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We investigate the ground-state phase diagram of a spin-1/2 honeycomb-lattice antiferromagnetic (AF)
Heisenberg model with three exchange interactions, J,, Jg, and Jc, that is realized in a distorted honeycomb-
lattice antiferromagnet Cu,(pymca);(ClO4). We remeasured the magnetic susceptibility of its polycrystalline
sample with special care and determined the exchange parameters of this material through the comparison
with numerical results based on a quantum Monte Carlo (QMC) method. The QMC method also provides
a ground-state phase diagram in the Ju/Jc-Jg/Jc plane. The phase diagram consists of a small Néel phase
and a gapped quantum paramagnetic phase surrounding the Néel phase. The latter includes six regimes of
hexagonal-singlet-type states and dimer-singlet-type states alternatingly without boundaries closing the spin gap.
We further calculate the equal-time spin structure factor in each phase using the QMC method. The computed
spin dynamics by the exact diagonalization method exhibits continua near and in the AF phase. Characteristic
four energy band structures in the state with strong hexagonal-singlet-type correlations are informative to clarify
the ground state of Cu,(pymca);(ClO,) by future neutron scattering measurements.

DOI: 10.1103/PhysRevB.106.134410

I. INTRODUCTION

Understanding the fundamental nature of the quantum
magnetism has been an important subject of much investiga-
tion, especially by cooperation of experiment and theory. It is
easy to understand the importance in the study on quantum
frustrated magnets because the combination of the compet-
ing interactions and the quantum fluctuations tend to exhibit
exotic states of matter such as valence bond crystal (VBC)
[1-5], spin nematic [6—13], and spin liquid [14—17] states
so far, and some of these states are attractive enough for
the developments of the future nano devices and quantum
computers. Even in the absence of the frustration effect,
quantum magnets have much potential to exhibit intrigu-
ing phenomena originating from strong quantum fluctuation
effects. The Tomonaga-Luttinger liquid [18] and Haldane
[19,20] states are typical examples in quantum 1D magnets.
Generally the role of the quantum fluctuations tends to be less
significant in higher dimensional quantum magnets, but, the
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effect of the quantum fluctuation is likely to be significant
in honeycomb-lattice magnets among them because of its
minimum coordination number z = 3 of exchange bonds. The
suppression of the classical Néel-type long range order (LRO)
in the spin-1/2 honeycomb-lattice antiferromagnet (HLA) is
larger than that in the spin-1/2 square-lattice antiferromag-
net [21]. Therefore small perturbations from further-neighbor
interactions [22-34], lattice distortion [24,32,35] and random-
ness [36] could be strong enough to destroy the classical
LRO, and easy to change the low-temperature physics of the
spin-1/2 HLAs.

As the candidates of the extended spin-1/2 HLAs,
several materials exhibiting nonmagnetic behavior were
reported, such as Na3;Cu,SbOg [37-43], Na,Cu,;TeOgq
[38,39,43—46], Li3Cu,SbOg [47-50], Yb,Si, 07 [51-55], and
Zn(hfac),A;Bi_, [56], where hfac represents 1,1,1,5,5,5-
hexafluoroacetylacetonate, and A and B equivalent to re-
gioisomers of verdazyl radical. The origin of the quantum
paramagnetic ground state (GS) in some of the above ma-
terials is weakly coupled “‘singlet dimers.” For example, the
effective model of Na3;Cu,SbOg and Na,Cu,TeOg is most
likely an alternating Heisenberg spin chain with ferromag-
netic (FM) and antiferromgnetc (AF) interactions [43,46]. The
gapped paramagnetic behavior in these two materials could be
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FIG. 1. (a) Spin-1/2 J5-J-Jc honeycomb-lattice Heisenberg model and its finite-size cluster example with L, = L, =6 (N = 2L,L, =
72). The orange colored arrows represent the primitive translational vectors in the honeycomb plane. (b) The momentum space obtained by the
translational vectors in (a). The black and red dotted lines indicate the Brillouin zone (BZ) for the sublattice triangular lattice, and the extended
BZ for the current honeycomb lattice, respectively. The green and cyan arrows are used for the horizontal axis in Fig. 7 of the dynamical spin

structure factors.

understood from the spin-1 Haldane chain picture [19,20,57].
A similar situation also happens in LizCu,;SbOg, but compli-
cated low-temperature behavior was observed because Li ion
acts as a nonmagnetic defect to cut the chains into fragments
and generate quasifree spins at the edge of them [50]. In
contrast, the network of the inter- and intradimer couplings
form a spatially distorted (breathing) honeycomb lattice in
Yb,Si,07. The two-dimensionality does not bring this mate-
rial to undergo a magnetic ordering phase transition at lower
temperatures, and the small ratio of the inter to intra dimer
couplings, ~0.4, keeps this material in the quantum dimer
state [54]. It was also reported that the anisotropic perturba-
tions in spin space are required to understand the field-induced
successive phase transition in this material [55]. Another ori-
gin was proposed for a newly synthesized organic compound
Zn(hfac), A,B;_, exhibiting gapless liquidlike behavior [56].
The combined effects with randomness in magnetic exchange
interactions, frustration, and quantum fluctuation may pro-
duce an intriguing random singlet state [36,58—64].

Cu; (pymca); (ClO4) was also reported as an extended spin-
1/2 HLAs exhibiting gapped paramagnetic behavior down to
2 K [65], where “pymca” is pyrimidine-2-carboxylate. This
compound was reported to be a regular honeycomb-lattice
copper one with a trigonal symmetry (space group P31m),
and each pymca ligand connects to two Cu’* ions, form-
ing a honeycomb network in the ab plane [65]. However,
the recent single-crystal x-ray diffraction experiments using
a synchrotron radiation facility revealed the existence of the
distorted octahedral geometry of Cu®>*, which leads to at least
three intralayer exchange interactions in the honeycomb plane
[66].

Additional experiments were conducted on polycrystalline
samples of this material [67]. The measured specific heat at
zero-field decreased down to 0.6 K without any anomaly. The
electron spin resonance (ESR) spectrum could be fitted to a
single Lorentzian function, which indicates the isotropic AF
interactions in this material, and the estimated g factor is 2.13.
Interestingly, the high-field magnetization measurements up
to 70 T showed the zero-field, 1/3, and 2/3 magnetization
plateaus and additional plateau-like curvature near saturation.

The zero-field magnetization plateau indicates the existence
of a quantum-gapped singlet ground state.

The determination of the effective model was also car-
ried out by means of the nonbiased quantum Monte Carlo
(QMC) method [67]. The paper [67] used a Heisenberg model
on a distorted honeycomb-lattice, having three different AF
interactions, Ja, Jg, and Jc [see also Fig. 1(a)], which was
reasonably assumed by the results of the x-ray diffraction
[66] and the high-field magnetization measurements [67]. The
reproduction of the measured magnetization curve worked
well except the fourth plateau near saturated field in the case
Ja/ks = Jg/kg = 43.7 K and Jc/Ja = 0.2. These calculation
results suggest that the effective model of this material is a
weakly coupled “hexagonal singlet, which is unique from
other honeycomb compounds denoted above. The quantum
gapped behavior originates from the hexagonal singlet cluster
(HSC) in the local hexagon made by the J, and J interactions
[68]. A quite recent theoretical work with triplon analysis
and QMC calculations [69] also evaluated the experimental
exchange couplings which are consistent with those reported
in Ref. [67], and the relationship between spin-gapped phase
and the emergence of the magnetization plateau was discussed
based on the obtained ground-state phase diagram of the spin-
1/2 Ja-Jg-Jc honeycomb-lattice Heisenberg model.

In this paper, we first report experimental results of
magnetic susceptibility remeasured on newly synthesized
polycrystalline powder samples of Cuy(pymca)s;(ClOy).
Combined with large-scale QMC calculations, we suc-
ceed in estimating the three exchange parameters, Ja, Jg,
Jc and confirming that the parameters obtained from the
magnetization-curve fitting are reasonable. We further inves-
tigate numerically the ground-state phase diagram, which was
also reported in Ref. [69], but we focus on the parame-
ter dependence of the spin gap value directly calculated by
means of the QMC method, which can give useful informa-
tion about the nature of the quantum gapped paramagnetic
states realized in wide parameter region of the spin-1/2
Ja-Js-Jc honeycomb-lattice Heisenberg model. We also study
the evolution of the zero-field spin dynamics by means of the
exact diagonalization (ED) method in the parameter region

134410-2



QUANTUM PARAMAGNETIC STATES IN THE ...

PHYSICAL REVIEW B 106, 134410 (2022)

of 0 < Ja/Jc =Jp/Jc < 00, including the “singlet-dimer,”
“AF,” and “hexagonal singlet” states. The details of the spin
dynamics are informative for understanding the nature of the
Cu,(pymca);(ClOy), also of future honeycomb-lattice candi-
dates via inelastic neutron scattering measurements.

The rest of this paper is organized as follows. The exper-
imental details and results on new polycrystalline samples of
Cu,(pymca);(ClOy4) are first described in Sec. II. The evalu-
ated three exchange couplings are also presented. Section III
is devoted to the theoretical part. We provide the basics of our
numerical methods and static and dynamical properties of the
spin-1/2 Ja-Jg-Jc honeycomb-lattice Heisenberg model ob-
tained by nonbiased QMC and ED methods. Finally, the paper
is summarized with discussion and conclusion in Sec. I'V.

II. MAGNETIC SUSCEPTIBILITY MEASUREMENT

Polycrystalline Cu,(pymca);(ClO4) samples were synthe-
sized by hydrothermal reaction according to the method
described in Ref. [65]. Magnetic susceptibility x (= M/H,
where M is the magnetization and H is the external mag-
netic field) of this compound was measured at uoH = 0.1T
(uo: permeability in vacuum) between the temperature 2 and
300 K using a superconducting quantum-interference device
(SQUID) magnetometer (Quantum Design MPMS XL-7).
The diamagnetic susceptibility (—1.605 x 10~* emu/f.u.
mol) was calculated by using the Pascal’s sum rule,
and the van Vleck paramagnetic susceptibility (9.552 x
107 emu/f.u. mol) was calculated from the g value of
Cu’" ion assuming the spin-orbit coupling constant of
Cu®t jon in this compound (=710 cm~!). The observed
magnetic susceptibility was obtained by making these cor-
rections. In Ref. [67], magnetic susceptibility of a powder
sample of Cu,(pymca);(ClO4) was measured after obtaining
the magnetization data in high magnetic fields to calibrate the
magnetization at low fields using the sample holder for the
magnetization measurements. Therefore the magnetic suscep-
tibility was not accurate and only showed its behavior. This
time, we used a well-calibrated capsule as a sample holder for
accurate magnetic susceptibility measurements.

The temperature dependence of the magnetic susceptibil-
ity of a polycrystalline Cu,(pymca);(ClO4) sample (weight:
72.61 mg) is shown with open circles in Fig. 2. The magnetic
susceptibility shows a broad maximum near 25 K, typical
of a low-dimensional antiferromagnet, and a steep increase
below 5 K, which might arise from a paramagnetic impu-
rity. To obtain the intrinsic magnetic susceptibility of the
sample, we subtracted the paramagnetic-impurity component,
given by the Curie term, from the measured magnetic sus-
ceptibility (open circles). For this calculation, we assumed
the paramagnetic component with § = 1/2. It is expressed
as aC/T, where C is the Curie constant with the g value
g = 2.13 as determined from ESR measurements at the lowest
temperature and the impurity concentration of « = 1.7 % as
shown by the broken line in the inset of Fig. 2. The resultant
magnetic susceptibility (open squares) shows a monotonic
decrease toward zero upon cooling from 20 K, although it
is not a simple exponential decay. The calculated suscepti-
bility is given by a solid line using the exchange constants
Ja/ks = Jg/kg = S5Jc/kg = 43.7 K and the g value of 2.13.
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FIG. 2. Temperature dependence of the magnetic susceptibility
x (= M/H) of a polycrystalline Cu,(pymca);(ClO4) sample. The
open circles represent the measured x, and the open squares repre-
sent x minus magnetic-impurity component given by the Curie term
with the § = 1/2 impurity concentration of 1.7% as shown by the
broken line in the inset. The solid line is numerical susceptibility
obtained by our QMC calculations using the parameter values given
in the figure.

These parameter values are the same as those used for the
magnetization-curve fit in Ref. [67]. The agreement between
the experiment and calculation is satisfactorily good. The peak
structure of magnetic susceptibility is well reproduced by the
calculation, although its low-temperature part deviates a bit
from the calculated one. This deviation might be attributed
to effective staggered fields caused by the DM interaction
which exists in Cu,(pymca)s;(ClOy,), resulting in the increase
of magnetic susceptibility [70,71].

III. NUMERICAL STUDY

1. Methods

Our QMC method is based on the directed loop algo-
rithm in the stochastic series expansion representation [72].
The calculations for spin-1/2 Ja-Jg-Jc honeycomb-lattice
Heisenberg model are performed using finite-size clusters
N = 2L,L, [see also Fig. 1(a)] under the periodic boundary
condition, where N is the number of spins. For evaluating the
spin gap value of each finite-size cluster, we use the multi-
cluster loop algorithm in the continuous-time path-integral
representation and the second-moment method. All QMC cal-
culations for magnetic susceptibility, spin gap, and two-point
correlation functions are carried out using the ALPS applica-
tions [73-75].

To compute the zero-temperature dynamical spin structure
factor (DSSF), we use the continued fraction expansion [76]
based on the exact diagonalization (ED) Lanczos algorithm.
The equation of the DSSF is written by

A

1 o 1
S =——I [y — {1/ 1
1) =~ Im@ISy S, ()

where £ is the ground state energy (i.e., lowest eigenvalue)
with the corresponding ground state |¢) of the Hamiltonian H
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FIG. 3. The zero-field ground-state phase diagram obtained by
the QMC calculations. The six insets depict the schematic pictures
of the real-space correlation pattern in the gapped quantum param-
agnetic states. The cross point corresponds to Cu,(pymca);(ClOy)
and is located in one of the HS areas.

and positive real number 7 is the broadening factor. We can
rewrite the above equation as

(¢ISI;""S;‘I¢>
i

i
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with z = w — E; + in. o and B in Eq. (2) are obtained by the
tridiagonalization procedure of the Hamiltonian matrix in the
Lanczos iteration. We here use the cluster of L, = 3 and L, =
6 (N = 36), and set n = 0.01 for our DSSF computations. The
wave vector points q we handle are only along the green and
cyan arrows in Fig. 1(b).
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2. Computational results

We first show our ground-state phase diagram in Fig. 3
evaluated by the spin gap. One can find that the region of
the antiferromagnetic Néel phase is small and surrounded by
the quantum paramagnetic phase. We also show the schematic
pictures of the dominant correlation patterns in six parameter
limits, respectively, like the insets in Fig. 3. The obtained
phase diagram is consistent with that determined by the dif-
ferent QMC calculations using sublattice magnetization and
spin stiffness [69].

Let us explain the way to determine the phase boundary
between quantum paramagnetic and the Néel phases. The spin
gap calculations are employed on the finite-size clusters of
L,=L,=3,6,9,12,...,24, and 27. For example, we show the
size dependence of the spin gap along the J, /Jc = Jg/Jc line
in Fig. 4. The treated Jo = Jp values are depicted in Fig. 4(a).
To estimate the spin gap value in the thermodynamic limit,
Ao, We use a fitting equation Ay = Ay, + Aexp(—BN'/?),
where the A and B are fitting parameters [77,78] when we as-
sume the presence of the finite spin gap. We find that the fitting
curves seem to be appropriate for Ja /Jc = Jg/Jc < 0.70 and
Ia/)Jc = Jg/Jc 2 1.60.

To further investigate the evolution of the spin gap in the
parameter space, we display the contour plot of the spin gap
value using L, = L, = 12 cluster, in Fig. 5. The shape of the
evolution looks like a deltoid curve and is symmetric with
respect to the line of Jo = Jg. We also clearly see that the
six gapped regimes alternatingly appear without closing the
energy gap as depicted in Fig. 3.

We compute the nearest-neighbor two-point correlation
function to see the cross-over phenomenon in the quantum
paramagnetic phase. As a characteristic example, we deal
with four-parameter sets of (Ja/Jc, Jg/Jc) having the same
constant spin gap, and these four parameter points are shown
as the square symbols denoted by a-d in Fig. 5, respectively.
The calculation results on the L, = L, = 12 cluster are shown

[ (b)

0.01 0.015

0.06

FIG. 4. (a) The focused view of the zero-field ground-state phase diagram around the AF phase. Each color point corresponds to the
parameter value used in (b). (b) The size dependence of the calculated spin gap using the QMC method. The inset shows the focused view for

a larger N region.
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FIG. 5. The contour plot of the spin gap value in the finite-size
cluster, L = 12 (N = 288). The color scale means the value of the
spin gap. The labels a-d provide the corresponding parameter values
used in Fig. 6.

in Fig. 6. The color on each bond represents the value of
nearest-neighbor two-point correlation function, (S;-S;),
where i and j are the edge sites of the corresponding bond.
From (a) to (d), one can confirm the replacement of the dom-
inant spin correlations are changed from a hexagon-like to a
dimerlike pattern.

Note that in Fig. 5, the hexagonal-singlet state at point
a and the dimer-singlet state at point d are on the same
contour line, but point a from the center of the AF state
(Ja/Jc = Jg/Jc=1) is farther than point d. This means that
the development of the spin gap is slower along the direction
from the isotropic AF state to a hexagonal-singlet state than
from the isotropic AF state to a dimer-singlet state, reflecting
the spatial largeness of the hexagonal singlet cluster.

Next, we investigate the evolution of the spin dynamics
and the corresponding equal-time spin structure factor along
0 < Ja/Jc =J/Jc < 00 line. This parameter line includes
all of the main states in our target honeycomb-lattice Hamil-
tonian, the perfect dimer state (Jo = Jg = 0), the Néel state
(Jao = Jg = 1) and the hexagonal singlet state (Jo = Jg = 00)
and the intermediate states between them. The calculation
results are shown in Fig. 7 with the figures of the real-space
nearest-neighbor two-point correlation functions. Note that
we treat L, = L,=12 cluster to calculate the equal-time spin

structure factor and the correlation function using the QMC
method. On the other hand, we use the exact diagonalization
(ED) method to compute the dynamical spin structure factor
using the N = 36 site cluster. The equal-time spin structure
factor is evaluated from the computed two-point correlation

functions as
_ 1 R;
-w{Es) e

where R is the position vector at the site j.

In comparison to the real-space nearest-neighbor two-point
correlation functions, the equal-time spin structure factors
are not so distinctive from each other among the quantum
paramagnetic states in Figs. 7(a)-7(c) and 7(f)-7(h). They just
exhibit a broad peak behavior around the edge of the extended
BZ (red-colored hexagon), namely, K points in the quantum
paramagnetic region. On the other hand, the dynamical spin
structure factors are qualitatively different from each other
among the all-state we handle in Fig. 7. In Figs. 7(a) and
7(h), the static and dynamical properties are shown for the
perfect dimer state (/4 = Jg = 0) and hexagonal singlet state
(Ja = Jg = 00), respectively. As we expect from the presence
of the localized dimer singlet or the hexagonal singlet, one can
confirm flat-band-like features in the computed spin dynamics
in these two parameter limits. As away from these two limits,
we can see clearly, even in the small size cluster of N = 36,
the flat-band feature is collapsed, the spin gap is decreased,
and the magnon dispersion grows around the K points with
approaching the Néel state in the isotropic parameter case
(Ja = Jg = Jo).

It may be worth saying more about the evolution of the spin
dynamics from Figs. 7(a) to 7(b). The single flat band in (a)
is split into higher and lower bands in (b) and this higher one
seems to have a continuum-like behavior even in the small
perturbation to the perfect dimer state. The spin dynamics in
Fig. 7(b) looks like the results of the recent inelastic neutron
scattering measurements on a breathing honeycomb-lattice
compound, Yb,Si,O7 [54]. The zero field inelastic neutron
scattering data are shown in Fig. 4(a) in the Ref. [54] and
it exhibits a slightly curved low-energy band structure and a
fog or continuum-like features. Therefore the overall features
are also captured in our computed spin dynamics in Fig. 7(b)
although we should be careful the difference in the spatial
arrangement of the singlet-dimers between Fig. 7(b) in our
paper and Fig. 1(a) in Ref. [54].
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FIG. 6. [(a)—(d)] The evolution of the real-space nearest-neighbor two-point correlation functions along a line with a constant spin gap. The
color on each bond represents the expectation value of the two-point correlation function, (S; - S;), on each i-j bond. The exchange parameters

used in (a)—(d) are shown in Fig. 5.
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FIG. 7. The evolution of the nearest-neighbor spin-spin correlation, the equal-time spin structure factor, and the dynamical spin structure
factor along the parameter line with J, /Jc = Jg/Jc. The former two quantities are calculated using the QMC method based on the finite-size
cluster, L = 12 (N = 288), and the other one is obtained by the continued fraction expansion employed with the Lanczos method on the
finite-size cluster, L, =3 and L, = 6 (N = 36). The momentum zone cut we choose for the dynamical spin structure factors is shown by
the green and cyan colored arrows, which are shown in Fig. 1(b). The results in (a) and (h) correspond to those in the perfectly decoupled
singlet-dimer state (J4 = 0) and the hexagonal singlet state (Jg = 00), respectively. The results in (d) and (e) are obtained in the AF phase.
[See also the focused view of the ground-state phase diagram in Fig. 4(a).]

An additional remark is that the continuum evolves near
and in the antiferromagnetic Néel state. The spin dynamics for
the spin-1/2 honeycomb-lattice AF Heisenberg model was al-
ready investigated in Ref. [34] using a variational Monte Carlo
(VMCO) technique based upon Gutzwiller-projected fermionic
states, and the result also exhibits a similar continuum be-
havior interpreted by the magnon-magnon interactions. The
paper [34] also pointed out that there is an intermediate en-
ergy regime having vanishingly small intensities between the
continuum regime and the magnon dispersion of the linear
spin wave. Such kind of the intermediate energy blank is also
confirmed in our ED calculation in Fig. 7(e), just above the
spin wave dispersion. These consistencies with the results in
Ref. [34] could support the reliability in our ED spin dynamics
with the relatively small finite-size cluster even in the gapless
state.

The numerical results in Fig. 7(g) are for our honeycomb-
lattice material, Cu,(pymca)s;(ClOy). In this parameter of
Ja/Jc, Js/Jc)=(5.0, 5.0), we have a quantum gapped para-
magnetic state having a strong correlation in each local
hexagon made by the Jo and Jg interactions. This static
correlation pattern may be similar to the VBC state in the
frustrated J,-J, honeycomb-lattice AF Heisenberg model.
However, the discrepancy in the spin dynamics is clear
between the frustrated and unfrustrated cases. The frustration
effect from the nearest-neighbor interaction, J;, to the spin-
1/2 honeycomb-lattice Heisenberg antiferromagnet gives rise

to a significant renormalization of the spin wave magnon
dispersion, production of roton-like minimums, and enhance-
ment of the intensities in the broad continuum [34]. On the
other hand, the hexagonal-type distortion in our honeycomb-
lattice model doesn’t reproduce them, and there are just four
slightly curved energy bands in Fig. 7(g). This difference
could be useful for the future inelastic neutron scattering
measurements not only for Cu,(pymca);(ClO4) but also for
other honeycomb-lattice candidates to confirm the presence
or absence of the next-nearest neighbor interactions in them.

IV. SUMMARY AND DISCUSSION

We measured the magnetic susceptibility of the newly
synthesized polycrystalline sample of Cu,(pymca);(ClOy).
Combined with the experimental results, we also em-
ployed the nonbiased quantum Monte Carlo (QMC) cal-
culations to determine the parameter set in the effective
model, the spin-1/2 Ja-Jg-Jc honeycomb-lattice antiferro-
magnetic Heisenberg model which was originally proposed
by the recent x-ray diffraction [66] and the high-field
magnetization [67] measurements. Our careful fitting com-
bined with QMC calculations revealed that Ja/Jc = Jg/
Jc = 5.0, and Jy/kp = 43.7 K is the best parameter set for
Cuy(pymca);(ClOy).

We could determine the ground-state phase diagram of the
above effective model via spin gap directly calculated by our
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QMC method. To see the evolution of the spin gap in the
antiferromagnetic parameter (J /Jc, Jg/Jc) space, we investi-
gated the contour plot of the spin gap. We found that it exhibits
a deltoid curve and looks symmetric with respect to the line
of Jo = Jg. The quantum paramagnetic states appearing in six
parameter limits are continuously connected without closing
the spin gap, and the small AF Néel phase is surrounded by
the quantum gapped paramagnetic phase.

Our exact diagonalization (ED) results for the dynamical
spin structure factors showed several important properties for
future inelastic neutron scattering measurements not only for
the Cu,(pymca);(ClO4) but also for other honeycomb-lattice
materials. We found that the spin dynamics are noticeable
between quantum paramagnetic states in contrast to the equal-
time spin structure factor. It is worth to note that the difference
between the singlet-dimer and the hexagonal-singlet states
appears as a difference in the number of energy bands. More-
over, the hexagonal singlet state in the unfrustrated systems
and the valence bond crystal state in the frustrated systems
could be distinguishable in the spin dynamics in contrast to
the equal-time spin structure factor.

The remaining question for Cu,(pymca);(ClOy) is a high-
magnetic-field feature. The previous research in Ref. [67]
reported the presence of the magnetic plateaus up to 70 T,
and the zero-field, 1/3, and 2/3 magnetization plateaus were
reproduced accurately by our current effective model with
Ja/Jc = Jg/Jc =5.0. However, the plateau-like curvature

near saturation is not reproduced by our current effec-
tive model [67,69], which means that we need additional
perturbations to the spin-1/2 J5-Jg-Jc honeycomb-lattice an-
tiferromagnetic Heisenberg model. One of the possibilities
may be the Dzyaloshinskii-Moriya (DM) interaction which is
allowed on the Cu-Cu bond from the symmetric viewpoint in
Cu,(pymca);(ClOy4). Indeed, the magnetization curve of Cu
benzoate with the DM interaction exhibits a bending near the
saturation field [79]. Experimental studies beyond 70 T are
also required associated with the further theoretical studies to
clarify the true nature of Cu;(pymca);(ClOy).
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