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Coalescent dynamics of planktonic communities
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Planktonic communities are extremely diverse and include a vast number of rare species. The dynamics
of these rare species is best described by individual-based models. However, individual-based approaches to
planktonic diversity face substantial difficulties, due to the large number of individuals required to make realistic
predictions. In this paper, we study the diversity of planktonic communities by means of a spatial coalescence
model that incorporates transport by oceanic currents. As a main advantage, our approach requires simulating
a number of individuals equal to the size of the sample one is interested in, rather than the size of the entire
community. By theoretical analysis and simulations, we explore the conditions upon which our coalescence
model is equivalent to individual-based dynamics. As an application, we use our model to predict the impact of
chaotic advection by oceanic currents on biodiversity. We conclude that the coalescent approach permits one to
simulate marine microbial communities much more efficiently than with individual-based models.
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I. INTRODUCTION

Ecological communities are made up of a large number of
species. Their diversity varies in space and time as a result
of the ecological forces they are subject to [1]. In diverse
ecological communities, one typically encounters a few very
abundant species and many rare species, some of which are
represented by just a few individuals. Because of these rare
species, the diversity of ecological communities is best de-
scribed by spatially explicit individual-based models (IBMs)
[2,3], rather than by models based on species concentration or
densities. IBMs have contributed to rationalizing fundamental
biodiversity patterns in terrestrial ecosystems, such as the
scaling of the average number of encountered species with the
size of the sampled area [2–6].

In prototypical spatially explicit IBMs such as the mul-
tispecies voter model [3,4,6,7], individuals are placed on a
two-dimensional lattice and stochastically reproduce, die, and
disperse. Even simple spatial IBMs are challenging to solve
analytically [3]. A significant advancement in their under-
standing originates in the concept of duality [4,7]. In this
context, “duality” is a mapping between the IBM and a dif-
ferent model, whose dynamics proceeds backward in time.
For this reason, we often refer to the original model as the
“forward” model and its dual as the “backward” model. The
backward model considers a sample of the population of the
forward model at a very long time and seeks to reconstruct its
species composition. Individuals in the sample are represented
as particles that evolve backward in time. If two particles hap-
pen to be on the same site, they can coalesce, signaling that the
two corresponding individuals have a common ancestor and
are, therefore, conspecific. Due to these events, the backward
model is also termed the “coalescence” model. By tracking
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coalescence events, the backward dynamics reconstructs the
species composition of the original sample.

In short, duality maps a spatial IBM into a system of
coalescing random walkers. The advantage of this mapping
is twofold. First, mathematical results have been obtained
for systems of coalescing random walkers [8,9], leading to
exact predictions of biodiversity patterns [3]. Second, back-
ward models are much more efficient than forward models to
simulate on a computer [2,3,5,6].

IBMs have also been used to study microbial planktonic
communities [10–14]. These models have been used to pre-
dict, for example, how fluid flows affect the fate of mutants
characterized by a reproductive advantage [13–17] or by a
different diffusivity [18–21]. However, when used to predict
biodiversity patterns, these models face severe computational
limitations. Even state-of-the-art approaches are usually lim-
ited to communities of tens of thousands of individuals. For
comparison, a liter of oceanic water can contain tens or hun-
dreds of millions of planktonic cells [22]. To encompass this
problem, it has been suggested that each individual in a IBM
can be considered as a representative of an entire subpopu-
lation [23]. It is, however, unclear whether this interpretation
can account for the dynamics of very rare species.

With this motivation in mind, we recently proposed a co-
alescence model for the dynamics of microbial planktonic
communities [24], which encompasses the limitation of IBMs.
In this paper, we study the dynamics of this coalescence model
and argue that, under certain conditions, it is dual to an IBM.
We support this mathematical prediction with numerical simu-
lations of both models. We then apply our model to understand
observational metabarcoding data from protist communities
[24].

The paper is organized as follows. In Sec. II, we introduce
the (forward) IBM and the (backward) coalescence model. We
prove that, in the weak-noise limit, these two models are dual.
In Sec. III, we briefly introduce the main observables that are
commonly employed in ecology to quantify biodiversity. In
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Sec. IV, we test our theory by extensive numerical simulations
of the forward and backward models, both in the presence
and in the absence of chaotic advection. We also compare
the model prediction with observational data. Section V is
devoted to conclusions and perspectives.

II. MODELS

In this section, we introduce two approaches for modeling
the diversity of planktonic populations.

The first approach is via an IBM, in which an initial
population stochastically evolves forward in time as a re-
sult of reproduction events, competition among individuals,
advection-diffusion of individuals in space, and speciation,
i.e., events that give rise to new species. The forward model
can be seen as the multispecies version of a two-species
competition model [13,14] that does not include speciation.
The second approach is based on a backward (coalescence)
model [24]. The backward model considers a sample of Ns

individuals and seeks to reconstruct its species composition
by tracing the ancestry of the individuals backwards in time.

We conclude the section by defining two regimes (weak
and strong noise) characterizing the forward model. We then
demonstrate that duality between the forward and the back-
ward models rigorously holds in the weak-noise regime.

A. Forward model

A microbial population inhabits a two-dimensional square
area A = L × L, representing an aquatic environment. Ini-
tially, individuals are homogeneously distributed. They can
belong to different species, but for simplicity we neglect their
species identity for the time being. Individuals can stochasti-
cally die, reproduce, and displace. As a result of these events,
the total number of individuals N (t ) fluctuates over time. Each
individual asexually reproduces at rate λ. When a reproduc-
tion occurs, the daughter individual is placed at a random
position in a square of side l centered on the mother position.
From now on, we refer to this square as the “neighborhood”
of an individual. Individuals die in a density-dependent way
with rate λ n̂, where n̂ is the number of other individuals in
their neighborhood. The dependence of the death rate on the
local density represents competition. In this respect, the length
scale l can be interpreted as the characteristic distance below
which individuals are in direct competition with each other
(see Ref. [24]).

Each individual moves in space according to the advection-
diffusion equations

d

dt
x = vx(x, y, t ) +

√
2Dξx(t ),

(1)
d

dt
y = vy(x, y, t ) +

√
2Dξy(t ),

where x and y are the coordinates of the given individual.
The terms proportional to

√
2D represent effective diffusion.

Besides molecular diffusion, this term can incorporate the
effect of flows at length scales shorter than those resolved by
the fluid flow [24]. The functions ξx(t ) and ξy(t ) are white
noise sources satisfying 〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t ′)〉 = δi jδ(t −
t ′), where i ∈ {x, y} and 〈· · · 〉 denotes an average over real-
izations. For the time being, we impose periodic boundary
conditions. The functions vx(x, y, t ) and vy(x, y, t ) represent
an advecting fluid flow. In this paper we only consider incom-
pressible velocity fields: �∇ · �v = 0, where �v = (vx, vy), and
�∇ = (∂/∂x, ∂/∂y). Indeed, two-dimensional velocity fields in
the oceans are incompressible to a very good approximation,
although in some local regions vertical currents can alter
this picture [25], potentially impacting population dynamics
[13,26,27].

In the absence of birth and death dynamics and thanks to
incompressibility, Eqs. (1) predict a homogeneous stationary
distribution of individuals. We tentatively assume that this
distribution remains homogeneous in the presence of birth and
death processes. We call N0 the average population size under
this hypothesis. By imposing that birth events statistically
balance death events, we find that

N0 = L2/l2, (2)

i.e., the average population size is equal to the ratio between
the system area and the area of the interaction neighborhood
(see Appendix A). In practice, this means that each interac-
tion neighborhood contains one individual, on average. In the
following, we take this value as the initial population size,
N (0) = N0.

We want to understand whether the assumption of homo-
geneous density holds. To this aim, we study a macroscopic
description of our IBM (see Appendix B). We find that the
populations remain homogeneous when the stochastic fluc-
tuations induced by birth and death processes are relatively
small. In this case, the average number of individuals does not
significantly deviate from N0.

In two dimensions, the relative strength of fluctuations is
controlled by the dimensionless parameter

D̃ = DN0

λL2
(3)

(see Ref. [14]). For D̃ � 1, stochastic fluctuations are small.
In contrast, for D̃ 	 1, fluctuations dominate the dynamics.
In the following, we refer to the D̃ > 1 and D̃ < 1 cases
as the “weak-noise” regime and the “strong-noise” regime,
respectively.

Simulations of the model confirm that, in the strong-noise
regime, the average number of individuals significantly differ
from N0 (see Fig. 1). This means that our assumption that the
birth-death dynamics does not affect the average number of
individuals breaks down.

In particular, in the absence of advection, our simulations
show that the average number of individuals exceeds N0 [see
Fig. 1(a)]. This result contrasts with that in Ref. [14], where a
reduction of the average number of individuals was observed
in the strong-noise regime. In general, in the strong-noise
regime, one can expect that the results depend on details of
the microscopic rules. In our particular case, this discrep-
ancy could be caused by a difference in the way birth is
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FIG. 1. Normalized average number of individuals 〈N (t )〉/N0 in
(a) the absence and (b) the presence of advection. The stationary
population size N0 is varied by tuning the neighborhood linear size l .
The dashed line marks the theoretical condition D̃ = 1 separating the
weak-noise regime from the strong-noise regime. In all simulations,
we fixed L = λ = 1. In both panels, two dots at D̃ = 0.1 and D̃ = 10
(with N0 = 16384) mark the set of parameters chosen for our further
analysis.

implemented in the two models: here, the daughter cell is
placed at a random position in the neighborhood of her
mother, whereas in Ref. [14] the daughter cell is placed at the
same position as the mother.

In contrast, in the presence of advection, the average popu-
lation size decreases in the strong-noise regime [see Fig. 1(b)].
A qualitative explanation is that advection effectively pre-
cludes individuals to visit some regions, thereby increasing
effective competition. Our simulations show that the transition
from the weak-noise regime to the strong-noise regime occurs
for D̃ ≈ 1 in the presence of advection as well, suggesting that
the velocity field does not play a dominant role in determining
the boundary between these two regimes. However, this fact
might be due to our choice of velocity field and might not hold
in general.

Hereafter, we fix λ = 1, L = 7.5, and N0 = 16384. The
value of l corresponding to these choices is obtained from
Eq. (2).

FIG. 2. Events in the forward and backward models. (a) In the
forward model, individuals reproduce at rate λ within a neighbor-
hood, displace, and die with rate λ n̂, where n̂ is the number of other
individuals in their square neighborhood of linear size l . (b) In the
backward model individuals displace and coalesce with rate λ̄ with
individuals within their neighborhood. In the weak-noise regime, the
two models are dual under the condition λ = λ̄.

B. Backward model and duality

The backward model (or coalescence model) describes the
dynamics of Ns Lagrangian tracers. These tracers represent
a sample of individuals from a final population, i.e., from a
population that evolved according to the forward model at a
time t f � 0. We assume that the sample is homogeneously
distributed in a sample area Ls × Ls, with Ls � L. We trace
back in time the evolution of the tracers in the sample. The
coordinates of the tracers evolve according to Eq. (1), which
we integrate with negative time increments.

While evolving back in time the coordinate of a given
tracer, we might reach the time at which the individual rep-
resented by the tracer was born. From that instant, the tracer
represents the position of the mother of the chosen individual.
This means that, at a given time, each tracer represents either
an individual in the final population or one of its ancestors. If
the mother of the chosen individual (or one of her ancestors)
is alive in the final population, this implies that the two tracers
must be in the neighborhood of each other at the time in
which the birth event occurs. If this is the case, we say that
a “coalescence” has occurred, and the two tracers are merged
into one.

The events occurring in the forward and backward models
are summarized in Figs. 2(a) and 2(b), respectively.

To fully specify the coalescence model, we need to deter-
mine the rate λ̄ at which two individuals coalesce if they are
in the neighborhood of each other. We do so by considering a
situation in which Ns = N0, i.e., the number of tracers is equal
to the average number of individuals in the forward model. In
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this scenario we are tracing all individuals; therefore, the total
rate of birth λN0 in the forward model must match the total
rate of coalescence in the backward model. This latter rate
is equal to λ̄Ns by the same argument made in Appendix A.
Imposing that the two total rates must be equal and using
Ns = N0 leads to λ̄ = λ; i.e., the coalescence rate for individ-
uals in the same neighborhood should match their birth rate in
the forward model.

We remark that this argument relies on the assumption
that the dynamics of the forward model is in the weak-noise
regime. In the strong-noise regime, some of the assump-
tions underlying duality do not hold. First, we cannot assume
that a sample of individuals in the final population is ho-
mogeneously distributed. Second, since in the strong-noise
regime 〈N (t )〉 �= N0, we cannot easily draw a correspondence
between the rates of the forward model and those of the
backward model.

C. Speciation and multispecies dynamics

We now add to the forward and backward models the
notion of species identity. In the forward model, we assume
that a newborn individual belongs to a new species with
probability μ. In ecological terms, the probability μ can be
interpreted either as a speciation probability or as a probability
for individuals to be replaced by individuals belonging to
new species immigrating from outside the community. In the
well-mixed case, this process is known as the infinite-allele
model of population genetics [28]. If the model is used to
interpret metabarcoding studies, μ represents the probability
for individuals to accumulate sufficient mutations to be con-
sidered as a new operational taxonomic unit (see discussion
in Sec. IV E). When simulating the forward model, one can
keep track of species identity during the dynamics and assign
each newborn individual to a new species with probability μ.
We, however, adopt an equivalent, but more efficient strategy
[see Refs. [3,29]). We simulate the dynamics without keeping
track of species identity, until all individuals descend from
a single individual in the original population [see Fig. 3(a)].
The collection of descendants of this individual constitutes the
ancestry tree. Individuals that do not belong to the ancestry
tree [light gray in Fig. 3(a)] do not affect the diversity of
the final population and can therefore be ignored. A further
simplification is to remove individuals that have only one
descendant in the ancestry tree [yellow in Fig. 3(a)]. This
can be done by keeping track of the number of duplications
di occurred in each branch i separating the remaining indi-
viduals [see Fig. 3(b)]. Since at each duplication event the
probability of a speciation is equal to μ, the total probability
that at least a speciation has occurred in a branch i is equal to
pi = 1 − (1 − μ)di . In this way, we assign speciation events a
posteriori by drawing from the probabilities that a speciation
has occurred in each branch [see Fig. 3(c)].

In the backward model, speciation events occur continu-
ously at a stochastic rate μλdt . The reason is that, in the
backward model, we do not consider individual birth events,
unless they lead to coalescence. As anticipated, the advantage
of the coalescence model is that it is possible to reconstruct the
identity of a sample of Ns individuals in the final population
being a subset of the total population. The corresponding

FIG. 3. Ancestry trees. (a) Dynamics of the forward model rep-
resented as a tree. An initial set of N0 individuals reproduce and die
over time until all remaining individuals share the same common
ancestor. Individuals that die before the final time (dark red dots)
are not relevant for the final population and are therefore removed.
Individuals that do not have a descendant in the final population (light
gray dots) are removed as well. (b) Individuals that have one direct
descendant in the remaining tree (orange dots) are removed; their
numbers are saved as variables di for each branch i. (c) Speciation
events (marked with an X) are introduced at each tree branch i with a
probability pi = 1 − (1 − μ)di (see Ref. [3]). (d) Ancestry tree of the
backward model. In this case, we consider a sample of Ns individuals
from the final population and reconstruct its ancestry. Individuals
can coalesce or speciate until one individual remains. This approach
directly ignores branches corresponding to individuals that do not
belong to the sample.

ancestry tree is a subset of the corresponding tree in the
forward model which includes all ancestors of the individuals
in the sample up to their most recent common ancestor [see
Fig. 3(d)]. In practice, speciation events can be assigned on
the branches of this tree in a way similar to that for the forward
model. However, this is not necessarily an efficient procedure
in this case. The reason is that, for large system size and in
the presence of advection, the time it takes for all tracers
to coalesce can be exceedingly long. Instead, it is enough
to track tracers backward in time until their first speciation
event, as their preceding history does affect the diversity of
the final sample. For this reason, in the backward dynamics
we eliminate tracers from the system as soon as they speciate
for the first time.

We compare predictions of the two models for a sample of
Ns individuals taken at a final large time t f . We fix Ns < N0.
In the absence of advection, since we might have 〈N (t )〉 � N0,
we fix Ns = 16 000. In the presence of advection, population
sizes are 〈N (t )〉 � N0, and we consider Ns = 8192 to ensure
Ns < N0.
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FIG. 4. Spatial species-distribution. The four panels present dis-
tributions of individuals in space in four different simulations of
the backward model. Each dot represents an individual and colors
represent species identity. The four panels represent cases without
and with advection and strong (D̃ = 0.1) and weak (D̃ = 10) noise
as indicated in the figure.

Spatial species distributions predicted by the backward
model are shown in Fig. 4. In the strong-noise regime, D̃ =
0.1, we observe spatial patterns generated by the velocity
field.

Source code in C++ for the forward and backward models
are available on GitHub [30].

III. DIVERSITY MEASURES

Quantifying biodiversity by simply counting the number
of competing species is not always appropriate. The reason is
that most ecological communities, including planktonic ones,
are composed of relatively few abundant species and a large
number of rare species. The definition of biodiversity in terms
of number of species is insensitive to this distinction. This
definition also relies on the possibility of observing all the
rare species, which is often impossible in practice. To address
this shortcoming, other measures of biodiversity have been
proposed in the literature [31].

These additional measures take into account more ex-
plicitly spatial distributions and compositional heterogeneity.
Specifically, at equal numbers of species, a population can be
equally distributed among species or be dominated by a few
of them. Moreover, the manner in which species distribute in
space, i.e., whether individuals of a species are grouped within
specific areas or highly dispersed in space, is an important
characterization of biodiversity. Here, we review the most
common measures of biodiversity.

(i) α diversity. The α diversity is the first and simplest
measure. It is defined as the total average number of species in
the community [32]. We measure the α diversity by simply av-
eraging the total number of species over multiple realizations
of the forward and backward models.

(ii) β diversity. The β diversity quantifies spatial corre-
lations within species. It describes how species composition
changes from local to larger scales. There exist slightly dif-
ferent definitions of β diversity in the literature [33,34]. We
define β diversity as the probability that two random indi-
viduals at a given distance r =

√
x2 + y2 belong to the same

species:

β(r) =
∑

i Nsi,si (r)∑
i, j Nsi,s j (r)

, (4)

where Nsi,s j (r) is the number of pairs i, j of species si, s j at
distance r [3]. At equal numbers of species, highly clustered
communities are characterized by a steeper β diversity than
more dispersed ones.

(iii) Species-area relation. The species-area relation is de-
fined as the average number of species S found in an area A
[35]. The species-area relation has been fitted by mathematical
relations of the form S(A) ∝ A for small and large scales, and
S(A) ∝ Az for intermediate scales [35–38]. To compute the
species-area relation, we average the final number of species
S over several realizations of our models for increasing sam-
pling areas of size A = Ls × Ls located at the center of our
system.

(iv) Species-abundance distribution. The species-
abundance distribution (SAD) quantifies the compositional
heterogeneity of a population in terms of the relative
abundance of species. It is defined as the frequency P(n)
of species with abundance n in a sample. In a well-mixed
system of population size N0 and with speciation probability
μ, the species-abundance distribution has the form

P(n) = N0μe−μn

n
(5)

(see Refs. [37,39]). We expect our spatially explicit model
to generate a similar species-abundance distribution, at least
in the high diffusion limit. Apart from this limiting case,
analytical predictions for the species-abundance distribution
in spatially explicit models are rather hard to obtain [3].
The species-abundance distribution is normalized to the α

diversity, i.e., the average total number of species in the com-
munity:

S ≈
∫ ∞

1
dn

N0μe−μn

n
. (6)

IV. RESULTS

In this section, we numerically verify that the forward and
backward models are equivalent in the weak-noise regime,
and we test whether this equivalence extends in the strong-
noise regime. We also study whether this equivalence is
affected by the value of the speciation probability μ. To
these aims, we extensively simulate both systems for a broad
parameter range and compute diversity measures of the fi-
nal population averaged over 103 realizations. We perform
these comparisons both in the presence and in the absence of
advection.
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FIG. 5. Diversity measures predicted by the models with and without advection in the strong (a)–(d) and weak (e)–(h) noise regimes. (a),
(e) Value of α diversity as a function of the parameter D̃. Measures for forward model (FM) (darker colors) and backward model (BM) (lighter
colors) are shown. (b), (f) β diversity, (c), (g) species-area S(A), and (d), (h) species abundance distribution for D̃ = 0.1 and 10. In these
panels, dark and light colors show curves for the forward and backward models, respectively, for D̃ = 10; these curves nearly coincide. Dashed
lines of panels (d) and (h) show the analytical prediction for a well-mixed system, Eq. (5). In all panels, the speciation probability is equal to
μ = 5 × 10−3.

A. Biodiversity measures in the absence of advection

We consider the two models in the weak- and strong-noise
regimes and first focus on the α diversity for different diffu-
sion rates D. As expected, the predictions of the forward and
backward models present a small but significative discrepancy
in the strong-noise regime [see Fig. 5(a)]. We quantify this
discrepancy by the absolute relative difference

�α = |α f − αb|
α f + αb

, (7)

where α f and αb are the α diversities measured in the for-
ward and backward dynamics, respectively. In the weak-noise
regime, we observe compatible values of the α diversity [see
Fig. 5(e)]. The same does not hold in the strong-noise regime.
For example, for D̃ ≈ 0.1, the discrepancy is on the order
of 10% [see inset of Fig. 5(a)]. In particular, the backward
model predicts a higher number of species than the forward
model. As discussed in Sec. II for the number of individuals,
the differences between the forward and backward models in
the strong-noise limit can depend on model details, such as
the microscopic implementation of speciation.

Comparisons of the β diversity [Figs. 5(b) and 5(f)], the
species-area relation [Figs. 5(c) and 5(g)], and the species-
abundance distribution [Figs. 5(d) and 5(h)] lead to similar
conclusions. In the weak-noise regime, the forward and back-
ward models yield nearly identical predictions for all these
quantities, as expected. In the strong-noise regime, we observe
discrepancies of comparable magnitude as for the α diversity.

We note that the peak of the β diversity at large r in Fig. 5(b)
[and, less pronounced, in Fig. 5(f)] is caused by the periodic
boundary conditions.

B. Biodiversity measures in the presence of chaotic advection

We now move to the case with advection. We define a
two-dimensional incompressible advecting field in terms of
the stream function φ(x, y). The components of the field are
related with the stream function by

vx(x, y; t ) = −∂φ(x, y; t )

∂y
,

vy(x, y; t ) = ∂φ(x, y; t )

∂x
. (8)

This definition automatically guarantees the incompressibil-
ity condition �∇ · �v = 0. We choose a dimensionless stream
function that generates a chaotic vortex in proximity to the
meandering jet [40]:

φ(x, y) = − tanh

(
y − B(t ) cos(kx)√

1 + k2B2(t ) sin2(kx)

)
+ cy, (9)

where B(t ) = B0 + ε cos(wt + �). We fix k = 2π/L, c =
0.12, L = 7.5, B0 = 1.2, ε = 0.3, w = 0.4, and � = π

2 . We
impose periodic boundary conditions. We numerically solve
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FIG. 6. Coalescence time distribution. The four panels present
distributions of individuals in space in simulations of the backward
model in four different scenarios (strong noise, weak noise, with ad-
vection, and without advection). Each curve represents a distribution
for pairs of individuals chosen within an initial distance range r as
shown in the figure legend. The median coalescent times are (a) 57.7,
3.2, and 0.4; (b) 20.8, 1.6, and 0.4; (c) 14.4, 1.3, and 0.2; (d) 14.7, 0.8,
and 0.2. The three values for each panel correspond to values of r in
the ranges (10−1; 100), (10−2; 10−1), and (10−3; 10−2), respectively.

the differential equations (1) with the advecting field (8) using
a fourth-order Runge-Kutta method.

As in the case without advection, we observe a signifi-
cant discrepancy in the α diversity between the forward and
backward models in the strong-noise regime [see Fig. 5(a)].
The discrepancy progressively decreases for bigger D̃ [see
Fig. 5(e)]. This scenario is consistent with the argument
made in Sec. II B, suggesting that duality might be only
approximated in the strong-noise regime. In particular, the
discrepancy in the strong-noise regime tends to be smaller in
the presence of advection rather than in the absence of it [see
inset of Fig. 5(a)]. One tentative explanation for this difference
is that, at equal diffusivity, particles tend to be better mixed in
the presence of advection. Other diversity measures show the
expected behavior, with a close correspondence in the weak-
noise regime and appreciable differences in the strong-noise
regime [see Figs. 5(b)–5(d) and Figs. 5(f)–5(h)].

A comparison between Figs. 5(a) and 5(e) shows that ad-
vection tends to reduce the average number of species. The
choice of periodic boundary conditions crucially impacts this
result: in the presence of open boundary conditions, the model
predicts that advection tends to increase the average number
of species [24].

C. Coalescence time distributions

To further characterize the effect of the spatial structure of
the population on its diversity, we study the dependence of the
coalescent time between pairs of conspecific individuals on
their initial distance. We find that closer individuals are more
likely to have shorter coalescent time, i.e., to be more closely
related (see Fig. 6).

The median coalescent times (reported in the caption of
Fig. 6) are appreciably shorter in the weak-noise regime.
Chaotic advection tends to reduce the median coalescent times

FIG. 7. α diversity as a function of the speciation probability in
the strong-noise regime (a) and the weak-noise regime (b). Dashed
lines show the analytical prediction for well-mixed systems [see
Eq. (6)].

in the strong-noise regime, but has little effect on them in the
weak-noise regime.

D. Effect of speciation probability

We now study the dependence of the α diversity on the spe-
ciation probabilities μ for both the forward and the backward
model. In the strong-noise regime and for a low speciation
probability, the forward model predicts an α diversity lower
than that of the backward model [see Figs. 7(a) and 7(b)]. The
relative difference between forward and backwards models
weakly depends on μ. In the weak-noise regime, models are
compatible for all values of the parameter μ [see Figs. 7(a)
and 7(b)]. These behaviors are qualitatively similar in the
presence and in the absence of advection.

E. Metagenomic data

In this section, we compare the SADs predicted by the coa-
lescence model with those observed in aquatic environments.

We numerically simulate the coalescence model in the
presence and the absence of advection [see Figs. 8(a) and
8(b)]. In this case, we adopt open boundary conditions as these
are more relevant for the ocean, where a sample is embedded
in a very large area. We do not perform a comparison with
the forward dynamics, as the forward IBM cannot be easily
formulated with open boundaries. Individuals are homoge-
neously distributed in a square at t = 0. In the case with
advection, we set c = 0.12, B0 = 1.2, w = 0.5, and ε = 4.
Our simulations show that chaotic advection leads to SAD
curves characterized by a steeper decay (see Fig. 8(d) and
Ref. [24]).

We compare the model prediction for the SAD with ob-
servational data. To this aim, we employ two metabarcoding
datasets of protists populations: one from the TARA Oceans
expedition [41], and one from freshwater lakes [42]. Metabar-
coding techniques permit one to sample planktonic diversity
at unprecedented resolution [43]. In metabarcoding studies,
one obtains from a sample DNA fragments corresponding
to a highly conserved region of the genome, in this case a
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FIG. 8. Individual trajectories modeled with the coalescence model in the (a) absence and the (b) presence of advection. At the initial
time t = 0, the populations are homogeneously distributed in a square of size L × L. We simulate the coalescence model with open boundary
conditions. In panel (b), we employ the velocity field given in Eqs. (8) and (9). Parameters are specified in Sec. IV B. (c) Dashed curves
represent average abundance distributions of protist populations sampled in oceans and lakes; solid curves correspond to numerical simulations
of the backward models with open boundary conditions without and with advection, where we fixed D̃ = 1. (d) Species abundance distributions
of individual protist populations sampled in oceans and lakes.

portion of the 18S ribosomal RNA gene. Since this region is
highly conserved, sequences in the sample with a high degree
of genetic similarity (at least 97%, in this case) are likely to
originate from individuals within the same taxonomic group.
These groups, identified by genetic similarity, are called op-
erational taxonomic units (OTUs). We plot the abundance
distributions of the observed OTUs from each dataset [see
Fig. 8(d)].

The comparison of metagenomic data between oceans
and lakes shows that SAD in the oceans are characterized
by a steeper slope [see Fig. 8(d)]. This comparison sup-
ports the idea that large-scale oceanic currents, which are
absent in lakes, are responsible for the steeper decay of
SAD curves, as predicted by our model. Notice, however,
that the observed slopes are slightly steeper than predicted
by the model in both cases [see Fig. 8(c)]. As extensively
discussed in Ref. [24], the quantitative value of the SAD
slope is affected by microscopic details of the model and
other aspects of the metabarcoding analysis, such as the simi-
larity threshold chosen to identify OTUs. Further discussion
of the robustness of the numerical predictions with respect
to the model assumptions and parameters can be also found
in Ref. [24].

V. CONCLUSIONS

In this paper, we developed a model for the dynamics
of microbial aquatic communities based on the idea of co-
alescence. Our coalescence model predicts the diversity of
a sample of organisms embedded in a very large, spatially
extended population. It encompasses the limitations of an
individual-based model in describing communities made up
of huge numbers of individuals. Our model has the potential to
bridge the gap between ecological dynamics at the individual
level and large-scale spatial dynamics.

In the context of the forward model, we have identified
a weak-noise regime and a strong-noise regime. The sepa-

ration between these two regimes is not much affected by
chaotic advection. However, this might not be the case for
different choices of the velocity field. More broadly, it will
be interesting in the future to study whether it is possible to
connect density fluctuations in this model with known results
for passive advection [44].

We have shown that, in the weak-noise regime, the model
is equivalent to an individual-based model proceeding for-
ward in time. In the strong-noise regime, this correspondence
is only approximate, but both models predict qualitatively
similar biodiversity patterns. Due to its advantages, the co-
alescence model presented in this paper provides a versatile
and powerful tool to predict biodiversity observed in metabar-
coding studies of planktonic communities [24].

Although, for simplicity, we focus on a simple model
of microbial competition dynamics, our approach can be
extended to more general ecological settings and to other
communities. For example, although neutral models predict
rather well the OTU composition of microbial communities
[24,45], it will be important to extend our model to non-
neutral cases, where individuals belonging to different species
might have different species and competition intensity de-
pends on species similarity. Such generalizations, combined
with high-throughput sequencing data, have the potential to
shed light on the main ecological forces determining micro-
bial community dynamics.
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APPENDIX A: STATIONARY NUMBER OF INDIVIDUALS
IN THE WEAK-NOISE LIMIT

In this Appendix, we compute the stationary number of
individuals N0 in the limit in which individuals are homo-
geneously distributed. The number of individuals n inside
each neighborhood is a Poisson random variable with average
μ = N0/M, where M = (L/l )2 is the total number of neigh-
borhoods.

To estimate N0, we impose that the total average birth
and death rates should balance. The total average birth
rate is simply λN0. Individuals die with a rate proportional
to the number of other individuals in each neighborhood.
Therefore, the total average death rate is equal to the
following:

total average death rate = λM〈n(n − 1)〉

= λM
∑

n

n(n − 1)μne−μ

n!

= λM
∑

n

μne−μ

(n − 2)!

= λMμ2 = λN2
0

M

= λN2
0 l2

L2
. (A1)

Imposing that the total average death rate must be equal to the
total average birth rate leads to the condition L = l

√
N0, or

equivalently N0 = M.

APPENDIX B: MACROSCOPIC DESCRIPTION OF THE
FORWARD MODEL

We here derive a macroscopic description of our IBM. We
introduce the density of individuals n(x, y; t ), defined so that
its integral over a given area yields the number of individ-
uals in that area at time t . We also define the concentration
c(x, y; t ) = (L2/N0)n(x, y; t ). The normalization factor L2/N0

ensures that the average concentration is equal to 1, if the
assumption of homogeneous density holds.

The dynamics of the concentration c(x, y; t ) can be derived
in the small-noise limit, e.g., by assuming that the stochastic
fluctuations induced by birth and death processes are rel-
atively small. Under this assumption, the concentration is
described by the stochastic Fisher-Kolmogorov equation

∂

∂t
c(x, y; t ) = λ(c − c2) − �∇ · [�vc] + D∇2c + σ (c)ξ (x, y; t ),

(B1)
where ξ (x, y, t ) is a noise field satisfying 〈ξ (x, y, t )〉 = 0
and 〈ξ (x, y, t )ξ (x′, y′, t ′)〉 = δ(x − x′)δ(y − y′)δ(t − t ′). The
multiplicative noise is interpreted using the Ito prescription;
its amplitude is equal to σ (c) =

√
λL2c(1 + c)/N0. Equa-

tion (B1) can be derived using a Kramers-Moyal expansion
(see Ref. [14] and Chap. 13 in Ref. [46]). In the derivation, we
neglected contributions to the noise coming from the diffusion
operator (see Ref. [14]).

In this case without advection, �v = 0, the concentration
c(x, y; t ) is subject to two competing effects: the noise term
in Eq. (B1) which creates fluctuations around the average so-
lution 〈c(x, y; t )〉 = 1, and the diffusion term which smooths
these fluctuations.

[1] S. A. Levin, The problem of pattern and scale in ecology: The
Robert H. MacArthur award lecture, Ecology 73, 1943 (1992).

[2] M. Cencini, S. Pigolotti, and M. A. Munoz, What ecological
factors shape species-area curves in neutral models?, PLoS
ONE 7, e38232 (2012).

[3] S. Pigolotti, M. Cencini, D. Molina, and M. A. Muñoz, Stochas-
tic spatial models in ecology: A statistical physics approach,
J. Stat. Phys. 172, 44 (2018).

[4] R. Durrett and S. Levin, Spatial models for species-area curves,
J. Theor. Biol. 179, 119 (1996).

[5] J. Rosindell and S. J. Cornell, Species–area relationships from
a spatially explicit neutral model in an infinite landscape, Ecol.
Lett. 10, 586 (2007).

[6] S. Pigolotti and M. Cencini, Speciation-rate dependence
in species–area relationships, J. Theor. Biol. 260, 83
(2009).

[7] R. Durrett and S. A. Levin, Stochastic spatial models: a user’s
guide to ecological applications, Philos. Trans. R. Soc. London,
Sect. B 343, 329 (1994).

[8] J. T. Cox, Coalescing random walks and voter model consensus
times on the torus in Zd , Ann. Probab. 17, 1333 (1989).

[9] M. Bramson and J. L. Lebowitz, Asymptotic behavior of den-
sities for two-particle annihilating random walks, J. Stat. Phys.
62, 297 (1991).

[10] Z. Toroczkai, G. Károlyi, Á. Péntek, T. Tél, and C. Grebogi,
Advection of Active Particles in Open Chaotic Flows, Phys.
Rev. Lett. 80, 500 (1998).

[11] G. Károlyi, Á. Péntek, I. Scheuring, T. Tél, and Z. Toroczkai,
Chaotic flow: the physics of species coexistence, Proc. Natl.
Acad. Sci. USA 97, 13661 (2000).

[12] E. Hernández-García and C. López, Clustering, advection, and
patterns in a model of population dynamics with neighborhood-
dependent rates, Phys. Rev. E 70, 016216 (2004).

[13] S. Pigolotti, R. Benzi, M. H. Jensen, and D. R. Nelson, Pop-
ulation Genetics in Compressible Flows, Phys. Rev. Lett. 108,
128102 (2012).

[14] S. Pigolotti, R. Benzi, P. Perlekar, M. H. Jensen, F. Toschi, and
D. R. Nelson, Growth, competition and cooperation in spatial
population genetics, Theor. Popul. Biol. 84, 72 (2013).

[15] F. Herrerías-Azcué, V. Pérez-Muñuzuri, and T. Galla, Stirring
does not make populations well mixed, Sci. Rep. 8, 4068
(2018).

[16] A. Plummer, R. Benzi, D. R. Nelson, and F. Toschi, Fixation
probabilities in weakly compressible fluid flows, Proc. Natl.
Acad. Sci. USA 116, 373 (2019).

[17] G. Guccione, R. Benzi, and F. Toschi, Strong noise limit for
population dynamics in incompressible advection, Phys. Rev. E
104, 034421 (2021).

044408-9

https://doi.org/10.2307/1941447
https://doi.org/10.1371/journal.pone.0038232
https://doi.org/10.1007/s10955-017-1926-4
https://doi.org/10.1006/jtbi.1996.0053
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1016/j.jtbi.2009.05.023
https://doi.org/10.1098/rstb.1994.0028
https://doi.org/10.1007/BF01020872
https://doi.org/10.1103/PhysRevLett.80.500
https://doi.org/10.1073/pnas.240242797
https://doi.org/10.1103/PhysRevE.70.016216
https://doi.org/10.1103/PhysRevLett.108.128102
https://doi.org/10.1016/j.tpb.2012.12.002
https://doi.org/10.1038/s41598-018-22062-w
https://doi.org/10.1073/pnas.1812829116
https://doi.org/10.1103/PhysRevE.104.034421


MARTÍN, KOLDAEVA, AND PIGOLOTTI PHYSICAL REVIEW E 106, 044408 (2022)

[18] E. Heinsalu, E. Hernández-Garcia, and C. López, Clus-
tering Determines Who Survives for Competing Brown-
ian and Lévy Walkers, Phys. Rev. Lett. 110, 258101
(2013).

[19] S. Pigolotti and R. Benzi, Selective Advantage
of Diffusing Faster, Phys. Rev. Lett. 112, 188102
(2014).

[20] S. Pigolotti and R. Benzi, Competition between fast-and slow-
diffusing species in non-homogeneous environments, J. Theor.
Biol. 395, 204 (2016).

[21] T. Singha, P. Perlekar, and M. Barma, Fixation in competing
populations: Diffusion and strategies for survival, Phys. Rev.
Res. 2, 023412 (2020).

[22] R. Bainbridge, The size, shape and density of marine phyto-
plankton concentrations, Biol. Rev. 32, 91 (1957).

[23] M. Scheffer, J. Baveco, D. DeAngelis, K. A. Rose, and E.
van Nes, Super-individuals a simple solution for modelling
large populations on an individual basis, Ecol. Modell. 80, 161
(1995).

[24] P. Villa Martín, A. Bucek, T. Bourguignon, and S. Pigolotti,
Ocean currents promote rare species diversity in protists, Sci.
Adv. 6, eaaz9037 (2020).

[25] L. N. Thomas, A. Tandon, and A. Mahadevan, Submesoscale
processes and dynamics, Ocean Model. Eddying Regime 177,
17 (2008).

[26] R. Benzi, M. H. Jensen, D. R. Nelson, P. Perlekar, S. Pigolotti,
and F. Toschi, Population dynamics in compressible flows, Eur.
Phys. J.: Spec. Top. 204, 57 (2012).

[27] A. Plummer, M. Freilich, R. Benzi, C. J. Choi, L. Sudek,
A. Z. Worden, F. Toschi, and A. Mahadevan, Oceanic frontal
divergence alters phytoplankton competition and distribution,
arXiv:2202.11745.

[28] M. Kimura and J. F. Crow, The number of alleles that
can be maintained in a finite population, Genetics 49, 725
(1964).

[29] J. Rosindell, Y. Wong, and R. S. Etienne, A coales-
cence approach to spatial neutral ecology, Ecol. Inf. 3, 259
(2008).

[30] Code for the numerical simulations available on GitHub,
https://github.com/AnzhelikaKoldaeva/Coalescent_dynamics_
of_planktonic_communities.

[31] S. Xu, L. Böttcher, and T. Chou, Diversity in biology: Def-
initions, quantification and models, Phys. Biol. 17, 031001
(2020).

[32] R. H. Whittaker, Vegetation of the Siskiyou Mountains, Oregon
and California, Ecolo. Monogr. 30, 279 (1960).

[33] H. Tuomisto, A diversity of beta diversities: Straightening up a
concept gone awry. Part 1. Defining beta diversity as a function
of alpha and gamma diversity, Ecography 33, 2 (2010).

[34] H. Tuomisto, A diversity of beta diversities: Straightening up
a concept gone awry. Part 2. Quantifying beta diversity and
related phenomena, Ecography 33, 23 (2010).

[35] M. L. Rosenzweig et al., Species Diversity in Space and Time
(Cambridge University, Cambridge, England, 1995).

[36] F. Preston, Time and space and the variation of species, Ecology
41, 611 (1960).

[37] S. P. Hubbell, The Unified Neutral Theory of Biodiversity and
Biogeography (MPB-32) (Princeton University, Princeton, NJ,
2001).

[38] O. Arrhenius, Species and area, J. Ecol. 9, 95 (1921).
[39] I. Volkov, J. R. Banavar, S. P. Hubbell, and A. Maritan, Neu-

tral theory and relative species abundance in ecology, Nature
(London) 424, 1035 (2003).

[40] M. Cencini, G. Lacorata, A. Vulpiani, and E. Zambianchi, Mix-
ing in a meandering jet: A Markovian approximation, J. Phys.
Oceanogr. 29, 2578 (1999).

[41] E. Ser-Giacomi, L. Zinger, S. Malviya, C. De Vargas, E.
Karsenti, C. Bowler, and S. De Monte, Ubiquitous abundance
distribution of non-dominant plankton across the global ocean,
Nat. Ecol. Evol. 2, 1243 (2018).

[42] J. Boenigk, S. Wodniok, C. Bock, D. Beisser, C. Hempel, L.
Grossmann, A. Lange, and M. Jensen, Geographic distance and
mountain ranges structure freshwater protist communities on a
European scale, Metab. Metagenomics 2, e21519 (2018).

[43] C. de Vargas, S. Audic, N. Henry, J. Decelle, F. Mahé, R.
Logares, E. Lara, C. Berney, N. Le Bescot, I. Probert et al.,
Eukaryotic plankton diversity in the sunlit ocean, Science 348,
1261605 (2015).

[44] G. Falkovich, K. Gawedzki, and M. Vergassola, Particles
and fields in fluid turbulence, Rev. Mod. Phys. 73, 913
(2001).

[45] P. Jeraldo, M. Sipos, N. Chia, J. M. Brulc, A. S. Dhillon, M. E.
Konkel, C. L. Larson, K. E. Nelson, A. Qu, L. B. Schook
et al., Quantification of the relative roles of niche and neu-
tral processes in structuring gastrointestinal microbiomes, Proc.
Natl. Acad. Sci. USA 109, 9692 (2012).

[46] C. W. Gardiner et al., Handbook of Stochastic Methods
(Springer, Berlin, 1985), Vol. 3.

044408-10

https://doi.org/10.1103/PhysRevLett.110.258101
https://doi.org/10.1103/PhysRevLett.112.188102
https://doi.org/10.1016/j.jtbi.2016.01.033
https://doi.org/10.1103/PhysRevResearch.2.023412
https://doi.org/10.1111/j.1469-185X.1957.tb01577.x
https://doi.org/10.1016/0304-3800(94)00055-M
https://doi.org/10.1126/sciadv.aaz9037
https://doi.org/10.1029/177GM04
https://doi.org/10.1140/epjst/e2012-01552-0
http://arxiv.org/abs/arXiv:2202.11745
https://doi.org/10.1093/genetics/49.4.725
https://doi.org/10.1016/j.ecoinf.2008.05.001
https://github.com/AnzhelikaKoldaeva/Coalescent_dynamics_of_planktonic_communities
https://doi.org/10.1088/1478-3975/ab6754
https://doi.org/10.2307/1943563
https://doi.org/10.1111/j.1600-0587.2009.05880.x
https://doi.org/10.1111/j.1600-0587.2009.06148.x
https://doi.org/10.2307/1931793
https://doi.org/10.2307/2255763
https://doi.org/10.1038/nature01883
https://doi.org/10.1175/1520-0485(1999)029<2578:MIAMJA>2.0.CO;2
https://doi.org/10.1038/s41559-018-0587-2
https://doi.org/10.3897/mbmg.2.21519
https://doi.org/10.1126/science.1261605
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1073/pnas.1206721109

