Var

(
Θ̄N − µ

)
=

σ√
N

(5.1)

for large enough N , independent of the underlying probability distribution and where
σ2 = Var(Θi) is the variance of the random samples. In other words, as σmean decreases
proportional to 1/

√
N with the number of measurements taken, the precision of a

measurement increases. In the context of quantum optics, e.g. when measuring the
phase difference between two optical paths in an interferometer, one commonly uses a
single probe beam consisting of N photons instead of N individual probes. Then the
scaling of the phase estimation error with ∼ 1/

√
N is also known as the shot-noise or

standard quantum limit (SQL) [203].
By making use of quantum resources such as squeezed or entangled states, the

precision can be enhanced so that the error scales as ∼ 1/N , a fundamental limit
following from the uncertainty relation, the famous Heisenberg limit [204], which is a

61
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central aspect of quantum metrology [205]. Critical quantum metrology, which is at
the heart of this chapter and which will be introduced in more detail in the following
section, is a variant of quantum metrology in which one tries to make use of the
diverging susceptibility close to the critical point of a system in order to increase the
precision of measurements.

In this chapter I first present a shortcut to adiabaticity for the Landau-Zener
model and derive a local counterdiabatic shortcut for the quantum Rabi model in
the Schrieffer-Wolff approximation. Both models are used as critical toy models in
Publication [2], supporting the general result that shortcuts to adiabaticity cannot be
used to increase the obtainable precision in critical quantum metrology, which is pre-
sented there. The chapter concludes with a summary and an outlook to numerous
further works that already cite the publication.

5.2 Critical Quantum Metrology
In quantum metrology the variance of a measurement is limited by the Cramér-Rao
bound [206]

Var(Θ) ≥ 1√IΘ

, (5.2)

where the quantum Fisher information IΘ (QFI) for a pure state |ψ(Θ)⟩ depending on
the measured quantity Θ is defined as

IΘ = 4
(
⟨∂θψ|∂θψ⟩ − ⟨∂θψ|ψ⟩2

)
. (5.3)

Using perturbation theory and considering a Hamiltonian Ĥ(Θ) with eigenenergies
En(Θ) and eigenstates |ψn(Θ)⟩, the QFI can be expressed as [207]

IΘ = 4
∑
n>0

∣∣∣〈ψn(Θ)
∣∣∣∂ΘĤ(Θ)

∣∣∣ψ0(Θ)
〉∣∣∣2

[En(Θ)− E0(Θ)]2
. (5.4)

If the denominator vanishes, e.g. as the result of a closing energy gap E1(Θ) → E0(Θ)
between the ground state and first excited state during a quantum phase transition, the
quantum Fisher information diverges, allowing one in principle to achieve arbitrarily
high precision according to Eq. (5.2). This is the basic idea behind critical quantum
metrology [208].

For a more intuitive picture, one can also think in terms of susceptibilities or the
response of a system to a perturbation. Phase transitions are characterized by a diver-
gence in the susceptibility as a function of the parameter driving the transition [17].
Close to the critical point, small changes in the control parameter lead to large changes
in the response of the system and this enhanced sensitivity can then in principle be
used for precise measurements of the control parameter in critical quantum metrology.

However, as a result of the critical slowing down of the dynamics close to a critical
point in a quantum system as described in the Kibble-Zurek mechanism [209–211], the
time needed to adiabatically prepare such a critical state also diverges. If this is taken
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into account, the seemingly arbitrarily high precision is still bounded by the Heisenberg
limit, as shown e.g. in Ref. [212].

As we have seen in the previous chapters, shortcuts to adiabaticity allow one to
mimic adiabatic evolution in a finite time. One can therefore immediately ask the
question if it is possible to overcome the Heisenberg limit by applying shortcuts to
adiabaticity in critical quantum metrology. It would then be possible to trade the
energetic cost of realizing such a finite time adiabatic dynamics for increased measure-
ment precision [213]. However, as my coworkers and I have shown in Publication [2],
it is not possible to beat or even reach the Heisenberg limit by using shortcuts to adia-
baticity in critical quantum metrology and they are even detrimental to the achievable
precision in some cases. This even applies in the case where the desired quantity is
already exactly known a priori, since the control protocols for performing a shortcut
generally depend on the unknown parameter.

5.3 Shortcuts for Critical Toy Models
In this section I introduce the shortcuts to adiabaticity for the two models that were
used in Publication [2] to show the general ineffectiveness of shortcuts in critical quan-
tum metrology. The first one is the Landau-Zener model, for which shortcuts are well
known, see e.g. Ref. [119]. The second one is the quantum Rabi model, where to the
best of my knowledge shortcuts were given explicitly first in Ref. [214] shortly before
our publication, but have not been presented anywhere for the quantum Rabi model
after a Schrieffer-Wolff transformation that we use in Ref. [2]. Particularly, not the
local counterdiabatic driving term and the connection to the scaling transformation
which I derive here.

5.3.1 Landau-Zener Model

The Landau-Zener model [215, 216] is a simple two-level system describing a spin in a
time-dependent field g(t) and its Hamiltonian reads

Ĥ =
∆

2
σ̂x +

g(t)

2
σ̂z , (5.5)

where σ̂i are the Pauli matrices and the instantaneous eigenenergies are given by E± =
±1

2

√
∆2 + g2(t). It does not exhibit a phase transition, but for g(t) = 0 it shows an

avoided crossing with a energy level splitting of ∆, which makes it a good toy model to
study the criticality associated with the closing of an energy gap in phase transitions.
The counterdiabatic driving term that needs to be added to Ĥ can be obtained directly
via Eq. (3.1) as

ĤCD − Ĥ = − ġ(t)∆

2 [∆2 + g2(t)]
σ̂y (5.6)

by calculating the instantaneous eigenvalues of the simple 2× 2 matrix Ĥ. This term
is again nonlocal in the sense that it contains a term proportional to σ̂y, which does
not commute with the terms of the original Hamiltonian. With the help of a unitary
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transformation, a local counterdiabatic version

ĤLCD =
∆(t)

2
σ̂x +

g(t)− η(t)

2
σ̂z (5.7)

can be achieved [213]. Now the level splitting ∆(t) =
√
∆2 + Θ̇2(t) with Θ(t) =

arccot(g(t)
∆
) also needs to be modulated in time and the time-dependent field g(t) is

modified by the term η(t) = arctan(Θ̇(t)/∆).

5.3.2 Quantum Rabi Model

The quantum Rabi model [217] describes a single two-level system described by Pauli
matrices σ̂i, interacting with a single bosonic mode according to the Hamiltonian

Ĥ = ∆â†â+
Ω

2
σ̂z +

g(t)

2
σ̂x
(
â+ â†

)
, (5.8)

where ∆ is the frequency of the bosonic mode, whose creation and annihilation op-
erators fulfill

[
â, â†

]
= 1, Ω is the energy splitting of the two-level system and g(t)

describes the time-dependent coupling strength. In line with the convention in the
literature, we have set ℏ = 1. The model exhibits a superradiant phase transition with
⟨â†â⟩ ≫ 1 in the limit ∆/Ω → 0 at the critical coupling strength gc =

√
∆Ω. In this

limit the Hamiltonian can be diagonalized using a Schrieffer-Wolff transformation [218]
Û = exp

[
i(g(t)/2Ω)(â† + â)σ̂y

]
and subsequent projection onto the lower eigenstate of

σ̂z, denoted by |↓⟩, which up to order O(∆
√

∆/Ω) yields [219]

ĤSW = ⟨↓ |ÛĤÛ †| ↓⟩ = ∆â†â− Ω

2
− g2(t)

4Ω

(
â+ â†

)2
. (5.9)

The instantaneous eigenstates are given by squeezed Fock states |n⟩ [162], which are
the eigenstates of â and â†, according to

|ns(t)⟩ = Ŝ(t) |n⟩ = exp

{
ξ(t)

2

[(
â†
)2 − â2

]}
|n⟩ (5.10)

with the squeezing parameter ξ(t) = −1
4
ln [1− (g(t)/gc)] and corresponding instan-

taneous eigenvalues En(t) = n∆
√

1− (g(t)/gc)2. The average number of photons is
given by

N = ⟨â†â⟩ = sinh2

[
1

4
| ln(1−

(
g(t)

gc

)2

)|
]
=

(
√
1− (g(t)/gc)2 − 1)2

4
√

1− (g(t)/gc)2

≈ 1

4
√

1− (g(t)/gc)2
for g → gc ,

(5.11)

reflecting the superradiant character of the transition.
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From these instantaneous eigenstates we can directly compute the counterdiabatic
term for a shortcut to adiabaticity according to

ĤCD − Ĥ = i
∑
n

[|∂tns(t)⟩⟨ns(t)| − ⟨ns(t)|∂tns(t)⟩ |ns(t)⟩⟨ns(t)|] . (5.12)

The time derivative reads

|∂tns(t)⟩ =
ξ̇(t)

2

[(
â†
)2 − â2

]
|ns(t)⟩ =

g(t)ġ(t)

4 (g2c − g2(t))

[(
â†
)2 − â2

]
|ns(t)⟩ (5.13)

and therefore the overlap

⟨ns(t)|∂tns(t)⟩ =
g(t)ġ(t)

4 (g2c − g2(t))
⟨n|Ŝ†

[(
â†
)2 − â2

]
Ŝ|n⟩

= f(t)
(
⟨n|Ŝ†â†ŜŜ†â†Ŝ|n⟩ − ⟨n|Ŝ†âŜŜ†âŜ|n⟩

)
= f(t) ⟨n|

[(
â† cosh(s) + â sinh(s)

)2 − (â cosh(s) + â† sinh(s)
)2] |n⟩

= f(t)(2n+ 1) [sinh(s) cosh(s)− sinh(s) cosh(s)] = 0

(5.14)

vanishes, where we have set f(t) = g(t)ġ(t)/(4(g2c − g2(t))) and used [220]

Ŝ†âŜ = â cosh(s)− â†eiϑ sinh(s) with ξ = seiϑ =
1

4
| ln(1−

(
g(t)

gc

)2

)|eiπ (5.15)

in our case. Using the completeness
∑

n |ns(t)⟩⟨ns(t)| = I of the instantaneous eigen-
basis, the counterdiabatic term finally reads

ĤCD − Ĥ = i
g(t)ġ(t)

4 (g2c − g2(t))

[(
â†
)2 − â2

]
. (5.16)

Transforming the counterdiabatic term in Eq. (5.16) in analogy to the quantum har-
monic oscillator according to â =

√
m∆
2

(
x̂+ i

m∆
p̂
)

with some arbitrary ‘mass’ m yields

ĤCD − Ĥ = i
g(t)ġ(t)

4 (g2c − g2(t))
(x̂p̂+ p̂x̂) (5.17)

and the nonlocal property of the counterdiabatic term becomes more obvious. The
reappearance of the generator of dilations highlights the scaling properties of the system
as a result of its squeezed state eigenstates.

It is important to note that this nonlocality in the counterdiabatic driving term
is not an issue for the numerical implementation of the shortcuts in this case, due to
the simple structure of the underlying Hilbert space based on Fock states. The same
applies to the Landau-Zener model based on simple 2×2 Pauli matrices and the results
in Publication [2] were all obtained with ĤCD for both models.
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Figure 5.1: Plot of the modified local counterdiabatic driving g̃2(t) according to Eq.
(5.20) for ramping from gi = 0 to gf = 0.95 in different times Tf . For fast ramps
the driving exceeds the range of validity 0 ≤ g̃2(t) ≤ 1 of the model (dotted lines).
The approximate shortcut in Eq. (5.23) (green line) needs to be driven slower than
Tf > 3.0424 and the ramp in Eq. (5.22) (light blue line) is independent of Tf in this
representation.

Nonetheless, local driving terms are desirable for physical shortcut implementations
and using the results from Chapter 3, we can immediately write down the unitary
transformation

Û = exp
[
imf(t)x̂2

]
= exp

[
i
f(t)

2∆

(
â+ â†

)2] (5.18)

that gives us a local version of the counterdiabatic driving. It reads

ĤLCD = ÛĤCDÛ
† + i

(
∂tÛ

)
Û † = ∆â†â− Ω

2
− ∆

4
g̃2(t)

(
â+ â†

)2 (5.19)

with the modified driving function

g̃2(t) =
g2(t)

g2c
+

2

∆2

(
2f 2(t) + ḟ(t)

)
=
g2(t)

g2c
+

2

∆2

[
ġ2(t)

2g2c + 3g2(t)

8(g2c − g2(t))2
+

g(t)g̈(t)

4(g2c − g2(t))

]
.

(5.20)

For ĤCD we were free to choose g(t) arbitrarily, but now we need to make sure
that g̃(0) = g(0) and g̃(Tf ) = g(Tf ) by imposing boundary conditions ġ(0) = ġ(Tf ) =
g̈(0) = g̈(Tf ) = 0 which are fulfilled e.g. by the polynomial

g(t) = gi + (gf − gi)
(
10s3 − 15s4 + 6s5

)
with s =

t

Tf
(5.21)

for ramping from gi to gf in a time Tf . Fig. 5.1 shows the resulting g̃2(t) for different
ramp times and immediately one limitation of the shortcut becomes apparent. For
short ramps we can have g̃2 < 0, which is unphysical in the context of the quantum
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Rabi model studied here, as well as g̃2 > 1, where we would need to cross the phase
transition.

It is tempting to try a different approach to make sure that ĤLCD and Ĥ commute at
t = 0 and t = Tf , namely to choose g(t) in such a way that the LCD term 2f 2(t)+ḟ(t) ≡
0 in Eq. (5.20) vanishes at all times. However, this defeats the purpose and renders the
shortcut useless as the mechanism achieving the adiabatic-like modulation of the wave
function disappears. But it is still worth it to follow this approach as it allows one to
draw an interesting connection in the end. The aforementioned condition is fulfilled by
f(t) = 1

c0+2t
with c0 = 1/f(0) and this results in a Bernoulli type differential equation

for ˙̃g which is solved by the ramp

g̃(t) =

√
1 +

c1
(c0 + 2t)4

=

√√√√√1− 1[
1 +

(
1

(1−g2f)
1/4 − 1

)
t
Tf

]4 , (5.22)

where the constants c1 = −c40 and c0 are determined via the ramp boundaries g(0) = 0
and g(Tf ) = gf . As shown in Fig. 5.1, it has a fundamentally different shape from the
ones using ‘smoother step’ polynomials. Also, in contrast to the local counterdiabatic
driving, it remains bounded gi ≤ g(t) ≤ gf by the initial and final values at all times
and its required modulation is independent of the ramp duration Tf , which again
indicates that it cannot work as a shortcut to adiabaticity. However, it is quite similar
to the approximate shortcut given in Ref. [221] for the quantum Rabi model in the
Schrieffer-Wolff approximation, also in the context of critical metrology. They derive
the condition ˙̃g(t) ∼ γ∆(1− g2(t))

3
2 for the dynamics to remain adiabatic, where γ < 1

is some small parameter describing the probability of exciting higher states. This is
fulfilled by the approximate shortcut ramp

g̃(t) =
1√

1 + 1
γ2∆2t2

, (5.23)

which is also plotted in Fig. 5.1. Its duration is fixed by the final coupling strength
according to γTf = gf/(1− g2f )

1
2 > 3.0424 in our example.

Surprisingly, solving the differential equation for the driving field appearing in the
local version of a counterdiabatic Hamiltonian leads to control ramps that do not work
as shortcuts to adiabaticity, but that can act as very good nearly adiabatic ramps if
performed on appropriate timescales. This can also be seen in the interacting many-
body system in Section 3.2. There, the interaction ramp g(t) can also be chosen in
such a way that the additional term g̈/g − 2(ġ/g)2 ≡ 0 in Eq. (3.22) disappears. The
resulting ramp

g(t) =
gigf

gf +
t
Tf
(gi − gf )

, (5.24)

also does not work as a shortcut, but when used as an adiabatic reference it outperforms
even the ‘smoother step’ polynomial in Fig. 3.2 on intermediate timescales, despite not
fulfilling ‘smooth’ boundary conditions.
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5.4 Publication
The main results of this chapter are published in Reference [2]:

Karol Gietka, Friederike Metz, Tim Keller, and Jing Li
Adiabatic critical quantum metrology cannot reach the Heisenberg

limit even when shortcuts to adiabaticity are applied
Quantum 5, 489 (2021).

The project idea as well as the central analytical and numerical results stem from
Karol Gietka. I have mainly contributed the novel shortcut to adiabaticity for the case
study with the quantum Rabi model under the Schrieffer-Wolff transformation and to
the interpretation of the results in terms of Fig. 5 in the publication. All authors
contributed to the discussion and interpretation of the results and to editing the final
version of the paper.

5.5 Conclusion & Outlook
I have derived a shortcut to adiabaticity in the local counterdiabatic form for the
quantum Rabi model in the Schrieffer-Wolff approximation that was used together with
a known shortcut for the Landau-Zener model to support the general result presented
by my coworkers and me in Publication [2]. Namely, that STAs or any other unitary
transformation for that matter are not able to reach the Heisenberg limit when used
in critical quantum metrology. Surprisingly, they even lead to worse performance in
some instances, as by construction they counteract the divergence of the geometrical
distance between close-by quantum states as they approach a critical point, which
is the working principle of critical quantum metrology. Moreover, I have described
a surprising observation, whereby solving the differential equations appearing in the
local counterdiabatic control ramps both for the quantum Rabi model and for the
interacting quantum gas in Section 3.2 seemingly leads to well-performing adiabatic
reference ramps. However, this is purely anecdotal and needs further investigation.

Despite its very recent publication, the work presented in this chapter has already
found recognition in the community and has been cited numerous times. At the time of
writing, it has been mentioned by Ilias et al., who derive novel protocols for criticality-
enhanced sensing that work by continuously measuring the system during critical state
preparation [222], Garbe and coworkers, who provide a unifying analysis for the scaling
of the quantum Fisher information in critical quantum metrology as a function of the
protocol duration [223] and who also describe a novel superradiant phase transitions for
a light-matter system in the ultrastrong coupling regime [224]. Furthermore, Hatomura
and coworkers, who consider the finite-time duration of preparing a state for quantum
metrology based on symmetry-protected adiabatic transformations [225] and Aybar
et al. who study critical quantum thermometry in spin systems [226]. Finally, the
first author of the publication, Karol Gietka, also used it as a basis for deriving novel
protocols for critical quantum metrology that work either by moving away from the
critical point [227] or even by crossing it [228].
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Chapter 6

Background

In this chapter I introduce the superfluid to Mott insulator transition of a strongly
interacting, one-dimensional bosonic quantum gas in a lattice potential that was the
motivation for the studies performed in Chapters 7 and 8. It was described theoretically
by Büchler et al. in Ref. [229] and measured experimentally by Haller et al. in
Ref. [230]. In these and further publications it is also commonly referred to both
as commensurate-incommensurate transition and pinning transition. I also present a
general introduction to the very broad topic of atomic mixtures, as both of the following
Chapters 7 and 8 deal with one-dimensional binary mixtures .

6.1 Pinning Transition
A one-dimensional bosonic quantum gas in a periodic lattice potential with wave vector
k = 2π/λ, described in second quantization via creation and annihilation operators
Ψ̂†(x) and Ψ̂(x), has the Hamiltonian

Ĥ =

∫
dx Ψ̂†(x)

[
− ℏ2

2m

∂2

∂x2
+ V0 sin

2(kx)

]
Ψ̂(x)+

g

2

∫
dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x) , (6.1)

where the depth of the potential V0 is often expressed in terms of the recoil energy
ER = ℏ2k2/2m and where the atoms are interacting via the previously introduced
contact interactions of strength g. In general, there is no analytic solution to the
Hamiltonian (6.1), however there are two parameter regimes where it can be mapped
to different Hamiltonians that allow for an easier treatment. To this end, we introduce
the Lieb-Liniger parameter γ = mg

ℏ2n , which relates the interaction energy to the kinetic
energy and characterizes the interaction strength in a system of average line density
n. In the limit of strong interactions γ ≫ 1 and shallow lattices V0 ≪ ER, Büchler et
al. showed in Ref. [229] that Hamiltonian (6.1) can be mapped to the exactly solvable
sine-Gordon model

H =
ℏvs
2π

∫
dx

[
K (∂xϕ)

2 +
1

K
(∂xθ)

2 + V cos (2θ)

]
, (6.2)
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which is a field theory describing spatial fluctuations in the density and phase fields θ
and ϕ obtained from the bosonic field operator according to

Ψ̂(x) ∼
√
n+ ∂xθ(x)/π exp[iϕ(x)] . (6.3)

They obey the commutation relation [∂xθ(x), ϕ(y)] = iπδ(x − y). Importantly, this
mapping requires the atomic density to be commensurate to the lattice periodicity and
assumes a density of n = 2/λ. The parameter vs stands for the velocity of sound-like
excitations in the one-dimensional gas, V = V0nπ/(ℏvs) describes the lattice depth and
the Luttinger liquid parameter K incorporates the interactions. In the absence of a
lattice potential, an approximate closed expression in the limit of strong interactions,
which is valid for γ > 10, reads K(γ → ∞) ≈ (1 + 2/γ)2 [231].

The sine-Gordon model possesses a Berezinskii-Kosterlitz-Thouless type transi-
tion at Kc = 2 from a superfluid state for K > 2 to a gapped Mott insulating
phase for K < 2 [232, 233]. Using a different asymptotic expression K(γ → 0) ≈
π
[
γ −

(
γ3/2/2π

)]−1/2 for the Luttinger parameter [231], valid in the weak interaction
regime up to γ ≲ 10, the criterion translates to the phase transition line

V0
ER

= 2

 π√
γ − γ3/2

2π

− 2

 (6.4)

in the γ − V0-plane. From Eq. (6.4) we can immediately see that above a critical
interaction strength γ > γc ≈ 3.5, arbitrarily shallow lattice potentials cause the
system to become pinned in the Mott insulating state.

In the opposite regime of weak interactions γ ≪ 1 and deep lattices V0 ≫ ER,
Hamiltonian (6.1) can be mapped to the well-known Bose-Hubbard model

Ĥ = −J
∑
i

(
b̂†i b̂i+1 + h.c.

)
+
U

2

∑
i

b̂†i b̂
†
i b̂ib̂i , (6.5)

where the operators b̂†i and b̂i create and destroy a particle at lattice site i respectively

and the hopping term J = 4ER√
π

(
V0

ER

)3/4
exp

(
−2
√

V0

ER

)
as well as the on-site interaction

U =
√
2π g

λ

(
V0

ER

)1/4
are obtained from expanding the bosonic field operator Ψ̂(x) =∑

iw(x − xi)b̂i in terms of Wannier functions w(x) [234]. Its famed phase diagram
as a function of J , U and the chemical potential consists of several stacked lobes for
small values of J/U , where the ground state is a Mott insulating phase with an integer
number of particles per lattice site depending on the chemical potential [63]. These
lobes are surrounded by a superfluid phase. Our case of n = 2/λ with a single atom
per lattice site corresponds to the lowest Mott lobe, for which the superfluid-insulator
transition occurs at the critical ratio (U/J)crit ≈ 3.85 [235]. This translates to the
implicit equation

4
V0
ER

= ln2

[
2
√
2π

γ

(
U

J

)
crit

√
V0
ER

]
(6.6)
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Figure 6.1: Phase diagram of Hamiltonian (6.1) according to its mapping to the sine-
Gordon model [Eq. (6.4), solid line] and the Bose-Hubbard model [Eq. (6.6), dashed
line]. The transition lines agree well with the experimentally observed data (squares,
manually extracted from Fig. 4 in Ref. [230]) in their respective regimes of validity.
The thin dotted line indicates the critical interaction strength γc = 3.5

determining the transition line in the γ−V0-plane. Figure 6.1 shows the phase diagram
of Hamiltonian (6.1) according to the phase transition lines in Eqs. (6.4) and (6.6)
from the mappings to the sine-Gordon and Bose-Hubbard models respectively. The
critical lines agree well with the experimentally observed points by Haller et al. in Ref.
[230] in their respective regimes of validity for large interaction strengths and shallow
lattices (sine-Gordon model) and for weak interaction strengths and deep lattices (Bose-
Hubbard model).

6.2 Atomic Mixtures
One of the most important and prominent examples of atomic mixtures in the field of
ultracold physics is the Bose-Fermi mixture of 3He and 4He that acts as the coolant
in dilution refrigerators [236]. It allows experiments to reach temperatures in the mK
range and is at the basis of countless breakthroughs in solid state physics and quantum
computing [237].

For quantum gases, the first binary mixture of Bose-Einstein condensates in two
different hyperfine states of 87Rb, a so-called spinor condensate [238], was observed
experimentally in Ref. [239] after theoretical studies of Bose-Bose mixtures in Refs.
[240, 241]. Since then many further examples of mixtures in the form of dual-species
condensates [242–250] and spinor condensates [251–257] have been realized. The order
parameter of spinor condensates can be described by a vector with several components
for the internal degrees of freedom. In contrast to scalar Bose-Einstein condensates,
spin-exchange collisions can change the populations of the sublevels, meaning that the
number of condensed atoms in each species is not conserved, which leads to a rich
phase diagram [258].
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Originally, Bose-Fermi mixtures were used as a tool to circumvent the difficulty
of direct cooling of fermions in order to reach the quantum degenerate regime of the
fermionic component by means of sympathetic cooling via the bosonic component [259].
In 2014, the same mixture of fermionic 6Li and bosonic 7Li was created for the first time
with the fermionic component at unitarity, so that both components are superfluid at
the same time [260]. Theoretical studies of three-dimensional Bose-Fermi mixtures can
be found for example in Refs. [261, 262]. Using the Thomas-Fermi approximation for
the bosonic component, a comprehensive classification of possible density distributions
was given more recently [263], after first studies in Ref. [264].

As we will see later on, the mixture of bosonic 87Rb and fermionic 40K is a very
suitable candidate for observing the self-pinning transition reported in the following
chapters, mainly due to the large attractive interspecies interaction [265, 266]. In the
past, it has been used to study collapse phenoma [267, 268] and the loss of bosonic
phase coherence in an optical lattice [269]. Other realizations of dual-species mixtures
involving 6Li include 23Na [270] as well as 133Cs [271], while other isotopic Bose-Fermi
mixtures have been attained using 40/41K [272], 84/87Sr [273] and 173/174Yb [274]. More
recently, also a quantum degenerate mixture of 87Rb and 171Yb was achieved [275].

For completeness, it is also noteworthy to mention experimental realizations of
dual-species Fermi-Fermi mixtures in 6Li and 40K [276, 277] and especially balanced
mixtures of the lowest hyperfine states of either of the aforementioned species which
allowed studying the BEC-BCS crossover from condensates of tightly bound molecules
to a superfluid of weakly-bound Bardeen-Cooper-Schrieffer (BCS) pairs (see e.g. Refs.
[29, 278] and references therein). As demonstrated in the group of Wolfgang Ketterle,
having a population imbalance on the BEC side of the transition can even lead to the
realization of an effective Bose-Fermi mixture in that case [279]. On the other hand, for
a large enough mass imbalance, Fermi-Fermi mixtures are predicted to phase separate
[280]. A more recent development in atomic mixtures is the observation of quantum
liquid droplets that are stabilized by quantum fluctuations in a two-component mixture
with intraspecies repulsion and interspecies attraction by Tarruell and colleagues [281],
after a theoretical description by Petrov in 2015 [282].

Within the mean-field level description, a BEC consisting of multiple atomic species
gives rise to additional intraspecies (gii) and interspecies (gij, i ̸= j) interaction terms in
the Gross-Pitaevskii equation for each order parameter ψj of the s different components

iℏ
∂ψj

∂t
=

(
− ℏ2

2m
∇2 + Vj(r) +

s∑
i=1

gij|ψi|2
)
ψj . (6.7)

Most notably, in the case of a homogeneous two-component BEC and gij > 0 ∀ i, j, a
simple energetic argument predicts a phase transition at

g212 = g11g22 , (6.8)

driving the system from a miscible (g212 < g11g22) to an immiscible (g212 > g11g22),
component-separated, phase [27, 39]. In the case of trapped condensates, the tran-
sition point is marginally shifted and for multiply connected geometries like toroidal
traps, the phase transition allows the condensates to switch between quantized and
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classical angular rotation in the miscible and immiscible regime respectively [283]. Ex-
perimentally, the miscible-immiscible transition was first observed in Ref. [244].

In this part of my thesis, I will focus on one-dimensional mixtures, which for example
allows me to study the combination of weakly and strongly correlated systems. A
detailed review of one-dimensional versions of the Bose-Bose, Fermi-Fermi, and Bose-
Fermi mixtures mentioned above, with a focus on few-body systems, can be found in
Ref. [284].





Chapter 7

Self-Pinning Transition of a Tonks-
Girardeau Gas in a Bose-Einstein
Condensate (Publication [3])

This chapter is based on the publication of the same name and presents its context,
a connection to experimentally relevant parameter regimes and prospects for future
work.

7.1 Introduction
Quantum phase transitions are one of the most interesting aspects of quantum many-
body physics [17]. They underlie many of the novel states and unique properties that
for example allow neutral atoms in optical lattice potentials to be used as quantum
simulators of condensed matter physics [22–25]. As we have seen in the previous
chapter, a one-dimensional quantum gas subject to a lattice potential undergoes a
transition from a superfluid state to a gapped Mott insulator state for arbitrarily small
lattice strengths beyond a critical value of the interparticle repulsion. The research
presented in this chapter was motivated by the simple question if the same physics can
be observed without the need for a commensurate lattice potential, but by immersing
the strongly-correlated quantum gas into a weakly-correlated background such as a
BEC instead. The immersed component might then be able to create its own always
perfectly commensurate trapping potential via the backaction onto the background gas.
In other words, we want to study if the resulting decrease in energy from opening a
gap at the Fermi surface of a fermionic-like system, similar to the Peierls instability
discussed in Subsection 1.5.2, outweighs the energetic cost of creating the necessary
deformation in the BEC density in the first place, thus leading to the desired quantum
phase transition.

Such backaction principles are for example able to create photon-mediated long-
range interactions between atoms in optical cavities [200], which can lead to self-
organization phase transitions such as the Dicke transition [285–288] and the superfluid-
supersolid transition [289]. In atomic mixtures, mediated interactions are inherently
attractive at short distances, independent of the sign of the interaction between the
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components [290]. No matter if atoms of species A attract or repel atoms of species B,
the resulting change in local density of species B around atoms of species A compared
to the background density is attractive for other atoms of species A in either case.
This mediated attractive interaction was used to collapse an inherently repulsive BEC
immersed into a Fermi gas [291] and it was shown how induced interactions can lead
to a damping of BEC excitations in a similar system [292]. Furthermore, mediated
interactions are also predicted to lead to supersolid formation in 2D [293, 294] and 3D
[295] Bose-Fermi mixtures.

One-dimensional binary mixtures like the one studied in this chapter have seen a
lot of attention, particularly over the last twenty years. Despite the bosonic nature
of the Tonks-Girardeau gas, all local properties of the system such as the densities
should be identical to an equivalent Bose-Fermi mixture due to the mapping theorem
of the same name [82, 296]. Therefore, I will focus on results obtained for Bose-Fermi
mixtures in this introduction and present literature about Bose-Bose mixtures in the
following Chapter 8, where I study the same system away from the Tonks-Girardeau
limit.

The phase diagram of 1D Bose-Fermi mixtures has been studied both for homoge-
neous systems on a ring [297] and in optical lattices both at zero temperature [298]
and with superimposed harmonic trapping [299] as well as at finite temperature [300–
303]. For homogeneous systems with equal masses and identical interaction strengths,
exact solutions are available both for spin-polarized [304, 305] and non-polarized [306]
fermions. Adding external confinement, further solutions are given in the limit of
infinitely repulsive interactions [307] and for few-body systems [308].

In general, it has been found that the system can be described as a miscible two-
component Luttinger liquid, which in different interaction and density regimes exhibits
instabilities like the formation of bound pairs or collapse for attractive intercomponent
interactions or phase separation in the repulsive case [309, 310]. Later on, it was shown
that this rich phase diagram can also be understood in terms of a Luttinger liquid of
polarons, i.e. atoms dressed by clouds of the opposite species [311]. The paired phase is
characterized by the opening of an energy gap and in the case of imbalanced mixtures
with asymmetric masses it has been shown that this is caused by a generic mechanism
that does not rely on the presence of a periodic potential and which is independent of
the specific nature of the mixture components [312].

The pairing effect has also been studied specifically for a balanced 40K–87Rb mixture
[313]. In the imbalanced case, signatures of a self-trapped ground state and the appear-
ance of bright solitons similar to the work described here were reported in Refs. [314–
316] and in the presence of disorder, the system can exhibit an additional Bose-Fermi
glass phase [317]. Solitonic density modulations were also predicted in the opposite
case of a majority fermionic system [318].

Later on, the treatment of Bose-Fermi mixtures as a Luttinger liquid of polarons was
put on a more stable footing [319] and extended to also cover arbitrary commensurate
mixtures [320]. Finally, the phase diagram was amended by the discovery of a supersolid
phase that can appear for imbalanced mixtures in an optical lattice [321].

Different from the Hubbard-type models and Luttinger liquid approaches used in
the references mentioned above, already in 2004 Miyakawa et al. employed a Green’s
function approach to show that homogeneous 1D Bose-Fermi mixtures exhibit a Peierls



7.2 Model 79

instability for perturbations with wave vector k ≈ 2kF (see Section 1.6) leading to a
density modulated ground state even without a lattice potential [322].

In this chapter I study a one-dimensional Bose-Bose mixture of a Tonks-Girardeau
gas immersed into a Bose-Einstein condensate. I describe a novel self-pinning transi-
tion in which, similarly to the pinning transition described in Section 6.1, the Tonks-
Girardeau gas undergoes a transition to a crystal-like Mott state with regular spacing
between the atoms, but without any externally imposed lattice potential. I consider
an initially homogeneous, heavily imbalanced situation where the BEC is a lot larger
than the TG gas. The resulting state shows similarities to the gapped pairing phase
and the modulated ground state mentioned above, but to the best of my knowledge it
has not been described elsewhere, particularly also in combination with the analytical
results presented here.

I develop an effective model that accurately describes the system in the pinned
insulator state both at zero temperature and for a finite temperature of the immersed
component and which allows us to derive the critical temperature of the transition.
After a brief introduction of the model, the self-pinned state and the situation at finite
temperature, I study the phase transition both at zero temperature and for a finite
temperature of the immersed component as a function of the interspecies interaction
in Publication [3].

Since the immersed component is considered in the Tonks-Girardeau limit, the re-
sulting densities found in the mixture are identical to an equivalent Bose-Fermi mixture
due to the Bose-Fermi mapping theorem. However, as I demonstrate in the publication,
the TG gas has the benefit of showing signatures of the phase transition in observables
like the momentum distribution that are easily accessible in cold atom experiments.
Details concerning finite size effects, the energy functional of the system, the spec-
trum of the Tonks-Girardeau gas, and the derivation of the critical temperature for
the pinning transition are presented in the accompanying supplemental material. The
chapter concludes with considerations regarding the requirements for an experimental
observation of the self-pinning transition and an outlook towards future work.

7.2 Model
We consider a small system of N atoms in one dimension, described by a full many-
particle wave function Φ(x = x1, x2, . . . , xN), which is immersed into a Bose-Einstein
condensate comprised of Nc atoms and described by a macroscopic wave function ψ(x)
in the mean-field limit. Assuming weak interactions between the immersed atoms and
the condensate atoms, we can describe the interspecies interaction by a simple density
coupling of strength gm, leading to the coupled evolution equations

iψ̇(x) =

[
−1

2

∂2

∂x2
+ gm|Φ|2 + gc|ψ|2

]
ψ(x) (7.1a)

iΦ̇(x) =

[∑
l

−1

2

∂2

∂x2l
+ V (xl) + gm|ψ|2 + Vint

]
Φ(x), (7.1b)
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where for simplicity we have set ℏ and all masses equal to one. The immersed atoms
are interacting via an intraspecies coupling Vint = g

∑N
k<l δ(|xk − xl|) of strength g and

gc describes the intraspecies coupling within the condensate. The immersed component
is trapped in a box potential of width L with V (x) ≡ 0 for |x| ≤ L/2 and V (x) ≡ ∞
otherwise and the condensate is assumed to be in free space with a homogeneous density
nc ≡ Nc/Lc = µ0/gc.

Throughout this chapter we assume the Tonks-Girardeau limit g → ∞ for the im-
mersed component, as it allows one to solve Eq. (7.1b) even for larger particle numbers
N , thanks to the Bose-Fermi mapping theorem (see Section 1.6). At zero temperature,
the density of the TG gas, which is needed for the coupling term in Eq. (7.1a), is then
simply computed as

ρ(x) = |Φ(x)|2 =
N∑

n=1

|ϕn(x)|2 , (7.2)

using the single particle eigenstates ϕn(x) with eigenenergies En, which are the solutions
of Eq. (7.1b) with Vint = 0. The coupled Eqs. (7.1) are then solved numerically in
a self-consistent fashion, using the Fourier split-step method in imaginary time for
the BEC component and exact diagonalization for the single-particle Tonks-Girardeau
Hamiltonian as described in Chapter 2. In this Tonks-Girardeau limit, the immersed
component only exists in a pinned insulating state characterized by a gap in the energy
spectrum. This state is described in detail in Publication [3] presented in the next
section, but in the following I give a brief summary for the benefit of the reader.

7.2.1 Self-Pinned State

In general, for finite values of the interspecies coupling gm the atoms in the immersed
component are localized in a regularly spaced pattern in the minima of a matter-
wave lattice potential, which is created in the BEC by the mutual backaction of the
two components. In the regime where the overlap between neighboring pinned atoms
vanishes, we can use an effective single particle description to derive an analytical model
for the pinned state that provides excellent agreement with the numerically observed
results.

In this model we neglect the kinetic energy of the BEC in Eq. (7.1a) and approxi-
mate its wave function as

ψ(x, t) =

√
1

gc
(µ̃− gm|Φ|2)e−iµ̃t (7.3)

in the Thomas-Fermi limit for gm ≪ µ0L/N (see Section 1.4), since we consider heavily
imbalanced particle numbers as well as a weak interspecies interaction. Here the density
modulation only deviates slightly from the constant background value. The interaction
with the immersed atoms leads to a change in the chemical potential according to
µ̃ = µ0

(
1 + gmN

gcNc

)
.

Substituting Eq. (7.3) into Eq. (7.1b) leads to the Hamiltonian for the effective
single particle description (see Refs. [323–328] for similar effective models in the context
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of polaron physics)

Ĥ ′
1 = −1

2

∂2

∂x2
− g2m
gc

|ϕ1(x)|2 , (7.4)

where the ground state energy is shifted by a constant term E ′
1 = E1 − gm

gc
µ̃. This

nonlinear Hamiltonian has a well-known soliton-like solution of inverse width a0 of the
form [329]

ϕ1(x) =

√
a0
2

1

cosh (a0x)
with a0 =

g2m
2gc

(7.5)

and E ′
1 = −a20/2.

The model does not take into account the energies needed by the BEC to keep
the immersed atoms from dispersing and by the immersed atoms to displace the BEC
density. Considering these effects leads to a reduction apin < a0 in the wave function
peak height of the immersed atoms and correspondingly to a reduction in the extent of
the BEC density modulation. By minimizing the energy functional for the total system
energy (see Supplemental Material of Publication [3]) it is possible to find the closed
expression

apin = a0

√
1 + 2ϵ− 1

ϵ
with ϵ =

6a20
5µ̃

(7.6)

in the case of moderate interaction strengths gm, where the width of the atomic wave
function and the density dip are proportional to each other.

The total energy for the coupled system of Bose-Einstein condensate and immersed
gas in this pinned state is then given by

Epin = N

(
g2m

30µ̃gc
a3pin +

a2pin
6

− g2m
6gc

apin

)
+
µ̃2Lc

2gc
, (7.7)

where the expression in the bracket is the energy of a single immersed atom.
Finally, the density of the immersed component in the pinned state can then simply

be written as an arrangement of single localized bright solitons

ρpin(x) =
apin
2

N∑
n=1

1

cosh2 [apin (x− xn)]
(7.8)

at positions xn and with inverse width apin, since deep in the pinned state the overlap
between different atoms vanishes. The positions xn are roughly given by xn = [n −
(N + 1)/2]L/N , but if the pinned state is considered to be the result of an adiabatic
ramp of the interspecies coupling from gm = 0 to some final value gm > 0, they
can also be approximated by the maxima of their initial density in the infinite box
ρ(gm = 0, x) = 2

L

∑N
n=1 sin

2
[
nπ
L

(
x+ L

2

)]
. In that case the xn are determined by the

odd solutions of (2N + 1) tan(πz) = tan((2N + 1)πz) for 0 ≤ z ≤ 1.

7.2.2 Finite Temperature

We also study the system for the case where the Tonks-Girardeau gas has a finite tem-
perature, while assuming that the BEC is still effectively at zero temperature due to
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the large difference in particle number. In that case, thermal excitations can lead to
a depinning of the immersed atoms, eventually resulting in a completely delocalized
thermal phase. The Bose-Fermi mapping theorem also extends to this finite temper-
ature case and recently efficient techniques for calculating the reduced single-particle
density matrix of the TG gas only using the single particle states ϕn(x) were presented
in Refs. [330–332]. We also use these techniques to calculate the momentum distri-
bution of the immersed component from the RSPDM as shown in Section 1.6. In the
finite temperature case, the density of the TG gas is adjusted to

ρ(x) =
∞∑
n=1

fn |ϕn(x)|2 , where fn =
1

exp [β (En − µ)] + 1
(7.9)

is the Fermi-Dirac distribution, β = 1/kBT and the chemical potential µ is fixed by
the number of atoms according to N =

∑∞
n=1 fn.

The single impurity model can be modified to include the effect of finite temper-
atures by replacing ϕ1 → √

f1ϕ1 in the Hamiltonian (7.4). Since 0 ≤ fn ≤ 1, this
corresponds to an effective reduction of the interspecies coupling. The changed cou-
pling leads to a changed energy E ′

1 which, in turn, results in a modified occupancy f1
and so on. It is therefore possible to determine the resulting equilibrium value fpin in
the pinned state from the self-consistency criterion

fpin =
1

exp {β [E(fpin)− µ(fpin)]}+ 1
. (7.10)

The energy term is given by the ground state energy of the effective Hamiltonian Ĥ ′

of Eq. (7.4). Using the most accurate approximation presented in the Supplemental
Material of Publication [3] (see the following Section 7.4), it can be calculated as

E(fpin) = E ′
1 ≈ −a

2
0

2

√
1 + 2ϵf 2

pin − 1

ϵ
, (7.11)

where ϵ = 6a20/5µ̃ is calculated from the original coupling strength gm. It is important
to note that if other approximations for E ′

1, which include the reduced peak height
apin, are used that they need to be evaluated for the reduced coupling strength geffm =
gm
√
fpin. The remaining Fermi-Dirac factors fn, with n ≥ N + 1, describe the non-

pinned continuum states and they are required to determine the chemical potential
µ(fpin). As they are not trapped by the matter-wave potential, their energies are well
approximated by the energy spectrum of the box potential with an additional energy
offset determined by the average density of the BEC. However, for better agreement
with the numerical results we usually also use numerically determined eigenvalues for
the continuum states. As shown in the supplemental material, the self-consistency
equation is also used to estimate the critical temperature of the transition.
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Figure 7.1: Self-consistency equation (7.10) for different temperatures and the same
parameters as Fig. 2 (a) in Ref. [3]. Below and above the transition temperature there
is only one solution (diamond mark) either in the pinned or thermal phase (blue and
yellow curves in the inset). Close to the transition, they can exist simultaneously with
one unphysical solution in between (red curve). At the critical point the unphysical
solution and the pinned solution become degenerate (black curve).

We can draw an interesting connection to another well-known phase transition by
defining m := 2fpin − 1 ∈ [−1, 1]. The self-consistency equation for the Fermi-Dirac
factors then reads

m := 2fpin − 1 = tanh [βJ(m)m] , where J(m) = −E(m)− µ(m)

2m
. (7.12)

It has the same form as the consistency equation determining the equilibrium mag-
netization in the mean-field Ising model [333]. The parameter J , which describes the
coupling strength between nearest neighbor spins in the Ising model, is a function of
the ‘magnetization’ itself in our case, reflecting the backaction present in our system. In
this form, also the structure of the solutions to the self-consistency equations, plotted
in Fig. 7.1, becomes more clear. Deep in either the pinned or the thermal phase there is
only one solution, while close to the transition there are three. One value of fpin > 2/3
in the pinned phase, one lower value for the thermal phase and one unphysical solution
in between. The transition is characterized by the point at which the pinned solution
and the unphysical solution become degenerate around fpin ≈ 2/3.
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7.3 Publication
The main results of this chapter are published in Reference [3]:

Tim Keller, Thomás Fogarty, and Thomas Busch
Self-Pinning Transition of a Tonks-Girardeau Gas in a Bose-Einstein Condensate

Physical Review Letters 128, 053401 (2022).
Editor’s Suggestion

I have derived all of the analytical results and performed all of the numerical simulations
presented in the publication as well as in the supplemental material and wrote a first
draft of the manuscript. All authors contributed to the discussion and interpretation
of the results and to the writing of the final version.

7.4 Supplemental Material
Publication [3] is accompanied by supplemental material with details concerning finite
size effects, the energy functional of the system, the spectrum of the Tonks-Girardeau
gas, and the derivation of the critical temperature for the pinning transition.

7.5 Experimental Considerations
Similar to the Feshbach engine in Chapter 4, we want to go beyond the scope of the
publication and explore the experimental requirements necessary to observe the self-
pinned state in a physical system. Its defining quantity is the inverse width respectively
peak height apin ∼ g2m/2gc of the bright solitonic wave function. In the following we
neglect the slight reduction in apin found in the actual ground state of the composite
system due to the depletion of the BEC (cf. Eq. (7.6)).

The one-dimensional interspecies interaction strength can be written as [38]

gm =
2πℏ2a12

µ

1

πd2⊥

(
1− C a12

d⊥

) ≈ 2ℏω⊥a12 , (7.13)

where C ≈ 1.46 is a constant, the 3D interspecies scattering length is denoted by a12
and we need to work with the reduced mass

µ =
mTGmBEC

mTG +mBEC

(7.14)

since physical realizations of the Tonks-Girardeau component and the BEC component
will likely have different masses mTG and mBEC respectively. The radial confinement
d⊥ =

√
ℏ/µω⊥ determines the degree of ‘1D-ness’ in the effectively one-dimensional

setting, see Section 1.6. In the following, we will use the approximate expression
gm ≈ 2ℏω⊥a12, which is enough to estimate orders of magnitude.

Analogously, for the BEC interaction strength we have gc ≈ 2ℏω⊥a11 with the BEC
intraspecies scattering length a11. In the following we give all scattering lengths in
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Table 7.1: Estimates for the experimental realization of the self-pinning transition.
The upper two rows use 87Rb as the Tonks-Girardeau species and 41K as the BEC
background. In the first one, a weak interspecies interaction and weak radial confine-
ment are assumed, while the second row uses larger values for both quantities. The
third row is for a realization with fermionic 40K as the TG species and 87Rb for the
BEC species. See text for details regarding the choice of values.

TG – BEC ã12 ã11 ν⊥ [103] α [108] apin [ 1
µm

] ∆x [µm] ∆E
2πℏ [Hz] Tcrit [nK]

87Rb – 41K 75 65 12.5 0.94 0.49 1.84 14 0.11

87Rb – 41K 163 65 70.7 25.14 13.16 0.07 10 064 80.5

40K – 87Rb −189 100.4 24 3.43 1.80 0.51 407 3.3

units of the Bohr radius a0 according to aij = ãija0, all masses in units of m = m̃mu

and we assume identical radial trapping for both species in units of ω⊥ = 2π × ν⊥ Hz.
This gives

apin =
g2m
2gc

mTG

ℏ2
=
ã212ν⊥m̃TG

ã11

2πHza0mu

ℏ
≈ 5.2354× α

109
µm−1 (7.15)

for the characterizing quantity of the system apin, where we have defined the dimen-
sionless parameter

α :=
ã212ν⊥m̃TG

ã11
. (7.16)

In the physical system, the strength of the pinning is therefore enhanced by large
interspecies scattering lengths ã12, strong radial confinement ν⊥, large mass mTG of
the immersed component as well as small BEC intraspecies scattering lengths ã11.
Using the bright solitonic wave function of the effective model for the calculation, this
means that a single pinned impurity has an extent on the order of

∆x =
π

apin
√
12

≈ 1.7322× 108

α
µm . (7.17)

The size of the energy gap in the pinned state is on the order of ∆E ∼ |E ′
1| [3] which

gives
∆E

2πℏ
=

ℏa2pin
4πmTG

≈ 1.3852× α2

1013m̃TG

Hz . (7.18)

Finally, a good estimate of the critical temperature is given by [3]

Tcrit ≈
∆E

6kB
≈ 1.1080× α2

1015m̃TG

nK . (7.19)

In Table 7.1 we calculate exemplary values using 87Rb as the TG species and 41K
as the background BEC. The mixture is found to be miscible up to a12 ≈ 75 a0 but
the system can also be studied at interspecies scattering lengths of e.g. a12 ≈ 163
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a0 [249, 250]. Varying the radial confinement between 12.5 kHz as in the realization
of the pinning transition in an optical lattice potential [230] and 70.7 kHz as in the
first realization of a 1D gas in the Tonks-Girardeau regime [334], we find a range of
resulting system parameters that seems to be favorable for experimental detection. In
an intermediate regime, the spatial extent of the pinned impurities is even resolvable
by optical means. However, for this mixture it is not clear how tuning the Rubidium
intraspecies scattering length from the BEC value of a22 ≈ 100 a0 [249] to the TG
value of a22 ≈ 261 a0 [230] affects the interspecies scattering length.

Another effect that needs to be taken into account is the reduction in intraspecies
interaction strength for both components caused by the attractive effective interaction
mediated via the immersion process. On the mean-field level and for balanced Bose-
Bose mixtures this effect can be estimated to be [27, 335]

aeffii = aii

(
1− mBECmTG

4µ2

a212
a11a22

)
. (7.20)

It is not clear if this effect is as pronounced in the heavily imbalanced mixture we are
studying, but using the numbers for the 87Rb – 41K mixture shows that these mediated
interactions can easily reduce the intraspecies interaction of the immersed component
from the Tonks-Girardeau regime back to regular BEC levels and even lead to an
effectively attractive intraspecies interaction, possibly resulting in a mediated collapse
similar to Ref. [291].

For this reason, it might be better to use a Bose-Fermi mixture instead, with the
fermionic component assuming the role of the TG gas. The atomic densities are iden-
tical according to the Bose-Fermi mapping theorem and since we are dealing with a
density-type coupling, the resulting physics should also be the same. However, the
signature of the self-pinning transition in the immersed components momentum distri-
bution (cf. Fig. (3) in Publication [3]) will likely be lost due to the different momentum
distributions in the bosonic and fermionic case.

The third row in Table 7.1 shows exemplary values for a mixture of fermionic
40K and bosonic 87Rb that can be realized in the lattice experiment of Prof. Tilman
Esslinger at ETH Zurich [269]. The large and attractive interspecies scattering length
ã12 ≈ −189 [336] is not only beneficial for observing a strongly pinned state but also
allows studying the system in inhomogeneous trapping potentials as the immersed
atoms are now attracted to the places of highest density in the trap center, instead of
being repelled towards the trap edges. Rubidium is considered at the usual value of
ã11 ≈ 100.4 [101] for the intraspecies scattering length. At ETH, the radial confinement
can be increased up to ν⊥ ≈ 50×103 [336], but already above the value of ν⊥ ≈ 24×103

shown in Table 7.1 the same order of magnitude for the energy gap of ∆E/2πℏ ≈ 400
Hz as in Ref. [230] for the pinning transition in a lattice can be achieved.

Overall, for both mixtures the rather low values of Tcrit might be problematic to
achieve, particularly in the fermionic case. Regarding the trapping potentials, a 3D
homogeneous Bose-Einstein condensates in a box potential was first realized in Ref.
[337] and particularly in one dimension, using digital micromirror devices, it is possible
to create nearly arbitrary potential landscapes for neutral cold atoms [338], including
the box potentials used in this chapter [339].
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7.6 Conclusion & Outlook
I have identified and characterized a novel self-pinning phase transition of a Tonks-
Girardeau gas immersed into a Bose-Einstein condensate from a superfluid state to
a gapped Mott insulator state, without the need for an externally imposed lattice
structure. I have developed an effective model that is able to accurately describe the
system in the pinned phase over a wide range of parameters, both if the TG gas is
at zero temperature and at finite temperature, where the pinned phase is unstable
against thermal fluctuations. Finally, I have shown that a signature of the transition
can be observed in the momentum distribution of the immersed component and that
the required parameter regimes are within reach of experimentally available Bose-Bose
and Bose-Fermi mixtures.

Regarding future work, the self-pinned state and its simple yet accurate description
in the effective model opens up a plethora of new research directions, addressed in the
following subsections. Obviously, since we have only considered equilibrium situations,
it would be interesting to study the dynamics of the system, following e.g. ramps or
quenches of both interspecies interaction and temperature, but also to study how the
pinned TG atoms interact, mediated by the BEC, after for example one or several of
them are given momentum kicks.

7.6.1 Phonons

Most importantly, the self-pinned state constitutes a periodic, crystal-like structure
that simultaneously supports phonon-like excitations due to the non-rigid nature of the
pinning lattice created in the BEC density. Phonons are a crucial feature of solid state
physics. Neutral atoms in optical lattice potentials are commonly used as quantum
simulators of such solid state systems, thanks to their high degree of controllability,
their accessible length and time scales as well as their purity [22–25]. But since optical
lattice potentials are infinitely stiff, it was not possible to also include collective phonon-
like excitations in such quantum simulations until now. Only last year, a realization
of an optical lattice with ‘sound’, i.e. phonons, was reported for a BEC coupled to an
optical cavity in Ref. [26]. The self-pinned state adds a new possibility for studying
phonon-like excitations in condensed matter simulators.

7.6.2 Symmetry Breaking & Supersolidity

Then, there are open questions in regard to the symmetry breaking mechanism of
the transition and also the question of supersolidity [340, 341] in the system. In the
publication, the self-pinning transition was seeded by the Friedel oscillations seen in
the TG gases density in a box for gm = 0 [342]. In the thermodynamic limit N → ∞,
while fixing the density N/L ≡ const., these oscillations disappear, but still the system
should be self-pinned as it allows the system to lower its energy. Similarly, if the Tonks-
Girardeau gas is studied on a 1D ring with periodic boundary conditions, the resulting
density in the non-interacting case is perfectly flat, even for finite N , but the same
energy argument holds. Therefore, it seems that there should be a continuous symmetry
being broken by the transition. Namely, the one with respect to the relative phase of
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the pinned state on the ring, while the atomic distribution should be equidistant, like
the one studied in the paper, for any relative phase from a simple entropy point of
view.

In the publication, we have studied the system in a heavily imbalanced regime
Nc ≫ N where the density modulation imprinted onto the BEC in the pinned state is
only on the order of a few percent of its homogeneous background and where the TG gas
atoms can be regarded as individual impurities, as the Thomas-Fermi approximation
used for our effective model works particularly well in that case. Therefore, while we
have a superfluid BEC with a crystal-like density modulation, the effect is probably
too small in order to rightfully call it a supersolid state. Nonetheless, this does not
exclude the possibility of observing a true supersolid state in other parameter regimes
of our system, similar to the ones predicted for Bose-Fermi mixtures [321].

In fact, the self-pinned state is reminiscent of the supersolid states observed in
one-dimensional dipolar BECs [343, 344] and the roton-like instability observed by
Miyakawa et al. in the spectral function of a 1D Bose-Fermi mixture [322] might already
hint towards the Higgs- and Goldstone-like nature of excitations in the system. Such
collective oscillations of the density modulation amplitude and the phase of the crystal
structure respectively, e.g. relative to its position on a ring, are a necessary condition
for the existence of a supersolid, as has been shown both theoretically [345–348] in
connection with aforementioned dipolar BECs and also experimentally [349–352].

A helpful tool for answering these questions might be the stochastic projected Gross-
Pitaevskii equation (SPGPE) mentioned already in the outlook of Chapter 4 as a way
of introducing a natural symmetry-breaking mechanism. Furthermore, the ‘mean-field
Tonks-Girardeau’ model introduced by Kolomeisky et al. in Ref. [353] might be useful
for studying larger system sizes beyond numerical tractability. It does not reproduce
the right coherence and energy of the system, but gives the correct density, which is
the quantity we need for the coupling term. It seems that the |ϕ|4 term appearing in
this model, when incorporated into our effective nonlinear model for the pinned state,
leads to a quantum droplet type equation just with one order of magnitude higher
in ϕ compared to the |ϕ|3 appearing in the Lee-Huang-Yuang correction [282, 354].
This might explain the self-stabilizing nature of the pinned state. Furthermore, very
recently Settino and coworkers presented a method for the exact calculation of the
Tonks-Girardeau gases spectral function in Ref. [355]. Observing a roton minimum-
like structure (see Fig. 1.2) in the spectral function, particularly around a wave vector
k ≈ 2kF, might provide evidence both for the Peierls nature of the transition and for
the question of supersolidity [356].

7.6.3 Quantum Magnetism & FFLO Superconductor

Going beyond the setup presented here, by adding a second immersed component, for
example with the opposite sign of the coupling strength gm as illustrated in Fig. 7.2, it
might be possible to study another important topic in quantum simulation, which is the
realization of quantum magnetism with cold atoms. First experiments were successful
using Fermi gases [357], ion chains [358, 359] and Bose gases in tilted optical lattices
[360]. By shaking the lattice potential, it is possible to create artificial gauge fields
that have the same effect on the neutral atoms as an external magnetic field has on
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Figure 7.2: A possible realization of quantum magnetism akin to an antiferromagnetic
spin chain by immersing a second TG gas into the BEC. An alternating pattern made
from atoms of both immersed species emerges. In total we have N↑ = 7 atoms of species
1 and N↓ = 6 atoms of species 2. They are interacting with the BEC with equal but
opposite coupling strengths g↑m = 2 and g↓m = −2. The only interaction between TG
species is the one mediated via the BEC. Other parameters are µ0 = 200 and gc = 1.

charged particles [361]. More recent proposals include the realization of a variety of
spin models such as the XYZ model with bosons carrying orbital angular momentum
[362]. Furthermore, there have also been proposals showing that strongly-interacting
multicomponent gases in 1D constitute a spin-chain model that allows one to realize
quantum magnetism without a lattice potential [363–365], similar to our case, and this
has already been used to experimentally observe a small antiferromagnetic Heisenberg
chain [366].

Having a second immersed component might also allow studying a peculiar super-
conducting phase known in condensed matter physics as FFLO or Fulde-Ferrell-Larkin-
Ovchinnikov state, see e.g. Ref. [367] for a review. In the Bardeen-Cooper-Schrieffer
theory of superconductivity, the phenomenon is explained by the formation of Cooper
pairs of opposite spin and momentum, whose total momentum vanishes, resulting in
a homogeneous spin density. In 1964, Fulde and Ferrell [368] as well as Larkin and
Ovchinnikov [369] pointed out that in the presence of a magnetic field also supercon-
ducting states made of pairs with non-vanishing total quasi-momentum q are possible.
These FFLO states are characterized by a modulation of the spin density ∼ cos(q · r).
After a decades-long search by many research groups, Kinjo et al. reported the first
measurement of a spin density modulation in strontium ruthenate as a direct evidence
of the long-sought FFLO state in April 2022 [370].

Furthermore, Singh and Orso already showed in Ref. [371] how immersing spin-
imbalanced fermions in the FFLO state into a bosonic system enhances the visibility of
the FFLO state while inducing density modulations in the bosonic background, similar
to our case.





Chapter 8

Fermionization of a One-Dimensional
Bose Gas Immersed into a BEC

In this chapter I study the self-pinning transition away from the Tonks-Girardeau limit
for finite intraspecies repulsion. The results will be available as an arXiv preprint
shortly and it is planned to submit it for publication to SciPost Physics.

8.1 Introduction
The phase transitions introduced in this thesis so far have been continuous or second-
order transitions. First-order or discontinuous transitions are a lot less common in
cold atomic systems. Such transitions are characterized by metastable states in which
a system can remain even after crossing the transition [372] and there is a growing
interest in the form of proposals for cold atom quantum simulators of the early universe
[373, 374], which might be able to investigate the ‘fate of the false vacuum’ [375], i.e.
the decay from a metastable state to the true ground state. Metastable states also give
rise to hysteresis and these effects associated with discontinuous phase transitions have
already been observed in cold atom experiments, for example for an ultracold atomic
gas in a double-well potential [376], in spinor BECs [377] and in a driven 1D optical
lattice [378].

Similar to the one-dimensional Bose-Fermi mixtures introduced in the previous
chapter, 1D Bose-Bose mixtures have also seen considerable interest, in particular over
the past twenty years, and detailed reviews can be found in Refs. [87, 284]. Associating
a ‘pseudo-spin’ 1

2
with such systems, representing the two components, it has been

shown that they can support spin-waves [379, 380] and also develop a spontaneous
population imbalance, an equivalent of ferromagnetism [381, 382], which is suppressed
at finite temperatures [383]. Eisenberg and Lieb showed that in general the ground-
state of such interacting bosons with spin is always fully polarized, i.e. ferromagnetic
[384]. Furthermore, they can be used to demonstrate a hallmark effect in 1D electronic
systems, which is the separation of single-particle spin and charge exciations into two
distinct collective branches as a result of the dimensionality [385].

The Luttinger liquid approach predicts the same phenomena of collapse or pairing
for attractive intercomponent interactions as in 1D Bose-Fermi mixtures, depending on

91
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the density regime and intracomponent interactions [309, 386], while for repulsive in-
tercomponent interactions the same miscibility criterion as in the 3D case (see Section
6.2) determines the regime of phase separation [284]. Furthermore, exact solutions have
been found for a 1D Bose-Bose mixture on a ring with equal densities and identical
intraspecies and interspecies interaction strengths [387] and similar to Bose-Fermi mix-
tures, a supersolid state was also predicted for weak interspecies but nearly hard-core
intraspecies repulsion in a balanced, harmonically trapped Bose mixture with densities
incommensurate with the additional lattice potential [388].

In the few-atom regime, a repulsive binary Bose mixture is characterized by six
different limiting cases of either vanishing (‘BEC limit’) or infinite (‘TG limit’) inter-
actions [389]. Next to a phase separated state and the different combinations of BEC
and TG limit, there are also the ‘composite fermionization’ regime [390] (gii → 0,
gij → ∞) and ‘full fermionization’ (gii, gij → ∞), i.e. a single-component Fermi gas
equivalent. Finally, more recent developments include the extension of the famous
droplets in 3D Bose-Bose mixtures, stabilized purely by quantum fluctuations, to the
one-dimensional case both at zero temperature [391, 392], in the presence of spin-orbit
coupling [393], and at finite temperature [394]. There, the self-bound droplets are also
predicted to have a bright solitonic shape, similar to the states found in our system
[395]. Particularly, for imbalanced mixtures like the one studied in this chapter, similar
structures in the form of composite ‘bright-gray’ solitons [396] or double domain-wall
solitons [397] have been predicted.

In this chapter I first briefly introduce the model, which is identical to the previous
chapter, but now studied away from the Tonks-Girardeau limit for finite intraspecies
interactions 0 < g < ∞. In this case the immersed component can persist in a
superfluid state, separated from the pinned state by a first-order phase transition,
and I expand the effective model to capture this behavior, while comparing it to the
numerical results for the energy and density. I numerically map out the phase diagrams
for N = 2 and N = 3 atoms in the immersed component as a function of their coherence
and derive an analytical approximation to the phase transition line before concluding
the chapter with an outlook to future work.

8.2 Model
Similar to the previous chapter, we consider a strongly imbalanced two-component
quantum gas in a quasi-one-dimensional setting. The majority component is given
by a Bose-Einstein condensate of Nc particles, described in the mean-field limit by a
macroscopic wave function ψ(x). The minority component immersed into the BEC
consists of N ≪ Nc particles described by a full many-particle wave function Φ(x =
x1, x2, . . . , xN). The system is studied at zero temperature and therefore we can de-
scribe all interactions by point-like pseudo-potentials that only depend on the inter-
species and intraspecies scattering lengths. We model the interactions between the
two components by a simple density coupling, which is valid when the interspecies
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interaction is assumed to be weak. This leads to the coupled Schrödinger equations

iψ̇(x) =

[
−1

2

∂2

∂x2
+ gm|Φ|2 + gc|ψ|2

]
ψ(x), (8.1a)

iΦ̇(x) =

[
N∑
l=1

−1

2

∂2

∂x2l
+ gm|ψ|2 + g

N∑
k<l

δ(|xk − xl|)
]
Φ(x), (8.1b)

where for simplicity we have set ℏ and all masses equal to one. The main difference
to Chapter 7 is the finite intraspecies repulsion 0 < g < ∞, in contrast to the Tonks-
Girardeau limit g → ∞ considered there. As a result, the line density of the immersed
component is now calculated by tracing out all but one atom from the full many-particle
wave function

ρ(x) ≡ |Φ(x)|2 =
∫
dx2 . . . dxN |Φ(x, x2, . . . , xN)|2 . (8.2)

The intraspecies interaction strengths in the minority and majority component are
labeled g and gc respectively and gm describes the interspecies coupling strength. The
condensate is assumed to be in free space with an average density nc ≡ Nc/Lc = µ0/gc,
whereas the immersed component is confined to a box potential of width L with V (x) ≡
0 for |x| ≤ L/2 and V (x) ≡ ∞ otherwise.

8.3 Superfluid State
While in the Tonks-Girardeau limit the system is pinned for arbitrarily weak inter-
actions with the background BEC, for finite intraspecies interaction strengths g the
immersed gas can also exist in a superfluid state. In this section we study how the
system transitions from the superfluid to the pinned state as a function of g. In this
case, numerically solving the coupled Eqs. (8.1) for more than a few atoms in the
immersed component becomes challenging and we therefore restrict our consideration
to the case of N = 2 and N = 3 immersed particles. Both the BEC wave function and
the many-body wave function for the immersed component are evolved in imaginary
time using the Fourier split-step method as described in Chapter 2. They need to be
evolved in an alternating, self-consistent fashion until the ground state of the coupled
system is reached within numerical accuracy.

In the limit of vanishing intraspecies interaction g → 0, the situation is equivalent
to having a single immersed atom in the pinned state but with the bright soliton
comprised of N atoms. Therefore, we can describe the superfluid state in this case by

ρsf(x) = N
asf
2

1

cosh2 (asfx)
, (8.3)

where the peak height asf is obtained by replacing a0 → Na0 at all occurrences in Eq.
(7.6) according to

asf = Na0

√
1 + 2N2ϵ− 1

N2ϵ
. (8.4)
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Figure 8.1: Renormalized minority component density ρ(x) as a function of the in-
traspecies interaction strength g for a system of (a) N = 2 and (b) N = 3 particles
at fixed interspecies interaction strength gm = 2 and density N/L = 1/4. The corre-
sponding line densities in the superfluid state at g = 0 (green line) and right before the
transition (red lines) at gcrit = 24.9 and gcrit = 14.2 are shown to scale in (c) and (d)
respectively. The yellow lines show the density in the pinned state for g > gcrit. The
black dash-dotted and dashed lines show the analytical model according to Eqs. (8.3)
and (7.8) respectively. Other parameters are µ0 = 103 (N = 2), µ0 =

2
3
× 103 (N = 3)

and gc = 1.

Fig. 8.1 shows the minority component density at a fixed interspecies coupling gm =
2, renormalized to its respective maximum at each point for clarity, for increasing
intraspecies interaction g for bothN = 2 (a) andN = 3 (b). Starting from line densities
at g = 0 that are well described by Eq. (8.3), as can be seen in panels (c) and (d), the
densities begin to split in separate branches according to the number of particles and
start forming depletions caused by the intraspecies repulsion. As expected, this occurs
at comparatively lower values of g for N = 3 particles than for N = 2 particles. The
plots show the regime between g = 0 and gcrit = 24.9 (N = 2) and gcrit = 14.2 (N = 3)
where the transition occurs and the pinned state becomes energetically favorable in
both cases. Panels (c) and (d) also show the densities right before and after the
transition. The logarithmic scale used in the plots nicely demonstrates the difference
between the coherent superfluid state and the insulating pinned state.

In order to obtain an approximation to the many-body wave function for finite
g > 0, we use perturbation theory to calculate the contribution of the intraspecies
interaction to the total energy. We assume a separable wave function

Φ(x) =
√
N

N∏
n=1

√
asf
2

1

cosh (asfxn)
(8.5)
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and calculate the expectation value of this mean-field wave function according to

Vintra = g

N∑
k<l

⟨Φ(x) |δ(|xk − xl|)|Φ(x)⟩
⟨Φ(x)|Φ(x)⟩ =

N

2
(N − 1) g

a2sf
4

∫
dx

1

cosh4(asfx)

= N (N − 1) g
asf
6
. (8.6)

The total system energy in the superfluid state then reads

Esf = N

[
g2m

30µ̃gc
Na3sf +

a2sf
6

− g2m
6gc

Nasf + (N − 1) g
asf
6

]
+
µ̃2Lc

2gc
, (8.7)

where the bright soliton parameter asf minimizing the energy for finite g > 0 is now
modified to

asf =− 5µ̃

3

gc
Ng2m

+

√
5µ̃

3

[
1− gcg

g2m

(
1− 1

N

)]
+

25µ̃2

9

g2c
N2g4m

=Na0

√
1 + 2N2ϵ

[
1− gcg

g2m

(
1− 1

N

)]
− 1

N2ϵ
, (8.8)

but using the same parameter ϵ = 6a20/5µ̃ as before. This approximation only works,
i.e. gives a valid inverse width asf > 0, for g < g∗ = Ng2m

(N−1)gc
.

Fig. 8.2 shows the energy per particle for increasing intraspecies interaction g at
fixed interspecies coupling gm = 2 (a) and gm = 3 (b). For small values of g, the
numerical values agree very well with the analytical model, both for N = 2 and N = 3,
before starting to deviate and very slowly approaching the energy of the pinned state
in which the energy is independent of g. As expected, the intraspecies repulsion in the
bigger system of N = 3 is comparatively larger and leads to a lower value of g at which
the system crosses the transition to the pinned state. The insets show a close-up of the
phase transition point with the colored dotted lines indicating the energy of the then
metastable superfluid state if g is increased beyond the transition point.

Interestingly, the matter-wave trapping potential created by the background BEC
enables a first-order phase transition in which the immersed component actually reaches
the asymptotic state predicted in the Tonks-Girardeau limit g → ∞. This is in con-
trast to the fermionization process in static trapping potentials, where the system
only asymptotically approaches the corresponding energy level from below, but never
reaches it, as can be seen e.g. for the situation of two harmonically trapped atoms
in Fig. 2.1 (a) in Chapter 2. This behavior is also reminiscent of the discontinuous
nature of the 1D superfluid-supersolid phase transition in dipolar condensates in the
low-density limited observed in numerical simulations [348] and recently confirmed ex-
perimentally [398]. In the thermodynamic limit however, the transition is predicted to
be continuous in 1D systems and discontinuous in the 2D case [399].

The insets of Fig. 8.2 (a) show that the numerically determined energy of the
pinned state is slightly larger than the analytical dashed line. This is due to the fact
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Figure 8.2: Energy per particle, adjusted for EBEC = µ̃2Lc

2gc
as a function of the

intraspecies interaction strength g for a system of N = 2 (blue line) and N = 3 (green
line) particles at fixed interspecies interaction strength gm = 2 (a) and gm = 3 (b)
and density N/L = 1/4. The dashed line shows the analytical value for the pinned
state energy Epin = −0.6656 (a) and Epin = −3.3482 (b) for N = 2 while the dashed-
dotted lines show the energy per particle calculated from Eq. (8.7). The inset shows a
zoom of the phase transition point. The colored dotted lines indicate the energy of the
metastable superfluid state if g is increased beyond the transition point. The difference
in background density of the BEC of µ0 = 103 (N = 2) and µ0 =

2
3
×103 (N = 3) leads

to the slight difference in Epin visible in the insets. In both cases gc = 1.
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that we are numerically limited to studying a finite system and that for small values of
gm the resulting pinned states are also only weakly localized. The wave function of the
immersed component is influenced by the box potential edges in that case, lifting the
energy of the state in return. In contrast, for larger values of gm like in panel (b), the
immersed particles are localized stronger, therefore not experiencing an influence of the
system boundaries anymore, and the numerical values lie slightly below the analytical
dashed line as expected from using the closed expression in Eq. (7.6) compared to
minimizing the complete energy functional.

In order to minimize these numerical finite size effects onto the results, we determine
the phase transition point from the value of g for which the numerically obtained
energies of the superfluid state intersect with the analytically determined value for
the pinned state, i.e. Enum

sf = Eana
pin . As can be seen in the insets of Fig. 8.2, this has

essentially no effect for larger values of gm, however it is necessary to obtain a clean
and coherent phase transition line in the region of small gm, where these finite size
effects play a role as shown in the next section.

8.4 Phase Diagram
In order to distinguish the superfluid from the pinned phase and map out the phase
diagram of the system, we calculate the coherence C = (maxn λn)/N of the immersed
component. It characterizes the off-diagonal long-range order [55, 400, 401] and it
is defined as the largest eigenvalue λn of the reduced single particle density matrix
(RSPDM) divided by N , obtained from

ρ(x, x′) =

∫
dx2 . . . dxNΦ

∗(x, x2, . . . , xN)Φ(x
′, x2, . . . , xN) =

∑
n

λnφ
∗
n(x)φn(x

′) ,

(8.9)
with the natural orbitals φn(x). For the coherent superfluid state we have C → 1,
while in the pinned state we have C → 1/N , as shown in Fig. 8.3 for fixed density
N/L = 1/4 as a function of intraspecies repulsion g for fixed gm = 2. One can see
that for the larger system size the coherence drops off faster and the transition to the
pinned state occurs at a smaller value of g due to the increased repulsion between the
particles in the superfluid state. We adopt this slightly unconventional definition of
additionally dividing by N for easier comparisons between different particle numbers.
It is important to keep in mind that, as we have seen in Subsection 1.5.1, for the
Tonks-Girardeau gas λn ∼

√
N as g → ∞. Therefore, with this definition even in

what we call the superfluid state in the non-interacting case gm = 0 we would have
C → 1/

√
N → 0 in the thermodynamic limit, but for the finite systems studied here

this is not a concern.
In Fig. 8.4 we show the full phase diagram in terms of the coherence for a system of

N = 2 (a) and N = 3 (b) immersed particles for fixed density N/L = 1/4 as a function
of both intraspecies interaction strength g and interspecies interaction strength gm.
In general, for fixed intraspecies interaction g the system transitions from the pinned
insulating state to the coherent superfluid state if the interspecies interaction strength
|gm| is increased until it can counteract the intrinsic repulsion of the immersed compo-
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Figure 8.3: Coherence C as a function of the intraspecies interaction strength g for
a system of N = 2 (blue line) and N = 3 (green line) particles at fixed interspecies
interaction strength gm = 2 and density N/L = 1/4. Other parameters are µ0 = 103

(N = 2), µ0 =
2
3
× 103 (N = 3) and gc = 1.

nent. Similarly, for fixed interspecies coupling the system transitions from superfluid to
pinned if the intraspecies repulsion g is increased. This means that for the self-pinning
transition the system behaves contrarily to the pinning transition in an external lattice
potential, where for finite values of g the system is pinned for deep lattices but remains
superfluid in shallow ones [229, 230].

For small values of |gm| ≲ 1.5 the phase diagrams both exhibit areas in the pinned
region with C > 1/N since the finite system size does not allow for the full separation
of the particles in such weakly pinned states. In this region, the finite system size also
affects the numerically obtained values of the energy in the pinned state as detailed in
the previous section and shown in the insets of Fig. 8.2. Therefore, in order to obtain a
clean and coherent phase transition line in this region, we have determined the critical
lines in both phase diagrams by checking where the numerically obtained ground state
energy in the superfluid state matches the analytical value of Epin according to Eq.
(7.7). The resulting deviation from the ‘true’ transition line is only marginal and
quantitative in nature and should not be noticeable on the parameter scale shown in
Fig. 8.4.

In general, the phase diagrams are symmetric with respect to the sign of the coupling
parameter gm, as was the case in the previous Chapter 7. This is a result of the
homogeneous BEC density and is also reflected in the fact that our effective model
only depends on g2m. For an inhomogeneous background gas the phase diagrams are
not symmetric in general, as only attractive couplings gm < 0 might lead to a stable
trapped state while repulsive couplings gm > 0 commonly result in phase separation in
that case.

In order to obtain an estimate for the phase transition line, we consider the limit
µ̃ → ∞ resp. ϵ → 0 in which we can neglect the energetic cost of deforming the BEC
in Eqs. (7.7) and (8.7). In that case we have

apin (ϵ→ 0) = a0 and asf (ϵ→ 0) = Na0 −
g

2
(N − 1) (8.10)
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Figure 8.4: Phase diagram of the system for (a) N = 2 and (b) N = 3 as a function of
intraspecies interaction g and interspecies interaction gm for fixed density N/L = 1/4,
exhibiting both a superfluid (sf) and pinned (pin) state of the immersed component.
The colormap shows the value of the coherence C while the dashed line indicates
g2m = gcg. The shaded area between |gm| ≲ 1.5 with C > 1/N is a result of the finite
system size (see text for details). Other parameters are µ0 = 103 (N = 2), µ0 =
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×103

(N = 3) and gc = 1.

and the energy of the pinned state reduces to Epin (ϵ→ 0) = −Na20/6, while the energy
of the superfluid state becomes

Esf (ϵ→ 0) = N
a2sf
6

− a0
3

[
1−

(
1− 1

N

)
g

2a0

]
N2asf . (8.11)

It is now easy to check that by choosing

g = 2a0 =
g2m
gc

(8.12)

we further have that also asf (ϵ→ 0, g = 2a0) = a0 and that at this point the energies
of the superfluid and pinned state are identical, Esf = Epin, indicating the point where
the phase transition occurs. Rewriting the above choice of g as

gcritm = ±√
gcg (8.13)

shows that the criterion coincides with the miscibility criterion for a 3D two-component
BEC [27] and also with a stability criterion for a Bose-Bose mixture derived by Cazalilla
and Ho in the Luttinger liquid framework [309]. Remarkably, Eq. (8.13) does not
depend on the number of particles N and Fig. 8.2 shows that the intersection point
of the analytic curves for Esf and Epin agrees very well with the predicted values of
gcrit = 4 for gm = 2 [see Panel (a)] and gcrit = 9 for gm = 3 [see Panel (b)] with gc = 1
in both cases. Even for the largest values of |gm| = 5 and correspondingly the largest
values of ϵ considered in this thesis, the actual intersection point for the model curves
differs less than 5% from the analytical criterion, i.e. gcrit(|gm| = 5) ≈ 24 < 25 = g2m.
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Eq. (8.13) is also shown as a dashed line in both phase diagrams in Fig. 8.4. In the
N = 2 case it underestimates the observed numerical value of gcrit by a large amount,
since the density of the immersed component [see Fig. 8.1 (a)] quickly starts to deviate
from the ansatz we use to calculate the energy contribution from the intraspecies
repulsion. For N = 3 the behavior is similar in the region of small gm and small g.
However, for g ≳ 15 a distinct shoulder appears in the phase transition line, drawing it
closer to the analytical estimate. In this region, the larger interspecies coupling leads
to a strong localization of the immersed component and the formation of the density
modulation due to the intraspecies repulsion, visible in Fig. 8.1, is suppressed. In other
words, the transition occurs while the line density is still well described by our bright
solitonic ansatz.

We expect that in the thermodynamic limit N → ∞ the phase transition line will
converge to our analytical estimate in the region of small gm. For larger gm, the effect
of ϵ > 0, which we have neglected in the derivation, becomes relevant, leading to a
transition from superfluid to pinned at weaker intraspecies repulsion than predicted.
This is also in line with and even necessary for our observation in Ref. [3] that in the
Tonks-Girardeau limit g → ∞ only the pinned state exists, as the BEC is not able to
compress the fermionized bosons for any value of the interaction strength gm.

8.5 Conclusion & Outlook
I have studied how a small, initially superfluid, one-dimensional Bose gas immersed
into a Bose-Einstein condensate fermionizes as a function of increasing intraspecies re-
pulsion g and eventually reaches the insulating self-pinned state expected in the Tonks-
Girardeau limit g → ∞. In contrast to static trapping potentials, this asymptotic state
is actually crossed and not just approached from below, leading to a first-order phase
transition as a result of the matter-wave backaction. I have confirmed this behavior
by numerically simulating the system for N = 2 and N = 3 immersed particles and
calculating its densities, energy and coherence. I have extended the effective model
presented in Chapter 7 to the superfluid state and used it to derive a phase transition
line valid in the mean-field limit N → ∞ and ϵ → 0, i.e. Nc → ∞. Finally, I have
mapped out the phase diagram as a function of interspecies and intraspecies couplings
with extensive simulations for the aforementioned N = 2 and N = 3 cases. This
work will be available as an arXiv preprint shortly and it is planned to submit it for
publication to SciPost Physics.

Regarding future work, it would be interesting to probe the dynamics of the system
by quenching or ramping either of intraspecies or interspecies interaction strengths
across the phase transition lines. Furthermore, it would be beneficial to study the
system for a larger number of immersed particles N in order to put the effective model
to the test and also to extend the phase diagram to finite temperatures by studying
the stability of the superfluid phase against thermal excitations, similar to the previous
chapter. Already calculating the phase diagram for N = 3 particles with the Fourier
split-step method using Ngrid = 512 position grid points at the resolution in g and gm
presented in Fig. 8.4 (b) required on the order of 106 CPU hours, despite numerous
optimizations. Larger systems therefore need to be studied by alternative techniques
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such as world-line [402, 403] or diffusion [404, 405] Monte-Carlo methods or the density-
matrix renormalization group (DMRG) [406] and particularly its continuum extension
[407]. All of these techniques are also able to cover the finite temperature case and
specifically the diffusion Monte-Carlo technique has already been used for studying 1D
droplets in binary Bose mixtures [408, 409].





Conclusion

In this thesis, I have investigated how to control the properties of interacting quantum
gases by tuning their interaction strengths. I have studied both the direct control
of the volume of a single-species quantum gas via shortcuts to adiabaticity and the
indirect control of superfluidity in a one-dimensional quantum gas by immersing it into
a second component. The study of shortcuts also led to a separate finding in the field
of quantum metrology.

My work has resulted in three papers published in peer-reviewed journals and one
manuscript that is about to be submitted for publication. They are at the basis of
Chapters 4, 5, 7 and 8 embedded in this thesis and I will briefly summarize them again
in the following. For future directions pertinent to the different topics, the reader is
referred to the respective outlook of each chapter.

Chapter 4: Feshbach engine in the Thomas-Fermi regime

I have exactly solved the dynamics of a Bose-Einstein condensate subject to a particular
interaction ramp in the repulsive Thomas-Fermi regime via a scaling ansatz. This ramp
constitutes a shortcut to adiabaticity for changing the condensate volume in a lossless
fashion and I have shown how it enables to boost the performance of a Feshbach
engine if used for the adiabatic strokes in its Otto-like cycle. Simulating the full
system dynamics revealed a condensate collapse for short interaction ramps caused by
a modulational instability and using a stability analysis I derived an accurate expression
for the minimal ramp duration. This work has been published in Phys. Rev. Research
2, 033335 (2020).

Chapter 5: Adiabatic critical quantum metrology cannot reach
the Heisenberg limit even when shortcuts to adiabaticity are
applied

I have derived a shortcut to adiabaticity for the quantum Rabi model in the Schrieffer-
Wolff approximation and showed how it can be expressed in a local counterdiabatic
form. My coworkers and I have used this shortcut as an example to demonstrate that
in general no unitary transformation, including shortcuts to adiabaticity, can be used
to reach the Heisenberg limit of precision in critical quantum metrology. This work
has been published in Quantum 5, 489 (2021).

103



104 Conclusion

Chapter 7: Self-Pinning Transition of a Tonks-Girardeau Gas in
a Bose-Einstein Condensate

I have described a novel self-pinning phase transition in a one-dimensional two-compo–
nent system, in which a strongly correlated Tonks-Girardeau gas immersed into a
Bose-Einstein condensate forms a crystal-like Mott insulating state without an exter-
nal lattice potential. I have accurately described this state with an effective model
valid in a wide range of parameters and even if the immersed component has a finite
temperature. I have derived an expression for the critical temperature beyond which
thermal fluctuations destroy the pinned phase and confirmed its validity with a numer-
ical calculation of the phase diagram. The transition can be observed in experimentally
accessible observables as I have shown by calculating the momentum distribution of
the immersed component. This work has been published in Phys. Rev. Lett. 128,
053401 (2022) and was highlighted as an ‘Editor’s Suggestion’.

Chapter 8: Fermionization of a One-Dimensional Bose Gas Im-
mersed into a BEC

I have extended the work on the self-pinning transition to the finite intraspecies cou-
pling regime away from the Tonks-Girardeau limit. I have adapted the effective model
to include the superfluid state that can persist in the immersed component if the inter-
species coupling is able to overcome its intraspecies repulsion. I have shown that the
immersed component fermionizes accompanied by a first-order phase transition from
a superfluid to the insulating self-pinned state, in contrast to the asymptotic Tonks-
Girardeau limit reached in static trapping potentials. I have numerically simulated this
behavior for the tractable case of two and three immersed atoms and mapped out the
phase diagram as a function of interspecies and intraspecies couplings in these cases.
This work is planned to be submitted for publication to SciPost Physics and will be
available as an arXiv preprint shortly.
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