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Abstract. This paper investigates partitions which have neither parts nor

hook lengths divisible by p, referred to as p-core p′-partitions. We show that
the largest p-core p′-partition corresponds to the longest walk on a graph with

vertices {0, 1, . . . , p − 1} and labelled edges defined via addition modulo p.

We also exhibit an explicit family of large p-core p′-partitions, giving a lower
bound on the size of the largest such partition which is of the same degree as

the upper bound found by McSpirit and Ono.

1. Introduction

A partition which has no hook lengths divisible by p is called p-core, and a
partition which has no parts divisible by p is here called a p′-partition (this prop-
erty is sometimes called being p-regular, though that terminology is often used to
mean having no part repeated p or more times). For p an odd prime, this paper
investigates large p-core p′-partitions.

McSpirit and Ono [McSO22, Theorem 4.1] show that the size of a p-core p′-
partition is bounded above by

1

24
(p6 − 2p5 + 2p4 − 3p2 + 2p).

We give a marginal improvement on this bound in Proposition 2.6 (the leading term
is unchanged; the degree 5 term has coefficient − 1

6 in place of − 1
12 ).

We exhibit in §3 an example of a p-core p′-partition of size

1

96
(p6 + 6p4 − 24p3 + 89p2 − 120p− 48).

This serves as a lower bound on the size of the largest p-core p′-partition, and shows
that McSpirit and Ono’s upper bound is of optimal degree.

We introduce in §4 the additive residue graph as the labelled directed graph on
{0, 1, . . . , p−1} with edges labelled i corresponding to addition of i modulo p. We
prove that the largest p-core p′-partition corresponds to the longest walk on this
graph which traverses edges in increasing order and which avoids 0. The largest
p-core p′-partitions and their sizes can be computed using this characterisation; we
record this data, as well as the sizes of the bounds above, in Appendix A.
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1.1. Significance of p-core p′-partitions for the symmetric group

Partitions of n index both conjugacy classes and simple characters of the sym-
metric group Sn. A class labelled by a p′-partition is a p′-class (that is, consisting
of elements of order not divisible by p). A simple character labelled by a p-core
partition remains simple upon reduction modulo p (though not conversely; more
generally, two characters lie in the same p-block if and only if the labelling partitions
have the same p-core, a result known as Nakayama’s Conjecture [JK84, 6.1.21]).

Motivation for knowing the sizes of p-core p′-partitions is provided by McSpirit
and Ono [McSO22]. The Murnaghan–Nakayama rule [JK84, 2.4.7] implies that
characters of Sn labelled by p-core partitions vanish away from p′-classes. Thus
if no p-core p′-partitions of a given size n exist, then the character table of Sn

restricted to p-core partitions is all zeros. McSpirit and Ono use this fact to give
asymptotics for the numbers of zeros in the restricted character table [McSO22,
Corollary 1.4]. The results of the present paper – a lower bound on the size N of
the largest p-core p′-partition, and a characterisation of N in terms of a certain
walk – are therefore also descriptions of an N such that the restricted character
table of Sn is guaranteed to be all zeros for all n > N .

2. Describing partitions

We introduce three parameters that are convenient for describing p-core parti-
tions. In this section p is permitted to be any positive integer. For a full introduction
to abacus notation, see for example [JK84, §2.7].

2.1. Bead multiplicities

We view partitions on the p-abacus: there are p vertical runners, labelled 0 to
p−1, on which we place beads encoding the partition. Positions on the abacus
are ordered left to right and top to bottom: for 0 ⩽ i ⩽ p−1 and j ⩾ 1, the
((j − 1)p + i)th position on the abacus is on the ith runner in the jth row. Each
bead contributes a part of size equal to the number of gaps preceding that bead
(that is, gaps with a numerically lower position). In this paper, unless otherwise
specified we assume our abaci have a gap in the 0th position; with this assumption
there is a one-to-one correspondence between partitions and abaci.

The length of a partition, denoted ℓ(−), is its number of parts. Assuming there
is a gap in the 0th position, this equals the number of beads on the abacus.

A partition is p-core if and only if all the beads are at the top of their run-
ners [JK84, proof of Theorem 2.7.16]. The following parameters therefore uniquely
determine a p-core partition.

Definition 2.1. For 1 ⩽ i ⩽ p − 1, the ith bead multiplicity of a p-core partition
is the number of beads on the ith runner in the corresponding abacus (that is, the
corresponding abacus which has a gap in the 0th position).

Lemma 2.2. Let λ be a p-core partition with bead multiplicities (b1, . . . , bp−1).

Then ℓ(λ) =
∑p−1

i=1 bi and

|λ| = 1

2
ℓ(λ)(1− ℓ(λ)− p) +

p

2

p−1∑
i=1

b2i +

p−1∑
i=1

ibi.

Proof. Let Bk denote the position on the abacus of the bead corresponding to the
kth part of λ. Then λk = Bk − (ℓ(λ)− k) (because the size of the part is given by
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the number of gaps preceding the bead, which is the position of the bead minus the
number of beads preceding it). The expression follows by summing over all beads
and breaking up the sum over runners. □

2.2. Row multiplicities

Given an abacus whose beads are not all rightmost in their rows, shifting all the
beads to the right yields a larger partition. Shifting beads to the right does not
necessarily preserve the p′-partition property; nevertheless, we obtain the following.

Lemma 2.3. The largest p-core p′-partition has all beads rightmost in their rows.

Proof. Suppose we have a p-core p′-partition whose beads are not all rightmost in
their rows; we will show that there exists a larger p-core p′-partition.

Consider two beads in positions x, y such that x < y and there is no bead in
position z for any x < z < y. If the bead at x is moved to position y − 1, this
increases the size of the part corresponding to the moved bead without changing
the size of any other part. The new size of the part corresponding to the moved
bead is precisely the size of the part corresponding to the bead in position y; in
particular, if no parts are of size divisible by p before the move, then none are after.

If the (p−1)th runner has the (joint) most beads, we can therefore shift all the
beads on the abacus as far right as possible within their rows to obtain a larger
p-core p′-partition. Otherwise, we consider a different abacus configuration for the
same partition by adding a bead in the 0th position and increasing the positions of
all other beads by 1. Equivalently, we are adding a bead to the (p−1)th runner and
moving it into the 0th runner position, and shifting the other runners one place to
the right. We repeat until the (new) (p−1)th runner does contain the (joint) most
beads, permitting us to shift all the beads to the right within their rows. □

Given Lemma 2.3, we restrict our attention to abaci whose beads are rightmost
within their rows. The following parameters uniquely determine such a partition.

Definition 2.4. For 1 ⩽ i ⩽ p − 1, the ith row multiplicity of a p-core partition
whose beads are rightmost within their rows is the number of rows containing
exactly i gaps and p− i beads.

Equivalently, we are restricting our attention to abaci where the bead multiplic-
ities are weakly increasing, and the ith row multiplicity is the difference between
the ith and (i−1)th bead multiplicities.

2.3. Abacus residue sequence

For a p-core partition whose beads are rightmost within their rows, all the beads
in a row contribute parts of equal size. That size is the number of gaps in the row
plus the common size of the parts contributed by the beads in the preceding row.

Definition 2.5. The abacus residue sequence of a p-core partition whose beads are
rightmost within their rows is the sequence of residues modulo p of the sizes of the
parts contributed by each row.

The abacus residue sequence can be obtained from the row multiplicities as
follows: start with the empty sequence; for each i (beginning with i = 1), append
a term equal to i plus the previous term, and do so a number of times equal to the
ith row multiplicity. An abacus residue sequence uniquely determines the abacus
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for a p-core partition whose beads are rightmost within their rows. A partition is
a p′-partition if and only if 0 does not occur in the abacus residue sequence.

In Figure 2.1 we illustrate all the parameters introduced in this section.

4 6 8 11

4

2

2

3

1 ≡ 1
2 ≡ 2
3 ≡ 3
4 ≡ 4
6 ≡ 1
8 ≡ 3
11 ≡ 1
14 ≡ 4
18 ≡ 3
22 ≡ 2
26 ≡ 1

Figure 2.1. The 5-abacus for (26, 22, 18, 142, 112, 83, 63, 44, 34, 24, 14), a parti-
tion of 198. The bead multiplicities are indicated across the top, above the cor-
responding runners; the row multiplicities are indicated down the left-hand side;
the abacus residue sequence is indicated down the right-hand side (the actual
size of the parts corresponding to beads in a particular row are on the left-hand
side of the equivalence). This partition is the largest 5-core 5′-partition.

In the terminology we have introduced, McSpirit and Ono obtain their upper
bound on the size of a p-core p′-partition [McSO22, Theorem 4.1] by observing that
if some row multiplicity is p or greater, then the abacus residue sequence has a
subsequence which is an arithmetic progression modulo p of length p, and hence
contains a 0 when p is prime. In fact, when p is prime, an arithmetic progression
modulo p which does not begin at 0 need only be of length p−1 to guarantee a 0,
and hence a partition is not a p′-partition if some row multiplicity other than the
first nonzero multiplicity is p−1 or greater. This observation sharpens their upper
bound to the following.

Proposition 2.6. Let p be prime. Let λ be a p-core p′-partition. Then

|λ| ⩽ 1

24
(p6 − 4p5 + 5p4 + 12p3 − 42p2 + 52p− 24).

Proof. The first row multiplicity of the largest p-core p′-partition is nonzero: if
(0, . . . , 0,mi, . . . ,mp−1) are the row multiplicities of a p′-partition with mi > 0,
then (i, 0, . . . , 0,mi−1, . . . ,mp−1) are the row multiplicities of a larger p′-partition.
Thus the requirement that the abacus residue sequence avoids long arithmetic pro-
gressions – described in the paragraph directly above – implies that the largest
p-core p′-partition has all row multiplicities less than or equal to p−2, except pos-
sibly the first which is less than or equal to p−1.

Now observe that increasing a row multiplicity increases the size of the partition.
Therefore the partition with row multiplicities (p−1, p−2, p−2, . . . , p−2) is larger
than the largest p-core p′-partition. Computing the size of this partition with
Lemma 2.2 (setting bi = (p− 2)i+ 1) gives the bound. □
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Remark 2.7. The proof of McSpirit and Ono’s bound [McSO22, Theorem 4.1] er-
roneously claims that adding a bead to an abacus increases the size of the partition
(in their notation, that Aλ ⩽ AΛ implies |λ| ⩽ |Λ|). The above proof of Proposi-
tion 2.6 corrects this mistake by considering the insertion of a row between existing
rows (that is, increasing a row multiplicity) rather than the addition of a bead.

3. An explicit family of large p-core p′-partitions

We exhibit a family of large (having size sextic in p) p-core p′-partitions.

Proposition 3.1. Let p be an odd prime. Let λ be the p-core partition with row
multiplicities (p−1, 2, p−2, 2, p−2, . . . , 2, p−2, 1). Then λ is a p′-partition of size

|λ| = 1

96
(p6 + 6p4 − 24p3 + 89p2 − 120p− 48).

Proof. The abacus residue sequence for λ is(
1, 2, . . . , p−1,

+1 +1 +1

. . .

p− 2

1, 3,

+2 +2

6, . . . , p−3,

+3 +3

. . .

p− 2

1, 5,

+4 +4

. . . . . . , p−2, . . . , p−(p−2),

+p−2 +p−2

. . .

p− 2

1
)
.

+p−1

This does not contain any zeros: when adding an even number 2k, the resulting
residue is 1 or 2k + 1; when adding an odd number 2k + 1, the sequence starts at
2k+1, so 2k+1 can be added p−2 times without hitting 0. Thus λ is a p′-partition.

The claimed size is found using Lemma 2.2. (The bead multiplicities are

bi =


1
2 (i+ 1)p− 1 if i odd;
1
2 ip+ 1 if i even and i < p− 1;
1
2p(p− 1) if i = p− 1;

and the computations are eased by summing in pairs: for i odd, bi+bp−i =
1
2p(p+1)

except when i = 1, and b2i + b2i+1 = 1
2 (i+1)2p2 + 2 except when i = p−2.) □

Except when p = 3, the p-core p′-partitions identified in Proposition 3.1 are not
largest. Indeed, they do not satisfy the necessary conditions identified in Proposi-
tion 4.5(a) or Corollary 4.9 below.

We obtain two more families of large p-core p′-partitions by “symmetrising” the
row multiplicities given in the statement of Proposition 3.1: replacing the second
half of the tuple with the reverse of the first half, or vice versa (and adjusting the
first or last entry by 1). Indeed, this corresponds to the same operation on the
abacus residue sequence and hence preserves the p′-partition property (cf. Corol-
lary 4.9). The row multiplicities and sizes of the resulting partitions depend on the
value of p modulo 4. Which symmetrisation is larger also depends on the value
of p modulo 4: it can be shown that, for p > 3, replacing the first half with the
reverse of the second yields the largest of the three partitions if p ≡ 1 (mod 4),
while replacing the second half with the reverse of the first yields the largest if
p ≡ 3 (mod 4). Nevertheless neither offers a significant improvement: all are of
size sextic in p with leading term 1

96p
6.
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Figure 4.1. The graph G5. For readability we have drawn only half the edges;
reversing the edges labelled 1 and 2 yields the edges labelled 4 and 3 respectively.
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Figure 4.2. The 5-abacus for the partition (12, 83, 63, 44, 34, 24, 14) and the cor-
responding walk on G5. The abacus residue sequence, indicated down the right-
hand side of the abacus, is the sequence of vertices visited by the walk.

4. Walks on the additive residue graph

We establish a correspondence between p-core p′-partitions whose beads are
rightmost and walks on a certain graph, and show that the largest such partition
corresponds to the longest such walk.

4.1. Additive residue graph

Definition 4.1. Let the additive residue graph be the labelled directed graph Gp

with vertices the residue classes modulo p, and directed edges labelled i from each
residue r to r + i, for each 1 ⩽ i ⩽ p−1.

As an unlabelled graph, Gp is the complete directed graph on p nodes. We refer
to an edge labelled i as an i-edge. The graph G5 is illustrated in Figure 4.1.

Consider the abacus residue sequence of a p-core partition whose beads are right-
most. This sequence can be interpreted as the sequence of vertices visited in a walk
on Gp starting at 0 in which edges appear in increasing order (that is, some number
of 1-edges are traversed, then some number of 2-edges, and so on). The ith row
multiplicity of the partition is the number of i-edges traversed; the total length of
the walk is the (p−1)th bead multiplicity. The partition is a p′-partition if and only
if the walk does not revisit 0. As an example, the walk on G5 corresponding to the
5-abacus of a partition is illustrated in Figure 4.2.

From now on, we are interested only in walks starting at 0 in which edges appear
in increasing order and which do not revisit 0, and we will refer to such restricted
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walks simply as walks. There is a one-to-one correspondence between walks on Gp

and p-core p′-partitions whose beads are rightmost.
Our aim in this section is to describe the longest walk on Gp and show that it

corresponds to the largest p-core p′-partition. Note we have not yet justified the
use of the word “the” in the previous sentence – that is, we have not yet shown
that there is a unique longest walk and a unique largest partition.

Observe that extending a given walk on Gp corresponds to a larger partition;
however, not every longer walk corresponds to a larger partition. For example,
traversing two 1-edges corresponds to the partition (2p−1, 1p−1), while traversing a

single p−1
2 -edge corresponds to (p−1

2

p+1
2 ); the latter is larger for p > 11.

4.2. The (p−1)-recurrent property

In this subsection we show that the following property is satisfied both by longest
walks on Gp and by the walks on Gp corresponding to largest p-core p′-partitions.

Definition 4.2. A walk on Gp is said to be (p−1)-recurrent if it contains an i-edge
incident to p−1 for every 1 ⩽ i ⩽ p−1.

Lemma 4.3. Let 1 ⩽ i ⩽ p−1.

(a) The ith row multiplicity of a largest p-core p′-partition is nonzero.
(b) A longest walk on Gp contains an i-edge.

Proof. The case i = 1 of part (a) was noted in the proof of Proposition 2.6; consid-
ering the corresponding walk on Gp also deals with the case i = 1 of part (b).

We will show that, given a walk on Gp which does not contain an i-edge for some
i > 1 (but which does contain a 1-edge), there exists a walk on Gp strictly containing
it. Clearly this suffices to prove part (b). It also proves part (a): given a partition
whose ith row multiplicity is 0, the corresponding walk on Gp does not contain an
i-edge, and a walk strictly containing it corresponds to a larger partition.

Suppose we have a walk on Gp which does not contain an i-edge for some i, and
suppose i > 1 is minimal with this property. Let r be the endpoint of the final
(i−1)-edge in the walk.

If i = p−1, we can add a (p−2)-edge or (p−1)-edge (depending on the value of
r) to extend the walk. If i < p−1, it suffices to find a nonempty walk from r to
itself which uses only edges with labels i−1, i and i+1. Supposing this is done, we
can add this closed walk to our original and obtain a walk strictly containing it.

We use the following: take (i−1)-edges until reaching p − (i−1) (which is pos-
sible without hitting 0 because p − (i−1) is the final residue in the sequence
(i−1, 2(i−1), . . .)); take two i-edges (so the walk reaches i+1); take (i+1)-edges
until reaching r (which is possible without hitting 0 because i+1 is the first residue
in the sequence (i+1, 2(i+1), . . .)). That is, the closed walk we add is:

r
i−1−−→ · · · i−1−−→ p−(i−1)

i−→ 1
i−→ i+1

i+1−−→ · · · i+1−−→ r. □

Lemma 4.4. Let 1 ⩽ i ⩽ p−1. Let s be the endpoint of the final i-edge in a longest
walk on Gp. Then s+1 cannot be reached from s on i-edges while avoiding 0.

Proof. Suppose, towards a contradiction, s+1 can be reached from s in Gp using

only i-edges and avoiding 0. Then we can replace the step s
i+1−−→ s+i+1 with a

path s
i−→ s+i

i−→ · · · i−→ s+1
i−→ s+i+1 which is strictly longer. □
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Proposition 4.5. Let 1 ⩽ i ⩽ p−1.

(a) A largest p-core p′-partition has a part of size p−1 (mod p) which differs in
size from an adjacent part by i.

(b) A longest walk on Gp contains an i-edge incident to p−1.

That is, walks corresponding to largest p-core p′-partitions and longest walks on Gp

are (p−1)-recurrent.

Proof. [(a)] Suppose we have a partition with no part of size p−1 (mod p) which
differs in size from an adjacent part by i. Consider the section of the abacus
containing the rows with i gaps:

/∋ p−1

The coloured bead can be moved to the position of the coloured gap. This increases
by 1 the parts in the rows in between, and leaves unchanged all other parts. Since
the residues of the rows in between are not p−1, the result is still a p′-partition.

[(b)] Consider a walk on Gp with no i-edge incident to p−1. Let r be the start-
point of the first i-edge and s the endpoint of the last. Thus the section of the walk
on i-edges is

· · · −→ r−(i−1)
i−1−−→ r

i−→ r+i
i−→ · · · i−→ s

i+1−−→ · · · .

By Lemma 4.4, we may assume s+1 cannot be reached from s in Gp on i-edges
while avoiding 0 (or else the walk is not longest). That is, s+1 appears before s in
the sequence (i, 2i, . . .), so s can be reached from s+1 on i-edges while avoiding 0.
We can therefore replace the section above with the strictly longer

· · · −→ r−(i−1)
i−→ r+1

i−→ r+i+1
i−→ · · · i−→ s+1

i−→ · · · i−→ s
i+1−−→ · · · .

Since no i-edge in the original walk is incident to p−1, the new walk still avoids 0.
(The new walk in fact corresponds to a larger partition; together with an analogue
of Lemma 4.4 for partitions, this gives an alternative proof of part (a).) □

4.3. Longest walks and largest partitions

We now show that there is a unique longest walk on Gp and a unique largest
p-core p′-partition, and that they correspond.

The (p−1)-recurrent property allows a walk to be decomposed into closed walks
from p−1 to itself using only two types of edges. Concretely, a (p−1)-recurrent
walk on Gp corresponds to a choice of residues 1 ⩽ ri ⩽ p−1 on which the walk
transitions from traversing i-edges to traversing (i+1)-edges, for each 2 ⩽ i ⩽ p−3,
as well as a choice of final residue 1 ⩽ rp−1 ⩽ p− 1. Once these choices are made,
the walk is determined:

(i) take steps from 0 to p−1 on 1-edges;
(ii) for each 2 ⩽ i ⩽ p−3, take steps from p−1 to ri on i-edges and take steps

from ri to p−1 on (i+1)-edges;
(iii) take steps from p−1 to rp−1 on (p−1)-edges.
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Furthermore, although not all choices of a residue ri yield a walk which avoids 0,
this is independent of the choices of all other residues rj .

Theorem 4.6. Let p be an odd prime. The unique longest walk on Gp is the unique
longest (p−1)-recurrent walk.

Proof. By Proposition 4.5(b), a longest walk on Gp is (p−1)-recurrent, so it suffices
to show that there is a unique longest (p−1)-recurrent walk. In a walk from p−1 to
itself using only i-edges and (i+1)-edges, the number x of i-edges and the number
y of (i+1)-edges satisfy xi + y(i+1) ≡ 0 (mod p) (because the walk starts and
finishes on the same residue). For a fixed total number of steps x + y, there is at
most one solution to this equation for 0 ⩽ x, y ⩽ p − 1. Thus there is a unique
choice of residue ri on which the walk transitions from i-edges to (i+1)-edges which
maximises the number of steps between two visits to p−1. □

To show that a largest p-core p′-partition corresponds to the longest walk, we
must show that maximising the number of steps between visits to p−1 also max-
imises the size of the corresponding partition.

Lemma 4.7. Let 1 ⩽ i ⩽ p−1. Let 0 ⩽ u < v ⩽ p−1 be integers such that
vi ⩾ u(i+1). Consider an abacus which has all beads rightmost. The following
replacements strictly increase the size of the corresponding partition:

(a) u consecutive rows each with i+1 gaps becoming v rows each with i gaps;
(b) u consecutive rows each with i+1 beads becoming v rows each with i beads.

The replacements (a) and (b) are illustrated in Figure 4.3.

⇝

(a) u rows of i+1 gaps ⇝ v rows of i gaps
The 3rd-to-last gap is coloured; after the replacement, there are more beads following it.

⇝

(b) u rows of i+1 beads ⇝ v rows of i beads
The 3rd bead is coloured; after the replacement, there are more gaps preceding it.

Figure 4.3. The replacements (a) and (b) of Lemma 4.7 with p = 7, i = 2,
u = 3 and v = 5. The coloured beads and gaps are those compared in the proof
of Lemma 4.7 when j = 3.
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Proof. Recall each bead corresponds to a part of size the number of gaps preceding it
(that is, the number of gaps in a numerically lower position). Thus the contribution
to the size from a given set of consecutive rows can be broken down into:

(1) gaps in the given rows contributing to parts corresponding to beads after the
given rows; and

(2) beads in the given rows, whose corresponding parts have contributions from

(2.1) gaps preceding the given rows; and
(2.2) gaps within the given rows.

The total contribution of (1) is proportional to the number of gaps within the
given rows, and the total contribution of (2.1) is proportional to the number of beads
within the given rows. Replacements (a) and (b) increase both the number of gaps
and beads (at least one of which strictly): the number of beads under replacement
(a) and the number of gaps under replacement (b) increase by v(p−i)−u(p−(i+1))
which is positive since v > u; the number of gaps under replacement (a) and the
number of beads under replacement (b) increase by vi−u(i+1) which is nonnegative
by assumption.

It remains to show that the contribution from (2.2) increases (weakly – for the
remainder of the proof, all comparatives should be considered to be weak). For
this, the rest of the abacus is irrelevant: we may assume that the abacus consists
solely of the rows in question. An explicit calculation of the size of the partitions
corresponding to these abaci is possible; here we present comparisons (illustrated
in Figure 4.3) between the abaci which demonstrate the required increase.

[(b)] It suffices to show, for 1 ⩽ j ⩽ u(i+1), that the jth bead has more gaps
preceding it among v rows of i beads than among u rows of i+1 beads (our range
considers all the beads in u rows of i+1 beads; there may be additional beads in v
rows of i beads which further increases the size of that partition). Among v rows
of i beads, there are fewer beads in each row, so the jth bead is in a row further
down the abacus (that is, a numerically higher row). Also, there are more gaps in
each row. Thus, among v rows of i beads, the jth bead has more rows preceding
it, each of which has more gaps; thus the jth bead has more gaps preceding it.

[(a)] Note that summing the number of gaps preceding each bead is equivalent
to summing the number of beads following each gap. Thus it suffices to show, for
1 ⩽ j ⩽ u(i+1), that the jth gap counted from the end has more beads following
it among v rows of i gaps than among u rows of i+1 gaps. The proof of this is
identical to the proof for (b) above, after interchanging “gap” and “bead”, and
replacing “down” with “up” (and “higher” with “lower”), and “preceding” with
“following”. (Alternatively, note that an abacus consisting of x rows of j gaps
and an abacus consisting of x rows of j beads are conjugate to each other, in the
sense that their corresponding Young diagram are reflections in the main diagonal;
conjugation preserves the size of a partition, and thus the claims regarding the
contribution from (2.2) are equivalent for (a) and (b).) □

Theorem 4.8. Let p be an odd prime. There is a unique largest p-core p′-partition,
and it corresponds to the unique longest walk on Gp.

Proof. By Proposition 4.5(a), the walk corresponding to a largest p-core p′-partition
is (p−1)-recurrent. Thus it suffices to show that the longest (p−1)-recurrent walk
maximises the size of the corresponding partition (Theorem 4.6 says that this walk
is longest amongst all walks on Gp, and allows us to deduce uniqueness).
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Fix 1 ⩽ i ⩽ p−1, and consider the size contributed by the rows corresponding
to the closed walk on i-edges and (i+1)-edges between two visits to p−1 (these
rows have i and i+1 gaps respectively). Let x and y be the numbers of i- and
(i+1)-edges taken on this closed walk, where 0 ⩽ x, y ⩽ p−1. Suppose there exists
a longer closed walk which takes x′ steps on i-edges and y′ steps on (i+1)-edges,
with 0 ⩽ x′, y′ ⩽ p− 1 and x′ + y′ > x+ y. If both x′ ⩾ x and y′ ⩾ y, then clearly
replacing the old closed walk with the new increases the size of the partition (there
would be more rows of i gaps and more rows of i+1 gaps).

Suppose instead x′ > x and y′ < y. Let u = y−y′ and v = x′−x; then replacing
the old closed walk with the new corresponds precisely to the replacement (a) of
Lemma 4.7. Indeed the hypotheses of Lemma 4.7 hold: we have 0 ⩽ u < v ⩽ p−1
from the definitions of x, x′, y, y′; it follows that vi − u(i+1) = (v − u)i − u >
−p; the closed walks start and finish on the same residue, from which we deduce
vi − u(i+1) ≡ 0 (mod p); combining the second inequality with the congruence
yields vi−u(i+1) ⩾ 0. Thus Lemma 4.7 tells us that taking the longer closed walk
corresponds to a larger partition.

Similarly, supposing instead y′ > y and x′ < x, setting u = x−x′ and v = y′− y
and using Lemma 4.7(b) (with p−1− i in place of i) tells us that taking the longer
closed walk corresponds to a larger partition. This completes the proof. □

Corollary 4.9. The unique largest p-core p′-partition has symmetric row multi-
plicities: mi = mp−i for 2 ⩽ i ⩽ p− 2, and m1 = mp−1 + 1.

Proof. A walk from p−1 to itself on i- and (i+1)-edges is precisely the reverse of
a walk from p−1 to itself on (p− (i+1))- and (p− i)-edges. Thus when the closed
walks between visits to p−1 are chosen to maximise the number of steps taken, the
entire walk is symmetric, in the sense of retracing all its steps (except for the first
step from 0) after it has taken its last step on a p−1

2 -edge. □

The characterisation of Theorem 4.8 and the (p−1)-recurrent property allows us
to compute the largest p-core p′-partition much quicker than an exhaustive search.
Indeed, checking the lengths of the walks from p−1 to r on i-edges and from r
to p−1 on (i+1)-edges, for each 2 ⩽ i ⩽ p−2 and 1 ⩽ r ⩽ p−1, has complexity
O(p2); in contrast, checking all partitions with row multiplicities below the bound
in the proof of Proposition 3.1 has complexity O(pp−1). The partitions found by
this computation for small p are recorded in Appendix A.
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Appendix A. Largest p-core p′-partitions and their sizes for small p

Table A.1. The largest p-core p′-partitions for p ⩽ 43, described by their row
multiplicities, found by assessing for each i the optimal choice of the residue ri
on which to transition from traversing i-edges to traversing (i+1)-edges in the
corresponding walk on Gp. Since the row multiplicities are symmetric (Corol-
lary 4.9), the second half of the tuple can be deduced from the first, and so is
omitted for larger p (a semicolon denotes the midpoint).

p Largest p-core p′-partition (row multiplicities)

3 (2; 1)
5 (4, 2; 2, 3)
7 (6, 2, 5; 5, 2, 5)
11 (10, 5, 7, 6, 8; 8, 6, 7, 5, 9)
13 (12, 5, 7, 10, 8, 11; 11, 8, 10, 7, 5, 11)
17 (16, 8, 9, 12, 15, 14, 8, 14; 14, 8, 14, 15, 12, 9, 8, 15)
19 (18, 8, 13, 14, 12, 14, 16, 10, 17; 17, 10, 16, 14, 12, 14, 13, 8, 17)
23 (22, 11, 15, 16, 19, 17, 18, 18, 14, 15, 20; 20, 15, 14, 18, 18, 17, 19, 16, 15, 11, 21)
29 (28, 14, 17, 23, 23, 20, 22, 23, 26, 26, 20, 22, 17, 26; . . .)
31 (30, 14, 21, 20, 23, 26, 29, 27, 18, 26, 27, 23, 24, 19, 29; . . .)
37 (36, 17, 23, 27, 27, 30, 33, 28, 32, 33, 24, 34, 35, 29, 32, 26, 21, 35; . . .)
41 (40, 20, 25, 29, 35, 34, 30, 32, 32, 37, 38, 29, 37, 38, 26, 35, 36, 30, 26, 38; . . .)
43 (42, 20, 29, 31, 31, 34, 37, 40, 36, 37, 37, 30, 31, 38, 38, 29, 38, 38, 32, 28, 41; . . .)

Table A.2. Sizes of the largest p-core p′-partitions for p ⩽ 43, as well as the
sizes of the large p-core p′-partitions explicitly described in Proposition 3.1 and
the upper bound on the size of p-core p′-partitions from Proposition 2.6.

p Explicit partition Largest partition Upper bound

3 10 10 10
5 187 198 289
7 1,326 1,726 2,701
11 19,134 29,773 50,500
13 51,655 93,334 146,015
17 255,671 502,140 788,476
19 496,802 1,006,386 1,577,550
23 1,556,950 3,312,177 5,158,945
29 6,234,927 14,508,172 21,523,915
31 9,295,954 22,313,239 32,413,475
37 26,832,011 68,032,781 95,761,401
41 49,641,139 127,172,362 179,231,950
43 66,042,990 171,105,947 239,637,580
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