
Morphological Development at
the Evolutionary Timescale:
Robotic Developmental Evolution

Abstract Evolution and development operate at different
timescales; generations for the one, a lifetime for the other. These
two processes, the basis of much of life on earth, interact in many
non-trivial ways, but their temporal hierarchy—evolution
overarching development—is observed for most multicellular life
forms. When designing robots, however, this tenet lifts: It
becomes—however natural—a design choice. We propose to
inverse this temporal hierarchy and design a developmental process
happening at the phylogenetic timescale. Over a classic evolutionary
search aimed at finding good gaits for tentacle 2D robots, we add a
developmental process over the robots’ morphologies. Within a
generation, the morphology of the robots does not change. But
from one generation to the next, the morphology develops. Much
like we become bigger, stronger, and heavier as we age, our robots
are bigger, stronger, and heavier with each passing generation. Our
robots start with baby morphologies, and a few thousand
generations later, end-up with adult ones. We show that this
produces better and qualitatively different gaits than an evolutionary
search with only adult robots, and that it prevents premature
convergence by fostering exploration. In addition, we validate our
method on voxel lattice 3D robots from the literature and compare
it to a recent evolutionary developmental approach. Our method is
conceptually simple, and it can be effective on small or large
populations of robots, and intrinsic to the robot and its morphology,
not the task or environment. Furthermore, by recasting the
evolutionary search as a learning process, these results can be viewed
in the context of developmental learning robotics.
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1 Introduction

Generations evolve; individuals develop. Many of the evolutionary processes of a species, then,
happen at a timescale an order of magnitude or more greater than the developmental ones; evolution
is a long-term species-level process happening on top of many short-term individual developmental
processes. This is the rhythm of our biological world.

Robots do not have to abide by such principles. Here, we propose to inverse the timescales
and put a developmental process on top of an evolutionary one. We consider an evolutionary pro-
cess with robots; the first-generation robots are small and weak and light. They are not the target
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morphology, only baby versions of it. They attempt to solve a task; the best performers survive and
produce slightly mutated offspring of themselves for the next generation. Those second-generation
offspring are a bit bigger, a bit stronger, and a bit heavier than the first generation. The second
generation, in essence, grows up compared to the first one. Following a predefined developmental
schedule happening at the phylogenetic timescale, each generation will be bigger and stronger and
heavier than the previous one until reaching adult morphology. Our robots do not develop during
fitness evaluation. Their morphology is determined at birth and remains constant while they are
evaluated on the task. It is a developmental process for generations, rather than for an individual.
Instead of evolutionary developmental robotics, this is developmental evolutionary robotics: devo-evo-robo rather
than evo-devo-robo.

To understand some of the motivations behind this work, another perspective on it is use-
ful. Above, we propose a new method for evolutionary robotics—adding development on top of
evolution—and demonstrate that this approach can improve which behaviors are discovered and
try to analyze why it does. Yet, another view is to consider the evolutionary search as a rudimen-
tary trial-and-error learning process employed by a single robot. In that context, a generation of 20
robots becomes an epoch of 20 trials, and the 4,000 generations of the evolutionary search turn
into our lone robot’s lifetime: 4,000 epochs of learning. Developmental evolution becomes developmen-
tal learning (Cangelosi, 2015; Lungarella et al., 2003), and our initial question, Can development improve
the evolutionary process?, becomes Can growing up help a robot learn better?, which may help, in turn, to
shed light on the question: Does growing up help us learn better? Morphological computation (Pfeifer &
Gómez, 2009) looks at how morphology participates in behavior. We are interested here in how
morphology, or more precisely, morphological change, participates in behavior acquisition. Those
underlying questions critically motivate our investigation.

The overwhelming majority of animals go through morphological growth at the beginning of
their lives, yet the research on growing robots is scarce, and most of them mimic the indetermi-
nate growth of plants (Corucci et al., 2017; Dottore et al., 2018). Most of the previous work on
development in evolutionary robotics has focused on adding developmental processes to the fitness
evaluation phase, i.e., evo-devo approaches (Bongard, 2011a; Corucci, 2016; Kriegman, Cheney, &
Bongard, 2018; Kriegman et al., 2017, 2018). While this mimics biology at the phylogenetics
timescale, computational and time constraints limit the extent and complexity of the developmental
program, which must fit entirely in an evaluation period, usually a few dozens of simulation-seconds
long. Vujovic et al. (2017) illustrates this: By considering real-world robot development within a gen-
eration, and having to construct and evaluate three different robot morphologies for each fitness
evaluation, the number of generations, five, remains drastically limited. Furthermore, because even
in simulation, fitness evaluations rarely exceed a few hundreds of seconds, this also forces develop-
ment to happen at the same timescale as behavior, which may be problematic if modeling biology. By
contrast, development slowly rolling out over generations has the potential to implement complex
developmental paths, without adding any more computational cost per generation than a classical
evolutionary algorithm, while allowing development to happen at an arbitrary slower timescale than
a single behavior. To our knowledge, only Joshua Bongard has explored a devo-evo approach, study-
ing a robot going through four different morphologies over the course of evolution, from anguilli-
form to legged adult, to conclude that it made the task more difficult, worsening performance, and
proposing as a better-performing approach one where robots develop over the evaluation period
(Bongard, 2011a).

Our approach is an incremental evolution approach (Doncieux & Mouret, 2014; Mouret &
Doncieux, 2008): The evolutionary search starts with an altered version of the target task, and
then, incrementally as the search progresses, is transformed into the target task. There are sev-
eral methods in incremental evolution: staged evolution (splitting a difficult task into subtasks)
(Mouret et al., 2006; Parker, 2001; Urzelai & Floreano, 1999; Urzelai et al., 1998); behavior de-
composition (training sub-controllers); fitness shaping (modifying the fitness function to create
smoother gradients) (Colby & Tumer, 2015; Nolfi, 1997); and environment complexification (mak-
ing the environment/task harder or more complex as the search progresses) (Bongard, 2011b;
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Gomez & Miikkulainen, 1997; Miras & Eiben, 2019a,b). Our approach falls into the environment
complexification methods, except that, in contrast to most methods, we modify the robot itself—its
morphology—rather than the rest of the environment.

Our approach distinguishes itself from existing incremental methods in two ways. First, most
incremental approaches work by making the problem easier and working their way up to the tar-
get task: splitting a complex task into simpler subtasks, training subcontrollers, making the fitness
function less rugged or less sparse, and progressively complexifying the environment—for instance,
progressively increasing a prey speed when training a predator behavior (Gomez & Miikkulainen,
1997). By contrast, our approach is not to make the problem obviously easier. Indeed, much like
human babies do not have an easier time walking than adults, our robots start with immature bodies
that are less apt at walking than adults. We would expect a decrease in final, adult performance, as
a significant part of learning happens on a different, and in some cases obviously inferior morphol-
ogy. This is actually one of the main theoretical contributions of this article: Despite starting with
immature bodies, our population of robots discover better behaviors. Morphological development
here, rather than being a hindrance, helps.

Second, incremental evolution approaches have been shown to be effective, but they necessitate
designing a tailored incremental program to modify the task or environment. This requirement for
hand-tuned expert knowledge on a case-by-case basis severely limits their generality and introduces
bias into the solution. Environmental and task complexification mirrors teaching in humans, where
the best results are obtained by an attentive teacher tailoring a curriculum of lessons and exercises
of increasing difficulty to the student, with a change of topics requiring the design of a new cur-
riculum, usually from scratch. By contrast, the fundamental mechanisms of human development
have changed little over the last thousands of years, while the environment, the tasks we engage in,
and the skills we develop have undergone dramatic transformations. Morphological development in
robots is modeled after the latter. It does not require any modification of the environment or the
task; it is intrinsic to the robot itself and to its embodiment. This opens the possibility that there
exists, much like in humans, developmental programs for a given robot that can be effective in a
wide range of tasks and environments. While this possibility is a major motivation for our study,
this is not something we establish here, and for the time being, we have to rely on hand-tuned
developmental paths.

But there is an even stronger argument to be made there: As we observe that humans, after an
extended developmental period, end up possessing generalization capabilities unmatched across the
animal kingdom (Anderson, 2003; Shapiro, 2011; Smith & Gasser, 2005), we may formulate the
hypothesis that development is not just able to adapt, but also needed in order to adapt to a range of
different tasks, needed for the generalization capabilities of humans. Morphological development
may one day participate in making robots, as Linda B. Smith says, flexibly smart (Smith & Gasser,
2005). It goes without saying that our results are limited and simplistic in most of their aspects, and
prove little robotically and nothing biologically. Still, those questions and hypotheses underpin the
work presented.

The developmental trajectories we explore in this article are inspired by morphological growth
in the animal world: change in size, in mass, in muscle strength. In particular, we consider a simpli-
fied model of muscle development for our robots, where those three dimensions develop together
under physical constraints. With this simple physically plausible muscle model, we show that robot
generations that grow up discover better ways to move than robot generations that only feature
adult robots. Then, we study how development affects exploration within the evolutionary process.

2 Methodology

We consider simple “starfish” soft-robots in a 2D world. The robots possess a hexagonal body,
and six tentacles stem from it. The robots are subjected to gravity and laid on a flat floor. They are
evaluated on their ability to move as far as possible along the floor in 60 s. An evolutionary search
is performed over the gaits of the robots.
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Figure 1. Our robots are made of point masses and springs. (a) A section is composed of two passive and rigid
(high-stiffness) diagonal springs, two passive and flexible springs on the top and bottom, and two actuated springs, the
muscles, on each side. The muscles work in pairs and act in an antagonistic manner: When one contracts by decreasing
its resting length (in red), the other extends (in blue). The color represents the command sent to the muscle, i.e.,
the desired length of the muscle, not the actual length. (b) The sections are assembled into tentacles, with a passive
triangular tip at the end. Sections are grouped into motor groups that actuate together, and attached to a central
hexagonal body.

2.1 Robots
We consider a physics engine with only three basic elements: point masses, springs between point
masses, and a flat floor that collides with the point masses. Each point mass experiences reaction
forces and friction forces from the ground and gravity, as well as the forces of the springs connected
to it. Given a spring linking two point masses of mass mA and mB, with resting length xr, length x,
stiffness k, and damping ratio ζ , we have:

mrẍ = −k(x − xr) − cẋ with mr = 1
1

mA
+ 1

mB

and c = 2ζ
√

mrk

Our robots have passive springs for which the resting length is fixed, and actuated springs, where
the resting length is modified by the motor commands of the robot: decreased for contraction and
increased for extension. We will refer, in the rest of the text, to actuated springs as the artificial
muscles of the robot.

Our robots follow a starfish pattern: a main body—a regular hexagon made of rigid springs—
from which six tentacles stem (Figure 1). Each tentacle is composed of eight sections, plus a passive
triangular tip. Each section is a square with rigid diagonal springs and passive flexible springs at
the top and bottom. On each side of the section, which also is the side of the tentacle, a muscle—
an actuated spring—is present. All the nodes of a given robot have the same mass, and all its
muscles have the same stiffness. The stiffness of passive springs is the same in all robots. (For a
detailed description, see the data contained in the Online Supplemental Material, which can be found
at https://doi.org/10.1162/artl_a_00357.)

The two actuated side-springs work as antagonistic muscles: When the tentacle section receives
a motor command, one muscle contracts while the other muscle extends. The motor command of a
section is a scalar, received at each timestep; if a section of height h receives the motor command α,
the target length—i.e., the resting length of the spring—of the left muscle becomes (1 + α)h, while
the target length of the right muscle becomes (1 − α)h.

Sections are gathered into motor groups (Figure 1(b)). An eight-section tentacle is divided into
two groups of four sections each. All the sections of the same group receive the same motor com-
mand, and therefore expand and contract simultaneously.

The gait of the starfish applies a sinusoidal actuation signal over each motor group. The period
of the sinusoid is fixed (at 2π ) and shared by all the motor groups, and each motor group has an
independent phase (in [ −π , π ]) and amplitude (in [ 0, 0.2]). This allows encoding the gait of the
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Figure 2. The robots grow up according to a predefined schedule. (a) From generation 1 to 2,000, the height of the
tentacle sections grows linearly from 0.5 in the first generation to 1.0, the adult size. The size remains the same for
generation 2,000 to 4,000. (b) The developmental muscle model combines the development of three morphological
characteristics of the muscle in parallel: size, muscle strength, and node mass.

starfish with two scalars per muscle group, and thus with 24 scalars in total for the starfish. Those
24 scalars form the genotype of our robots.

2.2 Task
The robots must move to the right as far as possible in 60 s; the fitness is the distance covered.
The robots are dropped just above the ground. To avoid the robots taking advantage of the drop to
bounce off the ground, which may produce chaotic fitness values, the robot settles for 9.42 (3π ) s
on the ground with no motor activation (0.0 actuation value sent to all motor groups). The robot
then actuates until the 60 s mark, resulting in eight full actuation periods.

We employ a simple evolutionary strategy. At each generation, the five members with the best
fitness become parents of the next generation, each creating three children through mutation. The
parents survive too, creating a new population composed of the five parents and the 15 children.

Typically, in evolutionary robotics, the search is conducted from start to finish on the
target—adult—morphology. We will call this adult evolution, and it will serve as control to evalu-
ate the performance of developmental evolution, which we explain now.

2.3 Developmental Evolution
Developmental evolution considers populations of robots that develop across generations. During
fitness evaluation, the morphology of the robots remains fixed and is the same for all members of
the generation. But, from one generation to the next, the morphology changes slightly. This change
is not under evolutionary control. It is predefined and goes according to a fixed schedule.

Figure 2(a) shows an example. In the first generation, the robots start at size 0.5: The height
of the tentacle sections (including the tip) is half the height of the adult morphology. Each subse-
quent generation will see the size increment linearly (by 0.5/2,000 = 0.00025) until generation 2,000,
when the adult morphology (size 1.0) is reached. For the next 2,000 generations, until generation
4,000—the end of the search—the robots will keep this adult morphology. In our evolutionary al-
gorithm, the parents survive to the next generation. Therefore, their morphologies are adjusted to
the new developmental values and they undergo fitness evaluation again.
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Size is not the only morphological characteristic whose development we study. We analyze how
developing muscle strength and the mass of the nodes of the robot affect the evolutionary process,
including what happens when those three variables—size, strength, mass—develop together. For
this, we create a crude developmental muscle model.

2.4 Developmental Muscle Model
In animals, muscle strength is a function of an array of factors. One of the most prominent ones
is the cross-sectional area of the muscle, which has a proportional effect on strength (Sacks &
Roy, 1982). If a muscle doubles in size in every proportion, its cross-sectional area quadruples,
and therefore the strength is affected in a quadratic fashion. Meanwhile, the mass of the muscle,
dependent on volume, is affected cubically.

We use these insights to create a simple developmental muscle model for our robots that com-
bines the development of size, strength, and mass. In our model, when the size doubles, the muscle
strength—i.e., spring stiffness—quadruples and the node mass is multiplied by eight. We express
size, stiffness, and mass as coefficients of the adult values (see Online Supplemental Material for a
description of the robots), and therefore the adult value for all characteristics is 1. For a given size
coefficient s, the stiffness coefficient is s2 and the mass coefficient s3 (Figure 2(b)).

3 Experiments and Results

3.1 Developmental Muscle Model Experiment
We ran evolutionary searches with the developmental muscle model and contrasted them with the
adult evolution, where the robots are adult from the first generation. Figure 3(a) shows two evolu-
tionary runs of developmental evolution using the developmental muscle model, where the robots
start with a size of 0.5 in the first generation, with the corresponding values of 0.25 for muscle
stiffness and 0.125 for the mass of the nodes (see Movie S1 in the Online Supplemental Material
for behavior throughout the generations for the first graph). They then gradually increment toward
the adult values for the size, stiffness, and mass respectively for the next 2,000 generations. In the
two examples, the adult evolution displays an archetypical learning curve, which progresses quickly
at the beginning and then flattens. In contrast, the muscle model’s developmental phase is charac-
terized by sudden changes in fitness, both increases and collapses. Some of the behaviors, especially
in the first graph, have higher fitness on young morphologies than the fitness found by the adult
evolution. After the development ends, the fitness stabilizes around a significantly higher value than
the adult evolution.

This difference in performance is statistically confirmed in Figure 3(b), where the average fitness
over generations for 100 repetitions of the experiment is shown. (For a given condition, the 100
repetitions use the random seeds 1, 2, . . . , 100 and therefore the same initial population of geno-
types, creating paired experiments across different conditions.) We observe a steady rise of fitness
during development, with the average over 100 repetitions smoothing out the sudden collapses and
increases of an individual run. At the end of development, the fitness is already significantly better
than the adult evolution ( p < 0.001, Wilcoxon signed-rank test). The average fitness then contin-
ues to increase after generation 2,000 for a few hundred generations at a larger rate than the adult
evolution before stabilizing.

Figure 3(c) gives insights into the effect of different developmental trajectories by comparing
different starting sizes for the developmental muscle model. Starting smaller, weaker, and lighter
provides a sizeable and significant increase in performance compared to the adult evolution, with a
peak observed for starting size 0.5. This increase is reduced when the starting values of the devel-
opment get closer to the adult ones, but even a modest development—starting size 0.9—provides
notable benefits to fitness. Starting bigger, stronger, and heavier is not as effective and does not
bring significant benefits.
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Figure 3. The developmental muscle model outperforms adult evolution. (a) Two evolutionary runs of developmental
evolution with the muscle model at starting size 0.5, out of the 100 runs performed, contrasted with the adult evolution
performed with the same initial population. Each dot represents the fitness of a population member. Not shown:
members with negative fitness. (b) Average final fitness over the 100 runs of the developmental muscle model with
starting size 0.5 and the adult evolution. The final fitness is the mean of the 10 best fitnesses obtained in the last
50 generations. The shaded area is the 99% confidence interval of the mean of the final fitness over 100 runs. (c)
Comparison of the distribution of the final fitness of the developmental muscle model for different starting sizes. Box
plots are computed from 100 runs each, and the same set of 100 random seeds is used for each box plot, creating
paired experiments with the same initial populations. Box plots show the first and third quantile, and the minimum and
maximum value, or 1.5 × Interquartile Range, whichever is closer to the median; outliers are represented by diamonds.
Notches represent the 99% confidence interval of the median. Significance stars are computed using a Wilcoxon
signed-rank test after Shapiro-Wilk testing revealed that the differences between some of the paired fitnesses deviate
significantly from normality. The significance threshold is set at 0.01. These conventions will be used for all box plots
in the article. In blue, the adult evolution, equivalent to a starting size of 1.0, has its mean, confidence interval, and
first and third quantile extended through the plot by a light shaded blue area and dashed horizontal lines. (d) Adult
evolution over 1,000 generations over all the starting morphologies of (c). No development is involved.

Interestingly, none of the starting morphologies with the developmental model is better at solv-
ing the task than the adult morphology, as Figure 3(d) shows. Over 1,000 generations, all the start-
ing morphologies are learned on a standard adult evolution, to establish a baseline of the fitness
they can reach. The results show that development can provide higher fitness by passing through
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morphologies that are worse at the task than the target one. Moreover, given that the fitness is al-
ready better at generation 1,999 in Figure 3(b), developmental evolution can provide better fitness
on the adult morphology without ever directly experiencing it.

To understand the causes behind those dynamics, it is useful to look at the effect of develop-
ing the size, the muscle stiffness, and the mass separately. In each instance, the two other charac-
teristics are fixed at adult values during the entire evolutionary process. The results are shown in
Figure 4.

Perhaps unsurprisingly, having low mass or being strong at the beginning brings unequivocal
performance increases. These results would be easily explainable if those characteristics—low mass
or high stiffness—were permanent. But the performances displayed here are the ones of the adult
morphology, after development has ended, since they are calculated from the mean of the 10 best
individuals of generations 3,951–4,000. It is interesting to notice that the increased fitness of the
low-mass or high-stiffness start have increased variability across different runs. What is hidden here
is that we have two populations of behaviors: rolling and non-rolling behaviors. For our purposes
here, we will define a rolling behavior as the robot’s central body having done two or more com-
plete revolutions on itself by the end of the evaluation. Typically, non-rolling behavior manifests
as crawling or shuffling (see Movies S2 and S3 in the Online Supplemental Material for examples
of non-rolling and rolling behavior respectively). Rolling is a highly beneficial behavior and allows
reaching fitness scores that non-rolling behavior does not. This is shown with Figure 4(d), (e), and
(f ): The distributions of fitness of the rolling (in grey) and non-rolling (in color) behaviors are
separated. We observe that the low-mass and high-fitness developments generate a lot of rolling
behaviors compared to adult evolution, which is hardly surprising: It is easier to start a roll when
light or strong. The evolutionary process is then able to refine and adapt the rolling behavior to the
changing morphology, retaining them into adulthood.

Conversely, when handicapping the robot during development by a high mass or low stiffness,
no significant fitness benefit is observed, and the number of rolling behaviors discovered is even
lower than in adult evolution: Indeed, the robot has difficulties moving from its initial position when
development starts, much less engaging in a highly dynamical behavior such as rolling. It is notable
though that these handicapping developmental paths do not have a long-term detrimental effect:
The final fitness is not significantly different from the control. Development, here, is robust and
degrades gracefully.

Here, it is interesting to remark that the difference between morphological development and
environmental scaffolding is sometimes thin. In particular, developmental evolution with a low
starting mass is quite similar—although not equivalent—to environmental scaffolding with a low
starting gravity. Figure S5 in the Online Supplemental Material confirms this; the performance im-
pact of both interventions is remarkably similar. Of course, changing gravity outside of simulations
is hardly ever a practical method.

Developing the size brings interesting results. Starting small generates the most benefits, and the
benefits increase the smaller the robots start. Few rolling behaviors are discovered. Remarkably,
when comparing the fitness of the non-rolling behaviors alone across experiments (Figure 4(d), (e),
and (f )), the benefits of development for starting small or strong or light are similar. Starting big is
helpful as well, with more rolling behaviors discovered. One hypothesis to explain the increase in
rolling behavior is that longer tentacles tend to break (see Figure S7 in the online supplement), and
thus are not as much an obstacle to rolling as they might seem. Here the importance of discovering
the behavior seems paramount, and once discovered, maintenance of it by the evolutionary process
through the morphological changes seems comparatively easier, even as tentacle breaks become less
and less possible as the morphology nears the adult body.

Overall, we observe here two important dynamics. First, developmental evolution can generate
better behaviors and help discover efficient behaviors that are hard to find if experiencing only the
adult morphology. And second, different developmental paths lead to different behaviors: Starting
small is highly beneficial, as it improves the behavior of the robots significantly, but it will not induce
many rolling behaviors, whereas a high-stiffness or low-mass developmental path will.
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Figure 4. Size, muscle stiffness, and mass development can all benefit the evolutionary process. The experiments in
(a), (b), and (c) show the effect of the development that happened in Figure 3(c) when size, muscle stiffness, and mass
develop on their own respectively, while the two other characteristics are fixed at adult values. Box plots conventions
are the same as in Figure 3. (d), (e) and (f) show the same data as (a), (b), and (c), respectively, with the rolling (in grey)
and non-rolling (in color) behaviors separated. The non-rolling behaviors are represented by box plots when there are
8 samples or more, and otherwise by grey circles (also used for outliers). Due to the small and varying sample size, the
rolling box plots are not notched.
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It remains to be explained, though, why non-rolling behaviors are improved as well by develop-
mental evolution. To do that, it is useful to look at how the method impacts the exploration of the
search space.

3.2 Development Fosters Exploration
For the first half of the evolutionary search, developmental evolution changes the morphology of
the robots between every generation. Therefore, the fitness landscape changes with each generation
during that time. Gaits that were competitive on one morphology are less so on the next, and are
quickly superseded by new gaits; development, quite straightforwardly, prevents convergence. This
can be observed in Figure 5(a), which shows a principal component analysis (PCA) of the champions
of each generation (filled triangles), plus their ancestors (hollow triangles), for the adult evolution
and the developmental muscle model with starting size 0.5. Developmental evolution travels much
more than adult evolution across the search space and is especially mobile during the developmental
period.

To quantify it, we define the genealogy distance between a member of the population and one of
its ancestors as the sum of all the mutation distances—i.e., the euclidean distances—between succes-
sive members of the genealogy that goes from the ancestor to the member we are considering. In
Figure 5(a), the genealogy distance between the initial root member and the elite of the 2,000th
generation is 28.75 (over the 100 runs: 30.28 ± 0.74, mean with 99% confidence interval), versus
2.27 (6.66 ± 0.84) for the adult evolution. From generation 2,000 to the elite of generation 4,000,
the genealogy distance is 3.99 (3.48 ± 0.59) versus 3.78 (1.81 ± 0.45) for the adult evolution.

This effect can be seen again in Figure 5(b), averaged over 100 repetitions of the experiments of
Figure 5(a). Given the champion of the run, the graph shows the rolling average of the mutation dis-
tance between each of the successive generations of the champion’s ancestors. The rolling average
of the mutation distance is high during the developmental period and drops as soon as development
ends, and therefore as soon as the fitness landscape stops changing. This increase is correlated to the
magnitude of development. The developmental muscle model with starting size 0.5 (Figure 5(b-1))
has a higher rise in mutation distance than the one with starting size 0.9 (5(b-2)). For some of
the most successful developmental evolutions, such as the one with starting mass 0.125 (5(b-3)),
a significantly higher rate of mutation distance is maintained over the adult evolution for a long
time after the stabilization into adult morphology. Conversely, nonbeneficial development, such as
the low starting stiffness 0.49 (5(b-4)), still displays high mutation distance during development but
quickly drops to adult evolution levels when development ends.

Another way to illustrate this is via Figure 5(c). From the same initial genotype, 100 runs of
the adult evolution and the developmental model with starting size 0.5 were computed. Looking
at a PCA of the genotype of the champion of each run, the pattern is clear: The adult evolution
clusters around the initial search point, while the developmental runs went far away from the initial
population, and all in the same general direction.

While development is indeed a way to prevent (premature) convergence by pushing the evo-
lutionary search to move around a constantly evolving fitness landscape, it would not be use-
ful if the location it arrived at by generation 2,000—at the end of development—was not
any better than those randomly provided by the initial population or learned by adult evolu-
tion. The fitness results of Section 3.1 show that development can indeed be beneficial, but
Figure 5(b-4) (starting stiffness 0.49) and the corresponding performance in Figure 4(b) equally
demonstrate that moving around during development does not guarantee better performance. Still,
when looking systematically at the relationship between exploration and fitness, some patterns
are present.

It turns out that genealogy distance and fitness are correlated within a given developmental con-
dition, as shown in Figure 5(d). Figure 5(d-1) exemplifies the correlation that can be found be-
tween fitness and genealogy distance, whether for the adult evolution or the developmental muscle
model. Note that we do not compare developmental and adult evolution; the correlation is within
the 100 runs of a given condition. The runs that travel more throughout the search space for a given
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Figure 5. Development has a notable impact on exploration. (a) Principal component analysis (PCA) of the genotype
vectors of two different runs: one with a developmental muscle model with a starting size 0.5 (a-2), and one with the
adult evolution (a-1). The starting population was precomputed and the same in both cases, and was composed of only
one member (red inverted triangle), selected as the one out of 15 random members with the best fitness on the adult
morphology. The genealogy shows the member with the best fitness of each generation (filled triangles), alongside
all their ancestors (unfilled triangles). Edges show parental relationships. The PCA was computed separately for each
run, on all the depicted genotypes. (b) Rolling average with a 101-generation window of the mutation distance of each
generation, for four different developmental cases: two with the muscle model, one with mass development only, and
one with stiffness development only. (c) Given the same initial population, with only one member, PCA of the genotype
of the champion of each run, for the adult evolution (squares) and the developmental muscle with starting size 0.5.
(d) Genealogy distance correlates positively with fitness. In (d-1), the distribution of fitness in function of the genealogy
distance of the elite at the end of the evolutionary search is displayed. The correlations are computed separately for
control and the developmental muscle case with starting size 0.5. (d-2). Distribution of the fitness/genealogy distance
correlation for all the experiments of Figure 3(c) (adult evolution + 12 starting sizes) and Figure 4 (12 conditions each
for starting size, stiffness, and mass), all with a significant correlation (p < 0.01).
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developmental schedule (or the adult evolution) tend to achieve higher fitness. Figure 5(d-2) ex-
plores how a different amount of exploration of the search space from one developmental condition
(i.e., one experiment) to the next correlates with higher fitness. Across all experiments of Figure 3(c)
and Figure 4 (49 experiments of 100 runs each), we correlate the fitness of the best individual across
100 runs (chosen within the last 50 generations) to its genealogy distance to its ancestor in the
initial population. The median Pearson correlation coefficient is 0.535: Developmental conditions
that travel more through the search space tend to generate better performance. This correlation is
present within runs (Figure 5(d-1)) and across experiments (Figure 5(d-2)).

These results do not provide a conclusive answer to why developmental evolution improves the
effectiveness of the non-rolling behaviors, but it strongly suggests one: a better exploration of the
search space.

3.3 Population Size, Development Length, and Fast Development
Developmental evolution is effective for increasing fitness but requires going through the develop-
mental period, where the behaviors are not learned—and therefore are a priori not effective—on
the target adult morphology. One question is then: How fast can development occur? If we mea-
sure the length of development by the number of fitness evaluations spent on a morphology that is
not the adult one, two ways to reduce it are straightforward: reduce the size of the population or
reduce the number of developmental generations.

Figure 6(a) looks at the effect of population size on the impact of development. We compare the
fitness distributions of different population sizes: 2 (1 parent/1 child), 3 (1/2), 5 (2/3), 7 (2/5), 13
(3/10), 20 (5/15, the basis for all other results), 40 (10/30), 60 (15/45), and 120 (30/90). As we can
observe, development brings significant improvement at every population size studied, even for the
extreme case of one parent/one child. And in the range of sizes 2–13, the fitness of developmental
evolution grows faster than the fitness of adult evolution as the size of the population grows. De-
velopment both is robust to small population sizes and takes advantage of population increase. This
is partly explained by development not acting within the population, as would a diversity-preserving
algorithm, for instance, but on it, uniformly.

Figure 6(b) analyzes how the length of development affects the final fitness. Even a short devel-
opmental phase, 100 generations, brings significant benefits, which then increase as development
goes on longer. The slight decrease for development length 3,000 and 4,000 can be explained by
the evolutionary search ending at generation 4,000 in all cases: The settling period into the adult
morphology is shortened for development length 3,000 and non-existent for 4,000. Development is
therefore effective even when short—but not too short. Both long development and the presence
of an extended adult phase are beneficial.

When trying to reduce as much as possible the development phase, we can take advantage of
the dynamics of those two dimensions above: development length and population size. After trying
different combinations of population size and development lengths, we found that a population
of seven—two parents and five children—and a development length of 500 generations offers
a good balance between developmental speed and fitness benefits, with a total of 3,500 fitness
evaluations during development. Compared to the adult evolution with 20 members, after 7,000
fitness evaluations, i.e., 350 generations of the adult evolution, the fitness is significantly better (it is
also significantly better than an adult evolution with seven members per generation; see Figure S6 in
the online supplement). Interestingly, at 350 generations, the adult evolution has just started slowing
down fitness improvement. So implementing development here provides few drawbacks in terms
of time spent in the search.

3.4 Comparisons with Evo-Devo Approaches

3.4.1 2D Robots
Our approach in this work is to explore a biologically implausible modification of interaction be-
tween evolution and development. One of the main differences between our approach and an
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Figure 6. Development is effective at a low and high population size, and over short developmental periods. (a) Compar-
isons of the final fitness between the adult evolution and development with starting mass 0.125, for different population
sizes. The number of generations is kept at 4,000 regardless of population size. (b) Final fitness observed for different
development lengths of the development with starting mass 0.125, from 0 (adult evolution) to 4,000 (only develop-
ment). The total number of generations is always 4,000, with the robots spending the remaining generations evolving
with the adult morphology after development ends. (c) Average fitness over 100 runs. The adult evolution (with 20
members per generation) is contrasted with development with starting mass 0.125, with a population of 7 members
(2 parents, 5 children) and a development length of 500. The x axis is the number of fitness evaluations to account for
the different population sizes.

evo-devo approach is the relative position of the adaptation mechanism with regards to develop-
ment. In our approach, development happens at the same timescale as adaption through evolution-
ary search. In an evo-devo approach, the development happens at a shorter timescale, during the
evaluation period, with no adaptation happening. We tested the impact of an evo-devo approach on
our robots.

In the evo-devo experiment, the evolutionary search still spans 4,000 generations, with no de-
velopmental evolution happening. At the start of a simulation, the robots start with child body size,
and settle on the ground for 9.42 s. At 10 s, shortly after they started to actuate, they start to grow
linearly in size, to reach adult size at the 40 s mark. They then continue to actuate with a fixed adult
size until the 60 s mark. This developmental schedule never changes during the 4,000 generations.
The population of behaviors of the last 50 generations of each run are then evaluated on a fixed
adult morphology (adult robots during the whole 60 s simulation), and the resulting fitnesses are
shown in Figure 7.

The evo-devo approach does not bring fitness increases over a pure adult evolution. Further-
more, it decreases fitness significantly for the robots that start much bigger than the adult size. This
of course proves little, only that a devo-evo approach can work where an evo-devo one might not.
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Figure 7. The evo-devo approach does not bring fitness benefits. The box plots represent the adult morphology
performance after 4,000 generations of evo-devo evolutionary search. The blue box plot corresponds to the adult
evolution, equivalent to an evo-devo starting size of 1.0.

3.4.2 3D Voxel Robots
In their 2018 article, Kriegman, Cheney, and Bongard propose an evolutionary development ap-
proach (evo-devo) where robots made of a 3D lattice of voxels (Hiller & Lipson, 2014) are allowed
to develop during the evaluation period. On a locomotion task, the approach outperforms a regular
evolutionary algorithm (evo), where no development happens. This task provides a good test bed to
test our approach and how it generalizes to 3D environments and other robots.

For our approach—devo-evo—we modify the evo method by adding a mass-based developmental
program on top of it. In the evo (and the evo-devo) approach, the voxels all have a constant mass of
1 g during the simulations; in devo-evo, we start the voxels of our robots, in the first generation, at
0.25 g, 25% of the adult mass. The mass then increases linearly with each generation, to reach 1 g at
generation 2,000. The evolutionary search then continues until generation 10,000. We reproduced
the results of the original article (Kriegman, Cheney, & Bongard, 2018, Figure 3.A) and compared
them with the performance of the devo-evo approach.

The devo-evo approach achieves high fitness in early development (Figure 8) during the first 100
generations. The performance steadily falls as the robot mass increases. At generation 2,000, the
robots have the same mass as in the other approaches, and the performance can be fairly compared
with evo and evo-devo. The devo-evo approach exhibits significantly higher median performance
than either of the other methods, and its final performance is also significantly higher than the
other methods. Details about the method, additional results, and discussion are available in the
Online Supplemental Material.

4 Discussion

Development—intrinsically—creates change. On its way to an adult form, the body goes through
different iterations, each harboring the possibility to be particularly fit for a given purpose and to
make some interesting behaviors easier to discover and perform. With this article, we harness this
phenomenon in robots. But, rather than evolution having access only to the global fitness of the
end-result of this developmental process, we make all the developmental steps directly accessible to
evolution’s selection capabilities.

This is illustrated nicely in this article by how difficult rolling behaviors can be to discover
for 2D and 3D robots alike, and how a developing morphology creates easier access to them.
Kriegman, Cheney, and Bongard (2018) noticed a similar effect when adding development during
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Figure 8. Devo-evo outperforms evo-devo. (a) A 4 × 4 × 3 lattice of voxels creates robots that can move by contracting
the voxels. Each voxel contracts with the same sinusoidal signal, but each has its own phase. The resting size of the
voxel is specific to each voxel as well, creating robots with different morphologies. Two evolved behaviors are shown:
a shuffling gait at the top, and a rolling gait at the bottom. (b) Our devo-evo approach shows a typical developmental
performance: The performance is high when the robots are light, and then decreases as the robots become heavier
during the first 2,000 generations, to stabilize to high fitness that increases slowly after development ends. The graph
shows the median performance of 30 runs, with the shaded area showing the 95% boostrapped confidence interval
(20,000 resamplings), the same as in the original article by Kriegman, Cheney, and Bongard (2018).

fitness evaluation. Because in many real-world problems interesting behaviors represent a very small
portion of the search space, sometimes without good gradients to help guide robots toward them,
methods to help discover them are crucial for robots facing the complexity of the real world. In
our work, we observed that once discovered through development, those high-fitness behaviors
have a chance to be maintained by evolution into the adult form. Development is used here, quite
straightforwardly, as a source of behavioral diversity that evolution can select from.

Many approaches in evolutionary robotics have aimed at fostering diversity. Some approaches
place behavioral novelty directly under evolutionary control, using selective pressures (Doncieux &
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Mouret, 2014; Risi et al., 2009), while others, like illumination algorithms (Cully et al., 2015; Mouret
& Clune, 2015), modify the structure of the search to expose an ensemble of solutions across
specific dimensions of behavioral diversity. Our devo-evo approach does not employ either of those
mechanisms. Rather, morphological change is added on top of a classic evolutionary search, with no
change to the evolutionary algorithm or the evaluation budget. The approach does not need memory
archives to store elites or estimate novelty nor does it need to define novelty distance or behavioral
dimensions along which a grid of MAP-Elites cells should be created. Rather, it relies on pure
embodiment. It is worth considering here an extreme case: Even without adaptation capabilities,
a robot executing the same motor activation and undergoing morphological development would
produce behavioral diversity as its body grows (see Figure 2(a) for an example). Irrespective of the
controller of the robot, morphological change produces behavioral change.

Morphological development also creates a constant source of perturbation, an imbalance in the
evolutionary search that straightforwardly deals with two fundamental issues of evolutionary com-
putation: the bootstrap problem and premature convergence (Bongard & Hornby, 2010; Eiben,
2015; Hornby, 2006; Mouret & Doncieux, 2009; Schmidt & Lipson, 2010). Premature convergence
is prevented because the early ongoing morphological changes modify the fitness landscape with
every generation and prevent the evolutionary search from settling too early: You cannot stay in a
fitness landscape’s valley if the valley disappears under you. The bootstrap problem—which hap-
pens when all the members of the initial population obtain minimal fitness, and hence stall the
search—is mitigated by developmental evolution, since it will, throughout development, evaluate
the population on a succession of slightly different fitness landscapes. If one of those fitness land-
scapes creates interesting behaviors, the evolutionary search can start. In this work, we have seen
that even when the robots start with eight times the adult mass, and therefore can hardly move
from the starting position (Figure S4.C in the online supplement)—a good setup for a bootstrap-
ping problem—the fitness performance at the end of the evolutionary search is not statistically
distinguishable from that of the adult evolution (Figure 4(c)). That developmental evolution was
resilient to all the developmental paths we explored was an unexpected observation.

Another surprising result was that evolution was able to benefit from developmental paths that
made the task intuitively harder (e.g., a smaller starting size). Making a robot stronger or lighter is
often an effective way to boost performance. So it came without much surprise that the develop-
mental paths that started that way (high muscle strength or low starting mass), and hence made
the task initially easier, led to increased adult performance. This is a typical incremental evolution-
ary strategy. The results of the lower starting size experiments are harder to explain. It is indeed
tempting to intuitively conclude that physical immaturity is a hindrance to skill acquisition only
made necessary in animals by physiological constraints. This line of thinking, whether implicit or
explicit, combined with considerations of practicality, robustness, and feasibility, has been embraced
by robotics: Robots are born adult. This study, however modest its results, suggests that robots that
grow up in size can bring qualitative performance benefits.

And the reason may lie in how developmental evolution affects exploration. The creation of
behavioral diversity and the changing fitness landscape preventing early convergence both respec-
tively facilitate and stimulate exploration. In the analysis, we have shown that increased exploration
(characterized by increased genotyped distance between the first and last population) correlates pos-
itively with fitness within a developmental condition. The lower starting size experiments show this
in another way: The smaller you start, the higher the adult performance. Starting smaller means a
faster pace of change during development, and more morphologies explored.

Our study reaches a different conclusion than Bongard’s (2011a) article. There are a lot of
differences—robot (rigid), task (phototaxis), fitness criterion (time to success), many aspects of
the method—that make a straightforward comparison difficult. One issue that Bongard reported
was abrupt body changes (the evolutionary process goes through four discrete morphologies, rather
than developing gradually), leading to a drop in fitness, in some cases to zero. This may explain why
performance was affected negatively. Our developmental paths change morphology slowly, and this
may make them robust to this. Future work is needed to investigate those issues in detail.
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We have explored only a few developmental programs in this article. It may be that, just as
humans are not necessarily good at hand-tuning good controllers for complex body shapes, the
design of developmental programs as they become more complex and dynamic are beyond the
skills of human designers. We may then let developmental programs evolve themselves, which may
raise issues in how expensive that might be in computing resources. Nevertheless, the commonalities
seen in the biological world in the development of species with widely different morphologies teases
the possible discovery of general developmental principles and mechanisms that could be effectively
applied to a wide range of robots.

As well as adapting to different robots, a developmental program would be useful if it can benefit
a large range of tasks. One fundamental motivation for our approach is the idea that a well-designed
development program for robots might adapt well to many different tasks and environments, much
like what we observe in humans.

5 Conclusion

Developmental evolution gradually changes the morphology of populations of robots during an
evolutionary search. In this study, we have seen that spending evolutionary time on morphologies
different from the target one, potentially smaller or weaker ones, may bring significant improvement
to fitness. This is achieved in two ways: by making some efficient behaviors easier to discover,
and by preventing premature convergence through a continuous modification of the search space,
therefore fostering its exploration. Because morphological development is intrinsic to the robot, its
implementation does not depend on the task, environment, or fitness function. It has been shown
to be robust to many different developmental paths, to work with small and large population sizes,
on short and long developmental lengths, and with 2D and 3D robots. Interesting parallels exist
between developmental evolution and developmental learning, and inspirations and techniques from
both could lead to fruitful future work.
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