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Ramping activity in the striatum
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Control of the timing of behavior is thought to require the basal ganglia (BG)

and BG pathologies impair performance in timing tasks. Temporal interval

discrimination depends on the ramping activity of medium spiny neurons

(MSN) in the main BG input structure, the striatum, but the underlying

mechanisms driving this activity are unclear. Here, we combine an MSN

dynamical networkmodelwith an action selection systemapplied to an interval

discrimination task. We find that when network parameters are appropriate

for the striatum so that slowly fluctuating marginally stable dynamics are

intrinsically generated, up and down ramping populations naturally emerge

which enable significantly above chance task performance. We show that

emergent population activity is in very good agreement with empirical

studies and discuss how MSN network dysfunction in disease may alter

temporal perception.
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Introduction

The basal ganglia (BG) are subcortical nuclei that receive input from almost the

entire cortex and thalamus. Multiple studies, including from diseases, lesions, and

pharmacological or genetic manipulations that affect the BG as well as from fMRI

and neurophysiology have demonstrated the involvement of the BG in both sensory

and motor timing tasks when behavioral timescales are in the range of hundreds of

milliseconds to several seconds (Paton and Buonomano, 2018). This is to be expected

because the BG is also well known to be deeply involved in reinforcement learning (Ito

and Doya, 2011), which requires prediction of the time of future events, as well as in

the planning and execution of behavior which depends on accurate control of action

sequence timing.

There are multiple human diseases and pathologies that affect the BG which display

aberrant time estimation. Parkinson’s disease (Pastor et al., 1992; Malapani et al., 1998),

Huntington’s disease (Freeman et al., 1996), Tourette’s syndrome (Vicario et al., 2010),

substance abuse (Wittmann et al., 2007), and ADHD (Noreika et al., 2013) are all diseases

of the BG which have been associated with the disrupted estimation of the passage of

time or deficits in rhythmic behavior. In healthy humans too, fMRI (Schubotz et al.,

2000; Ferrandez et al., 2003; Nenadic et al., 2003), EEG (Pfeuty et al., 2003), and PET

(Jahanshahi et al., 2006) studies have all demonstrated sensory and motor timing to be

linked to the BG.

The striatum occupies a privileged place in the BG. It is its largest part and its main

input structure. It has been particularly implicated in interval timing tasks in multiple
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species (Harrington et al., 1998; Malapani et al., 1998; Hinton

and Meck, 2004; Matell and Meck, 2004; Wencil et al., 2010;

Coull et al., 2011; Adler et al., 2012; Merchant and de Lafuente,

2014; Emmons et al., 2016, 2017, 2020; Dallerac et al., 2017)

trained to discriminate long and short intervals show significant

fMRI activation in the caudate in particular (Rao et al.,

2001; Pouthas et al., 2005). Several studies have employed

striatal inactivation by lesions or pharmacological and genetic

manipulations and have shown that doing so disrupted the

animal’s estimate of elapsed time and impaired performance

(Drew et al., 2003, 2007; Meck, 2006; Gouvea et al., 2015).

These studies suggest that normal functioning of the striatum

is required for time dependent behavior.

How the striatal neurons represent elapsed time is an open

question, however. Some striatal medium spiny neurons (MSNs)

employ “time ramping” activity. This is a monotonic change

in firing rate, which can be either increasing or decreasing,

over the temporal interval which needs to be estimated. Such

a ramping mechanism could be exploited by the brain to

encode elapsed time (Matell et al., 2003; Parker et al., 2014;

Donnelly et al., 2015; Gouvea et al., 2015; Mello et al., 2015;

Emmons et al., 2017, 2020; Kim et al., 2018). As much

as a third of striatal neurons exhibit such ramping activity

(Emmons et al., 2017). However, even though recent studies

show striatal activity topographically reflects cortical activity

(Peters et al., 2021), striatal ramping activity does not seem to

depend on cortical ramping activity (Emmons et al., 2019, 2020).

Indeed while inactivation of the medial frontal cortex does

attenuate striatal ramping (Emmons et al., 2017, 2019), fixed

magnitude non-ramping corticostriatal stimulation is sufficient

to recover the decreases (Emmons et al., 2019). Moreover, many

ramping neurons do not show significant lever-pressing activity

(Emmons et al., 2017) suggesting their role is predominantly

time estimation, rather than control of the action.

More generally ramping is just one example of a neural

mechanism for time estimation that employs continuously

evolving population dynamics as a general mechanism for time

encoding across the brain (Buonomano and Merzenich, 1995;

Mauk and Buonomano, 2004;MacDonald et al., 2011; Gershman

et al., 2013; Buonomano, 2014; Paton and Buonomano,

2018). According to this view, time may be encoded by any

reproducible pattern of activity across a population of neurons,

as long as the pattern is continuously changing and non-

repeating. Indeed studies of striatal MSN dynamics in interval

tasks using principal component analysis have shown that

ramping activity is only the first component, the next two

or three higher components are oscillatory and also explain

significant activity variance (Emmons et al., 2017, 2020). In

agreement with this viewpoint striatal MSNs exhibit varied and

diverse temporal response profiles which activate at particular

delays after task events and can, therefore, be used to encode

elapsed time. Such activity has been found in monkey sequential

saccade tasks (Jin et al., 2009), in rodents during locomotion

(Rueda-Orozco and Robbe, 2015), in rats trained to press a

lever for a reward delivered on a fixed interval reinforcement

schedule (Matell et al., 2003; Dhawale et al., 2015; Gouvea

et al., 2015; Mello et al., 2015), and mice trained to lick for

reward delivered after a fixed delay (Bakhurin et al., 2017)

for example. Strong support for a direct causal role for MSNs

in time control was found in a recent study of an interval

categorization task (Gouvea et al., 2015). The authors were able

to decode trial-by-trial variations in duration judgments from

the activity of simultaneously recorded ensembles of striatal

MSNs. Interestingly animals were more likely to categorize an

interval as being long (short) on trials where striatal activity

progressed faster (slower) than normal. MSN response profiles

can even show temporal rescaling when task time intervals are

changed (Mello et al., 2015; Murray and Escola, 2017).

In previous computational modeling of MSN network

dynamics (Ponzi and Wickens, 2008, 2010; Ponzi et al., 2020)

we showed that, when network parameters are appropriate for

the striatum, MSN cells spontaneously form cell assemblies

that inhibit each other and are activated sequentially on

behaviorally relevant timescales, the importance of which has

been investigated by several other studies (Humphries et al.,

2009; Angulo-Garcia et al., 2016; Spreizer et al., 2017). We

were also able to show that when the network was driven by

temporally varying cortical input (Ponzi and Wickens, 2012,

2013; Ponzi, 2017), as would be expected to occur in behavioral

and cognitive tasks, the elapsed time between task events could

be decoded from MSN population activity and that individual

MSN cells activated consistently and reproducibly at particular

temporal delays after task events, in good agreement with

empirical studies (Jin et al., 2009). We found population activity

in such tasks as described by three or four dominant principal

components with a high cross-trial signal-to-noise ratio (Ponzi

and Wickens, 2013). Here, we extend this model to include a

simple mechanism for animal behavioral choice. We apply the

model to the interval discrimination task described in Gouvea

et al. (2015). We recover extremely good agreement with their

findings including the emergence of increasing and decreasing

ramping populations (Emmons et al., 2017, 2020) which cross-

over close to the discrimination choice boundary. We discuss

how dysfunction in MSN network activity can be expected to

alter time estimation in pathologies such as HD (Ponzi et al.,

2020).

Results

Here, we investigate a simple model of an interval

discrimination task similar to the one studied in Gouvea et al.

(2015). In this task, the animal must choose one of two responses

dependent on whether an interval is relatively long or short.

In the task described in Gouvea et al. (2015), in each trial, the

rat initiates a trial with a nose-poke which generated a 150
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ms auditory tone. This is followed by a variable length silent

interval, after which another 150 ms auditory tone sounds and

the animal immediately reports a long or short judgment. Silent

intervals had lengths randomly chosen from 600, 1,050, 1,260,

1,380, 1,620, 1,740, 1,950, and 2,400 ms and short (long) ones

are those shorter (longer) than 1,500 ms. In the task studied in

Gouvea et al. (2015) if the response is correct the rat gets a water

reward, if not a white noise sound signals a time-out.

We use a previously published model of the spiking

inhibitory MSN network (Ponzi and Wickens, 2010, 2012,

2013) to represent the striatal activity. MSNs are represented

by a conductance based spiking point neuron cell model with

MSN-like characteristics. In particular, the cell model shows

a Type I transition to firing characterized by a continuous

increase in firing rate from zero as input current crosses the

threshold. Model cells can, therefore, fire at the very low rates

(Izhikevich, 2005) typical of MSNs and do not show sub-

threshold oscillations (Nisenbaum and Wilson, 1995; Wilson

and Kawaguchi, 1996).

Cells are connected together by Rall type synapses

(Rall, 1967) including a fairly slowly decaying inhibitory

neurotransmitter, modeling the GABAergic action of MSNs on

each other. The MSN network does not include any form of

synaptic plasticity, either short term or (anti-)Hebbian. In this

simplest model, we also do not include the striatal interneurons.

In particular, the action of the most important group of

interneurons, the fast spiking interneurons, is thought to be

entirely feed-forward. Therefore, their action is here considered

simply to be included in the strength of the cortical excitation.

As in Ponzi and Wickens (2013) the task environment

is modeled very simply by changing the excitatory driving

activations to the MSN network model. This excitatory driving

originates from the cortex and thalamus. Particular sensory

stimuli are described by a particular distribution of excitatory

activations across all the MSN cells in the network, which are

fixed for the duration of the stimulus. Each sensory stimulus is

represented by a different random set of activations. We only

use two sensory stimuli to model this task. One sensory stimulus

represents the auditory cue and is applied for 150 ms at the start

and the end of a trial. The other sensory stimulus is applied

during the silent interval between the auditory cues and also

between trials. One of the eight possible intervals T between

600 and 2,400 ms, as described above, is randomly chosen for

each trial, as in Gouvea et al. (2015). The inter-trial interval

has a random length with a mean of 800 ms. A single network

simulation includes many, M, such trials which follow each

other in sequence. The number of trials, M, in a single network

simulation, varies but is approximately 130, (refer to Methods).

We do not explicitly include reward in this simple model

and the selection of whether a trial was long or short by the

animal is directly determined by the network activity at the end

of the silent interval in the same way as described in Gouvea et

al. (2015). First, the fifty cells with the highest average firing rate

throughout the whole simulation are selected. The firing rate of

each of these 50 cells in the final 500 ms of each trial interval is

determined for each of the M trials except one. This gives M-1

points in the 50 dimensional space of the firing rates. Some of

these M-1 points are associated with short trials T < 1,500, and

some with long trials T > 1,500, defining two clusters. Next,

we use the Fisher Linear Discriminant (FLD) analysis to find

the direction which best discriminates these long and short trial

clusters. Finally, the classification for the remaining trial which

was left out of the calculation is determined by projecting it onto

this maximally discriminating direction. This gives the animals

choice for that trial. This process is repeated M times, each time

leaving out a different trial to calculate the animals’ choice for

each trial. Finally, the correct response probabilities (CRP) are

determined by comparing the animals’ choice on each trial with

whether the trial interval was actually long or short (refer to

Methods).

In previous study (Ponzi and Wickens, 2008, 2010, 2012,

2013; Ponzi, 2017), we have shown that depending on network

parameters such as the connection probability, connection

strength, and excitatory input strength the network shows

different dynamical regimes. At high connection probability, a

stable winner-take-all like state is found. Although spiking is

random and close to Poissonian, cells fire at fixed rates. Some

cells fire at high rates (the winners), others low, and some are

quiescent (the losers). On the other hand at low connection

probability cell firing rates fluctuate chaotically and this shows

up as very bursty spiking activity. In the interface regime, when

network dynamics are marginally stable the network dynamics

fluctuate slowly and we find MSN cells spontaneously form

cell assemblies that inhibit each other and can be activated

sequentially on behaviorally relevant timescales. In previous

study, Ponzi and Wickens (2012, 2013) and Ponzi (2017), we

have found that the maximal Lyapunov exponent, denoted λ,

of the network rate dynamics, is a very useful measure of

network dynamical behavior and, in particular, how the network

responds to variations in cortical driving activity. To isolate the

dynamics of the slow rate variations, rather than the details of

the spiking, maximal Lyapunov exponents are not calculated

from the spiking network itself but the equivalent rate network.

Pairs of equivalent network simulations, spiking and rate, have

identical network structure and task driving inputs except the

spiking cell model is replaced by a rate cell model with a similar

rheobase and firing rate to input current response curve (Ponzi

and Wickens, 2012, 2013) as the spiking cell.

Maximal Lyapunov exponents are calculated in the standard

way from the dynamical evolution of two identical rate network

simulations with slightly different initial conditions. Here, we

are concerned with the driven maximal Lyapunov exponent.

This is the maximal Lyapunov exponent of a non-autonomous

dynamical system with inputs that vary in time, as in the

task described here. In this case, to calculate λ we use two

identical rate network simulations driven by identical sequences
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FIGURE 1

(A) Driven maximal Lyapunov exponent λ vs. network connection probability for many network simulations. Each point shows λ for a single

network simulation with a given connection probability, ρ. Connection probability ρ increases from 0.04 in increments of 0.0025. The brown

horizontal line shows λ = 0 which is the transition from chaotic to stable dynamical behavior. (B) Correct response probability (refer to key) vs.

driven Lyapunov exponent λ for many network simulations. CRPs are calculated for di�erent length T intervals separately, the 600 and 2,400 ms

intervals are combined and denoted CRP4, (blue) the 1,050 and 1,950 ms intervals are combined and denoted CRP3, (green) and the 1,380 and

1,620 ms intervals are combined and denoted CRP1 (black). Here, the Lyapunov exponents λ and corresponding CRP values for all the

simulations shown in (a) are obtained and re-ordered according to their λ values. 15 point moving averages over adjacent λ values, and the

corresponding CRP values are calculated. The solid lines show these mean λ values and the corresponding mean CRP values. The error bars

show the SEM in the CRP values at each point. Error bars on the λ values at each point are not shown. The pink horizontal line shows the

performance probability of chance.

of cortical driving but with slightly different initial conditions. λ

measures how fast trajectories from these two systems diverge or

converge from each other.When λ is positive the driven network

dynamics are chaotic, when it is negative the dynamics are

stable and when it is close to zero the dynamics are marginally

stable. The variation in λ with connection probability is shown

in Figure 1A. When λ is positive the network rate dynamics

is chaotic and strongly fluctuates but when it is negative the

network rate dynamics finds a stable equilibrium fixed point.

The transition between stable and chaotic network dynamics at

certain connectivity around 0.17 is clearly seen.

Here, we find network stability is an important determinant

of interval classification performance. CRPs are shown in

Figure 1B vs. network stability measured by the Lyapunov

exponent. The variation of the Lyapunov exponent λ occurs

because we have generated many network simulations by

varying the network connection probability. As described

above the Lyapunov exponent λ is calculated from the rate

network while the CRPs are calculated from the matching

spiking network.

Correct response probabilities are divided into CRPs for

least discriminable, i.e., those closest to the 1,500 ms short/long

boundary, intermediate and most discriminable trial intervals.

CRPs clearly increase with interval discriminability throughout

the range of network stabilities, λ, and peak close to the ‘edge

of chaos’, λ ≈ 0, where dynamics is just stable, Figure 1B. This

‘edge of chaos’ regime is also the regime of realistic connection

probability for the striatum (Ponzi and Wickens, 2010). It also

seems that the peak CRP location approaches the edge of chaos

as intervals become less discriminable.

To investigate why CRPs peak in this marginally stable

regime, we calculate preference indices for each cell in the

spiking network simulation as in Gouvea et al. (2015). To

calculate preference indices we compare the distribution of firing

rates during the final 500 ms on trials where the animal makes

a short choice with the distribution of firing rates during the

final 500 ms on long choice trials for each cell separately using

Receiver Operant Characteristic (ROC) analysis. Preference

indices are ROC z-scores which are obtained from the ROC

values for each cell by comparing the calculated values with

those generated from surrogate firing rate distributions where

animal choice sequences are scrambled. Figure 2 shows cell

firing rate z-score peri-stimulus time histograms (PSTH) for

several exemplar model simulations. Only cells with a short/long

preference are included and cells have been ordered by their

preference indices, from long to short preferring. Here, the cell

firing rates are averaged across trials including all intervals T

to obtain PSTH with interval onset at time zero. Since cells

have different baseline firing rates the cell PSTH is standardized

by subtracting their means across the 2,400 ms and dividing

by their SDs.

In order to illustrate network dynamics, Figures 2A–C shows

some exemplar model simulations with relatively high CRP4
values. The corresponding network stabilities and connection
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FIGURE 2

(A–F) PSTH of firing rates z-scores for cells in six di�erent network simulations. Statistics are shown in Table 1. Firing rates are binned at 10 ms

and then further smoothed with a 10-point moving average. Time indexes the onset of the moving average, so the minimum is zero and the

maximum is 2.3 s. Cells are ordered by preference indices from short preferring to long preferring. All active cells with absolute preference

indices over 0.02 are included. Results are averages over all intervals, T, so bins at later times include fewer observations.

TABLE 1 Results for Figure 2.

Panel Connectivity λ CRP1 CRP2 CRP3 CRP4

(a) 0.1775 –0.000331341 0.565217 0.641026 0.676471 0.8125

(b) 0.2425 –0.00140198 0.529412 0.357143 0.692308 0.888889

(c) 0.21 –0.000961602 0.578947 0.571429 0.785714 0.75

(d) 0.0625 0.00228291 0.526316 0.607143 0.466667 0.5

(e) 0.345 –0.00316362 0.391304 0.538462 0.411765 0.53125

(f) 0.2275 –0.00214502 0.5 0.571429 0.5 0.53125

probabilities are shown in Table 1. All three simulations have

very small slightly negative λ demonstrating that the rate

dynamics of the corresponding rate network simulation are

marginally stable. These networks are quite sparsely connected

and in the striatally relevant regime. In general, if a network

has a relatively high CRP4 value it will also have relatively high

values for the other CRP measures, but this is not always the

case. For example network (a) has a CRP4 value that exceeds

network (c) but its CRP3 value does not. CRP values, in general,

decrease from CRP4 to CRP1 as the interval pairs become

less discriminable, as expected. Evidently, in these simulations,

Figures 2A–C, firing rates for long preferring cells gradually

increase throughout the 2,400 ms interval, while the converse

is true for short preferring cells. Three other examples of

various connection probability and network stability are shown

in Figures 2D–F. These have much lower CRP values, Table 1.

The slow ramping activity shown in Figures 2A–C is absent in

these examples. Instead, activity seems to be much more rapidly

fluctuating. Only the examples with marginal stable dynamics,

Figures 2A–C, seem similar to the results shown in Gouvea et al.

(2015) (Figure 2D). These examples are also very similar to the

ones shown in Emmons et al. (2017) (Figure 4D) and Emmons

et al. (2020) (Figures 4D, 5F).

Preference index distributions for two of the high CRP

marginally stable simulations and two of the low CRP

simulations are shown in Figures 3A,B, respectively. The

distribution of preference indices is much broader for the high

CRP simulations, Figure 3A than the low CRP ones, Figure 3B.

Such broad ‘long-tailed’ distributions arise in critical and

marginally stable systems in general. The presence of cells with

high absolute preference index values indicates that ramping

activity with a ramping direction preference which is consistent
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FIGURE 3

Distributions of preference indices for four of the simulations shown in Figure 2. (A) Two simulations with high CRP4, (black) Figure 2A and (red)

Figure 2B. (B) Two simulations with low CRP4, (black) Figure 2D and (red) Figure 2E.

FIGURE 4

Mean firing rate z-scores for all short and long preferring cells with an absolute preference index exceeding unity for some of the simulations

shown in Figure 2. (A) Figure 2A, (B) Figure 2C, (C) Figure 2D, and (D) Figure 2E. Averages include all intervals T so points at later times are

averaged over fewer observations and are expected to be noisier. Five point moving averages.
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FIGURE 5

Mean firing rate (A,C,E) and z-scored mean firing rate (B,D,F) for all short and long preferring cells with an absolute preference index exceeding

unity for some simulations shown in Figure 2 on T = 1620 ms trials further divided into whether the trial was classified as long (i.e., correct) or

short (i.e., error). Five point moving averages. (A,B) Figure 2A, (C,D) Figure 2B, (E,F) Figure 2C.

across trials is present. In these high CRP simulations, there are

some cells with strong absolute preferences and also a peak at

zero indicating many cells with no preference. This division into

discriminating and non-discriminating MSNs may also be in

some agreement with empirical studies. On the other hand, no

such division is evident in the preference distributions for cells

in the low CRP network simulations, Figure 3B, which appear

much more Gaussian. The low CRP simulations, Figure 3B, do

not contain cells with large absolute preference indices, i.e., cells

with strong positive or negative ramping activity.

Figure 4 shows the mean firing rate z-score PSTH for

all significantly long and short preferring cells (with the

absolute value of preference index exceeding unity) for several

simulations shown in Figure 2. The two examples with high
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CRP, Figures 4A,B, clearly demonstrate the ramping activity

with cross-over close to the dividing point between long and

short trials, T = 15, 00, resembling the mean firing rate z-

scores in Gouvea et al. (2015) (Figure 2F). The two examples,

Figures 4C,D, with low CRP do not exhibit ramping activity.

Finally, in Figure 5 we show time series of mean firing rates

and mean firing rate z-scores for significantly long and short

preferring cells but only on intermediate length trials T = 1,620

and further divided into correct (i.e., long choice) and error

(i.e., short choice) trials. Only the three simulations in Figure 2

with high CRP are shown. Ramping activity is evident in

both the z-scores Figures 5B,D,F and the firing rates themselves

Figures 5A,C,E. In all three cases, the ramping activity of the

firing rate Figures 5A,C,E is weakened on error trials compared

to correct trials. At the end of the interval long preferring cell

populations have higher firing rates on correct compared to

error trials while short preferring populations have lower firing

rates on correct compared to error trials. This could also be

seen as an increase in the average ramping rate on correct

compared to error trials. This is reflected in the z-scores as a

less clear transition from excess short preferring to excess long

preferring at around T = 1, 500, in qualititative agreement

with Gouvea et al. (2015) (Figures 2G,H). Note that response is

determined from the firing rates in the last 500 ms of the T =
1, 620 trial. While the example in Figure 5C does indeed show

that the firing rate of short preferring cells exceeds that of long

preferring cells on error trials, in contrast, to correct trials, akin

to the example in Gouvea et al. (2015) (Figures 2G,H), in the

examples shown in Figures 5A,E, the difference between short

and long preferring activity is simply weakened on error trials

compared to correct trials. There are several factors involved

in this. First, the choice decision employs FLD analysis to find

the most discriminative direction. This direction is not simply

determined by the mean activity of the cells in the final 500

ms on short and long trials but also depends on the cross trial

covariance (refer to Methods). Second, the FLD analysis uses

only the fifty cells with the highest average firing rates. These

fifty cells do not necessarily coincide with the significantly short

or long preferring cells which are included in the activity shown

in Figure 5. Third, cell preference indices are calculated based

on trial intervals T of all lengths, while the results in Figure 5

include only T = 1, 620 trials.

Discussion

We investigated the behavior of an MSN network model

combined with a choice selection system in a temporal

discrimination task. We found that only when the network

generated marginally stable dynamical evolution correct

response probabilities even for the least discriminable intervals

were substantially above chance level. Indeed when the

Lyapunov exponent is just below zero, mean CRP1 values,

Figure 1B, appear to be several standard errors above 0.5.

Such critical dynamics are generated when the network is

quite sparsely connected in agreement with studies of actual

connectivity in the striatum. We found that in this regime many

cells showed strong preferences for long or short trials associated

with the emergent ramping activity. The ramping activity of

the ramping population was aberrant on error trials leading

to mis-classification of the interval. We closely replicated the

task and data analysis employed in Gouvea et al. (2015) and

found excellent agreement with their results, particularly the

ramping activity of the long and short preferring cells. The

ramping activity we found was also in good agreement with

Emmons et al. (2017, 2020). Our results did not require any

form of plasticity either between the MSN cells or on the

cortical-striatal synapses. These results are not a trivial result of

any inhibitory network dynamics since networks that are not

marginally stable have neither high CRPs, Figure 1, nor ramping

cells with large preference indices, Figure 3.

There is no learning or plasticity in this model. Ramping

activity is simply an outcome of the slow dynamical evolution

of the network. Because the rates are varying slowly, there are

some cells with significantly higher firing rates at the end of a

stimulus interval period compared to the start and some with

significantly lower activity than at the start. In each trial, the

cue stimulus partially ‘resets’ the network population activity to

roughly the same location in 500 dimension population activity

space, so that the dynamical evolution during the interval period

is roughly consistent across trials. Such properties are found

when the dynamics are marginally stable because such dynamics

generate large excursions without falling to a stable fixed point

attractor too rapidly, but also do not vary so strongly that

they are not consistent across trials (Ponzi and Wickens, 2013;

Ponzi, 2017). This is sufficient to be informative for several

of the empirical results in Gouvea et al. (2015). However, we

believe the dynamical behavior described here will be highly

relevant and provide insight when combined with plasticity

mechanisms in more complex tasks which do require learning

across multiple trials. For example in the task described (Mello

et al., 2015), time intervals are fixed within a block and only

changed across multiple blocks. As a block progresses animals

learn the time interval for the current block and learn to

press the lever to obtain a reward at the appropriate time.

Interestingly, MSN ramping activity profiles are found to rescale

according to the interval for the particular block. Although

these results cannot be produced in the current model as is,

one can easily imagine that the ramping activity shown here

could be combined with secondary mechanisms, e.g., cortical-

striatal plasticity developing over multiple trials as the reward

is received, which increases excitatory drive and changes the

ramping rate.

Indeed, we did not fully implement an action selection

reinforcement learning system but applied the Fisher Linear

Discriminant methodology as it is used in Gouvea et al. (2015).
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It is easy to see that the ramping populations generated by this

network could be exploited by a full action learning system. For

example, one could imagine that downstream of the striatum

there are two mutually inhibitory populations (or even single

cells), denoted S and L generating the short and long choice

actions. At first, one or an other of these populations is activated

randomly. However, once the correct action occurs and reward

is generated, rewardmodulated Hebbian plasticity could link the

striatal MSN cells active at the end of the trial when the reward

is received with the activated downstream action population. If

L is active so the long action choice occurs and it is correct then

the strongly active long preferring MSN cells would be linked

to the downstream long action generating population, L. On the

other hand, if S is active so the short action choice occurs and it is

correct then the strongly active short preferringMSN cells would

be linked to the downstream short action generating population,

S. After multiple trials of learning the MSN population ramping

activity would influence the downstream activity resulting in a

gradual increase in the activity of the L population and decrease

in activity of the S population as a trial interval progressed.

This model may provide insight into the aberrant timing

behavior which has been associated with BG dysfunction in

various diseases such as HD, PD, and schizophrenia (Buhusi and

Meck, 2005; Buhusi and Cordes, 2011; Snowden and Buhusi,

2019). Striatal medium spiny cell loss and striatal atrophy are

characteristics of HD (Graveland et al., 1985; Vonsattel and

DiFiglia, 1998; McColgan et al., 2017). HD (Paulsen et al.,

2004; Beste et al., 2007; Cope et al., 2014; Rao et al., 2014;

Righi et al., 2016; Agostino et al., 2017) and sometimes pre-HD

(Paulsen et al., 2004; Beste et al., 2007; Zimbelman et al., 2007;

Rao et al., 2014) patients show impaired temporal processing.

Patients with HD tend to have difficulty with relative timing

and interval discrimination, as in the current task, which is

typically associated with the striatum (Lemoine et al., 2021)

in contrast to absolute timing where a learned interval has

to be produced which is often associated with the cerebellum

(Grahn and McAuley, 2009; Grube et al., 2010; Teki et al.,

2011). In recent work, the parameters of the MSN network

model employed here were estimated from spiking data from

WT and genetically modified HD mice (Ponzi et al., 2020). The

best fit HD model was characterized by stronger MSN network

inhibition and weaker cortical driving excitation than the best fit

WTmodel. Such parameter changes, in particular, the change in

MSN network inhibitory strength moves the network away from

the critical marginally stable regime and is associated with a loss

of dynamical complexity (Ponzi et al., 2020). As demonstrated

in Figure 1 movement out of the marginally stable regime would

also be expected to impair temporal discrimination performance

in agreement with empirical studies of HD.

Although PD is well-known to involve aberrant temporal

processing (Allman andMeck, 2012), and PD patients show both

interval timing and motor rhythm timing deficits (Harrington

et al., 1998), timing problems in PD are not associated with

striatal degeneration per se but with loss of dopamine input

to the striatum (Kish et al., 1988; Malapani et al., 1998, 2002).

Dopamine is thought to regulate the speed of an internal clock

(Artieda et al., 1992; Pastor et al., 1992; Harrington et al., 1998;

Buhusi and Meck, 2002; MacDonald and Meck, 2005; Cheng et

al., 2007; Jones et al., 2008; Coull et al., 2011) and dopamine

levels and responses have been directly implicated in timing

control (Meck, 1996; Buhusi and Meck, 2002; Buhusi, 2003;

Snowden and Buhusi, 2019). In some studies, intervals were

perceived as larger when tonic dopamine levels were reduced

(Lake and Meck, 2013; Heilbronner and Meck, 2014; Agostino

and Cheng, 2016), and this affects intertemporal choice when

subjects choose between different sized rewards at different

temporal delays. Phasic dopamine decrease has also been found

to reduce the perceived interval duration (Soares et al., 2016) and

nigrostriatal dopamine lesions alter timing performance (Meck,

2006).

Dopamine levels are also thought to be important in

schizophrenia, where dopamine hyperactivity has been

found in the striatum (Meyer-Lindenberg et al., 2002).

Schizophrenia also shows timing deficits (Johnson and

Peztel, 1971; Densen, 1977; Tysk, 1990; Elvevag et al., 2003;

Penney et al., 2005; Drew et al., 2007) associated with BG

dysfunction, in particular, caudate hypoactivation occurs

during interval timing tasks (Volz et al., 2001). Timing deficits

seen in schizophrenia could occur through dysregulation of

dopamine D2 signaling in the striatum since patients display

increased striatal D2 receptor density (Wong et al., 1986;

Laruelle, 1998). Furthermore, transgenic mice overexpressing

D2 receptors were impaired in an operant interval timing

task (Kellendonk et al., 2006; Drew et al., 2007), while D2

agonists and antagonists alter interval timing performance

(Meck, 1986; Drew et al., 2003; Matell et al., 2006; Taylor et al.,

2007).

In the future, it will be valuable to model ramping and slow,

dynamically critical activity in the two separate but interacting

D1 and D2 MSN subsystems including appropriate dopamine

modulated cortical-striatal plasticity. Indeed D1 and D2 MSNs

are differently involved in cortico-striatal dopamine modulated

LTP and LTD (Reynolds et al., 2001; Reynolds and Wickens,

2002). The relative timing of their activations and deactivations

(Yagishita et al., 2014; Shindou et al., 2019) is thought to play

a crucial role in reinforcement learning and be closely related

to interval timing circuits (Meck, 1988, 2006; Coull et al.,

2011; Merchant et al., 2013; Petter et al., 2018). MSN to MSN

inhibitory network dysfunction between and within D1 and D2

subpopulations could lead to abnormal reinforcement schedules

which underly a number of dopamine related disorders of

the BG. Since dopamine modulated cortico-striatal plasticity

depends on the activity of postsynaptic MSNs and presynaptic

cortical neurons, as well as on the local dopamine concentration

(Reynolds et al., 2001; Reynolds and Wickens, 2002), the timing

of dopamine release with respect to MSN ramping schedules
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will have a large effect of whether LTP or LTD occurs in each

population, and which is dominant. Such a model could be used

to understand the effect of pharmacological manipulations of

MSN network synaptic parameters, which result in pathological

ramping and disrupted network dynamics (Carrillo-Reid et al.,

2008; Jáidar et al., 2010), on BG reinforcement learning (Ito and

Doya, 2011) and temporal credit assignment, as well as how

tonic and phasic dopamine activity affects intertemporal choice

and timing tasks. It will also be important to investigate how

the temporal discrimination performance of the MSN network

model is affected when cortical input drive and dopamine levels

are modified in ways that may occur in PD or schizophrenia

resulting in abnormal population dynamics (Jáidar et al., 2010).

Accurate time estimation is necessary to support the main

function of the BG—the control of action and motor sequences.

Many BG diseases affect motor response and motor sequencing

leading to a range of movement disorders, including both slow

hypokinesia, such as PD, and hyperkinesia, such as HD (Gerfen

and Surmeier, 2011). Psychiatric diseases, such as schizophrenia

and addiction, also result in movement disorders and have been

linked to BG dysfunction (Bernard et al., 2017; Peall et al.,

2017; Snowden and Buhusi, 2019). BG lesions can also lead

to hypokinetic and bradykinetic movement disorders or the

generation of hyperkinetic unintentional movements, including

choreatic, dyskinetic, and dystonic movements (DeLong, 1990;

Marsden and Obeso, 1994; Groenewegen, 2003).These effects

have been thought to occur through imbalances in the direct and

indirect BG pathways. For example, chronic tics and stereotyped

movements which occur in Tourette’s syndrome have been

thought to result from a defective suppression mechanism in the

basal ganglia (Mink, 2001). Uncordinated motor output could

occur if the direct pathway activity is badly mismatched, or not

synchronized, with the indirect one so that the thalamocortical

system is either abnormally disinhibited or overinhibited

(DeLong, 1990; Gerfen and Wilson, 1996). Discordination

of slow network generated timescales, including abnormal

ramping, between the striatal D1 and D2 subsystems, which

differently modulate the direct and indirect pathways, could be

a causal factor in such movement disorders (Jáidar et al., 2019).

In running animals, striatal activity correlates with

kinematic parameters such as speed and acceleration (Rueda-

Orozco and Robbe, 2015), and pharmacological modifications

of striatal activity impair the animal’s ability to control these

kinematic parameters (Miyachi et al., 1997; Mello et al., 2015;

Rueda-Orozco and Robbe, 2015; Lopez-Huerta et al., 2021).

Ramping firing patterns in the striatum may play a role in the

control of kinetic parameters. Deficits in ramping such as may

occur by modification of network dynamics which move, the

system away from the critical regime would be expected to alter

speed and acceleration in testable ways.

In conclusion, we have shown that when a striatal MSN

network model is combined with a simple action selection

system, ramping activity in good agreement with the experiment

can emerge when the dynamics generated by the network are

close to critical. The insight obtained from this basic modeling

of ramping could pave the way for more detailed modeling

of temporal credit assignment including dynamic reward and

cortical-striatal plasticity in a more complex reinforcement

learning task environment.

Methods

Spiking Network Model

The network model is as described in Ponzi and Wickens

(2008, 2010, 2013). The network is composed of model MSNs

with parameters set so they are in the vicinity of a bifurcation

from a stable fixed point to spiking limit cycle dynamical

behavior (Ponzi and Wickens, 2008, 2010). These models the

dynamics in the UP state when the cells are all receiving

excitatory drive to firing threshold levels of depolarization. To

describe the cells we use the INa,p + Ik model described in

Izhikevich (2005) which is two-dimensional and given by,

C
dVi

dt
= Ii(t)− gL(Vi − EL)

− gNam∞(Vi)(Vi − ENa)− gkni(Vi − Ek) (1)

dni

dt
= (n∞ − ni)/τn

having leak current IL, persistent Na+ current INa,p with

instantaneous activation kinetic, and a relatively slower

persistent K+ current IK . Vi(t) is the membrane potential of

the ith cell, C the membrane capacitance, EL,Na,k are the channel

reversal potentials, and gL,Na,k are the maximal conductances.

ni(t) is K+ channel activation variable of the ith cell. The steady

state activation curves m∞ and n∞ are both described by,

x∞(V) = 1/(1 + exp{(Vx∞ − V)/kx∞}) where x denotes m or

n and Vx∞ and kx∞ are fixed parameters. τn is the fixed timescale

of the K+ activation variable. The term Ii(t) is the input current

to the ith cell.

All the parameters are set as in Izhikevich (2005) so that

the cell is in the vicinity of a saddle-node on invariant circle

(SNIC) bifurcation, characterizing a Type 1 neuron model. As

the current Ii(t) in Equation 1 increases through the bifurcation

point, a limit cycle having zero frequency is formed (Izhikevich,

2005), whose frequency increases slowly with increasing current.

This is an appropriate model to use for an MSN in the UP

state since its dynamics are in qualitative agreement with several

aspects of MSN firing (Ponzi and Wickens, 2013).

The input current Ii(t) = IMi (t) + ICi (t) in Equation 1

is composed of two parts. Component IMi (t) is the inhibitory

feedback term that comes from the recurrent collaterals of the

MSN inhibitory network and component ICi (t) represents the

current from excitatory feedforward sources, the cortex, and

the thalamus (refer to below). In the real striatum, another
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component of the input current would come from other cells

such as fast spiking interneurons (FSIs) which are thought to

be mainly feedforward. Studies (Mallet et al., 2005; Gittis et al.,

2010) have shown that fast-spiking interneurons are strongly

connected to spiny projection neurons and mediate the bulk of

feedforward inhibition. Activation of cortical afferents excites

fast-spiking interneurons approximately 2–6 ms earlier than

spiny projection neurons (Mallet et al., 2005) and a lesion of

fast-spiking interneurons impair the acquisition of sequence

learning strategies (Owen et al., 2018).This FSI component of the

input current is not included in the present model, although its

feedforward component can be considered simply as a constant

offset term to be included in the feedforward driving ICi (t).

Similarly, we do not consider secondary feedback effects MSNs

may have on each other via other more complex secondary

pathways such as via other cell types in the striatum or via cells in

other nuclei such as the Globus Pallidus, dopaminergic systems,

or the cortex.

The MSN network synapses are described by Rall-type

synapses (Rall, 1967) and the input current is given by, IMi (t) =
−(Vi(t)−VM)

∑N
j kMij gij(t). The input current to a postsynaptic

neuron i is summed over all inhibitory presynaptic neurons j

where N = 500 is the number of cells in the network simulation

and VM = −65mV is the synaptic reversal potential. gij(t) is

the quantity of neurotransmitter bound to postsynaptic cell i

emitted from presynaptic cell j. It is given through, τg
dgij
dt
=

2(Vj(t) − Vth) − gij. Here, Vth = −40mV is a threshold. τg

is a timescale that has been adjusted so that the IPSP decay

time scale is near that observed in experimental studies (Ponzi

and Wickens, 2010, 2013). In simulations, here, we use the

value τg = 50 so that postsynaptically bound neurotransmitter

exponentially decays to half its value in time τg ln(2) ≈ 34 ms.

2(x) is the Heaviside function. Since the initial value of the

neurotransmitter gij(0) decays exponentially with timescale τg ,

then gkj(t) = g1j(t) for all k at times t >> τg and we only need to

keep track of a single gj(t) for each cell j. The inhibitory current

into a postsynaptic cell i is then,

IMi (t) = −(Vi(t)− VM)
∑

j

kMij gj(t), (2)

and gj is simply an exponentially weighted moving average of

cell j firing, given by,

τg
dgj

dt
= 2(Vj(t)− Vth)− gj. (3)

The representation of the MSN network is determined by the

synaptic strengths of kMij in Equation 2. They are given by,

kMij = (kM/ρ)ǫijZij. (4)

Here, ǫij in Equation 4 is a uniform quenched random variable

drawn from the interval [0.8, 1.2] independent in i and j so

that the expectation 〈ǫij〉ij = 1, which produces a more

realistic random distribution of connection strengths. Thus,

even reciprocally connected cells have asymmetric inhibition,

(ǫij − ǫji 6= 0), as is the case in reality.

Zij is a parameter that takes the value Zij = 1 if cells i

and j are connected and zero otherwise. ρ = 〈Zij〉ij is the

network connection probability. Since MSN network structure

within a local striosome does not indicate anything other than

a random process of connection growth we connect pairs of

cells randomly with probability ρ which generates networks with

binomial degree distributions. There are no self-connections,

Zii = 0. ρ is the main parameter varied in the simulations

to generate different dynamics ranging from stable to chaotic,

as described in Ponzi and Wickens (2013). kM is a fixed peak

conductance parameter. The level of inhibition onto an MSN

is held approximately constant as ρ is varied by the rescaling

of kM by ρ in Equation 4. ρ for the real striatum is expected

to be around 0.16 within a 500 cell local network as described

in Ponzi and Wickens (2013). The value of kM is set so that

IPSPs are around 200µV , very similar to real striatal IPSPs, at

connectivities of around ρ = 0.16 when the postsynaptic cell

is just above the firing threshold. Here, we investigate network

simulations with connection probabilities ρ between 0.04 and

0.4 in increments of 0.0025.

Wemodel the excitatory driving ICi (t) as a stochastic process,

as described in Ponzi and Wickens (2013), ICi (t) = (VC −
Vi(t))Xi(t). VC is the excitatory reversal potential, set here to 0.0

mV. In general, the excitatory component will also be given by

Rall type synapses (Rall, 1967; Destexhe et al., 1998). Therefore,

we calculate Xi(t) using,

τadXi = (
NC
∑

l

bilr
S
il − Xi)dt + ǫi(t)[dt

NC
∑

l

(bil)
2rSil]

1/2. (5)

ǫi(t) is a random variable independent in both cell i and time

t. The bil is the maximal conductance parameter from the lth

excitatory cortical or thalamic input to the ith MSN cell. They

are fixed in our simulations reported here.We assume the inputs

from each of the NC input cells follow independent Poisson

process with rates rS
il
which are fixed for a given stimulus S.

MSN cells are each contacted by around 10,000 cortical and

thalamic cells and we, therefore, set NC = 10,000 in Equation 5.

These excitatory inputs l are considered to be non-overlapping

between the MSN cells i. Our assumption of zero common input

is not, however, supposed to be a statement of biological fact.

We wish to investigate how correlated activity arises from local

interactions among MSNs, rather than via common input.

Here, we investigate how the MSN network model responds

to a simple kind of temporally varying cortical input. This is

just a sequence of different stimuli. To model this we simply

change all the cortical input rates ril suddenly, hold them fixed

for a period of time, then change them again suddenly. Each

given set of rates rS
il
, held fixed for a period of time, is denoted
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a stimulus, S. In the simulations reported here we generate

two stimuli rA
il
and rB

il
which are then applied alternately with

variable length intervals. One stimulus represents the cue and

time out stimulus the other is a background stimulus applied

in between applications of the cue/time out stimulus during

the trial period and inter trial interval. The second stimulus

represents background noise. The two stimuli are identical

statistically, we do not need to make the cue stimulus stronger

or more salient.

For each stimulus S, the 10,000×N input rates rS
il
, whereN =

500 is the number of MSN cells, are drawn independently from

a fixed distribution, a normalized Pareto distribution, fγ ,α(x) =
γα/(1+γ x)1+α , with tail parameter α and expectation 1/(γ (α−
1)). The normalized Pareto distribution with power-law tail

parameter α < 2 is chosen so that even though there are many,

10,000, inputs to each cell the mean input strength can still show

large fluctuations across cells. If instead the ril is chosen from a

narrow distribution, e.g., the Gaussian, when many inputs are

averaged, all the cells will have approximately the same input

strength, and stimulus specificity will not be generated. We have

chosen to use the Pareto distribution simply as a simple way to

produce a large variation in excitation strength acrossMSN cells.

Here, we do not vary the parameters of the Pareto

distribution α and γ and set α = 1.75 in all simulations. γ is set

so that the input rates ril have the expectation of 0.02 spikes per

ms (due to the Pareto distribution the fluctuations across cells

around this mean value will be large). We choose all the channel

parameters bil independently from a uniform distribution on

[0, 2b]. The parameter b is set so the expectation of bil is b =
0.0006. These parameters result in a mean input current of 0.32

nA with a SD of temporal fluctuations in input current of 0.0053

nA. If a cell j has a mean input current below the firing threshold

0.2 nA its rjl and bjl are redrawn until otherwise. Thus, all cells

are driven above the firing threshold by cortical excitation.

All simulations were carried out with the stochastic weak

second order Runge-Kutta integrator described in Burrage and

Platen (1999) with an integration time step of 0.1 ms.

Matching rate network and Lyapunov
exponent calculation

Maximal Lyapunov exponents are calculated from a

matching rate network model, as described in Ponzi and

Wickens (2013).

The matching rate model is obtained from the equation for

the postsynaptically bound neurotransmitters gj, Equation 3, by

replacing the Heaviside function 2(V(t) − Vthr) with Tδ(ti).

δ() is the Dirac delta function and ti are spike times. T is the

time period the membrane potential V(t) exceeds the threshold

Vthr = −40mV during a spike, which turns out to be T ≈ 1

ms for this cell model. This approximation is valid, here, since

T << τg . Then δ(ti) is replaced by cell j spiking probability per

ms, or firing rate, at time t, Fj(t) to obtain,

τg
dgj

dt
= TFj(t)− gj. (6)

Fj(t) is determined by the cell’s input current to give,

τg
dG

dt
= −G+ Ts

√

(VC′X − VM′KG− Ibif )+
(7)

where G = {g1, g2, ...gN} are the postsynaptically bound

neurotransmitters for the N = 500 cells. K = {kMij } is the fixed
connection matrix, determined exactly as in the simulations for

the full model. X = {Xi}, Xi =
∑NC

l
bilril are the expected

values of the excitatory inputs determined exactly as in the

full model, neglecting the noise term. VC′,M′ are fixed scalar

parameters accounting for the conductance based synapses.

These are set as the difference between the resting potentials and

reversal potentials, VC′ = 60.0 mV for excitatory synapses and

VM′ = 5.0 mV for inhibitory synapses. τg = 50 ms as in the

full simulations. The function s
√
(x)+, (s

√
x for x > 0 and zero

otherwise), is the dependence of firing rate on input current for

Type 1 cells and the parameter s is estimated from the current

vs. firing rate plot for these cells to be s = 0.09. Ibif = 0.2 nA is

the current at the firing threshold.

The maximal Lyapunov exponent is calculated in the

standard way, as described in Ponzi and Wickens (2012), from

the rate network dynamical evolution. First, a perturbed 500

dimensional orbit, EGp(0), near the system orbit, EG(0) is selected
by random perturbation d0 = Gp(0) − G(0) of size D0 =√
d20 = 10−12. Both orbits are iterated once for time 1t

and the new separation vector is calculated, d1 = Gp(1t)) −
G(1t)), with length D1 =

√
d21 . The maximal Lyapunov

exponent is calculated as λ1 = ln(D1/D0)/1t. The perturbed

orbit is rescaled in the direction of maximal separation,

Gp(0) ← G(1t)) + d1(D0/D1). This process is repeated for

many iterations and many values λj = ln(Dj/D0)/1t of the

Lyapunov exponent are calculated. The average is calculated

after discarding a long transient sufficient for the perturbation

to be in the maximally separating direction.

Numerical integrations of the deterministic rate network are

performed using a fourth-order Runge-Kutta.

Task environment

The task environment follows Gouvea et al. (2015). Task

stimuli are modeled as different excitatory inputs (from cortex

or thalamus) to the MSN inhibitory network. There are two

inputs, one is a cue stimulus and one is the background input

applied whenever the cue is not. This background input may be

considered background lab sensory input irrelevant to the task,

or simply excitation from the cortex arising internally. TheMSN
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network is purely inhibitory so some form of excitation is needed

if there is to be any activity at all.

Both excitatory stimuli are randomly drawn from the

same distribution as described above. They are statistically

identical. The cue stimulus is not stronger or more salient

than the background stimulus. As in Gouvea et al. (2015) the

cue stimulus is a 150 ms square pulse applied twice, once

at the start of a trial interval and once at the end of the

trial interval. Between the applications of the cue stimulus is

the trial interval. For each trial, the trial interval is drawn

with uniform probability from 600, 1,050, 1,260, 1,380, 1,620,

1,740, 1,950, and 2,400 ms. Between trials, after the end of

the second cue stimulus, there is a fixed time-out of 600

ms followed by a further exponentially distributed interval of

mean 200 ms.

In each network simulation, successive trials are drawn

randomly from the set of eight possible trial lengths. Each trial,

therefore, has a 50% chance of being long or short. Simulations

have a fixed length of 3,37,680. Trials have variable lengths

depending on which interval was chosen and on the random

length of the inter trial interval. There are roughly 130 trials in

a network simulation, so there are roughly 65 long and 65 short.

As in Gouvea et al. (2015), we did not attempt to fix the quantity

of long and short trials to balance exactly.

Action selection and Correct Response
Probability (CRP)

Action selection is implemented in the same way as Gouvea

et al. (2015).

First rate time series for individual cells are calculated

from the spiking network as follows. A 10,000 ms transient

is discarded. All cells which do not spike once during the

simulation are discarded. Spikes for each cell are assigned to

non-overlapping 10 ms bins. Only the 50 cells with the highest

average firing rate are used in action selection (this number

can vary but the number of cells used should be smaller than

the number of trials for the Linear Discriminant Analysis to

be applied).

Trial average rates are calculated for each of these cells. As

in Gouvea et al. (2015) this is the average firing rate in the final

500 ms of each trial of M trials. This results in a 50 dimensional

vector for each trial in the simulation and the trial classification

as short (< 1,500 ms) or long (> 1,500 ms) for each trial. Next,

the Fischer Linear Discriminant (FLD) analysis is applied M

times as in Gouvea et al. (2015) to this data set. Each time one

trial is left out. The maximally discriminative vector (MDV) is

calculated from the remaining M-1 trials. This is the vector Ew
that maximizes,

L(Ew) = (Ew · ( EµL − EµS))2

EwT(6L +6S)Ew
(8)

where EµL and EµS are the mean vectors for the long and

short trials, respectively, and 6L and 6S are the corresponding

covariance matrices. The discrimination criteria c is given by the

projection of the mean of the long and short trials onto Ew,

c = Ew · ( EµL + EµS)/2. (9)

To determine the action generated for the remaining trial, its

activity ER is projected onto Ew and compared with c, ER · Ew > c for

a long trial. This leave-one-out procedure is repeated to generate

a selected action for each trial.

The MDV Ew was computed using the ALGLIB library in

C++. https://www.alglib.net.

Correct response probabilities CRP are calculated for

intervals separately, the 600 and 2,400ms intervals are combined

and denoted CRP4, the 1,050 and 1,950 ms intervals are

combined and denoted CRP3, the 1,260 and 1,740 ms intervals

are combined and denoted CRP2, and the 1,380 and 1,620 ms

intervals are combined and denoted CRP1, i.e., for each trial j in

a given simulation we obtain an action selection Aj = 1, 0 if the

action is long or short, respectively. Each trial also has an interval

length denoted Ij, CRP1 is given by,

CRP1 =
∑

j δIj,1380(1− Aj)+
∑

j δIj,1620Aj
∑

j δIj,1380 +
∑

j δIj,1620
(10)

where δx,y = 1 if x = y and zero otherwise, and similarly for the

other CRPs.

Preference indices

Cell preferences are determined for all cells that fire at

least one spike (not just the 50 used in action selection) using

receiver operating characteristic (ROC) analysis as in Gouvea et

al. (2015). First, the action selected for each trial are determined,

as described above. The distributions of firing rates in the last

500 ms of trials is determined across long selected trials and

across short selected trials for each cell. For each cell, a ROC

value is calculated using these distributions in the standard

way. That is, for a given cell the mean firing rate in the final

500 ms of each trial is calculated for long and short selected

trials separately. For each trial type, the firing rates are binned

in 1 Hz bins and the probability of each bin is obtained by

dividing by the number of trials of that type,Mshort andMlomg.

Next, a threshold firing rate, T, is defined. The total cumulative

probability below the threshold, T, for the short trials (true

positives) and the long trials (false positives) is obtained. This

is repeated for all thresholds from zero incremented in 1 Hz

steps. The pair of probabilities (probshort, problong) for each

threshold value, T, forms a curve starting at (0,0) and increasing

to (1,1). The area under this curve, A, provides a measure of

how separate the distributions are, with unity being strongly

long preferring and zero being strongly short preferring. Here
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to calculate preference indices we generate a z-score. We draw

with replacement Mshort observations and Mlong observations

from the firing rates for the cell across all trials. Using these

distributions a surrogate ROC area, Asurr is obtained. This

is repeated 50 times. Finally, the preference index z-score is

obtained as AZ = (A − 〈Asurr〉)/σ (Asurr) where 〈Asurr〉
denotes the mean over the surrogate Asurr values and σ (Asurr)

is their SD.

Averages over significantly long preferring cells and

significantly short preferring cells are determined as averages

over cells with AZ greater than 1 and less than –1, respectively.
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