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Abstract

Being able to model stable states of elastic ribbons can be beneficial for understand-
ing various natural phenomena in physics, biology and chemistry. Ribbons also find
their application in engineering. However, identifying stable state of an unstretchable
elastic ribbon is a hard task. When modeling a material that bends easily but can-
not extend or contract much without tearing or creasing as a two-dimensional elastic
body, its resistance to elongation and contraction can be incorporated considering only
deformations under which the distances between material points are preserved. The
primary objective of this thesis is to develop numerical methods for finding stable equi-
libria of an unstretchable two-dimensional elastic material bent so that its short edges
are joined, with or without twist, to form a closed band. For certain parametrizations
of the reference and deformed surfaces, a dimension reduction converts the problem
to one involving a system of ordinary differential equations for a pair of vector fields
satisfying certain constraints that derive from the requirement that the material be
unstretchable and periodicity or antiperiodicity conditions that incorporate the way in
which the short edges of the strip are joined. We discretize this problem to obtain a
multi-dimensional constrained optimization problem that is solved numerically. To in-
corporate the discrete isometry constraints, we use Lagrange multipliers approach and
minimize an accordingly augmented version of the bending energy. Additionally, we
introduce an alternative constraint to ensure that the deformation is injective. The new
constraint is bilateral and obviates the need to impose inequality constraints, removes
a certain singular feature of the energy density and circumvents symmetry assumptions
that have been imposed in all previous studies of this kind.
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Introduction

We can find ribbons in various phenomena in nature. Koens and Lauga [2] while
studying ribbons behaviour in viscous fluid, provide a good overview of examples of
ribbons in nature. They discuss examples both in flora [3] and fauna [4, 5] as well as
on the microscopic level of life [6]. Additionally, the shape of classical Möbius band
obtained from a strip by twisting and connecting its short edges is of interest because
of the diverse range of applications. Some single crystals can be formed in the shape of
Möbus band [7]. The eigenstates of a particle confined to Möbius topology were found
to have some curvature effects [8] and a superconducting Möbius band positioned in
a magnetic field were predicted to produce new states. Thus, algorithms for finding
equilibrium states of Möbius bands as well as other ribbons have practical interest.

The classical theory of ribbons, developed by Sadowsky and Wunderlich, has re-
cently received renewed attention. Around a hundred years ago, Sadowsky [9, 10]
mathematically posed a problem of finding equilibrium shapes of an unstretchable
elastic Möbius band. In this work, he derived a bending energy functional for the spe-
cial case when the strip has infinitesimal width. Later Wunderlich [11, 12] derived the
bending energy functional for all band widths. In 2007 Starostin and van der Heijden
[13, 14] published studies where they provide a shape of unstretchable elastic Möbius
band. However, there are significant limitations in their approach. First, the authors
do not explicitly consider the deformation and thus it is unclear if the isometry con-
straint (the surface distance between any two material points is preserved under the
deformation) is properly taken care of. Second, only symmetric solutions are consid-
ered a priori. Also, no analysis is done on the stability of the obtained equilibria.
However, for any practical application only stable configurations are of interest as only
those will keep their shape. In 2016 Moore and Healey [15] presented approach of
an equilibrium configuration for the complete unsupported Möbius strip and assessing
the stability of flip-symmetric configurations. Only symmetric variations are consid-
ered for the stability analysis. Additionally, only very limited range of narrow bands
are studied due to numerical challenges. A rigorous treatment of unstretchable elastic
material surfaces has been developed by Chen, Fosdick and Fried [16], where for the
first time equilibrium conditions were derived using variational principles. These equi-
librium conditions are derived without approximation and represent boundary-value
problems for finding the shape of the surface, a symmetric second-order tensor-valued
Lagrange multiplier field (which admits a representation as a symmetric 2× 2 matrix),
and a scalar-valued Lagrange multiplier field. A dimensionally reduced optimization
problem for finding equilibrium shapes based on ruled parametrization of the reference
and deformed surfaces is derived by Seguin et al. [17]. In this study, we provide a
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2 Introduction

Figure 1: Cylindrical ring and the partially everted cylinder that was obtained by
deforming the cylindrical ring.

modification to this optimization problem that removes the singularities of the energy
functional and makes the development of numerical approaches more straightforward.

Another motivation for this thesis is that there are configurations for elastic bands
that have never been studied in the literature. For example, a right-circular cylindrical
ring (left in Figure 1) is a global minimum for an unstretchable elastic band with
circular topology. However, there is another supposedly stable configuration for bands
with cylindrical topology that can be obtained from a cylindrical band made of paper.
We call this configuration a partially everted cylinder (right in Figure 1). As we are
interested in studying the deformation from a right-circular cylindrical ring to the
partially everted cylinder, we chose the reference configuration to be the right-circular
cylindrical shape. This allows us to avoid the change of topology and the necessity
to deal with gluing conditions that are unavoidable consequences of working with a
rectangular reference configuration. However, the results present in Section 1.3 can be
also applied, with slight modification, to the optimization problem with rectangular
strip reference configuration as in Seguin et al. [17].

In Chapter 1, we derive the continuous optimization problem. We require that any
point in space can be occupied by at most one material point. Thus, we consider an
injective isometric deformation χ of a two-dimensional homogeneous and isotropic solid
identified with a right-circular cylindrical reference configuration D into a band that
occupies the surface S in three-dimensional Euclidean point space. We assume that
no loads are applied neither to the surface S itself, nor to the edge ∂S of S. Following
Sadowsky [9, 10], we assume that the energy stored, per unit area, in deforming D to
S is proportional to the square of the mean curvature H of S. To obtain the equilibria
of unstretchable elastic bands, we thus seek solutions of the problem

min
χ

∫
S
H2ds subject to (∇χ)T∇χ = ID,

where ID is the (surface) identity tensor on D.
One of the fundamental requirements for the deformation χ is that it must be

injective. As it is hard to globally ensure the injectivity, Starostin and van der Hei-
jden [13, 14], Moore and Healey [15], Seguin et al. [17] introduce a local injectivity
constraint that is acceptable as long as there is no self-contact of the surface. However,
the need to fulfill this constraint makes numerical implementation more complicated.
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One problem is that the local injectivity constraint used in these works is unilateral and
requires special treatment such as the active set method [18]. But more importantly,
when the constraint is active, the energy density is hard to compute numerically as it
contains an unbounded multiplier. Previously, Starostin and van der Heijden [13] and
Moore and Healey [15] assumed symmetry of the solution that helped them to stabilize
the numerics. However, this assumption is a significant limitation, as there is no proof
that the solution must be symmetric, and for the stability analysis, it is not enough to
consider only symmetric variations. In this study, we suggest an alternative bilateral
constraint that allows us to rewrite the energy functional in a more numerically stable
form. It is important to notice that the change excludes the possibility of the injectiv-
ity constraint (1.50) to be active. As discussed in Seguin et. al. [17], if the injectivity
constraint is active on some interval, the corresponding portion of the deformed surface
must be flat. Thus, excluding the possibility of the injectivity constraint to be active
infers the a priori assumption that the deformed surface has no flat portions. However,
it is valid to make this assumption due to the results of Hornung [19] where he proves
that the deformed surface must have no flat region.

In Chapter 2, we discretize the continuous problem for obtaining equilibrium shapes
of unstretchable elastic ribbons and thus obtain a corresponding discrete optimization
problem. We also show how to reconstruct a continuous surface given a solution to
the discrete problem. Additionally, we establish the connection between folding a rect-
angular strip and the discrete isometry constraints. Another issue that is addressed
in this study is the search for a local minimum in the discrete case. One of the diffi-
culties in solving high-dimensional optimization problem is the proliferation of saddle
points. The standard Newton method tends to be attracted to saddle points and the
gradient descent method, which is not attracted to saddle points, has problems with
scaling of the step. A saddle-free Newton’s approach for unconstrained optimization
was proposed in Dauphin et al [20]. We generalize the saddle-free approach for the
case of constrained optimization with equality constraints and successfully apply this
approach.

In Chapter 3, we provide numerical solutions to the discrete optimization problem
obtained in Chapter 2 for bands with circular, π-twisted Möbius and 3π-twisted Möbius
topology. As we have explicitly introduce all of the isometry constraints and use the
Lagrange multipliers approach to incorporate them, we also obtain the reaction forces
corresponding to the constraints. We also have a good quantitative agreement with
the results by Starostin and van der Heijden [13], [14] and Moore and Healey [15]. At
the same time, we were able to obtain the 3π-twisted Möbius band for a wider range
of half-width to length aspect ratios. Our numerical results support the assumption
previously made by Starostin and van der Heijden [13, 14] and Moore and Healey
[15] that the minimizers for π-twisted and 3π-twisted bands have certain symmetries.
However, in this study we did not assume any symmetry a priori and the symmetry
is an a posterori result. Finally, to make sure that the obtained configurations are
minimizers, we tested all of the discrete solutions using the second order condition of
the projected Hessian defined in Section 2.3.





Chapter 1

Continuous model

In this chapter, we focus on presenting the derivation of a one-dimensional optimization
problem for finding equilibria of unstretchable elastic bands. We consider an injective
isometric deformation of a two-dimensional homogeneous and isotropic solid identified
with a right-circular cylindrical reference configuration D of circumference ` and half-
width b into a band that occupies the surface S in three-dimensional Euclidean point
space. Let x denote a material point belonging to D and let χ be a smooth isometric
deformation from D to the surface S. A material point x of the reference surface D is
thus mapped to

r = χ(x) (1.1)

under the deformation χ. The requirement that the deformation be isometric is equiv-
alent to the requirement that the metric tensor on S being identical (∇χ)T∇χ = ID
on D, where ID is the (surface) identity tensor on D. We assume that no loads are
applied neither to the surface S itself, nor to the edge ∂S of S. To obtain the equilibria
of unstretchable elastic bands, we thus seek solutions of the problem

min
χ

∫
S
H2ds subject to (∇χ)T∇χ = ID. (1.2)

In previous works by Sadowsky [10], Wunderlich [11], Mahadevan and Keller [21],
Starostin and van der Heijden [13], Hornung [19], Moore and Healey [15] and Seguin et
al. [17], the reference configuration has been taken to be a rectangular strip. As the
main result of this chapter, we derive the dimensionally reduced optimization problem
for the untwisted band with the reference configuration being right-circular cylindrical.
This novel choice allows us to avoid the change of topology and the necessity to deal
with gluing conditions that are unavoidable consequences of working with a rectangular
reference configuration. We also show that the choice of reference configuration adopted
here leads to an optimization problem that is essentially identical to that formulated
by Seguin et al. [17]. However, the optimization problem formulated in Seguin et al.
[17] is derived for the wider class of bands with arbitrary number of twists. As in
the work of Seguin et al. [17], the deformed surface is here parametrized as a ruled
surface. However, the generatrix is normalized differently. It is possible to use this
normalization to describe the deformation of an unstretchable, homogeneous, isotropic
material surface from a rectangular reference configuration, and thus, with reference
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6 Continuous model

to Seguin et al. [17], we later use the optimization problem obtained in this chapter for
twisted bands. However, it is important to keep the choice of reference configuration
in mind when interpreting the results for twisted bands. Another result of this chapter
is a bilateral constraint for local injectivity of the deformation. It becomes possible
to write the optimization problem without inequality constraints by introducing this
constraint and also remove certain singularities from the energy density as we show
in Section 1.3. We conclude the chapter by deriving the Euler-Lagrange equations
and explicitly computing the Lagrange multipliers that were used to incorporate the
isometry and the new bilateral injectivity constraint.

1.1 Right-circular cylindrical reference domain
Consider the parameter set

P = [0, `)× (−b, b) (1.3)

and two functions x̂ : P → D and r̂ : P → S that parametrize material points on the
reference and deformed surfaces D and S, respectively. We omit regularity assumptions
and simply assume that x̂ and r̂ are as smooth as needed to ensure the existence of any
derivatives that may appear. We choose functions x̂ and r̂ that admit the following
representations on P

x = x̂(α, β) = c(α) + f(α, β), (1.4)
r = r̂(α, β) = d(α) + βg(α), (1.5)

where:

• r(x) denotes the material point of S corresponding to the material point x of D,
so that

r(c(α) + f(α, β)) = d(α) + βg(α) (1.6)

for each parameter pair (α, β) ∈ P ;

• c(α) - parametrizes the midline of the reference cylindrical shape and f(α, β) is
some function that we derive later from the requirement that the deformation
must be isometric;

• the directrix d and generatrix g must satisfy the periodicity conditions

lim
α→`

d(α) = d(0), lim
α→`

g(α) = g(0), lim
α→`

d,α(α) = d,α(0), (1.7)

and the condition that ensure that the mapping from P to S is locally injective

1 + βd,α(α) · g,α(β) > 0, (α, β) ∈ P , (1.8)

where dot denotes scalar product and a subscript preceded by a comma denotes
differentiation with respect to the subscripted quantity (eg d,α = dd

dα , we later use
same notation for the derivatives with respect to β). Note that here and after
repeated indices to not mean summation;
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• the normalization condition for the representation of the surface in the reference
configuration is

|c,α| = 1; (1.9)

• the normalization conditions for the representation of the surface in the deformed
configuration are

|d,α| = 1 and |g|2 = (g · d,α)2 + 1, (1.10)

• closure constraint for the deformed surface

d(0) = d(`), g(0) = g(`) and (d,α · g)(0) = (d,α · g)(`). (1.11)

In contrast to the condition (1.6) which establishes a one-to-one correspondence be-
tween material points on the reference and deformed surfaces and thus defines the
deformation χ, conditions (1.9) and (1.10) are ancillary. However, these conditions
facilitate the derivation of the optimization problem in terms of the deformed surface
and the subsequent dimensional reduction. The normalizations of c and d can differ
from those chosen in (1.9) and (1.10), but they need to be consistent with each other.
The normalization of the generatrix g in (1.10) can also be different. For example, in
Seguin et al. [17], the authors choose the generatrix to be of unit length. Different
normalizations generally lead to a different parameter set P and different forms of the
energy density and the isometry constraints. The normalization used in this study was
chosen because of the relatively concise form of the energy functional that ensues on
its basis.

For the deformation χ from D to S to be isometric, it is necessary to impose
restrictions on the deformation gradient that were originally derived by Chen et al. [22].
Those authors consider the inverse of the one-to-one correspondence between points on
the reference surface and points in the parameters set induced by the parametrization
of the reference surface (1.4). This leads to two scalar mappings α̃ and β̃ defined on
the reference surface D. In the dual basis induced by these two scalar mappings, the
requirement that the metric tensor be preserved under the deformation χ leads to the
following restrictions on the corresponding parametrizations x̂ and r̂:

x̂,α · x̂,α = r̂,α · r̂,α, (1.12)
x̂,β · x̂,β = r̂,β · r̂,β, (1.13)
x̂,α · x̂,β = r̂,α · r̂,β. (1.14)

Using (1.4) and (1.5) in (1.12)–(1.14) leads to three scalar constraints:

2c,α · f,α + f,α · f,α = 2βd,α · g,α + β2|g,α|2, (1.15)
f,β · f,β = g · g = (g · d,α)2 + 1, (1.16)

(c,α + f,α) · f,β = d,α · g + βg,α · g. (1.17)

We next establish isometry constraints analogous to (80) of Seguin et al. [17]. More-
over, we demonstrate that those constraints lead to the isometry conditions (1.15)–
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(1.17). Let {ı1, ı2, ı3} denote a positively oriented basis in three-dimensional Euclidean
vector space. The midline of the referential cylinder D can then be parametrized as

c(α) = R cos
(α
R

)
ı1 +R sin

(α
R

)
ı2, α ∈ [0, l), (1.18)

where R = l/2π. As the ruling through the point d(α0) associated with an arbitrary
fixed α0 ∈ [0, l) is a geodesic on S, the curve x̂(α0, β), β ∈ [0, b] must be a geodesic
on D. The only non-trivial (non-planar) geodesics on a cylinder passing through the
midline are circular helices. Using the isometry condition (1.16), we arrive at the
following representation of x̂(α, β) in the form of a helix

x̂(α, β) = R cos

(
(d,α(α) · g(α))β + α

R

)
ı1 +R sin

(
(d,α(α) · g(α))β + α

R

)
ı2 + βı3 ,

(1.19)
where (α, β) ∈ P = [0, `)× [−b, b]. Differentiating (1.15) with respect to β and (1.17)
with respect to α, we obtain

d,αα · g = (c,αα + f,αα) · f,β − (g,αα · g)β = x̂,αα · x̂,β − (g,αα · g)β (1.20)

Using the form of the helices (1.19) and computing the derivatives of x̂, we arrive at
the condition

x̂,αα · x̂,β = (d,α · g),αα · (d,α · g)β . (1.21)

Now we compute x̂α · x̂α using (1.19) and use (1.15), giving

|gα|2 = [(d,α · g)α]2 . (1.22)

Computing the second derivatives of the center and left-hand side of (1.16), we find
that

g · g,αα + |g,α|2 = (d,α · g),αα · (d,α · g) + [(d,α · g)α]2. (1.23)

Using (1.22), (1.23) and then (1.20) and (1.21), we obtain the condition

d,αα · g = 0. (1.24)

Next we introduce the Darboux frame {t,n,b} for the midline of S via

t = d,α, n = g × t, b = t× n. (1.25)

It can then be shown that

tα = κnn + κgb ,

nα = −κnt + τgb ,

bα = −κgt− τn ,

where κn and κg are the normal and geodesic curvatures of the midline of S and τg
is the corresponding geodesic torsion. Granted that the midline parameterized by c
is a geodesic on the referential cylinder D and that the deformation from D to S is
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isometric, the derivatives of elements of the Darboux frame simplify to the following
relations

tα = κn , (1.26)
nα = −κt + τb , (1.27)
bα = −τn , (1.28)

where κ = κn (as κg = 0) and τ = τg respectively denote the curvature and torsion of
the directrix parameterized by d. In this basis, the generatrix has the decomposition

g = (g · t)t + b . (1.29)

Next, we compute the derivative of g and its magnitude and invoke (1.28) to find that

g,α = (g · t)αt + (g · t)κn− τn, (1.30)
|gα|2 = [(g · t)α]2 + [(g · t)κ− τ ]2. (1.31)

By comparing (1.31) with (1.22), we conclude that

(g · t)κ− τ = 0. (1.32)

Thus, we obtain an additional isometry condition of the form

(t× g) · gα = −(g · t)[(g · t)κ− τ ] = 0. (1.33)

In summary, we have the following normalization and necessary isometry conditions:

|d,α| = 1, |g|2 = (g · d,α)2 + 1, d,αα · g = 0, (d,α × g) · gα = 0. (1.34)

The next step is to ensure that the conditions in (1.34) are sufficient to ensure that
the deformation χ from the referential cylinder D to the surface S is isometric. First,
by directly computing the scalar product, we can see that the referential normalization
(1.9) follows from the representation of the midline (1.18). The validity of (1.16) can be
established by differentiating (1.19) with respect to β and computing the scalar product
of the obtained derivative with itself. Similarly, (1.17) is the result of computing x̂α
and x̂β and then taking their scalar product and invoking (1.34)2 to give

x̂α · x̂β = (d,α · g) + β(d,α · g)α(d,α · g) = (d,α · g) + β(g · gα). (1.35)

To obtain (1.15), consider the scalar product

x̂α · x̂α = 1 + 2β(d,α · g)α + β2[(d,α · g)α]2. (1.36)

Using (1.34)3, we see that (d,α · g)α = d,α · gα and it thus only remains to show that
[(d,α · g)α]2 = |gα|2. It follows from (1.34)4 that gα can be decomposed into a linear
combination of g and d,α:

gα = ξg + θd,α. (1.37)
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Multiplying (1.37) by g and d,α and employing (1.34)2 and (1.34)3, we find that ξ = 0
and that θ = gα · d,α. Thus, we conclude that

gα · gα = (gα · d,α)2 = (gα · d,α + d,αα · g)2 = [(d,α · g)α]2. (1.38)

This fact finishes the proof that (1.34) are not only necessary but also sufficient condi-
tions for r̂ of a form (1.5) to parametrize the image S of an isometric deformation of
the reference cylinder D. Let us now formulate the above as a theorem.

Theorem. The region S with representation (1.5) occupied by the deformed ma-
terial cylinder is an image of an isometric deformation χ = r̂ ◦ x̂−1 of the reference
configuration D with representation (1.4) occupied by reference right-circular cylindri-
cal surface of radius `/2π and altitude 2b if and only if the directrix d and generatrix
g satisfy

d,αα · g = 0 and (d,α × g) · gα = 0 (1.39)

on their common domain of definition [0, `).

1.2 Dimensional reduction of the dimensionless bend-
ing energy functional

We assume that D was formed by bending, without stretching a homogeneous and
isotropic two-dimensional material rectangle of length ` and halfwidth b.1 In this
sense, D has no spontaneous curvature. Thus, any open subset A of D that might be
excised from D would spontaneously open onto a planar region without changing the
distance between any two material points of A. In particular, severing D along one
of its generators will produce a rectangular material strip of length ` and half-width b
while preserving the distance between any two material points of D. It consequently
follows that the energy stored, per unit area, in an isometric deformation χ of D to a
configuration S depends only on the mean curvature H of S. We assume for simplicity
that the stored energy density to be a quadratic function of H, in which case the total
dimensionless bending energy E of S is given by

E =

∫
S
H2da, (1.40)

where da is the area element of S. We next show that (1.40) reduces to a line integral
over the midline C of S.

Let η = t · g = d,α · g. We can then use (1.29) to rewrite the representation (1.5)
of the deformed surface S in the form

r̂(α, β) = d + β (η t + b). (1.41)

1The material rectangle from which D is formed should not be conflated with the set P = [0, `)×
[−b, b] of ordered parameter pairs (α, β) used in defining the parametrizations x̂ and r̂ of the reference
and spatial configurations D and S.
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From the derivatives

r̂,α = (1 + βηα) t, r̂,β = η t + b, (1.42)

of r̂, we see that the components of the first fundamental form I of S are given by:

Iαα = r̂,α·r̂,α = (1+β η,α)2, Iαβ = Iβα = r̂,α·r̂,β = η (1+β η,α), Iββ = r̂,β ·r̂,β = 1+η2.
(1.43)

Next, from second derivatives

r̂,αα = κ(1 + β η,α) n + βη,αα t, r̂,αβ = η,αt, r̂,ββ = 0, (1.44)

we arrive at the following components of the second fundamental form II of S:

IIαα = r̂,αα ·n = κ(1 +βη,α), IIαβ = IIβα = r̂,αβ ·n = 0, IIββ = r̂,ββ ·n = 0. (1.45)

The mean curvature H and area element da of the deformed surface S are thus given
by

H =
1

2 detI
(IααIIββ + IααIIββ − 2IαβIIαβ) =

κ(1 + η2)

2(1 + βη,α)
, (1.46)

da =
√
detI dα dβ = (1 + βη,α) dα dβ. (1.47)

We can now express the dimensionless bending energy functional (1.40) as

E =

∫ l

0

∫ b

−b

κ2(1 + η2)2

4 (1 + βηα)
dβ dα =

1

4

∫ l

0

κ2(1 + η2)2

ηα
log

1 + bηα
1− bηα

dα = Ew. (1.48)

Apart from its constant prefactor, the right-hand of (1.48) is the well-known Wunder-
lich [11] functional. This outcome is consistent with the assumption that the reference
configuration D has no spontaneous curvature and, hence, might have been anticipated.
Before Wunderlich, Sadowsky [10] derived the energy functional for the special case in
which H and dα are approximated by choosing β = 0 in (1.46) and (1.47), respectively.

As a consequence of (1.48), we obtain a dimensionally reduced problem for finding
equilibrium shapes of unstretchable elastic untwisted bands:

min
d,g

Ew = min
d,g

1

4

∫ l

0

κ2(1 + η2)2

η′
log

1 + bη′

1− bη′
dα

subject to
|d′| = 1, |g|2 = (d′ · g)2 + 1, d′′ · g = 0, (d′ × g) · g′ = 0,

1± bη′ ≥ 0,

d(0) = d(l), g(0) = g(l),

(1.49)

where κ = |d′′| and η = d′ ·g. As the problem (1.49) is one dimensional, we have used a
prime to indicate differentiation with respect to the arclength α along the directrix and
will continue that practice hereinafter. In writing (1.49), we have explicitly included
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the local injectivity constraint
1± bη′ ≥ 0. (1.50)

This constraint ensures that there is no local interpenetration of the surface. It is
important to be aware that the fundamental requirement that the deformation be
injective is not fully represented by this local constraint. Surfaces that exhibit self-
contact are therefore beyond the scope of the present research. Also, we can see that
the set of equations is the same as those provided by Seguin et al. [17], except for
different form of the normalization constraint |g|2 = (d′ · g)2 + 1 on the generatrix g.

1.3 Bilateral constraint for injectivity

The optimization problem (1.49) involves bilateral and unilateral constraints. The
unilateral injectivity constraint complicates the development of a numerical approach
for solving (1.49). Moreover, when the constraint is active (that is, when equality is
achieved), some multipliers in the energy density diverge, bringing another challenge to
the numerical implementation. However, it is possible to reformulate the problem by
adding and additional constraint that substitutes for the injectivity constraint. Upon
noticing that

2 atanhx = log
1 + x

1− x
, x ∈ (−1, 1), (1.51)

it is reasonable to introduce a new variable ξ that satisfies the constraint

tanh ξ(α) = bη′(α), α ∈ [0, `). (1.52)

Since the image of tanh always lies in (−1, 1), the injectivity constraint (1.50) is au-
tomatically fulfilled. It is important to notice that (1.52) alters the solution space. In
particular, it excludes the possibility of η′(α) = ±1/b. If the injectivity constraint is
active for some α ∈ ([0, `) then corresponding portion of S must be flat as shown in
Seguin et. al. [17]. However, as shown by Hornung [19], local minimizers never have
flat regions. Thus, substitution of the constraints is not restrictive.

Additionally, using the new constraint, we can rewrite the energy density

ew(d, g) =
1

4
|d′′|2|g|4 1

bd′ · g′
log

1 + bd′ · g′

1− bd′ · g′
(1.53)

=
1

2
|d′′|2|g|4 ξ

tanh ξ
= q(d, g, ξ). (1.54)

The motivation for rewriting the functional comes from the numerical solution prospec-
tive. The original energy density ew(d, g) contains the multiplier

1

bd′ · g′
log

1 + bd′ · g′

1− bd′ · g′
(1.55)

that diverges at all pairs of d and g such that d′ · g′ = ±1/b. Even though that does
not imply anything about ew(d, g), the discrete counterpart of the multiplier (1.55) is
hard to implement numerically. Even a small change in d or g can cause the multiplier
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to become infinitely large and thus cause the numerical algorithm to fail. On the other
hand, after the change of variables, the new integrand has the multiplier

ξ

tanh ξ
(1.56)

that only get infinite when ξ gets infinite. The change of variables thus allows us
to develop a stable numerical algorithm for finding equilibria of unstretchable elastic
bands that we present in later chapters. The minimization problem (1.49) can now be
recast as

min
d,g,ξ

Q = min
d,g,ξ

b

2

∫ l

0

|d′′|2|g|4 ξ

tanh ξ
dα,

subject to
|d′|2 = 1, |g|2 = (d′ · g)2 + 1, d′′ · g = 0, (d′ × g) · g′ = 0, bd′ · g′ = tanh ξ,

d(0) = d(l), g(0) = g(l).
(1.57)

We finally introduce Lagrange multipliers λ1(α), λ2(α), λ3(α), λ4(α), λ5(α). These
are not merely convenient tools to find equilibria, but also represent reaction forces
associated with the corresponding constraints. Using Lagrange multipliers, we can
write the new augmented energy function

Ea[d, g, ξ] =

∫ l

0

[
b

2
|d′′|2|g|4 ξ

tanh ξ
− λ1(|d′|2 − 1)− λ2(|g|2 − η2 − 1)

− λ3(d′′ · g)− λ4(d′ × g) · g′ − λ5(bd′ · g′ − tanh ξ)]dα− γ ·
∫ l

0

d′ dα. (1.58)

As we are interested in studying reaction forces in the bands, it is important to in-
troduce the continuous Lagrange multipliers. This allows us to formulate the discrete
optimization problem in Chapter 2 in a way that the corresponding discrete Lagrange
multipliers approximate the continuous counterparts.

1.4 Equilibrium equations

To obtain a weak statement of the conditions that must hold in equilibrium, we set the
first variation of the augmented energy (1.58)

δEa[d, g, ξ] =

∫ `

0

[
ζg · δg + ζξδξ + ζd′′ · δd′′

− 2λ1d
′ · δd′ − 2λ2(g · δg − (d′ · g)(d′ · δg + g · δd′))

− λ3(d′′ · δg + g · δd′′)− λ4((g × g′) · δd′ − (d′ × g) · δg′))

− λ5(bd′ · δg′ + b g′ · δd′ − (tanh ξ)ξδξ)
]
dα (1.59)
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equal to zero. In the variation above we used the notation

ζ(g, ξ,d′′) =
b

2
|d′′|2|g|4 ξ

tanh ξ
. (1.60)

In (1.59) we used the fact that d′ is collinear with g′ to eliminate the term with d′×g′.
For convenience, the variation can be rewritten in the form

δE[d, g, ξ] =

∫ `

0

[
σd′′ · δd′′ + σd′ · δd′ + σg′ · δg′ + σg · δg + σξδξ

]
dα

using the following notations

σd′′ = ζd′′ − λ3g,
σd′ = −2λ1d

′ + 2λ2(d
′ · g)g − λ4(g × g′)− bλ5g′,

σg′ = −λ4(d′ × g)− bλ5d′,
σg = ζg − 2λ2(g − (d′ · g)d′)− λ3d′′,
σξ = ζξ + λ5(tanh ξ)ξ.

After integration by parts, we arrive at

δE[d, g, ξ] =

∫ `

0

[
(σ′′d′′ − σ′d′) · δd + (−σ′g′ + σg) · δg + σξδξ

]
dα

+
(
σd′′ · δd′ + (−σ′d′′ + σd′) · δd + σg′ · δg

)∣∣∣`
0
.

From the requirement that the first variation δE[d, g, ξ] must vanish for all admissible
variations δd, δg and δξ, we obtain Euler–Lagrange equations

(ζd′′ − λ3g)′′ + (2λ1d
′ − 2λ2(d

′ · g)g + λ4(g × g′) + bλ5g
′)′ = 0, (1.61)

(λ4(d
′ × g) + bλ5d

′)′ + ζg − 2λ2(g − (d′ · g)d′)− λ3d′′ = 0, (1.62)

ζξ + λ5ξ sech2 ξ = 0, (1.63)

that need to be fulfilled for all α ∈ (0, `) and the matching boundary conditions

(ζd′′ − λ3g)(0) = (ζd′′ − λ3g)(`), (1.64)
((ζd′′ − λ3g)′ − 2λ1d

′ − 2λ2(d
′ · g)g − λ4(g × g′)− bλ5g′)(0) =

((ζd′′ − λ3g)′ − 2λ1d
′ − 2λ2(d

′ · g)g − λ4(g × g′)− bλ5g′)(`), (1.65)
(ζg − 2λ2(g − (d′ · g)d′)− λ3d′′)(0) =

(ζg − 2λ2(g − (d′ · g)d′)− λ3d′′)(`). (1.66)

From the isometry equation d′′ · g = 0, we can see that the boundary condition
(1.64) is equivalent to the two requirements

ζd′′(0) = ζd′′(`) and (λ3g)(0) = (λ3g)(`). (1.67)



1.4 Equilibrium equations 15

Additionally, using the isometry equation |d′| = 1, from (1.66) we imply

(ζg − λ2(g − (d′ · g)d′))(0) = (ζg − λ2(g − (d′ · g)d′))(`), (1.68)
(λ3d

′′)(0) = (λ3d
′′)(`). (1.69)

Another useful property of the new formulation using additional variable ξ is that
the Lagrange multipliers can be obtained explicitly in terms of d, g and ξ. From (1.63)
we immediately obtain

λ5 = − ζξ

ξ sech2 ξ
. (1.70)

We expand the derivative in (1.62) to get

λ̇4(d
′ × g) + λ4(d

′′ × g) + bλ̇5d
′ + bλ5d

′′ + ζg − 2λ2(g− (d′ · g)d′)− λ3d′′ = 0. (1.71)

Next we multiply (1.62) by g, d′ and d′′ and get the equations that can be resolved
for λ2, λ3, λ4:

bλ̇5d
′ · g − 2λ2 = −ζg · g, (1.72)

λ4(d
′′ × g) · d′ + bλ̇5 = −ζg · d′, (1.73)

λ̇4(d
′ × g) · d′′ + (bλ5 − λ3)|d′′|2 = −ζg · d′′. (1.74)

The Lagrange multipliers λ2, λ3, λ4 then take the form

λ2 =
1

2
(ζg · g − b(ζξ/(ξ sech2 ξ))′d′ · g), (1.75)

λ4 =
bζξ/(ξ sech2 ξ))′ − ζg · d′

(d′′ × g) · d′
, (1.76)

λ3 =
λ̇4(d

′ × g) · d′′

|d′′|2
+ bλ5, (1.77)

where we used the special Wunderlich functional form to eliminate ζg · d′′. Finally, we
can also obtain λ1 from (1.61).

λ1 =
1

2
((ζd̈ − λ3g)′′ · d′ − (2λ2(d

′ · g)2 + bλ5g
′ · d′ + γ · d′)), (1.78)

where γ is a constant three dimensional vector obtained from the integration of (1.61).
It can also be viewed as the reaction force that keep the band closed.





Chapter 2

Numerical approach

In the previous chapter, we obtained a one-dimensional optimization problem for find-
ing equilibrium shapes of free standing ribbons that are topologically equivalent to a
cylindrical ring of radius `/2π and height 2b. Using the results obtained in Seguin et
al. [17] for a wider class of bands, we can generalize the problem to the bands with
twisted topologies and knotless midlines. The change in the optimization problem will
only appear in the condition g(0) = g(`) that should be replaced by

g(0) = g(`) if the band is orientable, (2.1)
g(0) = −g(`) otherwise. (2.2)

However, even this dimensionally reduced problem is hard to tackle analytically. In this
chapter we obtain a discretized version of the continuous optimization problem (1.57).
We show that the corresponding discrete augmented energy functional approximates
the continuous counterpart (1.58) to second order in the step-size used to represent
the directrix as a discrete chain of straight lines of equal length. We also present a
saddle-free Newton-type optimization method for tackling the discrete optimization
problem.

2.1 Discretization of the optimization problem

Let the interval [0, `] be represented by N subintervals Ii = (αi, αi+1], i ∈ {1, ..., N},
with 0 = α1 < ... < αN+1 = ` and αi+1 = αi + h, where h = `/N . Vectorial quantities
di and gi are defined at integer nodes i, i ∈ {1, n+ 1} by the rules

di = d(αi) and gi = g(αi). (2.3)

We also introduce
u = d′ (2.4)

and approximate it, along with ξ, at half-nodes αi+1/2 = αi + h/2 by the rules

ui = u(αi+1/2) and ξi = ξ(αi+1/2), i ∈ {1, ..., N}. (2.5)

17
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On using the foregoing notational conventions, we discretize the isometry and injectiv-
ity constraints of the problem (1.57) at αi or αi+1/2, giving

(|d′|2 − 1)(αi+1/2) = |ui|2 − 1, (2.6)

(|g|2 − (d′ · g)2 − 1)(αi) = |gi|2 −
(

ui + ui−1
2

· gi
)2

− 1, (2.7)

((d′ × g) · g′)(αi+1/2) ≈
(

ui ×
gi+1 + gi

2

)
·
(
gi+1 − gi

h

)
, (2.8)

d′′ · g(αi) ≈
ui − ui−1

h
· gi = 0, (2.9)

(wu · g′ − tanh ξ)(αi+1/2) ≈ wui ·
gi+1 − gi

h
− tanh ξi, (2.10)

where i ∈ {1, ..., N}. The constraints are then approximated by requiring that the
right-hand sides of (2.6)–(2.10) vanish. Explanations for these approximations are
provided in the next subsection.

The energy Q from (1.57) can now be discretized in the following way:

Q =
N∑
i=1

b

2

∫ αi+1/2

αi−1/2

|d′′|2|g|4 ξ

tanh ξ
dα (2.11)

=
N∑
i=1

b

2

∫ αi+1/2

αi−1/2

|u′(αi)|2|g(αi)|4
ξ(αi)

tanh ξ(αi)
dα (2.12)

≈ b
N∑
i=1

∣∣∣∣ui+1 − ui
h

∣∣∣∣2 |gi|4 (ξi + ξi−1)/2

tanh((ξi + ξi−1)/2)
h (2.13)

=
N∑
i=1

qiρ
4
i ai/h = Qh, (2.14)

where qi, ρi, and ai are defined for each i ∈ {0, n} by

qi = 1− ui · ui−1, ρ4i = |gi|4, and ai = b
(ξi + ξi−1)/2

tanh((ξi + ξi−1)/2)
. (2.15)

To obtain (2.15)1, we used the discrete midline normalization constraint (2.6)

qi = |ui − ui−1|2 = |ui|2 − 2ui · ui−1 + |ui−1|2 = 2 (1− ui · ui−1). (2.16)

We also discretize the constraint (1.11)1 that closes the midline, giving∫ l

0

d′dα ≈
N∑
i=1

uih = 0. (2.17)

Using the constraint (2.8) to simplify (2.7), we arrive at the set of the isometry con-
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Figure 2.1: Flat rectangular strip constructed from vector mi, i ∈ {1, .., N} and gi,
i ∈ {1, ..., N + 1}.

straints

|ui| = 1, |gi|2 = (gi · ui)2 + 1, (ui − ui−1) · gi = 0, (ui × gi) · gi+1 = 0. (2.18)

Finally, the problem of finding minima of the discrete functional Qh derived in
(2.13) subject to the isometry (2.6)–(2.9), injectivity (2.10), and closure constraints
(2.2), (2.17) can be written in the following form

min
ui,gi,ξi,i∈1,...,N

ED = min
ui,gi,ξi,i∈1,...,N

N∑
i=1

qiρ
4
i ai
h

subject to
|ui| = 1, |gi|2 = (gi · ui)2 + 1, (ui − ui−1) · gi = 0, (ui × gi) · gi+1 = 0,

w

h
ui · gi+1 − gi − tanh ξi = 0,

N∑
j=0

uj = 0, g1 = ±gN+1,

(2.19)

where i = 1, ..., N , qi, ρi, ai are as defined in (2.15), and the sign on the left-hand side
of the last equation is fixed by the orientability of the band.

2.1.1 Constructive meaning of each of the discrete constraints

In (2.6)–(2.10), we discretized some constraints at nodes αi and others at half-nodes
αi+1/2. There is a discrete surface that can be represented by this set of discrete
isometry constraints. This surface is a chain of flat segments of trapezoidal or triangular
shape. On the other hand, the same set of geometric constraints can be obtained for
a surface that is obtained from a rectangular strip folded N times along rulings that
pass through the midline. Thus, when establishing a connection between the discrete
and continuous formulations, we also establish a connection between the folding of a
rectangular strip and its isometric bending.

Consider a flat rectangular strip of length ` and width 2b divided into N quadrilat-
erals. The upper parts of the N flat segments are obtained from N midline elements
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mi, i ∈ {1, .., N} and N +1 rulings ri as shown in Figure 2.1. We constrain the rulings
ri and ri+1 to emanate from the initial and terminal points, respectively, of the midline
elementmi to the edge of the strip. The lower parts of the quadrilaterals are obtained
from −ri and −ri+1. The requirements mentioned above can be written as the set of
normalization constraints for i ∈ {1, ..., N}, which read

|mi| = h, |ri|2 =
(
ri ·

mi

h

)2
+ b2, 1± bm

h
· (ri+1 − ri) > 0, (2.20)

where h = `/N . While the first condition in (2.20) ensures that the midline segments
are of uniform size, the second condition in (2.20) ensures that the rulings extend to
the edges of the strip, and the last condition in (2.20) makes sure that two rulings do
not meet with the reference strip and its boundary.

Let m̃i be the image of mi after folding for i ∈ {1, ..., N} and r̃i be the image
of ri i ∈ {1, ..., N + 1}. After folding, the new set of midline elements will form a
chain of quadrilaterals in three dimensional Euclidean space. The spacial quadrilaterals
(except in the degenerate triangular case) should be of the same shape and size as their
corresponding reference quadrilaterals. If this is the case, the material points on the
reference and deformed surface can be matched by aligning the quadrilaterals to which
the points belong. To ensure that the spatial quadrilaterals are of the same size as their
reference counterparts, it is enough to ensure that the length of the midline segments
and rulings is preserved in conjunction with ensuring that m̃i, r̃i and r̃i+1, and the
angle between mi and ri is preserved. If the three vectors m̃i, r̃i and r̃i+1 lie in the
same plane, then the following condition must hold

(m̃i × r̃i) · r̃i+1 = 0, i ∈ {1, .., N}. (2.21)

Then the normalization conditions for the deformed surface read as

|m̃i| = h, |r̃i|2 =
(
ri ·
mi

h

)2
+b2, 1±bm̃

h
·(r̃i+1− r̃i) > 0, i ∈ {1, .., N}.

(2.22)
Finally, we need to preserve the angle between mi and ri, for i ∈ {1, .., N}. Consider
two flat quadrilateral formed by mi−1, ri−1 and ri and mi, ri and ri+1, respectively
(shown in Figure 2.2). Without loss of generality, consider folding of one flat element
relative to the other where the first flat element coincides with its reference quadrilateral
after folding as shown in Figure 2.2. As the angles between mi and ri are in range
(0, π) and the magnitudes are already preserved, it is enough to preserve the scalar
product to preserve the angles, namely

r̃i · m̃i = ri ·mi, i ∈ {1, .., N}. (2.23)

As all of the midline segments are collinear in the reference surface and the quadrilateral
containing mi−1 stays at the same position as in Figure 2.2, we can see that

ri ·mi = ri ·mi−1 = r̃i · m̃i−1, i ∈ {1, .., N}. (2.24)

Comparing (2.23) and (2.24), we obtain the condition for the angle betweenmi and ri
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Figure 2.2: Rotating one trapezoid relative to an adjacent one around common ruling.

be preserved in terms m̃i and r̃i

(m̃i − m̃i−1) · r̃i = 0, i ∈ {1, .., N}. (2.25)

We can now write the isometry constraints in terms of only m̃i and r̃i, namely

|m̃i| = h, |r̃i|2 =
(
r̃i ·
m̃i

h

)2
+ b2, (m̃i− m̃i−1) · r̃i = 0, (m̃i× r̃i) · r̃i+1 = 0,

(2.26)
where i ∈ {1, .., N}. Let us now introduce dimensionless counterparts of m̃i and r̃i

ũi =
m̃i

h
and g̃i =

r̃i
b
, i ∈ {1, .., N}. (2.27)

In terms of dimensionless variables m̃i and r̃i, the folding geometrical constraints take
a form

|ũi| = h, |g̃i|2 =
(
g̃i·ũi

)2
+1, (ũi−ũi−1)·g̃i = 0, (ũi×g̃i)·g̃i+1 = 0, (2.28)

where i ∈ {1, ..., N}, identical to the constraints (2.18) that we obtained by discretizing
the continuous isometry constraints. Thus, pure bending of a strip without stretching
can be associated with infinitely refined folding along the rulings emanation from the
midline. However, the rulings are not known a priori and must be determined as part
of the solution of any particular problem.
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2.2 Convergence of the discrete functional to the con-
tinuous functional

In this section, we present results that complement those presented in section 2.1.
Specifically, we provide a way of constructing the continuous surface from a discrete
surface that satisfies all of the discrete isometry constraints. Moreover, we show that
the constructed continuous surface satisfies the continuous constraints up to the second-
order in the step-size h at corresponding nodes or half nodes. We also show that the
difference between the continuous energy of the constructed surface and the discrete
energy of the discrete surface is quadratic in h. Thus, if the Lagrange multipliers
λi, i = 1, ..., N are properly reconstructed, the difference between the discrete and
continuous Lagrangians is also quadratic in h.

Suppose that

ui , i ∈ {1, ..., N}, (2.29)
gj , j ∈ {1, ..., N + 1}, (2.30)

satisfy the constraints of the discrete optimization problem (2.19). Let us now construct
a surface Sc parametrized by (α, β) ∈ [0, l]× [−b, b] with the following properties. First,
its parametrization is ruled, meaning that

r = r̃(α, β) =

∫ α

0

d′(α̂)dα̂ + βg(α), (2.31)

where r is a material point on Sc. Moreover,

d′(αi+1/2) = ui+1, i ∈ {0, .., N − 1}, (2.32)
g(αi) = gi+1, i ∈ {0, .., N}. (2.33)

Before we introduce a discrete augmented energy functional and show that for
such a surface it approximates the continuous Lagrangian to second order in h, we
derive some preliminary identities. We start with applying the Taylor expansion to
the discrete isometry constraints (2.18). From the discrete normalization constraint
(2.18)2 of the generatrix gi for i ∈ {1, ..., N}, we find that

0 = |gi+1|2 − (gi+1 · ui+1)
2 − 1

= |g(αi)|2 − (g(αi) · d′(αi+1/2))
2 − 1

= |g(αi)|2 − (g(αi) · (d′(αi) + hd′′(αi) +O(h)))2 − 1

= |g(αi)|2 − (g(αi) · d′(αi))2 − 1 + 2h(g(αi) · d′(αi))(g(αi) · d′′(αi)) +O(h2).
(2.34)

From the constraint (2.18)3 that preserves the angle between the discrete midline seg-
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ment ui and the discrete generatrix gi for i ∈ {1, ..., N}, we obtain

0 = gi+1 ·
(

ui+1 − ui
h

)
= g(αi) · (d′(αi+1/2)− d′(αi−1/2))

= g(αi) · d′′(αi) +O(h2). (2.35)

Next, from the constraint (2.18)4 for i ∈ {0, ..., N − 1}, we find that

0 =
(ui+1 × gi+1) · gi+2

h

=

(
ui ×

gi+1 + gi
2

)
·
gi+1 − gi

h

= (d′(αi+1/2)× g(αi+1/2)) · g′(αi+1/2) +O(h2). (2.36)

Finally, expansion of the constraint (2.10) that establishes the relation between ξi and
the discrete midline ui and generatrix gi for i ∈ {1, ..., N} yields

0 = bui ·
gi+1 − gi

h
− tanh ξi

= bu(αi+1/2) · g′(αi+1/2)− tanh ξ(αi+1/2) +O(h2). (2.37)

We can now make some observations regarding the constraints for the continuous
optimization problem (1.57). Normalization of the discrete directrix constraint (2.18)1
leads to |d′| = 1 exactly at αi+1/2, i ∈ {1, ..., N}. The decompositions (2.34) and (2.35)
yield

|g|2 − (g · d′)2 − 1 = O(h2) at αi, i ∈ {0, N − 1}. (2.38)

The decomposition (2.35) gives

d′′ · g = O(h2) at αi, i ∈ {0, N − 1}. (2.39)

Similarly, the decomposition (2.36) yields

(d′ × g) · g′ = O(h2) at αi+1/2, i ∈ {0, N − 1}. (2.40)

Finally, decomposition of the bilateral injectivity constraint (2.37) gives

bu · g′ − tanh ξ = O(h2) at αi+1/2, i ∈ {0, N − 1}. (2.41)

Moreover, the constraints (1.34) are fulfilled everywhere else on [0, `) to the first order
in h if the parametrization of S is sufficiently smooth.
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Next, consider the following expansion of the midline closure condition (2.17)

0 =
N∑
i=1

ui

=
N∑
i=1

d′(αi+1/2)

=
N∑
i=1

{
d(αi+1)− d(αi)

h
+ O(h2)

}

=
1

h

{
N+1∑
i=1

d(αi)−
N∑
i=0

d(αi)

}
+ O(h)

=
d(αN+1)− d(α1)

h
+ O(h)

=
d(l)− d(0)

h
+ O(h). (2.42)

Hence, we infer that d(`)− d(0) = O(h2).

Next, consider the integrand of the discrete energy functional in the form (2.13):∣∣∣∣ui+1 − ui
h

∣∣∣∣2 |gi|4 (ξi+1 + ξi)/2

tanh((ξi+1 + ξi)/2)

=

∣∣∣∣u(αi+3/2)− u(αi+1/2)

h

∣∣∣∣2 |g(αi+1)|4
(ξ(αi+3/2) + ξ(αi+1/2))/2

tanh(ξ(αi+3/2) + ξ(αi+1/2))/2

= |u′(αi+1) + O(h2)|2|g(αi+1)|4
ξ(αi+1) + O(h2)

tanh(ξ(αi+1) + O(h2))

= |u′(αi+1)|2|g(αi+1)|4
ξ(αi+1)

tanh(ξ(αi+1))
+ O(h2), i ∈ 1, ..., N. (2.43)

Consider intervals Ji = [αi−1/2, αi+1/2], i ∈ 0, ...n− 1. First, from the mean value
theorem notice that for each i ∈ {1, . . . , N} and any sufficiently smooth function f
there exists a choice of ξ ∈ Ji such that∫ αi+1/2

αi−1/2

f(α)dα− f(αi)h =
h3

24
f ′′(ξ). (2.44)

We have thus shown that∣∣∣∣ui+1 − ui
h

∣∣∣∣2 |gi|4 (ξi+1 + ξi)/2

tanh((ξi+1 + ξi)/2)
h = |u′(αi+1)|2|g(αi+1)|4

ξ(αi+1)

tanh(ξ(αi+1))
h+ O(h3),

(2.45)
where i ∈ {1, ..., N}. Hence, taking into account the periodicity of u and g and
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performing integration,

Qh =
N∑
i=1

qiriai/h

=
N−1∑
i=0

(|u′(αi+1)|2|g(αi+1)|4
ξ(αi+1)

tanh(ξ(αi+1))
h+ O(h3))

=
N−1∑
i=0

(

∫ αi+1/2

αi−1/2

|u′|2|g|4 ξ

tanh ξ
dα + O(h3))

=

∫ `

0

|u′|2|g|4 ξ

tanh ξ
dα + O(h2) (2.46)

we arrive at an approximation of the continuous energy by the discrete one that is
accurate to second-order in h.

Next, we introduce Lagrange multipliers λ1i, λ2i, λ3i, λ4i, λ5i, for i ∈ {1, ..., N}.
Finally, we can introduce the discrete Lagrangian LD in the form

LD =
N∑
i=1

[
qiρ

4
i ai/h− λ1i

(
|ui| − 1

)
h− λ2i

(
|gi|2 − (gi · ui)2 − 1

)
h−

− λ3i(ui − ui−1) · gi − λ4i(ui × gi) · gi+1 − λ5i
(
bui · (gi+1 − gi)− h tanh ξi

)]
−

− λ5N+1

N∑
i=1

uixh− λ5N+2

N∑
i=1

uiyh− λ5N+3

N∑
i=1

uizh, (2.47)

where ui = (uix, uiy, uiz) in some Cartesian coordinates.
We construct continuous scalar Lagrange multipliers fields λ1, λ2, λ3, λ4, λ5 such

that they satisfy

λ1(αi+1/2) = λ1i, λ2(αi) = λ2i, λ3(αi) = λ3i,

λ4(αi+1/2) = λ4i, λ5(αi+1/2) = λ5i. (2.48)

As the choice of the points where discrete Lagrange multipliers coincide with their
continuous counterpart is in agreement with the points where the discrete constraints
approximate the continuous counterparts with the second order, we can apply the mean
value theorem (2.44) to each term of the Lagrangian and conclude that it approximates
the continuous one to the second order in h.

2.3 Saddle-free Newton method

Having obtained the discrete optimization problem and showed that it quadratically
converges to the continuous problem as the step-size h is reduced, we need a strategy for
solving that problem. One approach to doing so relies on the sequential quadratic pro-
gramming method, which is a standard Newton method but for nonlinear constrained
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optimization problems. A detailed derivation and theoretical study of this method
can be found in the book of Nocedal and Wright [18]. However, this method has
an issue that is present when dealing with constrained or unconstrained optimization
problems. The classical Newton method is a very effective tool for convex optimization
but requires modification for nonconvex problems. In particular, Newton’s method
often converges to saddle points that are in abundance in high-dimensional nonconvex
problems. One way of obtaining a modification that is saddle-free has been proposed
by Dauphin et al. [20] for unconstrained optimization. In this section, we will first
summarize how the saddle-free method works for unconstrained optimization and then
generalize it to the constrained optimization case.

2.3.1 Unconstrained optimization

Let us first describe the basic features of the standard saddle-free method and then
generalize that method for the case of constrained optimization.

Consider the following unconstrained optimization problem

min f(x), (2.49)

where f is a scalar field and x a point n-dimensional vector space. The standard
Newton approach (minimizing second order approximation of f) to tackle the problem
leads to the iterative process

xk+1 = xk −H−1(∇f(xk)) (2.50)

whereH = ∇∇f |x=xk is a symmetric tensor-valued field and thus admits the eigenvalue
decomposition

H = Q>ΣQ, (2.51)

where Q is orthogonal the tensor form from the eigenvectors of H and Σ is a diagonal
tensor composed from the eigenvalues of H . In the saddle-free modification, H is
replaced by Ĥ = Q>Σ̂Q, where Σ̂ is obtained from Σ by replacing each eigenvalue
of Σ with its absolute value. This approach can help to avoid saddle points in non-
convex unconstrained optimization. To explain this, it is helpful to first mention why
the standard Newton method converges to saddle points. As explained in Dauphin
et al. [20] using Morse’s lemma (chapter 7.3, Theorem 7.16 in Callahan [23]), near a
critical point x∗ the scalar function f(x) can be reparametrized as

f(x∗ + p) = f(x∗) +
1

2
v ·Σv,

where Σ is the diagonal matrix with diagonal elements σi obtained from the Hessian’s
eigendecomposition H = QTΣQ, σi is i-th eigenvalue along the Hessian’s eigenvector
ei and v = Qp =

∑n
i=1 viei. Thus, in this coordinates the Newton method has a

step −vi along ei. It is now clear that classical Newton method will move towards a
saddle point in the eigendirections of the Hessian at which the corresponding eigenvalue
is negative. This happens due to the fact that while scaling out the curvature of f ,
not only the absolute value is scaled out but also the sign of the curvature. On the
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other hand, the gradient descent preserves σi and has a step −σivi along ei. Thus,
the gradient descent method repels from saddle points, but might take long time if
the landscapes is flat (absolute value of σi is small). The modification of the Hessian
described above allows to only scale out the absolute value and the step is −σi/|σi|vi
along ei, and thus, the modified method will repel from saddle points. Scaling out
the absolute value is advantageous as we do not want the iterations to get stuck at
flat landscapes near critical points. Dauphin et al. [20] also show that the approach
performs well in practical applications.

2.3.2 Constrained optimization

Consider now the optimization problem with equality constraints

min f(x), subject to c(x) = 0m, (2.52)

where f is still a scalar field and c is a vector field from n dimensional vector space
into m dimensional vector space. One common way to deal with such an optimization
problem is to introduce the m-dimensional vector field λ of Lagrange multipliers and
consider the augmented functional

L(x,λ) = f(x)− λ · c(x). (2.53)

Let yk be a vector in n + m dimensional vector space that combines xk and λk. Now
the first and second order conditions of a minimum can be written in a concise way.
The first order condition simply reads

∇yL(y∗) = 0. (2.54)

Next, we introduce
W = ∇x∇xf(xk)− (∇x∇xc(xk))λ (2.55)

Then the standard Newton approach for the constrained optimization will lead to the
iterative process called Sequential Quadratic Programming (SQP, [18])

yk+1 = yk − J−1∇yL(yk), (2.56)

where J = ∇y∇yL(yk). In a matrix form, J consists of the following blocks

J =

[
W ∇λc(xk)

(∇λc(xk))> 0m,m

]
(2.57)

Now, let K be combined of the m vectors in n-dimensional vector space that form
the null space of ∇λc(xk) (and thus must have rank m, meaning that there are m
linearly independent n-dimensional vectors that do not annihilate c(x)). For the second
order condition, we need to introduce

W c = K>WK. (2.58)
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If the constraints are linearly independent at x∗ corresponding to y∗, then the solution
y∗ is a (strict) minimum if W c is (strictly) positive-definite.

As it is discussed in detail in Nocedal and Wright book [18], the matrix K is used
to restrict the function f(x) to change only in the allowed directions (allowed direction
must not change the value of c(x∗) and thus must be orthogonal to c(x∗) that is K
by its definition). Thus, we can perform analogous modulirization of the constrained
Hessian W c at each step as it is done in unconstrained case. The only issue is that
to next perform the SQP step we need to return to the original space, but K is not
invertible. However, it is easy to fix by appending K with the matrix containing the
value of the gradient of the constraints. Namely, we introduce T = (K

∣∣∇c) to get

T>∇2LT =

[
Hc . . .
. . . . . .

]
. (2.59)

As T is invertible, we can now return to the original space by applying it to the right
hand side of (2.59). We now summarize the saddle-free Newton approach in the next
paragraph.

To obtain the saddle-free Newton method for constrained optimization, in analogy
with the unconstrained method, we modify W c into Ŵ c by replacing the negative
eigenvalue with its absolute values. Next, we write W in coordinates aligned with the
null space of ∇λc(xk) and replace any block of coordinates corresponding to W c with
the coordinates for Ŵ c and denote the result by Ŵ . Using Ĵ to denote J with Ŵ
instead of W , we now perform the iteration step as in the standard Newton method,
but using Ĵ instead of J . We call this algorithm the saddle-free Newton method for
constrained optimization. As the algorithm involves essentially the same modification
to the projected Hessian W c in the constrained space as the original unconstrained
algorithm does to the unconstrained HessianH , we believe that it should help to avoid
saddle-points in constrained optimization problems. The method has proven effective
in practice; the results in the next chapter were obtained using this method.



Chapter 3

Numerical results

In this chapter, we consider bands with three different topologies: bands with untwisted
short ends, namely bands with cylindrical topology; bands with short edges twisted
once, namely standard π-twisted Möbius bands; and bands with short edges twisted
three times, namely 3π-twisted Möbius bands. In Section 3.1 we provide general strate-
gies of obtaining the discrete solution. As the numerical approach we developed in the
previous section is iterative, having reasonable initial guesses is crucial for computing
a desired solution. Thus, for each of the bands we first present the process of obtain-
ing the initial guess. For each band we next plot numerical approximations of the
quantities

κs = d′′ · (g′ × d′), τ = κsη, η = d′ · g and η′ = d′ · g′, (3.1)

as well as the Lagrange multipliers. Additionally, we discuss the issues concerning the
relationship between the stability of the discrete solutions and the continuous counter-
part. Finally, we provide some a posterori convergency results theoretically established
in the previous chapter.

3.1 Numerical strategies

There are three main strategies that we use to obtain numerical results. First, we
need to obtain an initial guess for a solution on a coarse grid. Thus, for each of the
three topologies considered, we first present an approach to obtain a reasonable initial
guess. To obtain an initial guess, we prescribe positions of some generators gi without
assigning any physical meaning to this boundary conditions. Once we obtain an initial
guess, we perform numerical iterations using the saddle-free Newton method developed
in Subsection 2.3.2 to obtain a local minimum for a coarse grid.

Second, having a coarsel minimum, we move to the second step — refining the
discretization. Suppose we have a local minimum for the number of flat segments N
equal N∗. Let us demonstrate the process of refining the discretization. To do so, we
split each of the flat segments of the coarsely discretized band obtained into two, so
that the two normalized midline vectors ui−1/2 and ui+1/2 coincide with the original
midline ui, and the new ruling gi+1/2 in the center is the average of gi and gi+1. We
then use the new set of discrete midline vectors ui, i ∈ {1, ..., 2N∗}, and generators

29
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gi, i ∈ {1, ..., 2N∗ + 1}, as an initial guess to run the saddle-free algorithm for the
optimization problem (2.19) for the band resolved into 2N∗ flat segments.

Finally, having obtained a solution for given half-width b∗, we can obtain a solution
for a different half-width b∗∗. To do so, we use an incremental process where a solution
for the previous width is used as an initial guess for another width. Specifically, we
consider,

b0 = b∗, (3.2)

bj+1 = bj +
b∗∗ − b∗

M
, j ∈ 0, ...,M − 1. (3.3)

for some positive integer M . Thus, bM = b∗∗ and we obtain a solution for the required
width. This process would not be possible for b∗∗ > b∗ without introducing the bilateral
constraint as the energy functional (1.48) in this case would not be finite for b = b∗∗.

Also, as there is only one dimensionless parameter in the problem — namely the
width to length aspect ratio 2b/`, we fix the length for all bands considered to be 2π.
Next, we vary the width to study how the aspect ratio affects the solution.

3.2 Cylindrical band

3.2.1 Initial guess

For the untwisted topology, we have one obvious minimum: the right-circular cylindri-
cal shape. This shape is easy to construct and use as an initial guess. However, the
outcome from applying the numerical approach developed in Chapter 2 will be also
a cylindrical ring as it is a minimum. We thus start from the cylinder but obtain a
different initial guess that is closer to the partially everted cylinder by subjecting it to
certain isometric modifications that we next describe. See also Figures 3.1, 3.2.

Consider and orthonormal basis {ı1, ı2, ı3} for three dimensional Euclidean vector
space. First, we construct a discrete counterpart of a right-circular cylinder with its
axis of symmetry aligned along ı3. Thus, all of the generators gi, i ∈ {1, ..., N +1}, are
aligned along ı3 and of unit magnitude. The midline vectors ui, i ∈ {1, ..., N}, should
form a closed right polygon in the plane spanned by ı1 and ı2. Thus, the midline
vectors and generators can be written in the form

ui = cos
2π(i− 0.5)

N
ı1 + sin

2π(i− 0.5)

N
ı2, i ∈ {1, ..., N}, (3.4)

gi = ı3, i ∈ {1, ..., N + 1}. (3.5)

We next iteratively isometrically deform the surface by prescribing of two genera-
tors and solving the optimization problem with this additional control. We take two
diametrically opposed rulings that are initially parallel and incrementally rotate each
of them by a total angle of π/2 to become antiparallel. In particular, assuming that the
number of flat segments N is an even number, we prescribe generators g1 and gN/2+1
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Figure 3.1: Auxiliary incremental process to obtain the initial guess for a partially
everted cylinder for K = 25 (see (3.8)) and number of flat segments N = 20. The
generators g1 and g11 are marked green. The figure on the left corresponds to k = 0
(discrete cylindrical ring); in the center, k = 13; on the and in right, k = 25.

Figure 3.2: Auxiliary process of rotating half of the band to obtain initial guess for
the partially everted cylinder for K = 25 and N = 20. The generators g1 and g21 are
marked green.

by the rule

g1 = sinϕkı2 + cosϕkı3 (3.6)
gN/2+1 = − sinϕkı2 + cosϕkı3, (3.7)

where
ϕk =

πk

2K
, k ∈ {0, ..., K}, (3.8)

and K is some positive integer. We consequently solve the problem (2.19) for ϕk, using
the results for ϕk−1 as an initial guess. We do not invest physical meaning in the so-
lutions of this auxiliary problem, but merely use them as as reasonable initial guesses.
From (3.7), we notice that the discrete counterpart of the right-circular cylinder cor-
responds to k = 0.

When the solution is obtained for k = K, we cut the band along the rulings g1
and gN/2+1. Next, we rotate half of the band around ı1 by the angle π. Finally, we
smoothly connect the opposite short edges of the band together to obtain the initial
guess for the partially everted cylinder.
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Figure 3.3: Geometric properties of the discrete partially everted cylinder for b = 0.03.

3.2.2 Results and analysis

As we already mentioned, the cylindrical configuration is an obvious global energy
minimum for a band with cylindrical topology. Thus, if the initial guess is “far” from
the local minimum, it is likely to converge to the global one. This explains why we
were not able to obtain the finer discretized band that is shown in Figure 3.5. We were
also not able to obtain wider partially everted cylinder for given N = 160. Each time
we applied the incremental strategies described in Section 3.1, the iterations converged
to a right-circular cylindrical configuration. Hence, here we present only one partially
everted discrete cylindrical configuration.

In Figure 3.3, we can see that there are two points α ≈ 1.5 and α ≈ 4.7 where the
signed curvature κs vanishes. At the same time, the torsion τ diminishes. Although
the torsion does not drop to τ = 0, this might be due to the coarse discretization.
The two points seem to correspond to the flat straight line segments where the mean
curvature vanishes that, as proved by Hornung [19], are the only possible flat portions
of the minimizer. Also, in the Figure 3.4 we see that at these points the Lagrange
multipliers λ2 and λ4 and λ5 reach their maximum absolute values.
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Figure 3.4: Lagrange multipliers of the discrete partially everted cylinder for b = 0.03.
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Figure 3.5: The shape of the partially everted cylinder for N = 160 and b = 0.03.
Only half of the generators are shown in the picture.

3.3 π-twisted Möbius band

3.3.1 Initial guess

To construct the initial guess for the π-twisted band, we could use the construction pro-
vided by Sadowsky [10]. However, there is another approach that yields an initial guess
that is visually closer to an equilibrated π-twisted band. The strategy for constructing
this initial guess is based on solving a set of auxiliary problems. For this we need to
allow the generators g1 and gN+1 to differ. We start from the initial discrete cylinder
(3.5) and rotate gN+1 while keeping g1 fixed. Again, we do not ascribe any physical
interpretation to the interim configurations of the band. The incremental process of
rotating gN/2+1 can be written in the form

g1 = ı3 (3.9)
gN/2+1 = sinϕkı2 + cosϕkı3, (3.10)

where ϕ is as in (3.8), but the parameter k now ranges from 0 (discrete cylinder) to
2K. The final configuration correspond to the case where g1 and gN+1 are antiparallel
and visually resembles a Möbius band made of paper (see Figure 3.6).
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Figure 3.6: The process of constructing an initial guess for a π-twisted Möbius band
from a cylindrical ring.

Figure 3.7: Examples of π-twisted Möbius bands of width b = 0.3 (left) and almost
maximum width b = 1.5 (right). Both of the bands are converged minima of the
optimization problem (2.19).
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Figure 3.9: Lagrange multipliers of the π-twisted Möbius bands.
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3.3.2 Results and analysis

Unlike the parially everted cylinder, the conventional shapes of the Möbius band shown
in Figure 3.7 are likely global minima and thus we did not experience the difficulties
with the incremental processes we faced with the parially everted cylindrical configu-
ration. The only limitation for the π-twisted Möbius bands is the aspect ratio at which
the band starts to experience self-penetration and thus the deformation is not injective
and beyond the scope of this study. For the fixed length 2π, the critical half-width for
which the minimizer has no self-penetration was found to be b = 1.5. This result is
in agreement with the results by Starostin and van der Heijden [13]. Additionally, the
results for the curvature and torsion shown in Figure 3.8 are qualitatively the same as
those in Starostin and van der Heijden [13]. The results for η and η′ are qualitatively
the same as those of Moore and Healey [15]. It is impossible to conduct a quantitative
comparison given the information provided in those papers. In Figures3.8 and 3.9 we
also observe π-periodicity of the torsion τ and antiperiodicity of the signed curvature
κs. This support the flip symmetry assumption made in both Starostin and van der
Heijden [13] and Moore and Healey [15] studies. However, the periodicity (antiperiod-
icity) we observe is not an assumption, but an outcome of numerical computation.

We also observe an inflection point at the Möbius band at α ≈ π. Both the
curvature and torsion at this point vanish. We also find that each Lagrange multiplier
λi, i ∈ {1, .., 5} exhibits a local extremum at this point. In particular, λ5 reaches its
global maximum at the critical point. This is in agreement with the results of Hornung
[19] that the injectivity constraint is nearly active close to an inflection point.

3.4 3π-twisted Möbius band

3.4.1 Initial guess

For this band we will use another approach to construct the initial guess. Looking at
the previous section, it is reasonable to assume that the initial guess for a 3π-twisted
band might be obtained by twisting the short edges by 3π relative to each other, as
it was done in the case of a π-twisted band. However, this approach has drawbacks.
As we already mentioned, the injectivity constraint is local and cannot prevent global
self-contact. Thus, while trying to twist the short edges relative to each other by
3π, the band passes through itself and the resulting band is not 3π twisted, but −π
twisted. We can, however, capitalize on recent work by Schönke et al. [1] that amounts
to a generalization of Sadowsky’s [10] construction for π-twisted bands. In Schönke et
al. [1], a 3π-twisted developable Möbius band is constructed from flat and cylindrical
segments as shown in Figure 3.10. We adjust the number of generators within the
flat portions of the construction so that all of the discrete isometry constraints, in
particular |di| = 1, are satisfied.

3.4.2 Results and analysis

As with the π-twisted Möbius band, for a fixed length 3π Möbius band we have a
restriction for the half-width b of the band at which it comes to a self-contact that is
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Figure 3.10: Initial guess from Schönke et al. [1]

Figure 3.11: Examples of 3π-twisted Möbius band of width b = 0.3 (left) and almost
maximum width b = 0.65 (right).



40 Numerical results

0 1 2 3 4 5 6

−2

0

2

α

κs
b = 0.1

b = 0.2

b = 0.3

b = 0.5

b = 0.65

0 1 2 3 4 5 6

0

0.5

1

1.5

α

τ

b = 0.1

b = 0.2

b = 0.3

b = 0.5

b = 0.65

0 1 2 3 4 5 6

−0.5

0

0.5

α

η
b = 0.1

b = 0.2

b = 0.3

b = 0.5

b = 0.65

0 1 2 3 4 5 6

−10

−5

0

5

10

α

η′

b = 0.1

b = 0.2

b = 0.3

b = 0.5

b = 0.65

Figure 3.12: Geometric properties of the 3π-twisted Möbius bands.

effectively a restriction for the half-width to length aspect ratio. For the 3π-twisted
Möbius band, the contact appears in the center (see Figure 3.11) of the band. The
widest band for which the deformation is injective has the half-width b ≈ 0.65. From
2π/3-antiperiodicity of the signed curvature κs and 2π/3-periodicity torsion Figures
3.12 and 3.13, we see that the band consists of three identical parts. Thus, our numeri-
cal results also support the existence of a symmetric solution assumed by Starostin and
van der Heijden [14]. However, experiments with paper strips suggest that there are
other non-symmetric minima, but we were not able to approach them as those minima
exhibit self-contact. Also, the 3π twisted band has three inflection points at which the
Lagrange multipliers λi, i ∈ {1, .., 5} reach a local extremum.

3.5 Implications on the stability of the continuous so-
lution

As we checked the eigenvalues of the projected Hessian (2.58) and they are all positive,
we claim that all of the discrete bands obtained in previous sections are local minimizers
of the discrete optimization problem (2.19). However, the original goal is to obtain local
minima of the continuous model. In this section we discuss the challenges arising while
attempting to make a connection between the stability of the discrete and continuous
bands. For this purpose, we consider a cylindrical band for the number of flat segments
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42 Numerical results

N ∈ {20, 40, 80, 160} and look at the behavior of the eigenvalues of the projected
Hessian (2.58). We use this configuration as we do not have doubt that its continuous
counterpart is at least a local minimumim of the corresponding continuous problem.
We sort, equidistantly distribute on the interval [0, 1], and plot the eigenvalues as in
Figure 3.14 (left plot). We employ a logarithmic scale to demonstrate the arising issue.
As we can see from the figure, approximately half of the multipliers of the left-hand side
are of similar magnitude for each value of N . As N increases, the magnitude decreases
and goes to zero. Thus, we conjecture that the behaviour of the energy functional
near critical points might be of order higher than two and thus that stability cannot
be checked by the second variation condition. Similar behavior is also observed for the
Möbius bands (right plot in Figure 3.14). Hence, we cannot make definite statements
about the stability of the continuous counterpart of the obtained solutions. Additionaly,
these small eigenvalues affect numerical convergence to the discrete solution.

3.6 Energy convegence for π-twisted bands
In Chapter 2 we have shown some a priori results for convergence of the discrete
augmented energy functional to the continuous one. In this section we provide some a
posterori results that support the theoretical calculations for π-twisted bands. As we
do not know the exact solution, we access the convergency rate on a sequence of grids.
For this we define the quantity

∆N = |EN − E2N |, (3.11)

where EN is the discrete energy of the discrete band with N flat elements. From Table
3.1, we can see that for all of the aspect ratios the convergency rate is better or as the
theoretically computed one in Chapter 2.
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Figure 3.14: Sorted and equally distributed on [0, 1] eigenvalues of the projected
Hessian in a logarithmic scale. The left plot corresponds to a cylindrical band of
length ` = 2π and hald-width b = 0.3, and the right plot corresponds to a π-twisted
Möbius band of length ` = 2π and hald-width b = 0.5

.
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half-width N ∆N ∆N/∆2N log2(∆N/∆2N)

b = 0.1
50 0.0419388 102.457 6.679
100 0.000409329 16.7572 4.067
200 2.4427e−5 - -

b = 0.2
50 0.00425294 5.88271 2.5565
100 0.000722955 5.85097 2.5487
200 0.000123562 - -

b = 0.5
50 0.0124391 4.38177 2.1315
100 0.00283882 4.16469 2.0582
200 0.00068164 - -

b = 0.8
50 0.0303446 4.13269 2.047
100 0.00734258 4.04805 2.0172
200 0.00181386 - -

b = 1.0
50 0.0594413 4.08444 2.03
100 0.0145531 4.02676 2.0096
200 0.0036141 - -

b = 1.5
50 1.90428 5.80436 2.537
100 0.328078 4.29908 2.104
200 0.0763136 - -

Table 3.1: Energy convergency results for various half-width of the π-twisted bands





Conclusions

In this section, we summarize what is done in the thesis and propose possible future
directions of the study. We first mention the main results of the present thesis as bullet
points.

• We considered an injective isometric deformation of a two-dimensional homo-
geneous and isotropic solid identified with a right-circular cylindrical reference
configuration D into a band that occupies the surface S in three-dimensional
Euclidean point space and derived the necessary and sufficient conditions for the
deformation to be isometric.

• We also performed dimensional reduction of the bending energy for the deforma-
tion above.

• As the energy functional has significant singularities that complicate the develop-
ment of a numerical approach, we introduce an additional variable that removes
the singularity. Also, this change allows us to consider an optimization problem
that only has equality constraints.

• For the new formulation of the problem we derived the Euler-Lagrange equations
and explicitly calculated the Lagrange multipliers in terms of the directrix and
generatrix.

• We discretized the continuous model and showed how to reconstruct a continuous
surface from a solution to the discrete optimization problem. The continuous
surface is reconstructed so that the corresponding continuous energy functional
is approximated by the discrete one in the second order of h.

• To solve the discrete optimization problem numerically, we developed a saddle-
free Newton method for constrained optimization.

• Finally, we provided the first attempt to find the partially everted cylinder and
numerical solutions for π and 3π twisted Möbius bands. We also performed the
stability analysis for all of the discrete solutions.

There are several intriguing questions that we can foresee for future research. We write
them down as bullet points below.

• We could not find a way to obtain the discrete partially everted cylinder for
refined discretization and wider range of aspect ratios. Thus, we did not answer
the question of the existence of the partially everted cylinder. Also, the critical

45
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Figure 3.15: Möbius band made of a paper strip and a partially everted Möbius band
obtained from it by an isometric deformation.

maximum and, probably, minimum aspect ratio of the partially everted cylinder
is to be studied if the partially everted cylinder exists.

• We also think that it is vital to solve the vanishing eigenvalue problem and to
figure out how we can check the stability of the continuous model.

• There is a possibility of having a π-twisted Möbius band different from the conven-
tional shape 3.15. We call this partially everted Möbius band and it is intriguing
to figure out if such configuration is stable or not.

This thesis provides a robust algorithm for computing equilibrium shapes for un-
stretchable elastic ribbons. The new bilateral injectivity constraint makes it possible to
compute some shapes (at least the 3π-twistes Möbius band) for wider range of aspect
ratios than it was done before. Additionally, the Saddle-free Newton method devel-
oped in 2 can be applied to any finite dimensional optimization problem with bilateral
constraints. With some additional modification (eg active set method [18]), it can
also be applied to wider range of optimization problems with bilateral and unilateral
constraints.
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