
Okinawa Institute of Science and Technology
Graduate University

Thesis submitted for the degree

Doctor of Philosophy

Self-Organization of Action Hierarchy
and Inferring Latent States in Deep

Reinforcement Learning with
Stochastic Recurrent Neural Networks

by

Dongqi Han

Supervisor: Jun Tani
Co-Supervisor: Kenji Doya

September, 2022

Declaration of Original and Sole
Authorship

I, Dongqi Han, declare that this thesis entitled Self-Organization of Action Hierarchy
and Inferring Latent States in Deep Reinforcement Learning with Stochastic Recurrent
Neural Networks and the data presented in it are original and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any
other university.

• References to the work of others have been clearly acknowledged. Quotations
from the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution
has been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the exception
of the following:

– Dongqi Han, Kenji Doya, and Jun Tani. “Self-organization of action hier-
archy and compositionality by reinforcement learning with recurrent neu-
ral networks.” Neural Networks 129 (2020): 149-162.

– Dongqi Han, Kenji Doya, and Jun Tani. “Variational recurrent models for
solving partially observable control tasks.” International Conference on
Learning Representations (ICLR), 2020.

• The first article above have been published in an open access format under the
‘Creative Commons Attribution 4.0 International’ license1. I hold the copyright
of the second article above2. I have permission to reprint them for the purpose
of the thesis.

Date: September, 2022
Signature:

1https://creativecommons.org/licenses/by-nc-nd/4.0/
2https://iclr.cc/FAQ/Copyright

iii

Abstract

The thesis aims to advance cognitive decision-making and motor control using rein-
forcement learning (RL) with stochastic recurrent neural networks (RNNs). RL is a
computational framework to train an agent, such as a robot, to select the actions that
maximize immediate or future rewards. Recently, RL has undergone rapid develop-
ment by introducing artificial neural networks as function approximators. RL using
neural networks, also known as deep RL, have shown super-human performance on a
wide range of virtual and real-world tasks, such as games, robotic control, and manip-
ulating nuclear fusion devices. There would not be such a success without the efforts
of numerous researchers who developed and improved the deep RL algorithms. In par-
ticular, most of the works focus on designing or revising the RL objective functions
by mathematical analysis and heuristic ideas. While the well-formulated loss functions
are critical to the RL performance, relatively fewer efforts have been paid to devel-
oping and improving the architecture of the neural network models used in deep RL.
The thesis discusses the benefits of using novel network architectures for deep RL. In
particular, the thesis includes two of the authors’ original studies about developing
novel stochastic RNN architectures for RL in partially observable environments. The
first work proposes a novel, multiple-level, stochastic RNN model for solving tasks
that require hierarchical control. It is shown that an action hierarchy, characterized by
consistent representation for abstracted sub-goals in the higher level, self-develops dur-
ing the learning in several challenging continuous robotic control tasks. The emerged
action hierarchy is also observed to enable faster relearning when the sub-goals are re-
composed. The second work introduces a variational RNN model for predicting state
transitions in continuous robotic control tasks in which the environmental state is par-
tially observable. By predicting subsequent observations, the models learn to represent
the underlying states of the environment that are indispensable but not observable. A
corresponding algorithm is proposed to facilitate efficient learning in partially observ-
able environments. The proposed studies suggest that the performance of RL agents
can be improved by adequate usage of stochastic RNNs structures, which provides
novel insights for designing better model architectures for future deep RL studies.

v

Acknowledgment

I cannot remember how many have happened during my Ph.D. life. First, I would
like to thank my family: it would be tough for me to study alone in a foreign country
without their support.

When I entered OIST initially, everything was fresh. Before joining my current
laboratory, I learned so much from the rotation experiences in 3 different units. I
would like to thank professor Kenji Doya, my first rotation supervisor and also my
Ph.D. co-supervisor, for bringing me into the fantastic world of neuroscience and neural
networks. In Doya unit, I also would like to thank Tadashi Kozuno, who taught me
a lot of theoretic knowledge for my thesis study. I would also like to thank professor
Erik De Schutter, my second rotation supervisor and my Ph.D. mentor. In Erik’s
lab, I did my first substantial research on modeling spiking neural networks, through
which I learned a lot about conducting scientific research. In particular, I would like to
thank Dr. Sungho Hong for advising my research in DeSchutter Unit and teaching me
how to present my study. Then, I would like to thank professor Denis Konstantinov,
my out-of-field rotation supervisor, for instructing me to study an interesting physics
problem.

After one year of rotations, I decided to join the Cognitive Neurorobotics Research
Unit (CNRU), led by professor Jun Tani, as my thesis lab. At CNRU, I learned
about a lot of interesting studies. I would like first to thank professor Jun Tani,
my thesis supervisor. He carefully advised my research during my Ph.D. career. He
provided numerous exciting and inspiring thoughts and ideas, which reformed my way
of thinking. More importantly, his enthusiasm for research has infected me a lot,
making me highly motivated when challenging a new and under-explored research
topic.

I also would like to thank my lab mates in CNRU with whom I worked for years:
Nadine Wirkuttis, Takazumi Matsumoto, Fabien Benureau, Jeffrey Queißer, Wataru
Ohata, Prasanna Vijayaraghavan, Vsevolod Nikulin, Federico Sangati, Hiroki Sawada,
Jorge Gallego Perez, Alexander Baranski, Siqing Hou, Hendry Ferreira Chame, Ah-
madreza Ahmadi, Jungsik Hwang, Minju Jung, Minkyu Choi, Jinho Chung, and our
lab administrator Tomoe Furuya. It is always exciting and inspiring to chat with them.
I would also like to thank my friends in OIST for their companionship and help: Ke
Wang, Shan Zou, Kunlung Li, Tomoya Noma, Osamu Horiguchi, Masakazu Taira, Joel
Perez Urquizo – I cannot list them all.

Finally, I would like to thank the kind and amazing Okinawan people, including
other OIST members. Life would not be as happy and peaceful without them.

vii

Abbreviations

5-HT 5-hydroxytryptamine (serotonin)
ANN artificial neural network

BPTT back-propagation through time
DOF degrees of freedom
FNN feedforward neural network
KLD Kullback-Leibler divergence

LSTM long short-term memory
MDP Markov decision process
MLP multi-layer perceptron

PC principal component
PCA principal component analysis
PDF probability density function
PO partially observable

POMDP partially observable Markov decision process
ReMASTER Recurrent Multi-timescale Actor-critic with STochastic Experience Replay

RNN recurrent neural network
RL reinforcement learning

SAC soft actor-critic
SEM standard error of the mean

SLAC stochastic latent actor-critic
t-SNE t-distributed stochastic neighbor embedding
VAE variational auto-encoder

VRNN variational recurrent neural networks
VRM variational recurrent model
VSD variational skill discovery

ix

Contents

Declaration of Original and Sole Authorship iii

Abstract v

Acknowledgment vii

Abbreviations ix

Contents xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Using artificial neural networks to study decision-making 1
1.1.2 Reinforcement learning . 2
1.1.3 Reinforcement learning with recurrent neural networks 3
1.1.4 Hierarchical neural networks . 4
1.1.5 Stochasticity . 5

1.2 Overview . 5
1.2.1 Abstracting action primitives 6
1.2.2 Inferring unknown environmental state 6

1.3 Chapter Arrangement . 7

2 Preliminaries 9
2.1 Reinforcement Learning . 9

2.1.1 Introduction . 9
2.1.2 Markov decision process . 9
2.1.3 Partially observable Markov decision process 11
2.1.4 Value function, Bellman equation and value-based RL 11
2.1.5 Experience replay and off-policy RL 12
2.1.6 Neural network as function approximators 13
2.1.7 Learning policy function and actor-critic methods 15

xi

xii Contents

2.1.8 Model-based reinforcement learning 15
2.1.9 Hierarchical reinforcement learning 16
2.1.10 Soft actor-critic . 16
2.1.11 Twin delayed deep deterministic policy gradient 17

2.2 Recurrent Neural Networks . 18
2.2.1 Simple RNN . 18
2.2.2 Continuous-time RNN . 19
2.2.3 Multiple-timescale RNN . 19
2.2.4 Gated RNN . 20
2.2.5 Variational RNN . 20

3 Self-Organization of Action Hierarchy 23
3.1 Background . 23
3.2 Prior Work on Hierarchical RL . 25
3.3 ReMASTER . 28

3.3.1 Multiple timescale stochastic RNN 29
3.3.2 Reinforcement learning . 29
3.3.3 Experience replay with RNN . 30
3.3.4 Motor and neuronal noise . 31

3.4 Self-organization of action hierarchy using ReMASTER 32
3.4.1 Task settings . 32
3.4.2 Off-policy advantage actor-critic 33
3.4.3 Noise scales . 34
3.4.4 Hyperparameters . 35
3.4.5 Sequential target-reaching task results 35
3.4.6 Consecutive relearning task results 38
3.4.7 Learning new tasks with low-level weights frozen 40
3.4.8 Consistency in representing sub-goals 42
3.4.9 Manipulating agent behaviors by clamping high-level neural states 42
3.4.10 Timescales and discountings . 44
3.4.11 Effect of hyperparameters . 44
3.4.12 Comparing learning from scratch and relearning 44
3.4.13 Neuronal noise . 46
3.4.14 Development of internal representations 46

3.5 Scaling up to more challenging tasks 47
3.5.1 Tasks . 48
3.5.2 ReMASTER implementation for the additional tasks 51
3.5.3 Experimental results . 52

3.6 Summary . 56
3.7 Neuroscience Insights . 58

3.7.1 Multiple timescales . 58
3.7.2 Discount factor . 58
3.7.3 Neuronal noise . 59

xiii

4 Variational RNN for RL in Partially Observable Environments 61
4.1 Background . 61
4.2 Related work . 63

4.2.1 Deep RL for POMDP . 63
4.2.2 Model-based RL . 64
4.2.3 Variational Bayes in RL . 64
4.2.4 Probabilistic models for encoding belief states in POMDPs . . . 65

4.3 Methods . 65
4.3.1 Variational recurrent state-transition models 65
4.3.2 Reinforcement learning controllers 67
4.3.3 Update-to-data ratio . 68
4.3.4 Implementation details . 68
4.3.5 Hyperparameters . 69

4.4 Environments . 70
4.5 Results . 70

4.5.1 Alternative algorithms . 71
4.5.2 Partially observable classic control tasks 72
4.5.3 Partially observable robotic control tasks 73
4.5.4 Long-term memorization tasks 74
4.5.5 Convergence of the keep-learning VRM 75
4.5.6 Ablation study . 75
4.5.7 Visualization of trained agents 77
4.5.8 Model accuracy . 77
4.5.9 Sensitivity to hyperparameters of the VRMs 77

4.6 Summary . 78
4.7 Discussion . 80

4.7.1 Model-based and model-free RL 80
4.7.2 Representation learning and RL 81

5 Conclusion and Future Work 83
5.1 Conclusion . 83
5.2 Future work . 84

Bibliography 87

List of Figures

2.1 Elements of reinforcement learning . 10

3.1 The basic structure of MTSRNN . 28
3.2 Task settings . 32
3.3 The sequential target-reaching task . 35
3.4 Analysis of the sequential target-reaching task using ReMASTER . . . 37
3.5 The consecutive relearning task . 39
3.6 Analysis of ReMASTER agents . 41
3.7 Manipulating agent behaviors by clamping high-level RNN states . . . 43
3.8 Timescale dependence . 45
3.9 Sensitivity analysis for hyperparameters 46
3.10 Performance comparison among relearning phases and the control case 47
3.11 Noise dependence of ReMASTER . 48
3.12 Neuronal noise ablation study . 49
3.13 Development of internal representation for sub-goals 50
3.14 Rendering of the environments . 50
3.15 Results of the vision-based sequential reaching task 53
3.16 Results of the robot arm sequential touching tasks 54

4.1 Diagrams of the proposed algorithm . 65
4.2 Computation diagram . 66
4.3 Learning curves of the classic control tasks 73
4.4 Learning curves of the robotic control tasks 74
4.5 Learning curves of the sequential target reaching task 75
4.6 Relationship between the average return of the agent and loss function 75
4.7 Ablation study . 76
4.8 Visualizing behavior of the trained agents 77
4.9 Examples of observation predictions . 78
4.10 Sensitivity to hyperparameters for VRM 79

xv

List of Tables

3.1 Hyperparameters for ReMASTER . 36
3.2 Consistency of RNN outputs in representing sub-goals 42
3.3 Details of the CNN layers . 52
3.4 Hyperparameters of the updated implementations of ReMASTER. . . 55
3.5 Consistency of RNN outputs in representing sub-goals for the additional

tasks . 56

4.1 Shared hyperparameters . 69
4.2 VRM hyperparameters . 70
4.3 Information of the environments we used. 70

xvii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Using artificial neural networks to study decision-making

Learning to perform adaptive and intelligent decision-making and motor control is
a central topic in understanding intelligence. Scientists have tried to approach the
problem from various points of view.

Neuroscientists study this by conducting experiments on animal and human sub-
jects. Since the central nervous system plays a significant role in decision-making,
researchers have been studying the brain for more than a hundred years [56]. The
scale of study includes molecules, ion channels, cells, layers, neural circuits, and the
whole brain. The development of experimental methodologies has allowed researchers
to obtain a deep understanding of the mechanisms at the microscopic scale of neu-
rons using, e.g., electrodes or calcium imaging, or at the macroscopic scale of brain
regions using, e.g., functional magnetic resonance imaging [77]). While the experimen-
tal neuroscientific studies are undoubtedly fundamental and vital, there are practical
challenges in-between cell-level mechanism and macroscopic-level imaging: the exper-
imental study of neural circuits faces some major difficulties. First, to study a neural
circuit, we need to know the activity of each neuron at the microscopic level. Since
these neurons are usually distributed not on the same plane or in a small cube, exist-
ing techniques such as calcium imaging could not cover all the neurons of the circuit
without causing considerable damage to the brain tissue. Second, the brain regions
are connected with each other. It is non-trivial to consider the impact of the inter-
connectivity between the region of interest and the other neural circuits. Moreover,
even if we could record the activities of all neurons and synapses in a network, the
size of the data stream could be immense, given that the activities changes at the
millisecond level. This yields a considerable challenge to data saving and processing.
Therefore, there has been a long-standing gap between macro-level animal behavioral
study and microscopic neuroscience experimental study.

Facing such difficulties, computational neuroscience [188] tries to investigate the
neural circuits with mathematical models based on the fundamental neural mechanisms
found in experiments. A neuron is usually modeled as an electric circuit characterized
by its membrane potential. By computer simulation, researchers can access or record

1

2 Introduction

the status of any neuron or synapse at any time. Thus it is convenient to analyze
the dynamical process in the networks. Computational neuroscience has been success-
fully applied to many important aspects of decision-making and motor control, such
as spikes propagation [43, 171], working memory [36], etc. However, when it comes to
learning, computational models often face difficulties: although we know some basic
principles of learning in biological brains, such as spike-time-dependent plasticity [140]
and activity-dependent plasticity [75], empirical results demonstrate considerable prac-
tical difficulties in training a network model to tackle challenging tasks by biologically-
plausible learning rules [212]. So far, studying sophisticated behavior learning with
biologically-plausible neural networks seems unpractical.

On the other hand, the recent development of artificial intelligence has demon-
strated the advantage of backpropagation [112, 176] as the core learning algorithm for
artificial neural networks (ANN). Learning with ANNs and backpropagation, or deep
learning [184], has proven successful in various challenging tasks, including but not
limited to game playing [196, 234], protein structure prediction [106], and natural lan-
guage processing [249]. Moreover, recent studies by Lilicrap and collegues [135, 136],
Song et. al. [203] and Whittington & Bogacz [243] argue that even though learning
in the brain does not work in exactly the same way as backpropagation in ANNs, the
brain is still able to implement the core principles underlying backpropagation, and
biological learning may locally approximate the backpropagation algorithm with feed-
back connections. Thus, while neuroscience studies have built up the foundation of
understanding human-like intelligence, studying decision intelligence in ANNs appears
as a complementary approach to deepen our understanding of the intelligence of ani-
mals and humans because of its learning efficiency in relatively complicated tasks. This
thesis will focus on learning to perform cognitive decision-making and motor control
using ANN models.

1.1.2 Reinforcement learning

Armed with ANN as a powerful tool, an essential problem is the learning principle(s)
for acquiring decision-making and motor control skills. Reinforcement learning (RL) is
one of the most established frameworks for action learning [208]. In RL, the agent tries
to obtain more (long-term) rewards by improving its strategy (or policy in RL termi-
nology). RL has undergone rapid development in recent years [208]. In particular, deep
RL, i.e., RL using ANNs, has proven successful on highly challenging decision-making
tasks [197, 234]. The fundamental algorithm in RL, temporal difference learning [211],
has also been used to model the reward-relevant learning process in the brain [158].
In the animal brain, the neurotransmitter dopamine [245] represents reward prediction
error signals [146] that affect decision-making and learning [59].

Learning needs experience. In RL, the experience for learning comes from the
interaction between an agent and the environment by performing a combination of
random actions and a learned control strategy. The agents need to trade-off between
exploring the environment for novel experiences and exploiting learned knowledge to
obtain more returns. Such an exploratory scheme is an essential basis for learning in
humans and animals.

1.1 Motivation 3

1.1.3 Reinforcement learning with recurrent neural networks

This thesis tries to advance intelligent decision-making and motor control by modeling
robots1 using RL with ANNs. In particular, recurrent neural networks (RNN) models
[50] are used for this purpose.

Most deep RL studies used feedforward neural networks (FNN) as function approx-
imators of value, policy and etc., with a continuous-valued state as input. In an MDP,
an FNN should, if it is expressive enough, be able to act as a state-action/state value
function. This is because only the current state (observation) and policy are needed
to evaluate expected reward and return, and thus it is straightforward to use an FNN
such as a convolutional neural network (CNN) in RL [131, 149].

However, in more general real-world applications, we often need to consider partially
observable environments (where the agent cannot directly observe the full underlying
state that determines the system dynamics) [107]. A category of partially observable
tasks common in real life is history-dependent, i.e., state transition and reward function
also depend on previous observations and actions. Therefore, the state-transition his-
tory should be taken into account. Previous studies on history-dependent tasks have
covered real-time vision-based robotic control [86, 125] and video games that need
memorization of previous events [103, 110, 234].

In deep RL, a straightforward solution to history-dependent tasks is to include
previous observations in the input to value/policy function approximators. To overcome
the problems of over-extensive history or history of variable length, RNNs are naturally
considered a replacement for FNNs. At each step of interacting with the environment,
an RNN takes current observation as input and extracts the observed information into
its hidden state. If the RNN is well trained, its hidden state should carry critical
information that underlies state transition and reward function. Then the hidden state
can be used for computing any quantity that depends on historical observations.

Moreover, RNNs are particularly useful for continuous-time sensorimotor tasks by
discretizing the time to discrete steps, as they can deal with an arbitrary sequence
length in principle2.

Early attempts to use RNNs in RL can be traced back to the 1990s [181, 183,
228, 244], which employed simple RNNs and investigated only simple tasks because
of limited computation power at that time, as well as the vanishing gradient problem
[96, 97]. After modern RNN architectures such as long short-term memory (LSTM)
[98] and continuous-time RNN [22] were developed, together with the development of
computation infrastructure and other deep learning techniques [93, 119], RNNs have
been applied to much more challenging RL tasks, such as playing games with hidden
information and high-dimensional action and state space [131, 234] and have achieved
super-human performance.

In most of these works, RNNs only play the role of hidden representation learning

1In this thesis, a robot is defined as an autonomous agent with sensors to perceive the information
of the environment and with the capacity to conduct computations to perform motor control so as to
interact with the environment.

2Although the neural ordinary differential equation [27] is a more specified model for continuous-
time environmental dynamics, it does not fit the (partially observable) Markov decision process where
the time steps are discrete.

4 Introduction

and function approximators to deal with memory-dependent tasks [92, 94, 110, 234,
255]. However, empirical work shows that even for the environments which usually were
considered fully observable, such as Atari games [149], extraordinary performance can
be achieved by employing RNNs [110]. It remains under-explored how RNNs facilitate
RL.

It was also proposed that in RL, RNNs enable meta-learning (i.e., learning a range
of tasks that share some common properties) [6, 238]. Wang et al. [238] argued that
the prefrontal cortex, which has many recurrent connections, plays a key role in meta-
learning. The authors demonstrated that an RNN network can perform a number of
RL tasks even without synaptic learning by updating task-relevant latent variables in
hidden units. Also, Al-Shedivat et al. [6] demonstrated that robotic agents using RL
with RNNs can perform meta-learning in dynamically changing tasks.

An important feature of RNNs is that it maintains an internal state, which makes
an RNN beyond an input-output machine. Although the hidden state of feedforward
networks (values in the hidden layers) can also be meaningful or interpretable [119,
170], they are only able to represent information from the current input instead of
the contextual information. However, a trained RNN’s internal state is capable of
encoding information from both current and historic inputs (and future input if using
bi-directional RNNs). Thus taking advantage of the internal state has also led to an
interesting direction in recent years. For example, Lee et al. [125] trained a recurrent
state-transition model and used its internal state as additional input to the value
network, which enabled the value function to capture contextual information.

1.1.4 Hierarchical neural networks

We may get inspiration from intelligent animals, such as mammals, for developing an
intelligent AI for decision-making or motor control. In particular, mammals’ behaviors
usually appear as the composition of reusable movement skills, e.g., jumping, running,
and pushing [179, 222]. Each movement skill includes detailed actions of many parts
of the body. Once a movement skill is acquired, the animal may use it in unseen tasks
with little requirement of re-adapting the detailed actions.

Understanding the brain mechanisms behind the flexibility and compositionality of
mammals’ actions should be beneficial to creating an AI model with a similar ability.
In the brains of mammals, many neural pathways consist of multiple brain regions with
hierarchical intrinsic neural properties [20, 54, 95, 154]. The lower-level brain regions
deal more with reusable primitives or features, and the higher-level ones with the
composition or integration of them. For example, in the visual pathway, the primary
visual cortex (V1), which receives vision signals earlier, has a smaller receptive field
compared to the deeper regions such as visual area V4 [213]. For action generation,
there is also neuroscientific evidence that the motor pathway consists of brain areas
focusing on more abstracted-level and detailed-level actions, respectively. For example,
Shima & Tanji [192, 193, 218] suggested that the supplementary motor area deals with
abstract movement sequence processing and the primary motor cortex with detailed
movement patterns.

For ANN models dealing with vision, one of the most popular architectures, the
CNN, is characterized by spatial hierarchy utilizing intrinsic spatial scale constraints

1.2 Overview 5

assigned among multiple layers [119, 170]. However, relatively few studies worked on de-
veloping brain-inspired hierarchical neural network architecture for decision-making/motor
control tasks. A classic work by Yamashita & Tani [248] developed a multi-layer RNN
known as multiple-timescale RNN (MTRNN, Chap. 2.2.3) with a hierarchy of intrinsic
timescales, inspired by neuroscientific and behavioral studies that suggested more ab-
stracted actions correspond to slower timescales [101, 154, 156, 199]. It was shown that
a hierarchical representation in the network emerged via supervised learning, where
contiguous sequences of actions are split into reusable primitives, which in turn are
flexibly integrated into new sequences. However, Yamashita & Tani’s work [248] re-
quired human demonstrations. It has not been investigated how MTRNN contributes
to the autonomous development of motor skills in self-exploratory learning with envi-
ronmental rewards (RL). This is one of the major motivations for our work proposed
in Chap. 3.

1.1.5 Stochasticity

The randomness in neural activities is also considered an important character in cogni-
tion. In the brain, it is known that cortical neurons, which play a key role in cognition,
have stochastic firing properties, such as irregular inter-spike intervals and noisy firing
rates [14, 15, 91, 201]. For machine learning, Bayesian models such as the variational
auto-encoder [115] have been shown to effectively extract the probabilistic structure
hidden in spatial patterns of the data.

Dynamically changing environments in the real world are often stochastic in terms
of state transition and/or observation. Variational RNNs [34, 78] are powerful architec-
tures to model stochastic dynamics. By modeling the sequences of, e.g., environmental
observations, variational RNN models can learn to better represent the probabilistic
structure underlying the environment dynamics, which also provides convenience and
flexibility for RL [88, 125]. The application of variational RNN in RL will be addressed
in Chap. 4.

Moreover, while most RL methods apply noise to actions to achieve random ex-
ploration, it is also possible to consider a stochastic model [61, 87] that generates
up-stream noise for exploration. If the model captures a high-level symbolic represen-
tation of abstracted actions, random noise in the model may facilitate exploration in
the abstracted action space: an example will be addressed in Chap. 3.

1.2 Overview

The proposed thesis study aims to investigate the role(s) of RL with stochastic RNN
in acquiring cognitive decision making and motor control functions in artificial agents.
Two studies using RL with stochastic RNN on robotic tasks in partially observable en-
vironments are addressed. These topics involve essential aspects of learning to perform
effective and adaptive decision-making and motor control: abstracting action prim-
itives and inferring the unknown environmental state. In addition, the connections
between the thesis studies and neuroscience/cognitive science will also be discussed.

6 Introduction

1.2.1 Abstracting action primitives

In this study, a novel framework of RL using a multiple-timescale, stochastic RNN
model is proposed. The framework is characterized by two essential ideas. The first is
to have an intrinsic hierarchy of timescales in the network, where the lower level neural
activities are subject to faster dynamics than those of the higher level, inspired by
findings in neuroscience [25, 101, 154, 156, 177, 199]. The second idea is to introduce
stochasticity in the neuronal activities, reflecting the fact that neurons in the cortex are
featured with highly stochastic activities [14, 15, 91, 201]. Experiments are conducted
in several challenging continuous control tasks with an interpretable task hierarchy.
The results show that the RNN model autonomously learns to abstract sub-goals and
thus self-develops the internal representation of an action hierarchy in the internal
dynamics. Furthermore, it is shown that the self-developed compositionality of the
network facilitates more efficient relearning when the agent adapts to a novel task
that is a re-composition of previously learned sub-goals than learning from scratch.
A performance gain is also observed when neural activities are subject to stochastic
rather than deterministic dynamics.

This work has been published as:

• Dongqi Han, Kenji Doya, and Jun Tani. “Self-organization of action hierarchy
and compositionality by reinforcement learning with recurrent neural networks.”
Neural Networks, 129:149–162, 2020.

1.2.2 Inferring unknown environmental state

This study attempts to demonstrate more efficient and robust learning in partially
observable environments, in which deep RL agents usually perform poorly. One signif-
icant difficulty originates from that two problems need to be handled simultaneously:
how to extract information from the original observation to solve the task and how
to improve the acting strategy (policy). In this work, an RL methodology for solving
partially-observable tasks is proposed, which consists of two parts: a variational RNN
for modeling the environment and an RL controller that takes the inputs from the envi-
ronment and the RNN model. The proposed method is tested in two types of partially
observable robot control tasks, in which the position or velocity components of the
state variables are not observable, and a task that requires long-term memory. In chal-
lenging tasks wherein the underlying environmental states cannot be inferred from raw
observations in a straightforward manner, the proposed method demonstrated more
efficient learning than alternative approaches.

This work has been published as:

• Dongqi Han, Kenji Doya, and Jun Tani. “Variational recurrent models for solv-
ing partially observable control tasks.” International Conference on Learning
Representations (ICLR), 2020.

1.3 Chapter Arrangement 7

1.3 Chapter Arrangement
The remaining chapters of this thesis are arranged as follows. Chap. 2 introduces essen-
tial preliminary knowledge of the thesis. Then, Chap. 3, 4 introduce the aforementioned
two studies, respectively. The last chapter concludes the thesis and discusses possible
future directions.

Chapter 2

Preliminaries

2.1 Reinforcement Learning

2.1.1 Introduction

Reinforcement learning (RL) is a machine learning scheme in which agents learn the
best policy to maximize long-term rewards in a given environment [208]. In RL, the
agents explore the environment and generate data by receiving rewards or penalties
(negative rewards) from interaction with the environment.

As figure(2.1) shows, a typical RL framework is comprised of the agent(s) and
the environment, where the agent executes actions in an environment according to
its policy. By interaction with the environment, the agent observes environmental
information, such as position, image, and sound. This information is called state in
RL. In addition, a reward (or punishment) signal is provided by the environment. A
positive reward will be given if the agent finishes a task, performs well, or wins a game.
Also, a negative reward is presented when the agent executes poorly or fails to complete
the task.

The goal of RL is to learn the optimal policy that leads to the largest benefits.
Here benefits can be defined as the mean reward, the accumulated rewards, or other
measurements of total rewards, depending on the learning task. An RL problem is usu-
ally formulated as a Markov decision process (MDP) or a partially observable decision
process (POMDP).

2.1.2 Markov decision process

A Markov decision process (MDP) [16, 99] is a mathematical framework to describe
the process in which a decision maker (the agent in RL) and an environment interact.
Outcomes are partly decided by the decision maker’s action and are partly stochastic.
MDPs are built on discrete, consecutive time steps: t = 0, 1, 2,

Mathematically, an MDP is defined as a 5-tuple (S,A, P,R, γ):

• S is a set of states, called state space.

• A is a set of actions, called action space.

9

10 Preliminaries

State
Environment

Reward

Action

Figure 2.1: Elements of reinforcement learning

• P (s′, s, a) = Pr[st+1 = s′|st = s, at = a] is a mapping from S × S × A to [0, 1],
which indicates the probability that action a at time t when st = s will result in
st+1 = s′. It is called the transition probability.

• R(s′, s, a) is a mapping from S × S × A to R, where R denotes real numbers.
R(s′, s, a) indicates the immediate reward (or expected immediate reward) re-
ceived when action a leads to the state transition s to s′. R is called the reward
function. The reward at step t is denoted by rt.

• γ ∈ [0, 1] is called the discount factor, which decides the trade-off between imme-
diate reward and future reward.

The action acts according to a strategy function π : A × S → [0, 1], called policy,
which is the probability of executing an action a when the current state is s. The goal
of an MDP is to develop a policy π that maximizes the expectation (denoted by E) of
the sum of discounted rewards when the agent executes actions following policy π:

Eπ

[
∞∑
t=0

γtrt

]
(2.1)

=Eπ

[
∞∑
t=0

γtR(st+1, st, at)

]
, (2.2)

where the action at each step is sampled from the policy: at ∼ π(at|st). The expectation
is taken over st+1 ∼ P (st+1, st, at). Eq. 2.1 provides an intuitive understanding of the
discount factor γ — an MDP with a larger γ considers longer-term rewards. Note that
here we have omitted the dependence on the initial state s0 for simplicity. If s0 follows
some distribution, the expectation should also conditioned on this distribution.

2.1 Reinforcement Learning 11

The policy π∗ that maximizes equation 2.1 is called the optimal policy.
It is called model-based RL if the transition probability P (s′, s, a) is known or esti-

mated by a world model of the agent. Otherwise, it is referred to as model-free RL.

2.1.3 Partially observable Markov decision process

More general cases of MDPs can be defined as partially observable Markov decision
processes (POMDPs) [107], in which some part of the environmental state is not ob-
served by the agent. The unobservable underlying state may be important in the
state-transition dynamics of the environment. MDP can be considered a special case
of POMDP.

A 7-tuple (S,A, P,R,X, O, γ) can be used to describe a POMDP. S,A, P, R, γ are
defined in the same way as in an MDP. However, the agent cannot directly obtain a
state s but an observation x from the environment. The observation in a POMDP
usually contains partial information of the environment state. The set of all possible
observations is denoted by X. The probability that the agent observes an observation
is given by the observation probability function O : S× A→ p(X). The objective of a
POMDP is similar to that of an MDP: to maximize Eq. 2.1.

2.1.4 Value function, Bellman equation and value-based RL

Learning to estimate Eq. 2.1 is the basis of many RL algorithms, which are built on
MDPs and POMDPs. For this purpose, the state value function Vπ(s) is introduced as
the expected sum of discounted rewards under policy π from the current state s:

Vπ(s) = Eπ[
∞∑
t=0

γtrt|s0 = s]. (2.3)

Note that the state value function is conditioned on policy π(a|s), therefore, learning
to estimate Vπ is known as policy evaluation. Note that we have

Vπ(s) = Eπ[
∞∑
τ=0

γτrt+τ |st = s] (2.4)

= Eπ[rt + γ
∞∑
τ=0

γτrτ+1|st = s] (2.5)

= Eπ[R(st+1, st, at) + γVπ(st+1)|st = s] (2.6)

=
∑
a

π(a|s)
∑
s′

[P (s′, s, a)R(s′, s, a) + γVπ(s
′)] . (2.7)

Eq. 2.7 is called the Bellman equation for the state value function [18, 208]. Many
policy evaluation algorithms are based on the Bellman equation or its variants. The
readers may gain some intuitive understanding of how policy evaluation works from Al-
gorithm 1, which is a simple example of iteratively updating the tabular value function
for discrete action and state spaces under a given policy π [208].

12 Preliminaries

Algorithm 1 Iterative policy evaluation for discrete action and state spaces
Input: policy π(a|s), state-transition function P (s′, s, a), reward function R(s′, s, a)
Initialization a table V (s) = 0 for all s ∈ S
while V (s) does not converge do

for each s ∈ S do
V (s)←

∑
a π(a|s)

∑
s′ P (s

′, s, a)[R(s′, s, a) + γV (s′)]
end for

end while

With a value function, an essential problem is how to choose good actions. One
common approach to address this question is to introduce an action-value function, or
Q-function under policy π, defined as:

Qπ(s, a) = Eπ[
∞∑
t=0

γtrt|s0 = s, a0 = a] (2.8)

= Eπ[R(s′, s, a) + γ
∞∑
τ=0

γτ+1rτ+1|s0 = s] (2.9)

=
∑
s′

P (s′, s, a)[R(s′, s, a) + γVπ(s
′)]. (2.10)

A Q-function provides a measurement of expected future returns with regard to a
state-action pair (s, a). For a task with a discrete action space, it is straightforward to
obtain the “greedy” action at state s with a Q-function:

agreedy(s) = argmaxa′Qπ(s, a
′). (2.11)

2.1.5 Experience replay and off-policy RL

Like humans, RL agents can also utilize past experiences to improve their current policy,
namely experience replay. If the experience used for training is collected following a
different policy from the current policy (or the policy one wants to optimize), it is
called off-policy RL; otherwise, on-policy RL. Usually, an RL agent keeps updating
its policy from time to time, so experience replay normally needs to use off-policy
RL algorithms. There are both pros and cons of experience replay with off-policy
data. The goodness is that there are more data to train the model since the old data
can be reused. Moreover, the data often cover a wider part of the state space than
only on-policy data. This makes it less possible for an agent to be trapped around a
local optimum, thanks to the experiences of farther positions in the state space. The
badness is that it is computationally less straightforward to optimize the value and
policy functions. The following will introduce why.

Let us first consider learning a state value function Vπ(s) with on-policy RL. Suppose
we have a buffer B to store the agent’s experiences for learning. In on-policy cases, the
experiences in B are collected using the current policy π. Then, estimating Vπ will be

2.1 Reinforcement Learning 13

straightforward using Algorithm 1:

Vπ(st)← Eπ[R(s′, st, at) + γVπ(s
′)] (2.12)

≈ E(st+1,st,rt)∼B[rt + γVπ(st+1)], (2.13)

where (st+1, st, rt) ∼ B means the state-transition tuple (st+1, st, rt) is randomly sam-
pled from the buffer B with equal probabilities. Note that this approximation (Eq. 2.13)
only works with on-policy RL. However, suppose the experience in B was generated
using a different policy from the target policy π, namely in the off-policy case. In that
case, we cannot simply sample data from the buffer to update the value function (like
in Eq. 2.13) since the expectations are not based on the same distribution.

Fortunately, this problem can be overcome using algorithms designed for off-policy
RL. One of the most popular algorithms is known as Q-learning [241]. In many RL
problems, we only need the optimal policy π∗. Q-learning directly estimates the Q-
function of the optimal policy π∗ using the experiences in the replay buffer B:

Q∗(st, at)← Q∗(st, at) + α (rt + γmaxa′Q∗(st+1, a
′)−Q∗(st, at)) , (st+1, st, at, rt) ∼ B,

(2.14)

where 0 < α <= 1 is the learning rate. The term rt+ γmaxa′Q∗(st+1, a
′)−Q∗(st, at) is

called temporal difference (TD-error) in Q-learning, which reflects the approximation
error of the Q-function. However, in general cases, TD-error may refer to the ap-
proximation error of either the state value function or Q-function based on a Bellman
equation.

In many practical scenarios, the agent alternately interacts with the environment
to get experiences and updates its policy. This is known as online RL. The opposite of
online RL is offline RL, where the agent cannot interact with the environment, and the
policy needs to be learned with a given dataset of experiences. In online RL, the agent
needs some degrees of exploratory, random actions to avoid being trapped in a local
optimum. Using ϵ-greedy policy of a Q-function is a common practice for Q-learning:

a =

{
argmaxa′Q(s, a′) if η ∼ Uniform[0, 1] > ϵ,
a random action in A otherwise, (2.15)

where η is a random variable sampled every time when an action is chosen, and ϵ is
usually a small, positive number (such as 0.1). A practical Q-learning procedure for
online RL in MDPs with discrete state and action spaces is described in Algorithm 2.
Q-learning can be straightforwardly generalized to MDPs with continuous state spaces
[149] using K function approximators Qk(s), k = 1, 2, ..., K (e.g., linear functions),
where each Qk(s) corresponds to an action a ∈ A, and K is the size of the action
space.

Note that we do not need to explicitly learn a policy function π(a|s) in Q-learning,
since it can be directly inferred using Eq. 2.11 or 2.15. The RL methods that only
require learning value functions are referred to as value-based methods.

2.1.6 Neural network as function approximators

Early RL methods that worked well were mostly designed for discrete state and action
space using tabular value function and/or policy function. However, the state space

14 Preliminaries

Algorithm 2 Q-learning for discrete state and action spaces
Input: an MDP environment with the initial state s0 and a learning rate α
Initialize a Q-table Q∗(s, a) = 0 and an empty replay buffer B.
while task not mastered do

(Interacting)
Sample an action based on current state: at ∼ ϵ− greedy(Q(st, at)) (Eq. 2.15)
Execute action at for one environment step and observe rt and st+1.
Record the state-transition tuple (st, st+1, at, rt) into B
t← t+ 1

(Learning)
Randomly sample a batch of tuples (sτi , sτi+1, aτi , rτi), i = 1, 2, ..., N from B
for i = 1, 2, ...N do
Q∗(sτi , aτi)← (1− α)Q∗(sτi , aτi) + α (rτi + γmaxa′Q∗(sτi+1, a

′))
end for

end while

is often continuous in many problems. Traditionally, linear approximators were often
used to model the value and policy functions for a continuous state space [13]. For
example, V (s) = ϕ · s + b, where s is the state vector, and ϕ and b are learnable
parameters.

Linear approximators require fewer computational resources and can be solved by
analytic methods, such as linear regression. However, in complicated tasks, the linear
representation of the value function generally cannot give an adequate approximation
of the true value function due to its limited expressive power (i.e., how well a parame-
terized function can approximate the true function).

In recent years, RL using artificial neural network (ANN) models as function ap-
proximators, a.k.a. deep RL, has undergone rapid development [148, 149, 240], thanks
to the expressive power of ANN and the corresponding training techniques such as
stochastic gradient descent [21]. One famous example is AlphaGo [196, 197], which
took advantage of deep convolutional neural networks to achieve super-human perfor-
mance in the game of Go.

Neural networks can be roughly divided into two classes: feedforward neural net-
works (FNNs) and recurrent neural networks (RNNs). FNNs are networks that do
not have cycles or loops in the network [254], processing information in a single di-
rection (from input to output). Convolutional neural networks [124] and multi-layer
perceptrons [120] are examples of FNNs. The other class, RNNs [80], have self-feedback
connections between neurons. This feature enables RNNs to use their hidden states1

to process sequential inputs. Popular RNNs include Elman-type RNN [50], long short-
term memory (LSTM) [98], gated recurrent unit (GRU) [30], etc. A well-trained RNN
can encode inputs from previous time steps (orders in the sequence) as memory-like
hidden states in the network, such as the work by Utsunomiya & Shibata [228] (See
Chap. 2.2 for a more detailed introduction of RNN).

Many deep RL methods are built on MDPs, where an FNN can be a useful function

1The hidden states of an RNN means values of neuronal activities in hidden layers of the RNN.
These should not be confused with the state s in an MDP/POMDP.

2.1 Reinforcement Learning 15

approximator for value functions and policy functions using current state st as input
since the state transition function and reward function only depend on the current state.
However, in a more general situation (e.g., POMDP), where historical observations
also need to be taken into account, RNNs are often more suitable for the function
approximators.

2.1.7 Learning policy function and actor-critic methods

Value-based methods make it possible to solve some RL tasks without the necessity of
explicitly learning the policy function π(a|s). However, they also have limitations. One
major problem is that when the action space is continuous, it is difficult to conduct
the max and argmax operations in Q-learning.

An alternative approach is to learn a policy function that is not directly derived from
value functions. The policy function can be parameterized by a function approximator
π(a|s) = πθ(a|s), where θ denotes the parameters for the policy function approximator,
which is usually an ANN. To learn the policy function, an algorithm called policy
gradient was introduced by Sutton et al. [209]. The aim is to maximize long-term
rewards, namely the objective function.

Jπ(θ) = Eπθ

[
∞∑
t=0

γtrt

]
, (2.16)

by updating the policy πθ.
The policy gradient algorithm maximizes Jπ(θ) by gradient ascent, where the gra-

dient of Jπ(θ), or policy gradient [209], can be obtained by:

∇θJπ(θ) = Eπ [Qπ(s, a)∇θ log πθ(a|s)] (2.17)
≈ E(st,at)∼Bπ [Qπ(st, at)∇θ log πθ(at|st)] , (2.18)

where Bπ is the replay buffer in which the experiences are collected with policy π.
In practice, the value function(s) usually need to be learned in parallel with learning

the policy function. This is called actor-critic methods in RL. Actor-critic methods
have achieved human-level or super-human behavior on different tasks such as Atari
games and robotic control [148, 240].

Note that Eq. 2.18 only applies to on-policy RL. However, there are also off-policy
actor-critic methods that utilize experience replay [41, 70, 83]. The RL algorithms
used in the thesis are all off-policy actor-critic methods, which will be detailed in
Chap. 2.1.10, 2.1.11, and 3.4.2.

2.1.8 Model-based reinforcement learning

The recent rapid progress of deep learning research, empowered by both software and
hardware innovations, has enabled RL to solve more challenging and practical tasks
[197, 234]. While the state-of-the-art ANNs can be used for approximating value and
policy functions, the expressive power of ANNs has further stimulated the development
of model-based RL [207]. A model predicting the state transition (e.g., predicting

16 Preliminaries

subsequent state/observation from current state and action) of the environment can
be trained to facilitate RL. This model is also known as the world model. The main
categories of model-based RL can be summarized as follows.

Dyna-style (dreaming): The learned world model is utilized to generate simu-
lated experiences that can be used by the RL agent to improve its policy in a model-free
manner [109, 207]. By doing so, actual interaction with the real environment can be
reduced, which is preferable if it is relatively expensive to explore the real environment.

Policy search (planning): This type of model-based RL assumes that the reward
function is differentiable and known, or it is learned by the model [42, 73, 164]. Thus
gradient ascent to maximize total return can be straightforwardly conducted in the
network by treating the actions as the variables to optimize.

Lookahead: The world model can also be used to perform a lookahead search for
future outcomes using a given policy, such as Monte-Carlo tree search [185, 196, 197].
The future outcomes can help the agent to better estimate the value of the current
state.

These model-based RL methodologies all leverage the prediction functionality (out-
put) of the learned or provided model. However, another possible advantage is that
the underlying state of the environment can be better inferred in terms of the internal
representation of a state-transition model rather than the raw observation. Chap. 4
will propose a novel RL methodology according to this idea, which learns a model but
does not use it for prediction.

2.1.9 Hierarchical reinforcement learning

RL faces challenges with high-dimensional state and action spaces. When these two
spaces are large, the policy’s function approximation and exploration become difficult.
One way to overcome this difficulty is to (explicitly or implicitly) decompose the action
space into multiple levels. This is known as hierarchical reinforcement learning (HRL)
for action abstraction [45, 52, 211]. In HRL, there are multiple levels of control (usually
2). A set of detailed actions can be learned as an action primitive corresponding to
a sub-goal. The sub-goal can be, e.g., a particular environment state, a particular
moving pattern, a latent variable, etc. All the sub-goals form the higher-level action
space. The main aim of HRL is to discover reusable action primitives in a task or a set
of tasks. By avoiding training lower-level actions repetitively, the effort needed to learn
the task can be reduced. A number of previous studies of HRL managed to conquer
some environments that are difficult for non-Hierarchical RL frameworks. A detailed
review of HRL is provided in Chap. 3.2.

2.1.10 Soft actor-critic

Note: this subsection reuses Section 3.3 of the thesis author’s publication [88] with
modifications.

Soft actor-critic (SAC) is a popular model-free, off-policy deep RL algorithm that
uses experience replay, which has been tested on various robotic control tasks and that
shows promising performance [83, 84]. A SAC agent learns to maximize reinforcement

2.1 Reinforcement Learning 17

returns as well as the entropy of its policy so as to obtain more rewards while keeping
actions sufficiently stochastic.

A typical SAC implementation can be described as follows. The state value func-
tion V (s), the state-action value function Q(s, a), and the policy function π(a|s) are
parameterized by neural networks, indicated by ψ, λ, η, respectively. The action of
SAC is a continuous variable, obtained by

aη(s) = tanh (µη(s) + ξση(s)) , (2.19)

where the variables µη(s) and ση(s) are the actual outputs of the policy network, and
ξ is a random variable sampled from a diagonal-covariance unit-Gaussian distribution
(ξση(s) follows element-wise multiplication). For the critic, SAC used two Q-networks
to alleviate the overestimation of TD-error [83]. We indicate the parameters of the two
Q-networks as λ1 and λ2. Following common practice in deep RL [149], SAC uses a
target network for each Q-networks. Each target network has the same structure as the
corresponding Q-network but is not trained using RL loss functions. Let λ̄1, λ̄2 denote
the parameters of the two target networks. At each training step, λ̄i is updated by
λ̄i ← 0.995λ̄i+0.005λi (i = 1, 2). Also, an entropy coefficient factor (also known as the
temperature parameter), denoted by α, is learned to control the degree of stochasticity
of the policy [84]. The parameters are learned by simultaneously minimizing the follow-
ing loss functions (note that each loss function is minimized w.r.t. the corresponding
parameters, e.g., gradient descent only applies to ψ when minimizing JV (ψ)).

JV (ψ) = Est∼B

[
1

2

(
Vψ(st)− Eat∼πη

[
min
i=1,2

Qλ̄i(st, at)− α log πη(at|st)
])2

]
, (2.20)

JQ(λ) =
∑
i=1,2

E(st,at)∼B

[
1

2

(
Qλi(st, at)−

(
rt + γEst+1∼B [Vψ(st+1)]

))2]
, (2.21)

Jπ(η) = Est∼B

[
Eaη(st)∼πη(st)

[
α log πη (aη(st)|st)− min

i=1,2
Qλi(st, aη(st))

]]
, (2.22)

J(α) = Est∼B
[
Ea∼πη(st) [−α log πη(a|st)− αHtar]

]
, (2.23)

where B is the replay buffer from which st is sampled, and Htar is the target entropy.
To compute the gradient of Jπ(η) (Eq. 2.22), SAC assumes a Gaussian distribution of
the the reparameterization trick [115] is used on the action aη(st). Reparameterization
of action is not required in minimizing J(α) (Eq. 2.23) since log πη(a|st) does not
depends on α.

2.1.11 Twin delayed deep deterministic policy gradient

Twin delayed deep deterministic policy gradient (TD3, proposed by Fujimoto et al.
[70]) is another popular model-free actor-critic RL algorithm applicable to off-policy
cases. TD3 was proposed at around the same time as SAC [83]. The performance of
TD3 was shown to be comparable to SAC in many robotic control tasks [70, 84].

Unlike SAC, TD3 does not consider entropy regularization but optimizes a deter-
ministic policy function (greedy action). Exploration of TD3 agents is realized by

18 Preliminaries

adding external noise to the deterministic policy. The learning of the critic can be
considered as Q-learning for continuous action. TD3 also uses two Q-functions and the
corresponding target Q-networks as in SAC. Let λ1, λ2, λ̄1, λ̄2, and η denote the pa-
rameters of the two Q-networks, two target networks, and policy network, respectively.
Suppose the replay buffer is B, the loss functions of TD3 are

JQ(λ) =
∑
i=1,2

E(st,at)∼B

[
1

2

(
Qλi(st, at)−

(
rt + γ min

j=1,2
Qλ̄j(st+1, ã(st+1))

))2
]
, (2.24)

Jπ(η) = −Est∼B [Qλ1(st, aη(st))] , (2.25)

where ã(st+1) is sampled from the target policy:

ã(st+1) = Clip(aη(st+1) + Clip(ϵ,−c, c), amin, amax), ϵ ∼ N (0, σ), (2.26)

where c and σ are hyperparameters. Such clipping essentially acts as a regularization
for TD3. It addresses a particular failure without clipping: if an incorrect sharp peak
formed in the Q-network for some actions, the policy network might quickly learn to
exploit that peak, leading to brittle or incorrect behavior.

2.2 Recurrent Neural Networks
Recurrent neural networks (RNN) are the name for a class of ANNs in which con-
nections between neurons form a directed graph along a discrete-steps sequence [50].
RNNs usually deal with many-to-one or many-to-many mapping from a sequence of
input variables to a (sequence of) output variable(s), e.g., when the input is a sentence
consisting of a sequence of French words and the output is translated German sentence.
RNNs contain some recurrently-connected neurons, which are represented by internal
states ht. The internal states are usually vectors, denoted by bold symbols. An RNN
models the dependence2 ht = g(ht−1,xt), where t indicates the order of one input in
a given sequence (x0,x1, · · · ,xT). t will be called step in this thesis, though it is not
necessarily a time step. An output can be obtained from ht using an FNN: yt = f(yt).

Because RNNs can model contextual (step-to-step) dependence (e.g., ht = g(ht−1,xt)),
the internal states ht play a role in memory. The inputs before current step (x0,x1, · · · ,xt−1)
are referred to as historical inputs, and those after current step (xt+1,xt+2, · · ·) as fu-
ture inputs. Because RNNs can encode information from historical (and future) inputs
by the internal states, RNNs are widely used in tasks with contextual dependence, such
as natural language processing, speech/music recognition/generation, video processing,
etc. In the following sections, we will introduce several types of RNNs involved in the
thesis.

2.2.1 Simple RNN

The simplest and earliest RNNs that can be used to solve practical problems were
proposed by Elman et al. [50] and Jordan et al. [105] in the 1990s. They both used
one hidden layer of h and made self-feedback connections in the network.

2For some complex RNNs, the dependence can be more complicated, e.g. ht can depend on
(h0,h1, · · · ,ht−1) and even (ht+1, · · · ,hT).

2.2 Recurrent Neural Networks 19

Elman-type RNN [50] can be described as

ht = σh(Whxt + Uhht−1 + bh), (2.27)
yt = σy(Wyht + by), (2.28)

where ht and yt are known as the hidden state and RNN output at step t, and xt is
the input vector. The weight matrices Wh,Wy, Uh and bias vectors bh, by are trainable
parameters of the network. The activation functions σh and σy can be hyperbolic
tangent or sigmoid functions.

Jordan-type RNN [105] is very similar to Elman-type, but the term Uhht−1 is re-
placed by Uyyt−1 in Eq. 2.27.

2.2.2 Continuous-time RNN

The continuous-time recurrent neural network (CTRNN) [71] takes the form of an
ordinary differential equation where neuron potentials represent dependent variables.
The time evolution of the network is computed using the Euler method, as shown in
the following. Let ut denote the hidden state at step t. The forward dynamics of a
CTRNN can be written as

ut =

(
1− 1

τ

)
ut−1 +

1

τ
(Wcuct−1 +Wxuxt + bu) , (2.29)

ct = tanh(ut). (2.30)

where τ is the time constant, xt is the input at step t, and W, b denote the synaptic
weights and biases of the corresponding connections.

2.2.3 Multiple-timescale RNN

A multiple-timescale recurrent neural network (MTRNN) [248] stacks multiple layers
of CTRNN. The time constant of each layer is different, which is used as a biologi-
cally plausible model to reflect the fact that multiple timescales are involved in motor
learning and development [101, 118, 156, 199]. Various versions of MTRNNs have been
applied to continuous sensory-motor studies, such as robot learning [163, 248], sequence
prediction [4], and video recognition [31].

Inspired by how our sensory and motor neurons interact with the environment, only
the first layer (bottom layer) of the MTRNN receives input (sensory information) and
provides output (motor commands). Another feature of MTRNN is that each layer
only connects to its adjacent layers, which is necessary for its intrinsic hierarchy [248].
For an L-layers MTRNN, the lth layer has the following forward dynamics (using the
same symbols as in Eq. 2.29 with a superscription l = 1, 2, ..., L to indicate the layer):

ult =


(
1− 1

τ l

)
ult−1 +

1
τ l

(
W l+1,l
cu cl+1

t−1 +W l,l
cuc

l
t−1 +Wxuxt + blu

)
if l = 1(

1− 1
τ l

)
ult−1 +

1
τ l

(
W l−1,l
cu cl−1

t−1 +W l,l
cuc

l
t−1 + blu

)
if l = L(

1− 1
τ l

)
ult−1 +

1
τ l

(
W l−1,l
cu cl−1

t−1 +W l,l
cuc

l
t−1 +W l+1,l

cu cl+1
t−1 + blu

)
otherwise

(2.31)

20 Preliminaries

Note that the hyperparameter τ l indicates the timescale of changing of hidden state in
layer l. Larger τ l leads to slower dynamics in Eq. 2.31. Inspired by studies of motor
learning [101, 118, 156, 199], MTRNN models usually set τ l larger for higher layers
[248].

2.2.4 Gated RNN

Although successful in very simple tasks, plain RNN suffers from the vanishing gradi-
ent problem [19, 96, 97], which makes it difficult to deal with long-term dependence.
Fortunately, recent advances in RNN have largely improved the problem of gradient
vanishing by developing the more powerful gated RNN architecture such as long short-
term memory (LSTM) [98] and gated recurrent unit (GRU) [29]. LSTM and GRU are
quite similar in terms of designing ideas. They employ non-linear gating units instead
of the conventional hyperbolic tangent activation function to regularize the amplitude
of gradients so as to overcome the gradient vanishing problem. It is reported that there
is no significant performance difference between LSTM and GRU in practice [33].

Since we will use LSTM in the later parts of the thesis, the dynamics of an LSTM
network [98] is shown below.

forget gate’s activation vector ft = σg(Wfxt + Ufht−1 + bf), (2.32)
input gate’s activation vector it = σg(Wixt + Uiht−1 + bi), (2.33)

output gate’s activation vector ot = σg(Woxt + Uoht−1 + bo), (2.34)
cell input activation vector c̃t = σc(Wcxt + Ucht−1 + bc), (2.35)

cell state vector ct = ft ◦ ct−1 + it ◦ c̃t, (2.36)
hidden state vector (LSTM output) ht = ot ◦ σc(ct), (2.37)

where xt is the input vector at step t, and ◦ denotes element-wise product. For p =
f, i, o, c: Wp, Up are the weight matrices and bp is the bias vector for each activation
vector p. σg and σc are the sigmoid function and the hyperbolic tangent function,
respectively. A gated RNN can be intuitively understood as an adaptive-timescale
version of the CTRNN (with some more parameters to increase the expressive power),
where the time constant is decided by functions of the hidden state and input.

2.2.5 Variational RNN

Note: this subsection reuses Section 3.3 of the thesis author’s publication [88] with
modifications.

All the previously introduced RNNs contain only deterministic computation nodes.
However, in many scenarios, we need to tackle probabilistic latent variables, and most
of the distributions are intractable. A powerful tool to approximate such probabilistic
variables is variational Bayes [115], which is usually modeled by a graph (such as
a neural network) containing many stochastic nodes. Each stochastic node can be
expressed by a simple, analytic output distribution, e.g., normal distribution, given an
input.

The variational recurrent neural network (VRNN) [34] was developed as a recur-
rent extension of the variational auto-encoder (VAE, [115]), composed of a variational

2.2 Recurrent Neural Networks 21

generation model and a variational inference model. It is a recurrent latent variable
model that can learn to encode and predict complicated sequential observations xt
with a stochastic latent variable zt.

The generation model predicts future observations given its internal states,

zt ∼ N
(
µp,t, diag(σ2

p,t)
)
,

[
µp,t,σ

2
p,t

]
= fprior(dt−1),

xt|zt ∼ N
(
µy,t, diag(σ2

y,t)
)
,

[
µy,t,σ

2
y,t

]
= fdecoder(zt,dt−1), (2.38)

where fs are parameterized mappings, such as feedforward neural networks, and dt is
the state variable of the RNN, which is recurrently updated by

dt = fRNN(dt−1; zt,xt). (2.39)

The inference model approximates the latent variable zt given xt and dt.

zt|xt ∼ N
(
µz,t, diag(σ2

z,t)
)
, where

[
µz,t,σ

2
z,t

]
= fencoder(xt,dt−1). (2.40)

For sequential data that contain T time steps, learning is conducted by maximizing
the evidence lower bound ELBO, like that in a VEA [115], where

ELBO =
T∑
t

[−DKL(q(zt|z1:t−1,x1:t)||p(zt|z1:t−1,x1:t−1))]

+Eq(zt|x1:t,z1:t−1) [log (p(xt|z1:t,x1:t−1))] , (2.41)

where p and q are parameterized PDFs of zt by the generative model and the inference
model, respectively.

Despite the aforementioned VRNN model, there are also other ways to apply vari-
ational Bayes on RNN. For example, predictive coding-inspired VRNN [5] applied pre-
dictive coding [170] on a variational RNN model, in which the posterior distribution
of z is updated to minimize the prediction error during online operation.

Chapter 3

Self-Organization of Action Hierarchy

Note: This chapter reused the thesis author’s publication [87] (the other two authors
of the paper are the thesis author’s supervisor and co-supervisor) with modification and
re-organization to fit the thesis.

• Dongqi Han, Kenji Doya, and Jun Tani. “Self-organization of action hierarchy
and compositionality by reinforcement learning with recurrent neural networks.”
Neural Networks, 129:149–162, 2020.

3.1 Background
RL has been successfully applied to a large variety of tasks, such as robotic control
[83, 133], game playing [148, 149], neural architecture design [256], etc. Researchers
have improved both the theory and implementation of RL algorithms and methods for
more efficient and robust learning. From the theory side, for example, Degris et al.
[41] generalized policy gradient to off-policy case, and Munos et al. [153] proposed new
operators with a good convergence property for multi-steps looking ahead RL. As for
implementation, Fortunato et al. [61] proposed noisy network models for facilitating
exploration in RL, and Vieillard et al. [233] discussed a regularization of loss functions
in RL. These improvements are too many to list, leading to the huge success of deep
RL in single-task learning.

However, it was relatively under-explored for RL studies involving skill transfer or
sharing from task to task, usually called transfer-RL [220] or meta-RL [182, 225, 238,
239]. It is known that humans perform much more efficient transfer learning across
similar tasks, while only recently have RL studies started to consider approaches of
transfer-RL or meta-RL in relatively challenging tasks [1, 57, 58, 138, 178, 221, 238].
Nonetheless, these methods usually require an agent to alternatively interact with a
set of similar environments so that its (meta) policy can be optimized over all the
environments [57, 239]. However, in the real world, humans can learn much more
efficiently to solve an unseen, novel task, which is different but similar to a previously
learned one, by autonomously recognizing the skills that can be reused [238]. In other
words, transfer learning and meta-learning in the brain can be performed in an end-to-
end manner, whilst conventional machine learning agents normally require providing
explicitly or implicitly task similarity [239].

23

24 Self-Organization of Action Hierarchy

A promising RL scheme for skill reuse/transfer is hierarchical RL [45, 210], which
divides action into multiple levels (usually 2 levels), and a higher-level action (also
known as an option [10, 210], a skill [190], or a sub-goal [8] in a more general manner).
The detailed actions under a given higher-level action is called an action primitive,
which is expected to fulfill a sub-task. By learning the detailed control policy of each
action primitive, an agent should be able to efficiently relearn a new task which is re-
composition of learned action primitives by avoiding repetitively learning the low-level
control policy. More discussion about prior work on hierarchical RL can be found in
Sec. 3.2.

In previous studies by Sharma et al. [190] and Xu et al. [247], it has been investi-
gated how to use the action primitives acquired via an unsupervised learning task to
solve a new RL task. However, a less touched problem is how the discovered action
primitives can be taken advantage of to perform transfer learning in an end-to-end
manner. While sometimes directly reusing learned action primitives is more efficient,
humans and animals are also able to re-adapt the lower-level maneuver when neces-
sary. How can this be done in artificial agents by learning through self-exploration? We
seek inspiration from the brain and propose a novel multi-timescale RNN architecture
and an off-policy actor-critic algorithm for RL. We refer to our framework as Recur-
rent Multi-timescale Actor-critic with STochastic Experience Replay (ReMASTER).
We also designed a sequential compositional task for testing the performance of the
framework. Two essential proposals in this framework are as follows.

The first is to employ a multiple timescale property in neural activation dynamics
[25, 101, 154, 156, 177, 199], as well as in the discount factors across different levels
in an RNN. Although it has been shown that the introduction of multiple-timescale
neural activation dynamics in RNNs enhances the development of hierarchy in super-
vised learning [248], such a possibility in RL remains to be investigated. In most RL
algorithms, the discount factor (for an MDP) is treated as a single hyperparameter.
However, the experimental studies by Enomoto et al. [51] and Tanaka et al. [214, 215]
have shown that dopamine neurons in mammalian brains encode value functions with
different region-specific discount factors. In considering motor control, it is intuitive
that detailed motor skills are learned with a faster discounting (on the order of seconds),
while abstracted actions for long-term plans require longer timescales. In summary,
it is expected that more detailed information processing can autonomously develop at
lower levels by incorporating the faster timescale constraints imposed on both neural
activation dynamics and the reward discounting. Meanwhile, more abstracted action
plans can develop at higher levels with slower timescale constraints.

The second proposal is to introduce stochasticity not only in motor outputs but also
in internal neural dynamics at all levels of RNN for generating exploratory behaviors.
This is inspired by the fact that cortical neurons, which play a key role in intelligence,
have highly stochastic firing behaviors, both for irregular inter-spike intervals and for
noisy firing rates [14, 15, 91, 201]. Chung et al. [34] and Fraccaro et al. [62] have
shown that various types of stochastic RNN models can learn to extract probabilistic
structures hidden in temporal patterns by using variational Bayes approaches in super-
vised learning. For deep RL, the stochasticity in the hidden states of a policy network
should facilitate abstracted-level motor exploration (in comparison to conventional RL
methods using only noisy motor actions) if the network has acquired a representation

3.2 Prior Work on Hierarchical RL 25

of abstracted-level actions. It was shown that stochastic FNNs facilitate efficient explo-
ration and improve performance in RL [60, 61]. Therefore, we are interested in whether
and how stochastic RNNs promote the exploration and extraction of task features.

The key contribution of the proposed work is a novel RL framework, ReMASTER,
which is characterized by a multiple-timescale, stochastic RNN architecture. ReMAS-
TER integrates these two essential ideas (multiple-timescale property and neuronal
stochasticity) with off-policy actor-critic algorithms, in a model-free manner. Note
that ReMASTER is not a policy evaluation or policy improvement algorithm but a
general framework that can corporate with any off-policy actor-critic algorithm.

We first considered a kind of sequential, compositional tasks in which an agent
learns to accomplish a set of sub-goals in a specific sequence without being given prior
knowledge about the sub-goals. The experimental results using ReMASTER showed
that compositionality develops autonomously, accompanied by an emergence of a hier-
archical representation of actions in the network. More specifically, action primitives
for achieving task-relevant sub-goals were acquired in the lower level, characterized by
faster timescale dynamics, whereas the representation of those sub-goals was observed
at the higher level characterized by the slower one. As a consequence of such self-
developed hierarchical action control, we can “manipulate” the agent to consistently
pursue an undesired sub-goal by clamping high-level RNN states, analogous to animal
optogenetic experiments [150, 169].

We then examined the performance of ReMASTER by considering a multi-phase
relearning task wherein an agent is required to adapt consecutively to new tasks that
constitute a re-composition of previously-undertaken sub-goals. ReMASTER outper-
formed other alternatives by showing remarkable performance in relearning cases be-
cause it was able to take advantage of previously learned representation about the
sub-goals in a compositional way, thanks to both multiple timescales and neuronal
stochasticity used in the model. Furthermore, we scaled ReMASTER up to more chal-
lenging tasks by incorporating recently developed RL algorithms. We showed that
ReMASTER outperformed the alternative models in more real-world tasks with high-
dimensional observation and action spaces.

The rest of this chapter is arranged as follows. Chap. 3.2 provides a review of pre-
vious work on hierarchical RL. Chap. 3.3 details the RNN model used in ReMASTER.
We then conducted a comprehensive empirical investigation of ReMASTER using a
two-wheeled robot navigation task containing a sequence of 3 sub-tasks, followed by
corresponding results (Chap. 3.4)). Moreover, we demonstrate the scalability of Re-
MASTER using several kinds of additional HRL tasks with the challenge of larger state
and action spaces in Chap. 3.5. Chap. 3.6 summarizes how ReMASTER distinguishes
itself from prior approaches and concludes the results. Finally, we discuss possible
connections to neuroscience in Chap. 3.7.

3.2 Prior Work on Hierarchical RL

This section provides a review of previous methods on hierarchical RL (HRL). In
particular, we focus on the recent studies using deep RL approaches. Since a detailed
explanation of ReMASTER is essential before understanding its novelties, we will detail

26 Self-Organization of Action Hierarchy

how ReMASTER distinguishes itself from the existing approaches later in Chap. 3.6.
Before deep learning techniques were widely used in RL [149, 196], some ideas

of HRL1 [52] had already been formed in the 1990s [39, 45, 165, 210]. For example,
Dayan & Hinton [39] proposed the Feudal RL framework, in which the task is manually
divided into multiple levels like a feudal society. The controller at each level only cares
about the task of the current level and leaves the detailed task to the lower-level
sub-controller. Parr & Russel [165] introduced the “hierarchy of machines” for RL, in
which a state machine, designed by the experimenter’s prior knowledge about the task,
was used to reduce the search space. Another HRL method, known as MAXQ value
decomposition [45], decomposes the original MDP into a hierarchy of smaller MDPs.
Correspondingly, the value function is also decomposed as an additive combination of
the value functions of the smaller MDPs. The option framework, proposed by Sutton
et al. [210], systematically introduced the idea of temporally abstracted actions. More
specifically, “options” are defined as discrete labels representing the sub-tasks, with a
sub-policy defined for each option. An option can be executed for multiple consecutive
steps (it can be learned when to stop), and the sub-policy of each option can be
learned using standard RL methods such as Q-learning [241] with minor modifications.
While these pioneering studies were limited to grid worlds or simple control tasks, they
provided the theoretical and practical foundations for the follow-up work on HRL.
However, these early ideas all require prior knowledge about the task hierarchy or
information about the sub-goals.

Researchers have recently started to seek deep RL methods to acquire hierarchical
policies relying less on the prior knowledge. Among the recent deep HRL studies, a
popular category is based on the option framework [10, 11, 130, 174, 211, 221]. The
option-critic architecture [10] extended the original option framework [211] to a 2-
level deep HRL architecture that requires no prior knowledge about the task hierarchy
(However, the number of options needs to be pre-defined in an ad-hoc manner). The
option-critic architecture trains the low- and high-level Q-functions with Q-learning
[241] and the termination function for the high level with policy gradient. Later, the
option-critic architecture was generalized to arbitrary levels of hierarchy by Riemer
et al. [174]. Moreover, Tessler et al. [221] proposed an HRL approach to perform
life-long learning, where the authors first pre-trained the lower-level policies using pre-
defined sub-tasks and then trained the higher-level policy model with fixed lower-
level policies. Another HRL method introduced by Li et al. [130] did not learn the
termination function; instead, each lower-level policy is carried out for n steps, where
n is a random positive integer in a pre-defined range. The 2-levels of policies are
trained simultaneously using their approximated policy gradient algorithm. It is worth
mentioning that augmenting the number of options during learning is also possible:
Bargaria & Konidaris [11] proposed a method to learn options with skill chaining [117],
where each option represents a sub-path, many of which chain together to achieve the
goal. For the aforementioned methods [10, 11, 130, 174, 211, 221], the options are
discrete (thus, there are multiple lower-level actors). Each option is usually executed
for multiple time steps, and the higher-level controller must be trained or pre-defined to

1Although state abstraction [44, 127] is arguably a part of HRL, the current discussion restricts
itself to action abstraction.

3.2 Prior Work on Hierarchical RL 27

determine when to terminate an option. In this work, we investigate a different scheme:
the higher-level action as a continuous variable that may change at every step.

Another family of HRL approaches uses the sub-goal state/observation as the label
for a sub-policy [8, 129, 180, 180], among which a representative is hindsight experi-
ence replay (HER) [8]. HER includes both the current and goal state as the input of a
value function [180]. HER alleviates the difficulty of sparse rewards by augmenting the
original task with additional pseudo tasks, where the reached states from the agent’s
experiences are used as pseudo goals. Levy et al. [129] improved HER using additional
penalties to avoid unreachable sub-goals and demonstrated effective learning using a
hierarchical architecture with 3 levels. Although the sub-goal-based approaches proved
to solve many tasks that are considered hard for vanilla RL, they require the environ-
ment always to provide a goal state. Thus HER cannot be directly generalized to the
task without a detailed goal state, such as a board or card game in which there are
various states to win. By contrast, we aim to develop a general RL framework that
does not need an explicit goal state.

There are also HRL methods considering the change of state as a sub-goals. The
Feudal network for HRL [232], which was inspired by the original feudal RL [39],
proposed a 2-levels architecture for HRL. The raw observation was embedded into a
latent space s. The high-level action reflects the change of s, which was learned to solve
the original task, while the low-level policy learned to fulfill this change. Both levels
were trained with on-policy RL [148] to avoid representation shift (i.e., the distribution
of state transitions in the replay buffer changes with updating the policy). Similar
to the Feudal network for HRL, Nachum et al. [155] proposed an HRL method to
take advantage of experience replay by introducing an off-policy correction for the
higher level. It was shown that straightforwardly using the change of raw observation
as high-level action yields better performance. However, we aim to investigate what
contributes to the self-organization of an action hierarchy via end-to-end RL, where
no explicit meaning is assigned to the higher-level action. Thus, our work is different
from the aforementioned ones [155, 232], in which the higher-level action was designed
to reflect the change of state from one step to the next.

A class of methods also aims to discover action primitives in RL by optimizing an
unsupervised/self-supervised objective function, usually based on information theory
[3, 53, 79, 190, 247]. Here we refer to them as variational skill discovery (VSD) methods
[3]. These methods employ a latent variable z to label an action primitive, where z
can be discrete [3, 53, 79] or continuous [190, 247]. Then, pseudo (intrinsic) rewards
are designed to train the policy model π(a|z, s) with RL, where a is action, and s is
state. The pseudo rewards reflect an information-theoretic objective that encourages
the skills to be diverse and predictable by states, such as the variational lower bound of
the mutual information between the set of skills and skill termination states [79]. While
the VSD methods are powerful in discovering action primitives in many challenging
robotic locomotion tasks, the action primitives cannot be called “self-organized” due to
the additional learning objective designed for this. Also, the VSD methods have some
limitations, e.g., implicitly assuming the smoothness of observable states (thus, they
were not shown to be effective on tasks with image observations). Our work differs from
the VSD methods in that ReMASTER trains the model using only the environmental
reward with RL. Also, ReMASTER aims to learn an HRL task end-to-end, while the

28 Self-Organization of Action Hierarchy

VSD methods focus on learning the action primitives [3, 53, 79, 190].
Moreover, some studies consider the action hierarchy in meta-RL (i.e., learning to

solve a set of tasks that share some common properties [182, 225, 238, 239]), among
which the studies by Florensa et al. [60] and Frans et al. [63] are related to ReMAS-
TER. Florensa and colleagues [60] proposed a stochastic network for HRL. However,
the low-level policy needs to be pre-trained using pseudo rewards and fixed when train-
ing the high-level policy, which is not end-to-end. ReMASTER shared a similar idea
with the work by Frans et al. [63]: the high-level and low-level networks optimize RL
objectives with different timescales. However, a key difference is that Frans et al.’s
work [63] did not apply intrinsic constraint of temporal dynamics to each level of the
neural network, which is an essential feature of ReMASTER. Nonetheless, we consider
a standard POMDP setting without assuming the agent always has access to a set of
tasks as in meta-RL. Besides, there also exist HRL methods in offline RL/RL from
demonstration [189] or model-based RL [132, 246]. These works are beyond the scope
of our study that considers model-free, online RL in POMDPs.

To summarize, HRL methods can be divided into two categories, which I refer
to as temporally extended and latent-sub-goal HRL, respectively. The temporally
extended HRL methods used discrete labels for action primitives. Each higher-level
action corresponds to one sub-policy model, and each sub-policy, when selected, will be
executed for multiple steps [10, 11, 39, 45, 60, 63, 121, 130, 132, 165, 174, 210, 221, 246,
251]. The latent-sub-goal HRL methods model the label of the current action primitive
as a latent variable (usually continuous), which is included as an input argument to the
low-level policy model[3, 8, 53, 79, 129, 155, 180, 189, 190, 232, 247]. Our work belongs
to the latent-sub-goal HRL category. However, ReMASTER is not an incremental
method of the existing ones. We will specify the novelties of ReMASTER in Chap. 3.6
after fully introducing ReMASTER in the subsequent sections.

3.3 ReMASTER

Low Level
Timescale τ1

Input π(γ1)

v2(γ2)

v1(γ1)

High Level
Timescale τ2

Figure 3.1: The basic structure of MTSRNN is shown for the case of a 2-level con-
figuration used in this work. However, additional levels can readily be stacked onto it.

We used a multi-level stochastic RNN with level-specific timescales as a basic net-
work architecture for implementing ReMASTER. This architecture is referred to as
Multiple Timescale Stochastic Recurrent Neural Network (MTSRNN). Fig. 3.1 shows

3.3 ReMASTER 29

the case of a 2-level MTSRNN where γl represents the characteristic discount factor at
l-th level. vl as the value function at l-th level can be learned by any policy evaluation
algorithm [208] using the corresponding γl (Although we show the state value function
v here, we can also use the state-action value function q by adding action a as input
to it). The policy function with discount factor γ1, indicated by π, is estimated by
the lowest level. Also, only the lowest level receives inputs. Note that although the
network has multiple timescales of discounting, the policy is improved to maximize
expected return w.r.t. the lowest discounter factor γ1.

3.3.1 Multiple timescale stochastic RNN

Here we describe detailed mechanisms of an L-levels MTSRNN. We use a super-script
l ∈ {1, 2, . . . , L} to indicate the lth level, where a smaller l indicates a lower level. Let
u and c denote the hidden states and the RNN outputs, respectively2, we have

ul(t) =(1− 1

τ l
)ul(t− 1) +

1

τ l
[
W l−1,l
cu cl−1(t)+

W l,l
cuc

l(t− 1) +W l+1,l
cu cl+1(t− 1) + blu

]
, (3.1)

cl(t) = tanh
(
ul(t) + ϵlσl(t)

)
, (3.2)

where cl−1(t) = s(t) when l = 1 is the current sensory input (state) and cl+1 does
not exist for l = L. The scale of neuronal noise, σl, can be either a hyperparameter
or adaptive, and ϵl(t) is a diagonal-covariance unit-Gaussian noise, which leads to a
stochastic variable cl(t) using the reparameterization trick [115]. The hyperparameter
τ l is known as timescale of the lth level, which determines how fast hidden states vary,
for which we usually have τ l < τ l+1. Synaptic weights and biases, denoted by W and
b, respectively, are trainable parameters of the neural network.

3.3.2 Reinforcement learning

In general, ReMASTER is flexible to the choice of RL algorithms. In this work, we
focus on a model-free RL scenario with robotic control tasks with continuous action
space. For sample efficiency, we employ off-policy actor-critic algorithms [41, 70, 84]
for the experiments using ReMASTER.

Suppose that in each episode, the agent is continuously interacting with the envi-
ronment. At every step t, it experiences a state transition, which can be described by a
tuple (st,at, st+1, rt, donet, πt), where s, a, r, π are state (observation), action, reward
and policy function, respectively; and the Boolean donet indicates whether the episode
ends at step t+1. The agent stores the state transition in a replay buffer. In practice,
RNNs require initial states for computing succeeding time development of RNN states.
We set initial RNN states to zero at the beginning of each episode.

Algorithm 3 summarizes how a ReMASTER agent performs RL in general.

2We collectively refer to (u, c) as RNN states

30 Self-Organization of Action Hierarchy

Algorithm 3 ReMASTER
Initialize the MTSRNN R and the replay buffer B, global step t← 0
repeat

Reset an episode, assign R with zero initial RNN states
while episode not terminated do

Compute 1-step forward of R to obtain (ult, clt)
Sample an action at from policy πt(a|c1t) and execute at
Obtain st+1, rt and donet from the environment
Record (st,at, st+1, rt, donet), πt = π(at|c1t) and (ult, clt) into B
if mod(t, train_interval) == 0 then

Sample sequential training samples from B
Compute the loss of critic for all levels
Compute the loss of actor for the lowest level

end if
t← t+ 1

end while
until training stopped

3.3.3 Experience replay with RNN

To enable experience replay, we stored state transitions (st, st+1, at, rt, donet) and RNN
states (ct,µt) in a replay buffer. We also recorded behavior policy πt in it to compute
the importance sampling ratio (Eq. 3.9). We did not separate episodes in the replay
buffer. Instead, we consecutively recorded every step and padded L−1 steps (at which
gradients were not calculated) when an episode terminated. Then, we could randomly
sample n sequences of length-l as a minibatch for truncated BPTT, with sampling bias.

Unlike feedforward neural networks, RNNs for off-policy RL have some practical
problems. One major problem is how to decide initial states when training the network
using a batch of sequences sampled from the replay buffer. When dealing with finite-
horizon (episodic) RL tasks, the existing approaches can be summarized as:

• Recording the RNN states at each step for the initial states in expe-
rience replay. When the agent interacts with the environment, its RNN states
at each step are also recorded in the replay buffer. When we perform experience
replay with a sequence of state transitions sampled from the buffer, we can use
the RNN states recorded at the step right before this sequence as the initial RNN
states and then process the sequence with the RNN’s forward dynamics. Then
we can train the network using BPTT. Despite the simplicity of this approach,
it is unclear what algorithmic issues will arise due to the difference between old
internal representations and new ones.

• Using an entire episode as a sequence. This was used, e.g., in the work
by Mnih and colleagues [148], providing zero initial states for all the episodes.
However, this implementation is computationally inefficient when the length of
some episodes is large.

3.3 ReMASTER 31

• Using random sequences with zero initial states. Sample sequences are
randomly sampled from the entire memory, given all-zero initial states. This
approach was used for experiments in Atari Games [92]. Unfortunately, this
implementation prevents learning long-term dependence because of the mismatch
of initial states, as argued by Kapturowski et al. [110].

• Replaying the sequences. Starting with zero initial states at each episode,
RNN states for off-policy updates can be obtained by unrolling new RNNs on
old trajectories. A modified version of this approach is offered in Kapturowski et
al.’s study [110], where the authors assume that computing the forward dynamic
of RNNs can help them find better RNN states from zero or recorded RNN
states, starting, e.g., 20 steps before the start of a sampled sequence. Although
remarkable performance on many RL tasks was demonstrated using this approach
[110], their assumption has not been systematically discussed.

For simplicity, we employ the first approach. Our experimental results show that
it is practical. However, how to better decide initial states still remains a challenge for
RL with experience replay using RNNs.

3.3.4 Motor and neuronal noise

For continuous sensory-motor tasks, the range of state space can be very large. To
enhance the efficiency of motor exploration, we used motor noise generated by the
Ornstein-Uhlenbeck process [227] (OU-process), like that used in the deep deterministic
policy gradient algorithm [133]. The OU process generates temporally auto-correlated
noise; thus, the exploration range can be increased with the “inertia" of the noise.

To facilitate exploration in all the tasks, we applied auto-correlated Gaussian noises
to the robot’s motor actions, which were generated by independent OU-processes. Each
motor noise xt can be computed by

xt = −θaxt−1 + e
√

2θaϵt, (3.3)

where θa = 0.3 for all of our experiments, and ϵt is a white noise with unit Gaussian
distribution. e indicates the scale of motor noise, i.e., its standard deviation. Since we
dealt with the tasks with sparse rewards provided only when a sub-goal is achieved,
such a temporally correlated noise should increase the possibility of achieving a sub-
goal by random exploration [133], while the standard deviation of the noise was not
too large.

However, it is not necessary to apply temporally correlated noises to hidden states
of the MTSRNN since recurrent connections in an RNN already generate the temporal
correlation. Thus, we simply applied Gaussian white noises to the neural dynamics as
in Eq. 3.2

The scales of motor and neuronal noise will be detailed in Chap. 3.4 and 3.5 re-
spectively.

32 Self-Organization of Action Hierarchy

3.4 Self-organization of action hierarchy using Re-
MASTER

3.4.1 Task settings

We propose a sensory-motor task, inspired by the work by Utsunomiya & Shibata
[228], referred to as a “sequential target-reaching task”. As illustrated in Fig. 3.2(b), a
two-wheel robot is required to approach three targets in a sequence. The targets and
the robot are located on a 2-dimensional field. The 2-D field is a 15× 15 square area,
restrained by walls. The robot agent has two wheels of radius 0.25, connected by an
axle. It receives sensory signals to detect distances and angles to the target as well as
the walls, as shown in Fig. 3.2(a). At each step, the action is given as the rotations of
two wheels, which are continuous in range [−180◦, 180◦]. The length of the axle is 1,
so that the robot can turn 90◦ at most in one step. There are three targets, indicated
by red, green, and blue, each of which is a circular area of radius 0.4. At the beginning
of each episode, the positions of three targets are randomly set inside the center 8 × 8
area. The distance between two targets is ensured to be larger than 2. The observation
is a 12-D real number vector: (e−dred/5, e−dgreen/5, e−dblue/5, e−dfrontwall/5, e−dbackwall/5, r,
sin θred, cos θred, sin θgreen, cos θgreen, sin θblue, cos θblue), where r is the immediate reward
at current time step, and other quantities are shown in Fig. 3.2(a).

axle

left wheel right wheel

0.8

0.5

(a) (b)

(c)

1

2

3
Small reward

Medium reward

Large reward

1

12,000 episodes 3,000 episodes 3,000 episodes
1

2

3
1

2

3
1

2

3

Phase 1 Phase 2 Phase 3Inheriting
weights

Inheriting
weights

Random
weights

Figure 3.2: Task configurations (a) Top view of the task field. The size of the square
field is 15×15. Objects are zoomed out for visual clarity. (b) The sequential target-
reaching task. (c) The consecutive relearning task. The positions of the robot and the
targets were randomly initialized in each episode.

3.4 Self-organization of action hierarchy using ReMASTER 33

The sequential target-reaching task is of particular interest because it abstracts
many real-world tasks in complicated environments, which involve decomposing a whole
task into sub-tasks and executing each sub-task in a specific sequence. One example
is dialing on a classic telephone, where one needs to sequentially choose each number
and perform detailed hand movements to dial the number. Mastering this kind of
task naturally requires the development of hierarchical control of actions. Lower levels
acquire the control policy for action primitives, while higher levels learn to dispatch
those action primitives in a specified sequence.

The robot must reach the three targets in the red-green-blue sequence to maximize
rewards. The reward function is given as:

If dred(τ) > 0.4 ∀ τ < t and dred(t) ≤ 0.4, then

r(t) = 0.8/(1 + dred(t)). (3.4)

If ∃ τ < t that dred(τ) ≤ 0.4, and dgreen(τ) > 0.4∀ τ < t, dgreen(t) ≤ 0.4, then

r(t) = 2.0/(1 + dgreen(t)). (3.5)

If ∃ τ < t that dred(τ) ≤ 0.4, and ∃ τ < t that dgreen(τ) ≤ 0.4, and dblue(t) ≤ 0.4,
then

r(t) = 5.0/(1 + dgreen(t)) (task done). (3.6)
In other words, when the robot reaches a target in the correct sequence, it receives

a one-step reward. The reward is given only if the agent follows the proper sequence.
And the reward signal is given only once for each target. If the robot hits the walls, a
negative reward −0.1 is given. Otherwise, the reward is zero. An episode terminates
if the agent completes the task or a maximum of 128 steps are taken. To successfully
solve the task, the agent needs to develop the cognitive capability to remember “which
target has been reached” and to recognize the correct sub-goal (which can be considered
as approaching a target in this task).

Moreover, we propose an extended version of the sequential target-reaching task to
examine the transfer learning properties of ReMASTER, referred to as an “consecutive
relearning task” (Fig. 3.2(c)). In this task, the robot agent was required to adapt
consecutively to changed task goals (or, more specifically, changed reward functions
and termination conditions) by relearning. The consecutive relearning task consisted
of 3 different phases. Phase 1 corresponded to the original red-green-blue sequential
target-reaching task. Phases 2 and 3 appeared as novel re-compositions of sub-goals,
where the required sequences are green-blue-red and blue-green-red, respectively. While
phase 1 had 12,000 episodes, there were only 3,000 episodes in phase 2 or 3.

3.4.2 Off-policy advantage actor-critic

Here we detail the actor-critic algorithm used for the sequential target-reaching and
consecutive relearning tasks. For the critic, we used an off-policy version of the tem-
poral difference (TD) learning algorithm to train value functions of all levels [41, 208].
Knowing that (i) each level has a characteristic timescale τ l; (ii) 1/(1−γ) indicates the
eigen-timescale of discounting [46], it is natural to set the values of discount factors as

γl = 1− K

τ l
, (3.7)

34 Self-Organization of Action Hierarchy

where K is a constant to which we assigned a value of 0.16 throughout this work.
Let θ denote the synaptic weights of the network. At each update, we randomly

sample N state transition tuples from memory, and then conduct gradient descent for
value functions vl with learning rate αv,

θ ← θ + αv
1

L

1

N

L∑
l

N∑
i

[
ρiδ

l
i∇θv

l(s0:ti ;θ)
]
, (3.8)

where we have
ρi =

π(ati |s0:ti ;θ)
πti

(3.9)

indicating the importance sampling ratio of the ith sample, where πti is the behavior
policy obtained from the replay buffer; and

δli = rti + γlvl(s0:ti+1;θ)− vl(s0:ti ;θ) (3.10)

is the TD-error for the ith sample and the lth level. Note that the value function
vl and the policy function π depend on s0:ti so that backpropagation through time
(BPTT) is performed to calculate the gradients. They can also be written as vl(clti ;θ)
and π(a|c1ti ;θ), respectively, if clti has been computed.

Value functions can be estimated via a linear connection from each level of the
MTSRNN: vl(t) = (wl

cv)
Tcl(t)+blcv. We focus on continuous action space, so the policy

function can be expressed as diagonal Gaussian distributions π(t) ∼ N (p(t), e(t)) ,
where p(t) = tanh (Wcac

1(t) + bca) is the expected action and e(t) is the exploration
noise scale (Chap. 3.4.13). The action is clipped into [-1, 1] since the robot has a
maximum speed.

To update the policy function, an advantage policy gradient algorithm was used in
an off-policy manner [41] (with a correction by the important sampling ratio ρi), where
the advantage was estimated by 1-step TD error with discount factor γ1.

θ ← θ + αa
1

N

N∑
i

[
ρiδ

1
i∇θ logπ(ati |s0:ti ;θ)

]
, (3.11)

where αa is the learning rate for the actor.

3.4.3 Noise scales

For exploration, the motor noise scale e (Eq. 3.3) was annealed exponentially w.r.t.
episodes, with a minimum value of 0.1:

e = 180◦ ×
[
0.75× exp(− 1

3000
× episode) + 0.1

]
, (3.12)

where 180◦ corresponds to the rotation of the two wheels as motor actions.
Meanwhile, neuronal stochasticity is given by Gaussian white noise with scale

σ = σ0 exp(−
1

3000
× episode). (3.13)

3.4 Self-organization of action hierarchy using ReMASTER 35

For the consecutive relearning task, at the beginning of phases 2 and 3, we cleared
the memory buffer and reset the noise scales, annealed as

e = 180◦ ×
[
0.75× exp(− 1

750
× episode) + 0.1

]
, (3.14)

and
σ = σ0 exp(−

1

750
× episode). (3.15)

For the neuronal noise, we used σ0 = 0.2 if not specified, which lead to better results
(see Chap. 3.4.13).

3.4.4 Hyperparameters

We used an MTSRNN with 2 levels for ReMASTER in all experiments, where τ 1 = 2
and τ 2 = 8. The discount factors are γ1 = 0.92, γ2 = 0.98, computed from γl =
1 − 0.16/τ l. There are 100 neurons in the lower level and 50 in the higher level. We
directly used the observations as input to the low-level RNN. We applied truncated
BPTT of length 25 for all the tasks.

Two separate RMSProp optimizers with decay 0.99 were used to minimize the
losses of actor and critic, respectively, where learning rates were 0.0003 for the critic
and 0.0001 for the actor. We used a replay buffer of a maximum size of 500,000 and
performed experience replay every 2 steps, using a mini-batch containing 16 sequences
with length 25, randomly sampled from the buffer.

We summarize the hyperparameters used for the sequential target reaching task
in Table 3.1. Some of the hyperparameters were obtained by random search (see
Chap. 3.4.11), and the others are hand-tuned. However, a different choice of hyperpa-
rameters will not significantly change our main conclusions (Chap. 3.4.11).

3.4.5 Sequential target-reaching task results

0 2000 4000 6000 8000 10000
episode

0

20

40

60

80

100

su
cc

es
s

ra
te

ReMASTER
ReMASTER-single V

(a) (b)

1

2

3
Small reward

Medium reward

Large reward

1

Figure 3.3: The sequential target-reaching task: (a) Illustration of the task. (b)
Performance curve indicated by success rate, where a “success” is defined as finishing
the task by reaching all the 3 targets within 50 steps. ReMASTER-single V is the case
in which the higher-level value function was not learned. Data are Mean ± S.E.M.,
obtained from 20 repeats.

36 Self-Organization of Action Hierarchy

Table 3.1: Hyperparameters we used in the sequential goal reaching task and the
consecutive relearning task for ReMASTER. The Hyperparameters were obtained by
random search or hand-tuned.

Hyperparameter Description Value

γ1 Low-level discount factor 0.92
γ2 High-level discount factor 0.98
τ1 Low-level RNN timescale 2
τ2 High-level RNN timescale 8
N1 Number of neurons in the lower level 100
N2 Number of neurons in the higher level 50
buffer_size Number of steps recorded in memory 5e5
σ0 Initial scale of neuronal noise 0.2
n_update Number of steps per update 2
lr_critic Learning rate of critic 3e-4
lr_actor Learning rate of actor 1e-4
α Decay of the RMSProp optimizers 0.99
batch_size Number of training sequences. 16
L Sequence length for truncated BPTT 25

We examined ReMASTER in the sequential target-reaching task. We define the
performance measurement using “success rate”: an episode is considered successful
when the agent completed the task within 50 steps3 (For reference, the best agent
could complete the task with about 20 steps on average). Fig. 3.3(b) shows that
ReMASTER can successfully solve this task through self-exploration, achieving more
than 95% success rate on average after training. We also tested the case in which the
higher-level value function v2 was not trained. (ReMASTER-single V in Fig. 3.3(b)),
which achieved a similar success rate in the end, but the learning is relatively slower.

However, our major aim was to examine what sorts of internal representation the
MTSRNN had developed for achieving sequential hierarchical control after abundant
training using ReMASTER. Fig. 3.4(a) shows three examples of how an agent behaved
after learning, where the three columns present the behavior of the same agent but in
different episodes. Interestingly, although target configurations and the motor actions
(the last 2 rows of Fig. 3.4(b)) were completely different in these episodes, high-level
neurons showed relatively similar temporal profiles of RNN outputs clt, as plotted in
the first row of Fig. 3.4(a). In contrast, this feature was less obvious in the lower
level (second row of Fig. 3.4(a)). Although we only show one agent here, this result
is statistically significant (Chap. 3.4.8), and more examples can be found in Fig. 3.6.
This result suggests that an MTSRNN with slower dynamics in the higher level en-
hanced the development of a consistent representation, accounting for a given sub-goal
structure through abstraction in the higher level, whereas the lower level dealt with

3We employ success rate to evaluate performance because other kinds of measurements have some
defects. For example, the total rewards in an episode cannot reflect whether the agent finishes the
task in a timely manner since the amount of rewards when reaching the targets is Markovian. Also,
computing the average time steps to finish the task is non-trivial because the agent often cannot finish
the task within the time step limitation of an episode (before being well trained).

3.4 Self-organization of action hierarchy using ReMASTER 37

PC1

PC
2

high level

PC1

PC
2

low level

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

Episode 11800Episode 11700 Episode 11900

H
ig

h-
le

ve
l

RN
N

 o
ut

pu
t

Lo
w

-le
ve

l
RN

N
 o

ut
pu

t
Tr

aj
ec

to
ry

M
ot

or
Ac

tio
n

(a) (b)

Reach
Red

Start

Reach
Green

(End)
Reach
Blue

high level

low level

(c)

-1 0 1
Right Wheel Speed

1

0

-1

Le
ft

W
he

el
 S

pe
ed

Figure 3.4: Analysis of the sequential target-reaching task using ReMASTER. (a)
Three example episodes showing the behavior of a well-trained ReMASTER agent. The
first and second rows show RNN output clt of two levels, where the vertical, dashed
lines indicate the agent’s reaching a target. For clarity, we plotted only clt of the first
7 neurons for both levels, with different colors indicating different neurons. The motor
actions indicted by velocities of the two wheels are plotted in the third row. The fourth
row is the robot’s trajectories, where black squares indicate its starting positions and
circles are target positions. (b) PCA for visualizing temporal profiles of clt, using data
of the same agent in (a) in episodes 11000, 11100, ..., 11900 (after convergence). Colors
mean the agent is approaching the corresponding targets, whereas a deeper color means
the agent is more closed to the target. Samples from the same episode are linked with
black lines. (c) Similar to (b), but the colors indicate the speed of the two wheels (see
the colormap). The first 3 PCs were plotted.

38 Self-Organization of Action Hierarchy

details of motor control depending on object configuration in the field in each episode.
Consistency in representing sub-goals of the higher level can also be demonstrated by
conducting PCA on RNN outputs of the two levels of the MTSRNN after conver-
gence (Fig. 3.4(b)). We can see that the high-level RNN outputs showed a consistent,
sequence-like representation of sub-goals accounted for by its slower dynamics. In con-
trast, the lower level showed a more divergent representation since it needs to generate
each different maneuvering trajectory. Similarly, we applied PCA on the RNN out-
puts but for visualizing the representation of low-level motor actions (Fig. 3.4(c)). It
is shown that while the lower-level neurons clearly represented detailed wheel speeds,
the higher-level RNN outputs were less relevant to low-level actions. The following
sections will provide more abundant empirical evidence to support the emergent action
hierarchy using ReMASTER.

3.4.6 Consecutive relearning task results

Our previous analysis indicated that the low level learns action primitives for achieving
each sub-goal. Therefore, relearning to solve a new task, which is a re-composition of
previously learned sub-goals in a different sequence, should be much more efficient than
starting from scratch.

By considering this, we carried out experiments in the consecutive relearning task
(Fig. 3.5(a)). The experiments were conducted in a lifelong learning manner [195, 224].
We maintained the same learning algorithm and hyperparameters throughout all 3
phases. Synaptic weights were continuously updated without resetting throughout the
experiment. At the beginning of each phase, the motor and neuronal noise scales were
reset, and the replay buffer was cleared. We also compared performance using Re-
MASTER to two alternatives to examine the importance of neuronal stochasticity and
intrinsic timescale hierarchy. One alternative is the deterministic version of ReMAS-
TER, in which there was only motor noise for exploration, but no noise was applied to
neurons (ReMASTER-det. in Fig. 3.5(b-d)). Another alternative used the same algo-
rithm, but replaced the MTSRNN with a single-layer LSTM (LSTM in Fig. 3.5(b-e))
using γ = 1 −

√
(1− γ1)(1− γ2) = 0.96, but we got similar performance for γ = γ1

or γ2). The LSTM network contained 75 cells such that the number of parameters is
similar to that of the MTSRNN.

Results are illustrated in Fig. 3.5(b-d), which shows task performance in terms of
success rate in three different phases. Several conclusions can be drawn from these
results4.

First, for ReMASTER and ReMASTER-single V, the relearning cases of phases
2, 3 (Fig. 3.5(c,d)) starting with previously trained synaptic weights achieved much
better sample efficiency than the case of phase 1, which was done from scratch. We
consider that this resulted from compositionality during action hierarchy development,
which enabled a flexible re-composition of sub-goals so that the agents could rapidly
adapt to relearning tasks. Note that there was no immediate transfer learning for all
the models, i.e., the success rates at the beginning of the relearning phases were nearly

4Although we used tuned hyperparameters for better performance, these conclusions indeed hold
for a different choice of hyperparameters (Chap. 3.4.11)

3.4 Self-organization of action hierarchy using ReMASTER 39

Phase 3

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

0 2000 4000 6000 8000 10000
episode

0

50

100

su
cc

es
s

ra
te

Phase 1

ReMASTER
ReMASTER-single V
ReMASTER-det.
LSTM

Phase 2

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

12,000 episodes 3,000 episodes 3,000 episodes
1

2

3
1

2

3
1

2

3

Phase 1 Phase 2 Phase 3Inheriting
weights

Inheriting
weights

Random
weights(a)

(b)

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

Phase 3 - LF
(c) (d) (e)

Figure 3.5: The consecutive relearning task: (a) Illustration of the task. (b-d)
Performance curves for all phases, plotted in the same way as Fig. 3.3(b). ReMASTER-
det. stands for the case in which all the neurons followed deterministic dynamics, and
LSTM is the alternative using the same algorithm, but the network was a single-layer
LSTM. (e) Performance curve of phase 3 with the lower-level synaptic weights frozen
(Phase 3 - LF). In phases 2 and 3 (c-e), every model inherited its parameters from the
previous phase.

40 Self-Organization of Action Hierarchy

zero. This is because the agent learned to follow the exact sequence of red-green-blue
in phase 1, instead of randomly visiting them. Therefore, when the task switched to
phase 2, where the desired sequence was green-blue-red, the agent still tried to reach
red-green-blue by sequence. Since the agent did not learn to reach red after reaching
blue in phase 1, the task mostly could not be completed at the beginning of phase 2.
A similar reason applies to phase 3.

Second, ReMASTER significantly and consistently outperformed ReMASTER-det.
in all three phases (Fig. 3.5(b-d)). One possible reason is that stochastic neurons could
prevent the network from over-fitting, thereby enhancing network flexibility. Another
is that neuronal noise can lead to larger exploration in the hidden state space [61, 191],
which results in a greater likelihood of finding adequate neural representation in the
higher level, which fits with newly appeared re-composition tasks. We also examined
the cases in which neuronal noise was applied only to either the higher or lower level,
and the results are shown in Chap. 3.4.13.

Third, ReMASTER also addressed consistent performance advantage over ReMASTER-
single V (Fig. 3.5(b-d)). Recall that policy is learned to optimize the expected return
with discount factor γ1. Our results suggested it could be beneficial to learn value
functions with multiple discounting, which agrees with the findings that mammalian
brains are doing the same thing [51, 215].

Finally, ReMASTER and ReMASTER-single V showed a performance advantage
over the LSTM alternative in phases 2, 3, although LSTM achieved great performance
in phase 1 (Fig. 3.5(b-d)). We consider the performance degradation of LSTM in
phases 2,3 is because of the mixed representation of sub-goal sequencing and detailed
motor skills in one level. This created difficulty in relearning sub-goal sequencing while
reusing low-level skills. In contrast, ReMASTER provided flexible compositionality
that enables these two levels of control to be better segregated in different levels in
MTSRNN. Although the biological plausibility of our approach is arguable, this result
may underlie a potential reason why we have many separated, timescale-distinct brain
regions working for multiple levels of functions [154, 177, 238].

3.4.7 Learning new tasks with low-level weights frozen

The previous results (Fig. 3.5(b-d)) were obtained when both the higher and the lower
level synaptic weights were continually trained throughout the task. However, if the
lower level had acquired the necessary motor skills for achieving the sub-goals, it should
be possible for the agent to learn to solve new tasks by updating only the higher level.

Therefore, we conducted another simulation on the consecutive relearning task us-
ing ReMASTER, in which low-level synaptic weights (purple connections in Fig. 3.1)
were frozen in phase 3, as inherited at the end of phase 2. The ReMASTER and
ReMASTER-single V agents showed remarkable learning effectiveness in phase 3 (Fig. 3.5(e)),
whereas the ReMASTER-det. agents could improve their policy, but the learning was
less efficient. This finding further supports our speculation that hierarchical action
control had developed in phases 1 and 2, wherein motor skills for achieving sub-goals
had developed in the low level, and memory for sequencing sub-goals had developed in
the high level. This was facilitated by neuronal noise.

3.4 Self-organization of action hierarchy using ReMASTER 41

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

10 20 30
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

Phase 1

episode 11800 episode 11850 episode 11900 episode 11950 episode 2900 episode 2950 episode 2900 episode 2950

Phase 2 Phase 3

H
ig

h-
le

ve
l

RN
N

 o
ut

pu
t

Lo
w

-le
ve

l
RN

N
 o

ut
pu

t
Tr

aj
ec

to
ry

M
ot

or
Ac

tio
n

H
ig

h-
le

ve
l

RN
N

 o
ut

pu
t

Lo
w

-le
ve

l
RN

N
 o

ut
pu

t
Tr

aj
ec

to
ry

M
ot

or
Ac

tio
n

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20 25
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

0 5 10 15
0

5

10

15

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

5 10 15 20
time step

-1

-0.5

0

0.5

1

Figure 3.6: Example episodes showing the behavior of two well-trained ReMASTER
agents in all 3 phases. Plotted in the same way as Fig. 3.4(a). For clarity, the first 7
neurons are plotted for both levels, with different colors indicating different neurons.

42 Self-Organization of Action Hierarchy

3.4.8 Consistency in representing sub-goals

To understand the underlying neural mechanisms for ReMASTER’s promising perfor-
mance in relearning phases (Fig. 3.5(c,d)), we analyzed neural data by looking at how
consistent the RNN outputs of different RNN architectures could represent sub-goals
in each phase.

Table 3.2: Consistency of RNN outputs in representing sub-goals among the last
1,000 episodes in each phase. Data are Mean ± STD.

Network Phase 1 Phase 2 Phase 3

ReMASTER (high level) 0.95± 0.02 0.94± 0.03 0.95± 0.02
ReMASTER (low level) 0.81± 0.04 0.80± 0.05 0.80± 0.05
ReMASTER-single V (high level) 0.88± 0.06 0.86± 0.06 0.86± 0.06
ReMASTER-single V (low level) 0.77± 0.06 0.80± 0.04 0.82± 0.04
ReMASTER-det. (high level) 0.88± 0.04 0.79± 0.06 0.85± 0.04
ReMASTER-det. (low level) 0.75± 0.05 0.64± 0.07 0.71± 0.04
LSTM 0.85± 0.20 0.78± 0.20 0.54± 0.29

We measured consistency in representing sub-goals by cosine similarity of the tem-
poral profile of the RNN outputs cl across the last 1,000 episodes of each phase, for both
the higher level and the lower one (Table 3.2). It can be seen that higher consistency
mostly corresponds to a higher success rate for the three models in the consecutive
relearning task (Fig. 3.5(b-d)), where ReMASTER agents always showed great consis-
tency in representing sub-goals in the higher level, in contrast to the alternatives, the
performance, and consistency of which decreased significantly in later phases. We do
not show here the comparison across different phases because the RNN outputs corre-
sponding to the sub-goals could be different when an agent adapts to a new phase (see
Chap. 3.4.14 for more discussion). However, it is rather important that higher flexibility
for re-organizing sub-goal representation was shown using ReMASTER agents.

3.4.9 Manipulating agent behaviors by clamping high-level neu-
ral states

For animals, different brain regions often serve at different levels in action generation.
For instance, premotor areas of the rodent motor cortex are thought to be important
in action choices, while the primary motor cortex is considered responsible for details
in action execution [150]. More interestingly, experimental studies have demonstrated
that action primitives of animals can be altered by electrophysiological stimulation or
optogenetic inactivation to certain upstream neurons [150, 236].

Here, we consider analogous experiments on artifacts with ReMASTER agents.
We first randomly picked an agent after finishing the consecutive relearning task and
then computed the average of c2 and u2 over the last 500 episodes of phase 3, at
the intermediate step of (i) from the initial position to the blue target; (ii) from the
blue target to the green one; (iii) from the green target to the red one. By clamping
high-level RNN states (c2, u2) to those of (i), (ii), or (iii), we could “manipulate” a

3.4 Self-organization of action hierarchy using ReMASTER 43

5

5

Figure 3.7: Manipulating agent behaviors by clamping high-level RNN states. All
trajectories were from one agent, and each row used the same high-level RNN states.
The black squares and the colored circles indicate the agent’s initial and target posi-
tions, respectively. Each column used the same random seeds for generating initial and
target positions.

44 Self-Organization of Action Hierarchy

trained agent to consistently follow an action primitive pursuing the corresponding
sub-goal (Fig. 3.7). In contrast, fixing low-level RNN states only results in a constant
(noisy) action, which is directly determined by c1. Therefore, the high-level RNN states
act as the label for an action primitive. The continuous property of the RNN states
enables the representation of an arbitrary number of sub-goals. We can readily find 3
meaningful action primitives corresponding to the 3 targets in our case.

3.4.10 Timescales and discountings

We have been discussing the role of multiple timescales, indicated by τ l, the time con-
stant of the lth-level RNN, and γl, the discount factor of the lth-level value function. In
our experiments using ReMASTER, the lower level had smaller τ 1(=2) and γ1(=0.92),
corresponding to a fast dynamic, whereas the higher level was characterized by a slower
timescale (τ 2 = 8, γ2 = 0.98). However, this “the-higher-the-slower” setting should also
be validated.

For this purpose, different settings of τ l and γl were examined in the consecutive
relearning task. The simulation results (Fig. 3.8) demonstrated a clear advantage of
the setting we used, compared to other cases in which “the-higher-the-slower” was
not followed. Exchange of values of γ1 and γ2 resulted in significant performance
degradation, while alternating values of τ 1 and τ 2 showed even worse performance.
Also, it appeared as an unsatisfying choice to set medium values of τ and γ for both
layers.

3.4.11 Effect of hyperparameters

Many RL algorithms suffer from a proper choice of hyperparameters (such as the learn-
ing rate and the number of neurons in the network) for a satisfying performance. It
is also important for us to ensure that our main results are robust to hyperparame-
ters. For this purpose, we did a random search for hyperparameters (Fig. 3.9). More
specifically, the sequence length for BPTT was sampled log-uniformly in [10, 40]. The
learning rate for the actor and for the critic was sampled log-uniformly in [0.00015,
0.0006] and [0.00005, 0.0002], respectively. For the MTSRNN, the number of neurons
was log-uniformly in [25, 100] in the lower level and [50, 200] in the higher level. The
number of LSTM cells was in [40, 160], also log-uniformly sampled.

As shown in Fig. 3.9, although the overall performance was a little worse than
that using tuned hyperparameters, our conclusions in Section. 3.4.6 did not vary. The
LSTM alternative performed better in phase 1, but became worse in the later phases.
Also, ReMASTER always outperformed ReMASTER-det. and ReMASTER-single V.

3.4.12 Comparing learning from scratch and relearning

We prepared a control task that is equal to phase 3 (also equivalent to phase 2 because
of the symmetry of the three targets) except for a random initialization of synaptic
weights at the beginning (Fig. 3.10, Bottom). It can be seen that agents with inherited
weights largely outperformed agents in the control case that start from scratch, showing
the meta-learning competency of RNNs.

3.4 Self-organization of action hierarchy using ReMASTER 45

0 2000 4000 6000 8000 10000
episode

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s

ra
te

Phase 1

1=2, 2=8, 1=0.92, 2=0.98 (We used)
1=8, 2=2, 1=0.98, 2=0.92
1=2, 2=8, 1=0.98, 2=0.92
1=8, 2=2, 1=0.92, 2=0.98
1=4, 2=4, 1=0.96, 2=0.96

Phase 2

0 500 1000 1500 2000 2500
episode

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s

ra
te

Phase 3

0 500 1000 1500 2000 2500
episode

0

10

20

30

40

50

60

70

80

90

100

su
cc

es
s

ra
te

Figure 3.8: Performance comparison among different settings of τ l and γl. Each
result was obtained from 10 repeats.

46 Self-Organization of Action Hierarchy

Phase 2

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

0 2000 4000 6000 8000 10000
episode

0

50

100

su
cc

es
s

ra
te

Phase 1

ReMASTER
ReMASTER-single V
ReMASTER-det.
LSTM

Phase 3

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

Figure 3.9: Performance in the consecutive relearning task, using a range of hyper-
parameters.

3.4.13 Neuronal noise

We performed experiments to determine the proper value of σ0, and found that σ0 = 0.2
gave rise to better performance (Fig. 3.11). Thus we used σ0 = 0.2.

We further conducted experiments to investigate the role of neuronal noise in either
the higher level or the lower level. The results (Fig. 3.12) show that lack of neuronal
noise in the higher level led to slightly worse performance in relearning phases. When
the lower-level neuronal followed deterministic dynamics, although it learned slightly
faster in phase 1, significant performance degradation was observed in phases 2 and 3.
Also, lack of stochasticity in the higher level led to slightly worse performance in all 3
phases.

3.4.14 Development of internal representations

To see how the internal representation of ReMASTER agents develops throughout
learning, we performed PCA for the RNN outputs in different periods of learning and
visualized the first 2 PCs5 of a randomly selected ReMASTER agent (Fig. 3.13, Left).
The agent was trained to learn the consecutive relearning tasks in 3 phases. In addition,
we let the agent consecutively adapt to the fourth phase wherein the task goal was the
same as in phase 1 (“Return to Phase 1” in Fig. 3.13) to see how the representation
varies for the same task goal but at different learning stages.

Consistent with the result that learning was faster in later phases (Fig. 3.5(b,c)),
internal representation also converged faster in relearning phases (Fig. 3.13, Left). In
particular, when the agent returned to phase 1, it only took less than 1,000 episodes

5Note that PCA was conducted for each phase separately. This is because sub-goal representations
were re-organized when adapting to a new phase, and thus we failed to obtain clear visualization of
sub-goal representations across phases.

3.5 Scaling up to more challenging tasks 47

3

1

2

3

Phase 2

Inheriting
weights

from
phase 1

Random
weights

Control

Phase 3

3,000 episodes

3,000 episodes

3,000 episodes

1

2

3

Inheriting
weights

from
phase 2

1

2

3

Phase 2

0 500 1000 1500 2000 2500
episode

0

50

100

su
cc

es
s

ra
te

Phase 3

0 500 1000 1500 2000 2500
episode

0

50

100

su
cc

es
s

ra
te

0 500 1000 1500 2000 2500
episode

0

50

100

su
cc

es
s

ra
te

ReMASTER
ReMASTER-single V
ReMASTER-det.
LSTM

Figure 3.10: Performance comparison among phases 2, 3 and the control case.

to achieve a converged representation of sub-goals (The first 2 PCs after episode 1,000
are almost invariant).

Also, it can be seen that the internal representation in phase 1 after convergence is
different from that when the agent returns to phase 1 (Fig. 3.13, Right). This can also
be demonstrated using the similarity measure (Chap. 3.4.8) between the RNN outputs
in these two phases (averaged from the last 1,000 episodes in each phase), which is 0.37
± 0.07 for the lower level and 0.33 ± 0.09 for the higher level, on 20 trials.

However, the first 2 PCs interestingly show that the representation at the end of
phase 1 and phase 4 have similar structures, despite that the basis vectors are different
(Fig. 3.13, Left). To demonstrate this, we performed linear transformation (stretching,
rotation, and reflection) to the first 2 PCs to maximize their similarity between the
two phases (again, averaged from the last 1,000 episodes in each phase). The result
showed a similarity of 0.93 ± 0.07 for the lower level and 0.97 ± 0.03 for the higher
level on 20 trials, which is much higher than that of RNN outputs. This suggests
that a robust sub-goal encoding scheme was achieved in the proposed model either by
a sufficient amount of learning from scratch (phase 1) or by relearning, in which the
internal representation was acquired much more quickly.

3.5 Scaling up to more challenging tasks

We have provided comprehensive empirical results of ReMASTER for the sequential
reaching task in which the self-organized action hierarchy obtained by RL was shown to
accelerate relearning in the recomposed relearning tasks. How well does ReMASTER

48 Self-Organization of Action Hierarchy

det. 0=0.1 0=0.2 0=0.4 LSTM

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

Phase 3

det. 0=0.1 0=0.2 0=0.4 LSTM

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

Phase 2

det. 0=0.1 0=0.2 0=0.4 LSTM
0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

Phase 1

Figure 3.11: Final performances of ReMASTER for different scales of neuronal noise
obtained from the last 1,000 episodes of each phase.

scale with more complex tasks? In this section, we extend ReMASTER to additional,
more challenging tasks to examine its performance in more real-world-like tasks.

This section is arranged as follows: First, Chap. 3.5.1 will describe the additional
tasks we used, which involve the challenge of higher-dimensional observation space
(camera image) as well as higher-dimensional action space (7-joints robot arm). Then,
Chap. 3.5.2 will explain the updated model implementation details of ReMASTER
for the new tasks. Finally, the experimental results will be shown and discussed in
Chap. 3.5.3.

3.5.1 Tasks

Vision-based sequential reaching task: To examine ReMASTER with a higher-
dimensional observation space, we developed a task using the PyBullet simulator [37].
The task is similar to the sequential reaching task in Chap. 3.4 but with an RGBD
camera as the sensor. We refer to this task as the vision-based sequential reaching task.

In this task, a two-wheeled robot can move in a square area surrounded by walls, as
shown in Fig. 3.14(a). The task goal is to reach the 3 target positions, indicated by the
3 colored cylinders6, according to the sequence of red-green-blue (Fig. 3.14(a)). When
the robot reaches each target in the correct sequence, it will get a one-step reward (20,
50, and 100 for the 3 targets, respectively). When the robot has a collision with the
wall, it will get a negative reward of −0.1. In each episode, the robot is initialized at
the center of the task field (size 7× 7). The 3 target positions are randomly set, while
it is ensured that the distance between any two objects (the robot and targets) is at
least 1.5. The robot is considered to reach a target if the horizontal distance between
the centers of the robot and the target is less than 1. An episode terminates when the
robot correctly reaches the 3 targets, or a time limit of 100 steps is reached.

As in the original sequential target reaching task, the velocities of the two wheels
are set as the action, which is a two-dimensional continuous vector. However, the
observation changes from the previous depth and angle sensors to a 360◦ RGBD camera
installed on the robot. In particular, the observation in this task has a resolution of

6For simplicity, the cylinders have no physical collision with the robot, i.e., the robot can pass
through them.

3.5 Scaling up to more challenging tasks 49

0 2000 4000 6000 8000 10000
episode

0

50

100

su
cc

es
s

ra
te

Phase 1

ReMASTER
ReMASTER-high-det.
ReMASTER-low-det.

Phase 2

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

Phase 3

0 1000 2000
episode

0

50

100

su
cc

es
s

ra
te

Figure 3.12: Success rate in all 3 phases. ReMASTER is compared to ReMASTER-
high-det. and ReMASTER-low-det., in which the higher-level or the lower-level neurons
are deterministic.

64× 16× 4, where the last dimension corresponds to RGBD channels. An example of
the robot’s RGB vision is shown at the bottom of Fig. 3.14(a).

Robot arm sequential touching task: We also tested ReMASTER using an-
other kind of robotic control task with a higher-dimensional action space. In this
so-called robot arm sequential touching task (Fig. 3.14(b)), a 7-joints robot arm is
trained to touch 3 target positions sequentially. The task is modified from the reach
task of the panda-gym environments [74]. The robot arm is considered to reach a target
position when its end-effector overlaps with the target. The end-effector is the tip of
the gripper, where the gripper is always closed (Fig. 3.14(b)).

In each episode, the robot arm is initialized as shown in Fig. 3.14(b). 3 target
positions are randomly sampled in a cubic space in front of the robot arm, while it
is ensured that the 3 targets are not too close to each other. One-step rewards (20,
50, and 100 for the 3 targets, respectively) are given at each target position if the
end-effector touches it in the correct sequence, which is the same as the previous tasks.
For consistency, we also colored the 3 targets red, green, and blue. There are no other
rewards or punishments.

The observation is the concatenation of joint angles, the x-y-z position of the end-
effector, and the x-y-z positions of the red, green, and blue targets. Note that unlike
a goal-directed RL setting where the goal state is clearly specified [8], the agent does
not know which part of the observation corresponds to the current target.

As for the action setting, the panda-gym environments provide two control modes:
end-effector displacement control (3-dimensional continuous action) and joint veloci-
ties control (7-dimensional continuous action). We conducted experiments using both
control modes.

50 Self-Organization of Action Hierarchy

High
Level

Low
Level

Phase 1

Phase 2 Phase 3

0 1500 3000 4500 6000 7000 9000 110008000 10000Episode

Return to Phase 1

High
Level

Low
Level

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000

-1

-0.5

0

0.5

1

time step

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

time step

-1

-0.5

0

0.5

1

3000

12000
Episode 11950

Episode 2950

Time step

Time step

Episode
Return to Phase 1

 Phase 1

Figure 3.13: Development of internal representation for sub-goals. Left: The first
two PCs of internal representations of a ReMASTER agent using PCA for each phase
separately, plotted in the same way as Fig. 3.4(b). Right: Profiles of RNN outputs
of the higher level (Top) and the lower level (Bottom), plotted in the same way as
Fig. 3.4(a).

Figure 3.14: Rendering of the environments used in Chap. 3.5. (a) Top: the vision-
based sequential reaching task. Bottom: an example of the RGB image from the 360◦

camera installed on the robot. (b) The robot arm sequential touching task.

3.5 Scaling up to more challenging tasks 51

Relearning tasks: Similar to the relearning phases in Chap. 3.4.6, we changed
the required target sequence of the vision-based sequential reaching task and the robot
arm sequential touching task to investigate the agent’s transfer learning capacity. We
conducted 3-phases experiments as in the consecutive relearning task (Chap. 3.4.6),
where the network weights and biases were carried from one phase to the next, and
the replay buffer was initialized at the beginning of each phase. The required sequence
was red-green-blue in phase 1, green-blue-red in phase 2, and blue-green-red in phase
3, while other conditions kept the same in all phases.

3.5.2 ReMASTER implementation for the additional tasks

To enable ReMASTER to solve the more challenging task, there were some changes
from the implementation in 3.4. However, the two most essential ideas of ReMASTER,
i.e., the intrinsic hierarchy of timescales in the RNN and the neuronal noise, remained
intact. Correspondingly, we stuck to the MTSRNN architecture as in 3.4. This section
details the updated implementation of ReMASTER.

RL algorithm: To apply ReMASTER to the more challenging tasks, we adopted
the recently developed off-policy RL algorithms for continuous control to replace the
original policy evaluation and policy improvement algorithms (Chap. 3.4.2) since Re-
MASTER is flexible to the choice of RL algorithm. In particular, we tested ReMAS-
TER with two popular off-policy algorithms known as twin delayed deep deterministic
policy gradient (TD3, proposed by Fujimoto et al. [70], see Chap. 2.1.11) and soft
actor-critic (SAC, introduced by Haarnoja et al. [84], see Chap. 2.1.10).

Network: As we are dealing with the tasks with higher-dimensional observation
and actions spaces, we increased the number of neurons in the network. For Re-
MASTER (and its ablations), the lower and higher level had 256 and 128 neurons,
respectively.

Since TD3 and SAC learn Q-functions instead of the state value function V , each
layer’s RNN output cl was concatenated with the action as the input of the Q-function
in experience replay. Note that TD3 and SAC uses two Q-networks to mitigate the
overestimation of the Q-value [70, 84]. Thus, in the new implementation of ReMAS-
TER, we had two Q-networks for each RNN layer with the corresponding discount
factor γl, where each Q-network was an MLP with 1 hidden layer.

For TD3, the policy network was a one-layer MLP mapping the lower-level RNN
output c1 to the non-noisy action (using a hyperbolic tangent function to bound its
range). For SAC, the policy network was also a one-layer MLP mapping the lower-
level RNN output to µ and σ. Then the action was sampled as a = tanh(u), where
u ∼ N (µ,σ).

For the robot arm sequential touching tasks whose observations were vectors, the
raw observation was directly passed to the lower-level RNN as the input at each time
step. For the vision-based reaching task, we used a 2-D CNN to process the 2-D
pixels observation before inputting it to the lower-level RNN. The CNN is detailed
in Table 3.3. All the hidden layers were of width 256 and with hyperbolic tangent
nonlinearity except those in the CNN and RNN. All the networks were trained as a
whole.

52 Self-Organization of Action Hierarchy

layer module channels stride kernel size activation

1 Conv2D 8 2 by 2 4 by 4 ReLU
2 Conv2D 16 2 by 2 4 by 4 ReLU
3 Conv2D 16 2 by 2 4 by 4 ReLU
4 Conv2D 64 2 by 2 4 by 2 ReLU
5 Conv2D 256 4 by 1 4 by 1 ReLU
6 Flatten 256

Table 3.3: Details of the CNN layers used for the vision-based sequential reaching
task. The input resolution is 64 by 16.

Alternatives agents: As in Chap. 3.4, we also conducted experiments using al-
ternative agents of ReMASTER. The first one was ReMASTER - single V, which was
the same as ReMASTER except that the higher-level value function was not learned.
The second was ReMASTER - det., which was the ablation of ReMASTER without
neuronal noise. The third used a 1-layer LSTM (without neuronal noise) and learned
the value function with an intermediate discount factor, which can be considered as
the ablation of the intrinsic hierarchy of timescales and neuronal noise. The number
of neurons in the 1-layer LSTM is 215. In addition, we tested a 2-layers LSTM agent
(2L-LSTM), which was the same as ReMASTER - det. except that the 2-levels MT-
SRNN was replaced with 2 layers of LSTM. The numbers of neurons in the 2-layer
LSTM were 160 and 80 for the lower and higher levels, respectively. The numbers
of neurons in the LSTM and the 2L-LSTM were decided so that the total amount of
model parameters were similar to that of ReMASTER (around 0.76 million for the
vision-based sequential reaching task).

Initial exploration: We used another trick to improve the performance of all
the models. For a given number of steps at the beginning of the task (25,000 steps
in our implementation), the agent executes actions sampling from a uniform random
distribution covering the whole action space (bounded continuous actions for the tasks
we used). This trick is also used in some well-established RL implementations, such as
the OpenAI Spinning Up [2]. The initial exploration did not apply to the relearning
cases.

Hyperparameters: The hyperparameters are detailed in Table 3.4. For those
unmentioned hyperparameters specific to TD3 and SAC, we followed the original papers
[70, 84].

3.5.3 Experimental results

We show the results of the vision-based sequential reaching task (Fig. 3.15a,b) and the
robot arm sequential touching tasks (Fig. 3.16a,b) using ReMASTER and the alter-
native models. The agents performed lifelong RL in three consecutive learning phases
like in the consecutive relearning task (Chap. 3.4.6). We conclude the experimental
results about sample efficiency as follows.

First, ReMASTER and ReMASTER - single V were the most well-performing mod-
els overall (Fig. 3.15a,b and 3.16a,b), except that ReMASTER - single V struggled with

3.5 Scaling up to more challenging tasks 53

t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8

t=9 t=10 t=11 t=12 t=13 t=14 t=15

Phase 1

2000 4000 6000 8000 10000 12000 14000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

ReMASTER
ReMASTER-singleV
ReMASTER-det.
LSTM
2L-LSTM

Phase 2

1000 2000 3000 4000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

Phase 3

1000 2000 3000 4000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

Phase 1

2000 4000 6000 8000 10000 12000 14000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

ReMASTER
ReMASTER-singleV
ReMASTER-det.
LSTM
2L-LSTM

Phase 2

1000 2000 3000 4000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

Phase 3

1000 2000 3000 4000
episode

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s

ra
te

(a)

(b)

SAC

TD3

(end)
reach
red

reach
green

reach
blue

start

(end)
reach
red

reach
green

reach
blue

start

(c)

(d)

(e)

Figure 3.15: (a,b) Results of the vision-based sequential reaching task, as well as
the relearning phases, where the RL algorithm used was (a) SAC (b) TD3. The per-
formance is indicated by success rate, where success is defined as task accomplishment
within 50 steps, the same as in Fig. 3. Each experiment was run using 20 random
seeds. (c,d) Examples of the learned internal representation of ReMASTER in phase
3, where the RNN outputs c1 and c2 were dimension-reduced by PCA and t-distributed
stochastic neighbor embedding (t-SNE) [230]. The data for PCA/t-SNE were obtained
from the successful trials in the last 1,000 episodes. (e) The observations in an example
episode of a ReMASTER agent at the end of phase 3, where the agent reached the
blue, green, and red targets sequentially.

54 Self-Organization of Action Hierarchy

 Phase 1

0.5 1 1.5 2
episode 104

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

ReMASTER
ReMASTER-singleV
ReMASTER-det.
LSTM
2L-LSTM

 Phase 2

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 3

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 1

0.5 1 1.5 2
episode 104

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 2

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 3

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 1

0.5 1 1.5 2
episode 104

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

ReMASTER
ReMASTER-singleV
ReMASTER-det.
LSTM
2L-LSTM

 Phase 2

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 3

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 1

0.5 1 1.5 2
episode 104

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 2

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

 Phase 3

2000 4000 6000 8000
episode

0

0.2

0.4

0.6

0.8

1

su
cc

es
s

ra
te

(a)

(b)

SAC

TD3

jo
in

ts
 v

el
oc

ity
 c

on
tro

l
en

d-
ef

fe
ct

or
 c

on
tro

l
jo

in
ts

 v
el

oc
ity

 c
on

tro
l

en
d-

ef
fe

ct
or

 c
on

tro
l

(end)
reach
red

reach
green

reach
blue

start

(end)
reach
red

reach
green

reach
blue

start

(end)
reach
red

reach
green

reach
blue

start

(end)
reach
red

reach
green

reach
blue

start

(c)

(d)

Figure 3.16: (a,b) Results of the robot arm sequential touching tasks (including the
two cases of joints velocity control and end-effector control), as well as the relearning
phases, where the RL algorithm used was (a) SAC (b) TD3. (c,d) Examples of the
learned internal representation of ReMASTER in phase 3. The figures were plotted in
the same way as those in Fig. 3.15.

3.5 Scaling up to more challenging tasks 55

Table 3.4: Hyperparameters of the updated implementations of ReMASTER.

Hyperparameter Description Value comment

γ1 Low-level discount factor 0.92 same as previous
γ2 High-level discount factor 0.98 same as previous
τ1 Low-level RNN timescale 2 same as previous
τ2 High-level RNN timescale 8 same as previous
N1 Number of neurons in the lower level 256 larger than previous
N2 Number of neurons in the higher level 128 larger than previous
buffer_size Number of steps recorded in memory 1e6 larger than previous
σ Scale of neuronal noise 0.1 fixed (previously annealed)
e Scale of motor noise 0.1 fixed (previously annealed)
σTD3
a Scale of target policy noise 0.1 for TD3 [70] only

n_update Number of steps per update 2 same as previous
lr_critic Learning rate of critic 3e-4 follow SAC&TD3 [70, 83]
lr_actor Learning rate of actor 3e-4 follow SAC&TD3 [70, 83]
α Decay of the RMSProp optimizers 0.99 same as previous
L Sequence length for truncated BPTT 64 larger than previous
batch_size Number of training sequences 8 smaller than previous

the robot arm sequential touching task with end-effector control (Fig. 3.16b). ReMAS-
TER performed the best or comparable to the best in all the relearning cases (phases 2,
3). Also, ReMASTER and ReMASTER - single V demonstrated their transfer learning
capacity in the relearning phases, especially in the vision-based sequential reaching task
(Fig. 3.15a,b). For the robot arm sequential touching tasks, ReMASTER also achieved
better sample efficiency in the relearning phases than from scratch (Fig. 3.16a,b).

Second, ReMASTER - det. performed comparably to ReMASTER when learning
from scratch (phase 1, Fig. 3.15 and 3.16a,b). However, the lack of neuronal noise in
the relearning cases led to consistently worse performance than ReMASTER, if not
similar, in all the tasks. Such results indicate the benefit of stochastic neural activities
for transfer learning in the being tested tasks.

Third, LSTM and 2L-LSTM showed unsatisfactory performance compared to Re-
MASTER in the relearning phases of all the tasks, although their performance in phase
1 was comparable to ReMASTER (Fig. 3.15a,b and 3.16a,b). Since the LSTM and 2L-
LSTM models did not have an intrinsic hierarchy of timescales in the network, they
probably developed internal representations that were specifically good for phase 1 but
inflexible for skill transfer.

Now we switch our attention to the internal representation. Did the ReMASTER
self-develop hierarchical representations in the RNN states? We visualized the learned
representation of the RNN outputs of both levels of an example ReMASTER agent
(Fig. 3.15c,d and 3.16c,d). For the vision-based sequential reaching task, sub-goals
were more recognizable in the RNN outputs of the higher level than the lower level
(Fig. 3.15c,d). Such difference was more evident for the robot arm sequential reaching
tasks (Fig. 3.16c,d). For a numerical evaluation, We calculated the consistency in
representing sub-goals for each layer of each model like in Chap. 3.4.8. The results
are shown in Table. 3.5. The highest consistency in representing sub-goals was from
the high-level RNN of ReMASTER - det. in phase 1, and from the high-level RNN of

56 Self-Organization of Action Hierarchy

ReMASTER in the relearning phases.

Table 3.5: Consistency of RNN outputs in representing sub-goals for the vision-based
sequential reaching task and the robot arm sequential touching tasks. The data were
obtained from the last 1,000 episodes of each phase for each model regardless of the
RL algorithm used. Data are Mean ± STD.

Task Network Phase 1 Phase 2 Phase 3

Vision-based
sequential
reaching

ReMASTER (high level) 0.61 ± 0.10 0.61 ± 0.11 0.62 ± 0.12
ReMASTER (low level) 0.45 ± 0.07 0.41 ± 0.07 0.39 ± 0.07
ReMASTER - single V (high level) 0.47 ± 0.09 0.46 ± 0.11 0.48 ± 0.11
ReMASTER - single V (low level) 0.46 ± 0.06 0.42 ± 0.06 0.40 ± 0.06
ReMASTER - det. (high level) 0.65 ± 0.08 0.56 ± 0.09 0.55 ± 0.10
ReMASTER - det. (low level) 0.46 ± 0.06 0.34 ± 0.06 0.32 ± 0.07
2L-LSTM (high level) 0.54 ± 0.06 0.58 ± 0.06 0.62 ± 0.05
2L-LSTM (low level) 0.36 ± 0.04 0.32 ± 0.03 0.36 ± 0.03
LSTM 0.31 ± 0.04 0.35 ± 0.04 0.35 ± 0.03

Robot arm
sequential
touching
(joints
control)

ReMASTER (high level) 0.61 ± 0.04 0.54 ± 0.05 0.48 ± 0.08
ReMASTER (low level) 0.40 ± 0.04 0.37 ± 0.04 0.32 ± 0.06
ReMASTER - single V (high level) 0.44 ± 0.08 0.43 ± 0.07 0.38 ± 0.07
ReMASTER - single V (low level) 0.39 ± 0.06 0.40 ± 0.10 0.34 ± 0.08
ReMASTER - det. (high level) 0.66 ± 0.04 0.49 ± 0.06 0.32 ± 0.07
ReMASTER - det. (low level) 0.42 ± 0.05 0.37 ± 0.04 0.28 ± 0.04
2L-LSTM (high level) 0.45 ± 0.08 0.19 ± 0.06 0.17 ± 0.08
2L-LSTM (low level) 0.49 ± 0.06 0.20 ± 0.06 0.21 ± 0.06
LSTM 0.23 ± 0.07 0.16 ± 0.04 0.17 ± 0.08

Robot arm
sequential
touching

(end-effector
control)

ReMASTER (high level) 0.60 ± 0.05 0.64 ± 0.07 0.61 ± 0.06
ReMASTER (low level) 0.42 ± 0.05 0.47 ± 0.08 0.43 ± 0.06
ReMASTER - single V (high level) 0.34 ± 0.12 0.42 ± 0.13 0.44 ± 0.10
ReMASTER - single V (low level) 0.47 ± 0.07 0.44 ± 0.14 0.43 ± 0.10
ReMASTER - det. (high level) 0.61 ± 0.12 0.59 ± 0.10 0.49 ± 0.12
ReMASTER - det. (low level) 0.49 ± 0.10 0.43 ± 0.10 0.35 ± 0.09
2L-LSTM (high level) 0.45 ± 0.08 0.23 ± 0.10 0.24 ± 0.12
2L-LSTM (low level) 0.40 ± 0.07 0.22 ± 0.10 0.26 ± 0.10
LSTM 0.22 ± 0.09 0.15 ± 0.03 0.18 ± 0.04

The results discussed above were consistent with those for the simpler sequential tar-
get reaching task on which we focused in Chap. 3.4. Thus, we showed that ReMASTER
is scalable to more real-world tasks where several sub-goals need to be accomplished
sequentially. Our experiments suggest that the model’s intrinsic hierarchy of timescales
and stochasticity were crucial for self-organization of action hierarchy and relearning
in new tasks with recomposed sub-goals.

3.6 Summary
In this work, we performed empirical investigations on how sequential compositional
tasks can be solved by autonomously developing sub-goal structures with acquiring
necessary action primitives via RL. For this purpose, we proposed a novel RL frame-
work, ReMASTER, which is characterized by two essential features. One is the multiple

3.6 Summary 57

timescale property both in neural activation dynamics and reward discounting, inspired
by neuroscientific findings [101, 154, 156, 177, 199]. The other is stochasticity intro-
duced in neural units in all RNN layers, also inspired by the corresponding biological
facts [14, 15, 160].

While a great number of HRL approaches already exist (Chap. 3.2), ReMASTER
is not incremental to any of them but rather a distinct framework for HRL. As we
discussed in Chap. 3.2, the HRL approaches can be divided into two categories: tem-
porally extended (option framework) [10, 11, 39, 45, 60, 63, 121, 130, 132, 165, 174, 210,
221, 246, 251] and latent-sub-goal HRL [3, 8, 53, 79, 129, 155, 180, 189, 190, 232, 247].

ReMASTER differs from the temporally extended HRL approaches in terms that
the higher-level action of ReMASTER is a continuous vector, or more specifically, the
internal states of the higher-level RNN, which change all the time. However, temporally
extended control can be achieved by clamping the high-level RNN states of ReMASTER
to fixed values, as shown in Chap. 3.4.9.

While ReMASTER falls into the latent-sub-goal HRL category since the high-level
RNN states can be considered the latent sub-goal, ReMASTER is unique. All the previ-
ous latent-sub-goal HRL methods, to our knowledge, took advantage of pseudo rewards
or objective functions for action abstraction, in addition to the original RL objective
(policy evaluation and policy improvement based on the original reward function and
action space of the task). ReMASTER fundamentally differs from the other latent-sub-
goal HRL methods in that ReMASTER does not rely on a particular pseudo reward
or objective function for action abstraction; instead, ReMASTER employs a multiple-
timescale RNN architecture which implicitly contributes to the self-organization of
action hierarchy via RL. In other words, ReMASTER’s novelty is mainly about the
neural network architecture, which is orthogonal to the prior methods’ contributions
that are mostly algorithmic. It is worth mentioning that our work does not suggest
that ReMASTER is superior to other HRL methods; instead, it should be interesting
to investigate how to incorporate ReMASTER with existing HRL algorithms in the
future.

To empirically demonstrate the effectiveness of ReMASTER, we first conducted a
comprehensive case study using the sequential target-reaching task in Chap. 3.4. Sim-
ulation results showed that action hierarchy emerged by developing an adequate inter-
nal neuronal representation at multiple levels. We presented several pieces of evidence
showing that compositionality developed in the network by taking advantage of multi-
ple timescales: abstract action control in terms of sequencing of sub-goals developed in
the higher level, whereas a set of skills for detailed sensory-motor control for achieving
each sub-goal acquired in the lower level. Furthermore, the compositionality developed
via RL enabled efficient relearning in adaptation to changed task goals that involved
the re-composition of previously learned sub-goals. This re-composition capability was
further enhanced with the introduction of neuronal noise in addition to motor noise.
Such adaptation became possible because the development of hierarchical control using
multiple levels allowed enough flexibility for the re-composition of previously learned
control skills. The results of the sequential target reaching and consecutive relearning
tasks are proof of concept that an interpretable and composable action hierarchy can
emerge via RL without any objective function for action abstraction.

We then scaled ReMASTER up by employing more recent off-policy RL algorithms

58 Self-Organization of Action Hierarchy

[70, 83] and tested it in the more challenging tasks (Chap. 3.5). The experiment results
demonstrated the advantages of ReMASTER. In particular, ReMASTER significantly
outperformed the LSTM agents on sample efficiency in the relearning phases, consistent
with the results in Chap. 3.4.

Our results altogether highlighted the potential of brain-inspired network structures
for deep HRL. Also, our results provided potential insights into neuroscience research,
which will be discussed in the next section.

3.7 Neuroscience Insights

3.7.1 Multiple timescales

How important is the intrinsic timescale hierarchy in the brain? While Murray et
al. [154] found ascending (the-higher-the-slower) intrinsic timescales (of fluctuations
in spiking activity) in the cortical areas of primates, this question remains difficult
to answer in neuroscience due to the difficulty of conducting control experiments by
changing the timescales of brain regions.

Computational models are convenient for changing the intrinsic timescales. A clas-
sic study by Yamashita and Tani [248] used a multiple-timescale RNN to perform
supervised learning for robotic control. They tested different timescale settings for
the 2-levels RNN and found that ascending timescales were beneficial for the learning
performance. When it comes to self-exploratory learning (RL), our simulation results
(Chap. 3.4.10) also suggested that ascending timescales setting in our model should be
adopted for better performance. However, even with computational models, it is hard
to test all the possible combinations of τ 1 and τ 2, not to say that we can stack more
levels to the MTSRNN.

Interestingly, Chaudhuri et al. [25] suggested that a hierarchy of timescales can
naturally emerge in a large-scale dynamical model of the macaque neocortex. We con-
jecture that such a hierarchy in the cortical areas is essential for the survival of animals,
which implies that hierarchical property has probably been evolved by natural selection
[168]. However, neuroscience and machine learning have not thoroughly investigated
how the timescale hierarchy contributes to detailed tasks. Our study focused on the hi-
erarchical control aspect and provided computational results for the control tasks with
sequential sub-goals. Nonetheless, more future studies remain to be conducted toward
a comprehensive understanding of the role of multiple timescales in neural networks.

3.7.2 Discount factor

While most RL studies consider solving an MDP or POMDP problem with a single
discount factor γ, a few studies have investigated how multiple discount factors for a
single task can facilitate RL [122, 172, 173]. Kurth-Nelson & Redish [122] proposes to
employ multiple “micro-agents”, each with a distinct γ for exponential discounting (as
in normal RL), to constitute an “overall-agent” with hyperbolic discounting, consistent
with the behavioral experiments. The γ-Ensemble method proposed by Reinke et al.

3.7 Neuroscience Insights 59

[172, 173] learns multiple Q-functions with different discount factors and uses the Q-
function with the γ that maximizes the average reward to make decisions.

Our work provides a novel thought on how multiple discount factors can benefit RL.
In ReMASTER, policy evaluation (learning value function) is conducted in multiple
levels with different discount factors, where the higher level learns the value functions7

with a higher γ (longer horizon). Note that the policy is learned using the lower-level
value functions. Thus, the learning of the higher-level value functions can be considered
as an auxiliary learning objective. Our ablation studies, which compared ReMASTER
with ReMASTER-single V (higher-level value functions not learned), showed that such
an auxiliary learning objective is helpful in some HRL tasks, perhaps by helping the
higher-level to better representing sub-goals. This result provides further empirical ev-
idence, in addition to existing studies [122, 172, 173], of the advantage of learning value
functions with different discount factors in mammal brains, which was experimentally
confirmed [51, 215].

An interesting future direction is to consider γ to be adaptive. This is related
to the neurotransmitter serotonin (5-HT), which has been shown to play important
roles in decision-making tasks [48], such as modulating risk-taking [175], learning rate
[23, 142], trade-off between exploitation and exploration [23] etc. In particular, inhibit-
ing or activating serotonin releasing modulates the animal or human’s “patience” in a
decision-making task, which corresponds to the discount factor in RL [147, 186, 187].
However, relatively few deep RL studies consider the discount factor(s) to be vari-
able since it breaks the definition of an MDP or POMDP that has a single, fixed γ
[16]. Computationally understanding the effect of variable γ remains an under-explored
problem, although it is beyond the scope of this thesis.

3.7.3 Neuronal noise

Our results have shown the benefits of the neuronal noise in ReMASTER, which is
implemented in a straightforward way—adding a Gaussian white noise to the hidden
states (Eq. 3.2). Without particular treatment of the neuronal noise (e.g., Bayesian
objective functions), the neuronal noise in ReMASTER improves both the sample
efficiency and the consistency in representing sub-goals. This is a potential reason
to account for the existence of stochastic neural activities in the brain (in particular,
in the cerebral cortex) [14, 15, 91], that is, encouraging exploration of the high-level,
abstracted behaviors (and probably also thinking and reasoning).

Since humans and animals need to learn to perform extensive and diverse tasks in
their life (except for the innate abilities to perform the most important tasks, such as
breathing), a general neural mechanism for action abstraction and exploratory behavior
should be very helpful. Our results suggest that simply having noise in the neuronal
dynamics can be one of the mechanisms. Moreover, our experiments of ReMASTER in
various tasks have shown that in most cases, the neuronal noise enhanced performance,
in comparison to ReMASTER - det.

A more advanced way of considering the neuronal noise is the Bayesian approach

7Here we refer to both the state value function V and the state-action value function Q as “value
functions”

60 Self-Organization of Action Hierarchy

to brain function [47, 49]. Different from the relative naïve way of neuronal noise
injection in ReMASTER, the Bayesian brain approach considers the neural encoding
as a probabilistic variable and takes advantage of the mathematical concepts from the
probabilistic and statistical theory such as Bayes’ theorem. In deep RL, for example,
Han et al. [90] used a Bayesian variable to encode the environmental state and train
the model with information-theoretical objective functions such as log-likelihood and
KL-divergence (by contrast, ReMASTER minimizes the mean square error between
the target and output). A potential future direction to incorporate Bayesian modeling
approaches into ReMASTER, in which the scale of neuronal noise is adaptive and
learnable, as in the work of the next chapter. It will be interesting to investigate
how the model trades off between the accuracy (lower variance of neuronal noise) and
exploration (higher variance of neuronal noise) [7, 226].

Chapter 4

Variational RNN for RL in Partially
Observable Environments

Note: This section reused the thesis author’s publication [88] (the other two authors
of the paper are the thesis author’s supervisor and co-supervisor) with modification and
re-organization to fit the thesis.

• Dongqi Han, Kenji Doya, and Jun Tani. “Variational recurrent models for solv-
ing partially observable control tasks.” International Conference on Learning
Representations (ICLR), 2020.

4.1 Background

In the last chapter, we have discussed autonomously learning an action hierarchy in a
model-free setting. We focused on sub-goal composition, while each sub-goal (reaching
one target) was relatively simple to learn. In the real world, learning to control usu-
ally yields more challenges, such as high dimensional state/action spaces and partially
observable environments [9].

In particular, it remains a variety of difficulties to solve partially observable (PO)
tasks (those can be defined using POMDP, see Chapter 2.1.3). In PO tasks, the
information from raw observation of the current timestep is often insufficient for optimal
decision-making. It is usually assumed that the entire history of observations (i.e., the
memory of observations) can be used for extracting underlying information about the
environment, which contributes to a better policy or even optimal policy [88, 181].

An obvious problem is how to extract useful information for RL from historic ob-
servations? In some cases, it is easy to hard-code. For instance, in a snooker game,
the striker should pot a colored ball after potting a red ball and vice versa. However,
in more general cases, such a simple encoding cannot be easily given in prior. One
straightforward solution is to use the whole history of observations as input to a neural
network and use regular model-free reinforcement learning algorithms to train the net-
work [125, 144]. Unfortunately, this solution has poor scalability: when the state space
or task horizon is large, the dimension of neural network input will correspondingly
explode, which brings considerable difficulty to training the network.

61

62 Variational RNN for RL in Partially Observable Environments

Such a problem can be overcome using RNNs as the function approximators, which
provide flexibility for a variable length of observation sequence [102, 103, 110, 181, 183].
With the usage of RNNs, an arbitrary model-free RL algorithm should be able to solve
PO tasks in theory, provided that the RNN used has sufficient expressive power for
extracting useful information from a history of observations. However, meanwhile,
the RNN has to learn to estimate value function and policy function, usually using
bootstrapping strategy (i.e., the gradient of value function depends on the current
estimation of value function [208]). Tackling these two problems poses difficulty to
stable and efficient train the network since RNNs are known to be harder to tame than
FNNs [166].

A substituted approach is to make use of a belief state, extracted from a sequence
of state transitions [82, 107, 125], which usually requires learning a world model. The
belief state is a variable estimated by the agent. It encodes underlying information that
determines state transitions and rewards in the environment. For example, when one
plays chess with a familiar opponent, the knowledge about the opponent’s habits and
preferences can be viewed as a belief state that may help to win the game rather than
just looking at the chessboard. To solve PO tasks using a belief state, the belief state
must contain information about the critical but unobservable state of the environment
so that we can take the belief state together with raw observations as input of RL
controllers. Unlike the approach using RNN as RL function approximators, the RL
controllers here do not need to be recurrent since the belief state has already extracted
the necessary information for making a decision at the current step. Perfectly-estimated
belief states can thus be taken as “observations” of an RL agent that contains complete
information for solving the task. Therefore, solving a PO task is segregated into a rep-
resentation learning problem and a fully observable RL problem. Since fully observable
RL problems have been well explored by the RL community, the critical challenge here
is how to estimate the belief state, especially in a real-world application featured by
stochastic state transition, context-dependence, and high-dimensional action and state
space.

In this study, we developed a variational recurrent model (VRM) that models se-
quential observations and rewards using a latent stochastic variable. The VRM is an
extension of the variational recurrent neural network (VRNN) model [34] that takes
actions into account. Our approach takes the internal states of the VRM together
with raw observations as the belief state. We then propose an algorithm to solve PO
tasks by training the VRM and a feedforward RL controller network, respectively. The
algorithm was designed for general POMDP problems by learning the representation
of underlying states st ∈ S via predicting the subsequent observation and reward. It is
expected to work in PO tasks in which st or p(st) can be (at least partially) estimated
from the history of observations x1:t.

We experimentally evaluated the proposed algorithm in various PO robotic con-
trol tasks where no velocity information is observable, or only velocity information
is observable, as well as the sequential target-reaching task introduced in the previ-
ous chapter (Chap .3.4.1). The agents showed substantial policy improvement in all
tasks, and in some tasks, the algorithm performed essentially as in fully observable
cases. In particular, our algorithm demonstrates greater performance compared to al-
ternative approaches in the tasks that require long-term credit assignment, e.g., the

4.2 Related work 63

robotic control tasks where only velocity information is observable and the sequential
target-reaching task.

Our contributions are shortly summarized as follows. First, we introduce a novel
algorithm to handle POMDP problems by segregating representation learning and re-
inforcement learning. Second, we propose to take advantage of the recent variational
RNN in SL for learning the belief state in POMDPs. Third, we propose a way to
mitigate the representation shift problem by introducing the first-impression and keep-
learning models (Chap 4.3.1). Fourth, we demonstrate how to perform sample-efficient
RL in POMDP while significantly saving the computation cost of training the RNN
models (Chap. 4.3.3). Finally, our algorithm is robust to the imperfectly-learned model
by using both the belief states and the raw observations as actor and critic inputs
(Chap. 4.5.8).

4.2 Related work

4.2.1 Deep RL for POMDP

Complexity-theoretic results show that controlling in POMDPs can be statistically and
computationally intractable in general [152, 162, 235]. Therefore, many works focused
on sub-domains of POMDPs. For example, meta-RL [182, 225, 239] can be considered
a special case of POMDPs in which the agent needs to maximize average returns in
a set of similar tasks that vary in reward function or state-transition dynamics. The
varied task properties are invisible to the agent, making meta-RL a POMDP problem.
However, meta-RL requires the agent to access a set of similar tasks, which usually
cannot be satisfied in many real-world problems. Other relatively popular sub-domains
are robust RL, where the learned policy should be robust to unobservable perturbations
of the environmental properties [12, 113, 151], and generalization in RL, which pursues
better performance in unseen testing environments [35, 204]. Rather than focusing
on a particular sub-domain, our work aims at a “standard” POMDP, i.e., learning a
reward-maximizing policy in a stationary POMDPs task [107].

To effectively perform RL in general POMDPs without prior knowledge, “it is nec-
essary to use memory of previous actions and observations to aid in the disambiguation
of the states of the world ”, as argued by Kaelbling et al. (Page 105, [107]). The most
straightforward way is to simply concatenate all or a fixed length of the previous ob-
servations and actions as the input to RL functions [125, 144]. This way is not flexible
if a long-term memory is needed for optimal decision and may face the difficulty of the
curse of dimensionality [17].

The more common way of modeling the RL function with contextual information
is to utilize RNNs to extract the features of previous observations and actions into the
RNN states 1. Most deep RL studies on solving memory-dependent POMDPS directly
employed RNNs as the approximators for value and policy functions [103, 110, 181,
183, 234]. While this way is simple and often effective, it is unclear how representation

1As a side note, the Transformer model [231] can also be used for this purpose by modeling the
state-transition trajectories as sequences [26, 104]. However, they are limited to offline RL as of now.

64 Variational RNN for RL in Partially Observable Environments

learning (extracting essential information from previous observations and actions) and
RL (policy evaluation and policy improvement) affect each other.

In contrast, the proposed algorithm takes advantage of the belief states [82, 102,
107, 125] to separately handle representation learning and RL. While Ha & Schmidhu-
ber’s work [82] used a VAE to auto-encode the image observation into the belief state
(context-free), our way of estimating belief states is context-dependent. In particular,
we train a variational RNN world model to predict the next observation using previous
observation and action. Then the RNN states are used as the belief states, which are
then fed into the RL controllers. The work by Igl et al. [102] and Lee et al. [125]
shared similar ideas with ours, which we will discuss in detail in Chap. 4.2.4.

4.2.2 Model-based RL

Typical model-based RL approaches utilize learned environment models for dreaming,
i.e., generating imaginary state-transition data for training the agent [42, 82, 85, 108]
or planning, i.e., inferring the policy that leads to a future trajectory with maximum
returns [86, 111, 185]. The model-based RL methods usually require a well-designed
and finely tuned model so that its predictions are accurate and robust. In our case,
we do not use the VRMs for dreaming and planning but for encoding the belief states
by learning the state transitions. We take advantage of a state-of-the-art model-free
RL algorithm [83] to learn the policy using the belief states as additional information
to the raw observations. Indeed, PO tasks can be solved without requiring VRMs to
predict accurately (see Chap. 4.5.8). This distinguishes our algorithm from typical
model-based RL methods.

4.2.3 Variational Bayes in RL

Variational Bayes (VB) methods have been widely used in deep learning [115] and RL.
It is helpful to recognize the VB in RL studies in two aspects: using VB to derive a
theoretical lower bound of a learning objective [55, 72, 128, 242] and using probabilistic
network models based on VB (e.g., VAE [115]) as RL function approximators [82, 102,
125, 159, 252, 253].

Our study does not involve the former aspect, i.e., theoretical analysis with VB, but
instead contributes by investigating how VB network models can benefit RL empiri-
cally. The usage of VB network models for DRL has gained attention from researchers
recently. Ha & Schmidhuber [82] employed a VAE to encode the high-dimensional
image observation into a lower-dimensional latent vector; Yin et al. [252] introduced a
method to encourage exploration using intrinsic rewards based on the prediction error
of a variational state-transition model. Okada et al. [159] utilized a deep VB state-
transition model to perform efficient model-based planning in continuous control tasks.
However, we use the variational RNN [34] for a different purpose—inferring the belief
states in POMDPs.

4.3 Methods 65

(a) (b) Generative model Inference model(c)

Figure 4.1: Diagrams of the proposed algorithm. (a) Overview. (b, c) The generative
model and the inference model of a VRM.

4.2.4 Probabilistic models for encoding belief states in POMDPs

There also exist studies that share similar ideas with ours. The deep variational rein-
forcement learning (DVRL) algorithm [102] also modeled the state-transition function
using variational RNNs to encode the belief states in POMDPs. However, there are
key differences. First, DVRL trained the transition model and RL functions altogether
by minimizing a combinatory RL and model prediction loss. In contrast, VRMs are
trained separately from the RL controllers. Thus, our algorithm can save computation
costs by reducing unnecessary updates of either of the two parts and avoid suffering
from tuning the hyperparameters to trade-off between RL and model prediction losses.
Also, DVRL employed a particle ensemble approach [198, 223] in training the model,
whereas VRMs are trained simply by the reparameterization trick [115].

The work our algorithm most closely resembles is known as stochastic latent actor-
critic (SLAC) [125]2, in which a latent variable model for observation prediction was
trained. The latent variable was used as the belief state for the critic (but not for
the actor). SLAC showed promising results using pixels-based robotic control tasks,
where velocity information needs to be inferred from third-person images of the robot.
However, there are important distinctions between our work and SLAC. Here we con-
sider more general PO environments in which the reward may depend on a long history
of inputs. The actor-network of SLAC did not take advantage of the latent variable.
Instead, it used some steps of raw observations as input, which creates problems in
achieving long-term memorization of reward-related state transitions. Furthermore,
unlike VRM, SLAC did not include raw observations in the input of the critic, which
may complicate training the critic before the model converges.

4.3 Methods

4.3.1 Variational recurrent state-transition models

An overall diagram of the proposed algorithm is summarized in Fig. 4.1(a), while a more
detailed computational graph is plotted in Fig. 4.2. The core idea is to ease the learning

2This work and SLAC were concurrent.

66 Variational RNN for RL in Partially Observable Environments

(c)

(a) (b)
Deterministic

node

Stochastic
node

Generative
model

Inference
model

RL controller
network

Interacting
with the

environment

Error back-
propagation

RL controller Excecution phase

Learning phase

Figure 4.2: Computation diagram of the proposed algorithm. (a) The RL controller.
(b) The execution phase. (c) The learning phase of a VRM. a: action; z: latent
variable; d: RNN state variable; x: raw observation (including reward); Q: state-
action value function; V : state value function. A bar on a variable means that it is
the actual value from the replay buffer or the environment. Each stochastic variable
follows a parameterized diagonal Gaussian distribution.

by separately handling representation learning and RL. The representation learning
part is achieved by training the VRM to predict the next observation using a sequence
of observations and actions. By doing so, the internal states of the VRM should encode
the underlying environmental states (as much as possible) that are important to state
transitions. Thus, providing the VRM’s internal states to the RL controllers reduces
the burden on RL.

For representation learning, we extend the original VRNN model [34] to the pro-
posed VRM model by adding action feedback, i.e., actions taken by the agent are
used in the inference model and the generative model. Also, since we are modeling
state-transition and reward functions, we include the reward rt−1 in the current raw
observation xt for convenience. Thus, we have the inference model (Fig. 4.1(c)), de-
noted by ϕ, as

zϕ,t|xt ∼ N
(
µϕ,t, diag(σ2

ϕ,t)
)
, where

[
µϕ,t,σ

2
ϕ,t

]
= ϕ(xt,dt−1,at−1), (4.1)

The generative model (Fig. 4.1(b)), denoted by θ here, is

zt ∼ N
(
µθ,t, diag(σ2

θ,t)
)
,

[
µθ,t,σ

2
θ,t

]
= θprior(dt−1,at−1),

xt|zt ∼ N
(
µx,t, diag(σ2

x,t)
)
,

[
µx,t,σ

2
x,t

]
= θdecoder(zt,dt−1). (4.2)

4.3 Methods 67

For building recurrent connections, the choice of RNN types is not limited. In our
study, the long-short term memory (LSTM) [98] is used since it works well in general
cases. So we have dt = LSTM(dt−1; zt,xt).

As in training a VRNN, the VRM is trained by maximizing the evidence lower
bound (Fig. 4.1(c))

ELBO =
∑
t

{
Eqϕ [log pθ(xt|z1:t,x1:t−1)]

−DKL [qϕ(zt|z1:t−1, x̄1:t, ā1:t)||pθ(zt|z1:t−1, x̄1:t−1, ā1:t)]} . (4.3)

In practice, the first term Eqϕ [log pθ(xt|z1:t,x1:t−1)] can be obtained by unrolling the
RNN using the inference model (Fig. 4.1(c)) with sampled sequences of xt. Since
qϕ and pθ are parameterized Gaussian distributions, the KL-divergence term can be
analytically expressed as

DKL [qϕ(zt)||pθ(zt)] = log
σϕ,t
σθ,t

+
(µϕ,t − µθ,t)

2 + σ2
ϕ,t

2σ2
θ,t

− 1

2
. (4.4)

For computation efficiency in experience replay, we train a VRM by sampling mini-
batches of truncated sequences of fixed length instead of whole episodes.

Since the training of a VRM is segregated from the training of the RL controllers,
there are several strategies for conducting them in parallel. For the RL controller, we
adopted a smooth update strategy as in SAC [83], i.e., performing experience replay
once every n steps. To train the VRM, one can also conduct smooth updates. However,
in that case, RL suffers from instability of the representation of underlying states in
the VRM before it converges. Also, the stochasticity of RNN state variables d can be
meaninglessly high at the early stage of training, which may create problems in RL.
Another strategy is to pre-train the VRM for abundant epochs only before RL starts,
which, unfortunately, can fail if novel observations from the environment appear after
some degree of policy improvement. Moreover, if pre-training and smooth update are
both applied to the VRM, RL may suffer from a large representation shift of the belief
state.

To resolve this conflict, we propose using two VRMs, which we call the first-
impression model and the keep-learning model, respectively. As the names suggest,
we pre-train the first-impression model and stop updating it when RL controllers and
the keep-learning model start smooth updates. Then we take state variables from
both VRMs, together with raw observations, as the input for the RL controller. We
found that this method yields better overall performance than using a single VRM
(Chap. 4.5.6).

4.3.2 Reinforcement learning controllers

Since the VRM takes the responsibility of extracting the underlying environmental
states from a sequence of observations and actions, the RL controllers can focus on RL
by including the belief states (the VRM’s internal states), in addition to the current
raw observation, as the input to value and policy functions. Then, using feedforward
neural networks for the RL controllers can avoid the difficulties of training RNNs [166].

68 Variational RNN for RL in Partially Observable Environments

In particular, we use multi-layer perceptrons (MLP) as function approximators for
V , Q, respectively(Fig. 4.1(a)). Inputs for the Qt network are (xt,dt,at), and Vt is
mapped from (xt,dt). Following SAC [83], we use two Q-networks λ1 and λ2 and
compute Q = min(Qλ1 , Qλ2) in Eq. 2.20 and 2.22 for better performance and stability.
Furthermore, we also used a target value network for computing V in Eq. 2.21 as
in SAC [83]. The policy function πη follows a parameterized Gaussian distribution
N (µη(dt,xt), diag (ση(dt,xt))) where µη and ση are also MLPs.

In the execution phase (Fig. 4.1(b)), observation and reward xt = (Xt, rt−1) are
received as VRM inputs to compute internal states dt using inference models. Then, the
agent selects an action, sampled from πη(at|dt,xt), to interact with the environment.

To train RL networks, we first sample sequences of steps from the replay buffer
as minibatches; thus, dt can be computed by the inference models using recorded
observations x̄t and actions āt (See Chap. 4.3.4). Then RL networks are updated
by minimizing the loss functions with gradient descent. Gradients stop at dt so that
training of RL networks does not involve updating VRMs.

4.3.3 Update-to-data ratio

There is another notable benefit of training the keep-learning VRM and RL controllers
separately: we can use different update-to-data ratios [28] for the two parts. In partic-
ular, we perform 1 gradient step for the keep-learning VRM and 5 for RL controllers
per 5 environment steps (5 samples). This is reasonable because the learning rates for
RL are usually small (e.g., 3e-4 in SAC and TD3 [70, 83]) so as to maintain stable
training, while in supervised learning without such difficulties, the learning rate can
be larger (e.g., 1e-3 in the original paper of VRNN [34]). As such, the computational
cost of training the VRMs is largely reduced, and thus, the whole training time is
significantly saved due to the fact that the training of RNNs (VRMs) is much more
costly than that of MLPs (RL controllers).

4.3.4 Implementation details

In this subsection, we describe the details of implementing our algorithm as well as the
alternative ones.

Network architectures

The first-impression model and the keep-learning model adopted the same architec-
ture. Size of d and z is 256 and 64, respectively. We used one-hidden-layer fully-
connected networks with 128 hidden neurons for the inference models

[
µϕ,t,σ

2
ϕ,t

]
=

ϕ(xt,dt−1,at−1), as well as for
[
µθ,t,σ

2
θ,t

]
= θprior(dt−1,at−1) in the generative mod-

els. For the decoder
[
µx,t,σ

2
x,t

]
= θdecoder(zt,dt−1) in the generative models, we used

2-layers MLPs with 128 neurons in each layer. The input processing layer fx is also an
one-layer MLP with size-128. For all the Gaussian variables, output functions for mean
are linear and output functions for variance are softplus. Other activation functions of
the VRMs are tanh.

4.3 Methods 69

We used soft actor-critic (SAC, Chap. 2.1.10) as the baseline RL algorithm. SAC
was originally developed for fully observable environments; thus, the raw observation at
the current step xt was used as network input. In this work, we apply SAC in PO tasks
by including the state variable dt of the VRNN in the input of function approximators
of both the actor and the critic.

Initial states of the VRMs

To train the VRMs, one can use a number of entire episodes as a minibatch, using
zero initial states, as in Heess et al.’s work [94]. However, when tackling long episodes
(e.g., there can be 1,000 steps in each episode in the robotic control tasks we used)
or even infinite-horizon problems, the computation consumption will be huge in back-
propagation through time (BPTT). For better computation efficiency, we used 4 length-
64 sequences for training the RNNs, and applied the burn-in method for providing the
initial states [110], or more specifically, unrolling the RNNs using a portion of the
replay sequence (burn-in period, up to 64 steps in our case) from zero initial states.
We assume that proper initial states can be obtained in this way. This is crucial for the
tasks that require long-term memorization and is helpful in reducing bias introduced
by incorrect initial states in general cases.

4.3.5 Hyperparameters

For the RL controllers, we adopted hyperparameters from the original SAC implemen-
tation [84]. Both the keep-learning and first-impression VRMs were trained using a
learning rate of 0.0008. We pre-trained the first-impression VRM for 5,000 epochs and
updated the keep-learning VRM every 5 steps. Batches of size 4, each containing a
sequence of 64 steps, were used for training both the VRMs and the RL controllers. All
tasks used the same hyperparameters (Chap. 4.3.4). Summaries of hyperparameters
can be found in Table 4.1 and 4.2.

Table 4.1: Shared hyperparameters for all the algorithms and tasks in the study,
adopted from the original SAC implementation [84]. The degree of freedom (DOF) of
each environment is listed in Table 4.3.

Hyperparameter Description Value

γ Discount factor 0.99
step_start_RL From how many steps to start training the RL controllers 1,000
train_interval_RL Interval of training the RL controllers 1
lr_actor Learning rate for the actor 0.0003
lr_critic Learning rate for the critic 0.0003
lr_α Learning rate for the entropy coefficient α 0.0003
Htar Target entropy −DOF
optimizer Optimizers for all the networks Adam [114]
τ Fraction of updating the target network each gradient step 0.005
policy_layers MLP layer sizes for µη and πη 256, 256
value_layers MLP layer sizes for Vϕ and Qλ 256, 256

70 Variational RNN for RL in Partially Observable Environments

Table 4.2: Hyperparameters for the proposed algorithm.

Hyperparameter Description Value

train_times_FIVRM Epoches of training the first-impression model. 5,000
train_interval_KLVRM Interval of training the keep-learning model. 5
lr_model Learning rate for the VRMs 0.0008
seq_len How many steps in a sampled sequence for each update 64
batch_size How many sequences to sample for each update 4

4.4 Environments

We used environments (and modified them for PO versions) from OpenAI Gym [24].
A list of used environments can be found in Table 4.3. The CartPole environment with
a continuous action space was from Danforth’s GitHub repository [38], and the codes
for the sequential target reaching tasks were provided by the authors [87].

Table 4.3: Information of the environments we used.

Name dim(X) DOF Maximum steps

Pendulum 3 1 200
Pendulum (velocities only) 1 1 200
Pendulum (no velocities) 2 1 200
CartPole 4 1 1,000
CartPole (velocities only) 2 1 1,000
CartPole (no velocities) 2 1 1,000
RoboschoolHopper 15 3 1,000
RoboschoolHopper (velocities only) 6 3 1,000
RoboschoolHopper (no velocities) 9 3 1,000
RoboschoolWalker2d 22 6 1,000
RoboschoolWalker2d (velocities only) 9 6 1,000
RoboschoolWalker2d (no velocities) 13 6 1,000
RoboschoolAnt 28 8 1,000
RoboschoolAnt (velocities only) 11 8 1,000
RoboschoolAnt (no velocities) 17 8 1,000
Sequential goal reaching task 12 2 128

4.5 Results

To empirically evaluate our algorithm, we performed experiments in a range of (par-
tially observable) continuous control tasks and compared it to the following alternative
algorithms. The overall procedure is summarized in Algorithm 4.

4.5 Results 71

Algorithm 4 Variational Recurrent Models with Soft Actor Critic
Initialize the first-impression VRM Mf and the keep-learning VRM Mk, the RL
controller C, and the replay buffer D, global step t← 0.
repeat

Initialize an episode, assignM with zero initial states.
while episode not terminated do

Sample an action at from π(at|dt,xt) and execute at, t← t+ 1.
Record (xt,at, donet) into B.
Compute 1-step forward of both VRMs using inference models.
if t == step_start_RL then

For N epochs, sample a minibatch from B to updateMf (Eq. 4.3).
end if
if t > step_start_RL and mod(t, train_interval_KLV RM) == 0 then

Sample a minibatch from B to updateMk (Eq. 2.20, 2.21, 2.22, 2.23) .
end if
if t > step_start_RL and mod(t, train_interval_RL) == 0 then

Sample a minibatch from B to update R (Eq. 4.3) .
end if

end while
until training stopped

4.5.1 Alternative algorithms

• SAC-MLP: The vanilla soft actor-critic implementation [83, 84] (Chap. 2.1.10),
in which each function is approximated by a 2-layer MLP taking raw observa-
tions as input. We followed the original implementation of SAC [83] including
hyperparameters. We also applied automatic learning of the entropy coefficient
α (inverse of the reward scale [83]) as introduced by the Haarnoja et al.’s newer
version [84] to avoid tuning the reward scale for each task.

• SAC-LSTM: Soft actor-critic with recurrent networks as function approxima-
tors, where raw observations are processed through a standard LSTM layer (no
latent stochasticity) followed by 2 layers of MLPs. This allows the agent to
make decisions based on the whole history of raw observations. In this case,
the network has to conduct representation learning and dynamic programming
collectively. Our algorithm is compared with SAC-LSTM to demonstrate the ef-
fect of separating representation learning from dynamic programming. To apply
recurrency to SAC’s function approximators, we added an LSTM network with
size-256 receiving raw observations as input. The function approximators of actor
and critic were the same as those in SAC except for receiving the LSTM’s output
as input. The gradients could pass through the LSTM so that the LSTM and
MLPs were trained as a whole.

• SLAC: The stochastic latent actor-critic algorithm introduced by Lee et al. [125],
which is a state-of-the-art RL algorithm for solving POMDP tasks. It was shown
that SLAC outperformed other model-based and model-free algorithms [86, 102],

72 Variational RNN for RL in Partially Observable Environments

in robotic control tasks with a third-person image of the robot as observation3.
We mostly followed the implementation of SLAC explained in the original pa-
per [125]. One modification is that since their work used pixels as observations,
convolutional neural networks (CNN) and transposed CNNs were chosen for in-
put feature extracting and output decoding layers; in our case, we replaced the
CNN and transposed CNNs with 2-layers MLPs with 256 units in each layer. In
addition, the authors set the output variance σ2

y,t for each image pixel as 0.1.
However, σ2

y,t = 0.1 can be too large for joint states/velocities as observations.
We found that it will lead to better performance by setting σy,t as trainable pa-
rameters (as that in our algorithm). We also used a 2-layer MLP with 256 units
for approximating σy(xt,dt−1). To avoid network weights being divergent, all
the activation functions of the model were tanh except those for outputs.

Note that in our algorithm, we apply pre-training of the first-impression model. For
a fair comparison, we also perform pre-training for the alternative algorithm with
the same epochs. For SAC-MLP and SAC-LSTM, pre-training is conducted on RL
networks; while for SLAC, its model is pre-trained.

4.5.2 Partially observable classic control tasks

The Pendulum and CartPole [13] tasks are the classic control tasks for evaluating RL
algorithms (Fig. 4.3, Left). The CartPole task requires learning a policy that prevents
the pole from falling down and keeps the cart from running away by applying a (1-
dimensional) force to the cart, in which observable information is the coordinate of the
cart, the angle of the pole, and their derivatives w.r.t time (i.e., velocities). For the
Pendulum task, the agent needs to learn a policy to swing an inverse pendulum up and
maintain it at the highest position in order to obtain more rewards.

We are interested in classic control tasks because they are relatively easy to solve
when fully observable, and thus the PO cases can highlight the representation learning
problem. Experiments were performed in these two tasks, as well as their PO versions,
in which either velocities cannot be observed, or only velocities can be observed. The
latter case is meaningful in real-life applications because an agent may not be able to
perceive its own position, but it can estimate its speed.

As expected, SAC-MLP failed to solve the PO tasks (Fig. 4.3). While our algorithm
succeeded in learning to solve all these tasks, SAC-LSTM showed poorer performance
in some of them. In particular, in the pendulum task with only angular velocity observ-
able, SAC-LSTM may suffer from the periodicity of the angle. SLAC performed well
in the CartPole tasks but showed less satisfactory sample efficiency in the Pendulum
tasks.

3SLAC was developed for pixel observations. To compare it with our algorithm, we made some
modifications to its implementation. Nonetheless, we expect the comparison can demonstrate the
effect of the key differences (Chap. 4.2.4)

4.5 Results 73

Pendulum

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

Pendulum - velocities only

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 50 100
thousand steps

-1500

-1000

-500

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

CartPole - velocities only

0 100 200 300
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

Ours
SAC-LSTM
SAC-MLP
SLAC

Pendulum

CartPole

Figure 4.3: Learning curves of the classic control tasks. Shaded areas indicate SEM.
The average return is defined as the total rewards in an episode on average for each
agent. For the Pendulum task, the reward is always no larger than zero and is closer
to zero if the pendulum is closer to the top. The reward for CartPole is 1 at each step,
i.e., the total rewards are the steps of keeping balance (maximum 1,000 in an episode).

4.5.3 Partially observable robotic control tasks

To examine the performance of the proposed algorithm in more challenging control
tasks with higher degrees of freedom (DOF), we also evaluated the performance of
the proposed algorithm in the OpenAI Roboschool environments [24]. The Roboschool
environments include a number of continuous robotic control tasks, such as teaching a
multiple-joint robot to walk as fast as possible without falling down (Fig. 4.4, Left).
The original Roboschool environments are nearly fully observable since observations
include the robot’s coordinates and (trigonometric functions of) joint angles, as well
as (angular and coordinate) velocities. As in the PO classic control tasks, we also
performed experiments in the PO versions of the Roboschool environments.

Using our algorithm, experimental results (Fig. 4.4) demonstrated substantial policy
improvement in all PO tasks. In some PO cases, the agents achieved comparable
performance to that in fully observable cases. For tasks with unobserved velocities,
our algorithm performed similarly to SAC-LSTM. This is because velocities can be
simply estimated by one-step differences in robot coordinates and joint angles, which
eases representation learning. However, in environments where only velocities can be
observed, our algorithm significantly outperformed SAC-LSTM, presumably because
SAC-LSTM is less efficient at encoding underlying states from velocity observations.
Also, we found that learning of a SLAC agent was unstable, i.e., it sometimes could
acquire a near-optimal policy, but often its policy converged to a poor one. Thus, the
average performance of SLAC was less promising than ours in most of the PO robotic
control tasks.

74 Variational RNN for RL in Partially Observable Environments

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn
Ours
SAC-LSTM
SAC-MLP
SLAC

RoboschoolHopper - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolAnt

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolHopper

RoboschoolWalker2d

RoboschoolAnt

Figure 4.4: Learning curves of the robotic control tasks, plotted in the same way
as in Fig. 4.3. The average return is defined as the total rewards in an episode on
average for each agent, where the reward functions are unchanged from the Roboschool
environments.

4.5.4 Long-term memorization tasks

Another common type of PO task requires long-term memorization of past events. To
solve these tasks, an agent needs to learn to extract and remember critical information
from the whole history of raw observations. Therefore, we also examined our algorithm
and other alternatives in a long-term memorization task, the sequential target reaching
task [87], in which a robot agent needs to reach 3 different targets in a certain sequence
(Fig. 4.5, Left, see Chap. 3.4.1 for more details). The robot can control its two wheels
to move or turn and will get one-step small, medium, and large rewards when it reaches
the first, second, and third targets, respectively, in the correct sequence. The robot
senses distances and angles from the 3 targets, but does not receive any signal indicating
which target to reach. In each episode, the robot’s initial position and those of the
three targets are randomly initialized. In order to obtain rewards, the agent needs to
infer the correct target using historical observations.

We found that agents using our algorithm achieved almost 100% success rate (de-
fined in the same way as in Chap. 3.4.5, i.e., reaching 3 targets in the correct sequence
within 50 steps). SAC-LSTM also achieved a similar success rate after convergence
but spent more training steps learning to encode underlying goal-related information
from sequential observations. Also, SLAC struggled hard to solve this task since its
actor only received limited steps of observations, making it difficult to infer the correct
target.

4.5 Results 75

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

 (%
) Ours

SAC-LSTM
SAC-MLP
SLAC

-1 -0.5 0 0.5 1
0

20

40

60

80

100
Sequential ball touching task

Sequential target reaching task

Figure 4.5: Learning curves of the sequential target reaching task.

4.5.5 Convergence of the keep-learning VRM

One of the most concerning problems of our algorithm is that input of the RL con-
trollers can experience representation change because the keep-learning model is not
guaranteed to converge if novel observation appears due to improved policy (e.g., for a
hopper robot, “in-the-air” state can only happen after it learns to hop). To empirically
investigate how the convergence of the keep-learning VRM affects policy improvement,
we plot the loss functions (negative ELBOs) of the keep-learning VRM for 3 example
tasks (Fig. 4.6). For a simpler task (CartPole), the policy was already near-optimal
before the VRM fully converged. We also saw that the policy was gradually improved
after the VRM mostly converged (RoboschoolAnt - no velocities). And the policy and
the VRM were being improved in parallel (RoboschoolAnt - velocities only).

The results suggested that policy could be improved with sufficient sample effi-
ciency even if the keep-learning VRM did not converge. This can be explained that
the RL controller also extracts information from the first-impression model and the
raw observations, which did not experience representation change during RL. Indeed,
our ablation study showed performance degradation in many tasks without the first-
impression VRM (Chap. 4.5.6).

RoboschoolAnt - no veolocities

0 500 1000
thousand steps

0

500

1000

av
er

ag
e

re
tu

rn

-2

-1

0

1

ne
ga

tiv
e

EL
BO

CartPole

0 100 200 300 400
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

-4

-3

-2

-1

0

ne
ga

tiv
e

EL
BO

RoboschoolHopper - veolocities only

0 500 1000
thousand steps

500

1000

1500

2000

av
er

ag
e

re
tu

rn

-2

-1

0

ne
ga

tiv
e

EL
BO

Figure 4.6: Example tasks showing the relationship between average return of the
agent and negative ELBO (loss function, dashed) of the keep-learning VRM.

4.5.6 Ablation study

This section demonstrated an ablation studies in which we compared the performance
of the proposed algorithm to the same but with some modifications:

76 Variational RNN for RL in Partially Observable Environments

• With a single VRM. In this case, we used only one VRM and applied both
pre-training and smooth updates to it.

• Only first-impression model. In this case, only the first-impression model
was used and pre-trained.

• Only keep-learning model. In this case, only the keep-learning model was
used, and smooth-update was applied.

• Deterministic model. In this case, the first-impression model and the keep-
learning model were deterministic RNNs that learned to model the state transi-
tions by minimizing the mean-square error between prediction and observations
instead of ELBO. The network architecture was mostly the same as the VRM
expect that the inference model and the generative model were merged into a
deterministic one.

The learning curves are shown in Fig. 4.7. It can be seen that the proposed algo-
rithm consistently performed similarly or better than the modified ones.

Pendulum

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Ours

With a single VRM

Only first-impression VRM

Only keep-learning VRM

Deterministic Model

Pendulum - velocities only

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 20 40 60 80
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - velocities only

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolAnt

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

 (
%

)

Figure 4.7: Learning curves of our algorithms and the modified ones.

4.5 Results 77

4.5.7 Visualization of trained agents

Here we show the actual movements of the trained robots in the PO robotic control
tasks (Fig. 4.8). It can be seen that the robots succeeded in learning to hop or walk,
although their policy may be sub-optimal.

Figure 4.8: Robots learned to hop or walk in PO environments using our algorithm.
Each panel shows the trajectory of a trained agent (randomly selected) within one
episode.

4.5.8 Model accuracy

Our algorithm relies mostly on the encoding capacity of models but does not require
models to make accurate predictions of future observations. Fig. 4.9 shows open-loop
(using the inference model to compute the latent variable z) and close-loop (purely
using the generative model) prediction of raw observation by the keep-learning models
of randomly selected trained agents. Here we showcase “RoboschoolHopper - velocities
only” and “Pendulum - no velocities” because in these tasks, our algorithm achieved
similar performance to those in fully-observable versions (Fig. 4.4), despite that the
prediction accuracy of the models was imperfect.

4.5.9 Sensitivity to hyperparameters of the VRMs

To empirically show how the choice of hyperparameters of the VRMs affects RL per-
formance, we conducted experiments using hyperparameters different from those used
in the main study. More specifically, the learning rate for both VRMs was randomly
selected from {0.0004, 0.0006, 0.0008, 0.001} and the sequence length was randomly
selected from {16, 32, 64} (the batch size was 256/(sequence_length) to ensure that
the total number of samples in a batch was 256 which matched with the alternative
approaches). The other hyperparameters were unchanged.

78 Variational RNN for RL in Partially Observable Environments

RoboschoolHopper - velocities only (open loop) RoboschoolHopper - velocities only (close loop)

Pendulum - no velocities (open loop) Pendulum - no velocities (close loop)

Figure 4.9: Examples of observation predictions by keep-learning VRMs of trained
agents.

The results can be checked in Fig 4.10 for all the environments we used. The
overall performance did not significantly change using different, random hyperparam-
eters of the VRMs, although we could observe significant performance improvement
(e.g., RoboshoolWalker2d) or degradation (e.g., RoboshoolHopper - velocities only) in
a few tasks using different hyperparameters. Therefore, the representation learning
part (VRMs) of our algorithm does not suffer from high sensitivity to hyperparame-
ters. This can be explained by the fact that we do not use a bootstrapping (e.g., the
estimation of targets of value functions depends on the estimation of value functions)
update rule [208] to train the VRMs.

4.6 Summary
This study proposes a variational recurrent model for learning to represent underlying
states of PO environments and the corresponding algorithm for solving POMDPs. Our
experimental results demonstrate the effectiveness of the proposed algorithm in tasks
in which underlying states cannot be simply inferred using a sequence of observations.

The first contribution of our work is that we point out the importance of carefully
handling the representation learning problem in POMDPs. Our work is one of the
earliest attempts4 to empirically investigate the performance of deep RL agents that

4A contemporary study is from Lee et al. [125], and a later one is from Ota et al. [161]

4.6 Summary 79

Pendulum

0 20 40 60 80 100
thousand steps

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

hyperparameters we used
random hyperparameters

Pendulum - velocities only

0 20 40 60 80 100
thousand steps

-1400

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

Pendulum - no velocities

0 50 100
thousand steps

-1200

-1000

-800

-600

-400

-200

av
er

ag
e

re
tu

rn

CartPole

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - velocities only

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

CartPole - no velocities

0 100 200 300
thousand steps

0

200

400

600

800

1000

av
er

ag
e

re
tu

rn

RoboschoolHopper

0 500 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - velocities only

0 200 400 600 800 1000
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolHopper - no velocities

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

2000

2500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - velocities only

0 500 1000
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolWalker2d - no velocities

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

av
er

ag
e

re
tu

rn

RoboschoolAnt

0 200 400 600 800 1000 1200
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - velocities only

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

RoboschoolAnt - no velocities

0 500 1000
thousand steps

0

500

1000

1500

2000

av
er

ag
e

re
tu

rn

Sequential target reaching task

0 50 100 150 200 250
thousand steps

0

20

40

60

80

100

su
cc

es
s

ra
te

Figure 4.10: The learning curves of our algorithm using the hyperparameters for the
VRMs used in the study (Table 4.2) and using a range of random hyperparameters.
Data are Mean ± SEM, obtained from 20 repeats using different random seeds.

detach representation learning from RL for solving POMDP tasks. The results on
various PO tasks show that the proposed method outperforms the traditional method
that straightforwardly uses an RNN for RL function approximation. Future works are
expected to develop more advanced methodologies for handling representation learning
in RL.

We propose to employ the VRNN structure [34] which is advantageous in SL, for
representation learning. The VRNN learns to predict the subsequent observation,
given the history of observations and actions. By doing so, the internal state of the
VRNN learns to encode the underlying environmental states that are critical to state
transitions. An important result is that the usage of the VRNN structure enhances RL
performance compared to using deterministic RNNs (Chap. 4.5.6). A potential reason
to account for this result is that the network stochasticity enhances the smoothness and
robustness of the learned representation [34, 115]. This result indicates that stochastic
models [5, 34, 78, 115] can be beneficial to representation learning problems in RL even
when the environmental dynamics are deterministic.

Moreover, we propose a heuristic approach to mitigate the representation shift prob-
lem, which occurs when new state transitions come with updated policy (Chap 4.3.1).
We employ two VRMs with different learning schemes: the first-impression VRM,

80 Variational RNN for RL in Partially Observable Environments

which is trained using the initial exploration experiences and is then fixed, and the
keep-learning VRM, which is continuously being trained during the entire learning
course. While we show that this approach enhances RL performance in the proposed
tasks (Chap. 4.5.6, this idea should also apply to more general cases of representation
learning in online RL where the representation shift problem occurs.

In addition, we introduced a way to save the computation cost of training the RNN
models (Chap. 4.3.3). Since the representation learning part can be considered as
(self-)supervised learning (thus avoiding the difficulties in RL such as bootstrapping),
we can apply a larger learning rate and update the VRM fewer times. This technical
trick greatly reduces the time to train the RNNs, which is the major bottleneck of
computation time.

Finally, unlike typical model-based RL methods that demand accurate world models
to perform dreaming or planning, our algorithm is relatively robust to imperfectly-
learned models (Chap. 4.5.8). The primary reason is that our algorithm uses both
the learned belief state and the raw observation as the inputs to the RL functions.
Thus, even if the VRM has not perfectly learned the belief state, the policy function
may output reasonably good actions based on the raw observation and the essential
contextual information encoded in the belief state (e.g., which target to reach in the
sequential target-reaching task).

4.7 Discussion

4.7.1 Model-based and model-free RL

Traditionally, it was considered that there are two distinct systems for model-based
and model-free RL in the brain [76, 126]. Several neuroscientific studies investigated
the brain mechanisms underlying the arbitration between model-based and model-
free RL [126, 200]. They usually consider a simple ensemble of the model-based and
model-free policies for the outcome action, e.g., the outcome action is modeled via a
linear combination of two Q-functions obtained by model-based and model-free RL,
respectively [126]. However, the assumption that model-based and model-free RL in
the brain are two totally distinct systems might be overly-simplified. One brain region
may contribute to both model-based and model-free RL. For example, Stachenfeld et
al. [205] suggested that the hippocampus can learn a successor representation of the
environment that benefits both model-free and model-based RL.

Moreover, we speculate that learning a world model can benefit model-free RL in
this study. In our case, the world model is learned but not used for planning [159] or
dreaming [82]. Instead, learning the world model can be considered an auxiliary task
to facilitate downstream model-free RL by promoting representation learning of the
shared neural network. One advantage of this scheme is that the agent can achieve
reasonably well performance with an imperfect model, which is usually the case in
human brains (for example, a professional game player does not need to know every
detail of the game mechanisms). It is also reasonable to conjecture that oppositely,
model-free RL, as an auxiliary objective, may facilitate learning the world model by
sharing some neural modules.

4.7 Discussion 81

However, the studies about the interplay between model-based and model-free RL
were under-explored in both machine learning and neuroscience. Should learning the
world model serve as an auxiliary task like in our and the related studies [102, 125]? Are
there any other ways model-free and model-based RL benefit each other? It remains
to be investigated more comprehensively in future neuroscience and machine learning
research.

4.7.2 Representation learning and RL

In this work, we suggested one way to explicitly address the representation learning
problem in deep RL. We focused on POMDP problems where historical observations
and actions were useful. We trained an RNN world model to perform observation pre-
diction so that the internal states of the RNN encoded important underlying environ-
mental states that affected state transitions. Similar ideas for representation learning
in POMDPs were also addressed by Igl et al. [102] and Lee et al. [125], while they
were implemented in very different ways (see Chap. 4.2).

Note that these two studies [102, 125] and our work are intuitively effective in
history-dependent POMDPs because extracting critical information from sequential
data is non-trivial and essential. Meanwhile, Ota et al. [161]5 suggested that explicitly
addressing the representation problem is even beneficial in MDPs. They also asked the
model to predict the next state (but with feedforward networks) to facilitate represen-
tation learning [161]. This improved RL performance with different base algorithms in
robotic control tasks.

Recently, there has also been rising research interest in using contrastive learn-
ing [32, 81] to perform representation for RL [123, 206]6. Contrastive learning is a
kind of self-supervised machine learning to learn the general features of a dataset
(which data points are similar or different) without labels. One major advantage of
contrastive learning is that reconstructing or predicting observations is not required.
Thus, contrastive learning is especially computationally efficient for high-dimensional
observations such as images. For example, Laskin et al. [123] used contrastive learning
to extract features from image observations and performed off-policy RL based on the
extracted features. Their experimental results showed a significant performance gain
compared to RL without representation learning.

The aforementioned and our studies suggested that properly handling representa-
tion learning is critical for RL performance. However, how to “properly” address the
representation learning problem in deep RL remains under-explored. A potential issue
is the representation shift problem. We suggested a heuristic approach for alleviat-
ing the representation shift problem by employing two VRMs (first-impression and
keep-leaning VRMs). However, it is still worthwhile to develop theoretically justified
approaches to resolve the representation shift issue. Future studies may need more
theoretical and empirical discussions on effective and robust representation learning
for deep RL.

5Ota et al.’s paper [161] was published later than this work.
6These studies [123, 206] were also published later than this work.

Chapter 5

Conclusion and Future Work

5.1 Conclusion
Traditionally, machine learning has been most useful for processing high-dimensional
data that are difficult for humans to comprehend, such as dimension reduction [69]
and clustering [137]. However, the recent development of deep learning using neural
networks (and the corresponding computational hardware) makes it possible for the
machine learning agent to tackle more diverse tasks that humans also meet in real
life. On the one hand, deep learning demonstrates supreme performance on some well-
defined tasks such as image recognition [93] and machine translation [231]. On the
other hand, more and more interest is shown in leveraging artificial neural networks to
study the cognitive basis of decision-making [134, 145, 167, 202, 217, 238, 248, 250].
Nonetheless, current deep learning agents are still far behind humans in flexibility and
versatility—the proposed studies in this thesis attempt to fill such gaps.

In the previous chapters, two studies of RL with stochastic RNN applied in hierar-
chical and partially observable environments were introduced. Here I shortly summa-
rize these studies and discuss their potential extension for cognitive neurorobotics and
decision-making research.

The first work introduces a bio-inspired RL framework, referred to as ReMASTER,
for self-organizing action hierarchy with exploratory learning. The intrinsic timescale
hierarchy of a two-layers RNN and neuronal stochasticity are the two key elements.
Unlike other hierarchical RL methods, ReMASTER does not require designing and
optimizing a specific objective for abstracting sub-goals (with the experimenter’s prior
knowledge). Instead, a representation of the action hierarchy emerged in the network
only through RL. The self-organized action hierarchy is shown to help accelerate trans-
fer learning with the learned low-level control skills. Moreover, the network can output
the low-level control for an explicit sub-goal by clamping the higher-level neural ac-
tivities. Our study demonstrates the potential of bio-inspired learning mechanisms for
deep RL. In particular, the hierarchy of intrinsic timescales of the model and stochas-
tic system dynamics are shown to be critical to the self-organization of reusable motor
skills.

The second work focuses on RL in partially observable environments. The core
argument is that in partially observable tasks, it could be beneficial to separately
handle representation learning (i.e., learning to extract critical information from a

83

84 Conclusion and Future Work

sequence of raw observations) and RL (i.e., learning the value and policy functions).
The experimental results support this argument by using a variational RNN as the
model for representation learning and acquiring the belief state in POMDPs. In human
development, it is considered that a world model develops in much earlier stages via
representation learning, such as predictive coding [170], than decision-making [100,
229]. Therefore, when an adult needs to learn a new decision-making task that requires
historical or contextual observations, the person can immediately utilize the belief state
by the learned model of the world. Since we deal with many different tasks in the same
world that follow the same physical laws. The reusability of the representation model
and belief state should contribute to a more adaptive decision-making capacity. In
particular, finding the structure in time by learning to predict future observations
should be helpful since optimal decisions are usually context-dependent in practice.

Both works demonstrated the advantages of using stochastic RNNs for RL from
different perspectives. The stochasticity in the networks can contribute to more efficient
exploration and better latent representations. The recurrent property of the network
enables the model to keep the internal states which empower representations that
are useful for hierarchical control and inferring the unobservable environmental state.
As a short, final summary, the thesis studies suggest the potential of using RL with
stochastic RNNs to advance more intelligent decision-making and motor control.

5.2 Future work

Despite the recent success of decision-making AI on various individual tasks [40, 197,
234], decision-making agents are still far from achieving versatility, adaptivity, and
flexibility similar to or surpassing human beings. The possible future directions are
shortly discussed as follows. Potential future work following the thesis studies may be
conducted in several directions.

One ongoing work of the thesis author [89] considers the cooperation between RL
and another decision-making paradigm: the active inference (AIf) theory [67, 68], which
is an extension of the free energy principle (FEP) [65]. Aif and FEP provide a Bayesian
computational framework of the decision-making in the brain. AIf explains decision-
making as changing the agent’s belief of perception and proprioception to minimize the
difference (or surprise in FEP) between predicted observation and goal observation [66,
143, 216]. In this work, We consider a novel Bayesian framework for explaining habitual
and goal-directed behaviors in decision making, in which everything is integrated as
one variational neural network model. The model learns to predict future observations
using the data collected by self-exploration and to generate motor actions by sampling
stochastic internal states z. Both the prior and posterior distributions of the Bayesian
variable z are modeled by the network. One the one hand, habitual behavior, which
is obtained from the prior distribution of z, is acquired by RL. On the other hand,
Goal-directed behavior is determined from the posterior distribution of z by using
active inference, which computes z by minimizing the variational surprise between the
predicted and desired future observation.

The second is to develop novel principles/mechanisms for more intelligent decision-
making by borrowing ideas from biology and cognitive science. For example, there is

5.2 Future work 85

a primacy bias effect [141, 194] in cognitive science, a phenomenon in which human
learning overly relies on the early experiences of a task. Reminded by this phenomenon,
Nikishin et al. [157] proposed a simple yet general-applicable method to reduce the risk
of over-fitting to earlier experiences in deep RL, which showed consistent performance
improvement in various tasks. Another example is that Kirkpartrick et al. [116] devel-
oped an approach to overcome the catastrophic forgetting problem in deep learning (an
ANN fails to maintain expertise on old tasks when learning new tasks [64]), inspired
by synaptic consolidation in neuroscience. As for my future studies, an interesting
but under-explored research topic is how the brain mechanisms during sleep can give
insights into deep learning, as sleep is considered to play a critical role in learning
[139, 237].

Moreover, I would like to improve the versatility of decision-making AIs (including
but not limited to the proposed models in the thesis) to tackle more diverse, real-world
problems. In particular, a deep RL model usually requires hyperparameter tuning to
perform well in a given task (set). By contrast, a healthy human can learn various
tasks with reasonably good performance. How a single decision-making AI model can
effectively learn to solve various tasks without much hyperparameter tuning? The
answers to this question should also be important to understand the versatility of
our cognitive ability. One way to alleviate the demands of hyperparameter tuning
is to introduce new hyperparameters to regularize the original hyperparameters (e.g.,
introducing the target entropy [84] to regularize the temperature of the policy function
[83]). It is essential that there should exist a choice of the new hyperparameters that are
good for a wide range of tasks. This approach may also apply to ReMASTER, where
we can introduce mechanisms to adaptively adjust some critical hyperparameters. For
instance, adaptive control of the scale of neuronal noise in ReMASTER should be
beneficial, which may be implemented using variational RNNs like in Chap. 4. It will
also be interesting to consider a compromise between totally-fixed and totally-adaptive
intrinsic timescales of the RNN since they both have disadvantages. RNNs with totally-
fixed timescales (like MTSRNN) may suffer from a disparity between the network
timescales and task timescales, and RNNs with totally-adaptive intrinsic timescales
(like LSTM) are shown to underperform the MTSRNN in the transfer learning tasks
(Chap. 3). An interesting mechanism that may apply here is to use another RNN
with slowly-changing RNN outputs, such as a CTRNN (Chap. 2.2.2), to regularize the
timescale of the main RNN, which is proposed by Tay et al. [219].

Last but not least, it is worthwhile to consider more general principles (meta-
mechanisms) that underlie a genuinely versatile and adaptive decision-making agent in
the further future. While detailed artificial designs are essential in engineering prob-
lems for better performance, too many artificial designs with humans’ prior knowledge
about specific tasks are unnecessary and perhaps deleterious to developing and un-
derstanding a highly cognitive and intelligent decision-making agent. The animals in
nature improve themselves with three levels of adaptation schemes—learning, devel-
opment, and evolution. At the learning level, animals use life experience to improve
skills with a developed body and brain, with is analog to optimizing a given neural net-
work in deep learning. At the development level, animals grow their brains and bodies
with progress pre-defined in the genes, which is analog to augmenting or changing the
networks for life-long learning in deep learning [178]. At the evolution level, random

86 Conclusion and Future Work

mutations occur, and better genes are selected, which is analog to neural architecture
search in deep learning [256]. However, there have not been comprehensive studies
that include all the three levels of adaptation in machine learning for decision-making
problems, probably because of the immense demand for computation power and the
fact that the learning level has not been perfectly addressed yet. In the further future,
it will be interesting to study the development and evolution levels of deep RL, which
update not only the networks but also the learning principles/algorithms of the agents.

Bibliography

[1] David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael
Littman. Policy and value transfer in lifelong reinforcement learning. In Proceed-
ings of the International Conference on Machine Learning, pages 20–29, 2018.

[2] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[3] Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational
option discovery algorithms. arXiv preprint arXiv:1807.10299, 2018.

[4] Ahmadreza Ahmadi and Jun Tani. Bridging the gap between probabilistic and
deterministic models: a simulation study on a variational Bayes predictive coding
recurrent neural network model. In International Conference on Neural Infor-
mation Processing, pages 760–769. Springer, 2017.

[5] Ahmadreza Ahmadi and Jun Tani. A novel predictive-coding-inspired variational
RNN model for online prediction and recognition. Neural Computation, pages
1–50, 2019.

[6] Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch,
and Pieter Abbeel. Continuous adaptation via meta-learning in nonstationary
and competitive environments. In Proceedings of the International Conference
on Learning Representations, 2018.

[7] Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep vari-
ational information bottleneck. In International Conference on Learning Repre-
sentations, 2017.

[8] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Woj-
ciech Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, volume 30, 2017.

[9] Karl J Åström. Optimal control of Markov processes with incomplete state in-
formation. Journal of Mathematical Analysis and Applications, 10(1):174–205,
1965.

[10] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture.
In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

87

88 Bibliography

[11] Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining.
In International Conference on Learning Representations, 2020.

[12] J Andrew Bagnell and Jeff G Schneider. Autonomous helicopter control using
reinforcement learning policy search methods. In Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No. 01CH37164),
volume 2, pages 1615–1620. IEEE, 2001.

[13] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adap-
tive elements that can solve difficult learning control problems. IEEE Transac-
tions on Systems, Man, and Cybernetics, pages 834–846, 1983.

[14] Jeffrey M Beck, Wei Ji Ma, Roozbeh Kiani, Tim Hanks, Anne K Churchland,
Jamie Roitman, Michael N Shadlen, Peter E Latham, and Alexandre Pouget.
Probabilistic population codes for Bayesian decision making. Neuron, 60(6):1142–
1152, 2008.

[15] Jeffrey M Beck, Wei Ji Ma, Xaq Pitkow, Peter E Latham, and Alexandre Pouget.
Not noisy, just wrong: the role of suboptimal inference in behavioral variability.
Neuron, 74(1):30–39, 2012.

[16] Richard Bellman. A Markovian decision process. Journal of Mathematics and
Mechanics, pages 679–684, 1957.

[17] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[18] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[19] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166, 1994.

[20] Anthony Boemio, Stephen Fromm, Allen Braun, and David Poeppel. Hierar-
chical and asymmetric temporal sensitivity in human auditory cortices. Nature
Neuroscience, 8(3):389–395, 2005.

[21] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[22] Oliver Bown and Sebastian Lexer. Continuous-time recurrent neural networks for
generative and interactive musical performance. In Workshops on Applications
of Evolutionary Computation, pages 652–663. Springer, 2006.

[23] Jonathan L Brigman, Poonam Mathur, Judith Harvey-White, Alicia Izquierdo,
Lisa M Saksida, Timothy J Bussey, Stephanie Fox, Evan Deneris, Dennis L Mur-
phy, and Andrew Holmes. Pharmacological or genetic inactivation of the sero-
tonin transporter improves reversal learning in mice. Cerebral Cortex, 20(8):1955–
1963, 2010.

89

[24] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

[25] Rishidev Chaudhuri, Kenneth Knoblauch, Marie-Alice Gariel, Henry Kennedy,
and Xiao-Jing Wang. A large-scale circuit mechanism for hierarchical dynamical
processing in the primate cortex. Neuron, 88(2):419–431, 2015.

[26] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha
Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision trans-
former: Reinforcement learning via sequence modeling. In Advances in Neural
Information Processing Systems, volume 34, 2021.

[27] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neu-
ral ordinary differential equations. In Proceedings of the International Conference
on Neural Information Processing Systems, pages 6572–6583, 2018.

[28] Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized en-
sembled double Q-learning: Learning fast without a model. In International
Conference on Learning Representations, 2021.

[29] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259, 2014.

[30] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, 2014.

[31] Minkyu Choi and Jun Tani. Predictive coding for dynamic vision: Development
of functional hierarchy in a multiple spatio-temporal scales RNN model. In Inter-
national Joint Conference on Neural Networks (IJCNN), pages 657–664. IEEE,
2017.

[32] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05),
volume 1, pages 539–546. IEEE, 2005.

[33] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Em-
pirical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

[34] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C
Courville, and Yoshua Bengio. A recurrent latent variable model for sequential
data. In Advances in Neural Information Processing Systems, pages 2980–2988,
2015.

90 Bibliography

[35] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quan-
tifying generalization in reinforcement learning. In International Conference on
Machine Learning, pages 1282–1289. PMLR, 2019.

[36] Albert Compte, Nicolas Brunel, Patricia S Goldman-Rakic, and Xiao-Jing Wang.
Synaptic mechanisms and network dynamics underlying spatial working memory
in a cortical network model. Cerebral Cortex, 10(9):910–923, 2000.

[37] Erwin Coumans and Yunfei Bai. PyBullet, a Python module for physics simu-
lation for games, robotics and machine learning. http://pybullet.org, 2016–
2019.

[38] Ian Danforth. Continuous cartpole for OpenAI Gym. https://gist.github.
com/iandanforth/e3ffb67cf3623153e968f2afdfb01dc8, 2018.

[39] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances
in Neural Information Processing Systems, volume 5, 1992.

[40] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego
de Las Casas, et al. Magnetic control of Tokamak plasmas through deep rein-
forcement learning. Nature, 602(7897):414–419, 2022.

[41] Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. In
Proceedings of the International Conference on Machine Learning, pages 179–186,
2012.

[42] Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In Proceedings of the International Conference on
Machine Learning, pages 465–472, 2011.

[43] Markus Diesmann, Marc-Oliver Gewaltig, and Ad Aertsen. Stable propagation
of synchronous spiking in cortical neural networks. Nature, 402(6761):529–533,
1999.

[44] Thomas Dietterich. State abstraction in MAXQ hierarchical reinforcement learn-
ing. Advances in Neural Information Processing Systems, 12, 1999.

[45] Thomas G Dietterich. Hierarchical reinforcement learning with the maxQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303,
2000.

[46] Kenji Doya. Reinforcement learning in continuous time and space. Neural Com-
putation, 12(1):219–245, 2000.

[47] Kenji Doya, Shin Ishii, Alexandre Pouget, and Rajesh PN Rao. Bayesian brain:
Probabilistic approaches to neural coding. MIT press, 2007.

[48] Kenji Doya, Kayoko W Miyazaki, and Katsuhiko Miyazaki. Serotonergic modula-
tion of cognitive computations. Current Opinion in Behavioral Sciences, 38:116–
123, 2021.

91

[49] Kenji Doya and Tadahiro Taniguchi. Toward evolutionary and developmental
intelligence. Current Opinion in Behavioral Sciences, 29:91–96, 2019.

[50] Jeffrey L Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

[51] Kazuki Enomoto, Naoyuki Matsumoto, Sadamu Nakai, Takemasa Satoh, Tat-
suo K Sato, Yasumasa Ueda, Hitoshi Inokawa, Masahiko Haruno, and Minoru
Kimura. Dopamine neurons learn to encode the long-term value of multiple fu-
ture rewards. Proceedings of the National Academy of Sciences, page 201014457,
2011.

[52] Manfred Eppe, Christian Gumbsch, Matthias Kerzel, Phuong DH Nguyen, Mar-
tin V Butz, and Stefan Wermter. Intelligent problem-solving as integrated hier-
archical reinforcement learning. Nature Machine Intelligence, pages 1–10, 2022.

[53] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diver-
sity is all you need: Learning skills without a reward function. In International
Conference on Learning Representations, 2019.

[54] Daniel J Felleman and David C Van Essen. Distributed hierarchical processing in
the primate cerebral cortex. Cerebral Cortex (New York, NY: 1991), 1(1):1–47,
1991.

[55] Matthew Fellows, Anuj Mahajan, Tim GJ Rudner, and Shimon Whiteson. Virel:
A variational inference framework for reinforcement learning. Advances in Neural
Information Processing Systems, 32, 2019.

[56] David Ferrier. The functions of the brain. Smith, Elder, 1886.

[57] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In Proceedings of the International Confer-
ence on Machine Learning, pages 1126–1135, 2017.

[58] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-
learning. In Advances in Neural Information Processing Systems, pages 9516–
9527, 2018.

[59] Shelly B Flagel, Jeremy J Clark, Terry E Robinson, Leah Mayo, Alayna Czuj,
Ingo Willuhn, Christina A Akers, Sarah M Clinton, Paul EM Phillips, and
Huda Akil. A selective role for dopamine in stimulus–reward learning. Nature,
469(7328):53–57, 2011.

[60] Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hi-
erarchical reinforcement learning. In Proceedings of the International Conference
on Learning Representations (ICLR), 2017.

[61] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Os-
band, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
et al. Noisy networks for exploration. In Proceedings of the International Con-
ference on Learning Representations, 2018.

92 Bibliography

[62] Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequen-
tial neural models with stochastic layers. In Advances in Neural Information
Processing Systems, pages 2199–2207, 2016.

[63] Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta
learning shared hierarchies. In Proceedings of the International Conference on
Learning Representations, 2018.

[64] Robert M French. Catastrophic forgetting in connectionist networks. Trends in
Cognitive Sciences, 3(4):128–135, 1999.

[65] Karl Friston. The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 11(2):127–138, 2010.

[66] Karl Friston, Thomas FitzGerald, Francesco Rigoli, Philipp Schwartenbeck, Gio-
vanni Pezzulo, et al. Active inference and learning. Neuroscience & Biobehavioral
Reviews, 68:862–879, 2016.

[67] Karl Friston, Jérémie Mattout, and James Kilner. Action understanding and
active inference. Biological Cybernetics, 104(1):137–160, 2011.

[68] Karl J Friston, Jean Daunizeau, James Kilner, and Stefan J Kiebel. Action
and behavior: a free-energy formulation. Biological Cybernetics, 102(3):227–260,
2010.

[69] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901.

[70] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[71] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems
by continuous time recurrent neural networks. Neural Networks, 6(6):801–806,
1993.

[72] Thomas Furmston and David Barber. Variational methods for reinforcement
learning. In Proceedings of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 241–248. JMLR Workshop and Conference
Proceedings, 2010.

[73] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving pilco with
Bayesian neural network dynamics models. In Data-Efficient Machine Learning
workshop, ICML, volume 4, 2016.

[74] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen.
Multi-goal reinforcement learning environments for simulated franka emika panda
robot. arXiv preprint arXiv:2106.13687, 2021.

93

[75] Karunesh Ganguly and Mu-ming Poo. Activity-dependent neural plasticity from
bench to bedside. Neuron, 80(3):729–741, 2013.

[76] Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P O’Doherty. States versus
rewards: dissociable neural prediction error signals underlying model-based and
model-free reinforcement learning. Neuron, 66(4):585–595, 2010.

[77] Gary H Glover. Overview of functional magnetic resonance imaging. Neuro-
surgery Clinics, 22(2):133–139, 2011.

[78] Anirudh Goyal Alias Parth Goyal, Alessandro Sordoni, Marc-Alexandre Côté,
Nan Rosemary Ke, and Yoshua Bengio. Z-forcing: Training stochastic recurrent
networks. In Advances in Neural Information Processing Systems, pages 6713–
6723, 2017.

[79] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic
control. arXiv preprint arXiv:1611.07507, 2016.

[80] Stephen Grossberg. Recurrent neural networks. Scholarpedia, 8(2):1888, 2013.

[81] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In Yee Whye Teh and
Mike Titterington, editors, Proceedings of the Thirteenth International Confer-
ence on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 297–304, Chia Laguna Resort, Sardinia, Italy, 13–15
May 2010. PMLR.

[82] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy
evolution. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 2450–2462. Curran Associates, Inc., 2018.

[83] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor. In International Conference on Machine Learning, pages 1856–1865, 2018.

[84] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905,
2018.

[85] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream
to control: Learning behaviors by latent imagination. In International Conference
on Learning Representations, 2019.

[86] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. Learning latent dynamics for planning from
pixels. arXiv preprint arXiv:1811.04551, 2018.

94 Bibliography

[87] Dongqi Han, Kenji Doya, and Jun Tani. Self-organization of action hierarchy
and compositionality by reinforcement learning with recurrent neural networks.
Neural Networks, 129:149–162, 2020.

[88] Dongqi Han, Kenji Doya, and Jun Tani. Variational recurrent models for solv-
ing partially observable control tasks. In International Conference on Learning
Representations, 2020.

[89] Dongqi Han, Kenji Doya, and Jun Tani. Goal-directed planning by reinforcement
learning and active inference. arXiv preprint arXiv:2106.09938, 2021.

[90] Dongqi Han, Tadashi Kozuno, Xufang Luo, Zhao-Yun Chen, Kenji Doya, Yuqing
Yang, and Dongsheng Li. Variational oracle guiding for reinforcement learning.
In International Conference on Learning Representations, 2022.

[91] Christoph Hartmann, Andreea Lazar, Bernhard Nessler, and Jochen Triesch.
Where’s the noise? key features of spontaneous activity and neural variability
arise through learning in a deterministic network. PLoS Computational Biology,
11(12):e1004640, 2015.

[92] Matthew Hausknecht and Peter Stone. Deep recurrent Q-learning for partially
observable MDPs. In 2015 AAAI Fall Symposium Series, 2015.

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 770–778, 2016.

[94] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-
based control with recurrent neural networks. arXiv preprint arXiv:1512.04455,
2015.

[95] Claus-C Hilgetag, Marc A O’Neill, and Malcolm P Young. Hierarchical organiza-
tion of macaque and cat cortical sensory systems explored with a novel network
processor. Philosophical Transactions of the Royal Society of London. Series B:
Biological Sciences, 355(1393):71–89, 2000.

[96] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[97] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al.
Gradient flow in recurrent nets: the difficulty of learning long-term dependencies,
2001.

[98] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[99] Ronald A Howard. Dynamic programming and Markov processes. Wiley for The
Massachusetts Institute of Technology, 1964.

95

[100] Elizabeth B Hurlock. Developmental psychology. McGraw-Hill, 1953.

[101] Raoul Huys, Andreas Daffertshofer, and Peter J Beek. Multiple time scales and
multiform dynamics in learning to juggle. Motor Control, 8(2):188–212, 2004.

[102] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon White-
son. Deep variational reinforcement learning for POMDPs. arXiv preprint
arXiv:1806.02426, 2018.

[103] Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos,
Avraham Ruderman, et al. Human-level performance in 3D multiplayer games
with population-based reinforcement learning. Science, 364(6443):859–865, 2019.

[104] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as
one big sequence modeling problem. In Advances in Neural Information Process-
ing Systems, volume 34, 2021.

[105] Michael I Jordan. Serial order: A parallel distributed processing approach. In
Advances in Psychology, volume 121, pages 471–495. Elsevier, 1997.

[106] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna
Potapenko, et al. Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 2021.

[107] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99–134, 1998.

[108] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. Model-based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374, 2019.

[109] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. Model-based reinforcement learning for Atari. In Proceedings
of the International Conference on Learning Representations (ICLR), 2020.

[110] Steven Kapturowski, Georg Ostrovski, Will Dabney, John Quan, and Remi
Munos. Recurrent experience replay in distributed reinforcement learning. In
Proceedings of the International Conference on Learning Representations, 2018.

[111] Nan Rosemary Ke, Amanpreet Singh, Ahmed Touati, Anirudh Goyal, Yoshua
Bengio, Devi Parikh, and Dhruv Batra. Learning dynamics model in re-
inforcement learning by incorporating the long term future. arXiv preprint
arXiv:1903.01599, 2019.

96 Bibliography

[112] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–
954, 1960.

[113] IS Khalil, JC Doyle, and K Glover. Robust and optimal control. prentice hall,
new jersey, 1996.

[114] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[115] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv
preprint arXiv:1312.6114, 2013.

[116] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, 114(13):3521–3526,
2017.

[117] George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement
learning domains using skill chaining. Advances in Neural Information Processing
Systems, 22, 2009.

[118] Konrad P Kording, Joshua B Tenenbaum, and Reza Shadmehr. The dynamics
of memory as a consequence of optimal adaptation to a changing body. Nature
Neuroscience, 10(6):779, 2007.

[119] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

[120] Rudolf Kruse, Christian Borgelt, Frank Klawonn, Christian Moewes, Matthias
Steinbrecher, and Pascal Held. Multi-layer perceptrons. In Computational Intel-
ligence, pages 47–81. Springer, 2013.

[121] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
Hierarchical deep reinforcement learning: Integrating temporal abstraction and
intrinsic motivation. In Advances in Neural Information Processing Systems,
pages 3675–3683, 2016.

[122] Zeb Kurth-Nelson and A David Redish. Temporal-difference reinforcement learn-
ing with distributed representations. PLoS One, 4(10):e7362, 2009.

[123] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsu-
pervised representations for reinforcement learning. In International Conference
on Machine Learning, pages 5639–5650. PMLR, 2020.

[124] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

97

[125] Alex Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic
latent actor-critic: Deep reinforcement learning with a latent variable model. In
Advances in Neural Information Processing Systems, volume 33, 2020.

[126] Sang Wan Lee, Shinsuke Shimojo, and John P O’Doherty. Neural computations
underlying arbitration between model-based and model-free learning. Neuron,
81(3):687–699, 2014.

[127] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Fil-
liat. State representation learning for control: An overview. Neural Networks,
108:379–392, 2018.

[128] Sergey Levine. Reinforcement learning and control as probabilistic inference:
Tutorial and review, 2018.

[129] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-
level hierarchies with hindsight. In Proceedings of International Conference on
Learning Representations, 2019.

[130] Alexander Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy
adaptation for hierarchical reinforcement learning. In International Conference
on Learning Representations, 2020.

[131] Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan
Yang, Li Zhao, Tao Qin, Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering
Mahjong with deep reinforcement learning. arXiv preprint arXiv:2003.13590,
2020.

[132] Zhuoru Li, Akshay Narayan, and Tze-Yun Leong. An efficient approach to model-
based hierarchical reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

[133] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[134] Timothy P Lillicrap and Konrad P Kording. What does it mean to understand
a neural network? arXiv preprint arXiv:1907.06374, 2019.

[135] Timothy P Lillicrap and Adam Santoro. Backpropagation through time and the
brain. Current Opinion in Neurobiology, 55:82–89, 2019.

[136] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Ge-
offrey Hinton. Backpropagation and the brain. Nature Reviews Neuroscience,
21(6):335–346, 2020.

[137] Stuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982.

98 Bibliography

[138] Daniel J Mankowitz, Timothy A Mann, and Shie Mannor. Adaptive skills adap-
tive partitions (asap). In Advances in Neural Information Processing Systems,
pages 1588–1596, 2016.

[139] Pierre Maquet. The role of sleep in learning and memory. Science,
294(5544):1048–1052, 2001.

[140] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. Spike-timing-
dependent plasticity: a comprehensive overview. Frontiers in Synaptic Neuro-
science, 4:2, 2012.

[141] Philip H Marshall and Pamela R Werder. The effects of the elimination of re-
hearsal on primacy and recency. Journal of Verbal Learning and Verbal Behavior,
11(5):649–653, 1972.

[142] Sara Matias, Eran Lottem, Guillaume P Dugué, and Zachary F Mainen. Activity
patterns of serotonin neurons underlying cognitive flexibility. Elife, 6:e20552,
2017.

[143] Takazumi Matsumoto and Jun Tani. Goal-directed planning for habituated
agents by active inference using a variational recurrent neural network. Entropy,
22(5):564, 2020.

[144] R Andrew McCallum. Overcoming incomplete perception with utile distinc-
tion memory. In Proceedings of the Tenth International Conference on Machine
Learning, pages 190–196, 1993.

[145] Kevin R McKee, Edward Hughes, Tina O Zhu, Martin J Chadwick, Raphael
Koster, Antonio Garcia Castaneda, Charlie Beattie, Thore Graepel, Matt
Botvinick, and Joel Z Leibo. Deep reinforcement learning models the emergent
dynamics of human cooperation. arXiv preprint arXiv:2103.04982, 2021.

[146] Jacques Mirenowicz and Wolfram Schultz. Importance of unpredictability for
reward responses in primate dopamine neurons. Journal of Neurophysiology,
72(2):1024–1027, 1994.

[147] Kayoko W Miyazaki, Katsuhiko Miyazaki, Kenji F Tanaka, Akihiro Yamanaka,
Aki Takahashi, Sawako Tabuchi, and Kenji Doya. Optogenetic activation of
dorsal raphe serotonin neurons enhances patience for future rewards. Current
Biology, 24(17):2033–2040, 2014.

[148] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In International Conference on Ma-
chine Learning, pages 1928–1937, 2016.

[149] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

99

[150] Karin Morandell and Daniel Huber. The role of forelimb motor cortex areas in
goal directed action in mice. Scientific Reports, 7(1):15759, 2017.

[151] Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural Compu-
tation, 17(2):335–359, 2005.

[152] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender.
Complexity of finite-horizon Markov decision process problems. Journal of the
ACM (JACM), 47(4):681–720, 2000.

[153] Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and
efficient off-policy reinforcement learning. In Advances in Neural Information
Processing Systems, pages 1054–1062, 2016.

[154] John D Murray, Alberto Bernacchia, David J Freedman, Ranulfo Romo,
Jonathan D Wallis, Xinying Cai, Camillo Padoa-Schioppa, Tatiana Pasternak,
Hyojung Seo, Daeyeol Lee, et al. A hierarchy of intrinsic timescales across pri-
mate cortex. Nature Neuroscience, 17(12):1661, 2014.

[155] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. Advances in Neural Information Processing
Systems, 31, 2018.

[156] Karl M Newell, Yeou-Teh Liu, and Gottfried Mayer-Kress. Time scales in motor
learning and development. Psychological Review, 108(1):57, 2001.

[157] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron
Courville. The primacy bias in deep reinforcement learning. In International
Conference on Machine Learning. PMLR, 2022.

[158] John P O’Doherty, Peter Dayan, Karl Friston, Hugo Critchley, and Raymond J
Dolan. Temporal difference models and reward-related learning in the human
brain. Neuron, 38(2):329–337, 2003.

[159] Masashi Okada, Norio Kosaka, and Tadahiro Taniguchi. Planet of the Bayesians:
Reconsidering and improving deep planning network by incorporating Bayesian
inference. In International Conference on Intelligent Robots and Systems, 2020.

[160] Gergő Orbán, Pietro Berkes, József Fiser, and Máté Lengyel. Neural variability
and sampling-based probabilistic representations in the visual cortex. Neuron,
92(2):530–543, 2016.

[161] Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama, and Daniel Nikovski.
Can increasing input dimensionality improve deep reinforcement learning? In
International Conference on Machine Learning, pages 7424–7433. PMLR, 2020.

[162] Christos H Papadimitriou and John N Tsitsiklis. The complexity of Markov
decision processes. Mathematics of Operations Research, 12(3):441–450, 1987.

100 Bibliography

[163] Gibeom Park and Jun Tani. Development of compositional and contextual com-
munication of robots by using the multiple timescales dynamic neural network. In
Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2015 Joint
IEEE International Conference on, pages 176–181. IEEE, 2015.

[164] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS:
Flexible model-based policy search robust to the curse of chaos. In International
Conference on Machine Learning, pages 4065–4074. PMLR, 2018.

[165] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of ma-
chines. In Advances in Neural Information Processing Systems, volume 10, 1997.

[166] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-
ing recurrent neural networks. In International Conference on Machine Learning,
pages 1310–1318, 2013.

[167] Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami,
and Matthew Botvinick. Machine theory of mind. In International Conference
on Machine Learning, pages 4218–4227. PMLR, 2018.

[168] Pasko Rakic. Evolution of the neocortex: a perspective from developmental
biology. Nature Reviews Neuroscience, 10(10):724–735, 2009.

[169] Steve Ramirez, Xu Liu, Pei-Ann Lin, Junghyup Suh, Michele Pignatelli, Roger L
Redondo, Tomás J Ryan, and Susumu Tonegawa. Creating a false memory in
the hippocampus. Science, 341(6144):387–391, 2013.

[170] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nature
Neuroscience, 2(1):79, 1999.

[171] Stéphanie Ratté, Sungho Hong, Erik De Schutter, and Steven A Prescott. Impact
of neuronal properties on network coding: roles of spike initiation dynamics and
robust synchrony transfer. Neuron, 78(5):758–772, 2013.

[172] Chris Reinke. The Gamma-Ensemble-Adaptive Reinforcement Learning via Mod-
ular Discounting. PhD thesis, Okinawa Institute of Science and Technology Grad-
uate University, 2018.

[173] Chris Reinke, Eiji Uchibe, and Kenji Doya. Average reward optimization with
multiple discounting reinforcement learners. In International Conference on Neu-
ral Information Processing, pages 789–800. Springer, 2017.

[174] Matthew Riemer, Miao Liu, and Gerald Tesauro. Learning abstract options. In
Advances in Neural Information Processing Systems, pages 10424–10434, 2018.

[175] Robert D Rogers, BJ Everitt, A Baldacchino, Alison J Blackshaw, Rachel Swain-
son, K Wynne, NB Baker, J Hunter, T Carthy, E Booker, et al. Dissociable

101

deficits in the decision-making cognition of chronic amphetamine abusers, opi-
ate abusers, patients with focal damage to prefrontal cortex, and tryptophan-
depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsy-
chopharmacology, 20(4):322–339, 1999.

[176] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning rep-
resentations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[177] Caroline A Runyan, Eugenio Piasini, Stefano Panzeri, and Christopher D Harvey.
Distinct timescales of population coding across cortex. Nature, 548(7665):92,
2017.

[178] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016.

[179] Katsuyuki Sakai, Katsuya Kitaguchi, and Okihide Hikosaka. Chunking during
human visuomotor sequence learning. Experimental Brain Research, 152(2):229–
242, 2003.

[180] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value
function approximators. In International Conference on Machine Learning, pages
1312–1320. PMLR, 2015.

[181] J Schmidhuber. Making the world differentiable: On using fully recurrent self-
supervised neural networks for dynamic reinforcement learning and planning in
non-stationary environments. Institut für Informatik, Technische Universität
München. Technical Report FKI-126, 90, 1990.

[182] Jürgen Schmidhuber. Evolutionary principles in self-referential learning. Diploma
thesis, Technische Universität München, 1987.

[183] Jürgen Schmidhuber. Reinforcement learning in Markovian and non-Markovian
environments. In Advances in Neural Information Processing Systems, pages
500–506, 1991.

[184] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

[185] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. Mastering Atari, Go, chess and Shogi by planning with a
learned model. arXiv preprint arXiv:1911.08265, 2019.

[186] Nicolas Schweighofer, Mathieu Bertin, Kazuhiro Shishida, Yasumasa Okamoto,
Saori C Tanaka, Shigeto Yamawaki, and Kenji Doya. Low-serotonin lev-
els increase delayed reward discounting in humans. Journal of Neuroscience,
28(17):4528–4532, 2008.

102 Bibliography

[187] Nicolas Schweighofer, Saori C Tanaka, and Kenji Doya. Serotonin and the eval-
uation of future rewards: theory, experiments, and possible neural mechanisms.
Annals of the New York Academy of Sciences, 1104(1):289–300, 2007.

[188] Terrence J Sejnowski, Christof Koch, and Patricia Smith Churchland. Compu-
tational neuroscience. Science, 241(4871):1299–1306, 1988.

[189] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and Abhinav Gupta. Discover-
ing motor programs by recomposing demonstrations. In International Conference
on Learning Representations, 2020.

[190] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
Dynamics-aware unsupervised discovery of skills. In International Conference on
Learning Representations, 2020.

[191] Katsunari Shibata and Yuta Sakashita. Reinforcement learning with internal-
dynamics-based exploration using a chaotic neural network. In Neural Networks
(IJCNN), 2015 International Joint Conference on, pages 1–8. IEEE, 2015.

[192] Keisetsu Shima and Jun Tanji. Both supplementary and presupplementary motor
areas are crucial for the temporal organization of multiple movements. Journal
of Neurophysiology, 80(6):3247–3260, 1998.

[193] Keisetsu Shima and Jun Tanji. Neuronal activity in the supplementary and
presupplementary motor areas for temporal organization of multiple movements.
Journal of Neurophysiology, 84(4):2148–2160, 2000.

[194] Hanan Shteingart, Tal Neiman, and Yonatan Loewenstein. The role of first
impression in operant learning. Journal of Experimental Psychology: General,
142(2):476, 2013.

[195] Daniel L Silver, Qiang Yang, and Lianghao Li. Lifelong machine learning systems:
Beyond learning algorithms. In AAAI Spring Symposium: Lifelong Machine
Learning, volume 13, page 05, 2013.

[196] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484, 2016.

[197] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. Mastering the game of Go without human knowledge. Nature,
550(7676):354, 2017.

[198] David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. Advances
in Neural Information Processing Systems, 23, 2010.

103

[199] Maurice A Smith, Ali Ghazizadeh, and Reza Shadmehr. Interacting adaptive
processes with different timescales underlie short-term motor learning. PLoS
Biology, 4(6):e179, 2006.

[200] Peter Smittenaar, Thomas HB FitzGerald, Vincenzo Romei, Nicholas D Wright,
and Raymond J Dolan. Disruption of dorsolateral prefrontal cortex decreases
model-based in favor of model-free control in humans. Neuron, 80(4):914–919,
2013.

[201] William R Softky and Christof Koch. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random epsps. Journal of Neuroscience,
13(1):334–350, 1993.

[202] H Francis Song, Guangyu R Yang, and Xiao-Jing Wang. Reward-based training
of recurrent neural networks for cognitive and value-based tasks. Elife, 6:e21492,
2017.

[203] Yuhang Song, Thomas Lukasiewicz, Zhenghua Xu, and Rafal Bogacz. Can the
brain do backpropagation?—exact implementation of backpropagation in predic-
tive coding networks. In Advances in Neural Information Processing Systems,
volume 33, pages 22566–22579, 2020.

[204] Mario Srouji, Jian Zhang, and Ruslan Salakhutdinov. Structured control nets for
deep reinforcement learning. In International Conference on Machine Learning,
pages 4742–4751. PMLR, 2018.

[205] Kimberly L Stachenfeld, Matthew M Botvinick, and Samuel J Gershman. The
hippocampus as a predictive map. Nature Neuroscience, 20(11):1643, 2017.

[206] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling repre-
sentation learning from reinforcement learning. In International Conference on
Machine Learning, pages 9870–9879. PMLR, 2021.

[207] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and
reacting. ACM Sigart Bulletin, 2(4):160–163, 1991.

[208] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction,
volume 1. MIT press Cambridge, 1998.

[209] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in Neural Information Processing Systems, pages 1057–1063, 2000.

[210] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning. Artifi-
cial Intelligence, 112(1-2):181–211, 1999.

[211] Richard Stuart Sutton. Temporal credit assignment in reinforcement learning.
PhD thesis, University of Massachusetts Amherst, 1984.

104 Bibliography

[212] Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P
Maguire, and T Martin McGinnity. A review of learning in biologically plausible
spiking neural networks. Neural Networks, 122:253–272, 2020.

[213] Keiji Tanaka. Neuronal mechanisms of object recognition. Science,
262(5134):685–688, 1993.

[214] Saori C Tanaka, Kenji Doya, Go Okada, Kazutaka Ueda, Yasumasa Okamoto,
and Shigeto Yamawaki. Prediction of immediate and future rewards differentially
recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8):887–893, 2004.

[215] Saori C Tanaka, Kenji Doya, Go Okada, Kazutaka Ueda, Yasumasa Okamoto,
and Shigeto Yamawaki. Prediction of immediate and future rewards differen-
tially recruits cortico-basal ganglia loops. In Behavioral economics of preferences,
choices, and happiness, pages 593–616. Springer, 2016.

[216] Jun Tani. Model-based learning for mobile robot navigation from the dynamical
systems perspective. IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), 26(3):421–436, 1996.

[217] Jun Tani. Exploring robotic minds: actions, symbols, and consciousness as self-
organizing dynamic phenomena. Oxford University Press, 2016.

[218] Jun Tanji and Keisetsu Shima. Role for supplementary motor area cells in plan-
ning several movements ahead. Nature, 371(6496):413–416, 1994.

[219] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Recurrently controlled recurrent
networks. In Advances in Neural Information Processing Systems, volume 31,
2018.

[220] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning
domains: A survey. Journal of Machine Learning Research, 10(Jul):1633–1685,
2009.

[221] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Man-
nor. A deep hierarchical approach to lifelong learning in minecraft. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[222] Kurt A Thoroughman and Reza Shadmehr. Learning of action through adaptive
combination of motor primitives. Nature, 407(6805):742–747, 2000.

[223] Sebastian Thrun. Monte Carlo POMDPs. Advances in Neural Information Pro-
cessing Systems, 12, 1999.

[224] Sebastian Thrun and Tom M Mitchell. Learning one more thing. Technical
report, Carnegie-Mellon Univ Pittsburgh PA Dept of computer science, 1994.

[225] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Busi-
ness Media, 2012.

105

[226] Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck
principle. In 2015 IEEE Information Theory Workshop (ITW), pages 1–5. IEEE,
2015.

[227] George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian
motion. Physical Review, 36(5):823, 1930.

[228] Hiroki Utsunomiya and Katsunari Shibata. Contextual behaviors and internal
representations acquired by reinforcement learning with a recurrent neural net-
work in a continuous state and action space task. In International Conference
on Neural Information Processing, pages 970–978. Springer, 2008.

[229] Jeroen JA Van Boxtel and Hongjing Lu. A predictive coding perspective on
autism spectrum disorders. Frontiers in Psychology, 4:19, 2013.

[230] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(11), 2008.

[231] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in Neural Information Processing Systems, pages 5998–6008, 2017.

[232] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierar-
chical reinforcement learning. In Proceedings of the International Conference on
Machine Learning, pages 3540–3549. JMLR. org, 2017.

[233] Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos,
and Matthieu Geist. Leverage the average: an analysis of regularization in rl.
arXiv preprint arXiv:2003.14089, 2020.

[234] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent rein-
forcement learning. Nature, 575(7782):350–354, 2019.

[235] Nikos Vlassis, Michael L Littman, and David Barber. On the computational
complexity of stochastic controller optimization in POMDPs. ACM Transactions
on Computation Theory (TOCT), 4(4):1–8, 2012.

[236] Eric T Vu, Mark E Mazurek, and Yu-Chien Kuo. Identification of a forebrain
motor programming network for the learned song of zebra finches. Journal of
Neuroscience, 14(11):6924–6934, 1994.

[237] Gordon Wang, Brian Grone, Damien Colas, Lior Appelbaum, and Philippe Mour-
rain. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends in
Neurosciences, 34(9):452–463, 2011.

106 Bibliography

[238] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert
Soyer, Joel Z Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex
as a meta-reinforcement learning system. Nature Neuroscience, 21(6):860, 2018.

[239] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learn-
ing to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.

[240] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. In Proceedings of the International Conference on Learning Representa-
tions, 2017.

[241] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
1989.

[242] Theophane Weber, Nicolas Heess, Ali Eslami, John Schulman, David Wingate,
and David Silver. Reinforced variational inference. In Advances in Neural Infor-
mation Processing Systems (NIPS) Workshops, 2015.

[243] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in
the brain. Trends in Cognitive Sciences, 23(3):235–250, 2019.

[244] Daan Wierstra, Alexander Foerster, Jan Peters, and Juergen Schmidhuber. Solv-
ing deep memory POMDPs with recurrent policy gradients. In International
Conference on Artificial Neural Networks, pages 697–706. Springer, 2007.

[245] Roy A Wise. Dopamine, learning and motivation. Nature Reviews Neuroscience,
5(6):483–494, 2004.

[246] Bohan Wu, Jayesh K Gupta, and Mykel Kochenderfer. Model primitives for
hierarchical lifelong reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 34(1):1–38, 2020.

[247] Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learn-
ing of control primitives: Skill discovery via reset-games. In Advances in Neural
Information Processing Systems, volume 33, 2020.

[248] Yuichi Yamashita and Jun Tani. Emergence of functional hierarchy in a multiple
timescale neural network model: a humanoid robot experiment. PLoS Compu-
tational Biology, 4(11):e1000220, 2008.

[249] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models
to understand sensory cortex. Nature Neuroscience, 19(3):356–365, 2016.

[250] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T New-
some, and Xiao-Jing Wang. Task representations in neural networks trained to
perform many cognitive tasks. Nature Neuroscience, 22(2):297, 2019.

107

[251] Zhaoyang Yang, Kathryn Merrick, Lianwen Jin, and Hussein A Abbass. Hierar-
chical deep reinforcement learning for continuous action control. IEEE Transac-
tions on Neural Networks and Learning Systems, 29(11):5174–5184, 2018.

[252] Haiyan Yin, Jianda Chen, Sinno Jialin Pan, and Sebastian Tschiatschek. Sequen-
tial generative exploration model for partially observable reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 10700–10708, 2021.

[253] Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and
Sungjin Ahn. Bayesian model-agnostic meta-learning. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

[254] Andreas Zell. Simulation neuronaler netze, volume 1. Addison-Wesley Bonn,
1994.

[255] Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel.
Learning deep neural network policies with continuous memory states. In 2016
IEEE International Conference on Robotics and Automation (ICRA), pages 520–
527. IEEE, 2016.

[256] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement
learning. In International Conference on Learning Representations, 2017.

