
royalsocietypublishing.org/journal/rspb

Research
Cite this article: Hayashi K, Tachihara K,
Reimer JD, Laudet V. 2022 Colour patterns

influence symbiosis andQ1 competition in the

anemonefish-host anemone symbiosis system.

Proc. R. Soc. B 20221576.

https://doi.org/10.1098/rspb.2022.1576

Received: 12 August 2022

Accepted: 12 September 2022

Subject Category:
Behaviour

Subject Areas:
behaviour, ecology, ecosystems

Keywords:
aggressive behaviour, anthozoa, fish colour

patterns, interspecific interactions, coral reefs

Author for correspondence:
Kina Hayashi

e-mail: aetobatu@gmail.com

Electronic supplementary material is available

online at rs.figshare.com.

Colour patterns influence symbiosis and Q1

competition in the anemonefish-host
anemone symbiosis system

Kina Hayashi1,3, Katsunori Tachihara1, James Davis Reimer1,2 and
Vincent Laudet3,4

1Graduate School of Engineering and Science, and 2Tropical Biosphere Research Center, University of the
Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
3Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa
904-0495, Japan
4Marine Research Station, Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, 23-10, Dah-Uen
Rd, Jiau Shi I-Lan 262, Taiwan

KH, 0000-0001-5900-1858

Colour patterns in fish are often used as an important medium for communi-
cation. Anemonefish, characterized by specific patterns of white bars, inhabit
host anemones and defend the area around an anemone as their territory.
The host anemone is not only used by the anemonefish, also by other fish
species that use anemones as temporary shelters. Anemonefish may be
able to identify potential competitors by their colour patterns. We first exam-
ined the colour patterns of fish using host anemones inhabited by
Amphiprion ocellaris as shelter and compared them with the patterns of fish
using surrounding scleractinian corals. There were no fish with bars shelter-
ing in host anemones, although many fish with bars were found in
surrounding corals. Next, two fish models, one with white bars and the
other with white stripes on a black background, were presented to an A. ocel-
laris colony. The duration of aggressive behaviour towards the bar model
was significantly longer than that towards the stripe model. We conclude
that differences in aggressive behaviour by the anemonefish possibly
select the colour patterns of cohabiting fish. This study indicates that
colour patterns may influence not only intraspecific interactions but also
interspecific interactions in coral reef ecosystems.

1. Introduction
Colour patterns in fish are known to be shaped by a variety of selective press-
ures, including predators, prey, competitors and mate choice (e.g. [1–6]). In
particular, fish inhabiting coral reefs have the most diverse pigment cell types
of any vertebrate, resulting in a wide variety of colour patterns, such as bars,
stripes and spots [7]. In coral reefs with high water transparency, visual signals
are effective communication tools, and the colour patterns of fish play an
important role in determining the behaviour between individuals and species,
such as, camouflage/mimicry [8–14], species/individual identification [15–17],
courtship [10,18–20] and other social interactions [21,22]. Competition and sym-
biosis can be established using such visual information, and as a result, there
must be rules regarding the composition of colour patterns within the local
community. However, there have been no studies focusing on the role of
visual information in determining the species composition of fish communities.

Anemonefish (Amphiprioninae, Pomacentridae) have conspicuous white
bars against a background colour of orange, red or black, and the number of
white bars varies depending on the species [7,23–25]. The evolutionary function
of colour patterns in anemonefish is poorly understood, but at least three adap-
tive hypotheses have been proposed [7,26–29]. The first hypothesis is that the
number of white bars has a recognition function since anemonefish have
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species-specific numbers of white bars. This hypothesis is
supported by the fact that the differences in the number of
white bars between species inhabiting the same area are sig-
nificantly greater than would be expected at random [27]. In
addition, anemonefish patterns change during ontogeny in
some species [7,23–25,27], and the different patterns of juven-
iles from adults may be a dishonest signal to conceal their
presence and reduce agonistic interactions [26,27,30]. The
second hypothesis is that the contrast of the bright base
colour and white stripes is disruptive and functions to hide
the fish silhouette. In Amphiprion ocellaris and A. percula, in

our studies on anemonefish-host anemone symbioses in the
Ryukyu Archipelago, we noticed that fish species other
than anemonefish that use host anemones have stripes and
spots but not patterns with vertical bars [42]. This may be
because the aggressive behaviour in anemonefish is less
frequent to fish without bars or stripes, such as D. trimacula-
tus, and to the fish with stripes, such as Labroides dimidiatus
(Labridae), but more frequent towards fish with bars. There-
fore, we hypothesized that anemonefish may decide whether
to tolerate or exclude potential intruders based on their
colour patterns, and that their behaviour may influence fish
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Figure 1. Map of the study site in the Sakishima Islands. Arrows indicate the study sites. (Online version in colour.)
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particular, an indentation on the dorsal fin and the white
bars extending across the dorsal fin appear to have a high dis-
ruptive colour effect [27]. The third is an aposematism
hypothesis, that is, the conspicuous colour patterns serve to
advertise the toxicity of the host anemone. Phylogenetic ana-
lyses have revealed that host venom strength and tentacle
length are correlated with colour patterns of anemonefish,
supporting their function as warning colours [29].

Anemonefish inhabit host anemones for their whole life
except for their pelagic larval stage (e.g. [31–33]). Host ane-
mones have numerous nematocytes that sting most fish, but
anemonefish can use host anemones as shelter thanks to
their mucus which prevents stinging [31,34,35]. Anemonefish
defend their host anemone as territories and express aggres-
sive behaviour toward other anemonefish and towards other
fish species [36–39]. Despite this, the host anemone inhabited
by anemonefish pair may be used as a temporary refuge by
other species of fish such as damselfish (Pomacentridae), car-
dinalfish (Apogonidae) and wrasses (Labridae) [40–42]. In
the Ryukyu Archipelago, Japan, 16 species from three

families (Apogonidae, Labridae and Pomacentridae) have

their hosts Stichodactyla giganteawere targeted in each study area,
which ranged from 0 to 2 m in water depth. The fish fauna of a
been observed inhabiting host anemones, and Labridae
come to host anemones to clean anemonefish [42].

Dascyllus trimaculatus (Pomacentridae), which most fre-
quently uses anemonefish colonies, has a black ground
colour with three small white spots. When a model of this
pattern is presented to six species of anemonefish, aggressive
behaviour was observed in response to the models, but there
were species differences in the frequency of this behaviour
[41]. D. trimaculatus tended to use colonies of A. samdaracinos,
which showed relatively less aggressive behaviour, but not
colonies inhabited by A. frenatus or A. polymnus, which
showed more aggressive behaviour [41]. Further, during
rspb20221576—17/9/22—21:38–Copy Edited by: Not Mentioned
community structure.
The purpose of this study was to examine the relation-

ships between the frequency of anemonefish aggressive
behaviour and the colour patterns of fish by clarifying the fol-
lowing two questions: (i) Within the same habitat, is there a
difference in the colour patterns of fish that live in host ane-
mones (with anemonefish) and in scleractinian corals
(without anemonefish)? and (ii) Do anemonefish differ in
the frequency of their aggressive behaviour toward fish
with vertical bars and horizontal stripes? The answers to
these two questions will help clarify the effects of anemone-
fish behaviour on fish communities in the anemonefish-host
anemone symbiosis system.

2. Materials and methods
(a) Colour patterns of fish using scleractinian corals and

host anemones
We conducted field surveys at five study sites (two study sites on
reefs around Miyakojima Island, one around Ishigakijima Island
and two around Iriomotejima Island) in the Ryukyu Archipelago
from September 2020 to October 2021 (figure 1). A. ocellaris and
total of 49 individuals of S. gigantea and that of 49 scleractinian
corals that were closest (2–10 m away) to each of the S. gigantea
were recorded (Miyakojima: n = 18, Ishigakijima: n = 6, Iriomote-
jima: n = 25). The scleractinian corals studied ranged from ca 20 to
60 with a mean of 35 cm (s.d. = 6.38) in diameter, and the host
anemones ranged from 20 to 47 with a mean of 31 cm (s.d. =
10.14). The areas within the outermost range of host anemone’s
tentacles and scleractinian coral colony branches were defined



as the target area, including spaces covered under the tentacles
and branches, between the tentacles/branches, and above the
tentacles/branches [42]. To minimize the influence of the obser-
ver on the behaviour of anemonefish based on the results of [43],
we slowly approached the host anemone/ scleractinian corals
from ca 2 m and started recording at a distance of 0.5 m. In
order to compare the fish species using the host anemone and
scleractinian corals as shelter, we recorded around the target
area for 3 min using video camera (Olympus TG-6). Fish species
swimming within the target area for a minimum of 2 min were
identified as fish using the host anemones/scleractinian corals,
thereby excluding from the analysis fish species that briefly
enter the host anemones/scleractinian corals [44]. The colour pat-
terns of fish using host anemones/scleractinian corals were
divided into three categories: bars (vertical bars) (figure 2a),
stripes (horizontal stripes) (figure 2b) and others (figure 2d ).
Fishes which had both bars and stripes such as butterflyfish
(figure 2c) were counted as ‘others’. Differences in the frequency
of colour patterns of resident fish between host anemones and
corals were compared using a χ-square test of independence
conducted in IBM SPSS Statistics Ver. 28.

permanent marker (Mitsubishi Paint Marker PX-20, Mitsubishi
Pencil Corporation, Tokyo, Japan) in black for the base colour
and white for the bars and stripes (electronic supplementary
material, figure S1). The reflectance spectra of colours were deter-
mined every 10 nm from 400 to 700 nm using 30 mm-diameter
illumination by Konica Minolta Inc., CM-700D (electronic sup-
plementary material, figure S1). The three attributes of colour
(L: lightness, C: chroma, H: hue) of the model were measured
by a colorimeter (NR-11A; Nippon Denshoku Industries,
Tokyo, Japan). Measurements were conducted three times and
the mean value of the base colour was 2.1, 1.9, 312.0 (L, C, H),
and that of bar/stripe was 71.6, 6.7, 111.7 (L, C, H).

These models were dangled by a transparent fishing line and
placed in close proximity to each A. ocellaris colony. As aggressive
behaviour of anemonefish toward intruders is known to decrease
gradually over 2 min [41,43], we continued recording for 3 min.
To prevent habituation to the model, each colony was tested only
once, and one of the two different models was randomly presented
to each A. ocellaris colony. Following previous studies, both ‘chas-
ing’ and ‘biting’ were collectively defined as aggressive behaviour
towards the model fish [41,43,45]. To calculate the difference in fre-
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Figure 2. Photographs and colour pattern classifications of the various Q3fish species observed in scleractinian corals and host sea anemones in the present study.
Species with asterisks were found in both corals and sea anemones. (Online version in colour.)
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(b) Aggressive behaviour of anemonefish toward bar
and stripe patterns

We conducted behavioural experiments on 45 A. ocellaris colonies
(Miyakojima: 15 colonies, Ishigakijima: 6 colonies, Iriomotejima:
24 colonies). After 3 min recording fish species using host ane-
mones as mentioned above, we started behavioural
experiments by setting the model fish. Two types of fish
models were prepared: one with two white vertical bars on a
black background (bar model) and the other with two white
horizontal stripes on a black background (stripe model). Fish-
shaped plastic toys of 5 cm in total length were painted with a
rspb20221576—17/9/22—21:38–Copy Edited by: Not Mentioned
quencyof aggressive behaviour betweenbarand stripemodels, and
sexual differences in the frequency of aggressive behaviour, a non-
parametric Mann–WhitneyU-test conducted in IBM SPSS Statistics
Ver.28. was used.

3. Results
(a) Differences in colour patterns of fish using host

anemone and scleractinian corals
Throughout all study sites, 19 out of 49 individuals (39%) of
S. gigantea anemones were used by other fish species



Table 1. List of fish species inhabiting (a) host anemones and (b) scleractinian corals (Pocilloporidae, Acroporidae and Poritidae) in each island.

family of

coexisting fish

species coexisting fish species

colour

patterns

number of host anemones inhabited by each

fish species

total

percentage in 49

host anemones (%)Miyakojima Ishigakijima Iriomotejima

(a) host anemones

Apogonidae Apogon nigrofasciatus stripes 1 0 0 1 2.0

Cheilodipterus quinquelineatus stripes 4 0 0 4 8.2

Ostorhinchus properuptus stripes 4 0 2 6 12.2

Pomacentridae Chrysiptera cyanea others 2 4 0 6 12.2

Dascyllus trimaculatus others 4 2 3 9 18.4

Pomacentrus chrysurus others 1 1 0 2 4.1

(b) scleractinian corals

Apogonidae Cheilodipterus quinquelineatus stripes 2 0 0 2 4.1

Ostorhinchus sp. stripes 2 0 2 4 8.2

O. ishigakiensis others 0 0 1 1 2.0

O. properuptus stripes 2 0 1 3 6.1

Labridae Hemigymnus melapterus bars 0 0 1 1 2.0

Stethojulis strigiventer others 1 0 1 2 4.1

Thalassoma hardwicke bars 1 1 0 2 4.1

2 0 2 4.1

0 1 3 6.1

0 2 2 4.1

3 5 23 41 83.7

5 1 8 24 49.0

1 1 2 4.1

0 0 1 2.0

0 1 2 4.1
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(table 1a). Three species of cardinalfish and three species of
damselfish were observed during the course of our study
(table 1a). Throughout all study sites, all 49 individuals
(100%) of scleractinian corals were used by other fish species

Pomacentridae Abudefduf sexfasciatus bars 0

Chromis viridis others 2

Chrysiptera biocellata bars 0

C. cyanea others 1

Dascyllus aruanus bars 1

D. trimaculatus others 0

Dischistodus prosopotaenia bars 1

Neoglyphidodon nigroris stripes 1

Pomacentrus amboinensis others 0

P. chrysurus others 1

P. moluccensis others 4

Stegastes punctatus others 2

Chaetodontidae Chaetodon auriga others 0

C. lunulatus others 0

Acanthuridae Acanthurus triostegus bars 0

Zebrasoma velifer bars 1

Gobiidae Asterropteryx semipunctata others 0

Blenniidae Meiacanthus kamoharai stripes 0

Lutjanidae Lutjanus gibbus others 0
(table 1b). A total of 26 species were observed in scleractinian
corals, consisting of 4 species of cardinalfish, 3 species of

wrasse, 12 species of damselfish, 2 species of butterflyfish, 2
species of surgeonfish, 1 species of goby and 1 species of
snapper (table 1b). Five of 26 species (Ostorhinchus properup-
tus, Cheilodipterus quinquelineatus, D. trimaculatus, C. cyanea
and P. chrysurus) used both host anemones and scleractinian
corals (table 1, figure 2). D. trimaculatus and O. properuptus
rspb20221576—17/9/22—21:39–Copy Edited by: Not Mentioned
tended to use host anemones rather than scleractinian
corals (table 1). Most fish observed in host anemone and
scleractinian corals were immature fish.

Of the six fish species observed in host anemones, three
had stripes, the other three had other types of patterns, and
no fish species had bar patterns (table 1a, figures 2 and 3).
On the other hand, 8 of the 26 species which used corals
had bar patterns, 5 species had stripes and 13 species had
other patterns (table 1b, figure 2). There was a significant
difference in the frequency of colour patterns of fish using
between host anemone and corals (figure 3, chi-square
test, χ2 = 14.27, d.f. = 2, p < 0.01). In host anemones, there

0 1 1 2.0

2 8 11 22.4

3 3 10 20.4

0 4 6 12.2

0 7 7 14.3

0 1 1 2.0

0 1 1 2.0

0 2 3 6.1

0 1 1 2.0

0 1 1 2.0

0 2 2 4.1
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were no fish species with bar patterns but fish species with
stripe patterns were more abundant (figure 3a). On the
other hands, in corals, the fish species with bar patterns
were more frequently found than the fish species with
stripe patterns (figure 3b). This tendency was similarly
observed in sites at Miyakojima, Ishigakijima and
Iriomotejima islands (figure 3).

(b) Differences in the frequency of aggressive behaviour
toward bar and stripe models

In female anemonefish, the duration of aggressive behaviour
towards the bar model was 3 s/3 min (median), 0–10.5
(25–75% quartiles), 0–40 (min-max range), and that towards
the stripe model was 0 s/3 min (median), 0–4 (25–75% quar-
tiles), 0–15 (min-max range), and the former was
significantly longer than the latter (figure 4a; Mann–Whitney
U-test; U = 150, p < 0.05). In males, there were no significant
differences in duration of aggressive behaviour between the
bar (0 s/3 min in median, 0–2 in 25–75% quartiles, 0–12 in
min-max range) and stripe (0 s/3 min, 0–2.5 in 25–75% quar-
tiles, 0–5 in min-max range) models (figure 4b; Mann–
Whitney U-test; U = 200.5, p = 0.84). No aggressive behaviour
was observed in immature fish. The duration of aggressive be-
haviour toward bar models was significantly longer in females
than males (Mann–Whitney U-test; U = 142.5, p < 0.01). On the
other hand, there were no significant differences in the dur-
ation of aggressive behaviour toward stripe models between
male and female (Mann–Whitney U-test; U = 174.5, p = 0.63).

4. Discussion
The present study showed that fish species asides from ane-
monefish that use host anemones did not have vertical bar
patterns, but that nearby scleractinian corals were used by a
variety of fish species with various colour patterns including
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bars. The fact that only 39% of anemones were used as shelter
by other fish, while 100% of scleractinian corals were used by
fish, may be due to the lack of tolerance to the venom of the
host anemone by most fishes. However, this observation may
also be linked to the aggressive behaviour of anemonefish,
which actively chase away many intruding fish. Therefore,
we hypothesize that the reason for this difference was due
to the aggressive behaviour of anemonefish, which defend
host anemones as their territory. We further hypothesized
that the behaviour of anemonefish differs depending on the
colour pattern of the intruder fish.

When either bar or stripe models were presented to colo-
nies of anemonefish, we observed that female anemonefish
attacked the bar model more persistently and for a longer
time than the stripe model. When a similar experiment was
conducted on a model with white spots on a black back-
ground (=imitating D. trimaculatus), the duration of
aggressive behaviour by A. ocellaris was 0 s/3 min (median)
with 0–2 (25%–75% quartiles) and 0–3 (min-max range) in
females and 0 s/3 min (median) with 0–0 (25%–75% quar-
tiles) and 0–1 (min-max range) in males [41]. Although
comparisons between the current study and this past research
should be made with caution due to the use of different study
sites, the duration of aggressive behaviour did not differ
between the D. trimaculatus model and the striped model,
but was much higher in the bar model. As expected, anemo-
nefish responded more aggressively to intruders with bar
patterns and protected the host anemone as their own
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territory, indicating that only fish species without bar pat-
terns may have access to host anemones. Our results

Thus, A. ocellaris may be aggressive not only against competi-
tors of the same species, but also against other anemonefish
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