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Abstract

Nature sometimes arranges itself in extremely curious ways, sowing the seed of very
intriguing physics. Magnetic systems offer a rich variety of interesting features. They
are traditionally studied in either their classical (S → ∞), or their extreme quantum
limit (S = 1

2
). However, magnetic degrees of freedom in spin systems span within

a whole spectrum range and do not necessarily reduce to the specific case found at
the extremities. Spin–1 magnets provide a good example of what happens to ground
state and excitations properties for such instance. Indeed, a spin–1 is special, in the
sense that, besides displaying dipolar degrees of freedom, a spin–1 can also exhibit
on-site quadrupolar degrees of freedom, while retaining its quantum characteristics.
Therefore, spin–1 systems are often used as examples to refer to spin-nematic order
in magnetic insulators, Fe-based superconductors, or cold atoms. Unlike for spin–1

2
,

which in the classical limit can be represented by an O(3) vector, for spin–1, an O(3)
vector does not completely describe all of what a spin–1 can do, namely intrinsically
exhibiting quadrupoles. In this Thesis, I develop a united framework that enables us
to treat dipolar and quadrupolar degrees of freedom of a spin–1 moment on an equal
footing. My method is based on the extension of the usual su(3) algebra describing a
quantum spin–1 into the u(3) algebra. Within the u(3) formalism, I derive equations
of motion (EoM) for the objects living in the u(3) algebra. The u(3) approach enables
the appropriate formulation for both classical and quantum derivations. Moreover,
the EoM take a simple form suitable for numerical implementation. I illustrate this
method by applying it to the well-known Bilinear-Biquadratic model on the triangu-
lar lattice for the ferroquadupolar state. This study is supported through classical
low-temperature expansion in order to probe the thermodynamical properties, as well
as quantum multi-bosons theory that allows to access dynamics. These results are
validated by comparison with numerical simulations classical Monte Carlo (MC) and
Molecular Dynamics (MD) respectively, both expressed in terms of u(3) objects. I
show that at sufficiently low temperature numerical simulations can be corrected for
the classical statistics, and the fully quantum zero-temperature analytical results are
retrieved. Additionally, I confirm that our method is also applicable to anisotropic
models, which is of experimental relevance. Finally, some new ideas, including the
description of topological defects in spin–1 magnets and the generalization of the com-
monly used Self-Consistent Gaussian Approximation to the degrees of freedom of a
spin–1 expressed within our u(3) framework are explored.
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dx = 0, dy = 1, dz = 0, [ Eq. (2.35)] is shown as a red bar, and their
corresponding spin probability distribution [Eq. (A.3)] is shown in gray-
ish blue. Figure is reproduced from [201]. . . . . . . . . . . . . . . . . 80

3.2 Effect of the four generators creating fluctuations about the ferroquadrupo-
lar (FQ) ground state |y〉, computed for each generator separately ac-
cording to Eq. (2.87), and drawn here for an angle of φ = π

8
. The

generators Â1
2 (acting on the right from the application of R̂†(~φ)) and

Â2
1 (acting on the left from the application of R̂(~φ)) introduce a com-

plex component of the director d along the x–axis, inducing a complex
rotation of the directors about the z–axis. This deforms the quadrupole
"donut" about the same axis and promotes a small but finite spin dipole
moment along the z–axis [Eq. (2.44)]. The generators Â2

3 and Â3
2 pro-

duce a complex component of the director d along the z–axis, corre-
sponding to a complex rotation of the director about the x–axis, reshape
the quadrupole "donut" about the x–axis, and induce a spin dipole mo-
ment along the z–axis. The red bar represents the real part u of the
coefficients dα [Eq. (2.37)] in Eq. (2.35), and the orange bar represents
the imaginary part v. Figure is reproduced from [201]. . . . . . . . . . 83

3.3 Spectral representation of structure factors found in a classical theory
of fluctuations about a ferroquadrupolar (FQ) ground state of the BBQ
model. (a) Spectral representation of dipole structure factor, SCL

S (q, ω)
[Eq. (3.86)], within the classical low–temperature expansion developed
in Section 3.2, at temperature T = J . (b) Equivalent result the for
the quadrupole structure factor, SCL

Q (q, ω) [Eq. (3.91)]. (c) Equivalent
results for the A–matrix structure factor, SCL

A (q, ω) [Eq. (3.94)]. All
results are shown for parameters Eq. (3.87), and have been convoluted
with Gaussian of FWHM 0.35 J. Bragg peaks have been omitted for
simplicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4 Temperature dependence of the specific heat per spin c(T ), obtained
by U(3) Monte Carlo (u3MC) simulations of the BBQ model HBBQ

[Eq. (2.72)], for a ferroquadrupolar (FQ) ground state. Results are il-
lustrated for different system sizes L. The peak at c(T ) at T ∗ ∼ 0.43
reflects the onset of fluctuations of FQ order, as depicted in Fig. 3.5 (a).
The low temperature limit c(T → 0)→ 2 agrees with the prediction ob-
tained from the analytical theory of thermal fluctuations, which is based
on the existence of four independent classical excitations about the the
FQ ground state, as discussed in Section 3.3.2. All simulations were
carried out by my collaborator Dr. Rico Pohle using the MC scheme de-
scribed in Section 2.6.1 for parameters given in Eq. (3.87) and consistent
with a FQ ground state. Figure is reproduced from [201]. . . . . . . . 101
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3.5 Temperature and system size dependence of the order moment Q for a
ferroquadrupolar (FQ) ground state of the BBQmodelHBBQ [Eq. (2.72)].
(a) Results for Q2 found in U(3) Monte Carlo (u3MC) simulations for
different system sizes, L. The temperature T ∗ ∼ 0.43 of the onset of
fluctuations of FQ order at Q2 corresponds to the one found in the
peak of the heat capacity, shown in Fig. 3.4. At low temperatures, Q2

tends to the ordered moment of the FQ ground state, Q2
0 [Eq. (3.105)].

(b) Finite–size scaling of the coefficient α(L) [Eq. (3.106)], showing a log-
arithmic divergence for large L. This implies a correction of the leading
order in temperature α(L) to the ordered moment which suppresses any
quadrupole moments at finite temperate in the thermodynamic limit
[Eq. (3.108)], consistent with the Mermin–Wagner Theorem. Results
are shown for both u3MC simulations (blue circle), and the analytic
theory (red points) [Eq. (3.107)], developed in Section 3.3. All u3MC
simulations were carried out by my collaborator Dr. Rico Pohle using
the u3MC scheme described in Section 2.6.1, for parameters Eq. (3.87)
consistent with a FQ ground state. Figures are reproduced from [201]. 102

3.6 Results for equal–time structure factors SCL
λ (q) obtained from the ana-

lytical theory of thermal fluctuations (solid line) [cf. Section 3.3.3 and
Section 3.3.4] and compared with U(3) Monte Carlo (u3MC) simulations
results [Eq. (2.124)] of HBBQ [Eq. (2.72)], for parameters consistent with
a ferroquadrupolar (FQ) ground state [Eq. (3.87)] (a) Dipole structure
factor, SCL

S (q) [Eq. (3.85)], exhibiting a spectral weight peak around K,
reflecting AFM correlations . (b) Quadrupole structure factor, SCL

S (q)
[Eq. (3.89)], showing divergence associated with fluctuations of FQ order
for q → Γ. (c) A–matrix structure factor, SCL

A (q) [Eq. (3.93)], which
shows behavior associated with both dipolar and quadrupolar fluctua-
tions. In all cases, the structure factors have been divided by tempera-
ture T , and agree perfectly with the predictions of low–temperature an-
alytic theory (line). All simulations were performed by my collaborator
Dr. Rico Pohle with parameters Eq. (3.87), for a cluster with linear di-
mension L = 96 (N = 9216 spins), at T ≈ 0.03, using the u3MC scheme
described in Section 2.6.1. Figures are reproduced from [201]. . . . . . 104
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4.1 Quantum excitations about a ferroquadrupolar (FQ) ground state of the
BBQ model [Eq. (2.72)] on the triangular lattice as resolved in quan-
tum dynamical structure factors compared with equivalent results ob-
tained from a classical theory. (a) Dynamcial dipole structure factor
SQM

S (q, ω) [Eq. (4.71)], within T = 0 quantum theory of Section 3.2.
(b) Equivalent results for the quadrupole structure factor, SQM

Q (q, ω)
[Eq. (4.78)]. (c) Equivalent results for the A–matrix structure factor,
SQM

A (q, ω) [Eq. (4.86)]. (d) Spectral representation of dipole structure
factor, SCL

S (q, ω) [Eq. (3.86)], within the classical low–temperature ex-
pansion developed in Section 3.2, at temperature T = J . (e) Equivalent
result the for the quadrupole structure factor, SCL

Q (q, ω) [Eq. (3.91)]. (f)
Equivalent results for the A–matrix structure factor, SCL

A (q, ω) [Eq. (3.94)].
We also note that the quantum dispersion corresponds to the geomet-
rical mean of the two classical dispersions for dipolar and quadrupolar
excitations Eq. (4.33). All results are shown for parameters Eq. (3.87),
and have been convoluted with Gaussian of FWHM 0.35 J. Bragg peaks
have been omitted for simplicity. Details of the quantum theory are
given in Section 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Comparison between "raw" results of u(3) Molecular Dynamics (u3MD)
simulations of excitations about the FQ state and the predictions of
a T = 0 quantum analytical theory. "Raw" simulation results of-
fer a good account of the dispersions of the excitations, but not of
their spectral intensities. (a) Dynamical structure factor associated
with dipole moments, SMD

S (q, ω). Dipolar fluctuations exhibit rela-
tively high spectral weight near the top of the band, where excita-
tions have more of a spin–wave character. (b) Dynamical structure
factor associated with quadrupole moments, SMD

Q (q, ω). (c) Dynami-
cal structure factor associated with A–matrices, SMD

A (q, ω). (d) Predic-
tion for SQM

S (q, ω) from T = 0 quantum theory [Eq. (4.71)]. (e) Equiv-
alent prediction for SQM

Q (q, ω) [Eq. (4.78)]. (f) Equivalent prediction
for SQM

A (q, ω) [Eq. (4.86)]. Simulations were carried out by my collab-
orator Dr. Rico Pohle, using the u3MD simulation scheme described
in Section 2.6.2, for HBBQ [Eq. (2.72)] with parameters Eq. (3.87), at
a temperature T = 0.05 J , in a cluster of linear dimension L = 96
(N = 9216 spins). T = 0 quantum analytical predictions have been
calculated using the quantum theory of fluctuations developed in Sec-
tion 4.2. All the results have been convoluted with a Gaussian envelope
of FWHM = 0.35 J. Bragg peaks are not plotted for simplicity. The
individual panels are reproduced from [201]. . . . . . . . . . . . . . . . 128
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4.3 Temperature dependence of "raw" results obtained by U(3) Molecular
Dynamics (u3MD) simulation at fixed wave vector q = K. Results are
shown for the dynamical structure factor associated with A–matrices,
SMD

A (q = K, ω) [Eq. (2.130)], obtained from u3MD simulations for tem-
peratures between T = 0.01 J to T = 0.15 J . The T = 0 prediction
obtained by a quantum theory, SQM

A (q, ω) [Eq. (4.86)], is shown by the
red dashed line. Solid lines correspond to fits of u3MD data using a
Voigt function [Eq. (4.93)]. For T → 0, the energy of the associated ex-
citations for "raw" u3MD simulation results converge towards the energy
predicted by the quantum theory. But the spectral weight of the struc-
ture factor suffers a dramatic loss of intensity. Indeed, the intensities of
the peak fail to converge to the predictions of a T = 0 quantum theory
for T → 0. Simulations of HBBQ [Eq. (2.72)] were carried out by my col-
laborator Dr. Rico Phole, using the u3MD simulation scheme described
in Section 2.6.2, for parameters given in Eq. (3.87), and for a system size
L = 96 (N = 9216 spins). Simulation results and analytic prediction
have both been convoluted with a Gaussian of FWHM = 0.02 J . Figure
is reproduced from [201]. . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.1 Comparison between dynamical structure factors obtained from U(3)
Molecular Dynamics (u3MD) simulations [Section 2.6.2] and T = 0 quan-
tum theory results [Section 4.2] for a ferroquadrupolar (FQ) state. (a) Sim-
ulation results for dynamical structure factor associated with dipole
moments, SMD

S (q, ω). Dipolar fluctuations exhibit relatively high spec-
tral weight near the top of the band, where excitations have more of
a spin–wave character. (b) Equivalent results for quadrupole moments,
SMD

Q (q, ω). (c) Equivalent results for associated with A–matrices, SMD
A (q, ω).

(d) Simulation results for dynamical structure factor associated with
dipole moments, S̃MD

S (q, ω), corrected for classical statistics, following
Eq. (5.32). (e) Equivalent results for quadrupole moments, S̃MD

Q (q, ω).
(f) Equivalent results for A–matrices, S̃MD

Q (q, ω). (g) Prediction for
SQM

S (q, ω) from T = 0 quantum theory [Eq. (4.71)]. (h) Equivalent pre-
diction for SQM

Q (q, ω) [Eq. (4.78)]. (i) Equivalent prediction for SQM
A (q, ω)

[Eq. (4.86)]. Simulations were carried out by my collaborator Dr. Rico
Pohle, using the u3MD simulation scheme described in Section 2.6.2,
for HBBQ [Eq. (2.72)] with parameters Eq. (3.87) at a temperature
T = 0.05 J , in a cluster of linear dimension L = 96 (N = 9216
spins). All results have been convoluted with a Gaussian in frequency
of FWHM = 0.35 J. Figures are reproduced from [201]. . . . . . . . . 144
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5.2 Temperature dependence of results of U(3) Molecular Dynamics (u3MD)
simulation corrected for classical statistics according to Eq. (5.32) and
demonstrating successful convergence as T → 0 towards the T = 0 quan-
tum predictions. (a) u3MD results for dynamical structure factor asso-
ciated with A–matrices, SMD

A (q, ω), at wave vector q = K, for tem-
peratures between T = 0.01 J and T = 0.15 J . u3MD simulation re-
sults are represented by circles. They have computed with an energy
resolution 0.02 J , and have been corrected for classical statistics using
Eq. (5.32). Solid lines are the fits of the u3MD results using a Voigt pro-
file, Eq. (4.93). The prediction of the T = 0 quantum theory, Eq. (4.86),
convoluted with a Gaussian of FWHM = 0.02 J, is shown with a solid
red line. (b) Shift in peak energy ∆ω(T ), obtained by fitting using a
Voigt profile, showing convergence of the peak position on the predic-
tion of the T = 0 quantum theory. (c) Equivalent results for the inverse
lifetime Γ(T ). (d) Equivalent results for the peak height, I(T ). u3MD
simulations have been performed by my collaborator Dr. Rico Pohle, for
parameters identical to those used in Fig. 5.1 and given by Eq. (3.87).
Panels are reproduced from [201]. . . . . . . . . . . . . . . . . . . . . 145

6.1 Comparison of u3MD simulation results and T = 0 analytical quan-
tum prediction for the dynamical structure factors of a ferroquadrupo-
lar (FQ) state in the spin–1 bilinear–biquadratic (BBQ) model with
easy–plane anisotropy HD [Eq. (6.7)]. (a) Dipole dynamical structure
factor, SQM

S (q, ω), predicted by T = 0 quantum theory of Section 6.2.1.
(b) Equivalent results for quadrupole moments, SQM

Q (q, ω). (c) Equiv-
alent results for A–matrices, SQM

A (q, ω). (d) Dipole dynamical struc-
ture factor SMD

S (q, ω) found in molecular dynamics simulations within
u(3) representation (u3MD) . (e) Equivalent results for quadrupole mo-
ments, SMD

Q (q, ω). (f) Equivalent results for A–matrices, SMD
A (q, ω).

Numerical simulations were carried out by my collaborator Rico Pohle
for HD [Eq. (6.7)], with parameters given in Eq. (6.15), at a tempera-
ture T = 0.05 J , for system size of dimension L = 96 (N = 9216 spins).
u3MD results have been corrected for classical statistics by multiplica-
tion by a prefactor ω/2T following Eq. (5.32). All results have been
convoluted with a Gaussian in frequency of FWHM = 0.35 J. Figures
are reproduced from [201]. . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Eigenstates of Ŝxi forming the basis states of Bx [Eq. (6.24)]. Figure is
reproduced from [201]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Fluctuations created by the generators Âxy, Âxz, Âyx, and Âzx , accord-
ing to Eq. (2.86), for an angle φαβ = π

8
, around the FM ground state

given in Eq. (6.23). Figure is reproduced from [201]. . . . . . . . . . . 155
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6.4 Dynamical structure factors predicted by T = 0 quantum theory of fluctua-
tions for the ferromagnetic (FM) phase of the BBQ model on the triangular
lattice (Eq. (1.69)) with J1 being considered as Heisenberg anisotropic ex-
change interactions [Eq. (6.19)] and J2 = 0, and with an additional single
ion anisotropic exchange Hamiltonian [Eq. (6.20)]. (a)–(c) Dynamical struc-
ture factors for SA(q, ω) ( A-matrices), SQ(q, ω) (quadrupoles) and SS(q, ω)

(dipoles) obtained for the isotropic FM state of the Heisenberg Hamilto-
nian [Eq. (6.19)] where Jxx = Jyy = Jzz = −1 without any single–ion
anisotropy [Eq. (6.20)], D⊥ = Dx = 0. (d)–(f) Equivalent results for the
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where Jyy = Jzz = 0.8Jxx and Jxx = −1 without any single–ion anisotropy
[Eq. (6.20)], D⊥ = Dx = 0. (g)–(i) Equivalent results for the isotropic FM
state of the Heisenberg Hamiltonian [Eq. (6.19)] where Jyy = Jzz = Jxx = −1

with single–ion anisotropy [Eq. (6.20)], D⊥ = 0.5Dx and Dx = Jxx. (j)–(l)
Equivalent results for the easy-plane anisotropic FM state of the Heisenberg
Hamiltonian [Eq. (6.19)] where Jzz = 0.8Jxx and Jyy = Jxx = −1 with
single–ion anisotropy [Eq. (6.20)], D⊥ = 0.8Dx and Dx = Jxx. Figures are
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7.5 (a)-(f) Snapshots at different time during time evolution obtained by
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E.1 Statistical independence of points randomly generated a 5–dimensional
sphere, using Eq. (2.120). The second moment 〈x2

m〉 of the variables
xm, m = 1, ..., 6 is plotted as a function of the number of points, Ndot

and converges towards 〈x2
m〉 → 1/6 (middle black solid line) as Ndot →

∞. Statistical errors respect the central–limit theorem and decrease as
1/
√
Ndot (dashed lines). Sampling was performed by my collaborator
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E.2 Comparison of the U(3) Monte Carlo (u3MC) method with published

results for the spin–1 bilinear—biquadratic (BBQ) model on the trian-
gular lattice for parameters J1 = 1, J2 = −1.5, which corresponds to the
AFM phase [Fig. 1.11]. Specific heat C/N shows a double–peak struc-
ture. Results obtained from MC simulation, based on a u(3) matrices,
Âαβ description, for an u3MC update based on a 5–dimensional sphere
[Eq. (2.120)] and 4–dimensional sphere by eliminating the gauge freedom
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Chapter 1

Introduction: Why am I Even Doing
This?

In this Thesis, I present the new method I developed for studying spin–1 magnets.
This is based on the embedding of the usual su(3) algebra describing a spin–1 moments
within the larger u(3) algebra. In this Chapter, I provide an overview of the context
in which my work fits and summarize my key results.

I start in Section 1.1, where I first explain how the discovery of Quantum Mechanics
allowed scientists to understand Magnetism. I provide a historical summary about the
scientific discoveries from the beginning of the 20th that led to the discovery of spin
angular moments of electrons. I illustrate qualitatively how the laws of Quantum
Mechanics govern the behavior of the electrons on a single atom, how they interact,
and how this gives rise to magnetic moments. I then endeavor to explain how magnetic
atoms within a crystal interact, and how this gives rise to Magnetism and permits the
bloom of emergent and sometimes unexpected magnetic properties.

Section 1.2 set outs some motivations as why we should care about spin–1 mag-
nets and what makes a spin–1 moment so special. I give first a basic introductory
description of a single spin–1 and what happens when we describe them as interacting
spin-moments on a lattice described by a Hamiltonian. Then I give two interesting
and non-trivial examples of what spin–1 moments are capable of: nematic order and
symmetry-protected states in 1D Haldane chains.

In Section 1.3, I give an overview of modern research of spin–1 magnets that are
relevant to our investigation for both experimental and theoretical studies.

Finally, in Section 1.4, I summarize the results I have obtained and how they relate
to published work.

1.1 The Advent of Quantum Mechanics and Mag-
netism

1.1.1 Historical Prelude

Magnetism has been studied for thousands of years. According to written sources,
magnets were first discovered in ancient Greece. Indeed, Greek philosophers described

1



2 Introduction: Why am I Even Doing This?

that they observed how iron was attracted to a specific type of stone, now called
magnetite [12, 219, 261]. There is even a "legend" where a shepherd named Magnes got
his nail toe stuck to a piece of magnetite. In China, the mention of magnetism can also
be linked back to 400 B.C.E [225]. Historically, the use of the proprieties of magnetite
is known for being used as a compass. The first mention of magnetized needles used
for navigation purposes happened in China and is relatively recent (1117 C.E) [166].
A little bit later, in 1190 C.E, Europe also discovered the utility of compasses [124].
In certain ways, magnets shaped history by allowing humans to navigate in capricious

Figure 1.1: Mariner’s compass. Drawing by Thomas Dawson (public domain).

weather conditions. Nowadays, the applications of magnets are prodigious and very
diverse, spanning from fridge magnets to medical devices, including our understanding
of plate tectonics. But it wasn’t before the discovery of Quantum Mechanics at the
beginning of the 20th century, that the mysteries of Magnetism were elucidated.

In the 19th century, thanks to Faraday’s [85, 246] and Maxwell’s [31, 144, 158]
contributions, properties of magnetic fields were well understood. But the microscopic
origin of Magnetism remained a mystery to the laws of classical physics. Indeed, the
existence of quantized spin degrees of freedom, as well as exchange interactions was
indispensable to fully explain the origin of magnetism. Luckily, by the end of the
nineteenth century, these missing concepts started to gear together in such a way that
allowed for a fundamental breakthrough in the history of science.

With the advent of Quantum Mechanics [45, 128, 205, 216], which began with the
black body radiation problem solved by Max Plank in 1900 and the explanation of the
photoelectric effect explained by Albert Einstein in 1905, a new whole world burgeoned.

Quantum Mechanics offers various mathematical formalisms to describe the world
at the atomic and subatomic scale. In one of its formulations, called the Schrödinger
picture, Quantum Mechanics describes particles as wave–functions that evolve in time.
At each point in the phase–space, a wave function dictates a probability amplitude of
finding the particle in a given state. The states are described as vectors living in a linear
vector space called the Hilbert space. The time evolution of the states constituting the
systems is governed by the Schrödinger equation.

Despite being a fully deterministic theory, Quantum Mechanics relies deeply on
probability amplitudes and can only predict outcomes with certain probabilities. A
famous consequence of this is the uncertainty principle [130, 216]. It states that for
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two canonically conjugated variables, such as the position and the momentum of a
particle for instance, the accuracy for measuring these quantities is limited by the
Planck constant. This leads to important repercussions, even in magnetic systems,
where electrons may decrease their kinetic energy by delocalizing themselves.

A surprising feature of the Quantum Mechanics formalism is that it naturally leads
to a quantization of the physical quantities. This is in particular true for the angular
momentum and spin degrees of freedom. Another remarkable property of Quantum
Mechanics classifies the particle as either bosons or fermions [130, 205]. Additionally,
the spin-statistic theorem requires all particles with half–integer spin to behave as
fermions and all particles with integer spin to behave as bosons [54, 182].

Historically, the first evidence for the existence of spin degrees of freedom was
first discovered in spectral lines of alkali metals. In spectrum experiments, electrons
make transitions between different states, having different energies. The difference
in energy of the transition results in the absorption or emission of a photon. From
Rutherford’s experiments, also called Geiger–Marsden experiments, in the early 1900s,
physicists knew that atoms consisted of a hard, relatively small, positively charged
nucleus surrounded by a diffuse cloud of negatively charged electrons [203]. Spectral
emission lines for the Hydrogen atom seemed to follow a particular pattern, known as
the Balmer series, a specific case of the Rydberg formula applied to the Hydrogen atom
[204].

The Hydrogen atom is the simplest model consisting of 2 quantum particles inter-
acting, with the electron being bound to the proton. To explain the spectral emission
pattern, Niels Bohr built a model for the Hydrogen atom named after him, where
he assumed that the angular momentum of the electron is quantized [28]. When a
magnetic field is added, the main spectral lines split further apart into two (Zeeman
effect). However, Bohr’s model was not able to explain this. Wolfgang Pauli then
introduced a "two-valuedness not describable classically" [181] to account for the ad-
ditional degrees of freedom. This allowed him to formulate Pauli’s exclusion principle.
At approximately the same time, George Uhlenbeck and Samuel Goudsmit emitted
the hypothesis that electrons have an intrinsic angular momentum called spin, which is
quantized and two-valued, in order to explain the fine-structure splits in spectral lines.

In 1922, this was experimentally tested with the Stern–Gerlach experiment [71, 72],
which is now considered the first experimental evidence of the spin of an electron. In
this experiment, a beam of silver atoms is sent through an inhomogeneous magnetic
field. The spin angular momentum interacts with the magnetic field, and this inter-
action deviates the atom. Stern and Gerlach observed that the beam splits into 2,
demonstrating the quantized two-valued possible outcomes for the spin angular mo-
mentum.

Of course, the energy levels of the electrons in the Hydrogen atoms can be found by
solving the Shrödringer equation of motion [61]. One founds that the energy levels are
quantized and that the electron can be described by three quantum numbers: n, l, and
m. However, this does not still explain the existence of spin degrees of freedom. It is
only with the advance of Quantum Mechanics, in 1928 when Paul Dirac introduced the
Dirac equation, that spin magnetic moments were correctly predicted and naturally
arise as an intrinsic property of matter [55]. Indeed, by solving the Dirac equation
for the Hydrogen atom, the electron’s energy levels are adequately described by four
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quantum numbers, n,l, m, and s. This has made the previous theories based on a
classical picture of the electron, such as the Bohr model, obsolete. However, they still
provide helpful pedagogical insights.

Before explaining the physics of magnets, we need to borrow from Quantum Me-
chanics, the fact that observables are described by operators. The total angular mo-
mentum is then an operator Ĵ and follows commutations relations given by

[
Jα, Jβ

]
= i~εαβγJγ . (1.1)

It follows that the spectrum of Ĵ2 is given by the eigenvalues:

Ĵ2|ψj〉 = ~j(j + 1)|ψj〉 , j = 0,
1

2
, 1, . . . , (1.2)

and that the possible eigenvalues of Ĵz for the eigenvectors |ψj〉 of Ĵ2 are given by

Ĵz|ψj〉 = ~mj|ψj〉 , mj = −j,−j + 1, . . . , j , (1.3)

which results are valid for any operators satisfying Eq. (1.1).
For now, we assume that the electrons are independent particles and are evolving

around the nucleus in a central potential V (|x̂|). We then can restrict ourselves at
describing a single electron by the Hamiltonian

Ĥ = − p̂2

2me

+ V (|x̂|) . (1.4)

The electrostatic field perceived by the electrons is then just an instance of a central
potential.

The results obtained for Ĵ2 are also valid for the orbital angular moment L̂, defined
by

L̂ = x̂× p̂ , (1.5)

which also follows commutations relations given by Eq. (1.1). In analogy with classical
mechanics where the total angular momentum L is conserved, L̂ is also preserved, which
follows from the fact that its components commute with the Hamiltonian [Eq. (1.4)]

[
Lα, Ĥ

]
= 0 . (1.6)

This implies that L̂2 also commutes with Ĥ. Therefore, L̂2 and Ĥ can be diagonalized
within a common basis. The problem consists in finding the eigenvalues and eigen–
functions for L̂2, and then in solving the eigensystem for Ĥ with the eigen–functions
we obtained for L̂2.

For L̂2, we then find that the solutions are given by

L̂2|ψl〉 = ~l(l + 1)|ψl〉 , l = 0, 1, 2 . . . , (1.7)
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and that the possible eigenvalues of L̂z for the eigenvectors |ψl〉 of L̂2 are given by

L̂z|ψl〉 = ~ml|ψl〉 , m = −l,−l + 1, . . . , l . (1.8)

We conclude by noticing that the angular momentum is quantized, and for a given
eigenvalue of Ĵ2 characterized by j, the operator Ĵz splits these into 2j + 1 levels
labeled mj. Armed with theses considerations, and the fact the electrons have an
intrinsic angular degree of freedom, called the spin of the electron, we can now explain
what happens when electrons interact. As we will see in the next section, Section 1.1.2,
this will lead to selections rules, called Hund’s rules that dictated how the electrons
organize themselves within atoms, and how this allows for atoms to have a magnetic
moment.

1.1.2 Origin of Magnetic Moments

From the spin-statistic theorem, we know that because electrons have spin–1
2
, they are

fermions, and this has major consequences on how electrons of an atom interact at
the microscopic level and how this leads to macroscopic properties [54, 182]. Indeed,
from the fermionic character of electrons ensue interaction exchanges, due to the fact
that the wave function describing electrons needs to be anti–symmetric (in spatial
coordinates as well as in spin coordinates) under the exchange of 2 of the electrons.
These resulting "exchange forces" shape the way electrons organize themselves at the
atomic level [54]. They interact in such a way that emergent properties, otherwise
not predictable by considering independent electrons, arise and are even described as
observables. This led to two considerable consequences.

The first one is that atoms/ions have emergent spin moments, which arise from
the collective interplay between electrons. Hund’s rules and Pauli’s principle allow
to summarize theseexchange interactions and to predict the electronic ground state
configuration for an independent atom/ion [134]. Pauli’s principle ensures that they
can only be 2 electrons within the same orbital, one with spin up m1

s = +1
2
and one

with spin down m2
s = +1

2
. The first of Hund’s rules, known as the rule for maximum

multiplicity, states that given a certain electronic configuration, electrons will maximize
their total spin magnetic moments Ŝ.

Concretely, this means that electrons will first singly occupy the different orbital
levels of a shell while all the electrons have their spin being up mi

s = +1
2
, before

doubly occupying them. When a shell is more than half-filled, i.e there is one or more
doubly occupied orbitals, the 2 electrons within the same orbital have opposite spin in
accordance with Pauli’s principle. The reason for electrons within a shell to maximize
their total spin moment and have their spin parallel (and therefore by Pauli’s principle
to lay in different orbitals) is generally thought as the fact of having parallel spins and
being in different orbital ensures that the electrons are further apart from each other
and that their Coulomb repulsion is less important.

However, this turns out to be a wrong explanation. As explained in [134], consid-
ering the two following configurations of a helium atom : 1s2s with both spin pointing
up noted 3S, and 1s2s with spin being anti–parallel designated by 1S, calculations
based on quantum wave functions have shown that the average spacing between the
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2 electrons is smaller for 3S and that the inter-electronic repulsion is greater for 3S.
Therefore the electron-electron interaction should favor a configuration with opposite
spin. However, it turns out that the nucleus-electron interaction is more important for
the 3S and therefore reduces the potential energy of 3S compared to the 1S configu-
ration. Taking into account the potential energy due to electron-electron interaction
and electron-nucleus interaction imposes a lower energy state for the 3S configuration.
This is explained by the fact that the screening from the nucleus is less important
for parallel spin due to their Pauli "repulsion" which induces a greater average angle
between the electrons. Less screening from the nucleus allows the electrons to lower
their potential energy by getting closer to the nucleus [29, 110, 134, 179, 220].

The second rule says that for a given multiplicity, the lowest energy configuration
is given by the one with the largest value of orbital momentum L̂. The third and
last rule expresses the effect of spin-orbit coupling and affirms that the lowest energy
configuration happens for a total angular momentum Ĵ = L̂ + Ŝ. Hund’s rules have
important repercussion on the magnetic properties of materials as it governs how the
electrons are arranged. They are the reason for the existence of atoms/ions with
effective spin–1 moments. Indeed, for instance, the nickel ion Ni2+ has an electronic
structure given by [Ar]3d8, where the 8 outer-electrons on the d shell will arrange
themselves such that 3 of the 5 d orbitals will be doubly occupied, while 2 of them will
each support an electron. Because of Hund’s rules, the 2 unpaired electrons will have
parallel spin summing up to a total spin magnetic moment Ŝ = 1.

We conclude by stating that the key point of the repercussions of how electrons
interact via the laws of quantum electrodynamics allows for the total magnetic moment
of an atom to take on different values, including Ŝ = 1.

The second consequence is that it impacts the way atoms interact with each other,
which is mostly explained by how the outer electrons on each atom interact with the
neighboring ones. Indeed, Magnetism usually arises from the collective behavior of
outer electrons, even though its origin can also sometimes be due to the nuclei. This
topic is discussed in the next Section, Section 1.1.3.

1.1.3 Origin of Magnetic Interactions

In bulk materials, magnetic properties result from the interaction between its con-
stituents, which is described by quantum electrodynamics. It is, however, usually im-
possible to solve the systems exactly by taking into account all of its possible degrees
of freedom. We, therefore, simplify the systems to an effective model that compasses
the relevant degrees of freedom. For magnets, we commonly assume that the atoms
are isolated and consist of ions (formed by the nucleus and the core electrons) which
form a solid-state system of tight-bidding orbitals, and the outer electrons, which are
the ones that we usually assume to mediate between the atoms.

Indeed, the exchange interactions arise from the interplay between Pauli’s exclusion
principle and the Coulomb interaction [55]. A simple example where this is at play is
given by H2 molecules, which consist of 2 electrons with 2 orbital degrees of freedom.
Electrons are fermions and their total wave-function should be anti-symmetric (sym-
metric in real space and anti-symmetric in spin components or vice-versa). Considering
2 electrons a and b, if φ represents the single electron spacial wave function, their total
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spatial wave function can be described by

ψ± =
1√
2

(φa(r1)φb(r2)± φb(r1)φa(r2)) , (1.9)

such that when permuting the 2 electrons, ψ+ is symmetric in space but anti-symmetric
in spin components and corresponds to an anti-parallel spin-singlet with anti–ferromagnetic
(AFM) spin configurations, while ψ− is anti-symmetric in space but symmetric in spin
components and correspond to a parallel spin-triplet with ferromagnetic (FM) spin
configurations.

We can estimate the energy due to exchanging the positions of two particles as

Hr1r2 = J̃ P̂r1r2 , (1.10)

where J̃ sets out the strength of the interaction, such that when J̃ > 0, ψ− is fa-
vored, corresponding to a parallel spin-triplet state and when J̃ < 0, ψ+ is favored,
corresponding to an anti-parallel spin-singlet state.

Additionally, we note that permuting the positions of the electrons can be equiva-
lently described as permuting the spin–components

P̂r1r2ψ± = ±P̂abψ± . (1.11)

Instead of characterizing Eq. (1.10), we can consider the exchange of the spin of
the 2 electrons and study the operator P̂ab

Hab = JP̂ab , (1.12)

where J correspond to the energy due to the permutation P̂ab of the spin compo-
nents of particle b with particle a, which acts on the four states made out of the two
electrons and their spin, namely {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↑〉}. The permutation operator
P̂ab rearranges these basis states into its eigenstates consisting of a singlet state with
eigenvalue λ = −1 and 3 states forming a triplet with eigenvalues λ = 1.

singlet state: |s〉 = 1√
2
(|↑↓〉 − |↓↑〉) λ = −1 ,

triplet state:
|t1〉 = |↑↑〉
|t2〉 = 1√

2
(|↑↓〉+ |↓↑〉) λ = 1 .

|t3〉 = |↓↑〉

(1.13)

For a positive J > 0, the state that lowers the energy is the singlet state, and for a
negative J < 0, the triplet state is favored. It follows that there is a sign difference
between Hr1r2 and Hab, such that we should consider the negative sign version of
Eq. (1.11).

Additionally, applying the permutation operator twice should always project us
back onto the same initial state

P̂ 2
ab = I . (1.14)
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Following [55, 90], we consider the operator

Ôab =
1

2
(Ŝa · Ŝb + I) , (1.15)

where Ŝ represents the spin angular momentum of the electron and encodes the Pauli
matrices as

Ŝα =
1

2
~



σxα
σyα
σzα


 . (1.16)

Using the fact that the Pauli matrices satisfy
[
σµα, σ

ν
β

]
= 2iεµνλδαβσ

λ
α , (1.17)

to obtain
(Ŝa · Ŝb)2 = 3I− 2Ŝa · Ŝb , (1.18)

we see that

Ô2
ab =

1

2
(Ŝa · Ŝb + I)

=
1

4
((Ŝa · Ŝb)2 + 2Ŝa · Ŝb + I)

=I . (1.19)

It follows that

ÔabŜaÔ
−1
ab =Ŝb , (1.20)

ÔabŜbÔ
−1
ab =Ŝa , (1.21)

where we see that the operator Ôab exchanges the electrons the same way P̂ab does.
Therefore we write

P̂ab = Ôab . (1.22)

The energy associated with this permutation is given by

Hab = J
1

2
(Ŝa · Ŝb + I) , (1.23)

where we see that a positive J > 0 favors an anti–parallel alignment of Ŝa and Ŝb,
while J < 0 favors a parallel alignment. We note that this is the opposite behavior of
Eq. (1.10), and that, as previously mentioned, we need to consider the minus sign in
Eq. (1.11), such that we obtain

Hr1r2 = −J 1

2
(Ŝa · Ŝb + I) , (1.24)

which up to a proportional term and a constant term is known as the Heisenberg
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Hamiltonian
HHeis = J

∑

〈i,j〉

Ŝi · Ŝj , (1.25)

with J being the Heisenberg exchange interaction and where 〈i, j〉 represents nearest
neighbor sites, and where Ŝi is the spin dipole moment defined through

Ŝi =




Ŝxi
Ŝyi
Ŝzi


 . (1.26)

Its components satisfy the commutation relation

[Ŝαi , Ŝ
β
i ] = 2iεαβγ Ŝγi , (1.27)

where a sum over repeated indices is assumed, and the spin length constraint

Ŝi
2

= s(s+ 1) =
3

4
, (1.28)

for spin–1
2
. In what follows, we shall follow the Einstein convention of assuming sums

on repeated indices of tensors, if not indicated explicitly. The Heisenberg Hamiltonian
[Eq. (1.25)] is one of the simplest effective models.

The Origin of Exchange Interactions

Generally, the exchange interaction J can be positive or negative and favor configura-
tions with anti-parallel or parallel dipole spin moments, leading to anti-ferromagnetism
or ferromagnetism, respectively. In materials, whether the ground state is a ferromag-
net (FM) or an anti-ferromagnet (AFM) depends on the case. For example, coming
back to H2 molecules, the ground state is found to be the singlet spin state favoring
AFM order where the wave function corresponds to a bonding state between the two
Hydrogen atoms [91, 133]. This, however, results in a zero total magnetic moment since
the electrons share the same orbital quantum state. If, on the other hand, electrons
are on two degenerate and orthogonal orbitals, an FM triplet ground state is favored.

Another mechanism that can lead to ferromagnetism is the double exchange [9, 49,
263]. There the interaction between two magnetic ions (usually in different hybridiza-
tion states) happens through the exchange of an electron, but instead of directly being
exchanged between the two magnetic ions, the exchange occurs via the intercourse of
another atom. Typically, the atom mediating the interaction can give an electron to
one of the magnetic ions and then receive an electron from the other ion. Delocal-
ization reduces the energy, and transition from one atom to the other is facilitated if
the electrons keep their spin value. Therefore double exchange usually leads to FM
exchange [9, 263].

Another example of indirect exchange processes is the superexchange [9, 49]. In the
superexchange mechanism, the interactions between two transition-metal ions happen
via the coupling of the spin of 2 electrons belonging to a non-magnetic ligand. Dif-
ferent mechanisms have been proposed to explain this type of interaction, known as
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Anderson’s mechanism [8, 123], and Goodenough’s mechanism [75, 77].
The nature of the interaction, FM or AFM, can generally be found using the

Goodenough-Kanamori rules, which depend on the symmetry of the crystal and the
electron occupancy of the involved orbitals [75, 76, 108]. If more than one ligand
is involved so that the magnetic ions do not share the same ligand, we then re-
fer to super-superexchange. Other types of interaction exchanges exist, such as the
Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction [109, 202, 262], where the cou-
pling happens via conduction electrons, or dipole-dipole interaction, which is usually
much smaller than the exchange interactions but might not be negligible for a system
where the exchange interactions are particularly weak, as it can be the case in some
single-molecule magnets [266].

When corrections to relativistic phenomena are taken into account, they can lead to
anisotropic exchange interaction. For instance Spin-Orbit Coupling (SOC) [HSO = λŜ ·
L̂] is a consequence of relativistic effects [134]. SOC can lead to single-ion anisotropy,
or result in Kitaev-type exchange interactions [136, 184, 249]. If the spatial inversion
symmetry is broken, SOC can also lead to Dzyaloshinski-Moriya interactions [56, 154,
155]. The origin of SOC is derived properly from Dirac’s relativistic treatment of
electrons. However, we can try to intuitively think about SOC as being the result of the
electron’s movement around the nucleus. In the electron’s referential frame, the nucleus
appears moving around the electrons. The nucleus being a positively charged moving
object, it induces a magnetic field B which interacts with the magnetic moment of the
electron µ as B ·µ. The apparent magnetic field is proportional to the electron’s orbital
moment B ∝ L and the electron’s magnetic moment of the electron is proportional
to its spin µ ∝ S. This indeed results in a term proportional to S · L, which depends
on the relative angle between S and L. And so does the total angular momentum
J = L + S. The effect of SOC is to split each atomic term into levels with different
J and, therefore different energies and to induce interactions which are anisotropic in
spin–space.

On general symmetry grounds, the Hamiltonian should stay invariant under time-
reversal symmetry. This mean that only terms formed by the product of two spin
dipole moments are allowed: Ŝi · Ŝj , (Ŝi · Ŝj)(Ŝk · Ŝl), etc. Unless a magnetic field is
applied, which would result in a term proportional to Ŝi ·Bi, terms with odd numbers
of spin components are forbidden [136].

As we will see in Section 1.2, higher orders interactions of spin components also
sometimes need to be taken into account, especially when larger spin moments or
itinerant electrons are involved. This is particularly true for a spin–1 system, for which
the most general form of the Hamiltonian respecting SU(2) symmetry is given by
the bilinear-biquadratic Hamiltonian [Eq. (1.48)]. Indeed, the Hubbard model with
multi-orbitals degrees of freedom gives rise to new terms besides the Heisenberg model,
namely allowing biquadratic terms in case of a spin–1 [95, 140].

Thermodynamics of Magnets

Another important concept is the notion of spontaneous symmetry breaking, which
happens when the order parameter breaks the symmetry allowed by the Hamiltonian.
When the value of the order parameter, characterizing the order of the system, changes
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value, we refer to a phase transition. Within Landau’s theory, it is assumed that above
a critical temperature the order parameter is zero, and non-zero under the critical
temperature [129]. The free energy is considered to be an analytical function of the
order parameter, and in the vicinity of the phase transition, the free energy can be
expanded in powers of the order parameter.

For instance, considering the FM case, no specific type of order of the spin moments
can be observed at high temperatures. However, as the temperature decreases, the
local interaction between the spins starts favoring a parallel alignment. Below a certain
critical temperature, all the spins are perfectly aligned with each other, and by selecting
a specific orientation, the FM state spontaneously breaks the SU(2) (or equivalently
O(3)) spin-rotational continuous symmetry. From the local interactions, the system
then acquires long-range correlations. Systems in which spontaneous symmetry occurs
always exhibit Goldstone modes. The number of Goldstone-mode depends on the
number of generators that have been broken.

This can be related to ferromagnetism in iron alloys, for example, where the mag-
netism comes from unpaired electrons in the 3d–shell of the iron atoms. Because of
the interactions at play between the unpaired electrons, a parallel alignment of their
magnetic moments is favored, and all the individual magnetic moments sum up to give
rise to a macroscopic finite magnetization. Typically, for magnetite, which is an iron–
oxide, and is generally formed by geophysical processes such as volcanic eruptions, the
magnetic moments will align themselves and induce a finite magnetization along the
earth’s local magnetic field [167]. This finite magnetization is defined as a vector and
will be pointing in a certain direction, breaking the continuous rotational symmetry
of all possible configurations the magnetization could take. Small magnetic single do-
mains of magnetite in many rocks are the main reason of their remanent magnetization
[16, 88].

Also related to spontaneous symmetry breaking, we can mention the Mermin-
Wagner theorem [146]. The Mermin-Wagner theorem states that for space dimensions
d ≤ 2, no phase transition in the isotropic Heisenberg model due to the spontaneous
breaking of a continuous symmetry can happen at finite temperature.

When different types of interactions are competing, this usually results in frustra-
tion. Generally, frustration appears when the interaction between the agents involved
is such that all of them can not be satisfied. Frustration can also find its origin in the
lattice symmetry, such as in the famous AFM Ising model on the triangular lattice,
where the lattice geometry forbids all the bonds to minimize their energy. This results
in the fact that the system shows an absence of phase transition into the ground state
and that there isn’t a unique ground state, but a degenerate manifold of ground states
[257]. Moreover, the degeneracy of the ground state scales exponentially with system
size leading to a finite zero-temperature entropy [257]. Indeed, frustration is known as
being a fruitful ground to explore rich physics.

Beyond The Theory of Bands

Many properties of the electrons in solids can be described by assuming the electrons
to be free independent fermions in a periodic potential. This led to the band theory
developed by Felix Bloch in 1928, which consists in solving the Schrödinger equations
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for the wave function of an electron in the presence of a period potential [26]. In
this approach, the interactions between the electrons are neglected. However, the
Coulomb interaction between the electrons is not negligible. The band theory alone
fails at explaining why certain materials with an odd number of electrons per unit site
are insulators. Such metals are called Mott insulators [157]. Moreover, despite the
physicists’ intense efforts, the band theory failed at explaining superconductivity [132].

To explain why some metals with non-filled bands were insulating rather than
conducting, Nevill Mott considered the difference in energy between the energy cost of
having a doubly occupied site due to the Coulomb repulsion and the energy gain due
to the kinetic energy obtained by delocalization of the "hole" and the double occupied
state [156]. Indeed, electrons are negatively charged particles with spin–1

2
. This means

that they will repulse each other due to the Coulomb interaction. The behavior of the
electrons will then also depend on the energy cost of having 2 electrons on the same site.
This results in an insulator-conductor phase transition. The nature of such a transition
is different from the conventional metal described by bands theory, as the gap is due to
the Coulomb interaction. If the orbitals on different sites overlap sufficiently (typically
by applying pressure), then conduction can happen.

Indeed, if the Coulomb interaction is prevailing, charge fluctuations are suppressed,
electrons can be localized and only spin fluctuations stay relevant. Suppose we further
assume that the Coulomb interaction between all the electrons is screened. In that
case, we only need to account for the Coulomb repulsion when two or more electrons
are on the same orbital at the same site, and we consider only one orbital per site.
This can be seen through a simple model, called the Hubbard Model [97],

HHub = −t
∑

〈i,j〉,σ

(
ĉ†i,σ ĉj,σ + ĉi,σ ĉ†j,σ

)
+ U

∑

i

n̂i,↓n̂i,↑ , (1.29)

where the sum 〈i, j〉 runs over nearest neighbors, σ = {↑, ↓} represents the spin of the
electrons and ĉ†i,σ/ĉi,σ, creates/annihilate an electron with spin σ on site i, n̂i,σ = ĉ†i,σ ĉi,σ
counts the number of electrons on site i, such that t is the hopping parameter, and U
represents the Coulomb repulsion due of having 2 spins with opposite spins (Pauli’s
exclusion principle). Electrons are fermions and the creation/annihilation operators
ĉ†i,σ/ĉ†i,σ satisfy fermionic commutation relations

{ĉi,σ, ĉ†i,σ} = 1 . (1.30)

The Hubbard model also allows explaining the physics described in Mott insulators.
Indeed, as U

t
increases, the system undergoes a metal-insulator phase transition.

Moreover, in the limit t� U , for 2nd order in perturbation and for half-filling, the
Hubbard model can be mapped to the anti-ferromagnetic (AFM) Heisenberg Hamilto-
nian [Eq. (1.25)] with

J = 4
t2

U
> 0 . (1.31)

Again, the exchange interaction J arises from quantum phenomena. In the example
that we just saw, the way electrons interact is dictated by an interplay between the
Coulomb interaction and Pauli’s exclusion principle [55]. The interaction exchange
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J = 4 t
2

U
is positive and favors a configuration with anti-parallel dipole spins. This can

be understood by noticing that with one electron on each site (half-filled single orbital),
the electrons can hop on neighboring orbital only if they have opposite spins and that
these delocalizing processes can lower the energy. However, it can be shown that when
orders in perturbation are being taken up to 4th, this leads to a correction of J = 4 t

2

U
−

16 t4

U3 [95]. The correction term −16 t4

U3 is valid when assuming hopping between two
neighboring sites but is shown to increase as the number of involved sites is extended.
This may eventually result in FM interactions, but as previously mentioned, other
mechanisms, such as double exchange, can also lead to ferromagnetism. Moreover,
when considering 4 sites or more, biquadratic terms of the form (Ŝi · Ŝj)(Ŝk · Ŝl) also
appear [95, 140].

Modern applications stemming from considering only the Coulomb interaction and
Pauli’s exclusion principle appear in ab–initio quantum chemistry methods. A recent
illustration of such considerations is used to derive effective models for a family of
trihalide materials: RuX3, where X stands for Cl, Br, or I atoms [107]. These materials
appear to be possible candidates for exhibiting honeycomb Kitaev–like physics at finite
temperature and to be modeled by magnetic effective spin–1

2
moments interacting via

anisotropic Kitaev–type couplings [259]. Indeed, for RuCl3 the spin excitations show a
broad continuum above the ordering temperature, which is interpreted as an indication
for hosting the short–range order of the Kitaev spin liquid [15]. Below the ordering
temperatures T ' 7 K [15] and T ' 34 K [99], for RuCl3 and RuBr3,respectively, the
system exhibit a zigzag anti–ferromagnetic order. Meanwhile, for RuI3 no long–range
magnetic ordering is observed down to a temperature of T = 0.35 K under zero–field
[169].

Density functional theory (DFT) based on a multi–orbitals Hubbard model is used
to extract electronic structures and an exact–diagonalization method based on prior
ab–inito estimates is used to derive an effective low-temperature magnetic model for all
three compounds RuCl3, RuBr3, and RuI3. As explained in [107], these techniques sug-
gest that the three trihalide materials are Mott insulators, with a gap that is shown to
decrease as the ligand size increases, suggesting that RuI3 is close to a metal–insulator
transition, which is consistent with its reduced resistivity compare to the two other
compounds RuCl3 and RuBr3, accounting for the fact that sample purity might also
affect the observed resistivity. Results also show that these trihalide materials have
predominant FM Kitaev and FM Heisenberg nearest–neighbor interactions, where the
latter nearly vanishes for RuI3. Additionally, spin–orbit coupling is shown to be a nec-
essary ingredient in order to restore agreement with experimental data, suggesting that
RuCl3, RuBr3, and RuI3 are spin–orbit Mott insulators. The DFT calculations show
that RuCl3 and RuBr3 exhibit a zigzag magnetic order, while RuI3 is subject to high
frustration, for which ab–initio calculations applied to the effective low–temperature
magnetic model suggest that RuI3 hosts a quantum spin–liquid ground state, which is
however possibly different from the Z2 Kitaev spin liquid [169].
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1.2 What Makes Spin–1 Special
In this Section, I review some basic knowledge about spin–1 physics, what is special
about a spin-1 on a single site, what interesting repercussions does this have for inter-
acting spin–1 on a lattice, and what are the exotic features arising from the previous
considerations.

However, before presenting the needed mathematical description of a spin–1 mo-
ment, in Section 1.2.1, I review how the conceptual math framework applies to a spin–1

2

moment and its (semi–)classical “large–S” limit. This will allow us to have a hopefully
insightful comparison with spin-1 moments. In Section 1.2.2, I explain how spin–1 mo-
ments differ from both classical spin and spin–1/2 moments, by describing some special
characteristics which arise for spin–1 moments. In Section 1.2.3, I describe how spin–1
moments interact in magnetic materials. In Section 1.2.4 and Section 1.2.5, I present
two interesting features of spin–1 magnets in spin nematics and in 1–dimensional chain.

1.2.1 Single Spin–1
2

Generally, a quantum spin can be completely described by the eigenstates of the oper-
ator Ŝz

Ŝz|m〉 = m|m〉 , (1.32)

where m is the spin projection quantum number specifying the quantization of the spin
angular momentum and can take 2s + 1 values given by m = −s,−s+ 1, . . . , s− 1, s.
The 2s+ 1 states |m〉 form a closed orthogonal basis [130].

In the case of spin–1
2
, s = 1

2
, and there are only two such eigenstates of Ŝz with

m = ±1
2
as shown in Fig. 1.3(a)

B 1
2

= {|↑〉, |↓〉} . (1.33)

These two states have both finite spin–dipole moments, and form a Kramers pair,
related by time–reversal (TR) symmetry. A spin–1

2
moment can generally be described

by a generic state consisting of a linear combination of the basis state B 1
2

∣∣∣ψ 1
2

〉
= c↑|↑〉+ c↓|↓〉 , c↑,↓ ∈ C , (1.34)

subject to the constraint
|c↑|2 + |c↓|2 = 1 . (1.35)

A spin–1
2
can be represented by a vector in a 2D Hilbert space, and any operation that

ce be effectuated on a spin–1
2
while satisfying Eq. (1.35) can be represented by a SU(2)

matrix. The generators of SU(2) are also the generators of O(3). To be exact, SO(3)
is the universal cover of SU(2), and this means that their algebra is the same. The
generators belonging to the Lie algebra su(2) can be used to generate both the Lie
group SU(2) and the Lie group SO(3).

This implies a spin–1
2
can very well be represented by 2-dimensional complex vector

subject to SU(2) transformation, or equivalently by a O(3)-vector subject to SO(3)
transformations. For this reason, representing a "classical" spin–1

2
by an O(3)-vector
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works really well and makes all classical methods that rely on the representation of
a spin by an O(3)-vector powerful tools for studying systems with dipolar degrees of
freedom.

This can also be understood in terms of a coherent state on the Bloch sphere. For
a spin–1

2
, coherent states are formed by transforming the maximum polarized state

with SU(2) elements expressed in terms of the generators of SU(2). As basis for the
generators, we use the Pauli matrices σi, and we can characterize a general rotation
within su(2) as [13]

|Ω〉 = e−
1
2
φσze−

1
2
θσye−

1
2
ξσz |↑〉

=

(
e−i

φ−ξ
2 cos( θ

2
) −eiφ+ξ2 sin( θ

2
)

ei
φ−ξ
2 sin θ

2
) ei

φ+ξ
2 cos( θ

2
)

)(
1
0

)

= e−i
φ−ξ
2 cos(

θ

2
)|↑〉+ ei

φ−ξ
2 sin(

θ

2
)|↑〉 φ, θ, ξ ∈ [0, 2π] , (1.36)

where we used
e−

1
2
θσα = cos(

θ

2
)I− iσα sin(

θ

2
) , (1.37)

which is obtained by expanding the exponential in its Taylor series, and using the fact
that σ2

α = I. In Eq. (1.36), we can then define

ψ = φ− ξ , (1.38)

and using the fact that |Ω〉 is defined up to a phase, we consider

|Ω〉 = e−iψ sin(
θ

2
)|↑〉+ cos(

θ

2
)|↓〉 = cos(ψ) sin(

θ

2
)|↑〉 − i sin(ψ) sin(

θ

2
)|↑〉+ cos(

θ

2
)|↓〉 ,
(1.39)

that we can represent as a 3–dimensional vector on the 2–dimensional sphere as illus-
trated by the Bloch sphere shown in Fig. 1.2.

x
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Figure 1.2: Bloch Sphere representing the spin–coherent states of a spin–1
2
moment

according to Eq. (1.39).
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More details on the representation of a spin–1
2
are given in Section 2.2.2.

1.2.2 Single Spin–1

For a spin–1, several new features appear. The quantum number m can take 3 different
values m = 1, 0,−1. The associated eigenstates of Ŝz

B1 =
{
|1〉, |0〉,

∣∣1
〉}

, (1.40)

form the "magnetic" basis illustrated in Fig. 1.3(b). The two states |1〉 and
∣∣1
〉
are said
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(a) Magnetic basis for a spin– 1
2 .
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(b) Magnetic basis for a spin–1.

Figure 1.3: Usual, "magnetic" basis for a spin–1
2
. [(a)] and a spin–1 [(b)] moment,

formed by eigenstates of Sz. (a) States representing a spin–1
2
moment with Sz = ±1

2
,

labeled | ↑〉 and | ↓〉 (b) States representing a spin–1 moment. Those with Sz = ±1,
labeled |1〉 and |1〉 break time–reversal symmetry and have a finite spin–dipole moment
(blue arrow). While, the state with Sz = 0, which is only present for a spin–1 and
labeled |0〉, posses a quadrupolar magnetic moment, which can be represented through
a director (red bar). Figure is reproduced from [201].

to be magnetic in the sense that the expectation value of at least one of the spin-dipole
components is finite, namely

〈1|Ŝz|1〉 = 1 ,
〈
1
∣∣Ŝz
∣∣1
〉

= −1 ,

and null for the other components. Similarly to the two dipolar states of the spin–1
2
,

the states |1〉 and
∣∣1
〉
are also related by TR symmetry and from a Kramers pair.

However, the same is not true for |0〉. Indeed, we have

〈0|Ŝx|0〉 = 〈0|Ŝy|0〉 = 〈0|Ŝz|0〉 = 0 . (1.41)

This can be understood from the fact that even though |0〉 is not TR invariant, |0〉 is
proportional to −i|0〉, which is TR invariant

T̂ |0〉 = −|0〉 ⇒ T̂ (−i|0〉) = −i|0〉 . (1.42)
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This implies that |0〉 cannot possess a finite dipole moment. However, expectation
values of products of two spin-dipole moments can still take on a finite value:

〈0|ŜxŜx|0〉 = 〈0|ŜyŜy|0〉 = 1 , 〈0|ŜzŜz|0〉 = 0 . (1.43)

We call these quantities, which are of second order in spin-dipole moments, quadrupoles.
The quadrupole tensor is defined as

Q̂αβ = ŜαŜβ + ŜβŜα − 2

3
δαβs(s+ 1) . (1.44)

And, we say that the state |0〉 has a finite spin–quadrupole moment, even though it
does not possess a finite spin-dipole moment.

Being able to support a quadrupole moment is a property that distinctively dif-
ferentiates a spin–1 from a spin–1

2
. A spin–1 is special because it is the smallest spin

that is able to support a quadrupole moment on a single site. This makes spin–1 sys-
tems good candidates to investigate magnetism, including higher spin order–moments
as well as quantum effects. The fact that a spin–1 is able to be a state characterized
by vanishing spin-dipole moments, being TR invariant, and having finite second order
spin-dipole (i.e. quadrupole) moments, motivates the introduction of the quadrupole
tensor defined by Eq. (1.44). It is a traceless, symmetric rank–2 tensor. This means
that there are only five linearly independent components (given below in Eq. (1.47)).
Being the product of two spin-dipole components, we note that a quadrupole moment
is TR invariant.

A general state of a spin–1 moment can generally be described by a generic state
consisting of a linear combination of the basis state B1

|ψ1〉 = c1|1〉+ c2|0〉+ c3

∣∣1
〉
, cα ∈ C , (1.45)

subject to the constraint
|c1|2 + |c2|2 + |c3|2 = 1 . (1.46)

Abstractly, a spin–1 is represented by a vector belonging to a 3D-Hilbert space, where
the components of the vector expressed in the the "magnetic" basis B1 are given by the
complex coefficients cα. Anything that can happen to such a vector, while satisfying
the normalization constraint in Eq. (1.46), can be described by a matrix of SU(3). To
generate the SU(3) group, which dimension is 8, we need the eight generators belonging
to the algebra su(3) to describe a spin–1 properly [180, 183, 229].

As explained in Section 2.2, for a spin–1
2
, the 3 spin-dipole components in Eq. (1.26)

and their commutation relations [Eq. (1.27)] suffice to generate SU(2) (that describes
anything that can happen to a 2D complex vector representing a spin–1

2
) which is 3–

dimensional. However, they fail at describing a spin–1 moments. Indeed, we need five
additional generators to construct the su(3) algebra. Luckily, these can be found to be
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the 5 linearly independent spin–quadrupole moments

Qi =




Qx2−y2

Q3z2−r2

Qxy

Qyz

Qxz



i

=




(Sx)2 − (Sy)2

1√
3
(3((Sz)2 − S(S + 1))

SxSy + SySx

SySz + SzSy

SxSz + SzSx



i

. (1.47)

Moreover, when considering the classical limit S →∞, we might think that larger
spins are more classical. Indeed as the length of the spin increases s, so does the
possible 2s + 1 value of the quantum number m = −s,−s + 1, . . . , s, partitioning the
z-axis into the discrete allowed m values. And in the classical limit S →∞, the allowed
m values become continuous, and representing a spin in its classical limit by an O(3)–
vector seems legitimate. But this is not necessarily true for an integer-spin, such as
spin–1, which can lack any finite dipole-moment and support quadrupoles. Indeed a
spin–1, and any integer spin in general, will have a state with m = 0 such that its
associated dipole moment is not pointing anywhere. This means that for a spin–1, the
classical limit as an O(3)–vector is not valid, since it is obvious that an O(3)–vector
can not describe the "dipole-less-ness" of a spin–1 moments.

To summarize, what makes a spin–1 unique is its ability to support quadrupole on
a single site, but at the same time also allow for large quantum fluctuations [87, 131,
180, 183, 250]. A detail explanation of the comparison between a spin–1

2
and spin–1,

their corresponding algebra and representations is given in Section 2.2 and Section 2.3,
respectively.

1.2.3 Polygamous Spin–1

We now extend this analysis of a single spin–1 moment to a model of many interacting
spin–1 moments. The questions we endeavor to answer in this section are: what can
happen if we consider spin–1 moment interacting on a lattice and how does this make
spin–1 systems different from their little siblings consisting of spin–1

2
?

Generally for a spin of length s, terms up to (Ŝi · Ŝj)2s can contribute to the
Hamiltonian. Higher order can always be rewritten in (Ŝi · Ŝj)2s terms, which is a
consequence of the algebra structure describing a spin–s. For instance, because of the
structure of the SU(2) algebra (i.e. the properties of the Pauli matrices), the (Ŝi · Ŝj)2

can be rewritten as a bilinear term [185, 210]. And, we insist on the fact that this
precise biquadratic term (Ŝi · Ŝj)2 is not allowed for a spin–1

2
.

In contrast, for a spin–1 system, the first crucial observation is that higher order
terms of spin components interactions, besides the Heisenberg term, are allowed. In-
deed, for a spin-1, besides the Heisenberg term, a biquadratic term (Ŝi · Ŝj)2 is also
expected. We note for now that a biquadratic dipole term (Ŝi · Ŝj)2 will include a term
proportional to a quadratic quadrupole term Q̂i · Q̂j [Eq. (1.47)]. The additional pres-
ence of the biquadratic term can be intuitively understood by considering the exchange
interaction of electrons between 2 spin–1 atoms, which should affect their quadrupolar
as well as dipolar moments. Thus, the resulting effective interaction should also depend
on both dipolar and quadrupolar interactions.
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Taking these considerations into account, the most general SU(2) invariant Hamil-
tonian describing a system of spin-1 moments is known as the Bilinear Biquadratic
(BBQ) Hamiltonian:

HBBQ =
∑

〈i,j〉

[
J1Ŝi · Ŝj + J2(Ŝi · Ŝj)2

]
, (1.48)

where we do not consider SOC and any type of anisotropy, yet. Extending the single
orbital Hubbard model [Eq. (1.29)] to two orbitals, and considering 2 sites leads to
terms proportional to (Ŝi · Ŝj)2. Indeed, it can be shown that by considering the
Hubbard model [Eq. (1.29)] for a spin–1, with two orbital degrees of freedom per
site, up to 4th order in perturbation, it can be mapped onto the BBQ Hamiltonian
[4, 17, 23, 59, 95, 150, 244]. Recently, a four-site Hubbard model has been shown to
reproduce the physics of spin–1 chains described by the BBQ Hamiltonian [35].

In terms of the 5 linearly independent quadrupole moments [Eq. (1.47)], the BBQ
Hamiltonian [Eq. (1.48)] can be expressed as

HBBQ =
∑

〈i,j〉

(
J1 −

J2

2

)
Ŝi · Ŝj +

J2

2
Q̂i · Q̂j +

J2

3
s2(s+ 1)2 , (1.49)

where for convenience, we parameterize the interaction couplings J1 and J2 as

J1 = J cos θ , J2 = J sin θ . (1.50)

In the form of Eq. (1.49), it becomes clear that it is the biquadratic interaction exchange
J2 that endorses for quadrupole moments to interact. We also note that from the above
explanation, and in concordance with the discussion in Section 1.1, biquadratic term
for a spin–1

2
(i.e. electron with one orbital) are not allowed.

1.2.4 Spin Nematics

An interesting feature of spin–1 systems is that they can support nematic order. This
comes from the fact that a spin–1 allows for on-site quadrupole moments. Nematic
order happens when quadrupoles rather than dipole order. The word nematic originates
from the Liquid Crystals’ (LCs) nomenclature [37, 62]. LCs are formed of rod-shaped
molecules. At high temperatures, these molecules are simply disordered and from a
kind of liquid. They are homogeneous and isotropic, and therefore invariant under
SO(3) symmetry. It can happen that, for some LCs, under a certain temperature,
they become anisotropic while staying homogeneous. The rod-shaped molecules can
align themselves along a given axis. However, the extremities of the molecules are
indistinguishable, and it is not possible to assign an orientation to the axis along which
they align, as shown in Fig. 1.4. We call this orientation-less axis a director. This type
of order is characterized by being symmetric under SO(2) (rotation around the axis of
the molecule) and under O(1) (flipping the extremities). The order parameter space
M is given by

M = SO(3)/(SO(2) +O(1)) = RP2 , (1.51)
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Temperature

Director

Figure 1.4: Liquid crystals are made of rod-shaped molecules invariant under inver-
sion symmetry, such that the order parameter space is given by RPn, where n+1 is the
dimension of the space in which the molecules are embedded. For this figure, n = 2.
In certain Liquid Crystals, it can happen that these molecules align themselves with
each other along a given axis. The resulting order is characterized by a vector without
an orientation, called a director.

which is called the real projective space and represents half of a sphere where opposite
points on the edge are identified as illustrated in Fig. 1.5. When the order parameter
takes a well-defined value in RP2, it is said to be nematic.

The same type of order can happen in spin systems. This is easily illustrated by
considering a spin–1. Indeed, the |0〉 state, which posses quadrupole moments, can also
be represented by a (complex) director [Eq. (2.35)] (red rod in Fig. 1.3(b)) which does
not possess an orientation, as can be inferred from the symmetric donut-shape of its
spin fluctuation probability. This can also be understood by the fact that for the |0〉
state, the spin dipole moment is not pointing anywhere, but it still represents a spin of
length 1 and therefore exhibits finite spin-quadrupole moments. These spin-quadrupole
moments are products of two spin-dipole moments, such that the information on the
orientation of the spin is lost. The spin analog of the nematic state in LCs can then
be built up by considering quadrupolar states characterized by vanishing spin-dipole
moments. If their directors, or rods, align themselves with each other, we obtain
what we call the ferro-quadrupolar state. This state does not possess any spin-dipole
moment and does not break TR symmetry but exhibits spin-quadrupole moments.
The fact that the spin nematic preserves TR symmetry makes its static properties
quite challenging to probe in commonly used experimental techniques, such as neutron
scattering experiments or splitting of spectral lines in NMR spectroscopy [229–231].
The spin nematic state is therefore sometimes referred to as a hidden order.

Spin nematic order for the BBQ Hamiltonian was recognized by Blume in 1969
[27]. Fifteen years later, it was theoretically discussed [10] and gained interest among
scientists as being this unconventional order where spin-space isotropy is broken but
time–reversal invariance is preserved. Only recently have some material emerged as
experimental candidate for spin–nematic such as NiGa2S4[159, 161, 253], LiCuVO4

[70, 80, 177], Volborthite [119] and BaCdVO(PO4)2 [192, 227]. Spin–1 models provide
a rich and fruitful playground to investigate the spin analogue nematic order found in
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LCs and have been studied as a prototype for spin–nematic (i.e. quadrupolar) order in
various physical systems such as magnetic insulators [87, 131, 180, 229, 250], Fe–based
superconductors [60, 74, 126, 139, 256], and cold atoms [52, 53, 100, 232, 270].

From Eq. (1.45), a spin–1 can be represented by 3 complex numbers, which can be
collected into a vector. Expressed within a special basis, that is TR–invariant in order
to describe the symmetries of a spin–nematic. This vector is referred to as director
and is formally introduced later [Eq. (2.35)]. Similar to the LCs, the order parameter
phase of spin-nematics can also be represented by the complex projective plane CPn,
since the components of the vector describing a spin–1 are complex. We note that for a
3–dimensional complex vector, the vector is normalized and defined up to phase. Using
the constraint on the length and the gauge freedom on the phase, we can restrict to a
2–dimensional director which takes on value on the 2–dimensional complex projective
plane CP2. We further mention that if the considered phase is fully quadrupolar, such
that the director (vector in the TR–invariant basis) is purely real (such that it stays
TR–invariant), then the order parameter phase is given by the 2–dimensional real
projective plane RP2, which is illustrated in Fig. 1.5.

Spin dipole S

S2
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Figure 1.5: Order parameter space for a dipole moment and a director. An O(3)–spin
dipole moment of length 1 can be characterized by two angles which represent a point
on the unit sphere S2. Therefore the order parameter is given by the sphere S2. While
for a (purely real) director of length 1, a point on half of the sphere with opposite
edge point being identified suffice to determine it because of its non-orientability. This
space is called the real projective space and is noted RP2.

The study of "shape" taken by the order parameter manifold can lead to important
repercussions. Namely, studying its topology, and how it transforms under smooth
deformations can provide useful insights regarding non-trivial, topological excitations
[145]. A convenient way to investigate the "forms and shape" of groups and spaces
consists in studying their homotopy groups by classifying their homotopy classes. For
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this, we consider the mapping of closed n-loops from the n-sphere Sn onto the order-
parameter space. We then study what happens to these loops under smooth defor-
mations and classify all the loops that "behave identically" into the same equivalence
classes. For instance, for the first homotopy group, i.e. n=1, this means that we map
closed strings defined on the circle S1 onto the order-parameter space and observes
what happens as we continuously deform the closed strings.

As we will see shortly, this feature also drastically differentiates a spin-1
2
from a

spin–1. In the classical limit, a spin-1
2
can be represented by O(3)-vector which can

take any value on the sphere S2, and therefore the order-parameter space is the sphere
S2, as shown in Fig. 1.5. We also know that for a classical spin–1, an O(3)-vector
does not suffice, but, in the case of a nematic ground state, a director can depict the
"dipole-less-ness" of a classical spin–1. We just saw that the order-parameter space for
a 3-dimensional complex or real director is the complex or real projective space, CP2 or
RP2. We then study how closed loops transform under continuous deformation when
mapped to the sphere S2 for a spin-1

2
and (for simplicity reasons) to the real protective

plane RP2 for a purely quadrupolar (i.e TR invariant) spin–1, respectively.
As shown in Fig. 1.5, we can intuitively note that for the sphere S2, all the closed

loops are trivially equivalent and all can be continuously shrunk into a single point.
We say that the first homotopy group of the S2 is trivial [Eq. (1.52a)]. However, for
the real projective plane RP2, we observe that there are two kinds of loops, one type
that does not go through the edge and that is shrinkable; and the second type of loops
that goes through the edge and that is not shrinkable. We also note that a loop that
goes through the edge and winds twice around becomes a shrinkable loop. Therefore,
there are only two first homotopy classes for the real projective space RP2 [Eq. (1.52b)].
Symbolically, we write [30]

Π1(S2) = {e} , (1.52a)
Π1(RP2) = Z2 , (1.52b)

where {e} is the identity element.
Characterizing homotopy groups for order-parameter spaces allows identifying what

type of topological defects are allowed [145]. The first homotopy group gives informa-
tion about point-like defects. This means that there are no point-like defects in systems
consisting of classicalO(3)-vectors, but that there can be topological defects (sometimes
called vortices) for spin–1 magnets. For spin nematic characterized by quadrupolar or-
der, the fact that its first homotopy class is given by the group Z2 implies that there
are there is the trivial element (which corresponds to the shrinkable loops) and one
type of non–trivial topological elements (which corresponds to non–shrinkable loops).
This means that there is one kind of vortex and that a vortex is also its anti–vortex.
This can be seen that by combing a non–shrinkable loop with its "anti–loop" (i.e. the
inverse loop), we are back to a trivial shrinkable loop. Higher homotopy groups can
also be computed, bringing knowledge about higher orders of topological defects, such
as skyrmions for dipolar spins.
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1.2.5 Spin–1 1D–Chains

A famous example that emphasizes the importance of the value of the spin in quantum
magnetism is the 1D Haldane chain. Originally, Haldane’s claim stems from considering
the non-linear σ model for the 1-D Heisenberg chain. This leads to a formulation of
the Lagrangian (or the action) in terms of a topological quantity that depends on the
value of the spin. This resulted in the fact that in 1D-chains, spin fluctuations lead to
different physics for integer and half-integer spin [82, 83].

For the 1D Heisenberg anti-ferromagnetic chain, Haldane predicted that for half-
integer spins, the system is gapless, mimicking the fact that it has Goldstone modes
and breaks a continuous symmetry, but in fact, it is exhibiting incipient order with
algebraic correlations. [82, 83]. For spin–1

2
, the Lieb-Schultz-Mattis theorem [137] gave

a solid proof for the non-existence of the gap and has been shown to be extendable to
higher half-integer spins.[1]

For a spin-1, however, Haldane conjectured that the excitations are gapped [82, 83].
This was unexpected because it was believed that they were gapless too, similarly to
spin–1

2
. Indeed, quantum fluctuations for s > 1

2
are even weaker, and there were no

apparent reasons as to why the quantum fluctuation would wash out the "quasi"-long-
range order. This seemed even to violate the Mermin-Wagner theorem [146], as it
would mean that one would have a phase transition at a temperature equivalent to the
gap. It was then believed that the gapped ground state of the 1-D Heisenberg chain
consisted simply of a product state of spin-1 in their Sz = 0 state, not breaking any
symmetries and any display of order. However, it turns out that the nature of the
ground state goes beyond the Landau theory.

Affleck showed that for the BBQ model [Eq. (1.48)] for a 1D–chain, with parameters
J2
J1

= 1
3
, called the AKTL model, the ground state is gapped and exhibits a Valence

Bond Solid (VBS) nature, while correlations show exponential decay [2, 3]. In the
VBS ground state, each spin–1 can be viewed as a triplet state formed by two spin–1

2
,

where each individual "sub"–spin–1
2
forms a singlet state with the "sub"–spin–1

2
of

the neighboring spin–1. The VBS ground state then has dangling free spin–1
2
on each

extremity. These gapless spin–1
2
excitations have also been observed in experiments

[79]. It turns out that the edge spin–1
2
degrees of freedom are topologically protected

only if the integer spin value is odd and the topological phase is protected by a set of
global symmetries (dihedral group of π rotations about the x–, y–, and z–axes, time-
reversal symmetry and bond inversion symmetry) [39, 191]. The VBS is depicted in
Fig. 1.6. Since in the VBS ground state, each "sub"–spin-1

2
, is involved in a singlet-

state, two adjacent spin-1, can only be in a superposition with total spin either equal
to 1 or 0.

It can be shown that the AKTL model in fact represents the projector operator of a
spin-2. Therefore, the VBS state is an eigenstate of the AKTL model, and it turns out
to be the unique ground state [2, 3]. Moreover, using DMRG, the VBS ground state
of the AKTL model is shown to extend to the pure Heisenberg Hamiltonian [209] (see
reference [209] for a detailed description of the phase diagram of the BBQ model for a
1D spin-chain). Therefore the ground state of the 1D AFM spin–1 Heisenberg chain is
the VBS state, which is gapped, shows short-range order, and exponentially decaying
correlations [209]. This ground state is sometimes called a non-degenerate disordered
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Figure 1.6: Representation of the Valence Bond Solid (VBS) state on a spin–1 chain.
The orange-red spheres represent the spin–1 moments consisting of two spin–1

2
moments

in a triplet state. The colored boxes encapsulating the two individual neighboring
"sub"–spin–1

2
illustrate a singlet state. At both extremities of the chain are found the

two edge spin–1
2
degrees of freedom.

one because it is unique and does not break spin symmetry. This is why it is also
sometimes referred to as a hidden state. This type of order was the first example of
symmetry protected topological state (SPT) [84, 191, 213]. Different physical charac-
teristics of systems can be linked to SPT, such as the quantization of magnetization
plateau [178, 241, 243] Spin–1 quasi–1–D chains have also been studied to explore ex-
tension of 1–D chains physics. For instance, the zig–zag 1D–chain reproduces a type of
1-dimensional triangular structure and is used as a prototype to investigate the BBQ
model on a simple, yet closer to 2–dimensional real material systems, such as the trian-
gular lattice compounds NiGa2S4 [159]. For this model a trimerized state is also found
[48].

Spin-1 chains provide a particular example that spin-1 is different and can lead to
unexpected and exotic physics.

1.3 Spin–1 Nowadays
Here, I present the current understanding and interest of spin–1 magnets, and I will
mainly focus on the experimental history of two spin–1 materials, NiGa2S4 and NaCaNi2F7,
and I illustrate how modern theoretical techniques have been applied to understand
their physics better. This allows me to introduce important concepts and methods that
motivate the development of my own formalism.

1.3.1 Spin–1 in the Wild

A Triangular Lattice Example: NiGa2S4

A well–studied example of a spin–1 material is NiGa2S4, whose crystal image and crys-
talline structure are shown in Fig. 1.7(a) and Fig. 1.7(b). In this material, Magnetism
is associated with the Nickel ions Ni2+, which form a triangular lattice. NiGa2S4 spe-
cial’s characteristic is to exhibit gapless excitations at low temperatures in the absence
of long-range magnetic order.
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(a) NiGa2S4 crystal (b) NiGa2S4 structure

Figure 1.7: (a) NiGa2S4 crystal grown by chemical vapor transport method, repro-
duced from [162]. (b) Crystal and spin structures of NiGa2S4, consisting of layers
stacked along the c axis and separated from each other by a van der Waals gap. Each
layer of NiGa2S4 consists of an undistorted triangular lattice of Ni2+ ions in the ab–plane
formed by the central edge-sharing NiS6 octahedra (red) sandwiched between sheets
of nonmagnetic GaS4 tetrahedra (green), also illustrated in the inset of Fig. 1.8(b).
Figures are reproduced from [159].

The electronic structure of Nickel ions Ni2+ is given by [Ar]3d8. The crystal field
subsequently splits the d-orbital states into two: t62g and e2

g, and the two electrons in e2
g

give the Ni2+ ion an effective spin–1. NiGa2S4 is an example of a bulk material exhibit-
ing 2D physics. NiGa2S4’s neutrons scattering data suggests strong AFM correlations
[159, 161] appearing for a wave vector near q = (1

6
, 1

6
, 0) which are explained to arise

from a competition between FM 1st nearest neighbor interaction exchange J1 due to
the ∼97° Ni-S-Ni bond angle and AFM 3rd neighbor interaction exchange J3 due to
superexchange [159, 234, 242]. Values of the different interaction exchange couplings
can vary depending on the methods [193].

In reference [159], susceptibility measurements imply a Weiss temperature θW =
−80 K, which indicates strong AFM correlations but doesn’t show any signature of
a conventional phase transition. Nor is any evidence of a phase transition found in
specific heat measurements. This indicates the existence of a disordered state and,
therefore an absence of conventional AFM order.

Magnetic specific heat data for NiGa2S4 show a double peak structure [159, 161],
presented in Fig. 1.8(a), which is reproduced from [159]. As temperature is de-
creased, the first peak appears around T = |θW|[159, 161], and the second one around
Tpeak = 10 K [159–161]. The entropy obtained by integrating the magnetic specific
heat exhibits a plateau at approximately 1

3
of its high temperature limit R log(3). This

indicates a highly degenerate low-temperature state due to the frustrated nature of the
material. At low temperatures, magnetic specific heat measurements show a quadratic
dependence with temperature, which in 2–dimensions indicates gapless linearly dis-
persive excitations [197], which in turn signal the existence of long-range correlations
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[159–161]. However, the magnetic specific heat seems independent of the applied mag-
netic field. This means that the low–temperature peak does not arise due to AFM
ordering of individual spin–1 moments but is associated with short–range correlation
due to degrees of freedom that are insensitive to static uniform magnetic fields.

Moreover, no long-range magnetic order is seen in neutron scattering experiments
[159, 165, 234]. From a conventional second order phase, one would expect a scaling
anomaly of the spin correlation length. However in NiGa2S4, the spin correlation length
is on the scale of the nm order and does not exhibit any finite temperature abnormal
feature [159, 165, 234], as shown in Fig. 1.8(b) reproduced from [165].

(a) Magnetic specific heat (b) In-plane correlation length

Figure 1.8: Thermodynamic properties of for NiGa2S4. (a) Magnetic specific heat
CM under different magnetic fields in function of temperature. The solid lines show the
T 2 dependence of CM suggesting the existence of long–range correlations. Inset: CM

T

in function of temperature under zero magnetic field for NiGa2S4 and NiGa2S4.2 which
has a sulfur doping of excess of 5%. Reproduced from [159]. (b) Spin correlation length
ξ in function of temperature. No abnormal behavior is observed as one would expect
from a conventional phase transition. Inset: crystal structure of NiGa2S4. Reproduced
from [165].

Additionally, no canonical bulk freezing is observed. Despite weak filed dependence
and hysteresis of the susceptibility below the freezing temperature Tf = 8.5 K, this
feature is attributed to impurities [159, 161]. Substitution of the magnetic Ni2+ ions by
non-magnetic Zn2+ ions indeed suggests that the defect spins freeze and not the bulk
spins [161]. Because of their interplay with the bulk, it seems that the spin defects
freeze in response to a change happening in the bulk. A substitution of the Ni2+ ions
(S = 1) by Zn2+ (S = 0), Co2+ (S = 3

2
), Fe2+ (S = 2), or Mn2+ (S = 5

2
) highlights

the dependence of the value of the spin in the low-temperature physical properties
[162, 163]. For Co2+ (S = 3

2
) and Mn2+ (S = 5

2
) substitutions, specific heat data

exhibit a conventional spin glass state below 1K which is expected due to the random
nature of the impurities and the geometrical frustration of the triangular lattice, while
for Zn2+ (S = 0) and Fe2+ (S = 2) substitutions, the specific heat data show similar
behavior as the pure compounds [163]. This is quite surprising and suggests that these
low-temperature properties emerge for integer spin values only, and that NiGa2S4’s
unique features emanate from its integer spin value.

NiGa2S4 seems to be evading conventional magnetic order and exhibits unique low
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temperature properties. To explain these, scientists have suggested that this material
may be in a spin–liquid phase [159, 161] , experiencing a KT-type phase [94, 113–
117, 159–161, 163, 165, 269], or be in a spin-nematic phase [24, 131, 159–161, 163, 165,
234, 235, 240, 250, 253, 269].

The fact that NiGa2S4 may specifically realize a spin–nematic phase has been stud-
ied in numerous works [24, 131, 135, 235, 240, 250, 253, 269] but mostly relies on the
existence of a biquadratic exchange interaction, which is not clearly motivated by ex-
perimental measurements [159, 161, 234], or theoretical calculations [193]. In the most
recent study [253], Raman scattering measurements, which have been theoretically
suggested to detect quadrupolar order [148], indicate the existence of magnetoelastic
couplings as well as random Dzyaloshinskii-Moriya interactions. It has been shown that
a biquadratic exchange can originate from the displacement of atoms (i.e. phonons) re-
sponsible for magnetic exchange or super-exchange [18, 245]. In NiGa2S4 a biquadratic
term could arise from the FM J1 coupling which is due to the ∼97° Ni-S-Ni bond angle
[235, 253]. In [253], Raman scattering data shows the existence of such a phonon.
Moreover, data also exhibit evidence for loss of local symmetry inversion that increases
as temperature is decreased, which is associated with sulfur vacancies [164, 253]. This
allows for Dzyaloshinskii-Moriya interactions. Dzyaloshinskii-Moriya interactions have
not been investigated in the context of NiGa2S4, but they are known to affect magnetic
order.

Raman scattering data [253] show 3 different regimes which are in accordance with
specific heat measurements [159, 161]. In the high temperature regime, T > 160 K,
there seems to be no AFM nor magneto-elastic couplings. In the intermediate regime
50 K < T < 160 K, a phonon responsible for magneto-elastic coupling is observed,
and the magnetic susceptibility stays isotropic. The asymmetry of the peak associated
with the phonon indicates that the phonon couples with the continuum of excitations.
This suggests a spin nematic state. In the low-temperature phase, 50 K < T, Raman
scattering data [253] and neutron scattering data [234] show an increase of anisotropy
of the susceptibility as well as an increase of anisotropy of the correlation length.
This suggests an increase of in-plan AFM couplings, which are accompanied by an
increase of the magneto-elastic coupling, as temperature is decreased. The phonon
observed by Raman scattering data is therefore potentially responsible for biquadratic
exchange, which can lead to a spin-nematic phase in the intermediate temperature
range 50 K < T < 160 K [253].

In summary, NiGa2S4 unique low temperature properties makes it an interesting
material exhibiting long–range correlations without apparent magnetic order [159,
161, 165, 234]. And recent experimental data juge NiGa2S4 as a realistic candi-
date for holding spin–nematic order [253]. This makes NiGa2S4 a good instance
for studying dynamical properties of spin-nematics. Ground state and thermody-
namic properties have already been theoretically studied in connection with NiGa2S4

[24, 131, 135, 235, 240, 250, 269], a theoretical model able to access dynamics would
allow to better understand NiGa2S4’s unique low temperature spin dynamics [269].
Additionally, investigating the effect of Dzyaloshinskii-Moriya interactions in the con-
text of NiGa2S4, which result in anti–symmetric interactions between the spin dipole
components can also lead to rich and hopefully consequential insights about NiGa2S4

particular phenomenology.
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A Pyrochlore Lattice Example: NaCaNi2F7

Pyrochlore systems are known to exhibit exotics physics. Namely, the classical AFM
Heisenberg model on the pyrochlore lattice is known to be a spin liquid and was first
discussed by Villain [254]. The classical AFM Heisenberg Hamiltonian is minimized
for configurations of spin with a vanishing total magnetization on each tetrahedron.
This results in a ground state manifold of a microscopically degenerate ensemble of
spin configurations which are highly correlated. This leads to a rich physics in mag-
netic pyrochlore oxides [69, 199]. However, most of the efforts are directed into classical
pyrochlore spin-liquids [92, 101, 151, 152] and less investigated are their quantum coun-
terpart [33, 34, 93].

Pyrochlore spin–1 magnets have also recently attracted attention [64]. Among
which, NaCaNi2F7 shows exciting features. In this material, the Ni2+ ions also carry an
effective spin–1 and form a pyrochlore lattice where the Na and Ca atoms are randomly
distributed on the A sublattice, and the Ni and F sublattices are fully ordered [125].
A NaCaNi2F7 crystal is shown in Fig. 1.9(a) and the pyrochlore structure is shown in
Fig. 1.9(b).

(a) NaCaNi2F7 crystal (b) In NaCaNi2F7, the Ni2+ form a pyrochlore lattice

Figure 1.9: (a) NaCaNi2F7 crystal grown by a modified Bridgman-Stockbarger
method, reproduced from [125]. (b) Pyrochlore lattice consisting of corner–sharing
tetrahedra, reproduced from [267].

For NaCaNi2F7, susceptibility measurements display a Curie-Weiss temperature
θW = −129 K suggesting AFM correlations. The susceptibility remains isotropic from
300K down to 5K. Susceptibility data show that the system undergoes a spin freezing
at 3.6 K, which is also consistent with specific heat data [125]. The reason for the spin
freezing might be explained by weak bond disorder in the Ni-Ni interactions induced
by the disorder of Na and Ca atoms. This type of disorder has been shown to cause
a freezing into a spin glass state [207]. However, under the freezing temperature,
specific heat measurements display a quadratic temperature dependence which seems
incompatible with the usual linear temperature dependence of the specific heat for spin
glass states but seems to be related to high frustration [196, 198]. Neutron scattering
data exhibit spin–liquid–like properties above the freezing temperature and display a
continuum of excitations, signaling the existence of a spin-liquid state [188].

In order to describe NaCaNi2F7, Neutron scattering data have been modeled by
using a Hamiltonian with weakly anisotropic AFM 1st nearest neighbor interaction
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and isotropic next nearest neighbors interactions:

HAni =
∑

〈i,j〉

Jαβij Ŝαi Ŝβj +
∑

〈〈i,j〉〉

JNNN Ŝαi Ŝαj , (1.53)

where the Jαβ allows for anisotropy in the spin space compared to the isotropic model
[Eq. (1.25)], and JNNN is the next nearest neighbor interaction coupling. A symmetry
analysis [50] allows for 4 different interaction couplings

J01 =



J2 J4 J4

−J4 J1 J3

−J4 J3 J1


 . (1.54)

In reference [188], the values of the couplings are extracted from the best match given by
a Self-Consistent Gaussian Approximation (SCGA) [47] compared to the experimental
data of neutron scattering experiments. According to [188], the values obtained are

J1 = J2 = 3.2(1) meV , J3 = 0.019(3) meV ,
J4 = −0.070(4) meV and JNNN = −0.025(5) meV .

(1.55)

Considering the agreement between the model proposed for NaCaNi2F7 [Eq. (1.55) and
Eq. (1.53)] with its neutron scattering data implies that Eq. (1.53) delivers a satisfac-
tory modeling. Even though the effective moment 3.7(1)µB implies a contribution of an
orbital moment to the magnetism [125], the fact that the Heisenberg model describes
neutron scattering data well enough suggests that the spin-orbit coupling is very small
[188]. Therefore, NaCaNi2F7 provides an example of a Heisenberg pyrochlore lattice
material with only anisotropic symmetric and anti–symmetric nearest neighbor as well
as next nearest neighbor interactions.

Reference [267] compares with neutron scattering measurements 3 different meth-
ods (Linear Spin-Wave (LSW) theory, Molecular Dynamics (MD) simulations and a
SCGA method extended to a stochastic model labeled SLN) applied to the previous
AFM Heisenberg model on the pyrochlore lattice. The 3 methods give approximately
satisfying comparison at high energies but seem at fail at reproducing experimental
features at low energy. This can been seen in Fig. 1.10, where there seems to be a
loss of spectral weight in the dipole structure factor at (2,2,0) in the experimental data
when compared to the others methods. In Linear Spin-Wave (LSW), fluctuations are
expanded around an ordered ground state, but only contain dipole excitation ∆S = 1,
and quadrupole excitations with ∆S = 2 are disregarded (see Supplemental Mate-
rial in [267]). Molecular Dynamics (MD) are based on the integration of the classical
Landau-Lifshitz equations of motion for O(3)-spin dipole moments for an ensemble
of thermalized states obtained by classical Monte Carlo for a temperature of 1.8 K,
which also relied on the O(3) description of a spin–dipole moment. Same applies to
the SCGA, which is also described in terms of classical O(3)-vectors and which was
extended for frustrated models [68] and supplemented by a stochastic model to allow
for dynamics [46].
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Figure 1.10: Comparison of experimental and results obtained by Linear Spin-Wave
theory, Molecular Dynamics for O(3)-spin dipole moments and a self–consistent Gaus-
sian approximation for the dynamics of NaCaNi2F7. The spin–dipole dynamical struc-
ture factor is shown along momentum cuts [22L] and [HH2]. First row shows the
neutron scattering intensity is in absolute units. Second, third and fourth row show
the predictions from Linear Spin-Wave (LSW) theory, rescaled Molecular Dynamics
(MD) and a self–consistent Gaussian approximation extended to a stochastic model
labeled SLN, respectively. LSW and MD results qualitatively reproduce the shape of
the broad dispersive continuum but disagree at the lowest energies; SLN fails to cap-
ture the structure of the experimental data at high energies. Figure is reproduced from
[267].

Therefore, all these 3 methods rely on a description of spin–1 moment as an O(3)-
vector. However, an O(3)-vector does not properly represent a spin–1. The disagree-
ment of these 3 methods with experiments is likely to come from the fact that an
O(3)-vector does not properly describe a spin–1 moment.

Moreover the Hamiltonian [Eq. (1.53)] used to describe NaCaNi2F7 has originally
been derived for Tb2Ti2O7, which also is a pyrochlore material but consists of effective
spin–1

2
moments. For a spin–1, additional terms, such as biquadratic term, are also
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allowed. It seems that this material cannot be fully explained within a framework
based on O(3) moments [267].

A Few Other Interesting Examples

Another interesting spin–1 magnet is the compound Ba3NiSb2O9 [40, 224]. It has been
shown to exhibit 2 structural phases displaying spin–liquid–like behaviors with AFM
couplings: the 6H-B phase which has a quasi-2-dimensional triangular lattice formed
by Ni2+ ions, and the C3 phase consisting of Ni 2

3
Sb 1

3
-three-dimensional edge- shared

tetrahedral lattice. Both phases show AFM interactions, and no sign of magnetic order-
ing is shown to appear in magnetic susceptibility data and specific heat measurements
[40]. Specific heat data display a different temperature dependence for the two phases.
Namely, it scales as T 2 for the 6H-B phase, and as T for the C3 phase. For the 6H-B
phase, muon spin rotation experiments [195] are also consistent with previous mea-
surements [40] and show no ordering down to a temperature of T = 0.02 K. Among
different explanations given to explain the experimental observations, there is the for-
mation of a 3-dimensional nematic spin liquid [98], or a consequence of an interplay
between intra– and inter–layer interactions leading to a critical point [38], or lastly, the
presence of a Femi liquid [40]. Indeed Fermi Spin liquid states have also been suggested
theoretically, where Ni2+ ions fractionalize into 3 [138, 214, 215, 260] or 4 [25] fermionic
spinons. Recent neutron scattering data suggests that the experimental data are best
explained by 3 flavors of unpaired spinons forming a Fermi-surface [58].

The spin–1 Kagome–lattice material YCa3(VO)3(BO3)4 [149] shows interesting low–
temperature properties. Neutron scattering data show an absence of long–range mag-
netic order, but specific heat measurements suggest the existence of short–range cor-
relations. This short–range magnetic order seems to be frustrated by the geometrical
structure of the Kagome lattice and the competition between AFM and FM interac-
tions. YCa3(VO)3(BO3)4 exhibits broad and non–dispersive excitation features [226]
and is discussed as a possible example of a S = 1 quantum spin liquid.

An interesting occurrence for exotic physics in quasi–1 dimensional model is illus-
trated by the compound CaV2O4. In this material, V+3 ions have an effective spin–1
and form two different but equivalent zigzag–chains of edge-sharing octahedra VO6,
forming a chain of almost equilateral triangles, resulting in apparent competing near-
est and next–nearest interactions [170, 186]. The octahedral structure partially lifts
the degeneracy of the 3d orbitals of the V+3 ions, such that the two outer electrons
occupy the t2g levels. The remarkable phenomena observed in CaV2O4 comes from its
orbital degrees of freedom which order in such a way to reduce frustration. Because of
the slightly shorter distance between spins along the chain, compared to the distance
between spins across the zigzag path, the 3 t2 levels are separated into one lower level
and two degenerate higher levels. CaV2O4 undergoes a structural phase transition at
Ts ' 141 K, where the zigzag bonds become inequivalent. This results in an additional
lifting of the two degenerate higher t2 levels. At high temperature, T > Ts, one electron
fully occupies the lowest t2 level, and partially occupies two degenerate higher levels.
This selection of orbitals results in the 1D-Haldane chain. Whereas at low temperature,
both electrons occupy fully 2 discting levels resulting in a spin–1 ladder configuration
[186].
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Recently, systems considering higher spin–moments have attracted attention. Sys-
tems where conduction electrons scatter with magnetic impurities can be described by
the Kondo model. For instance, an anisotropic 1–dimensional Kondo lattice model with
S=1 impurities studied using density matrix renormalization group (DMRG) has been
proposed to explain the coexistence of ferromagnetism and superconductivity in some
materials such as URhGe [236, 237]. And very recently, a 1–dimensional Kondo lattice
model with S ≥ 1 impurities has been generalized to also include direct Heisenberg
exchange interactions between the localized spin–1 moments and has been investigated
by mean of analytical calculation in the strong Kondo—coupling regime and by DMRG
simulations [142].

1.3.2 Spin–1 in the Zoo

Here, I give an overview of the "domesticated" methods used to study spin–1 systems,
focusing namely on the theoretical tools employed to examine the models describing
the materials presented above.

BBQ Hamiltonian as Playground for Spin–1 Animals

The material NiGa2S4 motivated much theoretical and computational work on the BBQ
model [Eq. (1.48)]. Particularly, a lot of efforts has been invested on the theoretical side
with calculations based on multi-boson theory [131, 176, 183, 250], and continuum field
theory, [102–104, 221–223, 228–231, 251], and computational side with Monte Carlo
simulations [235], and Quantum Monte Carlo simulations [78, 111, 255].

In order to better understand the low temperature features of NiGa2S4, intense
investigations on the BBQ model [Eq. (1.48)] (which is the most general Hamiltonian
for a spin–1 moment) on the triangular lattice have been carried out. In reference
[131], the mean-field phase diagram is obtained by minimization of a variational wave
function consisting in the product of single site wave–functions. The mean-field phase
diagram of the BBQ model on the triangular lattice is shown in Fig. 1.11. It is repre-
sented in term of the parameter θ [Eq. (1.50)] such that tan(θ) = J2

J1
. We can distin-

guish four distinct ground states: ferromagnet (FM); three–sublattice antiferromagnet
(AFM); ferroquadrupolar (FQ); and three–sublattice antiferroquadrupolar (AFQ). All
these phases have been studied theoretically. Namely, the ferromagnetic phase of the
Heisenberg model [Eq. (1.25)] on the triangular lattice with single–ion anisotropy has
been studied through multi-boson theory [176]. Its anti-ferromagnetic phase has been
investigated using Linear Spin–Wave theory and taking into account magnon interac-
tions [42]. The anti-ferromagnetic phase of BBQ model [Eq. (1.48)] with single–ion
anisotropy on the triangular lattice has also been studied via a representation of spin
in terms of fermionic operators [214] as well as bosonic operators (Multi-boson theory)
with additional Heisenberg next–nearest neighbors interactions [187].

The anti-ferroquadrupolar phase of the BBQ model on the triangular lattice has
been examined by means of a multi-boson theory [250]. The anti-ferroquadrupolar and
ferroquadupolar phase of the BBQ model on the triangular was also investigated by a
lattice bond–operator mean–field theory expressed in the bosonic representation [135].
Continuum field theories have also been applied to study the anti-ferroquadrupolar
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Figure 1.11: Mean–field phase diagram of the spin–1 bilinear–biquadratic (BBQ)
model on the triangular lattice [Eq. (1.48)] at T = 0, adapted from [229] and repro-
duced from [201]. The model shows four distinct ordered ground states: ferromagnet
(FM); three–sublattice antiferromagnet (AFM); ferroquadrupolar (FQ); and three–
sublattice antiferroquadrupolar (AFQ). For J1 = J2, the model exhibits an enlarged
SU(3) symmetry.

phase of the BBQ model on the triangular lattice [228–231] as well as to the ferro-
quadrupolar phase [102–104]. The ferroquadupolar phase of the BBQ model on the
triangular was investigated by mean of multi-boson theory supplemented by exact di-
agonalization [24, 131, 183]. A recent study of the BBQ model on the triangular lattice
with XXZ anisotropy also makes use of multi-boson theory to derive the anisotropic
phase diagram [212].

The BBQ model has also been applied to different type of lattices, namely the
square lattice, where exact diagonalization and multi-boson theory have been applied
and have shown that for a certain region of the phase diagram, there is a tri-sublatice
ordering despite the bipartite nature of the square lattice [247, 248]. This model has
also been studied via linked cluster perturbation expansions method [174].

An approach to classical spin dynamics of the BBQ Hamiltonian based on an SU(3)
representation of a spin–1 moments has been previously investigated [14, 200]. How-
ever, because of the complex structure of the su(3) algebra, the associated equations
of motion take a very intricated form, which prevents a smooth implementation for
numerical investigations [14, 200]. Recently, a general description based on a repre-
sentation of SU(n) coherent states has also been derived by computing equations of
motion for the generators of SU(n) [51, 264]. Applied to a spin–1 system and therefore
based on SU(3), the associated equations of motion take nevertheless a very intricated
from [14, 51, 200, 264]. Until now, the SU(n) coherent states have been illustrated
for a relatively simple model consisting of a Heisenberg Hamiltonian and single–ion
anisotropy [51, 264]. A general description for the full BBQ Hamiltonian is however
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missing.
Topological excitations within the BBQ model have also been studied [104, 252].

From [252], it is known that not all solitons are equivalent, and solitons of higher
charges decay into elementary solitons. Why and how this happens remains a mystery.
Magnetic CP2 skyrmions in spin–1 systems have also been recently reported for the
easy-axis anisotropic Heisenberg Hamiltonian with ferromagnetic first nearest neighbor
interactions and anti-ferromagnetic second-nearest neighbor interactions supplemented
by a Zeeman coupling to an external magnetic field as well as single–ion anisotropy
[265].

Multi–Boson Theory

From this non-exhaustive, yet still representative list of theoretical and mostly analyt-
ical studies applied to the BBQ model on the triangular, we note that the multi-boson
theory is particularly useful to characterize the different ground states of the BBQ
model. Moreover, because I show that within our u(3) formalism, the analytical ap-
proach leads to qualitatively similar results as the one obtained by multi-boson theory,
following the pedagogical overview provided in [212], I shortly introduce this method
below. The multi-boson theory is valid for ordered systems, where the ordered ground
state is known, as it relies on expanding orthogonal fluctuation around the ground
states. This method was already applied to describe a spin–1 almost 50 years ago
[143], and remains of relevance in nowadays research, testifying of its powerful im-
portance. Conceptually, in order to perform multi-boson theory, after identifying a
suitable basis to represent the considered spin moment (2 basis states for a spin–1

2
, 3

for a spin–1, etc), one introduce bosons operators that are responsible for creating or
annihilating these states. For concreteness, let us consider a spin–1 moments describe
by 3 orthogonal states {|1〉, |2〉, |3〉}, which satisfy the closure relation

|1〉〈1|+ |2〉〈2|+ |3〉〈3| = I . (1.56)

The bosonic operators b̂†α are introduced such that

b̂†α|GS〉 = |α〉 , (1.57)

for |α〉 being one of the 3 orthogonal states {|1〉, |2〉, |3〉}. From Eq. (1.56), we obtain
∑

α

b̂†αb̂α = 1 , (1.58)

which enforces the number of bosons per site to 1. For simplicity, we assume that the
ground state is |3〉. Generally, it could be any linear combination of the 3 orthogonal
states {|1〉, |2〉, |3〉}, but one can then always perform a basis change by mean of a
linear transformation and recover a basis where one state is the ground state and the
others two are orthogonal to it. We then "condense" the ground state bosons b̂†3 by
expressing it in terms of the 2 orthogonal bosons b̂†1 and b̂†2. To this end, one can
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generalize Eq. (1.58) to allow for Mb bosons per sites
∑

α

b̂†αb̂α = Mb . (1.59)

This allows to perform an expansion in terms of 1
Mb

similarly to a Holstein–Primakoff
transformation

b̂†3 = b̂3 =

√
Mb − b̂†1b̂1 − b̂†2b̂2 '

√
Mb

(
1− 1

2

b̂†1b̂1

Mb

− 1

2

b̂†2b̂2

Mb

+O(
1

M2
b

)

)
, (1.60)

where we should keep in mind that Mb = 1 only has physical meaning, and that this
approach is valid as long as we can assume that 〈b̂†αb̂α〉 �Mb = 1. We also note that
the classical limit Mb →∞ suppresses all quantum fluctuations. It is then possible to
transcribe any operators (usually directly represented in the {|1〉, |2〉, |3〉}) in terms of
the b̂†α bosons and to expand them as terms in 1

Mb
. This is in particular true for the

Hamiltonian
Htot = M2

bH0 +M
3
2
b H1 +MbH2 +

√
MbH3 + . . . , (1.61)

where Hn represents the n-order term in function of the bosons. This means that
H1 = 0, since no linear terms in bosons should subsist in the ground state. Usually,
we consider up to second order and write

Htot = M2
bH0 +MbH2 +O(

√
Mb) . (1.62)

The problem is solved by diagonalizing H2 using a Bogoliubov transformation. All
the quantities of interest can then be expressed in terms of the Bogoliubov bosons
diagonalizing the Hamiltonian. For a spin–1, we will always expect 2 modes associated
with the 2 orthogonal excitations. If only one type of excitation around the ground
state is considered, then we usually refer to this method as linear spin–wave. This is for
instance the case for a spin–1

2
, which only has one state available to create fluctuation,

once the ground state is set. But linear spin-waves theory can also be applied to a
spin–1 moments, if the relevant degrees of freedom only include excitations to one
of the two available states. Unfortunately, the application of multi-boson theory is
redistricted to problems where the knowledge of an ordered ground state is at least
guessable, leaving many exotic physics not available for this type of analytical study,
despite being a very powerful method for applications where we do know the nature of
the ordered ground state.

Numerical Methods for Spin–1 Animals

On the numerical side, exact diagonalization (ED) has been applied to the FQ state
of the BBQ Hamiltonian on the triangular lattice, but leads to a different value of the
critical angle a which the FQ-AFM transition happens: Mean-fields predict a tran-
sition at J2

J1
≈ −2 (see also Fig. 1.11), while exact diagonalization finds J2

J1
≈ −0.4

[131]. A cluster mean–field approach has also been used to investigate the uniaxial
anisotropic BBQ Hamiltonian on the triangular lattice [153]. This approach relies on
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exact diagonalization of small clusters which are mean-field coupled to each other. In
the isotropic case, the FQ-AFM transition is predicted to happen at J2

J1
≈ −0.6. In the

presence of anisotropy, the existence of a spin liquid phase is discussed [153]. However,
the application of this method seems limited, as when the 3–sublattice symmetry is
broken, results strongly depend on the size and the geometry of the clusters. Addi-
tionally, exact diagonalization has the merit of indeed being exact, but is numerically
very heavy and therefore restricted to small system sizes, which might be problematic
in case of exotic excitations such as topological defects.

The ferro-quadrupolar state of the BBQ model has been investigated using Classical
Monte-Carlo (MC) simulations [235], Quantum Monte Carlo (QMC) simulations [86,
87, 111, 255] as well as tensor-network simulations [171–173]. The classical Monte
Carlo simulation presented in [235] is applied to the the BBQ model [Eq. (1.48)] on
the triangular lattice for anti-ferromagnetic J1 > 0, and ferro-nematic J2 < 0 and
based on a description of the spin–1 moments in terms of d–vectors (see Eq. (2.35) in
Section 2.3) that the authors called sSU(3). This indeed allows to properly describe
a spin–1 moment, since O(3)–vectors can not represent quadrupolar order. In order
to explain NiGa2S4, third-nearest neighbor interactions are also taken into account
in order to explain its freezing behavior. Classical Monte Carlo based on the sSU(3)
representation allows to access semi–classical finite temperature thermodynamics of
spin–1 systems. However, dynamical properties remain out of reach.

Quantum Monte Carlo simulations have been performed for the BBQ model
[Eq. (1.48)] on the square lattice [86, 87] and on the triangular lattice for the purely
biquadratic case J1 = 0 [111], as well as for the ferromagnetic and ferroquadrupolar
phase θ ∈ [−π,−π

2
] [255], giving insight into the quadrupolar quantum nature of spin–1

moments. Quantum Monte Carlo simulation results reproduced form [255] for the FQ
phase of the BBQ model on the triangular lattice with parameters J = 1, θ = −π

2
are

shown in Fig. 1.12. These studies enable the investigations of the quantum characteris-
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Figure 1.12: Dynamical spin dipole SS(q, ω) and quadrupole SQ(q, ω) structure fac-
tors obtained by Quantum Monte Carlo simulations. Results are shown for the BBQ
model [Eq. (1.48)] on the triangular lattice with parameters J = 1, θ = −π

2
[Eq. (1.50)]

at a temperature T = 1
32
J , and are reproduced from [255]. The intensities of the

dynamical spin dipole SS(q, ω) and quadrupole structure factors SQ(q, ω) are given in
function of the irreducible wedge along the points Γ–K–M–Γ given in Eq. (D.3) in
abscissa, and the energy ω in ordinate.

tics of thermodynamics properties [86, 87, 111] as well as dynamics through analytical
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continuations [255]. However, Quantum Monte Carlo simulations are only applicable
to a restricted number of sign-free problems [112], and dynamics are only accessible
via analytic continuation for relatively small system sizes, and might not be applicable
to systems with complex excitations.

The BBQ model on the square lattice has also been studied via tensor network
[171, 268] allowing to investigate a generalization of the Haldane phase in 2D. The ten-
sor network was also applied to the BBQ model on the triangular lattice, which allowed
to predict the FQ-AFM transition for J2

J1
≈ −0.42 [173] confirming exact diagonaliza-

tion results [131]. Rapid advances in numerical methods, namely the density-matrix
renormalization group method, have suddenly allowed access to almost any 1D quan-
tum system [258], but their generalization to higher dimension beyond ground state
properties remains problematic [208].

1.4 And us in All That?
All these various and abundant examples of spin-1 peculiarities motivate the need for
good theoretical tools to investigate spin–1 magnets. The characteristic and interesting
features of spin-1 systems are precisely what makes them challenging to study. Classical
Monte Carlo simulations based on an O(3) representation are not able to describe
quadrupolar ground states nor quadrupolar excitations. Quantum Monte Carlo is able
to reproduce quadrupolar order [87, 111], and dynamics from its associated excitations
[255]. However, QuantumMonte Carlo can only be used for a restricted number of cases
that do not suffer from a sign problem [21]. Its dynamics are only accessible through
analytic continuation and might prove itself problematic for systems where complex
excitations are present. Additionally, the dynamic proprieties are also restricted to
relatively small system sizes.

Exact Diagonalization (ED) is also capable of properly representing a spin–1 mo-
ment and its quadrupolar nature. But because the Hilbert space grows rapidly with
system size, ED is typically restricted to calculations for systems of 20 sites or less
[52, 131]. Variational calculations methods, where the wave functions are represented
by a matrix– or tensor–product well describe the dynamics in 1D [208, 258], but their
extensions to higher dimensions have been challenging when investing further than
ground-state properties [171, 173, 268]. Despite all the efforts involved in these meth-
ods, most of our knowledge of the exotic phenomena in spin–1 magnets is restricted
to mean–field (MF) theory. MF theory is based on the assumption of a total product
wave function of single–site wave functions, and the knowledge of an (ordered) ground
state around which it is possible to expand fluctuations linearly. These drawbacks leave
many important questions out of reach.

In this Thesis, appealed by all the formidable science that has been undertaken in
order to study spin–1 magnets, I would like to motivate our work by asking ourselves,
in link with what we learned about the existing methods and their limitations, the
following questions:

? Is there a general method to study spin–1 systems?

? A method based on a truthful representation of a spin–1 moment?
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? A method that can describe the quantum proprieties of a spin–1 moment?

? A method that would also allow us to treat a spin–1 moment at the classical level
while still retaining its quadrupolar degrees of freedom?

? A method that would allow us to describe thermodynamics?

? as well as dynamical properties?

? A method that could be easily implemented on a computer in order to simulate
spin–1 system?

? A method that would allow us to access conventional ordered magnets and sys-
tems with more exotic properties? Such as spin-liquids or topological defects?

In this Thesis, I develop a method based on the embedding of spin–1 moments in
the group U(3) [180], which allows to treat both dipolar and quadrupolar order on an
equal basis and which treats quantum aspects of the problem exactly, at the level of
a single site. This leads to a formulation in terms of the generators of u(3), which
is suitable for MC and molecular dynamics (MD) simulations, as well as analytical
methods. The nice simple structure of the group U(3) also makes it possible to derive
very compact equations of motion (EoM), in a form that can easily be integrated
numerically. This allows to evaluate dynamical properties for both conventional and
unconventional forms of order.

I demonstrate that this approach reproduces known results for the excitations of fer-
roquadrupolar (FQ) order of the bilinear biquadratic (BBQ) model [Eq. (1.48)] on the
triangular lattice, where both QMC simulations [255] and analytic multi-boson theory
calculations [131] are available for comparison. Moreover, the FQ state is the simplest
yet not trivial example to exhibit the particular features of a spin–1 (quadrupoles).
In order to build SU(3), which is the natural group to describe a spin–1 moment,
as briefly discussed in Section 1.2.2, but also explained in details in Chapter 2, we
consider the 3 linearly independent dipole moments [Eq. (1.26)] and the 5 linearly in-
dependent quadrupole moments [Eq. (1.47)] that make the 8 generators of the su(3)
algebra. Although the su(3) algebra faithfully represents a spin–1 moment, its com-
plicated structure makes it a challenging starting point for describing its dynamics
[14, 200, 264]. However, we can escape these tedious efforts by adding one more gen-
erator, the spin-length Ŝi

2
, and constraining its length via

Ŝi
2

= s(s+ 1) = 2 . (1.63)

This allows a transcription of a spin–1 moment in terms of the u(3) algebra, where the
addition of the spin-length Ŝi

2
to the 8 generators of su(3) extends to compose the 9
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generators of the u(3) algebra, as illustrated in Eq. (1.64).

su(3)
algebra

Spin length

3 linearly independent
dipole components


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Âzi x
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(1.64)
In terms of the u(3) generators Âαi α, the length constraint [Eq. (1.63)] translates as a
constraint on the trace

Âαi α =
1

2
s(s+ 1) = 1 , (1.65)

on each site in the lattice, where repeated indices are summed. Imposing this constraint
restricts back to su(3) and ensures that we are properly describing a spin–1 moment.

The tensors Âi provide a convenient basis for u(3), thanks to their simple form.
They consist of a set of real, 3× 3 matrices with only one single non–vanishing matrix
element [180]. They are subject to the commutation relations given by

[
Âαi β, Âγi η

]
= δγβÂαi η − δαηÂγi β ,

[
Âαi β, Âγj η

]
= 0 .

(1.66)

In terms of matrix elements of Â, the spin–dipole moments are given by

Ŝα = −iεα γ
β Âβγ , (1.67)

and quadrupole–moments by

Q̂αβ = −Âαβ − Âβα +
2

3
δαβÂγγ . (1.68)

The BBQ Hamiltonian [Eq. (1.48)], rewritten in terms of the Â–matrices becomes

HBBQ =
∑

〈i,j〉

[
J1Âαi βÂβj α + (J2 − J1)Âαi βÂαj β + J2Âαi αÂβj β

]

=
∑

〈i,j〉

[
J1Âαi βÂβj α + (J2 − J1)Âαi βÂαj β +

J2

4
s2(s+ 1)2

]
, (1.69)

where we used the constraint on the trace [Eq. (1.65)] in the last line. From now on,
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the adoption of the Einstein convention of summing over repeated indices prevails. We
note that in terms of the u(3) generators, the BBQ Hamiltonian takes on a quadratic
form, while it is biquadratic in dipole moments. Details of the embedding of the algebra
su(3) into u(3) and properties of Â–matrices can be found in Chapter 2.

I then take the BBQ Hamiltonian written in terms of the Â–matrices [Eq. (1.69)] as
starting point for the analytical derivations. The generators of u(3) are used to create
fluctuations around a given ground state Â0–matrix. While a formulation in terms of
classical O(3)–vectors does not allow for quadrupolar excitations, the fluctuations of
Â–matrices can be treated classically by simply diagonalizing the Hamiltonian. The
representation as u(3) Â–matrices subject to the trace constraint [Eq. (1.65)] allows
to correctly take the classical limit of a spin–1. I propose here to use the classical
excitations as a basis to develop a new analytic theory for classical correlations. Per-
forming a low-temperature expansion of the classical analytical results allows a direct
comparison with Monte Carlo simulations. Additionally, I can also choose to quantize
the fluctuations into bosons by enforcing them to have bosonic commutation relations.
This can be done by performing a Bogoliubov transformation. Considering quantum
fluctuations is shown to be equivalent to multi-boson theory and to exactly reproduce
already well-known results.

I also propose to use the u(3) representation to establish a numerical method to
simulate spin-1 magnets through the characterization of dynamical structure factors.
On the thermodynamic side of the simulations, we suggest to perform Monte-Carlo
simulations, with an Âi–matrix defined at each lattice site as a starting point. I refer
to the method as "u3MC". The Âi-matrices are updated according to Metropolis’s
argument. This allows us to access static thermodynamic quantities, such as the specific
heat, equal-time structure factors, etc., In Fig. 1.13, we draw the finite-temperature
phase diagram of the BBQ model on the triangular lattice obtained from the u3MC
method, performed by my collaborator, Dr. Rico Pohle. Classical analytical derivations
for the thermodynamic properties and comparison with u3MC simulations are detailed
in Chapter 3.

Figure 1.13: Finite–temperature phase diagram obtained from Monte Carlo sim-
ulation of HBBQ [Eq. (1.69)] in the space of u(3) matrices (u3MC) for the spin–1
bilinear–biquadratic (BBQ) model on the triangular lattice, performed by my collabo-
rator Dr. Rico Pohle. Circles correspond to the location of peaks in the heat capacity.
The phases are labeled according to their dominant correlations at the ordering vector.
Figure is reproduced from [201].
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The simple form of the commutation relations [Eq. (1.66)] and the quadratic form
of the BBQ Hamiltonian allows to easily derive the Heisenberg equation of motion
(EoM) for Âi . I find

∂tÂγi η =− i
[
Âγi η,HBBQ

]

=− i
∑

δ

[ J1(Âγi αÂαi+δ η − Âαi ηÂγi+δ α)

+ (J2 − J1)(Âγi αÂηi+δ α − Âαi ηÂαi+δ γ) ] , (1.70)

which takes on a simple quadratic form suitable for numerical integration, making the
u(3) representation an important advantage when considering dynamics. The EoM are
fully quantum and correctly describe quantum dynamics. Moreover, they automatically
preserve the length of the spin [Eq. (1.65)]. As long as the original representation obeys
the spin-length constraint [Eq. (1.65)], we are properly describing the evolution of a
spin–1 moment.

We also propose to combine classical MC with the integration of the EoM. From
this emerges a numerical method similar to "molecular dynamics". The system is
thermalized by means of the u3MC scheme. The evolution of the classical thermal
ensemble of states obtained for the Âi-matrices is drawn by numerically integrating
the EoM [Fig. 1.70], typically using a Runge-Kutta algorithm. We call this method
"u3MD" and show that it can be used to calculate dynamical structure factors. This
allows to support the quantum analytical results. Moreover, it can also be applied
to disordered phases, or unconventional types of order such as vortices, or skyrmions
in spin–1 magnets. In 2 dimensions, the Mermin-Wagner theorem forbids any phase
transition due to the breaking of continuous symmetry to occur. But our formalism
enables us to witness a different kind of phase transition, a topological one. Indeed the
application of our method to the FQ state of the BBQ model on the triangular lattice
allows us to discover and observe a KT–like type of topological phase transition due
to the unbinding of Z2–vortices [190].

Although in the u3MD simulations, the EoM are fully quantum, they are originated
from a classical thermal ensemble of states obtained by u3MC. The resulting excita-
tions exhibit dynamics governed by Quantum Mechanics, but their classical spectral
weight is controlled by classical statistics and is propagated by the time-integration. We
find, however, that at low temperatures it is possible to correct for the effect of classi-
cal statistics inherited from u3MC simulations by a temperature–dependent prefactor.
This enables us to link results obtained from finite-temperature numerical simulations
and quantum zero–temperature analytical results, according to

SQM(q, ω, T = 0) = lim
T→0

~ω
2kBT

SMD(q, ω, T ) . (1.71)

Using Eq. (1.71), we obtain a perfect agreement between the corrected simulation
results and the semi–classical quantum results at T = 0, as summarized in Fig. 1.14
for the FQ phase . Detailed derivations of the quantum results, the classical-quantum
correspondence and comparison with u3MD simulations are presented in Chapter 5.

Additionally, in Chapter 6, I show that our u(3) formalism is also valid for anisotropic
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systems and delivers results for the FQ state on the triangular lattice for the BBQ
model supplemented by single–ion anisotropy. We also show how one can apply the
u(3) formalism and its representation in terms of the Â–matrices to the Heisenberg
ferromagnetic easy-plane anisotropic model. The Â–matrices are especially useful to
work with on the TR-invariant basis and relatively easy to use when the ground state
is quadrupolar. However, some attention is demanded when working with systems
where dipoles rather than quadrupoles order. I additionally demonstrate how one can
carefully apply our method for dipolar ordering, with anisotropic interactions.
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(b) Quantum flavour–wave theory at T = 0
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(c) u3MD, corrected for classical statistics

Figure 1.14: Dynamical spin–dipole structure factor SS(q, ω) for the ferroquadrupo-
lar (FQ) phase of the BBQ model Eq. (1.69) with J1 = 0.0; J2 = −1.0 on the triangular
lattice, reproduced from [201]. (a) Raw results of “molecular dynamics” (u3MD) sim-
ulation at finite T . We observe a dispersing band of excitations, which is linearly
dispersive for small vectors in the reciprocal space. These are the Goldstone modes
of the FQ order. The spectral weight in these excitations is governed by the classical
statistics inherited from Monte Carlo (u3MC) simulations. (b) Predictions of quan-
tum multi-boson theory at T = 0. (c) MD results corrected for the effects of classical
statistics, showing agreement with T = 0 quantum results. The u3MD method was
implemented by my collaborator Dr. Rico Pohle using a Runge-Kutta algorithm of
order 4.

Finally, a summary and conclusion stating the advantages and limitations of our
methods as well as future directions are provided in Chapter 7. I give a brief recapit-
ulation of the work achieved during my Thesis, its repercussion and impacts on the
understanding of spin–1 magnets as well as its consequences in the context of the recent
endeavor in multi–polar phase. And I conclude with an outlook plan for the future
possible applications our method is able to offer. The working progress for projects
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descending from this Thesis is presented in Section 7.2. I discuss the application of our
method to topological defects in spin–1 magnets and the generalization of the widely
used Self-Consistent Gaussian Approximation to the degrees of freedom of a spin–1
expressed within our u(3) formalism.

The majority of the work presented in the Thesis has been published in an article
Physical Review Research, Ref. [201]





Chapter 2

U(3) as an Algebra for Spin–1

In this Chapter, I provide the mathematical and conceptual baggage needed to de-
scribe a spin–1 moment using the group U(3) together with the general methodology
of the formalism that I derived. I start in Section 2.1 by introducing basic and useful
definitions of notions coming from group theory that will turn out to be indispensable.
In Section 2.2, I describe how a spin–1

2
moment can be represented within the su(2)

algebra, and how this implies that a classical valid representation can be accounted by
an O(3)–vector. In Section 2.3, I explain how the su(3) algebra can describe a spin–1
moment, and why the O(3)–vector is not a compatible classical limit for a spin–1. Be-
cause of the complicated structure of su(3) algebra, in Section 2.4, I explain how we
can simplify the mathematical derivation by instead considering the u(3) algebra sup-
plemented by a constraint. In Section 2.5, I develop a theory of fluctuations within the
u(3) formalism that can be treated at the classical or quantum level. Finally, in Sec-
tion 2.6, I present how the u(3) framework can be implemented to carry out numerical
simulations by proposing a u(3) classical Monte–Carlo and u(3) Molecular Dynamics
scheme.

2.1 A Little Bit of Group Theory
Before considering how we can represent a spin moment mathematically, I first pro-
vide some basic definitions, without attempting to give an extensive summary of group
theory. Useful and pedagogic introductions can be found in [105, 211, 233]. There-
fore, I here shortly introduce some important concepts and definitions that will reveal
themselves as essential in understanding the next parts of this Chapter.

Lie groups are groups whose elements continuously depend on some parameters,
they are manifolds and are very useful in physics in order to describe continuous sym-
metries. A group is an ensemble G equipped with a composition law ·, such that
∀g1, g2, g3 ∈ G

1. g1 · g2 ∈ G ,

2. g1 · (g2 · g3) = (g1 · g2) · g3 ,

3. ∃e ∈ G : e · g1 = g1 · e = g1 ,

45
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4. ∃g−1
1 ∈ G : g1 · g−1

1 = g−1
1 · g1 = e .

Without entering too much into mathematical details, a Lie group L is a group. There-
fore, it possesses a group structure, but is additionally characterized by the fact that the
inverse and product operations between two elements of the group are differentiable:

? Product: L× L→ L, (l1, l2)→ l1l2 .

? Inverse: L→ L, l1 → l−1
1 .

This implies that l ∈ L continuously depends on n local coordinates (x1, . . . , xn), where
n defines the dimension of L, such that l = l(x):

1. l(x)l(y) = l(f(x, y)) ,

2. l−1(x) = l(g(x)) ,

3. l(0) = e ,

where e is the identity element of L. This way, the functions f and g are differentiable.
As examples of Lie groups, we consider U(n) and SU(n). This analysis will prove

useful in Section 2.3 and Section 2.4.
U(n) is the Lie group of unitary transformation in Cn defined by

U(n) =
{
M ∈ GL(n,C) |MM † = I

}
. (2.1)

The number of real independent components required to build up any element of a
Lie group is called its dimension. It is the number of continuous parameters needed to
describe them, and it is the dimension of its associated real manifold. U(n)’s dimension
is n2. GL(n,C) denotes the group of general linear transformations in Cn consisting of
n×n M matrices such that det(M) 6= 0 (M is invertible), with elementsMij belonging
to C. GL(n,C)’s dimension is 2n2.

SU(n) is the Lie group of special unitary transformation in Cn defined by

SU(n) = {M ∈ U(u) | det(M) = 1} . (2.2)

Its dimension is n2 − 1, because among the U(n) matrices with det = eiφ , φ ∈ [0, 2π],
it selects the one with det = 1.

As previously stated, Lie groups are groups whose elements continuously depend
on some parameters. This continuity implies that we can construct the tangent space
to any point. And this is in particular true for the identity element. From the tangent
space at the identity arise a Lie algebra structure on its elements. The Lie algebra allows
to generate with a finite number of elements, called generators, the neighborhood of
the Lie group close to the identity. The generators of the associated Lie algebra are
codified by composition laws usually given in terms of commutation relations. Indeed,
Lie algebras are defined by their Lie bracket [, ] that tells us how to combine elements
of the Lie algebra. Therefore, in order to describe a Lie group, we sometimes refer
to its Lie algebra instead. As we will see, different Lie groups can have the same Lie
algebra.
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Lie algebras are linear vector spaces with a structure given by the Lie bracket [·, ·].
Mathematically, we define a Lie algebra ` as the linear vector space V over a field F
with a binary operation given by the Lie bracket [·, ·] such that for any m, l, k ∈ ` and
any a, b ∈ F , the following properties are satisfied:

1. [m, l] ∈ ` ,

2. [m, l] = − [l,m] ,

3. [m, al + bk] = 2 [m, l] + b [m, k] ,

4. [[m, l] , k] + [[l, k] ,m] + [[k,m] , l] = 0 .

In a given basis {ei} of `, one can entirely characterize the algebra by the action of the
Lie bracket on the basis element:

[
ei, ej

]
= cijkek , (2.3)

where cijk ∈ F are called the structure constants. More intuitively, we can choose to
parametrize the elements li of the Lie group L in terms of parameters xα as

li({xα}) = e−i
∑
β xβmβ , (2.4)

where mβ are the generators:

mβ =
dli
dxβ

∣∣∣∣
{xα}=0

. (2.5)

We see from Eq. (2.5), that all the mβ can be used as a basis to build the tangent space
of the Lie group L at the identity. They also satisfy Eq. (2.3). This gives an alternative
definition of Lie algebras, such as for any element m of the Lie algebra `, M = etm

belongs to the Lie group L, for any t ∈ R. Additionally, if there is a neighborhood in
the Lie group L around the identity I, such that M is in this neighborhood, there is
a unique element m of the Lie algebra ` in a neighborhood of 0, such that M = em.
An important result states that there is a unique (up to an isomorphism) connected
or simply connected Lie group L̂ which has the same algebra as the Lie group L and
is called the universal covering group of L. We elucidate this point with an example
below in Section 2.2.2.

The Lie algebra of the Lie group U(n) is denoted by u(n) and is given by

u(n) =
{
m ∈ L(n,C) | m+m† = 0

}
, (2.6)

where L(n,C) simply represents the group of n × n square matrices with complex
components. The dimension of the Lie algebra is the same as its Lie group, and for
u(n) we also have a dimension of n2. The Lie algebra su(n) of the Lie group SU(n) is
given by

su(n) =
{
m ∈ L(n,C) | m+m† = 0, Tr(m) = 0

}
. (2.7)

Its dimension of n2 − 1, meaning that as a basis for su(n), we need to find n2 − 1
independent generators.
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Lastly, as mentioned above, Lie algebras generate only the group elements that are
continuously connected to the identity element of that group. For instance, the group
O(3) consisting of all 3× 3 orthogonal matrices in R3 is different from SO(3) which is
the group of all 3×3 orthogonal matrices with det = 1, even though they have the same
dimension. Indeed, O(3)matrices can have det = ±1, and among these, SO(3) only
selects those with det = 1. O(3) matrices with det = 1 are called proper matrices and
they form a sub-group of O(3), noted O(3)+ = SO(3), while those with det = −1 do
not from a group. (Indeed, ifM1,M2 ∈ O(3)− = {M ∈ O(3) | det(M) = −1} such that
det(M1) = det(M2) = −1, thenM3 = M1M2 /∈ O(3)− as det(M3) = det(M1)det(M2) =
1.) However, O(3) and SO(3) share the same algebra. Indeed,

o(3) = so(3) =
{
m ∈ L(3,R) | m+mT = 0

}
. (2.8)

This algebra allows to generate all the elements that are continuously connected to the
identity element, all of O(3)+ = SO(3) (since det(I3) = 1), but not the elements with
det = −1. For the interested reader, a detailed introduction to these concepts can be
found in [105, 211, 233].

2.2 A Little Bit of su(2)

2.2.1 Description of a Single Quantum Spin–1
2

As explained in the Introduction, Section 1.2.2, for a spin–1
2
moments there are only

two eigenstates of the Ŝz operators with eigenvalues m = ±1
2
[Eq. (1.33)], illustrated

in Fig. 1.3(a). These two states have both finite spin–dipole moments, and form a
Kramers pair, related by time–reversal (TR) symmetry. We also saw that any possible
quantum state for a spin–1

2
can be described in terms of two complex numbers c↑, c↓ ∈ C

which are the coefficients of the linear superposition of the two eigenstates [Eq. (1.33)]
∣∣∣ψ 1

2

〉
= c↑|↑〉+ c↓|↓〉 , c↑,↓ ∈ C , (2.9)

which was previously introduced as Eq. (1.34) and where the coefficients c↑ and c↓
are subject to the normalization constraint given Eq. (1.35). All the possible complex
values for the 2 coefficients c↑, c↓ form a linear vector space, called the Hilbert space.
For a spin–1

2
, the Hilbert space is therefore 2-dimensional and denoted H2. Generally,

two states in Hn can be linked by an SU(n) transformation.
Coming back to spin–1

2
, any two states in H2 can be connected via a SU(2) trans-

formation. Its dimension is 3, meaning one needs 3 independent parameters to describe
it. The Lie group SU(2) can also be parameterized by 2 complex numbers (i.e 4 real
parameters) and 1 constraint. Indeed any SU(2) matrix M can be written in the form
of

M =

(
z1 −z2

z2 z∗1

)
, z1, z2 ∈ C , such that |z1|2 + |z2|2 = 1 , (2.10)

where z∗1 denotes the complex conjugate of z1. We can express the complex numbers
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by their projection onto the real and complex axis of the complex plane:

z1 = a+ ib , z2 = c+ id , (2.11)

such that
a2 + b2 + c2 + d2 = 1 . (2.12)

From this picture arise a description in terms of quaternion

q = a+ ib+ jc+ kd , (2.13)

satisfying Eq. (2.12), which is the same constraint as the 3-dimensional sphere S3.
Therefore, SU(2) can be thought of as the 3-dimensional sphere S3.

The su(2) algebra is also 3–dimensional and one also needs 3 independent parame-
ters to describe it. A convenient basis for the Lie algebra su(2) is given by the 3 Pauli
matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (2.14)

and the structure of the Lie algebra su(2) is given by the commutation relations

[σα, σβ] = 2iεαβγ σ
γ . (2.15)

We can redefine the generators as Sα = 1
2
σα and get rid of the 2 in the commutation

relations:
[Sα, Sβ] = iεαβγ S

γ . (2.16)

2.2.2 SO(3) vs SU(2): Both Describe a Spin–1
2

An interesting result from group theory is that the universal covering group of the
rotation group SO(3) is SU(2), and we write

ŜO(3) = SU(2) . (2.17)

This implies that SO(3) and SU(2) share the same algebra. In order to make this more
explicit, we quickly consider the SO(3) group by defining

SO(n) =
{
M ∈ GL(n,R) |MMT = I, det(M) = 1

}
. (2.18)

Its dimension is n(n−1)
2

. GL(n,R) denotes the group of general linear transformations
in Rn, i.e n× n M invertible matrices, with real components. Its algebra is given by

so(n) =
{
m ∈ L(n,R) | m+m† = 0

}
. (2.19)
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This means that SO(3) and its algebra are 3–dimensional. For the algebra so(3), a
convenient basis is given by

J1 =




0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 −i
0 0 0
i 0 0


 , J3 =




0 −i 0
i 0 0
0 0 0


 , (2.20)

which satisfy the commutation relation:

[J i, J j] = iεijkJ
k , (2.21)

which is the same as for the generators of su(2) [Eq. (2.16)]. The Lie algebras are
defined by their Lie brackets, and therefore the Lie groups SO(3) and SU(2) have the
same algebra. This has drastic repercussions on the way we can represent a spin–1

2

moment. Indeed, valid representations of a spin–1
2
moment include both pictures: as a

2-dimensional complex vector (spinor) in H2 subject to SU(2) transformations, or as a
3-dimensional real unit vector (O(3)-vector) prone to SO(3) rotations (O(3) since they
have the same algebra o(3) = so(3)). There is actually a (local) isomorphism between
su(2) and o(3) = so(3). And we write

su(2) ' so(3) . (2.22)

In terms of the Lie groups, this isomorphism is local, in the sense that it concerns
elements of the groups that can only be continuously connected to the identity element,
as we saw previously. The mapping in Eq. (2.22) is actually 2 onto 1. This means that
while we can think about SU(2) as the sphere S3, we can think of SO(3) as "half" the
sphere, namely the protective space RP3.

Because SU(2) is connected, and simply connected (i.e Π1(S3) = {e}, all loops are
shrinkable on the sphere S3), as representation of su(2) for a spin–s corresponds to a
true representation of SU(2). But, since Π1(SO(3)) = Π1(RP3) = Z2, any representa-
tion of so(3) for a spin–s does not necessarily give a true representation of SO(3). It
turns out that a representation of so(3) for a spin–s is a true representation of SO(3)
if s is an integer, but a protective one if s is a half-integer.

Because of this mathematical luck, we can equally well represent a spin–1
2
by a

2–dimensional complex vector subject to SU(2) transformations as by a 3–dimensional
real vector prone to SO(3) rotations. Therefore, representing a spin–1

2
moment by a

"classical" real O(3)-vector on the S2 sphere (unit vector)

S = (Sx, Sy, Sz) , S2 = 1 , (2.23)

works very well. Indeed, for a spin–1
2
, all higher-order terms of spin moments vanish,

because of the very structure of the Lie algebra su(2), and an O(3)-vector on the S2

sphere suffice to describe all the degrees of freedom of a spin–1
2
. All the degrees of

freedom are encoded in what can plausibly happen to the spin–1
2
moment, which is

dictated by the generators, i.e. the algebra.
This is very fortunate as we can then use the representation of a spin–1

2
in terms of

an O(3)-vector on the S2 sphere as a starting point for numerical simulations, such as
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Monte Carlo algorithm [127] or analytic methods such as the Self-Consistent Gaussian
Approximation (SCGA) [68] for calculating thermodynamic properties. The descrip-
tion of a spin–1

2
in terms of a unit O(3)-vector also allows to describe the dynamics at

a (semi–)classical level from the Heisenberg equation of motion (EoM)

dSi
dt

= −i
[
Si,H

]
=
dH
dSi
× Si . (2.24)

Using classical Monte Carlo simulation to draw thermalized spin configurations and
then numerically integrating the EoM for spin–dipole moments [Eq. (2.24)] provides
a (semi–)classical approach to spin dynamics. This approach has been referred to as
"Molecular Dynamics" (MD)[152, 189, 267], and is similar to simulations based on the
(phenomenological) Landau–Lifshitz–Gilbert equations [73]. However, the standard
MD approach for spins will break down when O(3)–vector representation fails. This
can happen when considering higher spin moments, as we will see below, or if one were
to consider entanglement or additional orbital degrees of freedom [106]. Indeed, even
two entangled spin–1

2
requires a description in terms of su(4), which is 15–dimensional.

While two independent spin–1
2
moments, each represented by su(2) ' so(3) which is

3–dimensional, need a total of six parameters.

2.3 A Bit More to Make su(3)
As explained in the introduction, a spin–1 moment is described by 3 basis states.
These can be chosen as the eigenstates of the Ŝz operators with eigenvalues m =
1, 0,−1 [Eq. (1.40)] as illustrated in Fig. 1.3(b). Any state representing a spin–1 can
be expressed as a linear combination of these 3 basis states

|ψ1〉 = c1|1〉+ c2|0〉+ c3

∣∣1
〉
, cα ∈ C , (2.25)

which was previously introduced as Eq. (1.45), and where the coefficients c1, c2, c3 are
constrained by Eq. (1.46) and fully determine any spin–1 (provided the knowledge of
basis in which we represent it). We then collect the coefficients c1, c2, c3 describing any
spin–1 and constrained by Eq. (1.46) into a 3–dimensional complex vector, living in the
3–dimensional Hilbert space H3. Any transformation allowed for a spin–1 such that
Eq. (1.46) is preserved is given by the Lie group SU(3), which has dimension 8.

The 3-dimensional representation of SU(2) can be used to describe a spin–1, but
it would only describe its rotations in R3, i.e. only its dipolar moments. However,
we saw that a spin–1 can do more, namely not "point" anywhere, and instead exhibit
a quadrupole moment. In order to describe the features of a spin–1 beyond dipolar
moments, one needs SU(3). Moreover, the fundamental representation of SU(3) is the
one of a spin–1, while the fundamental representation of SU(2) is the "two–state" one
of a spin–1

2
.

The eight generators of the Lie algebra su(3) allow to generate any transformation
of SU(3) around the identity. A convenient basis for these is given by the eight Gell-
Mann matrices
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λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (2.26)

They satisfy commutation and anti-commutation relations

[λi, λj] = 2if ijkλ
k , f ijk = − i

4
Tr(λi[λj, λk]) , (2.27a)

{λi, λj} =
4

3
δijI + 2gijkλ

k , gijk =
1

4
Tr(λi{λj, λk}) . (2.27b)

It is clear that because it has 8 generators the su(3) algebra describing a spin–1 is
much richer than su(2) describing a spin–1

2
. As previously mentioned, the 3 generators

needed to describe a spin–1
2
(Si = 1

2
σi),

S = (Sx, Sy, Sz) , (2.28)

correspond to the rotation generators and form a sub-algebra of su(3). The remaining
5 generators to construct su(3) can then be identified as the 5 linearly independent
quadrupole moments

Q̂ =




Q̂x2−y2

Q̂3z2−s2

Q̂xy

Q̂xz

Q̂yz




=




1
2
(Q̂xx − Q̂yy)

1√
3
(Q̂zz − 1

2
(Q̂xx + Q̂yy))

Q̂xy

Q̂xz

Q̂yz




=




(Ŝx)2 − (Ŝy)2

1√
3
(2(Ŝzi )

2 − (Ŝx)2 − (Ŝy)2)

ŜxŜy + ŜyŜx

ŜxŜz + ŜzŜx

ŜyŜz + ŜzŜy




,

(2.29)

as previously defined in Eq. (1.47).
The vector notation [Eq. (2.29)], and tensor notation [Eq. (1.44)] are linked to each

other by

Q̂ · Q̂ =
∑

α

Q̂αQ̂α =
1

2

∑

αβ

Q̂αβQ̂αβ . (2.30)

Spin moments are commonly represented in their magnetic basis formed by the
eigenstates of the Ŝz operators. However, this choice is not unique. Indeed, any linear
combination of these states that form 3 new orthogonal states can be used just as
well. We saw that what makes a spin–1 special includes the fact that it can exhibit
quadrupole moments on a single site, which are time–reversal (TR) invariant. For a
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spin–1 moment, it turns out to be convenient to work in a basis that respects the
symmetries of the quadrupole moments, such that

T̂ |φ〉 = |φ〉 , (2.31)

where T̂ is the TR–operator. Such a TR–invariant basis is given by

B2 = {|x〉, |y〉, |z〉} , (2.32)

where
|x〉 = i√

2
(|1〉 −

∣∣1
〉
), |y〉 = 1√

2
(|1〉+

∣∣1
〉
), |z〉 = −i|0〉 . (2.33)

These states are illustrated in Fig. 2.1 and are subject to the closure relation

|x〉〈x|+ |y〉〈y|+ |z〉〈z| = I . (2.34)

|zi

<latexit sha1_base64="ZCZg8SLp9a9VRWy9BuHT3ZEPhrA=">AAAB/3icbVDLSgNBEJz1GeNrVfDiZVAEQQi7ougx6MVjBPOA7BJmJ73J4OzsMtMrxOjBf/ALvHhQxKu/4S1/4+RxUGNBQ1HVTXdXlElh0PMGzszs3PzCYmGpuLyyurbubmzWTJprDlWeylQ3ImZACgVVFCihkWlgSSShHt1cDP36LWgjUnWNvQzChHWUiAVnaKWWux1IiPGe3tFAi04XA81UR0LL3fNK3gh0mvgTslfeDQ6fBuVepeV+Be2U5wko5JIZ0/S9DMM+0yi4hIdikBvIGL9hHWhaqlgCJuyP7n+g+1Zp0zjVthTSkfpzos8SY3pJZDsThl3z1xuK/3nNHOOzsC9UliMoPl4U55JiSodh0LbQwFH2LGFcC3sr5V2mGUcbWdGG4P99eZrUjkr+cenkyqZxTsYokB2ySw6IT05JmVySCqkSTu7JM3klb86j8+K8Ox/j1hlnMrNFfsH5/AYbu5km</latexit>

|yi

<latexit sha1_base64="Y6OUaUq2YvZKB+5m6ojmZN4eL0I=">AAAB/3icbVDLSgNBEJyNrxhfUcGLlyFBEISwK4oeg148RjAqZEOYnfQmQ2Znl5leYUly8B/8Ai8eFPHqb3jL3zh5HNRY0FBUddPdFSRSGHTdkZNbWFxaXsmvFtbWNza3its7tyZONYc6j2Ws7wNmQAoFdRQo4T7RwKJAwl3Quxz7dw+gjYjVDWYJNCPWUSIUnKGVWsU9X0KIA5pRX4tOF33NVEdCq1h2K+4EdJ54M1Kulvyjp1E1q7WKX3475mkECrlkxjQ8N8Fmn2kUXMKw4KcGEsZ7rAMNSxWLwDT7k/uH9MAqbRrG2pZCOlF/TvRZZEwWBbYzYtg1f72x+J/XSDE8b/aFSlIExaeLwlRSjOk4DNoWGjjKzBLGtbC3Ut5lmnG0kRVsCN7fl+fJ7XHFO6mcXts0LsgUebJPSuSQeOSMVMkVqZE64WRAnskreXMenRfn3fmYtuac2cwu+QXn8xsaKZkl</latexit>

|xi
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Figure 2.1: Time–reversal invariant basis for a spin–1 moment. The three states |α〉,
with α = x, y, z, are invariant under time–reversal, and have vanishing dipole moments
〈α|Sµ|α〉 = 0, for µ = x, y, z referring to the usual spacial spin components. The
red rods represent their respective directors whose components are given by Eq. (2.35)
Their spin fluctuations exhibit the characteristic “donuts–shaped” profile [Appendix A].
These states can be expressed in terms of the usual magnetic basis [Fig. 1.3] through
Eq. (2.33).

Any state describing a spin–1 can be expressed as a linear combination of the TR–
invariant basis states as

|d〉 =
∑

α=x,y,z

d∗α|α〉, d∗α ∈ C . (2.35)

The coefficients d∗α are collected in a complex vector (director) d, of unit length

d∗ · d = 1 . (2.36)

We note that the spin fluctuations of the 3 TR–invariant basis states [Eq. (2.33)] shown
in Fig. 2.1 take the characteristic donuts-shape, do not have any dipole moments, and
are represented by their director d shown in red. The real and imaginary parts can be
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explicitly separated as
d∗ = u + iv . (2.37)

This provides a representation of a spin–1 in terms of 2 real 3–dimensional vectors,
subject to the constraint

u · u + v · v = 1 . (2.38)

A spin–1 moment can be entirely characterized by the 3 complex coefficients of its
decomposition within an orthogonal basis, that we can choose to be the TR invariant
basis [Eq. (2.33)], such that the 3 complex coefficients correspond to the components
of the director d, subject to the normalization constraint [Eq. (2.36)]. Additionally, a
quantum state is defined up to a phase, and therefore so is d [Eq. (2.35)]. We therefore
have the freedom of fixing the gauge of d. It is sometimes convenient [229] to choose
it such that u and v are perpendicular to each other

u.v = 0 . (2.39)

A spin–1 moment can then be represented by a 3–dimensional complex vector, 6 real
parameters, subject to a length constraint and a gauge degree of freedom for the phase.
This implies that ultimately a spin–1 moment can be described by 4 independent real–
degrees of freedom. The length constraint and the gauge freedom can also be chosen
such that we can get rid of one of the 3 complex coefficients, and a spin–1 moment is
then simply represented by a 2–dimensional complex vector, 4 real parameters. This
explains why the parameter phase of a spin–1 moment is given by the 2–dimensional
complex projective space CP2.

The 8 operators needed to represent a spin–1 moment can also be expressed in the
TR–invariant basis. The dipole moments become

Ŝα = −iεαβγ|β〉〈γ| , (2.40)

and correspond to the anti–symmetric contraction of TR–invariant basis states, while
the quadrupoles moments are given by

Q̂αβ = −|α〉〈β| − |β〉〈α|+ 2

3
δαβ|γ〉〈γ| , (2.41)

and correspond to the symmetric contraction. Given a general state represented by its
director [Eq. (2.35)], its expected dipole–moments and quadrupole–moments in terms
of d and in terms of u and v [Eq. (2.37)] yield

〈d|Ŝα|d〉 = −iεαβγd∗βdγ (2.42)
= 2εαβγuβvγ ,

〈d|Q̂αβ|d〉 = −d∗αdβ − d∗βdα +
2

3
δαβd∗γdγ (2.43)

= −2(uαuβ + vαvβ) +
2

3
δαβ(uγuγ + vγvγ) .
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The equation for the dipole moment [Eq. (2.42)] can be rewritten in its vector form

〈S〉 = 2u× v . (2.44)

We see that if the director d is either purely real (v = 0), or purely imaginary (u = 0),
the associated dipole moments will be zero. This is, of course, in particular the case
for the TR–invariant basis [Eq. (2.33)].

2.4 From su(3) to u(3)

2.4.1 Description in Terms of u(3)

From the form of the expressions for spin– [Eq. (2.40)] and quadrupole–moments
[Eq. (2.41)], we see that it is convenient to introduce an object with matrix elements

Âαγ = |α〉〈γ| , (2.45)

i.e.

Â =



|x〉〈x| |x〉〈y| |x〉〈z|
|y〉〈x| |y〉〈y| |y〉〈z|
|z〉〈x| |z〉〈y| |z〉〈z|


 , (2.46)

that we referred to as the " A–matrix" [180] . Given a general state represented by its
director d [Eq. (2.35)], the expected value of the A-matrix components is given by

〈d|Âαβ|d〉 = d∗αdβ = uαuβ + vαvβ + i(uαvβ + uβvα) , (2.47)

where u and v are defined through Eq. (2.37).
We call it " A–matrix", but to be mathematically correct, Â is a tensor, as described

in Section 2.4.3. The matrix Â is subject to the constraint

Tr Â = 1 , (2.48)

which follows from the closure relation [Eq. (2.34)] of the TR–invariant basis states
[Eq. (2.33)]. The component of the matrix Â also satisfy

Âα†β = Âβα , (2.49)

which follows from the definition Eq. (2.45). In terms of the components of the matrix
Â [Eq. (2.45)], the dipole– and quadrupole–moments become

Ŝα = −iεα γ
β Âβγ , (2.50)

Q̂αβ = −Âαβ − Âβα +
2

3
δαβÂγγ , (2.51)

which were previously introduced in Eq. (1.67) and Eq. (1.68).
A convenient basis for Â is provided by the representation of components of the

matrix Â in the TR–invariant basis, giving nine matrices with a single non–zero element
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[180]

Â1
1 =




1 0 0
0 0 0
0 0 0


 , Â1

2 =




0 1 0
0 0 0
0 0 0


 , Â1

3 =




0 0 1
0 0 0
0 0 0


 ,

Â2
1 =




0 0 0
1 0 0
0 0 0


 , Â2

2 =




0 0 0
0 1 0
0 0 0


 , Â2

3 =




0 0 0
0 0 1
0 0 0


 ,

Â3
1 =




0 0 0
0 0 0
1 0 0


 , Â3

2 =




0 0 0
0 0 0
0 1 0


 , Â3

3 =




0 0 0
0 0 0
0 0 1


 .

(2.52)

These matrices close the algebra u(3), with commutation relations
[
Âαi β, Âγi η

]
= δγβÂαi η − δαηÂγi β ,

[
Âαi β, Âγj η

]
= 0 ,

(2.53)

previously introduced in Eq. (1.66). Any complex linear combination of the basis
matrices as represented in Eq. (2.52) can be used to generate transformations of U(3).
However, we saw that in order to describe a spin–1 moment, we need SU(3), and don’t
require all of U(3). In the next sections, we will see that we can effectively describe
all possible states of a spin–1 moment using U(3), and use a constraint to restrict
back to SU(3). We will also see that because of the nice commutation relations of the
Â–matrices Eq. (2.53), it is more convenient to work with u(3), rather than su(3).

2.4.2 Relationship Between U(3) and SU(3) Representations

Compared to the eight generators of SU(3) [Eq. (2.26)], the description of a spin–1
moment in terms of the nine matrices Âαβ [Eq. (2.52)], contains one additional operator.
This additional operator is the spin–length Ŝ

2
.

Indeed, we note that the spin–length Ŝ
2
is represented by a diagonal matrix, with

eigenvalues s(s + 1) and therefore commutes with any other matrix. Under a basis
change Λ ∈ SU(n), the spin–length Ŝ

2
remains unchanged as ΛŜ

2
Λ† = Ŝ

2
ΛΛ† = Ŝ

2
.

And therefore, its trace also stays invariant under a basis change

Tr(Ŝ
2
) = n× s(s+ 1) > 1 , (2.54)

where n is the dimension of the Hilbert space, since already for a spin–1
2
, we have n = 2

and s = 1
2
which leads to Tr(Ŝ

2
) = 3

2
. Since Tr(Ŝ

2
) 6= 0, Ŝ

2
does not belong to the

algebra su(n), but can be used as the additional generator to build o basis for u(n).
Consequently, we can use the 3 linearly independent dipole moments Ŝ [Eq. (2.28)],

which represents the SO(3) rotations and the 5 linearly independent quadrupole mo-
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ments Q̂ [Eq. (2.29)], which together make a representation of SU(3), to which we add
the additional spin–length Ŝ

2
operator in order to build a representation of U(3). We

can then map the representation of SU(3) in terms of dipole [Eq. (2.28)] and quadrupole
[Eq. (2.29)] moments, plus the spin–length Ŝ

2
operator, with the representation of U(3)

in terms of the nine generators Â
α

β [Eq. (2.52)]



Ŝ
2

Ŝx

Ŝy

Ŝz

Q̂x2−y2

Q̂3r2−s2

Q̂xy

Q̂xz

Q̂yz




= C




Â1
1

Â1
2

Â1
3

Â2
1

Â2
2

Â2
3

Â3
1

Â3
2

Â3
3




, (2.55)

where C is the 9× 9 matrix.

C =




2 0 0 0 2 0 0 0 2
0 0 0 0 0 −i 0 i 0
0 0 i 0 0 0 −i 0 0
0 −i 0 i 0 0 0 0 0
−1 0 0 0 1 0 0 0 0

1√
3

0 0 0 1√
3

0 0 0 − 2√
3

0 −1 0 −1 0 0 0 0 0
0 0 −1 0 0 0 −1 0 0
0 0 0 0 0 −1 0 −1 0




, (2.56)

previously shown schematically as Eq. (1.64).
This means that within U(3), the length of the spin is not fixed, it is one of the

possible degrees of freedom encoded by U(3). Luckily, we can pin down the spin sector
by imposing the constraint Eq. (2.48) as

TrA =
∑

α Âαi α =
∑

α
1
2
Ŝαi Ŝαi = 1

2
s(s+ 1) = 1 , (2.57)

where we have used the property
∑

α

Q̂αα
i = 0 . (2.58)

This way we restrict fluctuations to only the smaller group SU(3), which is the group
that properly describes a spin–1 moment.

From this observation follows that we can work directly with the matrices Â, as
long as these satisfy the constraint Eq. (2.57). This will turn out to be very useful for
numerical simulations of spin–1 moment.
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2.4.3 Mathematical Properties of A–matrices

We mentioned that for convenience we might refer to the operators Âαβ as matrices,
while in fact, they are tensors. Details on the tensor nature of the operators Âαβ are
given in Appendix B. Here, I simply present the way in which Âαβ transforms under a
linear map, a property that will turn out to be useful later.

According to its definition[Eq. (2.45)], the operator Âαβ is given by matrix elements
of the TR–invariant basis [Eq. (2.32)], we directly introduced a contravariant index α,
and a covariant index β, such that the index α corresponds to a bra vector, while the
index γ relates to a ket vector. Because the Bra–vector space is the dual of the ket–
vector space, covariant and contravariant indexes transform differently under a linear
transformation of basis vectors.

We consider a general linear transformation

Λ : V → V , (2.59)

with
det Λ 6= 0 , (2.60)

such that Λ is invertible. We then define

Λ̃ =
(
Λ−1

)T
. (2.61)

Under such a transformation, the components of Âαβ will transform as

(Âαβ)µν = Λµ
γΛ̃

κ
ν (Âαβ)γκ = Λµ

γ(Λ
−1)κν(Âαβ)γκ , (2.62)

where we once again assume the Einstein convention of summing over repeated indices.
Mathematically, Âαβ is a (1, 1)–tensor, implying that it can be viewed as a linear

map that takes one element in the vector space V , and a second one in the dual vector
space V ∗, and assigns then a number in the field F .We also note that the only non-zero
component of (Âαβ)γκ in the TR–invariant basis is simply

(Âαβ)αβ ≡ 1 . (2.63)

Two other useful mathematical properties of the operators Â which will prove useful
in later calculations are shortly presented below. Firstly, any state |α = x, y, z〉 in the
basis B2 [Eq. (2.32)] can be constructed as

|α〉 = d†α|vac〉 , (2.64)

where d̂α satisfies the bosonic commutation relation

[d̂α, d
†α] = δαβ , (2.65)

and |vac〉 is the vacuum. This implies that the matrix Â can be built as the exterior
product of the operators d̂α

Âαβ = d†αd̂β . (2.66)
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The fact that d̂α satisfies the Bosonic commutation relation ensures that the structure
of the u(3) algebra is preserved [Eq. (2.53)] This representation will in particular prove
itself useful when we come to construct the quantum theory of excitations in Section 4.1.

Secondly, we note that the dipole moments, the quadrupole moments and the Âαβ
operators are linked to each other via

∑

α,β

Âαi βÂβj α =
∑

α,β

1

4
Q̂αβ
i Q̂βα

j +
∑

α

1

2
Ŝαi Ŝαj +

1

12
s2(s+ 1)2 . (2.67)

We will especially rely on this result in Section 3.3.3 and Section 4.2 as it states a sum
rule on the structure factors.

2.4.4 Representation of the BBQ Model Within a u(3) Formal-
ism

We have previously encountered the spin–1 bilinear–biquadratic (BBQ) model [ Eq. (1.48)],
which is reproduced here for clarity

HBBQ =
∑

〈i,j〉

[
J1Ŝi · Ŝj + J2(Ŝi · Ŝj)2

]
. (2.68)

We have also seen that the BBQ Hamiltonian, which is the most general, SU(2) sym-
metric, nearest–neighbour Hamiltonian allowed for a spin–1 magnet, has been exten-
sively studied [10, 87, 111, 131, 143, 180, 183, 229, 250, 255]. As previously introduced
in Eq. (1.49), when written down in terms of the nine generators of SU(3), which
includes both dipole and quadrupoles,

HBBQ =
∑

〈i,j〉

(
J1 −

J2

2

)
Ŝi · Ŝj +

J2

2
Q̂i · Q̂j +

4J2

3
, (2.69)

the physical nature of the biquadratic term becomes apparent. Indeed, we note that a
biquadratic interaction of dipoles induces a quadratic interaction of quadrupoles, which
are not permitted for a single spin–1

2
.

By noticing that, in Eq. (2.68) or Eq. (2.69), the vector products Ŝi · Ŝj and Q̂i · Q̂j

are unchanged under an O(3) transformation, the SU(2) ' O(3) invariance of the BBQ
Hamiltonian is also obvious.

Moreover in the special case where J1 = J2 = J , the symmetry of the model is
enlarged to SU(3) [180, 183, 229]. Indeed, when J1 = J2 = J , the BBQ model can be
rewritten

HBBQ =
J

2

∑

〈i,j〉

Ti ·Tj +
4J

3
, (2.70)

where Ti is the eight–dimensional vector

Ti = (Ŝxi , Ŝ
y
i , Ŝ

z
i , Q̂

x2−y2
i , Q̂3r2−s2

i , Q̂xy
i , Q̂

xz
i , Q̂

yz
i ) , (2.71)

and dipoles and quadrupoles appear on an equal level. In this case, it becomes pos-
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sible to transform dipole moments into quadrupoles (or vice versa) within the SU(3)
group, without any energy cost [229]. As shown in Fig. 1.11, these SU(3)-symmetry
points are located at the zero–temperature boundaries between phases with dipolar
and quadrupolar nature.

We can rewrite HBBQ in terms of generators of U(3) using Eq. (2.69), Eq. (1.67)
and Eq. (1.68) (or, equivalently, Eq. (2.55)). We obtain

HBBQ =
∑

〈i,j〉

[
J1Âαi βÂβj α + (J2 − J1)Âαi βÂαj β + J2

]
, (2.72)

where we use Einstein’s convention on the summation of repeated indices. TheAi–matrices
are subject to the constraint

Tr Ai =
∑

α

Âαi α = 1 . (2.73)

Eq. (2.72) and Eq. (2.73) were previously introduced in Eq. (1.69) and Eq. (1.65) (and
Eq. (2.57)), respectively. Again Eq. (2.73) restricts the u(3) algebra to su(3), such that
we are indeed properly representing a spin–1 system [Eq. (2.57)].

We note that in terms of Âαβ, the BBQ model [Eq. (2.72)] retains the same symme-
try properties as the one discussed for the BBQ model in terms of dipoles [Eq. (2.68)]
(and quadrupoles [Eq. (2.69)]).

Indeed, the BBQ model in terms of Âαβ [Eq. (2.72)] consists of 2 terms which
transform differently. The second term,

Âαi βÂαj β

has its indices which are contracted either convariantly on both sides or contravariantly
on both sides. And, using results of Section 2.4.3 , we can show that it is invariant under
O(3) ' SU(2) rotations. This results is also derived in Appendix B.1 in Eq. (B.13).
While the first term

Âαi βÂβj α
has indices α and β which transform contravariantly on one site, and covariantly on the
other, and therefore possesses U(3) symmetry. However, because of the constraint on
the Ai–matrices [Eq. (2.73)], the U(3) symmetry is broken down to SU(3). Therefore,
Eq. (2.72) possesses SU(2) symmetry for general values of the parameters J1, J2. But
for J1 = J2, the second term vanishes, and as previously noted, the symmetry is
enlarged to SU(3). Further details of this analysis can be found in Appendix B.1 in
Eq. (B.11).

As previously noted, written in terms of generators of U(3) [Eq. (2.72)], the BBQ
model takes on a form quadratic in Âαi β, which treats dipole and quadrupole moments
on an equal footing. This contrasts with the biquadratic term in dipole moments from
Eq. (2.68). Since it allows to straightforwardly decouple the interactions, the quadratic
form is well–suited to develop any analytic, mean–field methods [180].

The BBQ Hamiltonian is also be expressed in a quadratic form, using dipole Ŝ and
quadrupole Q̂ moments, which form the su(3) algebra, as in Eq. (2.69). However, the
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clutter nature of the commutation relations of generators of SU(3) [Eq. (2.27a)] makes
derivations difficult [14, 51, 200, 264]. As we will see in Section 2.4.5, the simple form of
the commutation relations for the Ai–matrices [Eq. (2.53)] permits an easy derivation
of the equations of motion. Additionally, in Section 2.6.1, we show how the quadratic
form of the BBQ Hamiltonian, written in terms of generators of U(3) [Eq. (2.72)],
can also be used to develop classical Monte Carlo simulations, which allow to access
classical thermodynamic properties of spin–1 magnets, while taking into account the
fact that the (semi–)classical limit of a spin–1 moment is not an O(3) vector. This
permits us to classically simulate spin–1 systems by respecting all the allowed degrees
of freedom of a single spin–1.

2.4.5 BBQ Hamiltonian and Equations of Motion in u(3)

The quadratic form of the BBQ Hamiltonian in terms of the Ai–matrices [Eq. (2.72)],
and their clean commutation relations [Eq. (2.53)] make it straightforward to derive
Heisenberg equations of motion (EoM) for a spin–1 magnets. The Heisenberg EoM
are derived by explicit calculation of the commutators of the Ai–matrices components
with the BBQ Hamiltonian. Using Eq. (2.53) and Eq. (2.72), we find

∂tÂγi η = −i
[
Âγi η,HBBQ

]

= −i
∑

δ

[ J1(Âγi αÂαi+δ η − Âαi ηÂγi+δ α)

+(J2 − J1)(Âγi αÂηi+δ α − Âαi ηÂαi+δ γ) ] , (2.74)

where we set ~ = 1. This result was previously introduced in Fig. 1.70.
The EoM for Ai–matrices Eq. (2.74), just like the Hamiltonian it is derived from,

treats dipole and quadrupole moments on an equal footing and also takes a quadratic
form, which is well–suited for numerical integration, as discussed below in Section 2.6.2.
However, because this EoM is written in terms of a representation of the u(3) algebra,
it also describes the dynamics of the operator Ŝ

2
, the total spin–length, which should

remain constant. Therefore, in order to correctly describe the dynamics of a spin–1
magnet, we need to enforce Eq. (2.57). To this end, we require that

s = 1 ⇒ Tr Â = 1 . (2.75)

We further note that the EoM for the A–matrices conserves the trace of A,

∂t

(
Tr Âi

)
= −i Tr

∑

δ

[ J1(Âγi αÂαi+δ η − Âαi ηÂγi+δ α)

+(J2 − J1)(Âγi αÂηi+δ α − Âαi ηÂαi+δ γ) ]

≡ 0 , (2.76)

which follows from Eq. (2.74), and which ensures that Eq. (2.75) is satisfied trough
out.

This implies that as long as the EoM Eq. (2.74) originate from a valid configuration
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of A–matrices (with Tr Ai ≡ 1, so that we properly describe spin–1 moments), the
time–evolution of the operators Âαi β will respect the constraint on spin length, meaning
that it remains a proper representation of spin–1 moments throughout time evolution,
which is happening within u(3)! Additionally, in Chapter 6 will see that this remains
also true for systems with interactions that are anisotropic in spin–space. This makes
the EoM in terms of a representation of the u(3) algebra, a powerful tool for the
exploration of the dynamics of spin–1 magnets. Indeed, in Section 2.6.1, we explain
how to apply these EoM to a numerical integration scheme in order to make predictions
for semi–classical dynamical properties of spin–1 systems.

2.5 u(3) as a Basis for Analytical Theory
In this Section, we use the u(3) formalism that we introduced in Section 2.4 to develop
a theory of fluctuations. We will see that this method allows to treat fluctuations at
both the classical and quantum level. We here present the general concepts, and then
give two explicit examples through the application of our method to the FQ-state of the
BBQ model on the triangular lattice which is extensively discussed in Chapter 3 and
Chapter 4, as well as to the FM-state with easy–plane anisotropy which is presented
in Section 6.3. We first show here how small fluctuations about a given ground state
can be described using four of the nine generators of U(3).

We start by assuming that we can find a mean-field (MF) ground state in the form
of a product wave function

|Ψ0〉MF
GS =

N∏

i=1

∣∣dGS
i

〉
. (2.77)

For simplicity, we further assume that the single-site MF ground state is the same
on every site, and disregard sub–lattice orders. Ultimately, this has no significant
implications, as then the ground–state is just defined on the extended unit–cell instead.
The single–site ground state wave function can be expressed in an orthogonal basis of
our choice, as long as it is a valid basis for a spin–1 (i.e. any 3 orthogonal basis states
built from the magnetic basis [Eq. (1.40)] or the TR basis [Eq. (2.32)])

∣∣dGS
i

〉
=
∑

α

dα|α〉 , (2.78)

where |α〉 are the 3 orthogonal basis states. We can then express this total wave
function as a product state of single–site wave functions as given in Eq. (2.77), where
|di〉 is defined through Eq. (2.78).

The choice of the basis that we use to represent the ground state will depend on
the nature of the order. For instance, if the system is ferromagnetically ordered, then
the magnetic basis [Eq. (1.40)] seems like a good option. When we explicitly apply it
to the FQ order, we will choose the TR invariant basis [Eq. (2.32)] which naturally
exhibits quadrupole moments as illustrated in Fig. 2.1. For convenience, we choose a
basis such that the ground state is one of these basis states, and the two others basis
states are orthogonal states. This way, we express the ground state as a 3–dimensional
vector with "1" on one of its components (corresponding to the ground state basis
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state), and "0" everywhere else.
For concreteness, let’s assume that our ground state is given by

∣∣dGS
i

〉
= |α1〉 , (2.79)

where |α1〉, |α2〉 and |α3〉 form an orthogonal basis

Bα = {|α1〉, |α2〉, |α3〉} . (2.80)

Therefore we write:

dGS =




1
0
0


 . (2.81)

We express our ground state as an A–matrix ground state using Eq. (2.45)

〈
dGS
i

∣∣A
∣∣dGS

i

〉
= AGS

i =




1 0 0
0 0 0
0 0 0


 . (2.82)

In the space of A–matrices, the product state becomes

|Ψ0〉MF
FQ =

N∏

i=1

∣∣AGS
i

〉
. (2.83)

We now derive a framework that allows us to describe fluctuations around the
ground state in terms of generators belonging to the Lie algebra u(3). The corrections
to mean–field theory due to the fluctuations will induce either thermal and/or quantum
fluctuations within the product state, and a reduction of the expectation value of the
order parameter. Because of the convenience of expressing the BBQ Hamiltonian
[Eq. (2.72)] in terms A–matrix represented in the TR invariant basis [Eq. (2.45)], it is
useful to define the basis change transformation Λ ∈ SU(3) between the TR invariant
basis [Eq. (2.32)] and the ground state basis [Eq. (2.80)]



|α1〉
|α2〉
|α3〉


 = Λ



|x〉
|y〉
|z〉


 . (2.84)

Under such a transformation, an operator given in the TR invariant basis B2 is ex-
pressed as

ÔBα = ΛÔB2Λ
† , (2.85)

in the ground state basis Bα.
We start working in the ground state basis Bα [Eq. (2.80)], where representations

are simple, and where creations of orthogonal fluctuations are naturally arising by
application of the nine generators of U(3). As explained in Section 2.1, we can con-
struct transformations belonging to U(3) using the exponential map and the genera-
tors of u(3). We use the A–matrices as generator to construct an element of U(3),
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parametrized by the nine complex parameters φα,β

R̂(~φ) = ei
∑
αβ φα,βÂαβ , (2.86)

where α, β = 1, 2, 3.
Under this operation a state |d〉 transforms as

∣∣∣d(~φ)
〉

= R̂(~φ)|d〉 , (2.87)

and A–matrices transform as

A(~φ) = R̂(~φ)AGSR̂(~φ)† , (2.88)

as determined by Eq. (2.62) [cf. Appendix B]. R̂(~φ) allows to create the fluctuations
around the identity as explained in Section 2.1. This can also be understood by ex-
panding the exponential as its power series

eX =
∞∑

n=0

Xn

n!
= I +X +

X2

2!
+
X3

3!
+ . . . . (2.89)

By assuming small fluctuations (φα,β � 1), the expansion can be truncated and only
consider terms up to the second order

R̂(~φ) = ei
∑
αβ φα,βÂαβ = I + i

∑

αβ

φα,βÂαβ −
1

2

∑

αβ

φ2
α,β(Âαβ)2 +O(φ3) . (2.90)

An important technical point worth mentioning here is the fact that we can treat
the fluctuation at the quantum or at the classical level results from the ability to treat
the parameters φα,β as bosons φ̂α,β (i.e. a complex field ) related by

φ̂†α,β = φ̂β,α , (2.91)

in the quantum case, or as numbers

φ∗α,β = φβ,α , (2.92)

in the classical case. These implications follow directly from the Hermitian nature of
the matrixÂ [ Eq. (2.49)]. Considering the action of R̂(~φ) on the FQ ground state, as
characterised by the matrix AGS [Eq. (2.82)], the only Âαβ that will give a non–zero
result are Â1

1, Â1
2, Â1

3, Â2
1, and Â3

1. However, we need to ensure that the spin–length
constraint Eq. (2.57) is satisfied. This implies that we only really need to keep the 4
generators Â1

2, Â1
3, Â2

1, and Â1
3.

This can also be noted by explicitly considering the non–vanishing terms of R̂(~φ)
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and R̂(~φ)† in Eq. (2.88)

R̂(~φ) = I + iφ2,1Â2
1 + iφ3,1Â3

1 + iφ1,1Â1
1 −

1

2
φ2

1,1(Â1
1)2

=




1 + iφ1,1 − 1
2
φ2

1,1 0 0
iφ2,1 1 0
iφ3,1 0 1


 , (2.93a)

R̂(~φ)† = I− iφ1,2Â1
2 − iφ1,3Â1

3 − iφ1,1Â1
1 −

1

2
φ2

1,1(Â1
1)2

=




1− iφ1,1 − 1
2
φ2

1,1 −iφ1,2 −iφ1,3

0 1 0
0 0 1


 . (2.93b)

Because R̂(~φ) should belong to SU(3), its determinant should be equal to 1 [Eq. (2.2)],
but we observe that

det(R̂(~φ)) = 1 + iφ1,1 − 1
2
φ2

1,1 , det(R̂(~φ)†) = 1− iφ1,1 − 1
2
φ2

1,1 , (2.94)

and that the generator Â1
1 does not preserve the ground state and even takes the

ground state out of SU(3). This can be seen by considering the effect of R̂(~φ) on the
ground state vector dGS [Eq. (2.81)]

R̂(~φ)dGS =




1 + iφ1,1 − 1
2
φ2

1,1

iφ2,1

iφ3,1


 . (2.95)

Here, the effect of the generator Â1
1 is to induce a longitudinal fluctuation, which

violates the constraint on the spin length. We, therefore, discard the term in φ1,1 as
nonphysical. Consequently we only consider the 4 generators Â1

2, Â1
3, Â2

1, and Â1
3.

The action of these 4 broken generators on the ground state Eq. (2.82)] characterized
by inducing non-zero contribution (i.e. not preserving the ground state), according to
Eq. (2.88), are shown explicitly later in Chapter 3 in Fig. 3.2 for a ferroquadrupolar
ground state, and in Chapter 6 in Fig. 6.3 for the ferromagnetic ground state.

For the quantum case, because of the "hermicity" property on the components of
the matrix Â [Eq. (2.49)], we have

Â1†
2 = Â2

1 Â1†
3 = Â1

3 . (2.96)

So really, we only need 2 generators, and we expect 2 quantum modes associated with
the 2 bosonic fluctuations [Eq. (2.91)], which is consistent with a description in terms
of multi–boson theory for a spin–1, as explained in Section 1.3.2, where the bosons,
defined as creation annihilation operators acting on the ground state and generating
the states which are orthogonal to it, are then treated as quantum fluctuations.

In the classical case, we treat the 4 fluctuations as complex numbers which are
related by Eq. (2.92). Consequently, the 4 complex fluctuations are described by only
4 independent real numbers. Therefore we expect 4 classical modes associated with



66 U(3) as an Algebra for Spin–1

these 4 real–valued fluctuations.
This can also be understood by considering the ordered ground state in Eq. (2.81).

For an arbitrary state describing a spin–1, it would consist of 3 complex numbers or
equivalently 6 real numbers, which would correspond to the coefficients of the linear
combination of the basis states [Eq. (2.78)]. However, when we impose an ordered
ground state, 2 of these 3 complex numbers, i.e., 4 out of the 6 reals numbers, are set
to zero. The last non zero complex coefficients d 6=0 needs to satisfy the norm constraint
|d 6=0| = 1, which allows for the freedom of the choice of the phase, i.e. Eq. (2.81) is
defined up to a phase transformation. By forcing the other components to zero, we
break the symmetry of the space in which the state lives, namely the 3–dimensional
Hilbert space H3.

Recall that any states in H3 can be linked by an SU(3) transformation. This means
there will be only some transformations of SU(3) that will preserve the ground state
(or modify its phase, but we saw that this does not change the ground state), and some
transformations that will not preserve the ground state. The SU(3) transformations
can be generated from its algebra (generators). Therefore, there will be generators
associated with transformations preserving the ground state, and with transformations
modifying the ground state. We say that the generators modifying the ground state
are broken (by the symmetry breaking of the ordered state).

At the quantum level, this means that the symmetry breaking of the ground state,
i.e., the enforcement of 2 out of the 3 complex degrees of freedom, induces the breaking
of two generators of SU(3). These two broken generators will each induce a quantum
excitation φ̂†α,β and generate a total of 2 quantum modes. Meanwhile, a classical
treatment assumes that we froze 4 out of the 6 reals numbers, and there will be 4
associated generators in order to create the fluctuations, implying the existence of
4 modes. These modes emanating due to the continuous symmetry breaking of the
ground state are called Goldstone modes.

We restrict Eq. (2.90) to the four relevant generators, and by retaining terms up to
order φ2, we obtain a general expression for infinitesimal fluctuations about the ordered
ground state. We can now write A(~φ) [Eq. (2.88)] in terms of these 4 fluctuations.

Â(~φ) = R̂(~φ)AGSR̂(~φ)†

=




1− φ1,2φ2,1 − φ1,3φ3,1 iφ2,1 iφ3,1

−iφ1,2 φ1,2φ2,1 φ1,2φ3,1

−iφ1,3 φ2,1φ1,3 φ1,3φ3,1


 , (2.97)

where we ensured that the constraint over the trace is satisfied [Eq. (2.57)]. However,
A(~φ) is still expressed in the ground state basis Bα [Eq. (2.80)], to make this explicit,
we write A(~φ)Bα . In order to plug it in the BBQ Hamiltonian [Eq. (2.72)] written down
in terms of the A–matrices expressed in the TR basis B2 [Eq. (2.32)], we need to make
a basis change to obtain A(~φ)B2 . Inverting Eq. (2.85), we get

A(~φ)B2 = Λ†A(~φ)BαΛ , (2.98)

where we used the fact that Λ ∈ SU(3)⇒ Λ−1 = Λ†.
We can finally express the BBQ Hamiltonian in terms of the 4 relevant fluctuations
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φα,β, up to second order by inserting Eq. (2.98) into Eq. (2.72). After performing a
Fourier transform (see Eq. (2.100) below), we obtain a Hamiltonian which can then be
written in the form

H′BBQ = E0 +
1

2

∑

k

[
~φTkMk~φ−k

]
+O(φ3) , (2.99)

where E0 the energy of the MF ground state, and where linear order in φα,β should
vanish, as the MF ground state should minimize the energy. The 4 fluctuations are
encoded by

~φk =




φk1,2

φk2,1

φk1,3

φk3,1


 =

1√
N

∑

i




eik·riφri1,2
eik·riφri2,1
eik·riφri1,3
eik·riφri3,1


 , (2.100)

and the energy determined byMk, which will depend on the nature of the ground state
and the parameter of the BBQ model, as well as the geometry of the lattice. We also
note that the transpose vector for the fluctuations has the property

φTµ,νk = φν,µk . (2.101)

At the Gaussian (i.e. non–interacting) level, all possible fluctuations about the MF
ground state are well described by the Hamiltonian H′BBQ [Eq. (2.99)], which can be
used as a starting point for both classical and quantum theories of its excitations. The
first step for both derivations is to find the eigenmodes and "eigen-fluctuations", i.e.,
the eigenvalues and eigenvectors of the Hamiltonian H′BBQ.

For the classical case, solving the eigensystem is obtained by simply diagonalizing
the energy matrix Mk. The obtained eigenmodes and eigen–fluctuations can be used
to derive the free energy for the considered model. Classical thermodynamic quantities
are computed by taking the appropriate functional derivative of the free energy. We
show explicit calculations for the specific heat, equal–time structure factors, and the
order moment of the FQ state of the BBQ Hamiltonian [Eq. (2.72)] in Section 3.3

Meanwhile, for the quantum case, we need to "bosonify" the fluctuations in order
to ensure that the structure of the u(3) algebra is preserved [Eq. (2.53)] To understand
why the quantum excitations have a bosonic nature, we start by considering that the
generators create quantum fluctuations φ̂α,β

R̂(φ̂) = e
∑
αβ φ̂α,βÂαβ , (2.102)

where for simplicity the imaginary number i is encapsulated into φ̂α,β. Ultimately,
this makes no difference as the fluctuations φ̂α,β still satisfy Eq. (2.91). In the basis
that we chose [Eq. (2.80)], and for the chosen ground state [Eq. (2.79)], following the
same argument as above, the quantum excitations that will contribute are the one
associated with the generators Â1

1, Â1
2, Â1

3, Â2
1, and Â3

1. And Eq. (2.93a) and
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Eq. (2.93b) become

R̂(φ̂) = I + φ̂2,1Â2
1 + φ̂3,1Â3

1 + φ̂1,1Â1
1 +

1

2
φ̂2

1,1(Â1
1)2

=




1 + φ̂1,1 + 1
2
φ̂2

1,1 0 0

φ̂2,1 1 0

φ̂3,1 0 1


 =




1 + φ̂†1,1 + 1
2
φ̂†21,1 0 0

φ̂†1,2 1 0

φ̂†1,3 0 1


 , (2.103a)

R̂(φ̂)† = I + φ̂1,2Â1
2 + φ̂1,3Â1

3 + φ̂1,1Â1
1 +

1

2
φ̂2

1,1(Â1
1)2

=




1 + φ̂1,1 + 1
2
φ̂2

1,1 φ̂1,2 φ̂1,3

0 1 0
0 0 1


 , (2.103b)

where we used Eq. (2.91). We note that using Eq. (2.49) it is easily seen that R̂(φ̂)† is
indeed the conjugate transposed of R̂(φ̂). Following the same argument as before on
the determinant of R̂(φ̂)† and R̂(φ̂), and using Eq. (2.49) or equivalently Eq. (2.91),
we only need to consider 2 creation/annihilation pairs: (φ̂†1,2/φ̂1,2) and (φ̂†1,3/φ̂1,3) This
can also be understood by applying R̂(φ̂) to the ground state the ground state vector
dGS [Eq. (2.81)]

d = R̂(φ̂)dGS =




1 + φ̂†1,1 + 1
2
φ̂†21,1

φ̂†1,2
φ̂†1,3


 , (2.104)

where we see that the operators φ̂1,2 and φ̂1,3 act as the operators d̂†α of Eq. (2.64).
Therefore in order to preserve the structure of the u(3) algebra [Eq. (2.53)], we require
the fluctuations φ† to satisfy bosonic commutation relations

[
φ̂α,β, φ̂

†
µν

]
= δανδβ,µ . (2.105)

We again emphasize, that by construction, the bosons are orthogonal to the ground
state in U(3), in order to restrict to orthogonal fluctuations in SU(3), we disregard the
"longitudinal" boson (which excites the ground state into itself!) We restrict Eq. (2.90)
to the 2 relevant generators, Â1

2 and Â1
3 and by retaining terms up to order φ̂2, we

obtain a general expression for infinitesimal quantum fluctuations about the ordered
ground state. We can now write A(φ̂) [Eq. (2.88)] in terms of the 2 bosons

Â(φ̂) = R̂(φ̂)AGSR̂(φ̂)†

=




1− φ̂1,2φ̂
†
1,2 − φ̂1,3φ̂

†
1,3 φ̂†1,2 φ̂†1,3

φ̂1,2 φ̂1,2φ̂
†
1,2 φ̂1,2φ̂

†
1,3

φ̂1,3 φ̂†1,2φ̂1,3 φ̂1,3φ̂
†
1,3


 . (2.106)

After effectuating the basis change [Eq. (2.98)], we can express the BBQ Hamiltonian
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[Eq. (2.72)] in the form

H′BBQ = E0 +
1

2

∑

k

[
~̂
φ†kMk

~̂
φk

]
+O(φ̂3) , (2.107)

where E0 the energy of the MF ground state, and where linear order in φ̂ should vanish,
as the MF ground state should minimize the energy. The 4 fluctuations are encoded
by

~̂
φk =




φ̂k1,2

φ̂†−k1,2

φ̂k1,3

φ̂†−k1,3


 . (2.108)

Because of how the fluctuations are encoded into the vectors given in Eq. (2.100) and
Eq. (2.108), the interaction matrix Mk in Eq. (2.99) is the same as in Eq. (2.107). In
the quantum case, we simply require the fluctuations to satisfy commutations relations
given by Eq. (2.105) and rewritten in terms of the components of ~̂φk as

[
(
~̂
φk)α, (

~̂
φ†q)β

]
= γ0

αβδk,q , (2.109)

where

γ0 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 . (2.110)

Diagonalizing the Hamiltonian [Eq. (2.107)] while accounting for bosonic commutation
relations [Eq. (2.109)] is equivalent to solving the eigensystem given by

γ0Mkφ̂k,λ = εk,λφ̂k,λ λ = 1, 2, 3, 4 , (2.111)

and is straightforwardly obtained by diagonalizing the matrix γ0Mk. As explained
in Appendix C, this allows to automatically enforce bosonic commutations relations
[Eq. (2.109)] and is equivalent to performing a Bogolioubov transformation.

Additionally, considering that the ground state is given by dGS = φ̂†1,1|vac〉, we
rewrite Eq. (2.104) as

d† =



φ̂†1,1
φ̂†1,2
φ̂†1,3


 . (2.112)

Using Eq. (2.112) and requiring d† ·d = 1 [Eq. (2.36)], naturally leads to a mutli-boson
theory as described in Section 1.3.2, where the boson φ̂†1,1 is "condensed". Indeed, by
expressing φ̂†1,1, φ̂1,1 in terms of the other boson, and assuming φ̂†1,2φ̂1,2 , φ̂

†
1,3, φ̂1,3 � 1,
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we obtain,

d† =




1− 1
2
(φ̂†1,2φ̂1,2 + φ̂†1,3, φ̂1,3)

φ̂†1,2
φ̂†1,3


 . (2.113)

Using Eq. (2.66) to build the corresponding A–matrix, we see that we find exactly
Eq. (2.106). This confirms that the creation of the quantum fluctuations within our
u(3) formalism is equivalent to a multi-boson type expansion.

To summarize, we developed an approach that allows us to generate orthogonal
fluctuations about an ordered state by using the generators of U(3). This permits us to
express the Hamiltonian in terms of these fluctuations. The interaction energy matrix
Mk encompasses all we need to know about the fluctuations. A classical treatment is
obtained by simply diagonalizing the matrixMk, while a quantum approach requires to
diagonalize the matrix γ0Mk where the multiplication by γ0 [Eq. (4.8)] ensures that the
quantum fluctuations satisfy bosonic commutation relations [Eq. (2.109)]. This offers
the subsequent possibility to calculate thermodynamical and dynamical properties as
explained in Chapter 3 and Chapter 4

Here, I presented a somewhat abstract derivation of how to implement an ana-
lytical theory within our formalism, but recall that explicit applications are provided
in Chapter 3 and Chapter 4 for the FQ state and might be more enlightening that
the general description. Moreover, because the ground state is one of the TR invari-
ant basis, the derivation is much more straightforward. I also provide an application
to the ferromagnetic Heisenberg model with easy-plane and single–ion anisotropy in
Section 6.3, where the formalism shown here will turn out to be useful.

2.6 u(3) as a Basis for Numerical Simulation of Spin–1
In Section 2.4, we developed the technical framework needed to describe a spin–1
magnet. We introduced it in terms of a representation of u(3), Aαβ [Eq. (2.46)] which
allowed us to treat dipolar and quadrupolar degrees of freedom on an equal footing.
This enabled us to derive an expression for both the BBQ model, HBBQ [Eq. (2.72)],
and the associated equation of motion [Eq. (2.74)] for Aαβ–objects, the generators of
U(3) Aαβ. The obtained derivations took a simple form which is quadratic in Aαβ, and
do not involve any approximation to its physical meaning.

Here, we format these results into a practical formulation for numerical simula-
tions of spin–1 magnets. We will consider a classical Monte Carlo (MC) scheme and
(semi-)classical Molecular Dynamics (MD) simulations, both carried out in the space
of the "A-matrices", Aαβ. We will refer to these approaches as "u3MC" and "u3MD",
respectively. Technical details regarding the updates needed for both classical Monte
Carlo (MC) and (semi-)classical Molecular Dynamics (MD) simulations, are provided
in Appendix E.

The detailed application of the method to the thermodynamics and dynamics of
the ferroquadrupolar (FQ) phase will be described in Section 3.4 and Section 4.3.
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2.6.1 Monte Carlo Simulations Within u(3) Framework

Implementation of u3MC Update

We start by expressing a single wave function in the space of A–matrices. By using
Eq. (2.45) or equivalently Eq. (2.66), we see that the wave function for a spin–1 moment
expressed in terms of A–matrices is exactly equivalent to one be expressed in terms of
a d–vector

|Ai〉 =
∑

α,β

Âαi β|β〉 =
∑

α,β

d†αi d̂iβd†βi |vac〉 =
∑

α

d†αi |vac〉 ≡ |di〉 , (2.114)

where Ai denotes the nine parameters Aαi,β, |β〉 is the basis of TR–invariant states
[Eq. (2.32)], and |di〉 is defined through Eq. (2.35). We also note that the nine com-
plex parameters Aαi,β can be built from the 3 complex components of the d–vector
[Eq. (2.66)] subject to the constraint [Eq. (2.36)], i.e. from 5 independent degrees of
freedom:

Aαi β = (dαi )∗ di,β . (2.115)

The hermicity of the A–matrix implies the diagonal components Aαi,β are real, and
off–diagonal terms satisfy Aα,∗i,β = Aβi,α. Additionally, the trace of the A–matrix is
constrained to 1 [Eq. (2.57)], such that there are only 5 real degrees of freedom needed
to build an A–matrix.

We then express the total wave function as a product wave function written in the
space of A–matrices

|ΨA〉 =
N∏

i=1

|Ai〉 =
N∏

i=1

∑

α,β

Âαi,β|β〉 ≡
N∏

i=1

|di〉 . (2.116)

This will be the starting point for both u3MC and u3MD simulations of spin–1 magnets.
According to Eq. (2.72), the average (classical) energy of such a state yields

E[Ai] = 〈ΨA|HBBQ|ΨA〉
=

∑

〈i,j〉

∑

αβ

[
J1Aαi,βAβj,α + (J2 − J1)Aαi,βAαj,β + J2

]
. (2.117)

Such a product wave function does not take into account entanglement and cannot
describe quantum effects from interacting spins. However, it does account for quantum
effects on a single site, such as quadrupolar degrees of freedom. And it represents
a semi–classical approximation in the sense that the quantum mechanical properties
are treated exactly at the level of a single site for each spin–1 moment independently.
According to Eq. (2.116), it follows that u3MC simulations can just as well be carried
out in the space of d–vectors, with energy [183, 229]

E[di] = 〈Ψd|HBBQ|Ψd〉
=

∑

〈i,j〉

[
J1|di · dj|2 + (J2 − J1)|di · dj|2 + J2

]
. (2.118)
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This approach has been studied in reference [235], and is referred to as "semiclassical
SU(3)" or "sSU(3)" simulation. However, just as for various analytic calculations,
A–matrices representation is more convenient for MD simulations as well. Therefore,
we here propose a simple description in terms of A–matrices.

In order to convert Eq. (2.116) and Eq. (2.117) into a practical MC scheme, we
require an update that is capable of generating spin configurations {Ai} corresponding
to states drawn from a thermal ensemble. This is done by constructing a Metropolis–
like [147] update for a single matrix Ai, representing spin–1 moment. We could also
choose to implement our formalism for more general cluster– [127] or worm– [168]
updates, but we will not consider these here.

Using the expression of an individual A–matrix given by Eq. (2.115) in terms of the
director d

d =



x1 + i x2

x3 + i x4

x5 + i x6


 ; d∗d = |d|2 = 1 . (2.119)

Expressed this way, it is clear that any matrix Aαβ [Eq. (2.115)] can be written down
in terms of 5 linearly–independent real variables, coming from the six real coefficients
of d, x1, x2, . . . x6, and the constraint on its length.

The construction of a general update capable of describing a single spin–1 moment
requires the ability to sample over statistically–independent, equally–distributed points
on a 5–dimensional sphere, embedded within a 6–dimensional space. We generalize the
Marsaglia construction [141], and write

x1 = θ
1/4
2 θ

1/2
1 sinφ1 , (2.120a)

x2 = θ
1/4
2 θ

1/2
1 cosφ1 , (2.120b)

x3 = θ
1/4
2

√
1− θ1 sinφ2 , (2.120c)

x4 = θ
1/4
2

√
1− θ1 cosφ2 , (2.120d)

x5 =

√
1− θ1/2

2 sinφ3 , (2.120e)

x6 =

√
1− θ1/2

2 cosφ3 , (2.120f)

where 0 ≤ θ1, θ2 ≤ 1 and 0 ≤ φ1, φ2, φ3 < 2π are parameters which are randomly sam-
pled from a uniform distribution. Because we restrict the d–director to a 5–dimensional
sphere, we have |d|2 = 1 by construction. From Eq. (2.115), this implies that Tr A = 1,
and therefore directly ensures that all states generated remain within H3, the Hilbert
space for a spin–1 moment [Eq. (2.48)].

We show evidence that the generalised Marsaglia approach proposed in Eq. (2.120),
randomly generates the variable x1, · · · , x6 as points on a 5-dimensional sphere, and
properly and independently selects them as shown in Appendix E.1 in Fig. E.1. How-
ever, as explained in Section 2.3, the state of a spin–1 moment, represented by 3
complex numbers dα=x,y,z, is defined up to a phase, and ultimately characterized by
4 real parameters From Eq. (2.115), it is easily seen that the elements Aαβ of the A–
matrix are independent of the phase of d. This leads to a gauge–redundancy in the
5–dimensional spherical parametrization in Eq. (2.120). The fact that it is possible to
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take into account the gauge freedom of phase, and parameterize the d by 4 independent
angles can also be seen from another important result [7]

S5

S1
' CP2 , (2.121)

which means that the 5–dimensional sphere with the gauge freedom U(1) ' S1 is
homeomorphic to the 2–dimensional complex projective space, which is the space that
characterizes completely a spin–1 moment.

It therefore should be possible to generate a Marasaglia construction for an update
based on 4–dimension real subspace of the 5–dimensional sphere defined by Eq. (2.120).
There is however no unique choice of fixing the gauge, but a convenient way is to choose
the z–component of d to be purely real, i.e x6 = 0 according to Eq. (2.119), implying
that

φ3 ≡ π/2 , (2.122)

in Eq. (2.120). This is, however, a specific choice, and a different implementation of
the method is of course also possible. We have confirmed that simulations based on 4
independent parameters yield the same results.

Whether we choose to select a new update on a 4– or 5–dimensional sphere,
our u3MC scheme is defined by randomly selecting a site within the lattice. Using
Eq. (2.120) a new configuration of the A–matrix is generated at that site. The new
configuration is accepted or rejected by following the standard Metropolis argument
[147]. We accept the new state µ if

r0 ≤ e−β(Eµ−Eν) , (2.123)

where r0 is number randomly chosen within the interval r0 ∈ (0, 1), β = 1
kBT

(we set
kB = 1), and Eν is the energy of the initial configuration. The energies of the different
states are computed according to Eq. (2.117).

The u3MC method has been implemented by my collaborator, Dr. Rico Pohle.
And for completeness and later comparison with analytic derivations, we give here
some details about the implementation of the numerical methods. Within a single MC
step, N such local updates are performed, where N is the total number of sites in the
system. Additionally, we also use the replica–exchange method (parallel tempering),
which allows to reduce auto–correlation within the resulting Markov chain obtained
from the MC sampling [57, 238]. An exchange of replicas is performed every 100 MC
steps.

The simulations can be initialized by randomly choosing a A–matrix on every site,
mimicking a high–temperature paramagnet. The system is then thermalized by cool-
ing the system adiabatically to the target temperature over 106 MC steps (simulated
annealing), followed by a further 106 MC steps of thermalization at that target tempera-
ture. Thermodynamic quantities are calculated by averaging over 5×105 statistically–
independent samples. Among thermodynamic quantities, the equal–time structure
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factors allow access to correlations properties

Sλ(q) =

〈∑

αβ

|mλ
α
β(q)|2

〉
, (2.124)

where 〈. . .〉 means that the quantity is averaged over statistically–independent states
(Monte Carlo averaging).

We consider dipole, λ = S; quadrupole, λ = Q; and A–matrices, λ = A structure
factors. It is convenient to work with the lattice Fourier transform of Aαi β,

mA
α
β(q) =

1√
N

N∑

i

eiriqAαi β , (2.125)

which can be found by fast Fourier transform (FFT). This allows us to obtain the
structure factors for dipole moments, using Eq. (1.67),

mS
α
α(q) = −i

∑

β,γ

εα γ
β mA

β
γ(q) , (2.126)

as well as for quadrupole moments, using Eq. (1.68),

mQ
α
β(q) = −mA

α
β(q)−mA

β
α(q) +

2

3
δαβ
∑

γ

mA
γ
γ(q) , (2.127)

by directly substituting these expressions in Eq. (2.124).
In Appendix E.1.1, I show results obtained by my collaborator, Dr. Rico Pohle,

using the u3MC method and compare the obtained thermodynamic properties with
published results [131, 229, 235]. This allows us to benchmark simulations based on
the representation for a spin–1 in terms of "A-matrices". We present results for the
heat capacity and structures factors for the BBQ model Eq. (2.68) on a triangular
lattice and compare them with published results [131, 229, 235].

From our analysis in Appendix E.1.1, we conclude that our study of correlations
at finite temperature, summarised in Fig. 1.13 and Fig. E.3, provides a strong evi-
dence that the u3MC approach introduced in Section 2.6.1 can properly describe the
thermodynamic properties of spin–1 magnets. Additionally, in Section 3.4 we present
an exhaustive comparison for the thermodynamic properties of the FQ phase at low
temperatures, between analytic predictions and numerical results obtained from a de-
scription in terms of "A-matrices".

2.6.2 Molecular Dynamics Simulations Within u(3) Framework

Numerical integration of the equations of motion, combined with classical Monte Carlo
simulation provides a powerful tool to investigate the (semi–)classical dynamics proper-
ties of quantum magnets. This approach has been referred to as "molecular dynamics"
(MD) simulation [46, 151, 152, 239, 267]. Usually, this type of method starts from the
Heisenberg equation of motion for an O(3) spin, Eq. (2.24), providing a microscopic
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description and quite surprisingly have shown to effectively describe dynamics of quan-
tum magnets [41, 189, 206, 267]. This success relies on the fact that a (semi–)classical
description of a spin–1/2 moment is appropriately provided by an O(3) vector.

However, as already discussed, for spin–1 magnets, a representation in terms of
O(3) vectors fails, since an O(3) vector does not properly account for the allowed
quadrupole degrees of freedom of a spin–1 moment. [cf. Section 2.3 and Section 2.4.2].
This problem has a long history within the analytic theory of nematic phases [143, 180].
Generally, the excitations of spin–1 magnets include both spin waves and quadrupole
waves [6]. And analytically, excitations can be studied through a multi–boson expan-
sion, also sometimes referred to as “flavour–wave” theory [183].

On the numerical side, equations of motion in terms of spin– and quadrupole–
operators have also been developed to study the dynamics of spin–1 magnets [14, 51,
200, 264]. However, these approaches rely on a description in terms of generators
belonging to the su(3) algebra are quite complicated due to the nature of the struc-
ture constants of the algebra su(3) Eq. (2.27a). In contrast, for the u(3) framework
established in Section 2.4.2 we obtained a simple and compact form of the EoM for
A–matrices, Eq. (2.74), which makes this method ideally–suited for numerical inte-
gration. Moreover, the fact that these EoM can be combined with the MC method
developed in Section 2.6.1 strengthen their applicability potential. Indeed, similarly
to the O(3) methods applied to spin–1/2 magnets, they provide an "u(3) molecular
dynamics" (u3MD) approach to spin–1 magnets.

Just like the u3MC simulations described in Section 2.6.1, our u3MD approach relies
on a description in terms of a basis of A–matrices product states [Eq. (2.116)]. We
choose to implement the simulations using a 4th order Runge-Kutta (RK–4) algorithm
[81, 194], in order to numerically integrate Eq. (2.74). This is done for each component
of Aαi,β, using a fixed timestep δtRK.

We iteratively apply the RK–4–integration of the equations of motion for the A–
matrices [Eq. (2.74)],

{Aαi,β(t)} 7→ {Aαi,β(t+ δtRK)}+O(δt5RK) , (2.128)

where δtRK defines the RK–time step. This generates a time series

{Aαβ(i, tn)} , tn = n δt , n = 1 . . . Nt . (2.129)

More details about the implementation of the RK–4–integration are provided in
Appendix E.2.1.

We here simply note that the validity of this MD approach depends on the asser-
tion that the constraint on spin–length, i.e. the trace of the A–matrices, [Eq. (2.73)] is
preserved, and that the total energy of the system, E[Ai] [Eq. (2.117)] is conserved. In
Fig. 2.2 we show evidence that both are satisfied, within controlled errors, for simula-
tions of a triangular–lattice cluster of linear dimension L = 24 (N = 2304 spins), with
model parameters Eq. (E.11), and time–step Eq. (E.8), at a temperature T = 0.1 J .

Additionally, the dynamics associated with the time evolution of the A–matrices
can be investigated by computation of dynamical structure factors. From the time–
series generated by the RK–4–integration {Aαβ(i, tn)}, we can define structure factors
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Figure 2.2: Evidence for the stability of the numerical integration of equations of
motion for "A-matrices". (a) Time–dependence of Tr A [Eq. (2.57)], shows the con-
servation of spin length up to numerical precision, implying that if the time evolution
originates from a proper spin configuration with Tr A=1, we never leave the su(3)
sub–algebra of u(3). This implies that we properly describe the spin–1 system trough
out the time evolution. (b) Time–dependence of the energy E = 〈HBBQ〉, shows that
the energy is preserved to the level expected for a 4th–order Runge–Kutta (RK–4) algo-
rithm. Simulations were computed by my collaborator Dr. Rico Pohle, for the spin–1
bilinear–biquadratic model [Eq. (2.72)], using the equation of motion Eq. (2.74) for a
triangular–lattice cluster with linear dimension L = 24 (N = 2304 spins), for parame-
ters J1 = 0, J2 = −1, at a temperature T = 0.1 J and with a time–step δt = 0.4 J−1.
Figures are reproduced from [201].

similar to Eq. (2.124), where the associated Fourier transformed moments in Eq. (2.125)
defined in reciprocal space will also depend on time. Consequently, we define the
time–Fourier transform, which allows us the resolve the dynamical structure factors in
reciprocal space q and energy ω

Sλ(q, ωm) =

〈∑

αβ

|mλ
α
β(q, ωm)|2

〉
, (2.130)

where

mλ
α
β(q, ωm) =

1√
Nt

Nt∑

n=1

eiωmtn
√
g(tn) mλ

α
β(q, tn) ,

(2.131)

with g(tn) being a Gaussian envelope necessary to avoid numerical artifacts due to
discontinuities at the beginning and the end of the time–series. Detailed explanations
about the computation of the dynamical structure factors are given in Appendix E.2.2.

The approach presented here in order to compute dynamical structure factors from
an MD scheme has been applied to the FQ phase of the BBQ model on the triangular
lattice. An example of results obtained using this approach has been presented in
Fig. 1.14. In Section 3.4, Section 4.3 and in Chapter 5, we use these results to compare
with the analytic theory of the excitations about the FQ ground state.
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Additional details regarding the implementation of the "u3MD" method can be
found in Appendix E.2





Chapter 3

Classical Thermodynamics of the
FQ-State of the BBQ Model on the
Triangular Lattice

In this Chapter, I use the u(3) formalism introduced in Section 2.4 and Section 2.5 to
develop a classical theory of fluctuations about a ferroquadrupolar (FQ) ground state
and compare its predictions with results from numerical simulations carried out using
the u3MC scheme introduced in Section 2.6.1. I chose to illustrate our method for the
FQ order because it is the simplest of the non–trivial phases found in the BBQ model,
and it is already relatively well characterized.

A FQ ground state for the spin–1 BBQ model on a triangular lattice was predicted
by mean–field (MF) calculations [131, 229] and by exact–diagonalisation [131], for a
broad range of parameters [Fig. 1.11], and has since been confirmed by QMC [111, 255]
and tensor–network approaches [173]. Its dynamic properties have also been explored
using "flavour wave" (multi-bosons) theory [131, 143, 176, 183] and QMC simulations
[255]. With many published results which are available for comparison, the FQ state
is indeed a convenient starting point on which to bench-mark our method. Despite the
rich literature around nematic order and more specifically FQ order, a classical theory
of its low–temperature properties is missing.

In Section 3.1, I show how the expansion of small fluctuations about the FQ ground
state is derived within our u(3) formalism following Section 2.5. In Section 3.2, I char-
acterize the eigen–excitations of the system within the classical theory of fluctuations,
and in Section 3.3 I further develop it into a classical low–temperature expansion and
derive thermodynamic quantities. In Section 3.4, I compare the analytical predictions
of the classical theory of excitations with classical Monte Carlo simulations carried out
using the u3MC scheme [Section 2.6.1]. Additionally, these results will also serve for
our derivation of the quantum–classical correspondence in Chapter 5.

3.1 Expansion of Small Fluctuations
Following the methodology developed in Section 2.5, we choose as our starting point
the FQ ground state found in mean–field calculations. We assume

∣∣dFQ
i

〉
to be the

79
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single–site quadrupolar order, such that the total ground state wave function is given
by a product wave function of on–site quadrupolar moments

∣∣dFQ
i

〉
with a common

orientation

|Ψ0〉MF
FQ =

N∏

i=1

∣∣dFQ
i

〉
. (3.1)

We choose the TR invariant basis [Eq. (2.32)] to describe the ferroquadrupolar state.
For simplicity, we consider the director to be along the y-axis

∣∣dFQ
i

〉
= |y〉 or equivalently dFQ =




0
1
0


 , (3.2)

for all lattice sites i. The state |y〉 is the time–reversal invariant state defined in
Eq. (2.33). An illustration of the FQ ground state on the triangular lattice with all
directors aligned along the y-axis is shown in Fig. 3.1. We note that it does not have the
exact form of Eq. (2.81), but is just a reordering of the basis states, and the arguments
presented in Section 2.5 still apply, such that we expect four generators to be broken
by the FQ ground state.

Figure 3.1: Ferroquadrupolar (FQ) ground state of a spin–1 magnet on a triangular
lattice consisting of all magnetic moments having their director [Eq. (2.35)] aligned
with each other. Each magnetic moment has been drawn in the state |y〉. Their
corresponding director representation dx = 0, dy = 1, dz = 0, [ Eq. (2.35)] is shown as
a red bar, and their corresponding spin probability distribution [Eq. (A.3)] is shown in
grayish blue. Figure is reproduced from [201].
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The corrections to mean–field theory due to taking into account excitations will
introduce thermal and/or quantum fluctuations within the product state, as well as a
reduction in the strength of the quadrupolar order. Following the procedure depicted
in Section 2.5, we now derive a framework for describing these fluctuations in terms of
generators of U(3).

Using Eq. (2.45), we represent the MF ground state, Eq. (3.1), in terms of A–
matrices.

〈
dFQ
i

∣∣A
∣∣dFQ

i

〉
= A0 =




0 0 0
0 1 0
0 0 0


 . (3.3)

In the space of A–matrices, the product state reads

|Ψ0〉MF
FQ =

N∏

i=1

|A0〉 . (3.4)

Within the u(3) Lie algebra, local fluctuations about any state |ψ0〉 can be written
using Eq. (2.87), where R̂(~φ) allows to create the fluctuations around the identity as
explained in Section 2.1. Under this operation, A–matrices transform as

A(~φ) = R̂(~φ)AR̂(~φ)† , (3.5)

as determined by Eq. (2.62) [cf. Appendix B], where

R̂(~φ) = ei
∑
αβ φα,βÂαβ (3.6a)

= I + i
∑

αβ

φα,βÂαβ −
1

2

∑

αβ

φ2
α,β(Âαβ)2 +O(φ3) , (3.6b)

with α, β = 1, 2, 3 as previously introduced in Eq. (2.86) and Eq. (2.90).
By expanding the exponential in Eq. (3.6a), and assuming small fluctuations, i.e.

φα,β � 1, we restrict ourselves to quadratic order in φα,β and obtain Eq. (3.6b). Con-
sidering the action of R̂(~φ) on the FQ ground state, as characterised by the matrix
A0 [Eq. (3.4)], we note that the only Âαβ which do not preserve the ground state and
will give a non–zero contribution are Â1

2, Â3
2 on the left by the application of R̂(~φ),

Â2
1, Â2

3 on the right by the application of R̂†(~φ), and Â2
2 for both R̂(~φ) and R̂†(~φ)

R̂(~φ) = I + iφ1,2Â1
2 + iφ3,2Â3

2 + iφ2,2Â2
2 −

1

2
φ2

2,2(Â2
2)2

=




1 iφ1,2 0
0 1 + iφ2,2 − 1

2
φ2

2,2 0
0 iφ3,2 1


 , (3.7a)
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R̂(~φ)† = I− iφ2,1Â2
1 − iφ2,3Â2

3 − iφ2,2Â2
2 −

1

2
φ2

2,2(Â2
2)2

=




1 0 0
−iφ2,1 1− iφ2,2 − 1

2
φ2

2,2 −iφ2,3

0 0 1


 . (3.7b)

For now, we simply note that

det(R̂(~φ)) = 1 + iφ2,2 − 1
2
φ2

2,2 , det(R̂(~φ)†) = 1− iφ2,2 − 1
2
φ2

2,2 . (3.8)

However, R̂(~φ) should belong to SU(3), and therefore its determinant should equal
unity [Eq. (2.2)]. The generator Â2

2 is therefore the one that takes the ground state
out of SU(3). This can also be seen by considering the effect of R̂(~φ) on the ground
state vector dFQ [Eq. (3.1)]

R̂(~φ)dFQ =




iφ1,2

1 + iφ2,2 − 1
2
φ2

2,2

iφ3,2


 , (3.9)

where the generator Â2
2 induces a longitudinal fluctuation, which changes the length

of the spin. But we only want to include orthogonal fluctuations that leave the length
of the spin invariant. Therefore, we can disregard the nonphysical fluctuation φ2,2.
Inserting Eq. (3.7a) and Eq. (3.7b) into Eq. (3.5), we get

Â(~φ) = R̂(~φ)A0R̂(~φ)†

=



φ1,2φ2,1 iφ1,2 φ1,2φ2,3

−iφ2,1 1− φ1,2φ2,1 − φ2,3φ3,2 −iφ2,3

φ2,1φ3,2 iφ3,2 φ2,3φ3,2


 , (3.10)

where we ensured that the spin–length constraint Equation 2.57 is satisfied. As a
result, we only need to keep the four generators Â1

2, Â3
2, Â2

1, Â2
3 in order to describe

fluctuations about the FQ ground state [Eq. (3.3) or equivalently Eq. (3.2)] The effect
of the four generators Â1

2, Â3
2, Â2

1, Â2
3 is illustrated in Fig. 3.2.

The effect of the four generators Â1
2, Â3

2, Â2
1, Â2

3 on the state |y〉 can now be
quantified directly. Inserting Eq. (3.10) into Eq. (1.68), and keeping terms up to
O(φ2), we obtain

Q̂(~φ) =




2
3
− 2φ1,2φ2,1 i(φ2,1 − φ1,2) −φ1,2φ2,3 − φ2,1φ3,2

i(φ2,1 − φ1,2) −4
3

+ 2φ1,2φ2,1 + 2φ2,3φ3,2 i(φ2,3 − φ3,2)
−φ1,2φ2,3 − φ2,1φ3,2 i(φ2,3 − φ3,2) 2

3
− 2φ2,3φ3,2


 .

(3.11)

Similarly, for Eq. (1.67), up to O(φ2) we find

Ŝ(~φ) =




−φ2,3 − φ3,2

i(φ1,2φ2,3 − φ2,1φ3,2)
φ1,2 + φ2,1


 . (3.12)
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Figure 3.2: Effect of the four generators creating fluctuations about the ferro-
quadrupolar (FQ) ground state |y〉, computed for each generator separately according
to Eq. (2.87), and drawn here for an angle of φ = π

8
. The generators Â1

2 (acting on the
right from the application of R̂†(~φ)) and Â2

1 (acting on the left from the application
of R̂(~φ)) introduce a complex component of the director d along the x–axis, induc-
ing a complex rotation of the directors about the z–axis. This deforms the quadrupole
"donut" about the same axis and promotes a small but finite spin dipole moment along
the z–axis [Eq. (2.44)]. The generators Â2

3 and Â3
2 produce a complex component of

the director d along the z–axis, corresponding to a complex rotation of the director
about the x–axis, reshape the quadrupole "donut" about the x–axis, and induce a spin
dipole moment along the z–axis. The red bar represents the real part u of the coeffi-
cients dα [Eq. (2.37)] in Eq. (2.35), and the orange bar represents the imaginary part
v. Figure is reproduced from [201].

From these results, we see that the fluctuations introduce a small imaginary part to
the director dFQ, either along the x– or the z–axis, and therefore introduce a rotation
of the director dFQ in the Hilbert space H3 either about the z– or the x–axis. This
introduces a small dipole moment and distorts the quadrupole "donut" about either
the z– or the the x–axis. These changes are clearly visible in Fig. 3.2, where the real
part to the director dFQ is shown as the red bar, and the small imaginary part induced
as the fluctuation is shown by the orange bar. The dipole moment induced by each
fluctuation is represented by a blue arrow and is also visible as a (small) distortion of
the spin–probability distribution, i.e., the "donut" becomes more "spherical".

Since Â(~φ) in Eq. (3.10) is already expressed in the TR invariant basis, we are now
able to derive a Hamiltonian describing fluctuations about FQ order. This is done by
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substituting Eq. (3.10) in the expression for the BBQ Hamiltonian [Eq. (2.72)]

H′BBQ = E0 +
1

2

∑

k

[
~φTkMk~φ−k

]
+O(φ4) , (3.13)

where the energy of the MF ground state is

E0 = NzJ2 , (3.14)

and where the fluctuations are encoded as

~φk =




φ2,1
k
φ1,2

k
φ3,2

k
φ2,3

k


 =

1√
N

∑

i




eik·riφ2,1
ri

eik·riφ1,2
ri

eik·riφ3,2
ri

eik·riφ2,3
ri


 . (3.15)

The energy matrix is

Mk =




Ak −Bk 0 0
−Bk Ak 0 0

0 0 Ak −Bk
0 0 −Bk Ak


 , (3.16)

where Ak and Bk are given by

Ak = z(J1γ(k)− J2) , (3.17a)
Bk = zγ(k)(J2 − J1) , (3.17b)

with lattice structure factor

γ(k) =
1

z

∑

δ

e−ik·δ . (3.18)

For the z = 6–coordinated triangular lattice, the vectors which connect neighbouring
lattice sites, {δ}, are listed in Appendix D. We also note that the transpose vector for
the fluctuations has the property given in Eq. (2.101), which implies

~φTk =
(
φ1,2

k , φ2,1
k , φ2,3

k , φ3,2
k

)
. (3.19)

We mention that the absence of terms linear in φ in Eq. (3.13) confirms that the
MF ground state Eq. (3.4) is a valid starting point for describing FQ order, since it
minimizes energy.

3.2 Classical Theory of Fluctuations
From the Hamiltonian [Eq. (3.13)] written in terms of fluctuations about the FQ ground
state, we can obtain the classical eigenmodes ωk,λ and the classical eigen–fluctuations
vk,λ by directly diagonalizing the energy matrix Mk. This corresponds to solving the



3.2 Classical Theory of Fluctuations 85

following eigensystem
Mkvk,λ = ωk,λvk,λ . (3.20)

The eigenvalues are found by solving

det |Mk − ωkI4| = 0 . (3.21)

The obtained eigenvalues are given by

ω+
k = ωk,1 = ωk,3 = Ak +Bk , (3.22a)
ω−k = ωk,2 = ωk,4 = Ak −Bk , (3.22b)

and their associated eigenvectors, expressed in the basis

{φ2,1
k , φ1,2

k , φ3,2
k , φ2,3

k } , (3.23)

are given by

v1 = 1√
2




−1
1
0
0


 , v2 = 1√

2




1
1
0
0


 , v3 = 1√

2




0
0
−1
1


 , v4 = 1√

2




0
0
1
1


 . (3.24)

We note that the fluctuations v1 and v2 correspond to complex rotations of quadrupole
moments in the ferroquadupolar ground state ∼ |y〉 about the z–axis, while v3 and v4

correspond to complex rotations about the x–axis [cf. Fig. 3.2].
The fluctuations φλ orthogonal to the ground state |y〉, are related to the fluctua-

tions vλ that diagonalize the Hamiltonian [Eq. (3.13)], by an orthogonal basis change
transformation O defined by




φ2,1

φ1,2

φ3,2

φ2,3


 = O




v1

v2

v3

v4


 where O = 1√

2




−1 1 0 0
1 1 0 0
0 0 −1 1
0 0 1 1


 . (3.25)

The orthogonality of O ensures that the eigen–fluctuations form an orthonormal set

vTk,λv−k,λ′ = δλλ′ . (3.26)

Indeed the transpose eigenvectors vTk,λ have the property that when expressed in the
basis

~φTk =
(
φ1,2

k , φ2,1
k , φ2,3

k , φ3,2
k

)
, (3.27)

they take the same form as vk,λ [Eq. (3.24)]. For instance,

vTk,1 =

(
1√
2

(φ1,2
k − φ2,1

k )

)T
=

1√
2

(φ2,1
k − φ1,2

k ) , (3.28)
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which expressed in the basis ~φTk [Eq. (3.27)] yields

vT1 =
1√
2




−1
1
0
0


 . (3.29)

We also note that considering a similar argument as Eq. (3.28) for all the components,
we have

vTk,1 = −vk,1 , vTk,2 = vk,2 , vTk,3 = −vk,3 , vTk,4 = vk,4 . (3.30)

The coordinate system in terms of the eigenvectors vk will turn out to be useful in
the calculation of correlation functions and ordered moments, as described below in
Section 3.3.

This also implies that the energy matrix Mk and the diagonal matrix consisting of
eigenvalues on the diagonal are related by the similarity transformation defined by O

M̃k = OTMkO =




ωk,1 0 0 0
0 ωk,2 0 0
0 0 ωk,3 0
0 0 0 ωk,4


 . (3.31)

Then, to O(v2), the Hamiltonian H′BBQ is diagonal in the basis,

~vTk = (vk,1, vk,2, vk,3, vk,4, ) , (3.32)

by construction, and can be written as

H′BBQ = E0 +
1

2

∑

k

~vTk M̃k~v−k +O(~v4)

= E0 +
1

2

∑

k

4∑

λ=1

ωk,λv
T
k,λv−k,λ +O(~v4) . (3.33)

Inserting Eq. (3.25) into Eq. (3.10) and keeping terms up to O(v2), the A–matrix
becomes

Â(~v) =




1
2(v2

2 − v2
1) i√

2
(v1 + v2) 1

2(v1v3 + v1v4 + v2v3 + v2v4)
i√
2
(v1 − v2) 1− 1

2(v2
2 + v2

4 − v2
1 − v2

3) − i√
2
(v3 + v4)

1
2(v1v3 − v1v4 − v2v3 + v2v4) i√

2
(−v3 + v4) 1

2(v2
4 − v2

3)


 ,

(3.34)

where thanks to Eq. (3.30), the hermicity of the A–matrix is preserved. Similarly, for
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quadrupole moments [Eq. (3.11)], we obtain

Q̂(~v) =




2
3
− (v2

2 − v2
1) −i

√
2v1 −v1v3 − v2v4

−i
√

2v1 −4
3

+ (v2
2 + v2

4 − v2
1 − v2

3) i
√

2v3

−v1v3 − v2v4 i
√

2v3
2
3
− (v2

4 − v2
3)


 .

(3.35)

And, finally for dipole moments [Eq. (3.12)], we find

Ŝ(~v) =




−
√

2v4

i(v1v4 + v2v3)√
2v2


 . (3.36)

Considering now up to linear order in the fluctuations, O(v), we note that the fluc-
tuations v2 and v4 induce a correction to the dipole moments, while v1 and v3 induce
a correction to the quadrupole moments. And for the A-matrices, all 4 fluctuations
contribute [cf. Fig. 3.2].

These effects will also visible in Section 3.3.3 in Fig. 3.3, when computing the
structure factors. We will see that the spin dipole spectral intensities of the excitations
v2 and v4 are associated with their respective eigen–mode ω−k , and similarly for the
quadrupole spectral intensities of the excitations v1 and v3 only contribute to their cor-
responding eigen–mode ω+

k . Again for the A-matrix, their spectral weight encompasses
all 4 fluctuations and shows intensities for both eigen–modes ω−k and ω+

k .

3.3 Classical Low Temperature Expansion
In this Section, the analytic framework of classical fluctuations developed in Section 3.1
is used to explore thermodynamic properties of the ferroquadrupolar (FQ) order at
low temperatures. I describe how we can derive thermodynamic quantities within the
framework of Section 3.1 by developing a classical theory of thermal fluctuations about
FQ order at low temperature, which allows to calculate thermodynamic quantities for
comparison with u3MC simulations. I will consider thermal corrections up to linear
order in T (i.e. quadratic in fluctuations).

In Section 3.3.1, I will first consider the expression of the partition function and
the free energy described in terms of the orthogonal fluctuations about the FQ ground
state. This allows me to calculate the specific heat in Section 3.3.2. In Section 3.3.3
and Section 3.3.9, I calculate correlation functions by taking the appropriate func-
tional derivative of the free energy. In particular, I will show results for the spin
dipole, quadrupole, and A-matrix structure factors in Section 3.3.3. Ordered moments
are calculated in Section 3.3.9 and will prove indispensable in explaining thermody-
namic features arising in u3MC simulations. Finally, I compare the analytic classical
calculations with classical simulation results obtained by the u3MC scheme presented
in Section 2.6.1.
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3.3.1 Expression for Free Energy

The partition function describing the FQ order and its fluctuation is given by

Z0 =

∫
d~φk e

−βH′BBQ[ ~φk] , (3.37)

where the measure of integration is

d~φk = dφ1,2
k dφ2,1

k dφ2,3
k dφ3,2

k , (3.38)

the inverse temperature is defined through

β = 1
kBT

, (3.39)

and H′BBQ[ ~φk] is given by Eq. (3.13). Neglecting O(φ4) terms, (all O(φ3) terms vanish),
we compute

Z0 =
N∏

k

∫
e−β

1
2
~φTkMk~φ−ke−β

E0
N d~φk (3.40a)

= e−βE0

N∏

k

[√
(2π)n

βn detMk

]
, (3.40b)

where E0 is the MF ground state energy [Eq. (3.14)], the 4 × 4 matrix Mk is defined
through Eq. (3.16), N is the number of lattice sites, n is the number of fluctuations, i.e.,
the dimension of Mk (in this case, n = 4), and where we used Eq. (F.1d) to calculate
the Gaussian integral. The free energy of the system is given by

F0 = − log(Z0)

β
. (3.41)

The free energy per site is consequently given by

f0 =
F0

N

=
E0

N
+
kBT

2N

∑

k

Nλ∑

λ=1

log(
ωk,λ

2πkBT
) +O(T 2) , (3.42)

where ωk,λ are the eigenvalues of Mk given in Eq. (3.22), and where we have used
Eq. (3.39) and the fact that

log[detMk] = Tr logMk =

Nλ∑

λ=1

logωk,λ , (3.43)

with Nλ counting the number of eigenmodes. Here

Nλ = 4 . (3.44)
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The free energy, Eq. (3.42), represents the leading order correction due to the fluc-
tuation in the framework of a classical low–temperature expansion. Up to O(T ), the
thermodynamic properties of the FQ ground state of the BBQ model are entirely de-
termined by the eigensystem defined by Mk and its solutions.

It is possible to calculate all thermodynamic properties of the FQ state, which
can be obtained by taking the relevant (functional) derivatives of the free energy f0

[Eq. (3.42)], as the leading term in a perturbative expansion series about T = 0.
We can also calculate the energy E0 given by

ECL
0 = −∂ log(Z0)

∂β

= E0 +
1

2

∑

k

Nλ∑

λ=1

kBT (3.45a)

= E0 + 2NkBT , (3.45b)

where we use Eq. (3.39). We see that each classical fluctuations λ = 1, 2, 3, 4, con-
tributes 1

2
kBT to the energy per site, for a total energy per site given 2kBT .

3.3.2 Specific Heat

The specific heat is defined as

cv =
Cv
N

= −T
(
∂2f0

∂T 2

)

V

, (3.46)

and represents the simplest thermodynamic property computable from the free energy.
Using Eq. (3.42), we obtain

cv = −T −kBNλ

2T
= kB

Nλ

2
, (3.47)

where Nλ = 4 as given in Eq. (3.44) and represents the number of eigenmodes for a
spin–1 moment, i.e. the number of generators broken by the ordered ground state. For
simplicity, we set

kB = 1 , (3.48)

and it follows that,
cv → 2 [u(3) matrix] , (3.49)

in the limit T → 0.
In contrast, the usual result for classical fluctuations about an ordered state com-

posed of O(3) vectors, where the ground state breaks 2 so(3) generators. Consequently,
only two orthogonal fluctuations are possible for a single spin–1 moment, implying
Nλ = 2 [218]:

cv → 1 [O(3) vector] . (3.50)

We will find out that the zero–temperature limit of the specific heat is important for
the interpretation of the u3MC simulation results, as discussed in Section 3.4.
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3.3.3 Classical Structure Factors

I now present how the calculation of the classical structure factors associated with
dipole moments, quadrupole moments, and A–matrices are obtained within our frame-
work of classical thermal fluctuations. We start by introducing a source term ∆H[hαi,β]
to the BBQ Hamiltonian

H = HBBQ + ∆H[hαi,β] , (3.51)

where

∆H[hαi,β] = −
∑

i,α

hαi,βÔ
α
i,β , (3.52)

describes the coupling of a ficticious field hαi,β to the observable Ôα
i,β. In the following

sections, we will replace

Ôα
i,β → Ŝαi δαβ , Q̂αβ

i , Âαi β , (3.53)

to make explicit calculations for the dipole moment, quadrupole moment, and A–matrix
structure factors.

The introduction of the source term ∆H[hαi,β] allows us to calculate correlations
functions for the variables Ôα

i,β by taking the appropriate derivatives of the free energy
with respect to the fictitious field hαi,β, evaluated at zero field.

Explicit calculations are computed by expanding the observable Ôα
i,β in terms of

the orthogonal eigenmodes vk,λ [Eq. (3.25)], which allows us to calculate the partition
function by integrating out the fluctuations. Finally, as mentioned above, the relevant
thermodynamic averages are obtained through functional derivatives of the free energy
[Eq. (3.42)] with respect to hαi,β.

I will first present the general framework needed to calculate the structure factors
for an unspecified observable Ôα

i,β. We will then simply apply the obtained results
to the relevant operators [Eq. (3.53)]. Details for the specific cases are provided in
Appendix G.

The structure factors involve contributions from both the ground state and thermal
excitations, and below I present how to compute both. The calculation for the structure
factors is therefore divided into two parts. The first part is valid for q 6= 0. It
consists of taking into account up to linear order in the expansion of fluctuations
and is presented below. I provide details of the calculation for q 6= 0 for dipole
moments in Appendix G.1, quadrupole moments in Appendix G.3, and A–matrices in
Appendix G.5. The second part captures the ground state contribution at q = 0 and
consists in taking into account up to quadratic order in the expansion of fluctuations.
The general steps of the calculation at q = 0 are given in Section 3.3.4. The details at
q = 0 are provided in Appendix G.2 for the dipole moments, in Appendix G.4 for the
quadrupole moments, in Appendix G.6 for the A–matrices.

In order to compare with results obtained from a quantum theory of the fluctuations
in Section 4.1, we introduce a spectral decomposition of the structure factors, defined
in Eq. (3.72), which allows us to resolve contributions from the different eigenmodes
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at different energies.
We start by assuming that the field-dependent part of the Hamiltonian is given by

Eq. (3.52), and that the moment Ôα
i,β can be written down in terms of the fluctuations

φi. Considering up to second order in fluctuations, the moments Ôα
i,β becomes

Ôα
i,β = qαβµνφ

µ
i φ

ν
i + lαβµφ

µ
i + cαβ +O(φ3) , (3.54)

where we implicitly sum over µ and ν, and where qαβµν , l
α
βµ

and cαβ, are respectively

the quadratic, linear, and constant coefficients from the expansion of Ôα
i,β in terms of

the fluctuations φi. The field dependent part of the Hamiltonian then becomes

∆H[hi] = −
∑

i

hαi,βq
α
βµν

φµi φ
ν
i + hαi,βl

α
βµ
φµi + hαi,βc

α
β , (3.55)

where we also implicitly sum over α, β, and where we neglect terms in O(φ3), which
will from now on be disregarded. We now perform a Fourier transform according to
Eq. (3.15), and obtain

∆H[hq] =−
∑

q

[
lαβµh

α
q,βφ

µ
−q +

√
Ncαβh

α
q,βδq,0

]
−
∑

q

∑

k

1√
N
qαβµνh

α
q,βφ

µ
kφ

ν
−q−k ,

(3.56)

where N is the number of lattice sites. We notice that if we were to include this in
the total Hamiltonian Eq. (3.51) and write it down in the same form as Eq. (3.13), the
interaction matrix Mk would take the same dimension as the number of lattice sites,
because of the form of quadratic term in Eq. (3.56). We can then calculate it for a
fixed q. Namely for q = 0, we find

∆H[hq=0] =− lαβµh
α
q=0,βφ

µ
−q=0 −

√
Ncαβh

α
q=0,β −

∑

k

1√
N
qαβµνh

α
q=0,βφ

µ
kφ

ν
−k . (3.57)

We note that the form of Eq. (3.57) is compatible with the form of Eq. (3.13). Indeed,
for q = 0, the contribution of the second order in fluctuations will enter the interaction
matrix Mk, modifying its eigenvalues, i.e., its dispersion relations, which will also
depend on the field h. For q = 0, the interaction matrixMk can be easily diagonalized.
Therefore, we decide to only take into account up to second order in fluctuations for
q = 0, since it is exactly solvable and since we will need it when comparing the ordered
moments at q = 0, and to neglect them for q 6= 0. To make the fact that we are taking
up to second order in fluctuations into account only at q = 0 more obvious, we write

∆H[hq] = −
∑

q

lαβµh
α
q,βφ

µ
−q −

∑

q

(
√
Ncαβh

α
q,β +

∑

k

1√
N
qαβµνh

α
q,βφ

µ
kφ

ν
−k

)
δq,0 .

(3.58)

We then rewrite the field dependent part of the Hamiltonian such that the Hamil-
tonian is symmetric in ~φq and ~φTq [Eq. (3.19)], which will be necessary when calculating



92
Classical Thermodynamics of the FQ-State of the BBQ Model on the

Triangular Lattice

the structure factors at q = 0. We have

∆H[hq] = −
∑

q

N1[hq]T ~φ−q + ~φTqN2[h−q] + C̃[hq]δq,0 , (3.59)

where we define

N1[hq]µ = 1
2
lαβµhαq,β , N2[h−q]µ = 1

2
lαβµhα−q,β , (3.60)

and

C̃[hq] =
√
Ncαβh

α
q,β +

∑

k

1√
N
qαµνh

α
q=0,βφ

µ
kφ

ν
−k . (3.61)

N1,2[hq] are n–dimensional vectors whose components depend linearly on the fields hαq,β
and represent the linear terms in φq of the moments Ôq. C̃[hq] represents the zeroth
order term and the second order contribution in φq of the moments Ôq at q = 0. C̃[hq]
is also linear in the fields hαq,β. Plugging Eq. (3.59) in Eq. (3.51), using the definition
of the partition function in Eq. (3.37), and using Eq. (F.1e) to perform the integral,
we get

Z[hq] = e−βE0

N∏

q

[√
(2π)n

βn det(Mq)
e2βN1[hq]TM−1

q N2[hq] eβ(C̃[hq]δq,0)
]
, (3.62)

where E0 is given in Eq. (3.14), and the n×n square matrix Mq is given by Eq. (3.16).
n is the dimension of Mq, i.e., the number of independent classical fluctuations. In our
case, we have n = 4. N is the number of lattice sites.

The free energy then becomes

F [hq] =− log(Z[hq])

β

=E0 −
N∑

q

C̃[hq]δq,0 − 2
N∑

q

N1[hq]TM−1
q N2[h−q]

+
n

2β

∑

q

log(
β

2π
) +

1

2β

∑

q

log(det(Mq)) +O(T 2) . (3.63)

The first derivative of the free energy with respect to field components hq gives

〈Ôµ
q,ν〉 = − ∂F

∂hµq,ν

∣∣∣∣
h=0

=
∂C̃[hq]

∂hµq,ν

∣∣∣∣∣
h=0

δq,0 . (3.64)

The second derivative of the free energy with respect to field components hq corre-
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sponds to

〈Ôα
q,βÔ

µ
−q,ν〉 − 〈Ôα

q,β〉〈Ôµ
−q,ν〉 = − 1

β

∂2F

∂hαq,β∂h
µ
−q,ν

∣∣∣∣∣
h=0

(3.65a)

=
2

β

∂2

∂hαq,β∂h
µ
−q,ν

N∑

q

(N1[hq]TM−1
q N2[h−q])

∣∣∣∣∣
h=0

,

(3.65b)

where we have used the fact that C̃[hq] is linear in the field components hαq,β. For q 6= 0,
it turns out to be more convenient to work with M̃q [Eq. (3.31)] which is diagonal, and
hence the inverse is

(M̃q
−1

)λλ =
1

M̃q
λλ

=
1

ωq,λ
. (3.66)

We are allowed to do this because for q 6= 0, the interaction matrix stays unchanged.
However, we need to be more careful for q = 0 as explained in Section 3.3.4. Then,
N1,2[hq] become Ñ1,2[hq]

Ñ1[hq]T = N1[hq]TO , (3.67a)

Ñ2[h−q] = OTN2[h−q] , (3.67b)

such that Ñ1,2[hq] corresponds to the linear term when expressing the operators Ôα
i

in terms of the fluctuations ~vq that diagonalize the BBQ Hamiltonian as shown in
Eq. (3.32). Indeed, we then obtain

∆H[hq] = −
∑

q

Ñ1[hq]T~v−q + ~vTq Ñ2[h−q] + C̃[hq]δq,0 . (3.68)

Therefore, we can simply write

F [hq] =E0 +
N∑

q

C̃[hq]δq,0 − 2
N∑

q

Nλ∑

λ=1

(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

+
Nλ

2β

∑

q

log(
β

2π
) +

1

2β

∑

q

Nλ∑

λ=1

log(ωq,λ) +O(T 2) , (3.69)

where we have used Eq. (3.43) and where Nλ = 4 is the number of modes. Eq. (3.64)
stays unchanged, but Eq. (3.65b) takes the simple form given by

〈Ôα
q,βÔ

µ
−q,ν〉 − 〈Ôα

q,β〉〈Ôµ
−q,ν〉 =

2

β

∂

∂hαq,β∂h
µ
−q,ν

(
Nλ∑

λ=1

(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

)∣∣∣∣∣
h=0

.

(3.70)
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The dynamical factor associated with the operator Ô is defined by

SCL
O (q) =

∑

α,β

〈Ôα
q,βÔ

β
−q,α〉 . (3.71)

We also introduce a spectral decomposition of the structure factor as

SCL
O (q, ω) =

∑

α,β,λ

〈Ôα
q,βÔ

β
−q,α〉λδ(ω − ωq,λ) , (3.72)

which we calculate as

SCL
O (q, ω) =

∑

α,β,λ

[
〈Ôα

q=0,β〉λ〈Ô
β
−q=0,α〉λδ(ω) + χαββαλ (q)δ(ω − ωq,λ)

]
, (3.73)

where the generalized susceptibility

χαβµνλ (q) = 〈Ôα
q,βÔ

µ
−q,ν〉λ − 〈Ô

α
q,β〉λ〈Ô

µ
−q,ν〉λ

=
2

β

∂

∂hαq,β∂h
µ
−q,ν

(
(Ñ1[hq]T )λÑ2[h−q]λ

ωq,λ

)∣∣∣∣∣
h=0

(3.74)

is diagonal in λ. From Eq. (3.64), we note that the first moments 〈Ôα
q,β〉 will only

contribute at q = 0, which is explicitly taken in account in Eq. (3.73). Therefore, for
q 6= 0, we can neglect the 〈Ôα

q,λ〉〈Ôβ
−q,λ〉 term and we obtain

SCL
O (q 6= 0) =

∑

αβλ

χαββαλ (q) +O(T 2) . (3.75)

3.3.4 Structure Factors Classically at q = 0

Here we present the calculation for the structure at q = 0. At q = 0, the structure
factor associated with the operator Ô is defined by

SCL
O (q = 0) =

∑

α,β

〈Ôα
q=0,βÔ

β
q=0,α〉 . (3.76)

The relevant source term is given by Eq. (3.52). By expanding Eq. (3.52) in terms of
the fluctuations, we obtained Eq. (3.58). We see that the contribution of the second
order in fluctuations has the same form as the Hamiltonian expressed as Eq. (3.13)
and will enter the interaction matrix Mk, modifying its eigenvalues, i.e., dispersion
relations, which will all also depend on the field h. We can therefore assume that, at
q = 0, the total Hamiltonian [Eq. (3.51)] has the following form

H =E0 +
1

2

∑

k

[
~φTkMk[hq=0]~φ−k

]
+
∑

k

[
NT

1 [hk]~φ−k + ~φTkN2[h−k]
]
δk,0

+
∑

k

C[hq=0]δk,0 +O(φ3) , (3.77)
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where C[hq=0] represents the zeroth order term in φq of the moments Ôq. The second
order contribution at q = 0 is now included in Mk[hq=0]. As before, N1,2[hk] are n–
dimensional vectors whose components depend linearly on the fields hαk,β and represent
the linear terms in φk of the moments Ôk. Neglecting terms in O(φ3), and using
Eq. (F.1e) to perform the integral, we find

Z =e−βE0

N∏

k

[∫
e−β

1
2
~φTkMk[hq=0]~φke−β[N

T
1 [hk]~φ−k+~φTkN2[h−k]]δk,0e−βC[hq=0]δk,0d~φk

]
(3.78a)

=e−βE0

N∏

k

[√
(2π)n

βn detMk[hq=0]
e2βNT

1 [hk]M−1
k [hq=0]N2[h−k]δk,0e−βC[hq=0]δk,0

]
, (3.78b)

where E0 is defined through Eq. (3.14), and the n × n matrix Mk[hαq=0β] through
Eq. (3.77) that includes up to second order in fluctuations. n is the dimension of
Mk[hαq=0β], i.e., the number of independent classical fluctuations. In our case, we have
n = 4. N is the number of lattice sites. It follows that the free energy is

F =− log(Z)

β

=E0 +
∑

k

C[hq=0]δk,0 −
n

2β

∑

k

log(
(2π)

β
) +

1

2β

∑

k

Nλ∑

λ=1

log(ωk,λ[hq=0])

− 2
∑

k

NT
1 [hk]M−1

k [hq=0]N2[h−k]δk,0 +O(T 2) , (3.79)

where ωk,λ[hq=0] are the eigenvalues of Mk[hq=0], and we have used Eq. (3.43). The
moments are given by

〈Ôα
q=0,β〉 = − ∂F

∂hαq=0,β

∣∣∣∣∣
h=0

, (3.80)

and

〈Ôα
q=0,βÔ

µ
q=0,ν〉 =〈Ôα

q=0,β〉〈Ôµ
q=0,ν〉 −

1

β

∂2F

∂hαq=0,β∂h
µ
q=0,ν

∣∣∣∣∣
h=0

. (3.81)

Using Eq. (3.79), Eq. (3.80) yields

〈Ôα
q=0,β〉 =− ∂C[hq=0]

∂hαq=0,β

∣∣∣∣∣
h=0

− 1

2β

∑

k

Nλ∑

λ=1

1

ωk,λ[hq=0]

∂ωk,λ[hq=0]

∂hαq=0,β

∣∣∣∣∣
h=0

+ 2
∂
[
NT

1 [hq=0]M−1
q=0[hq=0]N2[hq=0]

]

∂hαq=0,β

∣∣∣∣∣
h=0

+O(T 2) , (3.82)
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where the last derivative turns out to be null when evaluated at h = 0, for dipoles,
quadrupoles and A-matrices. Eq. (3.81) becomes

〈Ôα
q=0,βÔ

µ
q=0,ν〉 =〈Ôα

q=0,β〉〈Ôµ
q=0,ν〉 −

1

β

∂2C[hq=0]

∂hαq=0,β∂h
µ
q=0,ν

∣∣∣∣∣
h=0

+
2

β

∂2
[
NT

1 [hq=0]M−1
q=0[hq=0]N2[hq=0]

]

∂hαq=0,β∂h
µ
q=0,ν

∣∣∣∣∣
h=0

+O(T 2) , (3.83)

where the terms including second derivatives of C[hq=0] are zero, since C[hq=0] is linear
in hαq=0,β by definition. Finally, Eq. (3.76) can be calculated by using Eq. (3.82) and
Eq. (3.83). For each type of moments, dipole, quadrupole or A-matrix, the interaction
matrix Mk[hq=0], the source terms NT

1 [hq] and N2[hq] and the constant term will be
different. They are given in Appendix G. In what follows, we present the results that
we need in order to compare with numerical simulations of the FQ state in Section 3.4.

3.3.5 Structure Factor for Dipole Moments

We first consider the structure factor for spin dipole moments

SCL
S (q) =

∑

α

〈ŜαqŜα−q〉 . (3.84)

Within the classical low–temperature expansion for structure factors developed in Sec-
tion 3.3.3 and Section 3.3.4, and to leading order in T , we find

SCL
S (q) =

4

β

1

ω−q
+O(T 2) , (3.85)

where ω±q are given in Eq. (3.22). We observe that the fluctuations restore a finite
value of SCL

S (q) at finite temperature. Indeed, as can be seen in Eq. (3.36), the eigen–
fluctuations v2 and v4 induce a (small) dipolar moment along the z– and x–axis re-
spectively. The absence of terms in ω+

q reflects the fact that only the “odd” modes
λ = 2, 4 corresponding to ω−q contribute to dipolar fluctuations. However, all ground–
state averages of dipole moments vanish as the FQ phase does not break time–reversal
symmetry.

The spectral decomposition of the structure factor, Eq. (3.85), is given by

SCL
S (q, ω) =

4

β

1

ω−q
δ(ω − ω−q ) +O(T 2) . (3.86)

Eq. (3.86) is plotted in Fig. 3.3 (a), for a temperature T/J = 1 and for parameters
corresponding to a FQ ground state given by

J1 = 0.0 , J2 = −1.0 . (3.87)

We observe that within the classical theory, excitations which are dipolar in nature
are gapped and form a dispersing band with spectral intensity concentrated at q = K.
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Figure 3.3: Spectral representation of structure factors found in a classical theory
of fluctuations about a ferroquadrupolar (FQ) ground state of the BBQ model. (a)
Spectral representation of dipole structure factor, SCL

S (q, ω) [Eq. (3.86)], within the
classical low–temperature expansion developed in Section 3.2, at temperature T = J .
(b) Equivalent result the for the quadrupole structure factor, SCL

Q (q, ω) [Eq. (3.91)].
(c) Equivalent results for the A–matrix structure factor, SCL

A (q, ω) [Eq. (3.94)]. All
results are shown for parameters Eq. (3.87), and have been convoluted with Gaussian
of FWHM 0.35 J. Bragg peaks have been omitted for simplicity.

Further details of these calculations can be found in Appendix G.1 [q 6= 0] and
Appendix G.2 [q = 0].

3.3.6 Structure Factor for Quadrupole Moments

The structure factor for quadrupole moments is defined as

SCL
Q (q) =

∑

αβ

〈Q̂αβ
q Q̂βα

−q〉 , (3.88)

where the sum on α, β makes sure that SU(2) symmetry is respect for the defined
scalar contraction. To leading order in T , we obtain

SCL
Q (q) =

8

β

1

ω+
q

(1− δq,0) +
8

3

[
N − ∆

β

]
δq,0 +O(T 2) , (3.89)

where

∆ = 3
∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
+

1

ω−q
. (3.90)

Unlike dipole moments, fluctuations associated with the FQ ground state contribute to
the structure factor for quadrupole moments. This is encoded in the term ∆/β, which
describes the corrections to ground state averages for T > 0. The absence of terms in
ω−q for q 6= 0 comes from the fact that only the "even" modes λ = 1, 3 contribute to
quadrupolar fluctuations. Indeed, as can be seen in Eq. (3.35), the eigen–fluctuations
v1 and v3 induce (small) quadupolar moments. However, through Eq. (3.90), all 4
modes, λ = 1, 2, 3, 4, contribute to the reduction of the ordered moment coming from
the ground state averages.
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The spectral decomposition of the structure factor, Eq. (3.89), yields

SCL
Q (q, ω) =

8

β

1

ω+
q

(1− δq,0)δ(ω − ω+
q ) +

8

3

[
N − ∆

β

]
δq,0δ(ω) +O(T 2) . (3.91)

Eq. (3.91) is illustrated in Fig. 3.3 (b), where for simplicity we suppressed the Bragg
peak at q = Γ. The classical excitations which have a quadrupolar character form a
gapless dispersing band, with spectral weight concentrated at q = Γ.

Further details of these calculations are provided in Appendix G.3 [q 6= 0] and
Appendix G.4 [q = 0].

3.3.7 Structure Factor for A–matrices

Here we calculate the structure factor for the A-matrices Âαβ, which in our theory is the
most fundamental object describing a spin–1. The structure factor of the A-matrices
is given by

SCL
A (q) =

∑

αβ

〈Âαq βÂβ−q α〉 , (3.92)

where the contraction over α, β allows to preserve the full U(3) symmetry of the
representation. Uo to linear order in T , we have

SCL
A (q) =

2

β

1

ω−q
+

2

β

1

ω+
q

(1− δq,0) +

[
N − 2

3

∆

β

]
δq,0 +O(T 2) . (3.93)

Because the A-matrices Âαβ include both dipoles and quadrupoles moments, so does
its structure factor, and all 4 modes, λ = 1, 2, 3, 4, contribute to the reduction of the
A–moments coming from ground state averages. All four modes, ω±q , contribute to
fluctuation terms for q 6= 0, as can be seen from Eq. (3.34).

The spectral decomposition of the structure factor, Eq. (3.93), is given by

SCL
A (q, ω) =

2

β

1

ω−q
δ(ω − ω−q ) +

2

β

1

ω+
q

(1− δq,0)δ(ω − ω+
q ) +

[
1− 2

3

∆

β

]
δq,0 δ(ω) +O(T 2) .

(3.94)

This is shown in Fig. 3.3 (c), where again we suppressed the Bragg peak at q = Γ,
for simplicity. The contribution of both dipolar and quadrupolar fluctuations to the
A-matrix structure factors SCL

A (q, ω) become apparent and can be seen as independent,
dispersing bands.

Further details of these calculations are given in Appendix G.5 and [q 6= 0] Appendix G.6
[q = 0].

3.3.8 Sum Rule for Structure Factors

The sum rule associated with A–matrices, Eq. (2.67), implies a sum rule on the struc-
ture factors SCL

S (q), SCL
Q (q) and SCL

A (q), Indeed by performing a Fourier transform on



3.4 Comparison with u(3) Monte Carlo Simulations 99

Eq. (2.67), we obtain

Âαk βÂβ−k α =
1

4
Q̂αβ

k Q̂βα
−k +

∑

α

1

2
ŜαkŜα−k

+
1

12
s2(s+ 1)2Nδk,0 . (3.95)

By using the respective definition of the dipole moments, quadrupole moments, and
A–matrices structure factors given in Eq. (3.84), Eq. (3.88), and Eq. (3.92), we find

SCL
A (q) =

1

4
SCL

Q (q) +
1

2
SCL

S (q) +
1

3
Nδq,0 . (3.96)

This sum rule is easily checked by directly substituting Eq. (3.85),Eq. (3.89), and
Eq. (3.93), into Eq. (3.96). It is then easily seen that the results of the low–temperature
expansion satisfy the sum rule of Eq. (3.96). It can also be checked visually in Fig. 3.3.

3.3.9 Ordered Moments

Finally, we consider the quadrupole moment which characterizes the FQ state,

〈Q〉 :=
√
〈Q2〉 , (3.97)

which acts as an order parameter for the FQ phase. For non–sublattice order, the
associated Bragg peak appears at the ordering vector given by q = Γ. And, indeed,
the quadrupole structure factor exhibits a Bragg peak at the Γ–point, scaling linearly
with N , the number of lattice sites. Therefore as a measure of the FQ state, we consider

〈Q2
CL〉 =

SCL
Q (q = Γ)

N
, (3.98)

where N denotes the number of lattice sites, such that 〈Q2〉 takes on a finite value.
From Eq. (3.89), we simply find

〈Q2
CL〉 =

8

3
− 8

Nβ

∑

k6=0

[
1

ω+
k

+
1

ω−k

]
. (3.99)

We note that at zero temperature the expected ground–state value of the order param-
eter is given by

Q2
0 =

8

3
. (3.100)

We compare these results with MC simulation in Section 3.4.2.

3.4 Comparison with u(3) Monte Carlo Simulations
In this Section, I compare the analytic theory of classical fluctuations developed in
Section 3.2 and Section 3.3 with the U(3) Monte Carlo (u3MC) simulation schemes
developed in Section 2.6.1. I start in Section 3.4.1 by analyzing the heat capacity,



100
Classical Thermodynamics of the FQ-State of the BBQ Model on the

Triangular Lattice

which for simulations is also shown to satisfy the correct classical limit c(T → 0)→ 2.
In Section 3.4.2, I consider the low–temperature properties of the ordered moment
〈Q2〉. In simulations, the ordered moment is shown to take on a finite value at a finite
temperature, which seems like a direct violation of the Mermin–Wagner theorem. But
I show that it exhibits a finite–size scaling consistent with the Mermin–Wagner theo-
rem. Then, I consider the equal–time structure factors associated with dipole moments,
quadrupole moments, and A-matrices. In Section 3.4.3, I show that at low tempera-
ture, equal–time structure factors from the classical analytic theory [Section 3.2] are
conforming with u3MC simulation results. This analysis confirms that the simulations
based on the u3MC accurately describe the classical low–temperature properties, such
as correlations, within the FQ state.

3.4.1 Heat Capacity

In Fig. 3.4, we present u3MC results for the temperature dependence of the heat
capacity per spin defined as

c(T ) = C(T )/N =
1

N

1

T 2

[
〈E(T )2〉 − 〈E(T )〉2

]
. (3.101)

Results were obtained using the U(3) Monte Carlo (u3MC) formalism developed in
Section 2.6.1, applied to the BBQ Hamiltonian HBBQ [Eq. (2.72)], for the parameter
values given in Eq. (3.87), and for clusters of linear dimension given by L = 12, 24, 48, 96
(N = 144, 576, 2304, 9216 spins).

At low temperatures, we find

c(T → 0)→ 2 , (3.102)

as can be observed from Fig. 3.4. This is in agreement with the result predicted
by the classical theory developed in Section 3.3 [cf. Eq. (3.49)]. It implies that the
u(3) formalism implemented within the u3MC scheme also correctly describes the four
orthogonal generators of fluctuations about the FQ ground state. As already discussed
in Section 3.3.2, each of the four fluctuations contribute 1/2 to c(T ) in the limit T → 0
leading to Eq. (3.102). Meanwhile, for classical MC simulations based on an O(3)
representation, only two generators per spin are broken and c(T → 0) ≤ 1 [218].

We note that the onset of fluctuations of FQ order is indicated by the pronounced
peak at T ∗ ∼ 0.43. As system size is increased, the peak gradually shifts towards lower
temperatures and sharpens simultaneously. However, because of the Mermin–Wagner
theorem [146], long–range FQ order is not expected to occur at finite temperature in a
two–dimensional system. The scaling of this peak does not conform with a conventional
phase transition described by Landau’s theory. Meanwhile, we saw that point–like
topological defects are possible in a spin–1 systems with ferroquadrupolar correlations.
Indeed, the order parameter is described by a real director, which takes on values on
the 2–dimensional protective space RP2 (cf. Fig. 1.5). Homotopy analysis predicts the
existence of vortices consisting of directors

π1(RP2) = Z2 , (3.103)
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Figure 3.4: Temperature dependence of the specific heat per spin c(T ), obtained
by U(3) Monte Carlo (u3MC) simulations of the BBQ model HBBQ [Eq. (2.72)], for a
ferroquadrupolar (FQ) ground state. Results are illustrated for different system sizes L.
The peak at c(T ) at T ∗ ∼ 0.43 reflects the onset of fluctuations of FQ order, as depicted
in Fig. 3.5 (a). The low temperature limit c(T → 0) → 2 agrees with the prediction
obtained from the analytical theory of thermal fluctuations, which is based on the
existence of four independent classical excitations about the the FQ ground state, as
discussed in Section 3.3.2. All simulations were carried out by my collaborator Dr.
Rico Pohle using the MC scheme described in Section 2.6.1 for parameters given in
Eq. (3.87) and consistent with a FQ ground state. Figure is reproduced from [201].

previously introduced in Eq. (1.52b). These topological defects can mediate a phase
transition into a phase with algebraic FQ correlations in a mechanism similar to the
BKT-phase transition of the XY–model. Indeed, such a BKT–like topological phase
transition is permitted at finite temperature and would be signaled by a peak in heat
capacity. This type of unconventional phase transition has been observed in previous
MC simulations of the O(3) BBQ model on the triangular lattice [116]. A detailed
analysis of topological phase transitions in the spin–1 BBQ model goes beyond the
scope of this Thesis but is kept as a future investigation plan [Section 7.2.1].

3.4.2 Ordered Moment

Here we consider the behavior of the quadrupole–moment Q, which defines an order
parameter for the FQ state. The ordered moment is computed through the equal–
time structure factor [cf. Eq. (3.98)] obtained by u3MC simulations developed in
Section 2.6.1.

〈Q2
MC〉 =

SMC
Q (q = Γ)

N
. (3.104)

In Fig. 3.5, we show simulation results obtained for our usual parameter set,
Eq. (3.87). The ordered moment obtained from u3MC simulations takes on a finite
value in finite–size clusters, as shown in Fig. 3.5 (a). At low temperatures, the u3MC
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results agree with the expected ground–state value [Eq. (3.100)]

〈Q2
MC〉
∣∣
T→0

= Q2
0 =

8

3
. (3.105)

For low but finite temperature, the order moment is well–described by polynomial
function with respect to temperature.

〈Q2〉 = Q2
0 + α(L)T + β(L)T 2 + · · · , (3.106)

where the coefficients α(L) and β(L) are determined by fits to simulation results. This
expansion is consistent with the result obtained from low–temperature expansion of the
analytic theory of classical fluctuations [Eq. (3.99)]. At a temperature corresponding to
the peak in heat capacity, T ≈ T ∗ ∼ 0.43 [Fig. 3.4], the value of 〈Q2

MC〉 drops, and above
this temperature, rapidly tends to zero with increasing system size. The fact that the
order moment 〈Q2

MC〉 take on a finite value for temperatures lower than T ≈ T ∗ ∼ 0.43
seems to contradict the Mermin–Wagner theorem, which forbids 〈Q2〉 6= 0 at finite
temperature for 2–dimensional systems [146].
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(b) Coefficient −α(L) of the leading

temperature correctio to 〈Q2〉

Figure 3.5: Temperature and system size dependence of the order moment Q for a
ferroquadrupolar (FQ) ground state of the BBQ model HBBQ [Eq. (2.72)]. (a) Results
for Q2 found in U(3) Monte Carlo (u3MC) simulations for different system sizes, L. The
temperature T ∗ ∼ 0.43 of the onset of fluctuations of FQ order at Q2 corresponds to
the one found in the peak of the heat capacity, shown in Fig. 3.4. At low temperatures,
Q2 tends to the ordered moment of the FQ ground state, Q2

0 [Eq. (3.105)]. (b) Finite–
size scaling of the coefficient α(L) [Eq. (3.106)], showing a logarithmic divergence for
large L. This implies a correction of the leading order in temperature α(L) to the
ordered moment which suppresses any quadrupole moments at finite temperate in
the thermodynamic limit [Eq. (3.108)], consistent with the Mermin–Wagner Theorem.
Results are shown for both u3MC simulations (blue circle), and the analytic theory (red
points) [Eq. (3.107)], developed in Section 3.3. All u3MC simulations were carried out
by my collaborator Dr. Rico Pohle using the u3MC scheme described in Section 2.6.1,
for parameters Eq. (3.87) consistent with a FQ ground state. Figures are reproduced
from [201].

We first note that in order to obey the Mermin–Wagner theorem, in the thermo-
dynamic limit, we must have 〈Q2〉 ≡ 0 at any finite temperature [146]. The coefficient
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α(L) in Eq. (3.106) describes the rate at which thermal fluctuations destroy the order.
Therefore, the Mermin–Wagner theorem implies that the coefficient α(L) in Eq. (3.106)
must diverge as L → ∞. For 〈Q2

MC〉, the dependence of αMC(L) with system size L
is obvious from Fig. 3.5 (a), where we see that αMC(L) monotonically increases with
L, as the slope become sharper with increasing system size L. The slope αMC(L)
is obtained by fitting the simulations results over temperature intervals given in Ta-
ble (H.1), as explained in Appendix H. This is plotted against system sizes L as blue
circles in Fig. 3.5 (b). However, for all system sizes accessible to simulation, the ordered
moment still takes on a finite value at low temperatures, seemingly contradicting the
Mermin–Wagner theorem.

This is resolved by considering the analytic theory developed in Section 3.3. The
analytic estimate of αCL(L) is found by evaluating numerically the sum on k found in
the ordered moments [Eq. (3.99)] obtained analytically. Namely, we compute

αCL(L) = − 8

L2

L2∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
, (3.107)

where we set kB = 1. The sum on k is performed by numerically summing over the
reciprocal space of the triangular lattice accordingly partitioned with the number of
lattice sites. This is computed for different values of system sizes, including the ones
accessible to simulation. Details are provided in Appendix H. The values of αCL(L) are
plotted as the red dots in Fig. 3.5 (b) and are well described by

−α(L) = α0 + µ logL+ ν
1

L
+ ξ

1

L2
, (3.108)

with fit parameters

α0 = 1.86 , µ = 0.735 , ν = 0 , ξ = −1 . (3.109)

Additionally, by evaluating this sum as an integral, we can extract the leading con-
tribution to αCL(L) in function of L. A logarithmic divergence in αCL(L) for large L
is identified [Eq. (H.12)], which agrees with the estimated value µ obtained by the fit
[Eq. (3.108)] of the sum given in Eq. (3.107).

To summarize, in Fig. 3.5 (b), the values of α(L) obtained from u3MC simulations
and from analytic low–temperature expansion results for systems of size up to L = 1000
(N = 106 spins) are plotted. We find that −α(L→∞)→∞, and that consequently,
the Mermin–Wagner Theorem is respected. Indeed −α(L→∞)→∞, implies 〈Q2〉 →
0 for any T > 0. Additionally, we confirm from these results that, at q = 0, the
structure factors obtained from u3MC simulations and from analytic theory are in
perfect agreement, at low temperatures. Further details of this analysis can be found
in Appendix H.

3.4.3 Equal–Time Structure Factor

Finally, we investigate the low–temperature properties of correlations between magnetic
moments. We compare equal–time structure factors SCL

λ (q) obtained from the analyt-
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ical theory of thermal fluctuations [cf. Section 3.3.3 and Section 3.3.4 ] with results
SMC
λ (q) found in u3MC simulations [Eq. (2.124)] for the BBQ model HBBQ [Eq. (2.72)].

In Fig. 3.6, structure factors associated with dipole moments, SS(q), quadrupole mo-
ments SQ(q), and A–matrices, SA(q) obtained from analytic and numerical results are
plotted along the irreducible wedge Γ–K–M–Γ [cf. Appendix D].
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Figure 3.6: Results for equal–time structure factors SCL
λ (q) obtained from the ana-

lytical theory of thermal fluctuations (solid line) [cf. Section 3.3.3 and Section 3.3.4]
and compared with U(3) Monte Carlo (u3MC) simulations results [Eq. (2.124)] of
HBBQ [Eq. (2.72)], for parameters consistent with a ferroquadrupolar (FQ) ground
state [Eq. (3.87)] (a) Dipole structure factor, SCL

S (q) [Eq. (3.85)], exhibiting a spec-
tral weight peak around K, reflecting AFM correlations . (b) Quadrupole structure
factor, SCL

S (q) [Eq. (3.89)], showing divergence associated with fluctuations of FQ or-
der for q → Γ. (c) A–matrix structure factor, SCL

A (q) [Eq. (3.93)], which shows
behavior associated with both dipolar and quadrupolar fluctuations. In all cases, the
structure factors have been divided by temperature T , and agree perfectly with the
predictions of low–temperature analytic theory (line). All simulations were performed
by my collaborator Dr. Rico Pohle with parameters Eq. (3.87), for a cluster with linear
dimension L = 96 (N = 9216 spins), at T ≈ 0.03, using the u3MC scheme described
in Section 2.6.1. Figures are reproduced from [201].

Structure factors obtained from simulations have all been divided by temperature,
T . Considering SMC

λ (q)/T allows to extract their leading temperature dependence.
However, the Bragg peak will show up more pronounced due to the division by T.
In the case of the structure factors obtained analytically, SCL

λ (q), in order to only
account for the terms linear in temperature, we only consider SCL

λ (q 6= 0), This implies
that we voluntarily disregard the Bragg peak and contributions due to ground state
fluctuations. We then simply plot the terms linear in temperature. For instance, for
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the quadrupole structure factors given in Eq. (3.89), we consider

SQ(q 6= 0) =
1

T
8kBT

1

ω+
q

= 8kB
1

ω+
q
, (3.110)

where we set kB = 1.
In the FQ state, the Bragg peak and the contributions coming from ground state

fluctuations arise only for q = 0. Therefore, we only expect a discrepancy between
the simulations and the analytical results at the origin q = 0, due to the fact that in
simulations, the Bragg peak depends on the lattice sites, and only becomes a Bragg
peak in the thermodynamic limit N →∞, and obviously, because we simply neglected
q = 0 contribution for the analytical structure factor. Simulations were carried out for
parameters consistent with a FQ ground state [Eq. (3.87)], at a temperature T ≈ 0.03,
in a cluster of linear dimension L = 96 (N = 9216 spins).

Fig. 3.6 (a) shows results for the spin dipole equal–time structure factors SS(q)/T .
We note that at low temperatures u3MC simulations results (points) are perfectly de-
scribed by the low–temperature analytic prediction (solid line), given in Eq. (3.85).
Even though fluctuations of dipole moments are suppressed in the FQ ground state at
zero temperature, they take on a finite value at finite temperature, and contribute to a
finite weight of the spin dipole equal–time structure factors as shown in Fig. 3.6 (a). For
the structure factor associated with dipole moments, the perfect match between ana-
lytic and numeric results is due to the fact that no ground state fluctuations contribute
nor any Bragg peak arises at q = 0.

The broad peak in SS(q) for q = K, which corresponds to the 3–sublattice ordering
vector, is explained by the fact that due to the proximity of the FQ order with 3–
sublattice antiferromagnetic order (AFM) (cf. Fig. 1.11 or Fig. 1.13), some remnant
AFM correlations persists within the FQ phase at finite temperature, as discussed in
Appendix E.1.1.

The quadrupolar structure factor SQ(q)/T shows a divergence for q → 0 as illus-
trated in Fig. 3.6 (b). For the analytic results, this is simply due to the fact that
Eq. (3.110) shows a q–dependent contribution that diverges for q→ 0, since ω+

q=0 = 0.
This divergence is however canceled out exactly at q = 0 by the fluctuations coming
from the ground state [Eq. (3.89)], but they are not taken into account here. For the
simulation result, the divergence for q → 0 has the same origin as in the analytical
case. But at exactly q = 0, the divergence occurs because of the Bragg peak. It is
so pronounced that, for clarity reasons, the Bragg peak is not shown in Fig. 3.6 (b).
This way the emphasis is held on the q 6= 0 part of the spectrum. Once again, at low
temperatures , results for SQ(q)/T for u3Mc simulations (points) and prediction of the
low–temperature analytic theory, Eq. (3.110), (solid line), agree perfectly for q 6= 0.

Finally, in Fig. 3.6 (c), the structure factor for A–matrices SA(q) is shown. Because
it is sensitive to both quadrupolar and dipolar fluctuations, it exhibits both a diverging
contribution for q → 0, and a small peak at q = K. Once again, at low temperatures
and for q 6= 0, we find a perfect agreement between u3MC simulation results for
SA(q)/T (points) and analytic results obtained from the low–temperature expansion
of classical fluctuations, [Eq. (3.93)], (solid line).

From our study, we note that the analytical theory of thermal fluctuations and the
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u3MC scheme developed in Section 2.6.1, agree perfectly at q 6= 0. For q = 0, we
have shown, in our study of the ordered moment in Section 3.4.2, that the quadrupole
structure factors from u3MC simulation and analytic theory also demonstrate perfect
agreement at low temperatures. Combining these results for SCL

λ (q), we confirm that
our analytical theory of thermal fluctuations and the u3MC scheme developed in Sec-
tion 2.6.1, are able to correctly describe classical correlations of spin–1 magnets at low
temperature. As we will see in Chapter 5, these results will turn out to be important
when exploring the quantum–classical correspondence between the quantum dynamics
predicted by a quantum theory of bosonic excitations and the (semi–)classical dynamics
of u3MD simulation scheme introduced in Section 2.6.2.

Lastly, the same numerical approach based on the u3MC scheme [Section 2.6.1] can
be applied to different values of parameters J1 and J2 of the BBQ model [Eq. (2.72)].
This allows to characterize a classical finite temperature phase diagram of the BBQ
model on the triangular lattice as shown in Fig. 1.13. On the analytic side, I here
presented a detailed study of the classical thermodynamic properties of the FQ state.
Similar investigations for the three other ordered phases, (FM, AFM, and AFQ), are
also possible by following the same strategy as developed in this Chapter for the FQ
phase or following the general prescription detailed Section 2.5, but go beyond the
scope of this Thesis.



Chapter 4

Semi-Classical Dynamics of the FQ
State of the BBQ Model on the
Triangular Lattice

In this Chapter, I construct a quantum theory of fluctuations about the FQ order by
following the analysis of the u(3) formalism introduced in Section 2.5. To this end,
we use the results obtained from expanding small fluctuations around the FQ state in
Section 3.1.

In Section 4.1, I show how these fluctuations, introduced in Section 3.1, can be
quantized to lead to a quantum theory of fluctuations for the FQ state and that the
quantization reproduces results from multiple–Boson expansion exactly equivalent to
a published "flavor–wave" theory [131].

In Section 4.2, I provide explicit results for the dynamical structure factors associ-
ated with spin–dipole moments, quadrupole moments, and the A–matrices.

Finally, in Section 4.3, we compare the results predicted by the quantum theory of
fluctuations with u3MD simulations performed in the space of A–matrices as explained
in Section 2.6.2. We start by showing the "raw" u3MD results in Section 4.3 and em-
phasize its discrepancy with prediction from quantum theory [Section 4.2]. This is
resolved in the next Chapter, Chapter 5, where we dig deeper into the mechanisms of
MD simulations and obtain a classical–quantum correspondence that allows us to cor-
rect the u3MD simulations results, restoring a perfect agreement with T = 0 quantum
results.

4.1 Quantum Fluctuations
We start by showing how we can apply the formalism used to generate the fluctuations
around an ordered ground state [Section 2.5] to a quantum description of its excitations.
We will see that this can be achieved by requiring that the fluctuations satisfy bosonic
commutation relations. This step is explained here, where we use results obtained from
expanding fluctuations around the FQ ground state [Section 3.1].

In Section 3.1, we saw that we can fully describe the fluctuations about the FQ
order using the 4 generators Â1

2, Â3
2, Â2

1, Â2
3, which are related by Eq. (2.49),
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naturally forming conjugate pairs [Fig. 3.2]. As explained in Section 2.5, this implies
that fluctuations can be parameterized through two pairs of real fields (φ1,2, φ2,1), and
(φ2,3, φ3,2). In the quantum case, the fluctuations in each pair are related by Eq. (2.91).
And we can interpret each pair as a creation/annihilation pair, giving a total of two
bosons per site, as discussed in Section 2.5. Indeed, the low–energy dynamics for these
orthogonal excitations are identified with the Goldstone modes associated with the
symmetry breaking of the FQ ground state. The creation/annihilation pairs represent
then integer spin excitations about the ordered ground state and are therefore bosonic.

Consequently, we can simply impose the quantization of the fluctuations for each
pair through the bosonic commutation relations

[φ2,1
i , φ1,2

j ] = δij , (4.1a)

[φ2,3
i , φ3,2

j ] = δij . (4.1b)

Using Eq. (2.91) explicitly, and considering how these fluctuations are linked with the
image of the ground state after generating the fluctuations [Eq. (3.9)] each field φα,β is
associated with a creation or annihilation operator according to

φ1,2
i = (φ2,1

i )† = −iâ†i , (4.2a)

φ2,3
i = (φ3,2

i )† = ib̂i . (4.2b)

In this basis, the state given by Eq. (3.9) which describes the effect of the fluctuations
about the ground state vector dFQ [Eq. (3.1)]

di =




â†i
1− 1

2
â†i âi − 1

2
b̂†i b̂i

b̂†i


 , (4.3)

where we applied the arguments discussed at the end of Section 2.5, (i.e. Eq. (2.113)
but with the permutation of the basis states).

In terms of the quantized fluctuations, the A–matrix state, given by Eq. (3.10) and
describing the fluctuations about the state |yi〉 [Eq. (3.4)], can be written as

Âi =




â†i âi â†i â†i b̂i
âi 1− â†i âi − b̂†i b̂i b̂i

b̂†i âi b̂†i b̂†i b̂i


 , (4.4)

and up to quadratic order in bosons, the BBQ model, Eq. (2.72), then becomes

H′BBQ = E0 +
1

2

∑

k

[
ŵ†

kMkŵk

]
+O(~w4) , (4.5)

with

ŵ†
k =

(
â†k, â−k, b̂†k, b̂−k

)
, (4.6a)
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and

ŵk =




âk

â†−k
b̂k

b̂†−k


 , (4.6b)

where E0 is the MF ground–state energy [Eq. (3.14)]. The matrix Mk governing the
interactions of the fluctuations is the same as the one appearing in the classical theory
[Eq. (3.13)] and is given by Eq. (3.16). The reasoning behind this is discussed at the
end of Section 2.5.

The bosonic commutation relations [Eq. (4.2)], implies that
[
ŵkα, ŵ

†β
q
]

= γ0
β
α δk,q , (4.7)

where

γ0 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 . (4.8)

And, as explained in Appendix C, it follows that the dispersion associated with
these excitations can be found by solving the eigensystem

γ0Mkuk,λ = εk,λuk,λ λ = 1, 2, 3, 4 , (4.9)

with eigenvectors uλ,k, and associated eigenvalues given by εk,λ. Solving Eq. (4.9) is
equivalent to diagonalizing the matrix

γ0Mk =




Ak −Bk 0 0
Bk −Ak 0 0
0 0 Ak −Bk
0 0 Bk −Ak


 , (4.10)

where Ak, Bk are given in Eq. (3.17). Diagonalizing γ0Mk can be performed numerically
if needed. However, in our case, this is not necessary, and we can find an analytic
solution. The corresponding eigenvalues read

εk,1 = −εk,2 = εk,3 = −εk,4 = +
√
A2

k −B2
k , (4.11)

where we note that only the two solutions with positive energy, εk,1 and εk,3 correspond
to physical modes of the system. Indeed at zero temperature, negative modes solutions
are forbidden as they correspond to the creations operators and would be associated
with holes with energy lower than the ground state which are forbidden by construc-
tion. As expected, this implies that we have a total of two bosonic modes per site.
Details about the calculation of these eigenvalues and associated bosonic excitations are
provided in Appendix C, where we also explain that solving the quantum eigensystem,
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Eq. (4.9), is equivalent to performing a generalized Bogoliubov transformation. The
generalized Bogoliubov transformation consists in finding a new set of bosonic opera-
tors which diagonalize the Hamiltonian, Eq. (4.5), and allows for the correspondence
between the bosons, [Eq. (4.2)], and Bogoliubov bosons.

The eigenvectors of the quantum eigensystem [Eq. (4.9)] associated with the eigen-
values [Eq. (4.11)] are given by

ŵ†
k =

1√
∆2

k −B2
k




∆k −Bk 0 0
−Bk ∆k 0 0

0 0 ∆k −Bk
0 0 −Bk ∆k


 û†

k , (4.12)

where

ŵ†
k =




âk

â†−k
b̂k

b̂†−k


 ; û†

k =




α̂k

α̂†−k
β̂k

β̂†−k


 ; ∆k = Ak +

√
A2

k −B2
k . (4.13)

By construction, the new set of Bogoliubov operators follow bosonic commutation rules

[α̂k, α̂
†
k′ ] = [β̂k, β̂

†
k′ ] = δkk′ , (4.14)

and diagonalize the Hamiltonian Eq. (4.5). Indeed, in this new basis, the Hamiltonian
reads

H′BBQ = E0 + ∆E0 +
∑

k

ε(k)
[
α̂†kα̂k + β̂†kβ̂k

]
+ [higher order terms] , (4.15)

where

ε(k) = εk,1 = εk,3 =
√
A2

k −B2
k , (4.16)

and

∆E0 =
∑

k

Ak + ε(k) , (4.17)

represents the contribution of the Bogoliubov ground state energy and E0 is the MF
ground state energy given in Eq. (3.14). We emphasize that in this form, this result is
exactly equivalent to published results found using a multi-boson approach to the FQ
order for the BBQ model [131, 183].

4.1.1 Quantum Thermodynamic Quantities

In analogy to our classical analysis in Chapter 3, we give here the expression of the free
energy within the quantum theory of fluctuations. We consider the BBQ Hamiltonian
in terms of Bogoliubov bosons given in Eq. (4.15), since its diagonal form makes the
calculation much easier.
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The canonical partition function for a quantum system is defined

Z = Tr
[
e−βĤ

]
, (4.18)

where β is the inverse temperature given by Eq. (3.39), and Ĥ is the operator Hamil-
tonian.

For quantum excitations of a FQ state of the BBQ model, its corresponding parti-
tion function yields

ZQM
0 = Tr

[
e−βH

′
BBQ

]

= Tr

[
e−βE0−β∆E0

∏

k

e−βεk[α̂†kα̂k+β̂†kβ̂k]

]
. (4.19)

Because the bosons α̂†k and β̂†k follow bosonic commutation rules and commute between
each other, the trace can be evaluated onto the Fock spaces {|nα〉} and {|nβ〉} associated
with each Bogoliubov boson. We obtain

ZQM
0 =e−βE0−β∆E0

∏

k

1

1− e−βεk
1

1− e−βεk . (4.20)

The corresponding free energy is then given by

FQM
0 = − log(ZQM

0 )

β

= E0 + ∆E0 +
1

β

∑

k

log(1− e−βεk) +
1

β

∑

k

log(1− e−βεk) , (4.21)

where we keep the contributions coming from the different bosons in separate terms.
The energy is given by

EQM
0 = −∂ log(ZQM

0 )

∂β

= E0 + ∆E0 +
∑

k

εke
−βεk

1− e−βεk +
∑

k

εke
−βεk

1− e−βεk

= E0 + ∆E0 +
∑

k

εknBE(εk) +
∑

k

εknBE(εk) , (4.22)

where nBE(εk) is the Bose–Einstein distribution

nBE(εk) =
1

eβεk − 1
. (4.23)



112
Semi-Classical Dynamics of the FQ State of the BBQ Model on the

Triangular Lattice

At low temperature β � εk, we can approximate nBE(εk) ' e−βεk , and the energy by

EQM
0 ' E0 + ∆E0 +

∑

k

εke
−βεk +

∑

k

εke
−βεk

︸ ︷︷ ︸
very small

. (4.24)

We see that, at low temperature, the energy is given by the ground state, and the
fluctuations can contribute with εk but that only happens with a probability e−βεk

that becomes exponentially small temperature is decreased.
In the asymptotic high temperature limit of the quantum theory, β � εk, we can

Taylor expand the exponential eβεk , and approximate

nBE(εk) ' 1

βεk
(1 +O(βεk)) . (4.25)

We obtain

EQM
0 ' E0 + ∆E0 +

∑

k

εk
1

βεk
(1 +O(βεk)) +

∑

k

εk
1

βεk
(1 +O(βεk))

' E0 + ∆E0 +
∑

k

kBT +
∑

k

kBT +O(
εk
kBT

) (4.26)

' E0 + ∆E0 + 2NkBT , (4.27)

where we use the expression for the inverse temperature β given in Eq. (3.39). We see
that in the high temperature regime, for the quantum case, each fluctuation contributes
kBT to the energy per site, for a total of 2kBT , such that the energy of the contribution
of two quantum fluctuations tends to the low-T classical energy of the contribution
of the four classical fluctuations [Eq. (3.45b)]. The specific heat can be calculated
according to

Cv =

(
∂E0

∂T

)

V

, (4.28)

Using Eq. (4.22), we obtain,

Cv = 2
∑

k

εk
∂nBE(εk)

∂T

= 2
∑

k

kB(
εk
kBT

)2 eβεk

(eβεk − 1)2
, (4.29)

where we added up the contributions coming from the two quantum excitations. At
low temperature β � εk, we obtain

Cv ' 2
∑

k

kB(
εk
kBT

)2e−βεk . (4.30)

In order to calculate the leading order in temperature, we can then transform the
sum over the reciprocal vectors k of the triangular lattice as an integral according to
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Eq. (H.3) and separate in two a long wavelength, small k contribution and a short
wavelength, big k contribution. In the long wavelength part, we can further approx-
imate the dispersion relation εk ' vk, where v is the speed of the linearly dispersive
Goldstone modes, which approximation is valid in the limit of small k values. The
short wavelength is a contribution that vanishes exponentially for β � εk.

Cv ' 2 ∗
√

3

8π
2π

∫ Λ

0

k(
εk
kBT

)2kBe
−βεkdk + 2

∫ ∞

Λ

2πkkB(
εk
kBT

)2e−βεkdk

'
√

3

π

∫ Λ

0

kBk(
vk

kBT
)2e−βvkdk '

√
3

π2

∫ Λ

0

k2
BT

v
(
vk

kBT
)3e−βvkdk

'
√

3

π

k3
BT

2

v2

∫ ∞

0

x3e−xdx

︸ ︷︷ ︸
3Γ[3]

' 3
√

3Γ[3]

π
kB(

kBT

v
)2 . (4.31)

We see that the specific heat in the low–temperature expansion of the non–interacting
quantum theory shows a quadratic dependence with respect to temperature. This
behaviour can be explained in terms of the two linearly dispersive Goldstone modes
arising from the continuous symmetry breaking of the FQ state. This result is consistent
with an earlier derivation for the J1–J2 antiferromagnetic Heisenberg model on the
square lattice [217].

The quadratic term at low temperature is consistent with Quantum Monte Carlo
simulations obtained for the FQ state of the BBQ model [255]. Indeed fits to QMC
confirm the T 2 behaviour and provide a velocity v consistent with the analytical value
obtained here [Eq. (4.16)] or from multi–bosons theory [131]. We note that an inter-
action theory predicts an additional term scaling as T ln(T ) [19], but QMC might not
be able to go to low enough temperature to capture this behaviour.

In the high temperature limit, β � εk, the specific heat yields

Cv ' 2
∑

k

kB(
εk
kBT

)2 1 + βεk
(βεk)2

' 2
∑

k

kB(1 + βεk)

' 2
∑

k

kB +O(
εk
kBT

) , (4.32)

where we see that each quantum excitation contributes kB to the specific heat per site
for a total of 2kB, the quantum theory in the high temperature limit reproduces the
classical case in the limit T → 0 [Eq. (3.47)].

4.1.2 Comparison of Dispersion Relations Between Quantum
and Classical Theories of Fluctuations

In Fig. 4.1, we compare results obtained from a T = 0 quantum theory of fluctuations
about a ferroquadrupolar (FQ) ground state with its corresponding classical treatment
introduced in Section 3.2, where all the results have been convoluted with a Gaussian
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in frequency of FWHM = 0.35 J.
First, we observe that the dispersion relations between quantum and classical theo-

ries are completely different, implied by the fact that the dispersion relations correspond
to eigenvalues associated with different matrices. In the classical theory, we simply di-
agonalize the matrixMk given in Eq. (3.16). While in the quantum case, we diagonalize
the matrix γ0Mk given in Eq. (4.10), in order to ensure that the fluctuations follow
bosonic commutation rules [Eq. (4.7)].

0

5

10

15

20

(a) SQM
S (q, ω)

0

10

20

30

40

(b) SQM
Q (q, ω)

0

2

4

6

8

10

(c) SQM
A (q, ω)

0

1

2

3

4

(d) SCL
S (q, ω)

0

2

4

6

8

(e) SCL
Q (q, ω)

0

0.5

1.0

1.5

2.0

(f) SCL
A (q, ω)

Figure 4.1: Quantum excitations about a ferroquadrupolar (FQ) ground state of
the BBQ model [Eq. (2.72)] on the triangular lattice as resolved in quantum dy-
namical structure factors compared with equivalent results obtained from a classical
theory. (a) Dynamcial dipole structure factor SQM

S (q, ω) [Eq. (4.71)], within T = 0
quantum theory of Section 3.2. (b) Equivalent results for the quadrupole structure
factor, SQM

Q (q, ω) [Eq. (4.78)]. (c) Equivalent results for the A–matrix structure factor,
SQM

A (q, ω) [Eq. (4.86)]. (d) Spectral representation of dipole structure factor, SCL
S (q, ω)

[Eq. (3.86)], within the classical low–temperature expansion developed in Section 3.2,
at temperature T = J . (e) Equivalent result the for the quadrupole structure fac-
tor, SCL

Q (q, ω) [Eq. (3.91)]. (f) Equivalent results for the A–matrix structure factor,
SCL

A (q, ω) [Eq. (3.94)]. We also note that the quantum dispersion corresponds to the
geometrical mean of the two classical dispersions for dipolar and quadrupolar exci-
tations Eq. (4.33). All results are shown for parameters Eq. (3.87), and have been
convoluted with Gaussian of FWHM 0.35 J. Bragg peaks have been omitted for sim-
plicity. Details of the quantum theory are given in Section 4.1.

Additionally, in the classical case, we obtained two doubly-degenerate modes for
a total of four modes associated with the four real orthogonal fluctuations. How-
ever, in the quantum case, these four fluctuations are combined into two bosonic fields
through Eq. (2.91). When diagonalizing the matrix γ0Mk, we did obtain four eigenval-
ues [Eq. (4.11)], but only two of them corresponding to the creations operators were
physical, while the other two were non–physical and corresponded to negative ener-
gies associated with the annihilation operators. This led to a single doubly–degenerate
dispersion relation for a total of two quantum modes associated with the two bosonic
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fields. We also note that this results in the single doubly–degenerated quantum disper-
sion being expressed as the mean square to the two doubly-degenerate classical modes

εk =
√
ω+

k ω
−
k . (4.33)

This is consistent with the fluctuation–dissipation theorem which states that any
mode ω contributes 1

2
kBT log(ω) to the classical free energy. This can be seen by

considering the classical free energy given in Eq. (3.42).

F CL
0 = − log(Z0)

β

= E0 +
kBT

2

∑

k

Nλ∑

λ=1

[log(ωk,λ)− log(2πkBT )] +O(T 2) , (4.34)

where it is clear that all the four classical modes ωk,λ where λ = 1, 2, 3, 4 contribute
1
2
kBT log(ωk,λ). Considering the properties of the log function and Eq. (3.22), as well

as Eq. (4.33), we see that we can rewrite F CL as

F CL
0 ∼

kBT

2

∑

k

Nλ∑

λ=1

log(ωk,λ) =
kBT

2

∑

k

log((ω+
k ω
−
k )2)

=
kBT

2

∑

k

log((εk)(εk))

=
kBT

2

∑

k

[log(εk) + log(εk)] , (4.35)

where we see that each of the two quantum modes also contribute 1
2
kBT log(εk). Thus,

the four classical modes combine as two quantum modes such that the classical free
energy is given by the same final expression, regardless of whether we consider the four
classical modes or the two quantum ones.

The structure factors within the T = 0 quantum theory are derived in the next
Section, Section 4.2, and their comparison with equivalent results obtained within
classical theory is discussed later in Section 4.2.7.

4.2 Dynamical Structure Factors Within Zero–
Temperature Quantum Theory

We now turn to investigate the dynamical properties of the FQ phase of the BBQ model
[Eq. (1.48)]. For this, we calculate the dynamical structure factors which characterize
the excitations about the FQ order. Dynamical structure factors are defined by

SQM
O (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

α,β

〈Ôα
q,β(t)Ôβ

−q,α(0)〉 , (4.36)
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where

Ôα
q,β =

1√
N
Ôα
i,βe

iqri , (4.37)

and the operator Ôα
β can describe dipole moments, Ŝµ; quadrupole moments, Q̂µν ; or

u(3) A-matrices, Âµν .
In analogy with Section 3.3.3, we divide the computation of the dynamical structure

factors into two parts. Both of these approaches are generalized in such a way that we
can use them to calculate structure factors for dipole moments, quadrupole moments,
and A-matrices.

We divide the structure factors according to two different contributions to the
structure factors: the dynamics of the excitations and the contribution of the ground
state and zero–point energy

SQM
O (q, ω) = SEX

O (q, ω) + SGS
O (q = 0)δ(ω) , (4.38)

where SEX
O (q, ω) represents the dynamical structure factors associated with the bosonic

excitations and SGS
O (q = 0)δ(ω) accounts for the static contribution of the ground state

and zero–point energy of the Bogoliubov excitations.
Accordingly, in Section 4.2.1, we derive a generalized form of the dynamical struc-

ture factors SEX
O (q, ω) at finite energy (ω > 0) and for arbitrary values of reciprocal

lattice vectors q. This is obtained by direct calculations of matrix elements within the
FQ ground state, assuming transition to the basis of the 1st excited states which are
described by our bosons. We also compute static structure factors SGS

O (q = 0)δ(ω)
(ω = 0 and q = 0) which are calculated through functional derivatives of the free en-
ergy, as explained in detail in Section 4.2.2. These encompass the contributions from
the ground state and zero–point energy.

In the remaining part of the section, we show explicit computations at T = 0 specif-
ically for the structure factors associated with dipole moments, quadrupole moments,
and A-matrices, by using the results obtained in Section 4.2.1 and in Section 4.2.2.
Subsequently, we will use these for the derivation of the relationship between quantum
and classical results [Section 5.1] and for comparison with numerics [Section 3.4].

4.2.1 Quantum Structure Factors at General Values of q

Here, we derive how to calculate the structure factor SEX
O (q, ω) at finite energy for an

observable Ôα
q,β. The definition of the structure factor is given by Eq. (4.36) and its

components by

SQM
O (q, ω)αµβν =

∫ ∞

−∞

dt

2π
eiωt〈Ôα

q,β(t)Ôµ
−q,ν(0)〉 , (4.39)

where in our case, the averages 〈Ôα
q,β(t)Ôµ

−q,ν(0)〉 are taken on the ground state. We
can rewrite the time dependency of Ôα

q,β(t) in the Heisenberg picture using the time
evolution operator, and we obtain

Ôα
q,β(t) = e

iĤt
~ Ôα

q,β(0)e
−iĤt

~ . (4.40)
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For a complete basis {|ν〉} of Hilbert space, the closure relation holds
∑

ν

|ν〉〈ν| = 1 . (4.41)

Using Eq. (4.40) and inserting the closure relation, Eq. (4.41), in Eq. (4.39) twice
and considering only finite energy contribution, we obtain

SEX
O

αµ

βµ(q, ω) =

∫ ∞

−∞

dt

2π
eiωt〈e iĤt~

∑

ν

|ν〉〈ν|Ôα
q,β(0)

∑

µ

|µ〉〈µ|e−iĤt~ Ôµ
−q,ν(0)〉

=
∑

µ

〈0|Ôα
q,β(0)|µ〉〈µ|Ôµ

−q,ν(0)|0〉δ(ω − εµ) , (4.42)

where we assume that |ν〉 is an eigenstate of the Hamiltonian of energy Eν = ~εν and
where we have used

e
iĤt
~ |ν〉 =

∞∑

n=0

(iĤt)n
n
|ν〉 =

∞∑

n=0

(iEνt)
n

n
|ν〉

= e
iEνt
~ |ν〉 = eiενt|ν〉 . (4.43)

In order to compute Eq. (4.42), we first note that, in our case, the excited states
for all values of k

|αk〉 = α̂†k|0α〉 , (4.44)

|βk〉 = β̂†k|0β〉 , (4.45)

form a complete basis, where |0α〉 is the Bogoliubov ground state for the α̂ bosons,
i.e., α̂k|0α〉 = 0, and similarly for the β̂ bosons. Since the Hilbert space consists of the
direct product |α〉 ⊕ |β〉, we can replace

∑

µ

|µ〉〈µ| →
∑

k

α̂†k|0α〉〈0α|α̂k +
∑

k

β̂†k|0β〉〈0β|β̂k = 1 (4.46)

in Eq. (4.42). We note that by replacing Eq. (4.41) by Eq. (4.46) in Eq. (4.42), we
account for the 1st excited states, and we therefore do not take into account the ground
state and zero-point energy contribution to the structure factor. The ground state and
zero-point energy only contribute at q = 0 and ω = 0. This is why it is expressed
by a separate term SGS

O (q = 0, ω) in Eq. (4.38). We present how to calculate it in
Section 4.2.2 below.

Finally, in order to compute Eq. (4.42), we need to express the operators Ôα
q,β in

terms of the Bogoliubov bosons using Eq. (4.12). Then by inserting Eq. (4.46) in
Eq. (4.42), the matrix elements are easily computed.
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4.2.2 Quantum Structure Factors: Contribution of the Ground
State at q = 0

Here we present the zero-temperature correction to the ground state and the zero-point
energy fluctuations’ contribution to the quantum structure factors, which is expected
to happen at q = 0 and ω = 0

SGS
O (q = 0)δ(ω) . (4.47)

We, therefore, consider the zero–temperature quantum structure factor at q = 0 to
be given by

SGS
O (q = 0) =

∑

αβ

〈Ôα
q=0,βÔ

β
q=0,α〉T=0

. (4.48)

Calculating the contribution of the ground state and the zero-point energy fluctua-
tions to the zero–temperature quantum structure factor can be achieved by adding a
source term to the BBQ Hamiltonian that includes a fictitious field h coupled to the
spin moments, similarly to what we did for the classical case [see Section 3.3.3 and
Section 3.3.4]. The structure factors can then be calculated by taking the appropriate
derivative of the free energy with respect to the field h.

We consider the total Hamiltonian to be given by Eq. (3.51), and the source term to
be of the form given in Eq. (3.52). We can then rewrite the operators Ôα

qβ of Eq. (3.52)
as a function of the fluctuations orthogonal to the FQ ground state [Eq. (3.2)]. Sec-
tion 3.1 provides details on the creation of orthogonal fluctuations. Expanding the
source term Hamiltonian [Eq. (3.52)] up to second order in bosons, Fourier transform-
ing it and considering its contribution for q = 0, we can assume that it takes the
following form :

∆H[hq] =C[hq=0] +
1

2

∑

k

[
ŵ†

kmk[hq=0]ŵk +
(
N[hk]T ŵk + ŵ†

kN[hk]
)
δk,0

]
, (4.49)

where C[hq=0] is the coefficient for the zeroth order term of the source term expanded
in terms of the fluctuations orthogonal to the FQ ground state, ŵk represents these
fluctuations orthogonal to the FQ ground state and is given Eq. (4.6b), mk[hq=0] rep-
resents the interaction matrix for second order terms in fluctuations and depends on
hq=0, and where N[hk]† and N[hk] are the coefficients for the linear terms in fluctu-
ations. By definition of the source term Hamiltonian [Eq. (3.52)], all the coefficients
C[hq=0], N1[hk]T , N2[hk], and mk[hq=0] depend linearly on the fictitious field h and
will be different when considering a dipole, quadrupole, or A-matrix moment as the
source term [Eq. (3.52)].

Using Eq. (4.5) for the BBQ Hamiltonian, we can assume that the total Hamiltonian
[Eq. (3.51)] in terms of the bosons then takes the following form

H =E0 + C[hq=0] +
1

2

∑

k

[
ŵ†

kMk[hq=0]ŵk +
(
N[hk]†ŵk + ŵ†

kN[hk]
)
δk,0

]
, (4.50)

where E0 is the mean-field ground–state given in Eq. (3.14), and whereMk[hq=0] is the
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interaction matrix for the total Hamiltonian. It includes contributions from the BBQ
Hamiltonian and the source term mk[hq=0], and, therefore, depends on hq=0.

Following the method described in Appendix C , we perform a Bogoliubov trans-
formation in order to diagonalize the total Hamiltonian. We assume that the new
Bogoliubov bosons v̂k,

v̂k =




α̂k

α̂†−k
β̂k

β̂†−k


 , (4.51)

are given in terms of the bosons orthogonal to the FQ ground state ŵk by Eq. (C.2).
We can then assume that the total Hamiltonian in terms of the Bogoliubov bosons v̂k
becomes

H =E0 + ∆E0[hq=0] + C[hq=0]

+
1

2

∑

k

[
εk,α[hq=0]α̂†kα̂k + εk,β[hq=0]β̂†kβ̂k +

(
Ñ[hk]†v̂k + v̂†

kÑ[hk]
)
δk,0

]
,

(4.52)

where εk,α[hq=0] and εk,β[hq=0] are the two physical eigenvalues obtained by diagonal-
izingMk[hq=0] [see Eq. (C.6)], where ∆E0[hq=0] is the ground state contribution of the
Bogoluibov bosons and where

Ñ[hk]† = N[hk]†U−1 ,

Ñ[hk] = U †
−1N[hk] .

(4.53)

Here, U is the Bogoliubov matrix change defined by Eq. (C.2) and remains to be
determined. We also note that U−1 (and U †−1) can be calculated from Eq. (C.3).

The canonical partition function is defined according to Eq. (4.18). However in
order to compute the partition function and the free energy, we want to get rid of the
linear terms Ñ[hk]† and Ñ[hk], which only contribute for k = 0. The partition function
[Eq. (4.18)] is then the one of a set of independent harmonic oscillators for the k 6= 0
terms, but still contains linear terms with respect to the bosons for k = 0:

Z =Tr
[
e−βE0−β∆E0[hq=0]−βC[hq=0]

×
∏

k 6=0

(e−βεk,α[hq=0]α̂†kα̂k)(eβεk,β [hq=0]β̂†kβ̂k)

× (e−
1
2
βεk=0,α[hq=0]α̂†k=0α̂k=0− 1

2
βn1[hk=0]α̂†k=0−

1
2
βn2[hk=0]α̂k=0)

×(e−
1
2
βεk=0,β [hq=0]β̂†k=0β̂k=0− 1

2
βn3[hk=0]β̂†k=0−

1
2
βn4[hk=0]β̂k=0)

]
, (4.54)

where
n1[hk=0] = Ñ [h−k=0]†,2 + Ñ [hk=0]1 ,

n2[hk=0] = Ñ [hk=0]†,1 + Ñ [h−k=0]2 ,

n3[hk=0] = Ñ [h−k=0]†,4 + Ñ [hk=0]3 ,

n4[hk=0] = Ñ [hk=0]†,3 + Ñ [h−k=0]4 ,

(4.55)
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with Ñ[hk]†,1 denoting the first component of Ñ[hk]†. To do this, we note that we can
perform a change of variables by completing the square. For the k = 0 term, for the
α̂†k, α̂k bosons for instance, we have

−1

2
βε0,α[hq=0]α̂†0α̂0 −

1

2
βn1[hk=0]α̂†0 −

1

2
βn2[hk=0]α̂0 =

− 1

2
βε0,α[hq=0](α̂†0 +

n1[hk=0]

ε0,α[hq=0]
)(α̂0 +

n2[hk=0]

ε0,α[hq=0]
)

+ β
n1[hk=0]n2[hk=0]

ε0,α[hq=0]
. (4.56)

We note that we have
n1[hk=0] = n2[hk=0]† , (4.57)

so that we can define the change of variables

ρ̂†k=0 = α̂†k=0 + n1[hk=0]
εk=0,α[hq=0]

,

ρ̂k=0 = α̂k=0 + n2[hk=0]
εk=0,α[hq=0]

,
(4.58)

which ensures that ρ̂†k=0 and ρ̂k=0 have bosonic commutation relations and are associ-
ated with the eigenmode εk=0,α[hq=0]. We follow the same argument for the β̂†k=0, β̂k=0

bosons, and get new bosons σ̂†k=0 and σ̂k=0:

σ̂†k=0 = β̂†k=0 + n3[hk=0]
εk=0,β [hq=0]

,

σ̂k=0 = β̂k=0 + n4[hk=0]
εk=0,β [hq=0]

,
(4.59)

associated with the eigenmode εk=0,β[hq=0]. The partition function is then the one of
a set of independent harmonic oscillators. We obtain

Z =Tr
[
e−βE0−β∆E0[hq=0]−βC[hq=0]

(∏

k 6=0

(e−βεk,α[hq=0]α̂†kα̂k)(e−βεk,β [hq=0]β̂†kβ̂k)

)

× (e−βεk=0,α[hq=0]ρ̂†kρ̂k)(e−βεk=0,β [hq=0]σ̂†kσ̂k) e
β
n1[hk=0]n2[hk=0]

εk=0,α[hq=0] e
β
n3[hk=0]n4[hk=0]

εk=0,α[hq=0]

]
. (4.60)

We then perform the trace on the Fock space, and use the fact that the trace is
independent of the choice of the basis. This means we can compute it separately
for the α̂†k bosons on their respective Fock basis |nαk〉 and for the ρ̂†k=0 bosons on its
respective Fock basis |nρk=0〉, and similarly for β̂†k and σ̂†k=0. Taking the trace over the
Fock space as explained above, we obtain

Z =e−βE0−β∆E0[hq=0]−βC[hq=0]

×
∏

k

1

1− e−βεk,α[hq=0]

1

1− e−βεk,α[hq=0]

× eβ
n1[hk=0]n2[hk=0]

εk,α[hq=0] e
β
n3[hk=0]n4[hk=0]

εk,α[hq=0] . (4.61)
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The free energy is given by

F = − log(Z)

β

= E0 + ∆E0[hq=0] + C[hq=0]

+
1

β

∑

k

log(1− e−βεk,α[hq=0]) +
1

β

∑

k

log(1− e−βεk,β [hq=0])

− 2
n1[hk=0]n2[hk=0]

εk,α[hq=0]
− 2

n3[hk=0]n4[hk=0]

εk,α[hq=0]
+O(T 2) . (4.62)

The moments are given by taking the appropriate derivative of the free energy. They
are given by the same expression that we obtained for the classical case expressed in
Eq. (3.80) and Eq. (3.81). We now note that we are interested in the zero temperature
T = 0 structure factor, and we can disregard the terms with 1

β
in the free energy.

Eq. (3.80) then becomes

〈Ôα
q=0,β〉T=0

= − ∂ [∆E0[hq=0] + C[hq=0]]

∂hαq=0,β

∣∣∣∣∣
h=0

+ 2
∂
[
n1[hk=0]n2[hk=0]

εk,α[hq=0]
+ n3[hk=0]n4[hk=0]

εk,α[hq=0]

]

∂hαq=0,β

∣∣∣∣∣∣
h=0

. (4.63)

We also note that the terms with n1[hk=0]n2[hk=0] and n3[hk=0]n4[hk=0] are at least
quadratic (if not of higher order, depending on εk[hq=0]) in the field components hq=0,
as any of the ni=1,2,3,4 is independently linear in h−k=0 by definition. Therefore taking
the first derivative of the terms with n1[hk=0]n2[hk=0] and n3[hk=0]n4[hk=0] and evalu-
ating them at zero field will inevitably lead to a null contribution. We then are simply
left with

〈Ôα
q=0,β〉T=0

= − ∂∆E0[hq=0] + C[hq=0]

∂hαq=0,β

∣∣∣∣∣
h=0

. (4.64)

The second moments are given by Eq. (3.80) and disregarding again the term with 1
β
,

it simply becomes

〈Ôα
q=0,βÔ

µ
q=0,ν〉T=0

= 〈Ôα
q=0,β〉T=0

〈Ôµ
q=0,ν〉T=0

.

(4.65)

We can insert Eq. (4.65) into Eq. (4.48) to calculate the ground state contribution
to the quantum structure factor. Therefore all we need to do is find the 0th order
contribution of the source term, i.e., find C[hq=0], and compute the zero–point energy
of the Bogoliubov transformation ∆E0[hq=0].
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4.2.3 Dynamical Structure Factor for Dipole Moments

First, we consider the dynamical spin structure factor associated with the dipole mo-
ments

SQM
S (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µ

〈Ŝµq(t)Ŝµ−q(0)〉 . (4.66)

Following the procedure described in Section 4.2, we substitute Eq. (4.4) in the
expression for spin dipole operators, Eq. (1.67). Keeping terms to linear order in the
original bosons, we find

Ŝxi ' i(b̂†i − b̂i) , (4.67a)

Ŝyi ' 0 , (4.67b)

Ŝzi ' −i(â†i − âi) . (4.67c)

Then, we perform a Fourier transform and express the spin dipole operators in terms
of the Bogoliubov bosons using Eq. (4.12). We obtain

Ŝxq ' iξS(q)(β̂†−q − β̂q) , (4.68a)

Ŝyq ' 0 , (4.68b)

Ŝzq ' −iξS(q)(α̂†−q − α̂q) , (4.68c)

where ξS(q) is the coherence factor defined as

ξS(q) =
∆q +Bq√
∆2

q −B2
q
, (4.69)

where Bq and ∆q are defined through Eq. (3.17) and Eq. (4.13).
We anticipate all the static averages of dipole moments to vanish, since FQ order

does not break time–reversal symmetry, i.e

SGS
S (q = 0, ω) = 0 . (4.70)

This is also explicitly calculated following Section 4.2.1 in Appendix I.2. Therefore all
contributions to SQM

S (q, ω) come from the excitations SEX
S (q, ω). We find

SQM
S (q, ω) = 2ξS(q)2δ(ω − ε(q)) (4.71a)

= 2

√
Aq +Bq√
Aq −Bq

δ(ω − ε(q)) , (4.71b)

where we used Eq. (4.69) and Eq. (4.13) in the last line. This result is shown in
Fig. 4.1 (d).
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The associated equal–time structure factor is given by

SQM
S (q) =

∫
dω SQM

S (q, ω)

= 2ξS(q)2 (4.72a)

= 2

√
Aq +Bq√
Aq −Bq

, (4.72b)

where ξS(q) given by Eq. (4.69), and Bq and Aq are defined through Eq. (3.17).
Details of these calculation are given in Appendix I.1 and in Appendix I.2 for q = 0.

4.2.4 Dynamical Structure Factor for Quadrupole Moments

Here we calculate the dynamical quadrupole structure factor

SQM
Q (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µν

〈Q̂µν
q (t)Q̂µν

−q(0)〉 . (4.73)

Following the same steps as for the spin dipole structure factor, we express the quadrupole
tensor in terms of the original fluctuations up to linear order by using Eq. (1.68) and
Eq. (4.4). We find

Q̂i
∼=




2
3

−â†i − âi 0

−â†i − âi −4
3

−b̂†i − b̂i
0 −b̂†i − b̂i

2
3


 . (4.74)

After Fourier transform, transcribing in terms of the Bogoliubov bosons [Eq. (4.12)],
the quadrupole tensor in Eq. (4.74) yields

Q̂q
∼=




2
3

√
Nδ(q) ξQ(q)(α̂†−q + α̂q) 0

ξQ(q)(α̂†−q + α̂q) −4
3

√
Nδ(q) ξQ(q)(β̂†−q + β̂q)

0 ξQ(q)(β̂†−q + β̂q) 2
3

√
Nδ(q)


 , (4.75)

where N is the number of sites, and ξQ(q) is the coherence factor for quadrupole
moments defined as

ξQ(q) =
Bq −∆q√
∆2

q −B2
q
. (4.76)

From Eq. (4.75), it is clear that the quadrupole moments at q = 0 take on a finite
value in a FQ state. For convenience, we rescaled the coherence factor as

ξ̃Q(q) =
√

2ξQ(q) . (4.77)

Both the ground state and excitations contribute to the structure factor SQM
Q (q, ω),
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and we find

SQM
Q (q, ω) =

8

3
N(1−∆QM)δ(q)δ(ω) + 4ξQ(q)2δ(ω − ε(q)) (4.78a)

=
8

3
N(1−∆QM)δ(q)δ(ω) + 2ξ̃Q(q)

2
δ(ω − ε(q)) (4.78b)

=
8

3
N(1−∆QM)δ(q)δ(ω) + 4

√
Aq −Bq√
Aq +Bq

δ(ω − ε(q)) , (4.78c)

where we have used Eq. (4.76) and Eq. (4.13) in the last line, and where ∆QM is given
by

∆QM =
3

N

∑

k

Ak√
A2

k −B2
k

. (4.79)

The result obtained in Eq. (4.78) is shown in Fig. 4.1 (e), where the Bragg peak at
q = Γ is suppressed for simplicity.

The corresponding equal–time structure factor yields

SQM
Q (q) =

8

3
N(1−∆QM)δ(q) + 4

√
Aq −Bq√
Aq +Bq

, (4.80)

where Bq and Aq are defined through Eq. (3.17).
We provide details of these calculations in Appendix I.3 and in Appendix I.4 for

q = 0.

4.2.5 Dynamical Spin Structure Factor for A–Matrices

We now consider the structure factors associated with the A–matrices. Within our
formalism, the quantum state of the spin–1 moment is fully encapsulated by the A–
matrix, and describing its corresponding structure factor is therefore useful

SQM
A (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µν

〈Âµν(t)Âνµ(0)〉 . (4.81)

Indeed this structure factor compasses all dynamics at the level of a two–point correla-
tion function, and any other quantity can be computed by taking the appropriate index
contractions. Up to linear order in terms of the fluctuations, Eq. (4.4) is rewritten as

Âi
∼=




0 â†i 0

âi 1 b̂i
0 b̂†i 0


 . (4.82)
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After Fourier transforming, and transcribing into the Bogoliubov basis [Eq. (4.12)], we
find

Âq ∼=




0 ξ−A (q)α̂†−q − ξ+
A (q)α̂q 0

−ξ+
A (q)α̂†−q + ξ−A (q)α̂q

√
Nδq,0 −ξ+

A (q)β̂†−q + ξ−A (q)β̂q

0 ξ−A (q)β̂†−q − ξ+
A (q)β̂q 0


 , (4.83)

where N is the number of sites, and ξ+
A (q) and ξ−A (q) are the coherence factors for

A–matrices given by

ξ+
A (q) =

ξS(q) + ξQ(q)

2
, (4.84a)

ξ−A (q) =
ξS(q)− ξQ(q)

2
, (4.84b)

where ξS(q) and ξQ(q) are defined through Eq. (4.69) and Eq. (4.76) respectively. For
convenience, we also define a total coherence factor for A–matrices given by

ξ̃A(q) =

√
ξ+
A (q)

2
+ ξ−A (q)

2
. (4.85)

Like the structure factor for quadrupole moments, the A–matrices structure factor
contains contributions from the ground state as well as the excitations. We obtain

SQM
A (q, ω) =N(1− 2

3
∆QM)δ(q)δ(ω) + 2(ξ+

A (q)
2

+ ξ−A (q)
2
)δ(ω − ε(q)) (4.86a)

=N(1− 2

3
∆QM)δ(q)δ(ω) + 2ξ̃A(q)2δ(ω − ε(q)) (4.86b)

=N(1− 2

3
∆QM)δ(q)δ(ω) + (ξS(q)2 + ξQ(q)2)δ(ω − ε(q)) (4.86c)

=N(1− 2

3
∆QM)δ(q)δ(ω) + (ξS(q)2 +

1

2
ξ̃Q(q)

2
)δ(ω − ε(q)) (4.86d)

=N(1− 2

3
∆QM)δ(q)δ(ω) + 2

Aq√
A2

q −B2
q
δ(ω − ε(q)) , (4.86e)

where we used Eq. (4.84) in the second line and Eq. (4.76), Eq. (4.69) and Eq. (4.13) in
the last line, and where ∆QM is defined in Eq. (4.79). This result is shown in Fig. 4.1 (f),
where again we suppressed the Bragg peak at q = Γ, for simplicity.

The equal–time structure factor is given by

SQM
A (q) =N(1− 2

3
∆QM)δ(q) + 2

Aq√
A2

q −B2
q
, (4.87)

where Bq and Aq are defined through Eq. (3.17).
Details of these calculations can be found in and Appendix I.5 and in Appendix I.6

for q = 0.
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4.2.6 Sum Rule on Quantum Structure Factors

Like the sum rule for equal–time structure factors, Eq. (3.96), the sum rule on the
moments, Eq. (2.67), implies that the quantum (semi–classical) dynamical structure
factors must satisfy a sum rule of the same form, namely

SA(q, ω) =
1

4
SQ(q, ω) +

1

2
SS(q, ω) +

1

3
Nδ(ω) . (4.88)

We confirm by direct substitution of the quantum results at T = 0 for SQM
S (q, ω)

[Eq. (4.72b)], SQM
Q (q, ω) [Eq. (4.80)] and SQM

A (q, ω) [Eq. (4.87)], into Eq. (4.88), that the
sum rule is satisfied for q 6= 0. This is easily seen by using the expressions that include
the coherence factors. We also note that it is satisfied for q = 0 by construction,
since we used the sum rule to predict the quantum structure factor associated with
the A–matrices, as explained in Section I.6. It is also useful to verify that the sum
rule is visually satisfied, by directly looking at the spectral weight of the structure
factors. This is simply done by multiplying the intensities with the correct prefactor
according to the sum rule, and then "adding up" the intensities of the dipole moments
[Fig. 4.1 (a)] and quadrupole moments [Fig. 4.1 (b)] to compare with the intensity for
A–matrices [Fig. 4.1 (c)].

4.2.7 Comparison of Structure Factors Between Quantum and
Classical Theories of Fluctuations

In Fig. 4.1, we compare results obtained from the quantum theory of fluctuations
about a Ferroquadrupolar (FQ) ground state with its classical treatment. For clarity
and aestheticism, all the results have been convoluted with a Gaussian in frequency of
FWHM = 0.35 J. As discussed in Section 4.1.2, we observe that the dispersion relations
are completely different, implied by the fact that the eigenvalues are associated with
different matrices. Indeed, in the quantum case, we need to ensure that the fluctuations
follow bosonic commutation rules.

In the classical case, we obtain two different modes, which are each two–fold de-
generate, for a total of four modes. One of the modes is associated with the dipo-
lar excitations v2 and v4 [Eq. (3.36)] and contribute to the dipolar channel. These
excitations are gapped and form a dispersive band with intensities forming a broad
peak centered around q = K. The other mode is characterized by the excitations v1

and v3 [Eq. (3.35)] which are of quadrupolar nature and therefore contributes to the
quadrupole structure factor. The quadrupolar excitations are gapless and induce a
spectral weight which is concentrated at q = Γ. Since the A–matrix encompasses both
dipolar and quadrupolar moments[Eq. (3.34)], its structure factor is sensitive to both
types of fluctuations. The spectral weights from dipole and quadrupole moments add
up according to the sum rule [Eq. (4.88)] to produce the intensities for the A–matrices.

Meanwhile, in the quantum case, we have one doubly–degenerate mode. These two
modes are the Goldstone modes associated with the continuous symmetry breaking
of the FQ ground state. They describe the dispersion relations of the orthogonal
quantum excitations α̂†q and β̂†q. Unlike the classical case, both these excitations enter
dipoles and quadrupoles moments as can be seen from Eq. (4.68) and Eq. (4.75) as
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well as the A-matrix [Eq. (4.83)]. The difference lies in the prefactor to which they
are associated within the different expressions. This prefactor is determined by the
coherence factor ξλ(q) which controls the intensity of the quantum structure factors
[Eq. (4.71),Eq. (4.78),Eq. (4.86)].

We note that the intensities of dipole structure factors are stronger at the top of the
band and concentrated around q = K, similarly to the classical dipolar intensities. The
quadrupole structure factors are highly localized around q = Γ, where the Goldstone
modes emanate. And again, the A–matrices sum up both dipolar and quadrupolar
weights. These features can be explained by remembering that the original fluctuations
correspond to creating/annihilation of a boson along the x– or z– directions in the time–
reversal invariant basis [Eq. (2.32)]. This is made obvious in Eq. (4.3). Therefore they
are quadrupolar in nature, and, there is no reason why a fluctuation along the x–axis
should behave differently from one along the z–axis. Additionally, they do not mix
through the interactions of the BBQ Hamiltonian and therefore the two Bogoliubov
excitations α̂†q and β̂†q that diagonalize the BBQ Hamiltonian can independently be
expressed in terms of only one single original fluctuation. Therefore, the Bogoliubov
excitation α̂†q is associated with fluctuations along the x–axis and β̂†q with fluctuations
along the z–axis. They are independent and follow the same dynamics, hence, the
doubly–degenerate dispersion relation.

We conclude by observing that the classical and quantum fluctuations follow differ-
ent dispersion rules. They are associated with classical and quantum structure factors
whose spectral weights seem to take on value at different orders of magnitude. How-
ever, the qualitative dependence of their spectral intensities with respect to momentum
space seems consistent between classical and quantum theories, besides an important
quantitative disagreement.

These analytical quantum results are also compared with u3MD simulations in
Section 4.3.

4.3 Comparison with "Raw" u(3) Molecular Dynam-
ics

In this section, we complete our analysis of the excitations of the FQ phase of the
spin–1 BBQ model by studying the dynamic properties found in the U(3) Molecular
Dynamics (u3MD) scheme developed in Section 2.6.2.

We present "raw" simulation results for dynamical structure factors obtained by
numerical integration of the equations of motion expressed in our u(3) framework.
We find that these correctly portray the dispersion of the excitations in the limit
T → 0, but do not properly describe their spectral intensities. More specifically, by
comparing u3MD simulation results with analytical zero–temperature quantum results
for structure factors associated with dipole moments, quadrupole moments, and A–
matrices, we show that u3MD simulation results reproduce the dispersion predicted
by the zero–temperature quantum theory [Section 4.1], but that its spectral weights of
the structure factors disagree with the analytical predictions. Nevertheless, as we will
see in the next chapter, Chapter 5, this disagreement can be accounted for in the limit
T → 0.
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In Fig. 4.2, we present "raw" u3MD simulation results obtained through numerical
integration of the equations of motion as described in Section 2.6.2. T = 0 quan-
tum results obtained within our expansion of fluctuation framework [Section 4.2] are
shown for comparison. We show results for the dynamical structure factors SMD

λ (q, ω)
[Eq. (E.16)] for dipole moments (λ = S), quadrupole moments (λ = Q), and A–matrices
(λ = A). Results are plotted for our usual path in reciprocal space, given along the
irreducible wedge Γ–K–M–Γ [cf. Appendix D]. For clarity, all the results shown in
Fig. 4.2 have been convoluted with a Gaussian of FWHM = 0.35 J .
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Figure 4.2: Comparison between "raw" results of u(3) Molecular Dynamics (u3MD)
simulations of excitations about the FQ state and the predictions of a T = 0 quantum
analytical theory. "Raw" simulation results offer a good account of the dispersions
of the excitations, but not of their spectral intensities. (a) Dynamical structure fac-
tor associated with dipole moments, SMD

S (q, ω). Dipolar fluctuations exhibit relatively
high spectral weight near the top of the band, where excitations have more of a spin–
wave character. (b) Dynamical structure factor associated with quadrupole moments,
SMD

Q (q, ω). (c) Dynamical structure factor associated with A–matrices, SMD
A (q, ω).

(d) Prediction for SQM
S (q, ω) from T = 0 quantum theory [Eq. (4.71)]. (e) Equiva-

lent prediction for SQM
Q (q, ω) [Eq. (4.78)]. (f) Equivalent prediction for SQM

A (q, ω)
[Eq. (4.86)]. Simulations were carried out by my collaborator Dr. Rico Pohle, using
the u3MD simulation scheme described in Section 2.6.2, for HBBQ [Eq. (2.72)] with
parameters Eq. (3.87), at a temperature T = 0.05 J , in a cluster of linear dimension
L = 96 (N = 9216 spins). T = 0 quantum analytical predictions have been calculated
using the quantum theory of fluctuations developed in Section 4.2. All the results have
been convoluted with a Gaussian envelope of FWHM = 0.35 J. Bragg peaks are not
plotted for simplicity. The individual panels are reproduced from [201].

Compared with the predictions of the zero–temperature quantum theory, SQM
λ (q, ω),

we see that u3MD correctly reproduces a dispersing band of excitations, similar to the
quantum modes obtained analytically. The intensities from u3MD structure factor
results also show a predominant quadrupolar nature for ω → 0, and a predominant
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dipolar character at the top of the band. However, a careful examination reveals small
discrepancies in the energy of excitations, and important differences in the distribution
of spectral weight across the band. For instance, analytic quantum results for the
dipole dynamical structure factors [Fig. 4.2 (d), Eq. (4.71)], are predicted to show a
characteristic linear loss of spectral weight at low energies [229]

SQM
S (q→ 0, ω) = 2

ωq→0

Aq→0 −Bq→0

δ(ω − ωq→0) ∝ ω × δ(ω − v|q|) . (4.89)

Meanwhile, numerical results for SMD
S (q, ω) [Fig. 4.2 (a)] exhibit a roughly con-

stant spectral weight as ω → 0. Additionally, the distribution of spectral weight of
quadrupolar moments SMD

Q (q, ω) [Fig. 4.2 (b)], is also clearly different from analytic
quantum predictions [Fig. 4.1 (b), Eq. (4.78)]. The main disagreement lies in the or-
der of magnitude of the spectral weights between the quantum predictions and u3MD
simulations.

We note that "raw" simulation results for SMD
λ (q, ω) (where λ = A,Q, S whether we

consider dynamical structure factors associated with A–matrices, quadrupole or dipole
moments, respectively) exhibit two peaks centered around −ε(q) and +ε(q), where ε(q)
is defined in Eq. (4.16). This is because the numerical time integration includes all four
modes which are solutions of the eigensystem Eq. (4.9) given in Eq. (4.11). However,
for the FQ state, two modes are doubly degenerate, and therefore contributions of
the u3MD simulations in the spectral weight include only two peaks around −ε(q)
and +ε(q). In other words, the u3MD simulations do not care whether the dynamics
process one way −ε(q) or the other +ε(q).

The u3MD simulations are initiated from the configuration of spins obtained from
the u3MC scheme as explained in Section 2.6. This implies that the spectral weight in
inherited from the u3MC simulations and equally split into a contribution SMD+

λ (q, ω)
around +ε(q) and a contribution SMD−

λ (q, ω) around −ε(q), that we symbolically write
as

SMD+
λ (q, ω) = SMD−

λ (q, ω) . (4.90)

Therefore, for "raw" simulation results for SMD
λ (q, ω), we choose to only consider the

positive part of the energy spectrum, but multiplied by a factor two, to account for the
fact that half of the spectral weight belongs in the negative part of the energy spectrum.
More precisely, we consider the total spectral weight SMD+

λ (q, ω) + SMD−
λ (q, ω)

SMD
λ (q, ω) = SMD+

λ (q, ω) + SMD−
λ (q, ω) , (4.91)

that we artificially redefined only at positive energy as a single peak centered around
+ε(q)

SMD
λ (q, ω) := 2SMD+

λ (q, ω) . (4.92)

The reason for this choice comes from the fact that it enables an easier comparison with
zero–temperature analytical quantum predictions, which only allow for the positive
modes +εq given in Eq. (4.11). Indeed at zero temperature, negative modes solutions
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are forbidden as they correspond to the creation of holes with energy lower than the
ground state. This way, the "raw" simulation results for SMD

λ (q = K, ω) show a single
peak centered around an energy +ε(q = K) = ω0 which depends on temperature.

Indeed, we can characterize the "raw" u3MD results by investigating the tempera-
ture dependence of the dynamical structure factors at a fixed wave vector q. In Fig. 4.3,
we present results the intensities of the structure factors associated to the A–matrices,
obtained from u3MD simulations SMD

A (q, ω). These are shown at the specific wave
vector q = K, SMD

A (q = K, ω) as a function of ω for different temperatures comprised
between T = 0.01 J to T = 0.15 J and are represented as circles. The prediction ob-
tained by the zero–temperature quantum theory, SQM

A (q = K, ω) [Eq. (4.86)], is shown
for comparison by the red dashed line. The simulation results (circles) and the analytic
one (dashed line) have been convoluted with a Gaussian of FWHM = 0.02 J .
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Figure 4.3: Temperature dependence of "raw" results obtained by U(3) Molecular
Dynamics (u3MD) simulation at fixed wave vector q = K. Results are shown for the
dynamical structure factor associated with A–matrices, SMD

A (q = K, ω) [Eq. (2.130)],
obtained from u3MD simulations for temperatures between T = 0.01 J to T = 0.15 J .
The T = 0 prediction obtained by a quantum theory, SQM

A (q, ω) [Eq. (4.86)], is shown by
the red dashed line. Solid lines correspond to fits of u3MD data using a Voigt function
[Eq. (4.93)]. For T → 0, the energy of the associated excitations for "raw" u3MD
simulation results converge towards the energy predicted by the quantum theory. But
the spectral weight of the structure factor suffers a dramatic loss of intensity. Indeed,
the intensities of the peak fail to converge to the predictions of a T = 0 quantum theory
for T → 0. Simulations of HBBQ [Eq. (2.72)] were carried out by my collaborator
Dr. Rico Phole, using the u3MD simulation scheme described in Section 2.6.2, for
parameters given in Eq. (3.87), and for a system size L = 96 (N = 9216 spins).
Simulation results and analytic prediction have both been convoluted with a Gaussian
of FWHM = 0.02 J . Figure is reproduced from [201].
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The peaks shown for SMD
A (q = K, ω) are well described by the Voigt function

V (ω, σ,Γ) =
Re[w(z)]

σ
√

2π
, (4.93)

where the Faddeeva function w(z) is given by

w(z) = e−z
2

erfc(−iz) , (4.94)

and is evaluated for
z =

(ω − ω0) + iΓ

σ
√

2
. (4.95)

The Voigt profile reflects then a Lorentzian lineshape convoluted with a Gaussian with
full–width half–maximum (FWHM) determined by σ [Eq. (E.19)], where the Lorentzian
lineshape is given by

f(ω) =
Γ

2π

1

(ω − ω0)2 + Γ2
, (4.96)

and corresponds to a single excitation with energy ω0 and inverse lifetime Γ.
Empirical fits of Eq. (4.93) to simulation data are shown with solid lines in Fig. 4.3.

σ is entirely determined by the specifications of the u3MD simulation leaving the pa-
rameters ω0, Γ, and the overall normalization (total spectral weight) as fit variables.
These fits admirably correspond with the simulation data. This confirms that u3MD
simulations describe a single type of excitations, with finite, temperature–dependent en-
ergy and lifetime. We recall that the mode associated with these excitations is neverthe-
less doubly–degenerate, and that there is technically a contribution at −ε(q = K) and
+ε(q = K), but for convenient comparison with zero–temperature analytical quantum
prediction, we consider the total spectral weight 2SMD+

A (q = K, ω) around +ε(q = K).
As temperature is decreased, the peak in SMD

A (q = K, ω) becomes sharper, and its
center ω0 tends to higher energies towards the predicted quantum dispersion relations
ε(0), while retaining its underlying Lorentzian structure. However, at low temper-
atures, the spectral weight of u3MD results also exhibits a drastic loss of intensity,
tending to zero as T → 0. For instance, at T ∼ 0.1, the difference in intensity between
u3MD simulations and quantum predictions is at least of a factor of magnitude × 100.
This is reflected in Fig. 4.3 by inspection of the different scales on the y–axes with
values for SMD

A (q = K, ω) on the left hand side and valued for SQM
A (q = K, ω) on the

right hand side. As T → 0, we conclude that, except for having vanishing spectral
weight, the simulation results approach the T = 0 quantum result, where the spectral
weight is concentrated in a delta function at ε(0), in the Γ→ 0 limit of Eq. (4.96). The
reason for this discrepancy, and the way in which it can be corrected, will be discussed
in Section 5.1.





Chapter 5

Classical-Quantum Correspondence in
Molecular Dynamics Simulations

In Section 4.3, we compared the "raw" u3MD simulation results with predictions ob-
tained from the T = 0 quantum (semi–classical) theory and noticed that the u3MD
simulations appropriately captured the quantum (semi–classical) nature of the dynam-
ics, but failed at reproducing the spectral weight of dynamical structure factors. In
this Chapter, we dig deeper into the mechanisms of MD simulations by reviewing what
we learned in the analysis of the "raw" u3MD simulations presented in Section 4.3.
This permits us to analytically model the principles of MD simulations and obtain a
classical–quantum correspondence that allows to correct the u3MD simulations results.
Finally, we show that in the limit T → 0, the corrected numerical simulations perfectly
agree with the analytical zero–temperature quantum calculations.

In Section 5.1, we derive the relationship between the classical and quantum an-
alytical theories of fluctuations that we developed in Chapter 3 and Chapter 4. In
Section 5.2, we link the different quantities obtained from classical u3MC, quantum
(semi–classical) u3MD, and the analytic theories, with each other. We then use these
results in Section 5.3 where we construct a correspondence between u3MD simula-
tions and a zero–temperature quantum theory. This allows us to correct the u3MD
simulation results, restoring an excellent agreement with T = 0 quantum results.

5.1 Relationship Between Classical and Quantum The-
ories of Equal–Time Correlations

Here we investigate the relationship between classical and quantum theories of fluctua-
tions for the FQ state of the BBQ Hamiltonian. The detailed reasoning was explained
in Section 4.3 when we compared the "raw" dynamical structure factors obtained from
u3MD simulations [Section 2.6.2] with analytical quantum predictions derived in Sec-
tion 4.2.

For now, we simply summarize some of our observations, and the interested (or
forgetful) reader is welcome to jump back to Chapter 4 before continuing here. In
Section 4.3, we discussed why "raw" u3MD simulation results fail at reproducing zero–
temperature analytical quantum results for the dynamical structure factors. The rea-

133
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soning is summarized as follow:
u3MD simulations consist of thermalizing a system through classical u3MC simulations
to a target temperature. Then the spin configurations drawn from this thermal ensem-
ble of states are numerically time–evolved using the equations of motion for A–matrices
[Eq. (2.74)]. u3MD simulations correctly capture the quantum (semi–classical, to be
precise) dynamics of the excitations, since they are described by the quantum (semi-
classical) equations of motion [Eq. (2.74)], which arise through commutation relations.

However, they fail to describe the spectral weight of the structure factors. The
reason for this lies in the fact that the spectral intensities of the structure factors are
not dictated by any type of quantization or quantum–like constraint. Instead, they are
determined by the classical thermal fluctuations arising from the classical treatment
of the fluctuations’ statistics in classical MC simulations. This implies that as T → 0,
classical thermal fluctuations are eliminated and the corresponding spectral weights
vanish, as illustrated in Fig. 4.3. In short, despite having quantum (semi–classical)
dynamics, the u3MD simulations inherit the classical spectral weights induced by the
classical statistics of u3MC simulation. This is because the dynamics originate from a
classical thermal ensemble of states obtained by classical u3MC simulations.

However, the fact the spectral weight exhibits a peak described by a Lorentzian
(cf. Fig. 4.3) that sharpens as T → 0 suggests that we should be able to account
for the low–temperature results within a single–mode approximation, in the sense that
effects coming from interactions are negligible and that it is possible to resolve the
spectrum for each of its spectral contributions. Recall that, technically, the spectrum
of the u3MD simulations for SMD

λ (q, ω) posses two peaks at −ωq and +ωq, but that we
deliberately considered only one of them as expressed in Eq. (4.92).

Consequently, besides being encouraged by the analysis described above, with the
ambition to free the u3MD simulations from their classical weights, the investigation
of the relationship between the classical and the quantum (semi–classical) approaches
allows also to fulfill our own curiosity and our endeavors for completeness. Indeed,
this will lead us to a general classical–quantum correspondence that leads to a sim-
ple prescription that can rid the u3MD simulations of their classical affliction. This
prescription comes in the form of

SQM(q, ω, T = 0) = lim
T→0

~ω
2kBT

SMD(q, ω, T ) , (5.1)

which was previously introduced in Eq. (1.71). As we will see in Section 5.3, this allows
us to rectify the structure factors obtained by u3MD simulations and perfectly retrieve
zero–temperature quantum results, at the semi–classical level.

We now explore their classical–quantum correspondence in more detail. We start by
modeling the u3MD simulations within our analytical framework of fluctuations about
the FQ state. This is done by assuming that the fluctuations follow quantum dynamics
while being described by classical statistics. This framework will be proved useful as it
permits us to re–derive the classical results (previously calculated in Section 3.3) in a
form that is suitable for comparison with the quantum results for the structure factors
[Section 4.1]. We here focus on the dipole structure factor, as it is experimentally
relevant, but this approach is also valid for quadrupole and A–matrices.



5.1 Relationship Between Classical and Quantum Theories of Equal–Time
Correlations 135

Then, we show that the u3MD simulations can be corrected and restore quantum
zero–temperature structure factors.

We start our analysis from the quantum theory of excitations about the FQ state,
with the Hamiltonian H′BBQ Eq. (4.15) described in terms of the Bogoliubov bosons.
To this end, in analogy with the classical theory, we also include a source term ∆H[h]
which couples dipole moments to a transverse field h

∆H[hi] = −
∑

i

hαi Ŝαi . (5.2)

We then use the expression of the dipole in terms of the Bogoliubov bosons Eq. (4.68a)–
Eq. (4.68c) to rewrite Eq. (5.2) up to linear order in bosons. The inclusion of ∆H[h]
will allow us to compute correlations by taking the relevant functional derivative of the
free energy. Using Eq. (4.15) as expression for H′BBQ, the total Hamiltonian then reads

H = H′BBQ + ∆H[h]

= E0 + ∆E0 +
∑

k

~ε(k)
[
α̂†kα̂k + β̂†kβ̂k

]

−
∑

k

ξS(k)
[
ihxk(β̂k − β̂†−k) + ihzk(α̂†−k − α̂k)

]
, (5.3)

where E0 is the classical MF ground state energy expressed in Eq. (3.14), the zero–
point energy coming from the Bogoliubov transformation ∆E0 is given in Eq. (4.17), the
excitation energy ε(k) is defined through Eq. (4.16) and corresponds to the quantum
dispersion bands of the Bogoliubov bosons, ξS(k) is the coherence factor defined in
Eq. (4.69). All terms which are cubic or higher order in bosons have been explicitly
neglected. We also point out that from now, we restore dimensional constants ~ and
kB, which have both been set to unity everywhere else.

Thanks to the diagonal and quadratic form of Eq. (5.3) in terms of the Bogoliubov
bosons α̂k and β̂k, we recognize it as a set of N independent simple harmonic oscillators
(SHO). This motivates the introduction of a new set of variables

α̂k =

√
mε(k)

2~
x̂1,k +

i√
2~mε(k)

p̂1,k , (5.4a)

β̂k =

√
mε(k)

2~
x̂2,k +

i√
2~mε(k)

p̂2,k , (5.4b)

which satisfy the canonical commutation relation

[x̂λ,k, p̂λ′,k′ ] = i~δkk′δλλ′ , (5.5)

with λ = 1, 2. The Hamiltonian [Eq. (5.3)] expressed in terms of these coordinates,
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yields

H = E0 + ∆E0 +
∑

λ,k

[
mε(k)2

2
x̂2
λ,k +

1

2m
p̂2
λ,k −

√
2ξ2

S(k)

m~ε(k)
(hzkδ1,λ + hxkδ2,λ) p̂λ,k

]
.

(5.6)

The excitations of Eq. (5.6) follow well–defined, bosonic statistics, as long as they sat-
isfy the commutation relation, Eq. (5.5). MD simulations consist of quantum (semi–
classical) dynamics for spin configurations that are drawn from classical thermal en-
sembles obtained by classical MC simulations. Therefore the dynamics of the MD
simulation are quantum (semi–classical) thanks to the commutation relations implied
in the derivations of the EoM. But the dynamics are not subject to any quantization.
Meanwhile, the thermal distribution of the states obtained by MC simulation at low
temperatures is conditioned by a classical, and not a quantum band dispersion [cf.
Fig. 4.1].

We can therefore mimic the classical statistics found in MD simulation by treating
xλ,k and pλ,k as independent, classical, variables, disregarding the bosonic behavior
of the excitations in Eq. (5.6). Neglecting the quantization rules of the variables in
Eq. (5.6) is equivalent to treating the fluctuations classically. This will therefore lead
back to the classical theory developed in Section 3.2. However, obtained this way, the
results are expressed in a form that makes it easy to compare with the quantum re-
sults. Therefore, this framework makes it suitable to easily draw relationships between
classical and quantum results.

Setting [x̂λ,k, p̂λ,k] = 0, the partition function associated with the SHO Hamiltonian
[Eq. (5.6)] is given by

ZCL′ = e−β(E0+∆E0)
∏

λ,k

[(∫
dxλ,k e

− 1
2
βmε(k)2x2λ,k

)

×
(∫

dpλ,k e
− β

2m
p2λ,ke

β

√
2ξ2

S
(k)

m~ε(k)(hzkδ1,λ+hxkδ2,λ)pλ,k
)]

, (5.7)

where β = 1/kBT . The integrals in Eq. (5.7) can be calculated exactly by using
Eq. (F.1a) and Eq. (F.1b). We obtain

ZCL′ = e−β(E0+∆E0)

N∏

k

[
2π

βε(k)
e
βξ2S(k)(h

z
k)2

~ε(k)
2π

βε(k)
e
βξ2S(k)(h

x
k)2

~ε(k)

]
. (5.8)

The excitations described by Eq. (5.8) are subject to classical (i.e. Boltzmann) statis-
tics, by construction, and therefore can be associated with the fluctuations of MC
simulation. The next step is to calculate equal–time spin correlations using the same
procedure as described in Section 3.3.3. This involves computing the free energy and
taking functional derivatives with respect to the field components hq. The free energy



5.1 Relationship Between Classical and Quantum Theories of Equal–Time
Correlations 137

is given by

F CL′ =− log(ZCL′)

β

=E0 + ∆E0 −
2

β

∑

k

log(
2π

βε(k)
)−

∑

k

[
ξ2
S(k)(hzk)2

~ε(k)
+
ξ2
S(k)(hxk)2

~ε(k)

]
+O(T 2) .

(5.9)

The first dipole moments are given by

〈Ŝµq〉 = − ∂F

∂hµq

∣∣∣∣
h=0

= 0 , (5.10)

which is anticipated since we expect all dipole moment expectation values to vanish
(〈Ŝαq 〉 ≡ 0) in the FQ ground state. The second derivatives of the free energy with
respect to field components hq correspond to

〈Ŝαq Ŝµ−q〉 − 〈Ŝαq,β〉〈Ŝµ−q〉 = − 1

β

∂2F

∂hαq∂h
µ
−q

∣∣∣∣
h=0

. (5.11a)

Using Eq. (5.10) and Eq. (5.11a), we find

SCL′

S (q, T ) =
∑

α

〈Ŝαq Ŝαq 〉 =
4ξ2

S(q)

β~ε(q)
. (5.12)

The presence of the quantum dispersion ε(q) and coherence factor ξS(q) in Eq. (5.12),
is very evocative of the quantum theory developed in Section 4.1. This is because we
started from the quantum Hamiltonian, then "classicalized" the fluctuations and cal-
culated the associated classical partition function. And, by direct comparison with
Eq. (4.72a), we obtain

SCL′

S (q, T ) = 2
SQM

S (q, T = 0)

β~ε(q)
. (5.13)

This is a result that holds in the limit of low temperature. Additionally, we can see
that SCL′

S (q) is equivalent to the earlier classical result SCL
S (q) [Eq. (3.86)]. To this end,

we can simplify Eq. (5.12), using Eq. (4.69) and Eq. (4.13) , we first obtain

ξ2
S(q) =

√
Aq +Bq√
Aq −Bq

, (5.14)

then using Eq. (4.16) leads to

SCL′

S (q, T ) =
4

β(Aq −Bq)
= SCL

S (q, T ) , (5.15)

where for the last equality we used Eq. (3.22). This result is also valid in the limit of
low temperatures. Finally, by combining Eq. (5.15) with Eq. (5.13), we obtain a rela-
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tionship that links classical correlations at finite temperature, to quantum correlations
at T = 0:

SQM
S (q, T = 0) = lim

T→0

~ε(q)

2kBT
SCL

S (q, T ) , (5.16)

where we make temperature explicit [Eq. (3.39)]. The approach that we illustrated
for dipole moments (λ = S) can be generalised to quadrupole moments (λ = Q), and
A–matrices (λ = A). We obtain the following general result

SQM
λ (q, T = 0) = lim

T→0

~ε(q)

2kBT
SCL
λ (q, T ) . (5.17)

We emphasize that the dispersion ε(q) in Eq. (5.17) reflects the quantum nature of
the dynamics since it is obtained from quantum excitations [Eq. (4.16)]. It is not the
dispersion band of a classical theory. We also point out that the quantum mechanics
have been treated at the semi–classical level, i.e. Gaussian level. In the path integral
formulation, this would be equivalent to taking into account quantization, but only
considering one path, which would correspond to the classical trajectory. In the case
of a SHO, this approximation is exact.

Following the analysis Section 4.2.2 for calculating structure factors at the origin
q = 0, in order to account for ground state energy and zero–point fluctuation contribu-
tions, one should consider an expansion of ∆H[hi] up to second order in fluctuations,
followed by a Bogoliubov transformation to find the new fluctuations which diagonalize
the total Hamiltonian H. This means that neglecting terms higher than linear order
for the source term ∆H[hi] corresponds to assuming that the Bogoliubov ground state,
diagonalizing the BBQ Hamiltonian H′BBQ, is not perturbed by the source term. This
implies that Eq. (5.17) is valid for corrections at finite energy. In other words, it means
that the thermal contribution to the classical structure factors, which is linear in tem-
perature, can be re–scaled to correspond to zero–temperature quantum contribution
induced by quantum fluctuations.

Additionally, we can interpret the factor 2kBT
~ω as having the effect of mimicking

thermal fluctuations, as can be seen by inverting Eq. (5.17)

SCL
λ (q, T ) =

2kBT

~ω
SQM
λ (q, T = 0) , (5.18)

where we take out the limit T → 0, and implicitly work within this limit. This is easily
understood by considering the steps of our derivations in Section 5.1. Indeed, we start
by assuming a quantum system with fluctuations governed by quantum dynamics. We
then consider these fluctuations to follow classical (Boltzmann) statistics. The next
step is to treat each quantum fluctuation as two independent real fluctuations. The
effect of this procedure is to allow the quantum excitations to become classical thermal
fluctuations.

Indeed, the splitting of each quantum mode into two real independent ones is the
key for understanding the prefactor ’2’ of 2kBT

~ω . Indeed by closer inspection of our
derivation, we note that this has the effect of doubling the number of integrals when
calculating the partition function. For instance, in our example, we go from a "com-
plex" integral over bosonic variables (which should technically, in the quantum case
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be a discrete sum over the Fock space) onto two independent integrals over the real
variables: position and momentum. This results in a contribution from both of these
real degrees of freedom that adds up in the description of the free energy. Therefore,
the prefactor ’2’ of 2kBT

~ω accounts for the fact that each quantum bosonic excitation
that contributes to SQM

λ (q, T = 0) decouples into two real thermal fluctuations. When
considering the zero–temperature quantum case, we explicitly get rid of the two neg-
ative non–physical energy solutions, εq,2 and εq,4 [Eq. (4.11)], and only account for
contributions of the creation bosons, i.e. only considering half of the spectrum which
corresponds to the two physical positive quantum eigenmodes, εq,1 and εq,3. Mean-
while, in the classical case, all four eigenmodes [Eq. (3.22)] are well defined and will
contribute.

This can also be linked back to our description of the expansions of the fluctuations
[Section 2.5], where we saw that in the case of classical fluctuations four generators
are broken inducing four classical modes, while in the quantum case these fluctuations
are linked via Eq. (2.49), and only two generators are broken, producing two modes.
Consequently, a classical system will be described by double the number of quantum
modes, hence, the prefactor ’2’.

5.2 Relationship Between Numerical Methods and Quan-
tum Theory of Dynamical Correlations

We now use the analytical results and transpose them to the numerical simulations.
The main issue in "raw" u3MD results for dynamical structure factors is the loss of

spectral intensities at low temperatures, relatively to quantum intensities at T = 0 [cf.
Fig. 4.3]. Additionally, at low temperatures, the analytical classical structure factor
SCL
λ (q, T ) is equivalent to the structure factor found in u3MC simulation

lim
T→0

SMC
λ (q, T ) = lim

T→0
SCL
λ (q, T ) . (5.19)

This implies

SQM
λ (q, T = 0) = lim

T→0

~ε(q)

2kBT
SMC
λ (q, T ) . (5.20)

Therefore, we can use u3MC simulation to predict, at a given q, the total spectral
weight of the zero–temperature quantum theory, as long as we know what the quantum
characteristic energy scale ε(q) is. However, the relationship between classical and
quantum results in the absence of the prior knowledge of the quantum dispersion, is
what remains to be understood.

u3MD simulation causes a redistribution of the classical spectral weight at a given
q over a range of different energies ω. To be exact, at a given q, the u3MD simulation
redistributes the classical spectral weight around the two eigenmodes ε(q) and −ε(q)
[Eq. (4.11)] governing the equations of motion [Fig. 1.70] for the FQ state. Since the
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total spectral weight at a given q is conserved, we have the following sum rule

SMC
λ (q, T ) =

∫ ∞

−∞
dω SMD

λ (q, ω, T ) , (5.21)

which ensures that the u3MD scheme preserves the total spectral weight inherited
from u3MC simulations [Section 2.6]. The u3MD scheme equally redistributes it into
a contribution SMD+

λ (q, ω) around +ε(q) and a contribution SMD−
λ (q = K, ω) at −ε(q)

as expressed in Eq. (4.90).
To estimate the zero–temperature quantum result SQM

λ (q, ω, T = 0), we need to
construct a model that describes this redistribution of spectral weight, and imposes
dynamics to be treated at a semi–classical level. It is now helpful to return to the
simulation results for fluctuations about FQ order. To this end, we shortly revise what
is presented in Section 4.3. From the "raw” results, Fig. 4.2 and Fig. 4.3, we learn that

1. the characteristic energy scale of excitations converges on the exact quantum
(semi–classical) result for T → 0, and

2. peak of the spectral weight sharpens (resolution limited) as T → 0.

Because, we considered only the positive energy contribution of the u3MD results
[Eq. (4.92)], the FQ order studied here shows a single, two–fold degenerate band of
excitations. However, more generally, there may be several excitations with different
energies at a given q. But they will all have a well–defined energy, at least at the
semi–classical level, (i.e. treated as a set of independent oscillators) and in a finite–size
system.

Consequently, we model MD simulation results as

lim
T→0

SMD
λ (q, ω, T ) =

∑

ν=1,3

Aλ,ν(q, T )δ(ω − εq,ν) + Aλ,ν(q, T )δ(ω + εq,ν) +O(T 2) ,

(5.22)

where the sum on ν runs over the physical quantum modes, with ν = 1, 3 in our case,
but where thanks to the delta functions at positive and negative energy, we account
for all eigenmodes of the system, εq,1, εq,2, εq,3 and εq,4 as given Eq. (4.11). This can
be explained from the Bogoliubov transformation used to solve the quantum problem,
that associates, to each physical quantum mode, a negative solution corresponding to
the annihilation operator, i.e., εq,1 = −εq,2, and εq,3 = −εq,4.

The spectral weight Aλ,ν(q, T ) is defined through

Aλ,ν(q, T ) =
kBT

~εq,ν
ξ̃2
λ,ν(q) , (5.23)

with ξ̃2
λ,ν(q) is the generalized coherence factor

ξ̃2
λ,ν(q) ≥ 0 , (5.24)

characteristic of the relevant structure factor λ and the mode ν. The sum rule of
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Eq. (5.21) implies that the equal time structure factor is given by

SMC
λ (q, T ) =

∫ ∞

−∞
dω SMD

λ (q, ω, T ) =
∑

ν=1,3

2Aλ,ν(q, T ) . (5.25)

In order to compare with analytical quantum zero–temperature results, we consider
only the quantum modes allowed at zero temperature, i.e, only positive energies. This
implies that we only consider the contribution of the delta function δ(ω − εν(q))

lim
T→0

SMD
λ (q, |ω|, T ) =

∑

ν=1,3

Aλ,ν(q, T )δ(ω − εq,ν) +O(T 2) . (5.26)

However, we still want the structure factor to satisfy the sum rum in Eq. (5.21). There-
fore, we artificially multiply the contribution in Eq. (5.26) by two, and we redefine

lim
T→0

SMD
λ (q, ω, T ) :=

∑

ν=1,3

2Aλ,ν(q, T )δ(ω − εq,ν) +O(T 2) , (5.27)

such that when integrated over energies, we obtain Eq. (5.25). The zero–temperature
quantum predictions are then generalized by

SQM
λ (q, ω, T = 0) =

∑

ν=1,3

ξ̃2
λ,ν(q)δ(ω − εq,ν) , (5.28)

where the sum over ν only allows for the physical quantum modes. In our case, these
are given by εq,1, and εq,3. ξ̃λ,ν(q) corresponds to the rescaled coherence factors ξ̃λ(q),
which for the FQ state is independent of the mode, since the modes are degenerate,
i.e., ε(q) = εq,1 = εq,3 [Eq. (4.16)]. However, this is not generally the case.

We note that, for the FQ state, the summation over both bosonic modes yields a
total of

SQM
λ (q, ω, T = 0) =2ξ̃2

λ(q)δ(ω − ε(q)) , (5.29)

which is consistent with the results obtained in Eq. (4.71), Eq. (4.78), Eq. (4.86), for
the structure factors associated with dipole moments, quadrupole moments, and the
A–matrices, respectively, recalling that the original result in Eq. (5.17) is valid at finite
energy. For the dipole structure factor, the rescaled coherence factor is simply given
by the coherence factor defined in Eq. (4.69).

The total spectral weight is constrained through Eq. (5.21), and for the FQ state,
satisfies

SQM
λ (q, T = 0) = 2ξ̃2

λ(q) . (5.30)

Within the area of validity of this model, there is no requirement for knowing the
excitation energies εq,ν a priori. And we can correct for the effect of classical statistics
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in MD simulations. Therefore, we write

SQM
λ (q, ω, T = 0) = lim

T→0

~ω
2kBT

SMD
λ (q, ω, T ) , (5.31)

where we emphasize that "QM" should be understood as "semi–classical", i.e. modeling
excitations with quantum statistics but treating fluctuations at the Gaussian level. In
Section 5.3, we provide an empirical evidence for Eq. (5.31) and the validity of its
application for the FQ state of the BBQ model on the triangular lattice.

The relationship in Eq. (5.31) might, at first sight, look empirical, but it is actually
exact, in the sense that it is an analytical formulation, within its range of applicability.
It is formally derived from Eq. (5.17), which we obtained by taking the classical limit of
a set of independent Harmonic Oscillators, which is well–defined and well–understood.
Therefore, the questionable approximation is whether it is a valid assumption to assume
that the fluctuations can be treated as variables of a quantum Harmonic Oscillator.
The answer to this depends on the form of the interactions governing the fluctuations
and to which leading order in temperature the relevant quantities need to be estimated.
As previously mentioned, if the physical properties can be characterized up to linear
order in temperature, i.e. expanding fluctuations up to quadratic (Gaussian) level,
then Eq. (5.17) prevails.

We conclude by noticing that multiplication of the dynamical structure factors by
a prefactor ∝ βω ∝ ω

T
, in order to correct for classical statistics, has been anticipated

previously, including for the spin–1
2
magnet Ca10Cr7O28 [189], where equivalent results

for a system with many bands can be found in [189]. In the Supplemental Material of
[267], an outline of the derivation is provided, but we note that the result differs by a
factor of 1

2
, compared to the prediction established by Eq. (5.31), which is possibly due

to a different definition of the considered spectral weight of the dynamical structure
factor. Indeed, the definition that we use here has been artificially multiplied by 2.

As previously explained, the MD simulations inherit the classical spectral weights
from MC simulations at a given q and split them for the FQ state onto the two doubly
degenerate quantum modes +ε(q) and −ε(q), where the mode −ε(q) is allowed because
u3MD simulations are performed at finite temperature. While the zero–temperature
quantum analytical theory, the −ε(q) is disregarded as the ground state represents the
lowest energy, and excitations with negative energy are non–physical. We can then
interpret Eq. (5.31) as follows: the spectral weight at a given q obtained by u3MD
simulation, which is artificially multiplied by two to compile all the spectral weight
into positive energies, such that it equals the classical equal time structure factor,
and which then is divided by ’2’ to account for the fact that in the zero–temperature
quantum case, we have half of the number of modes that we have in the classical case
(i.e. two quantum modes associated with the two bosonic quantum excitations versus
four classical modes associated to the four classical fluctuations), and which is finally
corrected for its classical statistics by multiplication of ~ω

kBT
.
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5.3 Comparison with Corrected Molecular Dynamics
Using Eq. (5.31), we can revisit u3MD simulation results that we previously discussed
in Section 4.3. In Fig. 5.1, we show a comparison between u3MD simulation results,
corrected according to Eq. (5.31) and the predictions of the zero–temperature quantum
theory developed in Section 4.1 for excitations around a FQ ground state. Following
Eq. (5.31), the correction of simulation results is obtained by multiplying the "raw"
structure factors by a prefactor ω/2T ,

S̃MD
λ (q, ω, T ) =

ω

2T
SMD
λ (q, ω, T ) , (5.32)

where we set the constants kB and ~ back to unity.
In Fig. 5.1 (d)–(f), we present u3MD results obtained at T = 0.05 J , and accordingly

corrected using Eq. (5.32). For consistency, the u3MD simulations were carried out at
a resolution of δω = 0.02 J , further corrected according to Eq. (5.32), and then finally
convoluted with a Gaussian of FWHM = 0.33 J . This way the final energy resolution
0.35 J is the same as used previously in Section 4.3.

This allows us to directly compare corrected u3MD simulations in Fig. 5.1 (d)–(f),
with "raw" u3MD results Fig. 5.1 (a)–(c), previously illustrated in Fig. 4.2 (a)–(c). For
dipole moments, the corrected results show a loss of spectral weight as ω → 0 similar
to the quantum prediction, while this was not the case for "raw" simulation results.

Additionally, for an easy comparison, in Fig. 5.1 (i)–(g), we reproduce the T = 0
analytic theory results previously shown in Fig. 4.1 and Fig. 4.2. By direct human
eye comparison of plots for the dynamical structure factors in Fig. 5.1, we observe that
corrected simulation results essentially perfectly agree with T = 0 quantum predictions,
and that no discrepancies in the dispersion or in the intensities are visible.

Similar to the "raw" structure factors, by plotting S̃MD
λ (q, ω, T ) at fixed wave vector

q, for a series of temperature values tending towards T = 0, we can obtain a more
precise analysis of the low temperature scaling and confirm the excellent comparison
with T = 0 quantum theory. This is illustrated in Fig. 5.2 (a), where we plot results for
corrected dynamical structure factors associated with A–matrices S̃MD

A (q = K, ω, T ),
for temperatures between T = 0.15 J and T = 0.01 J . They are represented by circles.

For comparison, we additionally reproduce the result of the T = 0 analytic theory,
Eq. (4.86), represented by the dashed red line. u3MD simulation and quantum analytic
results have both been convoluted with a Gaussian envelope of FWHM 0.02 J . We
now observe that the intensities of the u3MD simulations, unlike the "raw" results,
do not vanish as T → 0, but converge to the quantum analytic result. We can see
from Fig. 5.2 (a), that the limit T → 0 in Eq. (5.31) now makes sense. Indeed, in
function of temperature, MD simulation results corrected according to Eq. (5.32) form
a sequence that converges towards the T = 0 analytic prediction for T → 0, establishing
the validity of Eq. (5.31).

We now examine more precisely the convergence behavior of the corrected simu-
lation results towards the zero–temperature quantum result. The dispersing peak of
S̃MD
λ (q, ω, T ) is also well–described by the Voigt function given by Eq. (4.93). The fits

of the Voigt function for the numerical data shown in Fig. 5.1 (d)–(f) are represented
as solid lines in Fig. 5.2.
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Figure 5.1: Comparison between dynamical structure factors obtained from U(3)
Molecular Dynamics (u3MD) simulations [Section 2.6.2] and T = 0 quantum theory
results [Section 4.2] for a ferroquadrupolar (FQ) state. (a) Simulation results for dy-
namical structure factor associated with dipole moments, SMD

S (q, ω). Dipolar fluc-
tuations exhibit relatively high spectral weight near the top of the band, where ex-
citations have more of a spin–wave character. (b) Equivalent results for quadrupole
moments, SMD

Q (q, ω). (c) Equivalent results for associated with A–matrices, SMD
A (q, ω).

(d) Simulation results for dynamical structure factor associated with dipole moments,
S̃MD

S (q, ω), corrected for classical statistics, following Eq. (5.32). (e) Equivalent results
for quadrupole moments, S̃MD

Q (q, ω). (f) Equivalent results for A–matrices, S̃MD
Q (q, ω).

(g) Prediction for SQM
S (q, ω) from T = 0 quantum theory [Eq. (4.71)]. (h) Equiv-

alent prediction for SQM
Q (q, ω) [Eq. (4.78)]. (i) Equivalent prediction for SQM

A (q, ω)
[Eq. (4.86)]. Simulations were carried out by my collaborator Dr. Rico Pohle, using
the u3MD simulation scheme described in Section 2.6.2, for HBBQ [Eq. (2.72)] with
parameters Eq. (3.87) at a temperature T = 0.05 J , in a cluster of linear dimen-
sion L = 96 (N = 9216 spins). All results have been convoluted with a Gaussian in
frequency of FWHM = 0.35 J. Figures are reproduced from [201].

From these fits, we can extract and estimate, within the limits set by the energy
resolution of the simulations, the energy of the excitation ω(T ), the inverse lifetime of
the excitation, Γ(T ) and the intensity maximum I(T ).

In Fig. 5.2, we plot the shift in excitation energy ∆ω(T ) [Fig. 5.2 (b)], which is
the energy difference between the zero–temperature prediction εk=0 and the energy of
the excitation of the simulation. We also show the inverse lifetime of the excitation,
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Γ(T ) [Fig. 5.2 (c)], and the intensity maximum I(T ) [Fig. 5.2 (d)], as a function of
temperature.
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Figure 5.2: Temperature dependence of results of U(3) Molecular Dynamics (u3MD)
simulation corrected for classical statistics according to Eq. (5.32) and demonstrating
successful convergence as T → 0 towards the T = 0 quantum predictions. (a) u3MD
results for dynamical structure factor associated with A–matrices, SMD

A (q, ω), at wave
vector q = K, for temperatures between T = 0.01 J and T = 0.15 J . u3MD simulation
results are represented by circles. They have computed with an energy resolution
0.02 J , and have been corrected for classical statistics using Eq. (5.32). Solid lines are
the fits of the u3MD results using a Voigt profile, Eq. (4.93). The prediction of the
T = 0 quantum theory, Eq. (4.86), convoluted with a Gaussian of FWHM = 0.02 J, is
shown with a solid red line. (b) Shift in peak energy ∆ω(T ), obtained by fitting using a
Voigt profile, showing convergence of the peak position on the prediction of the T = 0
quantum theory. (c) Equivalent results for the inverse lifetime Γ(T ). (d) Equivalent
results for the peak height, I(T ). u3MD simulations have been performed by my
collaborator Dr. Rico Pohle, for parameters identical to those used in Fig. 5.1 and
given by Eq. (3.87). Panels are reproduced from [201].

From [Fig. 5.2 (b)], we find that the characteristic energy of the excitations which
corresponds to the peak position linearly converges towards the zero–temperature quan-
tum result from below, according to

∆ω(T ) = bT +O(T 3) , [b = 2.71] . (5.33)
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The inverse lifetime of the excitation vanishes (approximately) quadratically as T → 0

Γ(T ) = bT + cT 2 +O(T 3) , [b = 0.07, c = 3.26] , (5.34)

as illustrated in Fig. 5.2 (c). Finally, in Fig. 5.2 (d), we observe the maximum intensity
of the peak I(T ) also converges linearly on the zero–temperature quantum result as

I(T ) = a+ bT +O(T 3) , [a = 111, b = -1230] , (5.35)

where the value of coefficient a agrees with the prediction of the T = 0 quantum theory.
It is possible to derive a similar formalism in terms of Green’s functions and to

expand the self–energy diagrammatically for excitations within the mixed ensemble of
states characteristic to MD simulations [22]. Such calculations go beyond the scope
of this Thesis but, it should ultimately be possible to derive a schematic analytic
interpretation of the trends observed in simulations.



Chapter 6

Spin–1 Magnets with Anisotropic
Interactions

In Chapters 2 to 5, I have shown how the formalism based on the algebra u(3) can be
used to describe both the thermodynamic and dynamical properties of spin–1 magnets
which preserves spin–rotation symmetry. In this Chapter, I extend this analysis to
more general cases considering models with spin–anisotropic interactions.

I start in Section 6.1, by reviewing the condition needed for an u(3) A–matrix to
describe a spin–1 moment. Indeed, within our description of u(3) generators, we can
also allow for spin configuration with s 6= 1. This is resolved by enforcing the trace of
the u(3) A–matrices to unity [Eq. (2.57)]. Therefore, I here show that, at the level of
single spin–1 moments, spin–anisotropic interactions do not mix sectors of u(3) with
different spin values, and that all of the general results of Chapter 2 hold in the presence
of spin–anisotropy. This implies that, if started from valid spin–1 configuration with
Tr(A) = 1 [Eq. (2.57)] being satisfied, both u3MC and u3MD simulations offer powerful
tools to investigate properties of spin–1 systems with spin–anisotropic interactions.

In Section 6.2.1, I illustrate this result on the FQ order of the BBQ model with
anisotropic nearest-neighbors interactions, supplemented by single–ion anisotropy. We
show results obtained by a T = 0 analytical theory that I compare against u3MD
simulations corrected for their classical statistics.

Finally, in Section 6.3, I consider the easy–plane, single–ion anisotropic, ferromag-
netic order for the BBQ model on the triangular lattice. This will prove useful to
explain how my analytical method applies when dipolar order rather than quadrupo-
lar order is present. A–matrices are very useful for quadrupolar order, but when the
ground state is not time–reversal symmetric, some extra care needs to be taken.

6.1 Generalization of the u(3)Approach to Anisotropic
Interactions

In this section, we generalize to spin–anisotropic models the arguments that we used
as evidence for the validity of our method [Fig. 1.70 and Eq. (2.76)] when considering
the BBQ Hamiltonian in Section 2.4.5.

Our aim is to model spin–1 moments on a lattice. In Section 2.4, we developed

147
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an approach that allows us to represent a spin–1 moment by the algebra u(3) supple-
mented by a constraint [Eq. (2.57)] that reduces back to su(3), which is the correct rep-
resentation for a spin–1. Therefore, for our u(3) approach to properly describe spin–1
moments, the constraint [Eq. (2.57)] on the trace of the A–matrices which act as the
generators of u(3) must be preserved. In u3MC simulation [Section 2.6.1], because of
sampling of states described on the 5–dimensional sphere, or as we saw, equivalently
by fixing the gauge degree of freedom, on the 4–dimensional sphere, this condition is
true by construction. However, this step is of crucial importance for the validity of
the u3MD results and ensures that the simulations properly describe spin–1 moments
of fixed length throughout time evolution. In Section 2.4.5, we showed that this was
the case [Fig. 1.70 and Eq. (2.76)] for the SU(2) symmetric BBQ model [Eq. (1.48)],
implying that the length of the spin is conserved at each site.

We here show that the trace of the A–matrix defined at each site and representing
a spin–1 is also preserved for models with spin–anisotropic interactions. To this end,
let us consider the most general form of spin–anisotropic Hamiltonian which is allowed
for a spin–1 moment

H∆ =
∑

〈i,j〉

Jαµβν Âαi βÂµj ν +
∑

i

LαβÂαi β , (6.1)

where the interaction couplings satisfy

Jαµβν = (Jβναµ)† Lαβ = (Lβα)† , (6.2)

as required from the fact that H∆ must remain Hermitian. From the Heisenberg
equations of motion follows that

∂tÂγi η =− i [ Âγi η,H∆ ]

=− i

2

∑

δ

(
Jηαµβ Âγi µ + JαηβµÂγi µ − Jµαγβ Âµi η − Jαµβγ Âµi η

)
Âαi+δ β

− i

2
( LηαÂγi α − Lαγ Âαi γ ) . (6.3)

By setting η = γ and taking the trace, we find

∂tTr Ai = − i
2

∑

δ

(Jαγβµ Âγi µ − Jαµβγ Âµi γ ) Âαi+δ β −
i

2
( Lγα Âγi α − Lαγ Âαi γ ) , (6.4)

where we used the relationship
Jαµβν = Jµανβ , (6.5)

which is implied from the fact that two components of A defined at different lattice
sites commute [Eq. (1.66)]. By rearranging indices of Eq. (6.4), we obtain

∂tTr Âi = 0 . (6.6)

This implies that the trace of A is conserved through time evolution for arbitrary
spin–anisotropic interactions and that within u3MD simulations the constraint on spin–
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length is preserved. The implication of this result is that instead of solving the more
complicated equations of motion for spin–1 moments found in the algebra su(3) [14,
200, 264], we can equivalently solve the u(3) equations of motion, Eq. (2.74), for a
spin–1 moment, regardless of spin–anisotropy.

6.2 Application to the FQ State with Single–Ion, Easy–
Plane Anisotropy

In this section, we concretely illustrate an example of a system with spin–anisotropic
interactions by considering a simple expansion of the BBQ model, which was previously
studied for the FQ phase and which we already obtained results for. This model was
first studied in [176], with an additional Zeeman coupling term. In Section 6.2.1, we
investigate this example by using the analytical quantum theory of fluctuations and
compare these results against u3MD simulations in Section 6.2.2.

6.2.1 Analytical Quantum Theory for the FQ state with Single–
Ion, Easy–Plane Anisotropy

We choose to apply our u(3) framework to the spin–1 BBQ model with single–ion,
easy–plane anisotropy

HD = HBBQ +HSI , (6.7)

where HBBQ is given in Eq. (1.48), and where HSI denotes the single–ion term defined
as

HSI =
∑

i

D(Ŝyi )
2 , [D > 0] . (6.8)

This model has previously been studied in [176]. Chosen this way, the anisotropic
model HD springs from the BBQ model and for the triangular lattice, it therefore also
displays a FQ phase for parameters (J1, J2 < 0). Additionally, it is easily seen that the
single–ion anisotropy term HSI [Eq. (6.8)] represents a quadrupole Qyy [Eq. (1.44)], and
for the considered coupling constant D > 0 favors a quadrupole moment characterized
by its director being aligned along the y–axis [Eq. (2.43)]. This is consistent with our
deliberate choice of expressing the FQ ground state by |y〉 [Eq. (3.2)]

Because we already have everything set up for the BBQ Hamiltonian and described
in the form of A–matrices expressed in terms of quantum fluctuations [Eq. (4.4)], the
next step is to write down the Hamiltonian in terms of HSI in terms of A–matrices.
Using Eq. (1.67), we find

HSI =
∑

i

D

(
−2

3
Âyi y +

1

3
Âxi x +

1

3
Âzi z +

2

3

)
. (6.9)

Expressed this way, it is obvious that HSI is a special case of the A-matrix single–ion
term in Eq. (6.1).
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Using Eq. (4.4), we can then express HSI in terms of the Bosonic excitations ob-
tained by generating fluctuations around the FQ state as explained in Section 3.1, and
by ensuring their quantum nature as discussed in Section 4.1. Using Eq. (4.5) with
Eq. (3.16) for the BBQ term, the total Hamiltonian HD can then be written in a similar
form as Eq. (4.5). We find

H′D = E0 +
1

2

∑

k

[
ŵ†

kM
SI
k ŵk

]
+O(~w4) , (6.10)

where the bosons are encoded into ŵk given by Eq. (4.6b) and where MSI
k yields

MSI
k =




Ak +D −Bk 0 0
−Bk Ak +D 0 0

0 0 Ak +D −Bk
0 0 −Bk Ak +D


 ,

(6.11)

withAk andBk being defined in Eq. (3.17). Compared to the pure BBQ case [Eq. (3.16)],
we see that the effect of HSI is to introduce new diagonal terms in the interaction ma-
trix governing the dispersion of excitations [Eq. (4.6b)]. We then perform a Bogoliubov
transformation by solving the appropriate eigensystem [Eq. (4.9)]. We obtain two de-
generate physical modes of excitation, whose dispersions are given by

εk =
√

(Ak +D)2 −B2
k . (6.12)

This implies that the adjunction of the easy–plane anisotropy has the effect of opening
a gap

∆ =
√

2A0D +D2 , (6.13)

and shifting the Goldstone modes of FQ order to higher energies. Because in the
presence of single–ion, easy–plane anisotropy, the FQ state preserves the symmetry of
the Hamiltonian, it no longer reflects a spontaneous symmetry breaking, and we expect
the excitations to require finite energy.

We can also very easily generalize the derivation of structure factors calculated in
Section 4.2 for the FQ state of the isotropic BBQ model. Indeed, by simply substituting

Ak −→ Ak +D , (6.14)

into the results obtained for SQM
A (q, ω) [Eq. (4.86)], SQM

Q (q, ω) Eq. (4.78)] and SQM
S (q, ω)

[Eq. (4.71)], all these derivation can be adapted for the FQ state of the single–ion, easy–
plane anisotropy model HD [Eq. (6.7)].

In Fig. 6.1 (a)–(c) , we show results for the parameter set

J1 = 0 , J2 = −1.0 , D = 0.2 . (6.15)

These correspond to predictions obtained for the T = 0 quantum (semi–classical)
analytical theory.
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6.2.2 Comparison to Molecular Dynamics Simulations

Following the analysis of Section 6.1, we can also apply the u3MD simulation scheme
[Section 2.6.2] to the easy–plane model HD [Eq. (6.7)]. In Fig. 6.1 (d)–(f), results
obtained from u3MD simulation are shown.
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Figure 6.1: Comparison of u3MD simulation results and T = 0 analytical quantum
prediction for the dynamical structure factors of a ferroquadrupolar (FQ) state in the
spin–1 bilinear–biquadratic (BBQ) model with easy–plane anisotropy HD [Eq. (6.7)].
(a) Dipole dynamical structure factor, SQM

S (q, ω), predicted by T = 0 quantum the-
ory of Section 6.2.1. (b) Equivalent results for quadrupole moments, SQM

Q (q, ω).
(c) Equivalent results for A–matrices, SQM

A (q, ω). (d) Dipole dynamical structure factor
SMD

S (q, ω) found in molecular dynamics simulations within u(3) representation (u3MD)
. (e) Equivalent results for quadrupole moments, SMD

Q (q, ω). (f) Equivalent results for
A–matrices, SMD

A (q, ω). Numerical simulations were carried out by my collaborator
Rico Pohle for HD [Eq. (6.7)], with parameters given in Eq. (6.15), at a temperature
T = 0.05 J , for system size of dimension L = 96 (N = 9216 spins). u3MD results
have been corrected for classical statistics by multiplication by a prefactor ω/2T fol-
lowing Eq. (5.32). All results have been convoluted with a Gaussian in frequency of
FWHM = 0.35 J. Figures are reproduced from [201].

These were performed for the parameter set Eq. (6.15) consistent with a FQ ground
state. u3MD results have been corrected for the effect of classical statistics using
Eq. (5.32). We see that corrected simulation results show very good agreement with
the T = 0 quantum predictions of the analytic theory developed in Section 6.2.1.

These results provide an explicit demonstration of the ability of u3MD simulations
to describe the excitations of spin–1 models with spin–anisotropic interactions.
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6.3 Application to an Easy–Plane Ferromagnet with
both Single–Ion and Exchange Anisotropy

Up to this point, all the explicit predictions for dynamical quantities have been com-
puted for systems with a FQ ground state. Here, we show that the exact same methods
can be applied to models with conventional dipolar magnetic order as well. To this
end, we illustrate our u(3) formalism and its representation in terms of the A-matrices
to the Heisenberg ferromagnetic easy-plane anisotropic model. The A-matrices are es-
pecially useful to work with, when the relevant quantities are easily expressed in the
TR-invariant basis, and are relatively easy to use when the ground state is quadrupo-
lar. They can also equally well be applied to systems with dipolar order, but some
additional care is required.

We demonstrate here how one can carefully apply our analytical theory of fluctu-
ations developed in Section 2.5 to systems with dipolar order. Additionally, we make
the interactions anisotropic. We show results for the zero–temperature quantum struc-
ture factors for dipole, quadrupole and A-matrix moments applied to the ferromagnetic
(FM) state on the triangular lattice for the anisotropic Heisenberg Hamiltonian (BBQ
Hamiltonian [Eq. (1.48)] with anisotropic J1 and J2 = 0), with single–ion anisotropy.

We consider the following Hamiltonian

H = HEP +HSI . (6.16)

HEP represents the Heisenberg Hamiltonian for spin-1 with easy–plane Heisenberg
anisotropic exchange couplings J

HEP =
∑

〈i,j〉

[
Ŝi · J · Ŝj

]
, (6.17)

where the spin dipole operator Ŝi is defined in Eq. (1.26), and where J corresponds
to the usual nearest–neighbor spin–spin coupling tensor. HSI accounts for single–ion
anisotropy and is given by

HSI =
∑

i

ŜiDŜi , (6.18)

where D corresponds to the usual single site spin-spin coupling tensor. We assume the
spin-spin coupling tensors J and D to only have diagonal components:

HEP =
∑

〈i,j〉

[
JxxŜxi Ŝ

x
j + JyyŜyi Ŝ

y
j + JzzŜzi Ŝ

z
j

]
, (6.19)

HSI =
∑

i

[
DxxŜxi Ŝ

x
i +DyyŜyi Ŝ

y
i +DzzŜzi Ŝ

z
i

]
. (6.20)

We also assume the coupling constants to be negative and the order to be ferromagnetic:

Jαα < 0 , (6.21)
Dαα < 0 , where D⊥ = Dyy = Dzz with

∣∣D⊥
∣∣ < |Dxx| . (6.22)
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This is consistent with the easy-plane FM order and the following choice of the ground
state. We consider the ground state to have its spin dipole moment in the xy–plane.
Without loss of generality we can choose it to be pointing along the x–axis:

|GS〉 = |1x〉 . (6.23)

As a basis to easily express the ground state |1x〉, we choose the eigenstates of Ŝxi :

Bx =
{
|1x〉, |0x〉,

∣∣1x
〉}

, (6.24)

which are illustrated in Fig. 6.2.

|1xi

<latexit sha1_base64="zAqIMfXdzL4mLEK5SH4aocleBlk="></latexit>

|0xi

<latexit sha1_base64="n8csycet65MfRAv6cRvoP8SdpUQ="></latexit>

��1x
↵

<latexit sha1_base64="SSba3pn13FOxvN4qO6wAyaThQ+g="></latexit>

Figure 6.2: Eigenstates of Ŝxi forming the basis states of Bx [Eq. (6.24)]. Figure is
reproduced from [201].

The basis states in Eq. (6.24) satisfy

〈1x|Ŝxi |1x〉 = 1 , (6.25a)

〈0x|Ŝxi |0x〉 = 0 , (6.25b)
〈
1x
∣∣Ŝxi
∣∣1x
〉

= −1 , (6.25c)

〈α|Ŝµi |α〉 = 0 for |α〉 ∈ Bx and µ = y, z . (6.25d)

Even though the A-matrices are deeply linked to the time-reversal (TR) invariant basis
[Eq. (2.32)], we will here mostly focus on the basis Bx [Eq. (6.24)] and then transform
the required quantities accordingly into the TR invariant basis.

We define the basis change Λ3 to be the basis change matrix between the TR
invariant B2 [Eq. (2.32)] and the magnetic x–basis Bx [Eq. (6.24)]. This implies that
state |φ〉B2 given in the TR invariant basis B2, its components transform according to

|φ〉Bx = Λ3|φ〉B2 , (6.26)

where the basis change matrix Λ3 is given by

Λ3 =




0 1√
2

i√
2

−i 0 0
0 1√

2
− i√

2


 . (6.27)
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An operator ÔB2 given in the TR invariant basis B2 transforms as

ÔBx = Λ3ÔB2Λ
†
3 , (6.28)

in the basis Bx.
In what follows, we start working in the Bx basis, where everything is simple,

since the ground state is one of the basis states and the orthogonal fluctuations can be
expressed in terms of the other orthogonal basis states. And, we will later transform the
relevant quantities into the TR invariant basis, by considering the inverse of Eq. (6.28).
Indeed, the ground state matrix takes the simple form

A0Bx =




1 0 0
0 0 0
0 0 0


 , (6.29)

since the ground state is simply the state |1x〉 [Eq. (6.23)]. In terms of the director
components, we obtain

d†0Bx =




1
0
0


 . (6.30)

As explained in Section 2.5, we can generate orthogonal fluctuations by application of
the exponential map given in Eq. (2.86). The new state describing the fluctuations
around the ground state is given by

d†(φ) = R̂(φ)d†0 . (6.31)

The A matrix transforms according to Eq. (2.88). Only the generators Âxx, Âxy, Âxz,
Âyx, and Âzx will have non–zero contribution when applied to the ground state matrix
[Eq. (6.29)]. Fig. 6.3 represents the action of the generators on the ground state. We
can see, for example, that the generator Âxy, will create a fluctuation along |0x〉, i.e.
an â† boson, and will induce the new state to exhibit some quadrupolar features.

Using the constraint on the trace of A-matrices [Eq. (2.48)], we can disregard the
contribution from Âxx. We ensure that the trace of A equals unity [Equation 2.57],
such that we properly restrict to su(3) and make sure that we are correctly representing
a spin-1. We obtain

A(φ)Bx =




1− φxyφyx − φxzφzx iφxy iφxz
−iφyx φxyφyx φxzφyx
−iφzx φxyφzx φxzφzx


 . (6.32)

We can then easily introduce bosonic fluctuations through

iφxy = â , (6.33a)
−iφyx = â† , (6.33b)

iφxz = b̂ , (6.33c)

−iφzx = b̂† . (6.33d)



6.3 Application to an Easy–Plane Ferromagnet with both Single–Ion and
Exchange Anisotropy 155

Âx
y
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Figure 6.3: Fluctuations created by the generators Âxy, Âxz, Âyx, and Âzx , according
to Eq. (2.86), for an angle φαβ = π

8
, around the FM ground state given in Eq. (6.23).

Figure is reproduced from [201].

We obtain

ÂBx =




1− â†i âi − b̂†i b̂i âi b̂i
â†i â†i âi â†i b̂i
b̂†i âib̂

†
i b̂†i b̂i


 . (6.34)

According to Eq. (6.28), the A matrices expressed in the TR invariant basis B2 are
given by

ÂB2 = Λ†3ÂBxΛ3

=




â†i âi
i√
2
â†i + i√

2
â†i b̂i − 1√

2
â†i + 1√

2
â†i b̂i

− i√
2
âi − i√

2
âib̂
†
i

1
2

+ 1
2
b̂†i + 1

2
b̂i − 1

2
â†i âi

i
2

+ i
2
b̂†i − i

2
b̂i − i

2
â†i âi − ib̂†i b̂i

− 1√
2
âi + 1√

2
âib̂
†
i − i

2
− i

2
b̂i + i

2
b̂†i + i

2
â†i âi + ib̂†i b̂i

1
2
− 1

2
b̂†i − 1

2
b̂i − 1

2
â†i âi


 .

(6.35)

The next step is to rewrite the Hamiltonian in Eq. (6.16) in terms of the A ma-
trices using the fact that the spin dipole can be rewritten in terms of the A matrices
[Eq. (1.67)]. Using Eq. (1.67), the terms of the easy–plane anisotropic Hamiltonian
[Eq. (6.19)], in terms of the A-matrices, become

Ŝxi Ŝ
x
j = −(Âyi z − Âzi y)(Âyj z − Âzj y) , (6.36a)

Ŝyi Ŝ
y
j = −(Âzi x − Âxi z)(Âzj x − Âxj z) , (6.36b)

Ŝzi Ŝ
z
j = (Âxi y − Âyi x)(Âxj y − Âyj x) . (6.36c)
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For the single ion terms, we use Eq. (1.44) and Eq. (1.68) to rewrite the terms Ŝαi Ŝαi
of the single–ion anisotropic Hamiltonian [Eq. (6.20)] as a function of the A-matrices,
as

Ŝxi Ŝ
x
i = −2

3
Âxi x +

1

3
Âyi y +

1

3
Âzi z +

2

3
, (6.37a)

Ŝyi Ŝ
y
i = −2

3
Âyi y +

1

3
Âxi x +

1

3
Âzi z +

2

3
, (6.37b)

Ŝzi Ŝ
z
i = −2

3
Âzi z +

1

3
Âyi y +

1

3
Âxi x +

2

3
. (6.37c)

Using Eq. (6.36) and Eq. (6.37), the total Hamiltonian [Eq. (6.16)] in terms of the
A-matrices then becomes

H =
∑

〈i,j〉

[
−Jxx(Âyi z − Âzi y)(Âyj z − Âzj y))

−Jyy(Âzi x − Âxi z)(Âzj x − Âxj z)
−Jzz(Âxi y − Âyi x)(Âxj y − Âyj x)

]

+
∑

i

[
Dxx(−2

3
Âxi x +

1

3
Âyi y +

1

3
Âzi z +

2

3
)

+Dyy(−2

3
Âyi y +

1

3
Âxi x +

1

3
Âzi z +

2

3
)

+Dzz(−2

3
Âzi z +

1

3
Âyi y +

1

3
Âxi x +

2

3
)

]
. (6.38)

Inserting Eq. (6.35) into Eq. (6.37), we obtain the single–ion terms as a function of
the bosonic operators

Ŝxi Ŝ
x
i = 1− â†i âi ,

Ŝyi Ŝ
y
i =

1

2
(1 + â†i âi − b̂†i − b̂i) , (6.39)

Ŝzi Ŝ
z
i =

1

2
(1 + â†i âi + b̂†i + b̂i) .

We notice that if Dyy is not equal to Dzz, then the Hamiltonian [Eq. (6.38)] has single
bosonic terms, meaning that the state about which we expanded the fluctuations is
not the ground state. This is consistent with our previous choice to choose Dyy and
Dzz to be equals [Eq. (6.22)].

After inserting Eq. (6.35) into the total Hamiltonian [Eq. (6.38)], only keeping
fluctuations up to 2nd order, and performing a Fourier transform, the Hamiltonian [
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Eq. (6.38)] becomes

H =
1

2

∑

k

[(
â†k, â−k

)(Ak Bk
Bk Ak

)(
âk

â†−k

)
+
(
b̂†k, b̂−k

)(Ck 0
0 Ck

)(
b̂k

b̂†−k

)]

+
1

2
NzJxx +N(Dxx +D⊥) , (6.40)

where
Ak = −Jxxz + 1

2
z(Jyy + Jzz)γ(k) + (D⊥ −Dxx) ,

Bk = 1
2
z(Jzz − Jyy)γ(k) ,

Ck = −2zJxx .
(6.41)

In analogy to the FQ case, we need to solve an eigensystem similar to Eq. (4.9). The
dispersion relations for â†k and âk can be found by imposing them to have bosonic
commutation relations [Eq. (C.3)], and diagonalizing

σz

(
Ak Bk
Bk Ak

)
=

(
1 0
0 −1

)(
Ak Bk
Bk Ak

)
=

(
Ak Bk
−Bk −Ak

)
, (6.42)

where the multiplication by σz imposes the bosonic commutation relations for the â†k
excitation. The eigenvalues εk are given by

εk,1 = +
√
A2

k −B2
k , εk,2 = −

√
A2

k −B2
k . (6.43)

The dispersion relations for the b̂†k and b̂k are obtained by diagonalizing

σz

(
Ck 0
0 Ck

)
=

(
Ck 0
0 −Ck

)
, (6.44)

where σz imposes the bosonic commutation relations for the b̂†k excitation. The eigen-
values εk are given by

εk,3 = −Ck , εk,4 = +Ck . (6.45)

Because the coupling constants are negative, the physical results are

εk,1 = +
√
A2

k −B2
k , εk,3 = −Ck = 2z|Jxx| , (6.46)

where Ak, Bk, and Ck are given in Eq. (6.41).
Following the same procedure as for the FQ state in Section 4.1, we calculate

dynamical structure factors for the anisotropic FM case. We start by finding the
Bogoliubov transformation that diagonalizes Eq. (6.40). Following the steps given in
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Appendix C, we obtain

âk =
1√

∆2
k −B2

k

(∆kα̂k −Bkα̂
†
−k) , (6.47a)

â†−k =
1√

∆2
k −B2

k

(−Bkα̂k + ∆kα̂
†
−k) , (6.47b)

â†k =
1√

∆2
k −B2

k

(∆kα̂
†
k −Bkα̂−k) , (6.47c)

â−k =
1√

∆2
k −B2

k

(−Bkα̂
†
k + ∆kα̂−k) , (6.47d)

and

b̂k = β̂k , (6.48a)

b̂†−k = β̂†−k , (6.48b)

b̂†k = β̂†k , (6.48c)

b̂−k = β̂−k , (6.48d)

where ∆k is given in Eq. (4.13), and where Ak and Bk are given in Eq. (6.41).
We now follow the calculations outlined in Section 4.2.1 in order to calculate the

quantum structure factors. Since we are working in the Bogoliubov representation, the
ground state |GS〉 is the vacuum state |vac〉 for the Bogoliubov bosons. The structure
factors are given by Eq. (4.36). We calculate 〈vac|Ôα

q |µ〉 with |µ〉 = α̂†k|vac〉 ⊕ β̂†k|vac〉
and Ôα

q = Ŝαk with α = x, y, z, for the dipole structure factor for instance. Us-
ing Eq. (1.67), Eq. (1.68) and Eq. (6.35), we can rewrite the spin dipole, the spin
quadrupole, and the A-matrix operators in terms of the bosons up to linear order, and
after performing a Fourier transform, we can rewrite them in terms of the Bogoliubov
bosons using Eq. (6.47) and Eq. (6.48). This allows us to easily calculate the structure
factors [Eq. (4.36)].

Using Eq. (4.42), the dynamical spin dipole structure factor, defined by Eq. (I.1),
is given by

SFM
S (q, ω) =

Aq√
A2

q −B2
q
δ(ω − εq,1) + SGSFM

S (q = 0, ω) . (6.49)

The dynamical spin quadrupole structure factor, as given by Eq. (I.17), yields

SFM
Q (q, ω) = 2

Aq√
A2

q −B2
q
δ(ω − εq,1) + 4δ(ω − εq,3) + SGSFM

Q (q = 0, ω) . (6.50)

The total dynamical factor for the Â operators defined in Eq. (I.34) becomes

SFM
A (q, ω) =

Aq√
A2

q −B2
q
δ(ω − εq,1) + δ(ω − εq,3) + SGSFM

A (q = 0, ω) , (6.51)
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where we explicitly summed over the indexes α and β and where the terms of the form
SGSFM

O (q = 0, ω) represent the ground state and zero–point energy contribution to the
structure factors at q = 0, but are not calculated here, for simplicity reasons. For
these three results, Eq. (6.49), Eq. (6.50), and Eq. (6.51), we used Eq. (4.13), and εq,1,
and εq,3 are given in Eq. (6.46). These results are also identical to results that one can
obtain by performing a conventional multi-boson expansion.

Additionally, we check that the sum rule Eq. (2.67) is satisfied, by noticing that the
constant terms in Eq. (2.67) would only contribute for q = 0 and at equal time, and
can therefore be neglected.

In Fig. 6.4, we show results for the dynamical structure factors [Eq. (6.49), Eq. (6.50),
and Eq. (6.51)] for the ferromagnetic state for the anisotropic Heisenberg Hamiltonian
with single–ion anisotropy [Eq. (6.16)] on the triangular lattice. We first notice that the
quadrupolar band εq,3, which corresponds to the ∆S = 2 excitation band associated
with the β̂†k boson, is gapped and non–dispersive. Because it essentially corresponds to
the excitation obtained by applying the lowering operator S+ twice, it is quadrupolar
in nature and will only contribute to the quadrupolar structure factor channel. More-
over, such a quadrupolar excitation from a FM ground state has a finite energy cost,
and it also doesn’t have any neighboring quadrupoles to interact with, so it is therefore
localized. The isotropic FM Heisenberg case without single–ion anisotropy is presented
in Fig. 6.4 (a)–(c). As shown in Fig. 6.4 (d)–(f), we note that the introduction of easy–
plane anisotropy with Jyy = Jzz 6= Jxx creates a gap and lifts the dispersion relation
according to Eq. (6.46) and Eq. (6.41). In Fig. 6.4 (g)–(i), we see that introducing
single–ion anisotropy with D⊥ 6= Dxx also creates a gap and lifts the dispersion rela-
tion again according to Eq. (6.46) and Eq. (6.41). In Fig. 6.4 (j)–(l), we display the
interplay of easy-plane and single–ion anisotropy.
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(a) SQM
A (q, ω)

(Jxx = Jyy = Jzz)
(b) SQM

Q (q, ω)
( Jxx = Jyy = Jzz )

(c) SQM
S (q, ω)

( Jxx = Jyy = Jzz )

(d) SQM
A (q, ω)

( Jyy = Jzz = 0.8Jxx )
(e) SQM

Q (q, ω)
( Jyy = Jzz = 0.8Jxx )

(f) SQM
S (q, ω)

( Jyy = Jzz = 0.8Jxx )

(g) SQM
A (q, ω)

( D⊥ = 0.5Dx )
(h) SQM

Q (q, ω)

( D⊥ = 0.5Dx )

(i) SQM
S (q, ω)

( D⊥ = 0.5Dx )

(j) SQM
A (q, ω)

( Jyy = Dx = Jxx ,
Jzz = D⊥ = 0.8Jxx )

(k) SQM
Q (q, ω)

( Jyy = Dx = Jxx ,
Jzz = D⊥ = 0.8Jxx )

(l) SQM
S (q, ω)

( Jyy = Dx = Jxx ,
Jzz = D⊥ = 0.8Jxx )

Figure 6.4: Dynamical structure factors predicted by T = 0 quantum theory of fluctuations
for the ferromagnetic (FM) phase of the BBQ model on the triangular lattice (Eq. (1.69)) with
J1 being considered as Heisenberg anisotropic exchange interactions [Eq. (6.19)] and J2 = 0,
and with an additional single ion anisotropic exchange Hamiltonian [Eq. (6.20)]. (a)–(c)
Dynamical structure factors for SA(q, ω) ( A-matrices), SQ(q, ω) (quadrupoles) and SS(q, ω)

(dipoles) obtained for the isotropic FM state of the Heisenberg Hamiltonian [Eq. (6.19)] where
Jxx = Jyy = Jzz = −1 without any single–ion anisotropy [Eq. (6.20)], D⊥ = Dx = 0. (d)–
(f) Equivalent results for the easy-plane anisotropic FM state of the Heisenberg Hamiltonian
[Eq. (6.19)] where Jyy = Jzz = 0.8Jxx and Jxx = −1 without any single–ion anisotropy
[Eq. (6.20)], D⊥ = Dx = 0. (g)–(i) Equivalent results for the isotropic FM state of the
Heisenberg Hamiltonian [Eq. (6.19)] where Jyy = Jzz = Jxx = −1 with single–ion anisotropy
[Eq. (6.20)], D⊥ = 0.5Dx and Dx = Jxx. (j)–(l) Equivalent results for the easy-plane
anisotropic FM state of the Heisenberg Hamiltonian [Eq. (6.19)] where Jzz = 0.8Jxx and
Jyy = Jxx = −1 with single–ion anisotropy [Eq. (6.20)], D⊥ = 0.8Dx and Dx = Jxx. Figures
are reproduced from [201]



Chapter 7

Outlook and Conclusion

In the last and seventh Chapter, I complete this Thesis by briefly reviewing the main
points addressed throughout the course of this study, and describe two directions that
I hope to explore in the future. In Section 7.1, I provide a summary of the results ob-
tained in this Thesis and how they fit in the contextual and current research of interest.
Section 7.2 supplies a short discussion about two topics I hope to address in the future.
The first topic concerns topological defects in spin nematics as well as spin–1 systems
more generally, I link this topic with thermodynamic results that we obtained for the
FQ state of the BBQ model on the triangular lattice. The second topic consists of
an exploratory generalization of the Self–Consistent Gaussian Approximation (SCGA)
method within our u(3) formalism. In Section 7.3, I conclude the Thesis with some
final remarks.

7.1 Thesis Panorama
Spin–1 magnets are special. Indeed, in Chapter 1 and Chapter 2, we learned that,
besides dipolar degrees of freedom, a spin–1 moment can also carry quadrupolar degrees
of freedom on a single site, while retaining quantum fluctuations [87, 131, 180, 183, 250].
This implied that the classical limit S →∞ commonly taken for a spin–1

2
moment as

an O(3)–vector is not a valid classical limit for a spin–1 moment, despite a spin–1 being
considered as more classical than a spin–1

2
.

For this reason, classical Monte Carlo simulations based on an O(3)–vector can not
reproduce quadrupolar order nor quadrupolar excitations at the level of a single–site.
This might explain why Molecular Dynamics based on an O(3) representation fails at
reproducing the low energy features of excitations in the spin–1 pyrochlore material
NaCaNi2F7 as explained in Section 1.3.1 [188, 267]. On the other hand, classical Monte
Carlo simulations based on a representation of spin–1 moment as a d vector allows to
access adequately the classical thermodynamics [235] taking into account quadrupolar
degrees of freedom. Quantum Monte–Carlo gives a good account of thermodynamic
[87, 111] and dynamic [255] properties for quadrupolar orders. But it is restricted to
sign–free models, and its dynamics, accessible via analytical continuation, might be
problematic for systems with complex excitations. Exact diagonalizing is hampered by
finite–size limitations, as the Hilbert space grows rapidly with the number of lattice

161
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sites.
This legates a window for a method that can properly represent a spin–1 moments,

describing all its degrees of freedom, guarantying the right classical limit to access
classical thermodynamics, and allowing a framework where (semi–)classical dynamics
are also available.

In this Thesis, motivated by the ambitions explained above, I have developed a new
method to study spin–1 systems. The proposed method allows to access both classical
thermodynamics and (semi–)classical dynamics of spin–1 magnets within an analytical
theory as well as numerical simulations. I established the validity of our approach by
comparison of analytical results with the existing literature for the spin–1 bilinear–
biquadratic (BBQ) model on the triangular lattice, as well as through comparison
with its corresponding numerical implementation carried out by my collaborators. I
also used my method to obtain new interesting findings, among which an explicit
relationship between classical finite temperature results and quantum zero–temperature
results treated at the (semi–)classical level. This namely allowed to draw a general
connection between finite temperature Molecular Dynamics simulations and analytical
zero–temperature quantum (semi–classical) results.

The essential attribute of the method presented in this Thesis relies on the choice of
representation of spin moments. As explained in Section 2.4, my approach is based on
the embedding of the usual su(3) algebra into the u(3) algebra [180]. This allows for a
correct and complete description of a spin–1 moment, provides a valid (semi–)classical
limit of a spin–1 moments, and treats dipole and quadrupole moments on an equal
footing. Additionally, I derived equations of motion for the A–matrices (generators of
the u(3) algebra) which take a simple form enabled by the compact structure of the
u(3) algebra. Further expansion of the method was obtained through the development
of analytical theories of fluctuations in Section 2.5. These can be treated at both the
classical and quantum levels.

In addition, I proposed to promote my framework in terms of generators of U(3)
and its associated equations of motion into a numerical scheme in order to simulate
spin–1 magnets. Within the formalism of A–matrices, a classical Monte-Carlo (u3MC)
algorithm as well as a Molecular Dynamics (u3MD) scheme based on the numerical
integration of the equations of motion were developed. These methods form a pow-
erful approach for exploring dynamics in spin–1 magnets. The implementation of the
numerical simulations has been carried out by my collaborator, Dr. Rico Pohle.

Next, I illustrated my method on the specific ferroquadrupolar (FQ) phase of the
spin–1 BBQ model on the triangular lattice in Chapter 3 and Chapter 4. Treated at
the classical level, the analytical theory of fluctuations predicted that the excitations
form 2 doubly degenerate bands which exhibit either a dipolar or quadrupolar nature
[Fig. 3.3 (a)–(c)]. This formed the basis platform from which I developed a low—
temperature expansion making predictions for classical thermodynamics properties.
These predictions were then compare results for heat capacity c(T → 0) [Fig. 3.4], the
ordered moment Q [Fig. 3.5], as well as, the equal time structure factors Sλ(q) [Fig. 3.6]
with u3MC simulation results performed at low temperatures, which all showed a
perfect agreement [Section 3.4].

I then show how the fluctuations could be quantized, and how this led to a quantum
theory of fluctuations about the FQ ground state. This naturally brought up a descrip-
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tion that is shown to be equivalent to an earlier multi–boson approach. This quantum
theory of fluctuations was then used to calculate quantum dynamical structure factors
for the FQ order [Fig. 4.1 (a)–(c)], which I compared with u3MD simulations in Sec-
tion 4.3. The u3MD simulations were shown to be able to account well for the quantum
(semi–classical) dynamics of the dispersion relations of the quantum excitation around
the FQ ground state but failed at reproducing the spectral weight of their structure
factors predicted by the T = 0 quantum theory.

In Section 5.1, I then delved deeper into the u3MD scheme, showing the reason
for the disagreement between "raw" u3MD simulations and T = 0 quantum analytical
predictions emanates from classical statistics, inherited from the u3MC scheme. I
based this observation on an analytical development that accounts for the fluctuations
to follow quantum dynamics and be governed by Boltzmann classical statistics. From
this followed a simple and general quantum–classical relationship expressed for the
structure factors. This result was applied to correct u3MD simulation results for the
effect of their classical statistics, in the limit T → 0 [Eq. (5.31)]. Corrected in this
manners, u3MD simulations were shown to perfectly reproduce results obtain from the
T = 0 quantum theory, treated at the (semi–)classical level as discussed in Section 5.3
[Fig. 5.1 and Fig. 5.2].

Finally, I generalized the U(3)–approach to systems with spin–anisotropic inter-
actions. Up to this point, I considered the general SU(2)–symmetric BBQ model. I
showed that my methods, applied to an analytical and numerical treatment, guaran-
teed a valid representation of a spin–1 moment, by ensuring that the constraints on the
trace of the u(3) generators remained preserved by the system. In Chapter 6, I showed
that this remains valid in the case of the most general anisotropic model allowed for
a spin–1 magnet, asserting a proper and complete description of a spin–1 moment.
I illustrated this result by considering the FQ order of the BBQ model with vanish-
ing Heisenberg and anisotropic biquadratic interaction supplemented with single–ion
anisotropy. In Section 6.2.2, I showed results for this model, where u3MD simulations
corrected for their classical statistics perfectly agree with T = 0 quantum analytical
theory treated at the (semi–)classical level [Fig. 6.1]. Lastly, in Section 6.3, I presented
T = 0 quantum analytical theory predictions for the ferromagnetic order of the BBQ
model with easy–plane, single–ion anisotropy. This example served not only as an
instance for anisotropic models, but also allowed to provide an explicit derivation for
orders that are not only of quadrupolar character. Indeed, the representation of the
Hamiltonian in terms of the A–matrices is particularly straightforward for quadrupolar
types of orders, but is also tractable for systems with dipolar order.

7.2 New Horizons
In this Section, I present interesting areas which I hope to explore in the future. In Sec-
tion 7.2.1, I explain my interest in investigating further the origin of the peak observed
in the specific heat [Fig. 3.4] obtained by u3MC simulation for a FQ state of the BBQ
model. I discuss a KT–like phase transition as a possible explanation for the observed
behavior of the thermodynamic quantities as seen in u3MD simulations. Additionally,
studying topological excitations in spin nematics also allows for the opportunity to
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generally model topological defects in spin–1 systems within the u(3) framework.
Lastly, in Section 7.2.2, I explore the generalization of the Self–Consistent Gaussian

Approximation (SCGA) in the space of A–matrices. The SCGA provides a useful
approach to both ordered and spin liquid phases of magnets, but is commonly based
on a classical O(3)–vector description of the spin moments. As we know by now, an
O(3)–vector does not suffice to properly describe a spin–1 moments, as quadrupolar
degrees of freedom are not accounted for. Therefore, I investigate, here, the possibility
to build an SCGA method for spin–1 systems based on a u(3) description.

7.2.1 Topological Defects in Spin Nematics

As discussed in Section 3.4, the specific heat, obtained from u3MC simulations for the
FQ state of the BBQ model on the triangular for a finite–size system, shows a peak
at finite temperature, illustrated in Fig. 3.4. The peak sharpens and shifts toward
lower temperatures as the size of the system is increased. The temperature of the peak
also coincided with the onset of FQ correlations as observes for the ordered moment
〈Q2

MC〉 shown in Fig. 3.5 (a). We further proved that the peak observed in the specific
heat is not induced by a conventional phase transition due to the continuous symmetry
breaking of the FQ ground state with respect to SO(3) symmetry of the BBQ model.
Indeed, a finite temperature phase transition into the FQ ordered ground state in a
2–dimensional lattice would violate the Mermin–Wagner theorem [146]. Concretely, we
proved that, in the thermodynamic limit, the ordered moment logarithmically scaled
to zero with respect to system size, restoring the Mermin–Wagner theorem.

Here, we discussed a possible explanation for the observed behavior of the thermo-
dynamic quantities as seen in u3MD simulations in terms of a KT–like phase transition.
Indeed, the empirical simulation results show a peak in the specific heat. The order
parameters showed an onset of ferroquadrupolar correlations at the peak temperatures,
without, however, exhibiting long–rang order [Fig. 3.5]. This is very reminiscent of the
Kosterlitz-Thouless (KT) phase transition in the 2–dimensional XY-model [121, 122].
In the KT phase transition, the phase transition is due to the unbinding of pair of
vortices, when vortices become free moving particles. Additionally, homotopy analysis
of the order parameter of the FQ phase implies the possibility for topological defects
to appear.

As previously discussed in Section 3.4, a likely explanation for the behavior of the
specific heat [cf. Fig. 3.4 in Section 3.4.1] and the ordered moment [see Fig. 3.5 (a) in
Section 3.4.2] for the FQ state of the BBQ Hamiltonian [Eq. (2.72)] is the unbinding
of pairs of vortices, leading to a topological phase transition. Such a topological phase
transition is indeed allowed and can account for the observed data. In the following
part, I provide some preliminary analysis that supports this hypothesis.

Vortex and Phase Transition in the FQ state of the BBQ Model

Form homotopy analysis [145], point–like defects are allowed to happen in spin ne-
matics, as previously discussed in Section 1.2.4. This can be seen by considering the
order parameter of the FQ state, which is a real director. The order parameter phase is
given by real 2-dimensional projective space RP2 shown in Fig. 1.5. The first homotopy
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group is given by [30].

π1(RP2) = Z2 , (7.1)

previously introduced in Eq. (1.52b) and Eq. (3.103). The fact that the group Z2

only contains 2 elements, one of which is the identity implies that there are 2 types of
defects: a trivial defect, and a topological defect (cf. the discussion in Section 1.2.4).
The topological defect is also referred to as Z2–vortex. This also means that a vortex
is its own anti–vortex, as there can only be one type of topological defects. And it is
possible for these vortices to mediate a phase transition at finite temperature from a
disordered phase into a phase with algebraic correlations.

KT–Argument

The possibility of a topological phase transition into a phase with FQ correlations can
be understood by generalizing the usual KT–argument for unbinding to vortices in an
XY–magnet

a) Vortex Energy
For simplicity, we assume the directors to lie in the xy–plane. We also consider a purely
quadrupolar state, with S = 0, which means that the imaginary part v is parallel to
u, such that v = αu, with α ∈ R. The director d can be parameterized as

d =
1 + iα√
1 + α2




cos(θ)
sin(θ)

0


 θ ∈ [0, π] . (7.2)

We note that it is different from a general director in 3–dimensions. Indeed, here the
director is confined to 2 dimensions, and the order parameter is given by half of the
circle, namely RP1. RP1 is homeomorphic to the circle S1, and its first homotopy class
yields [30]

π1(RP1) = Z , (7.3)

which implies that the vortices are characterized by winding numbers taking on inte-
ger values, such that vortices with different winding numbers corresponds to different
topological defects, with the subtlety, however, that a 180◦ rotation brings the director
back to itself. Therefore, the winding numbers characterizing the types of defects take
on half–integer values

k = ±1

2
,±1,±3

2
,±2, . . . . (7.4)

The configuration for d [Eq. (7.2)] plugged into the BBQ Hamiltonian gives an
energy of

〈HBBQ〉 = ' J2zN −
J2z

6ad−2

∫
dx(∇θ(x))2 , (7.5)

where we assumed the angle difference between neighboring sites to be small (θi −
θi+δ) � 1, and where a is the lattice spacing. We see that for our choice of ferro-
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quadrupolar coupling constant J2 = −|J2|, J2 < 0, the Hamiltonian becomes

〈HBBQ〉 = −|J2|zN +
|J2|z
6ad−2

∫
dx(∇θ(x))2 , (7.6)

and that the energy is minimized for configurations of directors with uniform θ. The
first term is just the ground state energy E0 = J2zN , when all the directors are
uniformly aligned with each other. The second term represents the elastic energy from
twisting the directors. We denote it by [36],

Fel =
ρs
2

∫
dx(∇θ(x))2 , (7.7)

where for the FQ ground state of the BBQ model

ρFQs =
|J2|z
3ad−2

, (7.8)

for the ferroquadrupolar phase of the BBQ model and is identified as the spin–stiffness
[36]. Configurations that minimize Fel can be found using the Euler-Lagrange equa-
tions. This leads to

ρs∇2θ = 0 . (7.9)

Among all the solutions for θ that satisfies Eq. (7.9), we are interested in the configu-
ration with

θ(r) = kφ+ φ0 . (7.10)

We choose this solution, because it represents a topological defect with charge k. Indeed
considering a configuration, where the spins or the directors can be parametrized by

n =

(
cos(kφ+ φ0)
sin(kφ+ φ0)

)
, (7.11)

leads to a configuration formed of spins or directors winding around with factor k as
we go around a loop enclosing the vortex. The winding number k, or charge of the
vortex is given by [36]

2πk =

∮
dθ =

∫

Γ

dθ

dα
dα , (7.12)

where Γ is a contour encircling the vortex, and α a parametrization.
The elastic energy corresponding to this configuration is given by Eq. (7.7). I obtain

Fel = ρsk
2π log(

Rc

a
) , (7.13)

where, as shown on Fig. 7.1, a is the lattice spacing, and Rc is the radius to which
extends the vortex. We see that for an infinite system, Rc → ∞, and the energy
diverges.
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Figure 7.1: Configuration of directors n [Eq. (7.11)] in a vortex defined by k = 1
2
and

φ0 = π
4
according to Eq. (7.10) .

b) Vortex Entropy
The vortex entropy can be estimated by

S = kB log(
πR2

c

πa2
) , (7.14)

where πR2
c

πa2
represented the number of ways of distributing a vortex of area πa2 into a

system of area πR2
c . The free energy of a free vortex can be written as

F = Fel − TS

= ρsk
2π

2
log(

R2
c

a2
)− TkB log(

R2
c

a2
) . (7.15)

The temperature at which a vortex is likely to freely occur is given at F = 0, when the
free energy changes sign

Tc =
πρsk

2

2kb
. (7.16)

For the ferro–quadrupolar phase of the BBQmodel [Eq. (3.87)] on the triangular lattice,
the spin–stiffness is given by Eq. (7.8), we obtain

T FQ
c =

π|J2|zk2

6kb
=
π

4
' 0.785398 , (7.17)

where we used |J2| = 1, kB = 1, z = 6 for the triangular lattice, and k = ±1
2
which

represents a topological defect with the smallest energy (as higher winding numbers
would imply a higher twisting energy).

Eq. (7.17) represents an upper bound limit. Indeed some pair of vortices might
appear spontaneously at lower temperatures since such a pair produces a strain that
disappears at large enough distances, as can be seen in Fig. 7.2.

We can use Eq. (7.17) to compare with estimations obtained by numerical Monte
Carlo simulation. In our case, based on results obtained by u3MC simulation, the
temperature transition can be approximated by the temperature at which the peak in
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Figure 7.2: Configuration of directors n [Eq. (7.11)] in a vortex defined by k1 = 1
2
,

φ1
0 = 0and k2 = 1

2
φ2

0 = π
2
according to Eq. (7.10).

the specific heat occurs. This is estimated by

T ∗FQ ' 0.43 , (7.18)

(cf. Section 3.4 and Fig. 3.4) which is consistent with the fact that the prediction
obtained by our simple MF analysis represents an upper bound value.

We can also compare with a set of similar results obtained for the XY-model on
the square lattice in the case of the KT–transition. A similar approach for the XY–
Heisenberg model with dipole spins of length 1 leads to a spin–stiffness [122]

ρXYs =
|J |z

4ad−2
, (7.19)

which according to Eq. (7.16), leads to a transition temperature

TXY
c =

π|J2|zk2

8kb
=
π

2
' 1.5708 , (7.20)

where we used |J | = 1, kB = 1, z = 4 for the square lattice, and k = ±1, since
for dipolar spins, non–trivial defects have integer winding numbers. Monte–Carlo and
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DMRG simulations based on an O(3) representations of spins for the XY–model on
the square lattice [20, 44, 89, 96, 118, 120, 175] yield a KT–transition temperature of
approximately

T ∗XY ' 0.893 . (7.21)

Considering the ratio of the numerical and the MF results obtained for estimates of
the transition temperatures for the BBQ and the XY–model, we obtain

T ∗FQ
T FQ
c

= 0.55 ,
T ∗XY
TXY
c

= 0.568 . (7.22)

We observe that the MF prediction of the transition temperatures Tc for the FQ state
and the XY–model are subject to a similar reduction compared to estimations obtained
by numerical methods.

From this preliminary analysis, we observe that the formation of a bound state of
pairs of solitons is topologically and thermodynamically allowed. As the temperature
gets in a close range to the temperature of the peak observed in the specific heat as
shown in Fig. 3.4, vortices can form during the Monte Carlo simulation. Additionally,
in a snapshot obtained by u3MC simulation shown in Fig. 7.3, we observe that the
directors form topological defects such as vortices, similarly to topological defects seen
in liquid crystals.

x

y

Figure 7.3: Directors in the KT-regime obtained by u3MC Monte Carlo simulations
at T=0.036J, described in Section 2.6.1, for the BBQ model [Eq. (2.72)] in the FQ
phase. Numerical simulations were carried out by my collaborator Dr. Rico Pohle.

There is therefore good reason to believe that the peak seen in simulation results
for the specific heat [Fig. 3.4] is due to a topological phase transition driven by the
unbinding of topological defects of the spin nematic state. A sensible starting point to
study topological defects in spin–1 magnets in general would be to first investigate the
formation of the topological vortices in the context of this topological phase transition.
As shown in Fig. 7.3 and Fig. 7.4 (a), we notice that in real space, both topological
defects look qualitatively similar, despite being different topological excitations. Indeed
in Fig. 7.3, a snapshot of u3MC simulations shows a configuration of directors forming
vortices for the FQ order. While in Fig. 7.4, the defects are obtained by imposing
proper boundary conditions in the case of the FQ state of the BBQ model [5]. In
a KT–like phase transition, the phase transition is due to the unbinding of pair of



170 Outlook and Conclusion

vortices, when vortices become free moving particles.
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Figure 7.4: Topological defects for a spin–1 system in the FQ phase on the triangu-
lar lattice. Directors configuration for a (a) point–like Π1 topological excitation, (b)
Skyrmion–type Π2 topological excitation, (c) SU(3) Π2 topological excitation. The
background intensities represent the normalized value of the quadrupole component
Qxx2 −Qyy2. Pictures are reproduced from [5].

This topological phase transition of vortices in spin nematics provides us with a good
and relatively simple starting point for our investigation. An impressive demonstration
of the power of the methods developed in this Thesis is shown in Fig. 7.5. The images
Fig. 7.5 (a)–(f) correspond to different time–shots of the time evolution of a system of
directors in the FQ phase on the triangular lattice with nematic topological excitations
[190]. The intensities corresponds to the total quadrupolar weight

∑
α,β Q

αβ
i (t) in

function of the two spacial variables x and y. Using the u3MC method [Section 2.6.1],
the system is thermalized for the FQ phase of the BBQ model on the triangular lattice
for parameters given in Eq. (3.87). This is done for a target temperature of T = 0.01 J .
The system is time evolved using the equations of motion for the A–matrices [Fig. 1.70],
which we numerically integrate using the u3MD scheme introduced in Section 2.6.2.
We observe that the two vortices (circled in blue in Fig. 7.5 (a)), get closer and are
attracted to each other, while they seem to slightly gravitate around each other. Finally,
in Fig. 7.5 (e), they annihilate, and in Fig. 7.5 (f), we can observe some kind of
quadrupolar waves emanating from the location where the vortices annihilated. The
potential and twisting energy of the vortices seems to be released in some form of
quadrupolar radiation. This is very evocative of the gravitational waves induced by
two gravitating black holes, which analogy is part of another project [43].

In the future, I plan to generalize our u(3) framework to a description of topological
defect in spin–1 systems [190]. To characterize the phase transition, it is useful to use
homotopy analysis [145] in order to classify all topological defects of spin–1 systems,
and not only topological defects arising in the case of FQ ground state. It would also be
useful and interesting to translate all the required quantities such as the spin-stiffness,
Berry–curvature, Chern–number within our u(3)–language, starting with generalizing
to a director or A-matrix stiffness in order to make it compatible with quadrupolar
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systems, as well as dipolar ones. In order to achieve these goals, a Non Linear Sigma
Model (nlsm) for the ferroquadrupolar phase of the BBQ model has already been
derived [43, 103]. This allows for a hydrodynamic description of the ferroquadrpolar
phase of the BBQ model and for determining all the degrees of freedom which play
a role in the low energy, long wave-length limits. These form the relevant degrees of
freedom to be considered, since we are interested in their small, continuous changes.
Moreover, the nlsm is sufficient enough to capture the topological structure of the order
parameter space.

(a) (b) (c)

(d) (e) (f)

Figure 7.5: (a)-(f) Snapshots at different time during time evolution obtained by
u3MD scheme, described in Section 2.6.2, of the BBQ model [Eq. (2.72)] in the FQ
phase with topological defects. The x– and y–axis represent the real space variables
of the 2 dimensional triangular lattice, and the intensities corresponds to the total
quadrupolar weight

∑
α,β Q

αβ
i (t). Numerical simulations were carried out by my col-

laborator Dr. Rico Pohle.

Besides this topological phase transition, the time evolution of these topological de-
fects provides a rich and exciting playground for studying spin–1 systems as illustrated
in Fig. 7.5. From the earlier work of Hiroaki Ueda, it is known that not all solitons
are equivalent, and solitons of higher charges can decay into elementary solitons [252].
Why and how this happens remains a mystery. Expanding our understanding of these
aspects using a combination of analytic tools and numerical simulations will definitely
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bring insight into their dynamics. Therefore, a generalization of existing theories of
interacting vortices made of dipolar spins within our approach will allow for a bet-
ter understanding of the interaction and dynamics of vortices in quadrupolar systems.
Additionally, a general description in terms of the algebra u(3) would enable to access
not only systems with quadrupolar type of orders, but also general spin systems which
allow for different types of vortices. Well–known concepts such as spin-stiffness, Berry–
curvature, Chern–number could be extended to our methodology in order to generally
describe defects for spin-1 systems.

An approach consisting in gradually improving complexity seems reasonable, and
one may want to start by characterizing single vortex physics first. This could be
accessed by looking at structure factors and computing vortex energy and other ther-
modynamic quantities. The next step is then to investigate the dynamics of a single
vortex. This would lead to finally analyzing multi-vortices physics by studying how
vortices interact and evolve, as an extension of the single vortex physics requiring the
derivation of an effective model.

7.2.2 Generalization to Self-Consistent Gaussian Approxima-
tion Within the u(3) Algebra

Here I start by giving a short introduction to the Self-Consistent Gaussian Approxima-
tion (SCGA) which is commonly based on O(3) description of dipolar spin and used
to compute equal–time structure factors in disordered phases [46, 47, 65–68]. Indeed
the SCGA provides a surprisingly powerful tool to extract correlations, especially for
classical spin liquid, for which the high-T paramagnetic phase is continuously linked
to the low-T spin liquid phase.

Concepts and SCGA for O(3) Spins

Following references [32, 46, 47, 68, 101], I here give a brief outline of the SCGA method
for classical O(3)–vectors.

We start by assuming that the dipole spin moments interact through an interaction
matrix Jαβ, such that the Hamiltonian is given by

H=

∑

〈i,j〉

JαβŜαi Ŝβj + E0 , (7.23)

that we immediately recognize as the anisotropic Heisenberg model and where E0 is
the ground state energy. We further consider the dipole spin moments as classical spins
of fixed length

Sr · Sr = s2 . (7.24)

The essence of the SCGA approach treats the components of the spin vector Sr as
independent variables subject to a constraint on the spin–length which is only enforced
on average

〈
∑

α

Sαr Sαr 〉 = s2 . (7.25)
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This constraint is imposed by the use of a Lagrange multiplier µ. For systems where the
interaction of the degrees of freedom takes a quadratic (Gaussian) form, the Lagrange
multiplier is found self-consistently through the constraint, as we will see below, and
hence the name of the method.

Under these assumptions, we can solve Eq. (7.23) by Fourier transform

Ŝαi =
1√
N

∑

q

eiqri Ŝαq , (7.26)

and write
H =

1

2

∑

q

Ŝα−qJ(q)αβŜβq + E0 . (7.27)

The canonical partition function is defined as

Z =
∑

σ

e−βHσ , (7.28)

In its continuous version, the canonical partition function is obtained by integrating
out the degrees of freedom

Z =

∫
e−βH(~sk)d~sk . (7.29)

In order to calculate correlation functions, we introduce a new term to the Hamiltonian
∆H[hi]

∆H[hi] = −
∑

i

hαi Ŝαi , (7.30)

where the fictive field h couples to the dipole moments. Similarly to Section 3.3.3,
this allows us to take the appropriate derivative of the free energy with respect to this
fictive field and then evaluate the derivative at zero-field. After performing a Fourier
transform, Eq. (7.30) yields

∆H[hq] = −
∑

q

hα−qŜαq . (7.31)

We introduce a Lagrange multiplier µ such that the constraint Eq. (7.25) is fulfilled.

µ(Ns2 −
∑

q

∑

α

SαqSα−q) = 0 . (7.32)

By adding the constraint Eq. (7.32) to the total Hamiltonian Eq. (7.27), we have

Hµ =
1

2

∑

q

Ŝα−qJ(q)αβŜβq − µ(N −
∑

q

∑

α

Sα−qSαq)− 1

2

∑

q

(
hα−qŜαq + Ŝα−qhαq

)
+ E0

=
1

2

∑

q

Ŝα−q
(
J(q)αβ + 2µδαβ

)
Sα−q −

1

2

∑

q

(
hα−qŜαq + Ŝα−qhαq

)
− µN + E0 . (7.33)
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We then defined
Jµ(q)αβ = J(q)αβ + 2µδαβ . (7.34)

Considering that the total Hamiltonian can fluctuate for any of its degree of freedom Sβq,
and treating them as real classical degrees of freedom, the partition function [Eq. (7.29)]
becomes

Z = e−β(E0−µs2N)
∏

q

∫
e−β

1
2

Sα−qJµ(q)αβSβqe
1
2
β(hα−qŜαq+Ŝα−qh

α
q)dSq , (7.35)

where dSq =
∏

α dSαq is the integration measure. Using Eq. (F.1e) to calculate the
Gaussian integral, we obtain

Z = e−β(E0−µs2N)
∏

q

√
(2π)n

βndetJµ(q)
e

1
2
βhα−q[Jµ(q)−1]αβhβq . (7.36)

The associated free energy is then given by

F = E0 − µs2N −
∑

q

1

2β
log(

(2π)n

βndetJµ(q)
)− 1

2
βhα−q[Jµ(q)−1]αβhβq . (7.37)

The average value of Sαq is obtained by taking the appropriate derivatives of the free
energy with respect to the field hαq

〈Sαq〉 = − ∂F

∂hαq

∣∣∣∣
h=0

= 0 , (7.38)

and

〈SαqSβ−q〉 =− 1

β

∂2F

∂hαq∂h
β
−q

∣∣∣∣∣
h=0

=
1

2β
[Jµ(q)−1]αβ , (7.39)

where we used
[Jµ(q)−1αβ] = [Jµ(q)−1]βα , (7.40)

which encodes the fact that the way a spin on site i interacts with the spin on site j
stays invariant if we permute the 2 spins, i.e, spins on different lattice sites commute.
And if we take the sum over the diagonal components, we get

∑

α

〈SαqSα−q〉 =
1

2β

∑

α

([Jµ(q)−1]
αα

) =
1

2β
Tr(Jµ(q)−1)

=
1

2β

∑

α

1

ωα + 2µ
, (7.41)

where ωα are the eigenvalues of the interaction matrix J(q) defined by Eq. (7.27). We
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can use Eq. (7.41) to self-consistently calculate the Lagrange multiplier by considering

1

N

∑

q

∑

α

Sα−qSαq =
∑

α

〈SαqSα−q〉 = s2 , (7.42)

and therefore we can write

s2 =
1

2β

∑

α

1

ωα + 2µ
. (7.43)

All we need to do is find a value for µ that satisfies Eq. (7.43), and plug the value
found for µ into Jµ(q) to calculate correlation function through Eq. (7.39).

SCGA for the u(3) Algebra

We here wish to generalize the above method for degrees of freedom of a classical
spin–1. As explained in Section 2.3, a spin–1 also possesses quadrupolar besides dipolar
degrees of freedom, making to O(3)–vector representation incompatible with a complete
description of a spin–1. In Section 2.4, we saw that we can use a representation of
the algebra u(3) in terms of A–matrices accompanied by a constraint [Eq. (2.57)] to
reduce back to the su(3) algebra which properly accounts for a spin–1. The main
advantages of working with the A matrices instead of the spin dipole and quadrupole
components, besides the fact that the BBQ Hamiltonian written in terms of A matrices
only includes quadratric terms in A [Eq. (1.69)], is that they obey simple commutation
rules [Eq. (1.66)], making calculation much easier.

Re–Counting Constraints for a Spin–1

This has been discussed in depth in Chapter 2, but we here repeat the important
concepts that we need here. Anything that can happen to a spin-1 can be represented by
a matrix belonging to the group SU(3), since the Hilbert of a spin—1 is 3–dimensional.
The state of a spin-1 can be represented by three complex coefficients [Eq. (2.35)], that
we can separate into two 3–dimensional vectors u and v, which together form the six
needed real parameters. For convenience, we rename these coefficients as

d∗µ = aµ = uµ + ivµ , (7.44a)
dµ = bµ = uµ − ivµ . (7.44b)

which consists just in a basis transformation of u and v in the complex plane. We still
have six real degrees of freedom encoded into two 3–dimensional vectors a and b, with
the constraint

ab = 1 , (7.45)

which simply is the normalization of the state [Eq. (2.36)] transcribed in terms of a
and b such that we are left with five degrees of freedom.

Additionally, there is also the freedom to fix the phase of the state described by
the director. This reduces the number of degrees of freedom to four, which are the
independent degrees of freedom needed to describe a spin–1 moment.
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Counting Constraints for an A–Matrix

We here present how the number of independent degrees of freedom in an A-matrix
reduces to four, once all the constraints implied by the properties of the A-matrix are
taken into account.

Using Eq. (7.44) and Eq. (2.47), the A-matrix then becomes

〈A〉 =




axbx axby axbz

aybx ayby aybz

azbx azby ayby


 . (7.46)

We note that the A-matrix has 9 complex components. This makes a total of 18
real degrees of freedom. But we want to describe a spin-1, which is described by 4
independent degrees of freedom. So we should have additional constraints that restrict
the components of the A-matrix such that it does indeed represent a spin-1. The
normalization [Eq. (7.45)] simply becomes the trace constraint over the A-matrix

TrA = Ax
x + Ay

y + Az
z = axbx + ayby + ayby = 1 . (7.47)

We also notice that because of the form of Eq. (2.46), (and therefore Eq. (7.46)), A is
an Hermitian matrix [Eq. (2.49)] and we have

Aµ∗
ν = Aν

µ , (7.48)
aµ∗b∗ν = aνbµ , (7.49)

where the last line obvious by construction from the definition of Eq. (7.44) since
aµ∗ = bµ. In Eq. (7.48), we then need to consider the cases when µ = ν and when
µ 6= ν in order to extract the constraints

µ = ν Aµ∗
µ = Aµ

µ ⇒ Im(Aµ
µ) = 0 (Aµ

µ ∈ R)
µ 6= ν Aµ∗

ν = Aν
µ ⇒ Re(Aµ∗

ν ) = Re(Aν
µ) & Im(Aµ∗

ν ) = Im(Aν
µ) .

(7.50)

We note that for µ = ν this corresponds to one constraint on the imaginary part, namely
enforcing the imaginary part to vanish. This implies that the diagonal elements are all
real. While for µ 6= ν, this corresponds to two constraints, one on the real part, and
one on the imaginary part.

Additionally, as can be seen from its definition [Eq. (2.46)], the A–matrix is pro-
portional to a projector operator. A projection P is a linear operator from a vector
space V onto itself

P : V → V such that P 2 = P . (7.51)

From here, we can consider the A–matrix as an operator represented in terms of bosonic
operators d†αd̂β [Eq. (2.66)], or in terms of complex numbers aαbβ [ Eq. (7.46)], where
the difference lie in the fact that the bosonic operators follow bosonic commutation
relations [Eq. (2.65)], while a and b simply commute. We can then show that if
we consider the "classical" representation consisting of complex numbers then the A–
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matrix is idempotent and is a projection

A = A.A . (7.52)

However, if we consider the A–matrix as an operator represented in terms of bosonic
operators d†αd̂β [Eq. (2.66)], then A is proportional to an idempotent matrix

3Â = Â.Â , (7.53)

such that Â
3
is idempotent ( Â

3
. Â

3
= 3Â

9
= Â

3
). This is because when computing the double

product A.A, the terms need to be rearranged. This way, one extract the expression of
the trace, which then allows to identify the product A.A with ∝ A. When considering
bosons d†α, the terms need to be rearranged by taking care of commutation relations,
while no specific care needs to be taken when considering complex numbers. This leads
to a factor 3 difference.

Because the SCGA is built around a classical limit, we can neglect commutation
relations and assume that the A–matrices consist of complex numbers. Eq. (7.52),
written for one component yields

Aµ
ν =

∑

κ

Aµ
κA

κ
ν . (7.54)

For µ = ν, writing down the sum over κ explicitly implies

Aµ
µ = Aµ

αAα
µ + Aµ

βAβ
µ + Aµ

µAµ
µ

⇒ Aµ
µAµ

µ − Aµ
µ +

∑

κ6=µ

Aµ
κA

κ
µ = 0 . (7.55)

Solving the quadratic equation for Aµ
µ would imply that the diagonal coefficient can

be retrieved from the diagonal ones.
For µ 6= ν, we have

Aµ
ν = Aµ

αAα
ν + Aµ

νA
ν
ν + Aµ

µAµ
ν

⇒ Aµ
ν(1− Aµ

µ − Aν
ν) = Aµ

αAα
ν

⇒ Aµ
νA

α
α = Aµ

αAα
ν for µ 6= ν 6= α , (7.56)

where we use the trace constraint Aµ
µ+Aν

ν +Aα
α = 1 in the last line. We observe that

form Eq. (7.56), we can also extract diagonal components in terms of off-diagonal ones.
There is therefore some redundancy in the constraint given in Eq. (7.52). Eq. (7.56)
can be rewritten as

Aµ
ν =

Aµ
αAα

ν

Aα
α

. (7.57)

We note that Eq. (7.57) provides then one constraint for each set of {µ, ν, α} where
µ 6= ν 6= α, and since each of theses are indexed by 3 parameter x, y, or z, knowledge
of 2 of the variables within {µ, ν, α} automatically determines the set. Therefore, we
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can simply consider pairs of variable {µ, ν} such that µ 6= ν where each can take
on 3 different values, which leads to 6 different possibilities. However, because of
the Hermitian nature of the A–matrix [Eq. (7.48)], these 6 constraints are doubly
redundant. It follows that we can consider only 3 different pairs {µ, ν} such that
µ 6= ν to construct the constraints coming from the fact the A–matrix is idempotent.
However, because these constraints are not linear, they actually allow to restrict more
than 3 degrees of freedom, namely 4. Indeed, we show that if we assume that we know
4 initial parameters, using the constraints on the trace, the Hermitian property, and
the projection property of the A–matrix, we can recover the whole A matrix.

This can be seen by using the 3 constraints for 3 different pairs {µ, ν} and combing
them such that we obtain 3 additional constraints. For concreteness, we could consider
as combination of {µ, ν, α} with µ 6= ν 6= α, the combinations

{x, y, z} Ax
yAz

z = Ax
zA

z
y , (7.58a)

{x, z, y} Ax
zA

y
y = Ax

yAy
z , (7.58b)

{y, z, x} Ay
zA

x
x = Ay

xAx
z . (7.58c)

We can then combine Eq. (7.58a) and Eq. (7.58b), by extracting Ax
z

Ax
y
in both equations

and equating their respective expressions. We obtain

Ax
z

Ax
y

Eq. (7.58a)
=

Az
z

Az
y

=
Ay

z

Ay
y

Eq. (7.58b)
=

Ax
z

Ax
y

⇒ Ay
zA

z
y = Ay

yAz
z . (7.59a)

Similarly, considering the conjugate transform version of Eq. (7.58a) and Eq. (7.58c),
we find

Ax
zA

z
x = Ax

xAz
z . (7.59b)

Finally, combining Eq. (7.58b) and Eq. (7.58c), we obtain

Ax
yAy

x = Ax
xAy

y . (7.59c)

We note that Eq. (7.59a) to Eq. (7.59c), allows to represent the norm of the off-diagonal
coefficients in terms of the diagonal ones, which are all real–valued due to the Hermitian
property. Therefore, knowing only 4 initial parameters allows to rebuilt the A–matrix.

For instance, this can easily be seen by rewriting the components of A in their
complex polar form

Aα
β = rαβeiφαβ , (7.60)

and by assuming that we know 2 of the diagonal elements (which are real), let us
choose Ax

x = rxx and Ay
y = ryy, as well as the phase of 2 off–diagonal elements φxy and

φyz. Using the trace constraint [Eq. (7.47)], we easily obtain the remaining diagonal
component Az

z. Then using Eq. (7.59a), we can find the norm of Ay
z. Using Eq. (7.59c),

we obtain the norm of Ax
y. Finally Ax

z can be found using Eq. (7.58a) or Eq. (7.58b).
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The A–matrix is then expressed as

A =

(
rxx

√
rxxryyeiφ

xy √
rxx(1− rxx − ryy)ei(φ

xy+φyz)
√
rxxryye−iφ

xy
ryy

√
ryy(1− rxx − ryy)eiφ

yz√
rxx(1− rxx − ryy)ei(φ

xy+φyz)
√
ryy(1− rxx − ryy)e−iφ

yz
1− rxx − ryy

)
,

(7.61)

in terms of only the 4 initial parameters rxx, ryy, φxy and φyz.
The counting of the number of degrees of freedom is summarized in Table (7.1).

# Degrees of Freedom
A-matrix +18

Trace Constraint TrA=1 -1
Hermitian Property

Aµ∗
ν = Aν

µ

µ = ν -3
µ 6= ν −2× 3 = −6

Projection Property Aµ
νA

α
α = Aµ

αAα
ν -4

Total 4

Table 7.1: Constraints counting on the A–matrix describing a spin–1 moment.
Naively, an A–matrix contains 18 real degrees of freedom. However, a spin–1 mo-
ment is fully characterized by 4 parameters. Here, we show that by accounting for
the properties of the A–matrix, in particular, the constraint on the trace, its Hermi-
tian nature, and the fact that it is a projection, reduces back to 4 independent real
parameters.

We see by using the properties of the A-matrix, namely, the fact that its trace equals
one, that if the complex conjugate of a component equals its conjugate transpose, and
that it is a projection, we can restrict the initial 18 real degrees of freedom encompassed
within the A-matrix down to 4 real degrees of freedom that are required to describe a
spin–1.

The future goal is to derive a numerical implementation of the SCGA for the A–
matrix. The BBQ model [Eq. (1.48)] provides a natural starting point, since it is the
simpler SU(2) symmetric Hamiltonian for a spin–1 and can easily be restricted to the
Heisenberg model by setting J2 = 0. Additionally, we already know its expression
in terms of A–matrices. The fact that it is quadratic in Â implies that a Gaussian
treatment is also applicable. We note that the constraints on the Hermitian property
imply 9 linear constraints, dividing the initial 18 degrees of freedom by half. Therefore,
we can work with 9 degrees of freedom on which we need to ensure the trace and
projection constraints. We can set up these 9 degrees of freedom in a 9–dimensional
vector T̂q, such that we can rewrite the Hamiltonian as

H =
1

2

∑

q

T̂α
−qJ(q)αβT̂β

q . (7.62)

For instance, we could use as the 9–dimensional vector T̂q, the following representation
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T̂q =




Â1
q 1

Â1
q 2

Â1
q 3

Â2
q 1

Â2
q 2

Â2
q 3

Â3
q 1

Â3
q 2

Â3
q 3




. (7.63)

Whether this is the best choice remains to be determined. What also remains to be
understood is how one can self-consistently implement the constraints on the trace
and the projection property of the A–matrix. Indeed, an implementation that allows
to ensure that the trace is conserved on average and the 3 constraints induced by
the idempotent property, should be generalized through the introduction of Lagrange
multipliers, similarly to the O(3) case.

7.3 Concluding Remarks
Finally, I would like to emphasize the generality of my approach for describing spin–1
magnets at the (semi)–classical level. Most of the results presented in this Thesis are
illustrated for the FQ state of the BBQ model. But, both the analytical classical and
quantum theories of fluctuations can be applied to any ordered ground state of a spin–1
system. Additionally, through the generalization of the SCGA method to degrees of
freedom of u(3) A–matrices, I am hopeful that this will also enable a valid classical
approach for exploring unordered spin–1 systems.

An important result obtained from the analysis between the classical and quantum
theories, is the classical–quantum correspondence that links T = 0 quantum (semi-
classical) prediction with finite temperature classical results or finite u3MD simulation
results. This allows to better understand how classical thermal fluctuations can be
correct in order be equivalent to quantum fluctuations at T = 0. Additionally, it
emphasizes the importance of the number of modes available whether a classical or a
quantum treatment is considered.

Spin–1 magnets have many interesting properties and spin–1 models have a wide
application that also includes for example cold atoms [52, 53, 100, 232, 270] or phe-
nomenological theories of superconducting materials, such as Fe–based superconductors
[60, 74, 126, 139, 256]. Taken together, this represents a broad, challenging sets of ap-
plications, where the methods developed in this Thesis have the potential to shine light
on some very interesting problems.

On the experimental side, the methods developed in this Thesis can be applied to
some new and already existing spin–1 materials, such as the triangular–lattice spin–
nematic candidate NiGa2S4 [24, 131, 159, 161, 250, 253], and the pyrochlore spin–liquid
candidate NaCaNi2F7 [188, 267], both discussed in Section 1.3.1.

On the theoretical side, the formalism developed in this thesis has a great potential
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at describing properties of spin–1 magnets, and to be generalized to other methods,
such as the SCGA. The thermodynamic properties of spin–1 magnets, which can host
quadrupoles on a single site, are qualitatively different from spin–1

2
systems. For this

reason, spin–1 magnets also support different types of orders with interesting topologi-
cal excitations. They nevertheless remain relatively unexplored, mostly because of the
lack of available theoretical tools. This allows for a wide range of applicability of the
analytical methods in combination of the u3MC and u3MD methods to provide a pow-
erful tool to investigate the (semi)–classical thermodynamics and dynamic of spin–1
magnets. Additionally, the numerical methods developed in this thesis can also be
applied to investigate unordered phases, such as spin–liquids or systems with complex
excitations, as well as to explore unusual phase transitions where topological excita-
tions can appear and their associated dynamics, giving access to dynamical properties
that until now remained inaccessible. The ordered ground states of the BBQ model
have already been shown, for instance, to be able to exhibit topological excitations
[63, 78, 102, 103, 260]. Dynamics and thermodynamics of which can be investigated
with the methods developed in this Thesis.

The u3MC simulations results shown in this Thesis were obtained using a Metropolis
algorithm with a single spin–update. However, more general cluster– [127] or worm–
[168] updates could be implemented. Similarly, the u3MD method developed here using
a simple 4th order Runge–Kutta algorithm is ripe for technical refinement.

In conclusion, both the analytical and numerical methods developed in this Thesis
provide valid and powerful tools to investigate spin–1 magnets. Indeed, the classical
and quantum analytical theories of fluctuations, as well as u3MC and u3MD numerical
methods introduced in this work provide a reliable and convenient way to explore the
classical thermodynamics, and semi–classical dynamics of spin–1 magnets, paving the
way for new theories and interpretations of experimental data.

Lastly, I would like to congratulate the reader who made it to this line. This Thesis
has been a long journey and I am convinced that we all are happy to see the final point
ending this chapter and all the work entailed here, endpoint that will hopefully be the
starting point of further interesting research.
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Appendix A

Spin Fluctuation Probability

In this Appendix, I detail how the spin fluctuation probabilities drawn in Fig. 1.3,
Fig. 2.1, Fig. 3.1, Fig. 3.2, Fig. 6.2, and Fig. 6.3 are calculated.

Fluctuations around a given state |α〉 can be calculated by computing its spin
fluctuation probability, defined as the spatial probability distribution of the overlapping
between the state |α〉 and the spin coherent state |Ω〉. The spin coherent state |Ω〉 is
obtained by applying a rotation operator in 3 dimensions defined by the angles θ and
φ on the m=1 state |1〉:

|Ω〉 = R(θ, φ)|1〉 . (A.1)

The spin coherent state represents then a spin pointing in the direction defined by the
angles θ and φ. In the case of a spin–1, the spin coherent state is expressed as:

|Ω〉 =
1 + cos θ

2
e−iφ|1〉+

sin θ√
2
|0〉+

1− cos θ

2
e−iφ

∣∣1
〉
. (A.2)

The spin fluctuation probability of the state |α〉 is defined as the norm of the scalar
product with the spin coherent state:

P (θ, φ)|α〉 = |〈α|Ω〉|2 . (A.3)
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Appendix B

Properties of A–Matrices

Here, I present the fundamental properties of the "A-matrix". It follows from the defini-
tion in Eq. (2.46) that the A–object is mathematically a (1,1)-tensor, but for simplicity,
I might usually refer to it as a matrix. In this Appendix, I also give the detailed ex-
planations accompanying the symmetry analysis of the BBQ Model [Eq. (1.69)] that I
discuss at the end of Section 2.4.4.

B.1 Properties of a Single A–Matrix

First, I present how Eq. (2.62) is obtained. Eq. (2.62) tells us how an object like Âαβ
would transform under a general linear transformation Λ. To this end, as explained
in Section 2.4.3, we consider a general linear transformation Λ : V → V , such that
detΛ 6= 0, so that Λ is invertible, and we define

Λ̃ = Λ−1T . (B.1)

Under such a transformation, the basis vector ei of the vector space V will transform
according to

ei = Λ̃ j
i ej . (B.2)

Since the vector v = viei is a mathematical object which existence does not depend
on the basis, the components vi should transform according to

vi = Λi
jv
j , (B.3)

such that the vector v = viei = viei stays invariant. It is then also possible to introduce
the dual basis {e?i} of the dual vector space V ?. The basis vectors can be defined by
the relations

e?i(ej) = δij . (B.4)

Any element v? of V ? can be decomposed as

v? = v?i e
?i , (B.5)
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where the components v?i are simply given by the value of the function v? on the basis
vector ei of V

v?i = v?(ei) . (B.6)

Under a general transformation Λ on the basis vectors ei, the dual basis vectors e?i
will transform according to

e?i = Λi
je
?j , (B.7)

in order to preserve Eq. (B.4). And the component v?i will transform as

v?i = Λ̃ j
i v

?
j . (B.8)

Finally, under such a general transformation Λ, the component of an object like Âαβ,
which is actually a (1,1)-tensor, will transform as stated in Eq. (2.62).

B.2 Properties of Quadratric Terms of A–Matrices

Here, I show how the products of two objects Âαβ would transform under a linear
transformation, in order to analyze the symmetry properties of the BBQ Hamiltonian
rewritten in terms of Â -“matrices” [Eq. (1.69)]. Again, I emphasize that the object
Âαβ is mathematically a tensor, but for simplicity, I might sometimes refer to them as
matrices.

Going back to Eq. (1.69), it can easily be seen that the first term Âαi βÂβj α is U(3)
symmetric because both indexes α and β are contravariant on one site and covariant on
the other. The Âαi βÂβj α will therefore stay invariant under a transformation U ∈ U(3),
for which we have

U ∈ U(3) : UU † = U †U = I ⇒ U † = U−1 . (B.9)

Indeed, under a U(3) symmetry, the first term will transform as

(Âαi β)µν(Âβj α)νµ →Uµ
γU
†κ
ν(Âαi β)γκU

ν
ηU
†λ
µ(Âβj α)ηλ

= Uµ
γU
†λ
µU

ν
ηU
†κ
ν(Âαi β)γκ(Âβj α)ηλ

= δ λ
γ δ

κ
η (Âαi β)γκ(Âβj α)ηλ

= (Âαi β)γκ(Âβj α)κγ . (B.10)

The second term in Eq. (1.69), on the other hand, is not U(3) symmetric, but it is
O(3) symmetric. We can see that under a U(3) transformation, it transforms as:

(Âαi β)µν(Âαj β)µν →Uµ
γU
†κ
ν(Âαi β)γκU

µ
ηU
†λ
ν(Âαj β)ηλ

= Uµ
γU

µ
ηU
†λ
νU
†κ
ν(Âαi β)γκ(Âαj β)ηλ . (B.11)

Clearly, this is not invariant under a U(3) transformation, but it is under a O(3)
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transformation. If U = O ∈ O(3), we have

O ∈ O(3) : OOT = OTO = I ⇒ OT = O−1 , (B.12)

and under a O(3) transformation, it transforms as:

(Âαi β)µν(Âαj β)µν →Oµ
γO

µ
ηO

T λ

νO
T κ

ν(Âαi β)γκ(Âαj β)ηλ

= OT µ

γ O
µ
ηO

T λ

νO
κ
ν (Âαi β)γκ(Âαj β)ηλ

= δγηδ
κλ(Âαi β)γκ(Âαj β)ηλ

= (Âαi β)γκ(Âαj β)γκ . (B.13)

The Hamiltonian is therefore overall O(3) symmetric, indeed both terms are invari-
ant under an O(3) symmetry. And in the case of J1 = J2, the second term in Eq. (1.69)
vanishes, and the Hamiltonian is U(3) symmetric. Therefore, working in U(3) does not
change the global symmetry of the Hamiltonian, since o(3) ' su(2), and there is an ho-
momorphism from SU(2) into O(3). However, the locally augmented SU(3) symmetry
of the Hamiltonian when J1 = J2 is enlarged from SU(3) to U(3). However, because
of the constraint on the Ai–matrices [Eq. (2.73)], the U(3) symmetry is broken down
to SU(3).

The Hamiltonian can be rewritten in a more general form as

HBBQ =
∑

〈i,j〉

Jαµβν Âαi βÂµj ν , (B.14)

with

J =




J2 0 0
0 0 0
0 0 0

  0 J2 − J1 0
J1 0 0
0 0 0

  0 0 J2 − J1
0 0 0
J1 0 0

 0 J1 0
J2 − J1 0 0

0 0 0

 0 0 0
0 J2 0
0 0 0

 0 0 0
0 0 J2 − J1
0 J1 0

 0 0 J1
0 0 0

J2 − J1 0 0

 0 0 0
0 0 J1
0 J2 − J1 0

 0 0 0
0 0 0
0 0 J2




 . (B.15)

The indexes α and β correspond respectively to the line and the row of the table that
assigns the designated matrix, whose components are then given by µ and ν. For
example,

J1µ
2ν =




0 J2 − J1 0
J1 0 0
0 0 0


 , J12

21 = J1 , J11
22 = J2 − J1 . (B.16)

The symmetries of the Hamiltonian are now hidden in the symmetries of the tensor
Jαµβν . Firstly, we see that the Hamiltonian is O(3) symmetric, because the repeated
summed indexes are always either covariant or contravariant. The tensor is also sym-
metric under the exchange αβ ↔ µν

Jαµβν = Jµανβ . (B.17)

Eq. (B.17) expresses the fact that there is actually a tensor product between the two
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operators Âαi β and Âµj ν acting on different sites. We also have α ↔ ν with β ↔ µ
together, which is just relabeling the indexes.

In the case of J1 = J2, the tensor is also symmetric under the exchanges α ↔ µ
and β ↔ ν or both

Jαµβν = Jµαβν = Jαµνβ . (B.18)

It is also symmetric under the exchanges β ↔ µ and α↔ ν

Jαµβν = Jαβµν = Jνµβα = Jνβµα , (B.19)

in which case, it can easily be seen that the Hamiltonian is U(3) invariant, since every
index is now summed covariantly.



Appendix C

Bogolioubov Transformation

Here I show how the Bogoliubov transformation used in Section 4.1 is performed.
A Bogolioubov transformation consists in finding new bosons v̂†αk and v̂kα expressed

in terms of the bosons ŵ†αk and ŵkα [Eq. (4.6b)] , such that they diagonalize the
Hamiltonian

HBBQ ∼
∑

k

εkv̂†
kv̂k . (C.1)

Let us assume that the components are given by

v̂kα =Uk
β
α ŵkβ ,

v̂†αk =ŵ†βk U
† α
kβ , (C.2)

where Uk is, in our case, the transformation from the basis made out of bosons ex-
pressed by time-reversal basis states to the basis in which the Hamiltonian is diagonal.
Requiring them to have bosonic commutation relations [Eq. (4.7)], leads to

[
v̂kα, v̂

†β
q
]

=
[
Uk

γ
α ŵkγ, U

† β
qη ŵ†ηq

]

= Uk
γ
α U

† β
qη
[
ŵkγ, ŵ

†η
q
]

= Uk
γ
α U

† β
qη γ0

η
γ δkq

!
= γ0

β
α δkq

⇒ Uk
γ
α γ0

η
γ U

† β
kη = γ0

β
α

⇒ γ0
η
γ U

† β
kη γ0

α
β = U−1

k
α

γ , (C.3)

where γ0 is defined in Eq. (4.8), and where we used the fact that

γ0 = γ0
−1 . (C.4)

In the compact form, Eq. (C.3) becomes

γ0U
†
k γ0 = U−1

k . (C.5)

We see that the transformation Uk is not unitary, U−1
k 6= U †k , and that we shall use

Eq. (C.5) to find the inverse transformation.
Inverting Eq. (C.2) and plugging it into the Hamiltonian leads us to look for a
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transformation Uk such that Uk γ0MkU
−1
k is diagonal. If we define Dk as being a

diagonal matrix, we can write

Uk γ0MkU
−1
k = Dk

⇒ γ0
α
ν Mk

β
α U

−1
k

i

β = U−1
k

i

ν Dk
i
i for i = 1, 2, 3, 4 , (C.6)

where we see that U−1
k

i

ν is an eigenvector of γ0Mk with eigenvalue Dk
i
i. Eq. (C.6) is

rewritten as Eq. (4.9) in the main text. This means that we need to diagonalize γ0Mk
and that the corresponding eigenvectors are the column of the matrix U−1

k .
Finding the Bogolioubov transformation reduces then to find the eigenvalues and

eigenvectors of the system in Eq. (4.9). Since Eq. (4.9) consists of twice the same
system, we only need to solve it once, and we only consider

σzmkei = εk,iei i = 1, 2 , (C.7)

where
σz =

(
1 0
0 −1

)
, mk =

(
Ak −Bk
Bk −Ak

)
, (C.8)

and where σz plays the role of γ0 but for the two independent subsystems for
(
â−k, â†k

)

and
(
b̂−k, b̂†k

)
. The eigenvalues εk,1/2 of σzmk are given in Eq. (4.11). The eigenvectors

are given by

e1 =

(
α1

1

)
, e2 =

(
α2

1

)
, (C.9)

in the basis {âk, â
†
−k} and where we define

αi = −Ak + εk,i
Bk

. (C.10)

The columns of the matrix U−1
k are given by the eigenvectors

U−1
k =

(
α1 α2

1 1

)
. (C.11)

Using Eq. (C.5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
α1 −1
−α2 1

)
. (C.12)

Using Eq. (C.2), the new bosons that diagonalize the Hamiltonian are given by

α̂k = v̂k1 = Uk
1

1 ŵk1 + Uk
2

1 ŵk2 = α1âk − â†−k , (C.13a)

α̂†−k = v̂k2 = Uk
1

2 ŵk1 + Uk
2

2 ŵk2 = −α2âk + â†−k , (C.13b)

α̂†k = v̂†1k = ŵ†1k U
† 1
k1 + ŵ†2k U

† 1
k2 = α1â†k − â−k , (C.13c)

α̂−k = v̂†2k = ŵ†1k U
† 2
k1 + ŵ†2k U

† 2
k2 = −α2â†k + â−k . (C.13d)
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For instance, we note that we should have v̂k1 = v̂†2−k i.e α̂k(k) = α̂−k(−k). However,
we see that it is not the case

v̂k1 = α1âk − â†−k 6= −α2â†−k + âk = v̂†2−k . (C.14)

For it to be the case, we see that we need the matrix element of the transformation to
be

Uk
1

1 = U † 2
−k2 , (C.15a)

Uk
2

1 = U † 2
−k1 . (C.15b)

To solve this issue, we can assume that we can multiply the eigenvectors by some
parameters, a and b for instance, such that Eq. (C.15) is satisfied

e1 = a

(
α1

1

)
, e2 = b

(
α2

1

)
. (C.16)

U−1
k becomes

U−1
k =

(
aα1 bα2

a b

)
. (C.17)

Using Eq. (C.5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
aα1 −a
−bα2 b

)
. (C.18)

We also have

U †k =

(
aα1 −bα2

−a b

)
. (C.19)

Note that the coefficients α1 and α2 depend on k through εk,but we dropped the
dependency in k for α1 and α2. Using the fact that εk = ε−k, Eq. (C.15) implies

Uk
1

1 = U † 2
−k2 ,

aα1 = b ,

a
−Ak−

√
A2

k−B
2
k

Bk
= b ,

a
−Bk

= b

Ak+
√
A2

k−B
2
k
,

(C.20a)

and
Uk

2
1 = U † 2

−k1 ,
−bα2 = −a ,

−b−Ak+
√
A2

k−B
2
k

Bk
= −a ,

b
−Bk

= −a
−Ak+

√
A2

k−B
2
k
.

(C.20b)
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We see that if we multiply the last line of Eq. (C.20b) by −Bk

Ak+
√
A2

k−B
2
k
we get

−Bk

Ak +
√
A2

k −B2
k

b

−Bk
=

−Bk

Ak +
√
A2

k −B2
k

−a
−Ak +

√
A2

k −B2
k

, (C.21a)

⇒ b

Ak +
√
A2

k −B2
k

=
a

−Bk
. (C.21b)

We note that Eq. (C.21b) is exactly the same condition as in the last line of Eq. (C.20a).
This makes sense, because the 1stcondition, namely Uk

1
1 = U † 2

−k2 is correlated the the
second one Uk

2
1 = U † 2

−k1, as the components Uk
1

1 , Uk
2

1 are not independent, as they
need to be eigenvectors, and nor are the components U † 2

−k2, U
† 2
−k1. This means that we

can choose

a = −Bk , (C.22)

b = Ak +
√
A2

k −B2
k . (C.23)

In this case, the eigenvectors become

e1 =

(
∆k
−Bk

)
, e2 =

(
−Bk
∆k

)
, (C.24)

where ∆k is given Eq. (4.13). And the transformation matrix becomes

U−1
k =

(
∆k −Bk
−Bk ∆k

)
. (C.25)

Using Eq. (C.5), we can calculate Uk as follows:

Uk = σzU
†−1
k σz =

(
∆k Bk
Bk ∆k

)
. (C.26)

And its complex conjugate yields

U †k =

(
∆k Bk
Bk ∆k

)
. (C.27)

Using Eq. (C.2), the new bosons, which diagonalize the Hamiltonian, are given by

α̂k = v̂k1 =Uk
1

1 ŵk1 + Uk
2

1 ŵk2 = ∆kâk +Bkâ†−k , (C.28a)

α̂†−k = v̂k2 =Uk
1

2 ŵk1 + Uk
2

2 ŵk2 = Bkâk + ∆kâ†−k , (C.28b)

α̂†k = v̂†1k =ŵ†1k U
† 1
k1 + ŵ†2k U

† 1
k2 = ∆kâ†k +Bkâ−k , (C.28c)

α̂−k = v̂†2k =ŵ†1k U
† 2
k1 + ŵ†2k U

† 2
k2 = Bkâ†k + ∆kâ−k . (C.28d)

We see that, now, we indeed have v̂k1 = v̂†2−k, i.e., α̂k(k) = α̂−k(−k) = α̂k. However,
we still need to normalize the new bosons. Indeed, they should also satisfy bosonic
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commutation relations
[
α̂k, α̂

†
k

]
=

[
1√
N

(∆kâk +Bkâ†−k),
1√
N

(∆kâ†k +Bkâ−k)

]

=
1

N
(∆2

k

[
âk, â

†
k

]
+B2

k

[
â†−k, â−k

]
)

=
1

N
(∆2

k −B2
k)

!
= 1

⇒ N = ∆2
k −B2

k . (C.29)

Finally, the normalized transformation matrix becomes

Uk =
1√

∆2
k −B2

k

(
∆k Bk
Bk ∆k

)
. (C.30)

The inverse [Eq. (C.5)] holds

U−1
k = σzU

†
k σz =

1√
∆2

k −B2
k

(
∆k −Bk
−Bk ∆k

)
. (C.31)

By inverting the Bogolibov transformation [Eq. (C.2)], we can express the old bosons
in terms of the new Bogolibov bosons using Eq. (C.31),

âk = ŵk1 =U−1
k

β

1 v̂kβ =
1√

∆2
k −B2

k

(∆kα̂k −Bkα̂
†
−k) , (C.32a)

â†−k = ŵk2 =U−1
k

β

2 v̂kβ =
1√

∆2
k −B2

k

(−Bkα̂k + ∆kα̂
†
−k) , (C.32b)

â†k = ŵ†1k =v̂†βk U
†−1
k

1

β =
1√

∆2
k −B2

k

(∆kα̂
†
k −Bkα̂−k) , (C.32c)

â−k = ŵ†2k =v̂†βk U
†−1
k

1

β =
1√

∆2
k −B2

k

(−Bkα̂
†
k + ∆kα̂−k) . (C.32d)

For the other part of the Hamiltonian containing the b̂† bosons, the problem is
exactly the same, and therefore, we can just use the solutions we found above. The
eigenvalues εk,3 and εk,4 associated to the Bogoliubov bosons for the

(
b̂−k, b̂†k

)
subsys-

tem are given by Eq. (4.11). To express the old bosons in terms of the new Bogoliubov
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bosons, we can just use Eq. (C.32):

b̂k =
1√

∆2
k −B2

k

(∆kβ̂k −Bkβ̂
†
−k) , (C.33a)

b̂†−k =
1√

∆2
k −B2

k

(−Bkβ̂k + ∆kβ̂
†
−k) , (C.33b)

b̂†k =
1√

∆2
k −B2

k

(∆kβ̂
†
k −Bkβ̂−k) , (C.33c)

b̂−k =
1√

∆2
k −B2

k

(−Bkβ̂
†
k + ∆kβ̂−k) . (C.33d)

There is a constant term coming from the Bogoliubov transformation [Eq. (C.32)
and Eq. (C.33)]. For the bosons â†±k, â±k it holds:

−Ak +
√
A2

k −B2
k = −Ak + εk,1 , (C.34a)

and for the bosons b̂†±k, b̂±k:

−Ak +
√
A2

k −B2
k = −Ak + εk,3 , (C.34b)

where we use Eq. (4.11).
After performing the Bogolibov transformation, the Hamiltonian becomes

H =E0 +
1

2

∑

k

[
εk,1α̂

†
kα̂k + εk,1α̂

†
−kα̂−k − Ak + εk,1 + εk,3β̂

†
kβ̂k + εk,3β̂

†
−kβ̂−k − Ak + εk,3

]
,

(C.35)

that we can rewrite as

H =E0 +
∑

k

[
εk,1(α̂†kα̂k +

1

2
) + εk,3(β̂†kβ̂k +

1

2
)− Ak

]
, (C.36)

where E0 is given in Eq. (3.14). Eq. (C.36) is given in the main text by Eq. (4.15),
where we used the fact that εk,1 = εk,3 [Eq. (4.11)], since they are the eigenvalues of an
identical problem.



Appendix D

Conventions for the Triangular Lattice

In this Appendix, I present the convention used to describe the triangular lattice and
its reciprocal space. The real space lattice vectors, linking a single site unit cell to
another, are chosen as

a =

(
1
0

)
; b = 1

2

(
1√
3

)
. (D.1)

The associated vectors in reciprocal space are given by

ka = 2π√
3

(√
3
−1

)
; kb = 2π√

3

(
0
2

)
. (D.2)

We define the points along the irreducible wedge in reciprocal space to be

Γ =

(
0
0

)
; K = 4π

3

(
1
0

)
; M = π√

3

(√
3

1

)
. (D.3)

The vectors δ linking the 6 neighboring sites are given by

δ =

(
1
0

)
; 1

2

(
1√
3

)
; 1

2

(−1√
3

)
;

(
−1
0

)
; 1

2

( −1

−
√

3

)
; 1

2

(
1

−
√

3

)
.

(D.4)

For the triangular lattice, the coordination number and the geometrical factor given in
Eq. (3.18) yield

z = 6 ; γ/(k) = 1
3
(cos(kx) + 2 cos(kx

2
) cos(

√
3ky
2

)) . (D.5)

The numerical simulations presented in this Thesis are all performed on a cluster
of sites defined by the real space basis vectors given by Eq. (D.1) and scaled by L, such
that N = L2 is the number of lattice sites, with periodic boundary conditions.
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Appendix E

Numerical Simulation of Spin–1

For completeness, I here provide details about the numerical implementation of our
method which has been implemented by my collaborator Dr. Rico Pohle.

E.1 u3MC
We here show the evidence that the generalised Marsaglia approach proposed in Eq. (2.120),
which randomly generates the variable x1, · · · , x6 on a 5-dimensional sphere points,
properly and independently selects them.

As illustrated in Fig. E.1, the second moment 〈x2
m〉 of each variable x1, · · · , x6

[Eq. (2.120)] converges towards 1/6 (middle black solid line) as the number of points
Ndot → ∞, proving that the xm are uncorrelated. The central–limit theorem requires
the statistical errors in function of Ndot, to decrease as 1/

√
Ndot. This behaviour is

indicated by the dashed lines.

m=1 m=2 m=3

m=4 m=5 m=6

1000 104 105 106 107
0.150
0.155
0.160
0.165
0.170
0.175
0.180
0.185

Ndot

〈x
m2
〉

Figure E.1: Statistical independence of points randomly generated a 5–dimensional
sphere, using Eq. (2.120). The second moment 〈x2

m〉 of the variables xm, m = 1, ..., 6 is
plotted as a function of the number of points, Ndot and converges towards 〈x2

m〉 → 1/6
(middle black solid line) as Ndot → ∞. Statistical errors respect the central–limit
theorem and decrease as 1/

√
Ndot (dashed lines). Sampling was performed by my

collaborator Dr. Rico Pohle. Figure is reproduced from [201].
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E.1.1 Phase Diagram and Comparison with Published Results

We first benchmark our method, by carrying out u3MC simulations for the spin–1 BBQ
model Eq. (2.68) on a triangular lattice, and comparing the obtained thermodynamic
properties with published results [131, 229, 235]. Results for the heat capacity are
shown in Fig. E.2, with parameters J1 = 1, J2 = −1.5, in accordance with earlier
work [235]. For these parameters, mean–field calculations [Figure 1.11] predict an anti-
ferromagnetic (AFM) ground state with 3–sublattice order, close to a phase boundary
with ferroquadrupolar (FQ) order [131, 229]. Simulation for the heat capacity in the
space of A–matrices [cf. Section 2.6.1], shows a two peaks structure. One peak is
located around T ≈ 0.5 J1, corresponding to the onset of FQ fluctuations, and another
one T ≈ 0.3 J1 corresponding to the onset of AFM fluctuations. For comparison, we
have additionally carried out similar simulations for d–vectors, following the sSU(3)
approach of Stoudenmire et al. [235]. These results are also shown in Fig. E.2, and we
find quantitative agreement between the two methods within statistical errors. This
analysis has also been extended to obtain a complete finite–temperature phase diagram
for the BBQ model, which was previously presented in Fig. 1.13. Results are shown for
a linear dimension L = 48 [N=2304 spins] of the cluster. The onset of the correlations
as the temperature is decreased corresponds to the peak found in the heat capacity as
a function of

J1 = J cos θ , J2 = J cos θ . (E.1)

The nature of each phase is determined by using the equal–time structure factors
SS(q) and SQ(q) [Eq. (2.124)]. Fig. E.3 shows results for structure factors evaluated
at given ordering vectors, for a temperature T/J = 0.01.

The correlations found by the u3MC method at low temperature exactly correspond
to the four known mean–field ground states [131, 229], as illustrated in Fig. 1.11. As
previously noted by Stoudenmire et al. [235], FQ order corresponds to a secondary
order parameter within the coplanar AFM ground state. Consistent with this, for
θ . −π

4
the onset of FQ fluctuations occurs at a higher temperature than the onset of

AFM fluctuations (cf. results for θ ≈ −0.313 π in Fig. E.2).
We also note that similar behaviour occurs in a range of parameters θ ∼ π/2, near

the border between FM and AFQ phases, where the onset of FM fluctuations occurs at
a higher temperature than the onset of AFQ fluctuations. However, an interpretation
in terms of a secondary order–parameter is here not possible. Nevertheless, we note
that the single–sublattice phase dominates at higher temperatures. We infer that
the entropy of fluctuations about the FM ground state is higher than the entropy of
fluctuations about the AFQ ground state, presumably because of the k2 dispersion of
the FM excitations.
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Figure E.2: Comparison of the U(3) Monte Carlo (u3MC) method with published
results for the spin–1 bilinear—biquadratic (BBQ) model on the triangular lattice for
parameters J1 = 1, J2 = −1.5, which corresponds to the AFM phase [Fig. 1.11].
Specific heat C/N shows a double–peak structure. Results obtained from MC sim-
ulation, based on a u(3) matrices, Âαβ description, for an u3MC update based on a
5–dimensional sphere [Eq. (2.120)] and 4–dimensional sphere by eliminating the gauge
freedom on the phase [Eq. (2.120) with Eq. (2.122)] are represented by squares and
triangles symbols, respectively. u3MC simulations were performed by my collaborator
Dr. Rico Pohle. While, circles correspond to results from "sSU(3)" MC simulations in
the space of the complex vector d, following Stoudenmire et al.. The three different
approaches agree within statistical errors. Figure is reproduced from [201].

Between dipolar and quadrupolar phases, the phase boundaries follow the well
defined "vertical" behaviour as shown as solid red lines in Fig. 1.13, which corresponds
to the two SU(3) points. This is consistent with the SU(3) symmetry of the ground–
state manifolds, which contains both a dipolar and a quadrupolar nature. And the
SU(3) symmetry of the ground–state manifolds is being preserved up to temperature
associated with the onset of correlations, T ∗. This allows for the exciting possibility of
finding exotic topological phase transitions at T ∗, corresponding to topological defects
specifically associated to the SU(3) points [104, 252]. This interesting topic is left aside
for future studies.
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(a) Dipolar structure factor SS(q) (b) Quadrupolar structure factor SQ(q)

Figure E.3: Phases occurring in the spin–1 BBQ model on a triangular lattice at
finite temperature, as found in classical Monte Carlo simulation in the space of u(3)
matrices (u3MC). (a) Dipolar structure factor SS(q) [Eq. (2.124)], representing ferro-
magnetic (FM) correlations for q = Γ (red circles) and 3–sublattice antiferromagnetic
(AFM) correlations for q = K (blue triangles). (b) Quadrupolar structure factor
SQ(q) [Eq. (2.124)], showing ferroquadrupolar (FQ) correlations for q = Γ (red circles)
and 3–sublattice antiferroquadrupolar (AFQ) correlations for q = K (blue triangles).
Simulations of Eq. (1.48) were performed using the u3MC method described in Sec-
tion 2.6.1, for a system size with linear dimension L = 48 (N = 2304 spins), at a
temperature T = 0.01 J and for the FQ phase with parameters given by Eq. (E.1).
The phases found are in direct correspondence with known results for the mean–field
ground state [131, 183, 229], summarised in Fig. 1.11. In each case, the temperature
associated with the onset of fluctuations corresponds to the peak found in specific heat,
cf. Fig. 1.13. Simulations were carried out by my collaborator Dr. Rico Pohle. Figures
are reproduced from [201].

E.2 Molecular Dynamics Simulations Within u(3) Frame-
work

Here I provide additional details about the practical implementation of the "u3MD"
approach introduced in Section 2.6.2.

E.2.1 Implementation of u3MD Update

We iteratively apply the RK–4–integration

{Aαi,β(t)} 7→ {Aαi,β(t+ δtRK)}+O(δt5RK) , (E.2)

which generates a time series for {Aαi,β(t)}. The errors associated with the RK–
integration are controlled by the size of δtRK. A single RK update is defined through
numerical integration of Eq. (2.74) for every component of every spin in the lattice. The
results are saved for every 20th global update. This allows to work with manageable
data size and to maintain sufficient precision in the numerical integration scheme.
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The stored data then generates a time series

{Aαβ(i, tn)} , tn = n δt , n = 1 . . . Nt , (E.3)

where δt is the size of the effective time step and where Nt is the total number of stored
time steps. The size of the effective time step, δt, determines the highest frequency
that we can resolve to

δt =
2π

ωmax
. (E.4)

And the duration of the simulation

∆t = Nt δt , (E.5)

determines the energy–resolution

δω =
2π

∆t
, (E.6)

where we choose to work in units such that ~ = 1.
Practically, we set a typical length of time–series corresponding to

Nt = 1600 , (E.7)

and a time–step

δt ≈ 0.4 J−1 , (E.8)

such that the time–interval used in RK integration for an individual spin is

δtRK ≡ δt/20 ≈ 0.02 J−1 . (E.9)

This choice of parameters allows us to resolve excitations with energy up to

ωmax ≈ 16 J , (E.10)

which is twice as large as the maximum energy for excitations of the FQ state as shown
in Fig. 1.14, with parameters

(J = 1, θ = −π
2

)⇒ (J1 = 0.0, J2 = −1.0) . (E.11)

The corresponding energy resolution

δω ≈ 10−2 J , (E.12)

is shown to be sufficient in order to resolve fine–structure in dynamical structure factors
described below. As previously mentioned, the validity of our MD approach relies on
the preservation of the trace of the A–matrices [Eq. (2.73)] and the conservation of the
total energy of the system E[Ai] [Eq. (2.117)].
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First, we examine the constraint on spin–length. As explained in Section 2.4.5,
the structure of the EoM [Eq. (2.74)] guarantees that the spin–length constraint is
preserved throughout the time evolution, such that, as long as the initial configuration
{Âαi β(t = 0)} satisfies the spin–length constraint

Tr Âi ≡ 1 ∀ i ∈ (1 . . .N) , (E.13)

the constraint will remain satisfied at all times. In Fig. 2.2 (a), we indeed note that,
up to numerical precision, the trace of Ai is conserved. Simulations were done for a
duration corresponding to Nt = 5000. Therefore, simulations of any feasible duration,
continue to properly describe spin–1 moments.

Secondly, we look into the conservation of energy. RK–integration does not conserve
energy. The size of the RK time step, δtRK, gives out the rate at which the error
builds up. And, by ensuring that δtRK is sufficiently small, we can keep the errors in
energy bounded. From Fig. 2.2 (b), we can see that the error in energy produced over
simulations of duration Nt = 5000 is ≈ 0.03 J . This means that one "MD step", which
consists in scanning the entire lattice using the RK–4 algorithm, accumulates an error
in the total energy of order ∼ 10−6 J . This is sufficiently small to make sure that the
energy is adequately conserved for simulations of practical duration, i.e. Nt = 1600,
∆t ≈ 1600× δt = 640 J−1.

E.2.2 Calculation of Dynamical Structure Factors

Time evolution of the equations of motions enables us to obtain a time series {Aαβ(i, tn)}.
Investigating the associated dynamics can be done by directly drawing the spin con-
figurations and animating their evolution [190], or by computing dynamical structure
factors of the form

Sλ(q, tn) =

〈∑

αβ

(
mλ

α
β(q, tn)

)∗
mλ

α
β(q, 0)

〉
, (E.14)

with λ = S,Q,A (similarly to the equal–time structure factor defined in Eq. (2.124)).
where for dynamical structure factor for A–matrices, we define

mA
α
β(q, tn) =

1√
N

N∑

i=1

eiriqAαi β(tn) , (E.15)

(similarly to the time–independent moment Eq. (2.125)). For dipole– mS
α
α(q, t) and

quadrupole–moments mQ
α
β(q, t), we can obtain equivalent expressions by extension of

Eq. (2.126) and Eq. (2.127).
In order to compare with experiments, it is usually more convenient to work with

the time Fourier transformed structure factors

Sλ(q, ωm) =
1√
Nt

Nt∑

n=1

eiωmtn Sλ(q, tn) , (E.16)



E.2 Molecular Dynamics Simulations Within u(3) Framework 229

where ωm and q are discrete

ωm = m δω , m = 0 . . . Nt − 1 . (E.17)

Additionally, we multiply the time–series entries used to compute Eq. (E.16) by a
Gaussian envelope centered at tn = ∆t/2. This allows to avoid numerical artefacts
(Gibbs phenomenon) due to discontinuities at t = 0 and t = ∆t [11]. We then evaluate
the dynamical structure factor as expressed in Eq. (2.130) and Eq. (2.131), where
Eq. (2.131) is computed by Fast Fourier transform (FFT) [194]. The Gaussian envelope
multiplication is performed using

g(tn) =
δt

δωn

σ√
2π
e−

σ2

2
(tn−∆t/2)2 , (E.18)

and takes in a dimensional factor δt/δω associated with integrals. We choose the
value of σ such that the full–width half maximum (FWHM) of g(tn) is ≈ ∆t. The
introduction of the Gaussian envelope in time is equivalent to a convolution of Sλ(q, ω)
with a Gaussian in frequency space, with

FWHM = 2
√

2 ln 2× σ , (E.19)

which is approximately equal to δω, and which determines the ultimate energy res-
olution of the results. Structure factors are then calculated by averaging over 500
independent time–series, each originated from separate initial states drawn from clas-
sical MC simulation.





Appendix F

Useful Gaussian Integrals

Here, I present useful Gaussian integrals that are used to calculate partition functions
for the analytic derivations. Namely the following one–dimensional Gaussian integrals
are used

∫
e−

1
2
ax2dx =

√
2π

a
, (F.1a)

∫
e−

1
2
ax2e±bxdx =

√
2π

a
e
b2

2a , (F.1b)
∫
e−

1
2
ax2e±ibxdx =

√
2π

a
e−

b2

2a . (F.1c)

These can be generalized to a multi-dimensions integral with a source term

∫
e−

1
2
xiAijxj+Bixid~x =

√
(2π)n

detA
e

1
2
~BTA−1 ~B , (F.1d)

or more generally,

∫
e−

1
2
xiA

i
jx
j+BT1,ix

i+xiB
i
2d~x =

√
(2π)n

detA
e2 ~BT1 A

−1 ~B2 , (F.1e)

where n is the dimension of the matrix A. Below, I provide a proof of Eq. (F.1e).
Proof: We assume A to be a real symmetric n×n-matrix. This means that A is or-

thogonally diagonalizable, i.e., it is similar to a diagonal matrix D = diag(d1
1, . . . , d

n
n)

A = SDS−1 , (F.2)

and the n × n basis change matrix S is orthogonal. The basis change matrix S then
satisfies

ST = S−1 , (F.3)
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and the old coordinates are related to the new ones by

~x = S~y , (F.4a)

~xT = ~yST , (F.4b)
d~x = detSd~y = d~y , (F.4c)

where in the last line we used the fact that the Jacobian matrix of the map ~x(~y)→ S~y
is the matrix S itself, and that its determinant is 1, since it is an orthogonal matrix.
The term in the exponential in Eq. (F.1e) then becomes

E :=− 1

2
~xTA~x+ ~BT

1 ~x+ ~xT ~B2 (F.5a)

= −1

2
~yTD~y + ~BT

1 S~y + ~yTS−1 ~B2 . (F.5b)

If we expand, we obtain:

E =
∑

i

[
−1

2
yid

i
iy
i +
∑

α

(
BT

1,αS
α
iy
i + yi(S

−1)iαB
α
2

)
]
, (F.5c)

where we used the fact that D is a diagonal matrix. For the ith term, we can complete
the square as

− 1

2
yid

i
iy
i +
∑

α

(
BT

1,αS
α
iy
i + yi(S

−1)iαB
i
2

)

=− 1

2
dii(yi −

2

di i

∑

α

BT
1,αS

α
i)(y

i − 2

dii

∑

β

(S−1)iβB
β
2 ) + 2

∑

α

∑

β

BT
1,αS

α
i

1

dii
(S−1)iβB

β
2 .

(F.6)

Using again the fact that di i is the ith diagonal term of D, and inverting Eq. (F.2), we
can rewrite 1

dii
as

1

dii
= (D−1)i i =

∑

µ,ν

(S−1)iµ(A−1)µν(S)νi . (F.7)

Performing the variable change as

zi = yi −
2

di i

∑

α

BT
1,αS

α
i , (F.8a)

zi = yi − 2

dii

∑

β

(S−1)iβB
β
2 , (F.8b)

d~z = d~y , (F.8c)

inserting Eq. (F.7) into the last term of Eq. (F.6), and summing over all the compo-
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nents, we obtain

E =− 1

2
~zTD~z + 2 ~BT

1 (A−1) ~B2 . (F.9a)

We now have the product of n Gaussian integrals of the form of Eq. (F.1a)

∫
e−

1
2
xiA

i
jx
j+BT1,ix

i+xiB
i
2d~x =

[∏

i

∫
e−

1
2
zid

i
iz
i

dzi

]
e2 ~BT1 (A−1) ~B2

=

√
(2π)n∏
i d

i
i

e2 ~BT1 (A−1) ~B2 . (F.10)

We then use the fact that

detA = detS detD detS−1 = detD =
∏

i

di i , (F.11)

to obtain Eq. (F.1e).





Appendix G

Classical Structure Factors

In this Appendix, I provide details of the calculation of the equal time structure factors
derived within the low–temperature classical analytic theory of fluctuations presented
in Section 3.3.

Details for the classical structure factors at q 6= 0 can be found in Appendix G.1 for
dipole moments , in Appendix G.3 for quadrupole moments, and in Appendix G.5 for
A–matrices . For the ground state contribution at q = 0 which consists in taking into
account up to quadratic order in the expansion of fluctuations, the general steps of the
calculation are given in Section 3.3.4. The details for the classical structure factors at
q = 0 are provided in Appendix G.2 for the dipole moments, in Appendix G.4 for the
quadrupole moments, in Appendix G.6 for the A–matrices.

G.1 Dipole Moments: Classical Structure Factor for
q 6= 0

First, we consider the structure factor for dipole moments of spin

SCL
S (q) =

∑

α

〈ŜαqŜα−q〉 . (G.1)

The relevant source term is

∆H[hαi,β] = −
∑

i,λ

hαi,βδαβŜβi,λ . (G.2)

According to Eq. (1.67) and using Eq. (3.10), we can express the spin dipole components
in function of the fluctuations. Considering fluctuation terms up to 1st order and using
Eq. (3.25), the spin dipole moments in terms of the fluctuations diagonalizing the BBQ
Hamiltonian are given by Eq. (3.36). Retaining terms linear in the fluctuations, we
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obtain

Ŝxi = −
√

2v4,i ,

Ŝyi ' 0 , (G.3)

Ŝzi =
√

2v2,i .

After performing a Fourier transform, the change in the Hamiltonian due to ∆H[hαi,β]
[Eq. (G.2)] yields

∆H[hq] = −
∑

q

[√
2

2
hzqv−q,2 +

√
2

2
hz−qvq,2 −

√
2

2
hxqv−q,4 −

√
2

2
hx−qvq,4

]
,

and according to Eq. (3.68), we get

C̃[hq] = 0 , (G.4)

where we neglected 2nd order terms in fluctuations, since they only contribute for q = 0,
and

Ñ1[hq]T =
(

0,
√

2
2
hzq, 0, −

√
2

2
hxq

)
,

Ñ2[h−q] =




0√
2

2
hz−q
0

−
√

2
2
hx−q


 .

(G.5)

According to Eq. (3.64), the first moments are given by the first derivative of C̃[hq]
[Eq. (G.4)] with respect to the fictive field h. We get

〈Sxq〉 = 〈Szq〉 = 0 . (G.6)

The total structure factor for the dipole moment is given by Eq. (G.1), and using
Eq. (3.74), Eq. (3.75), and Eq. (G.5), we obtain

SCL
S (q 6= 0) =

2

βωq,2
+

2

βωq,4
+O(T 2) =

4

βω−q
+O(T 2) , (G.7)

where we used Eq. (3.22b). Its spectral decomposition [Eq. (3.73)] becomes

SCL
S (q 6= 0, ω) =

4

βω−q
δ(ω − ω−q ) +O(T 2) . (G.8)



G.2 Dipole Moments: Classical Structure Factor at q = 0 237

G.2 Dipole Moments: Classical Structure Factor at
q = 0

We now consider the dipole structure factor at the origin of the reciprocal space called
the Γ–point. We consider the structure factor for the spin dipole moments

SCL
S (q = 0) =

∑

α

〈Ŝαq=0Ŝαq=0〉 . (G.9)

We follow the procedure depicted in Section 3.3.4. The relevant source term for dipole
moments is given by Eq. (G.2), which we need to rewrite in a similar form as Eq. (3.77).
We use Eq. (3.10) and Eq. (1.67) to express the dipole moments in terms of the fluc-
tuations φ, which is given by Eq. (3.12). We insert Eq. (3.12) into Eq. (G.2) and keep
terms up to second order in fluctuations. We use Eq. (3.13)–Eq. (3.16) for the BBQ
Hamiltonian. Then, for the total Hamiltonian given in Eq. (3.51), written in the form
of Eq. (3.77), we obtain

Mk[hq=0] =




Ak −Bk 0 i√
N
hyq=0,y

−Bk Ak − i√
N
hyq=0,y 0

0 i√
N
hyq=0,y Ak −Bk

− i√
N
hyq=0,y 0 −Bk Ak


 , (G.10)

N1[hk]T = 1
2

(
−hzk,z, −hzk,z, hxk,x, hxk,x

)
,

N2[h−k] = 1
2




−hz−k,z
−hz−k,z
hx−k,x
hx−k,x


 ,

(G.11)

C[hk] = 0 . (G.12)

We diagonalize Eq. (G.10) to obtain the eigenmodes. We find

ω+
k [hq=0] = ωk,1[hq=0] = ωk,3[hq=0]

= Ak +

√(
hy0,y√
N

)2

+B2
k , (G.13a)

ω−k [hq=0] = ωk,2[hq=0] = ωk,4[hq=0]

= Ak −
√(

hy0,y√
N

)2

+B2
k . (G.13b)

We now can calculate the spin dipole moments through Eq. (3.82), where we use
Eq. (G.12), and Eq. (G.13), and where for the last term, we simply invert Eq. (G.10)
and multiply by the vectors in Eq. (G.11). We obtain

〈Sxq=0〉 = 〈Syq=0〉 = 〈Szq=0〉 = 0 . (G.14)



238 Classical Structure Factors

For the square dipole moments, we use Eq. (3.83). We find

〈Sxq=0S
x
q=0〉 =

2

β

1

Aq=0 −Bq=0

=
2

β

1

ω−0
, (G.15a)

〈Syq=0S
y
q=0〉 = 0 , (G.15b)

〈Szq=0S
z
q=0〉 =

2

β

1

Aq=0 −Bq=0

=
2

β

1

ω−0
, (G.15c)

where we used Eq. (3.22).
Finally, we calculate the dipole structure factor at the Γ–point given by Eq. (G.9).

We get

SCL
S (q = 0) =

4

β

1

ω−0
+O(T 2) . (G.16)

Because the q = 0 contributions are coming from the ground state and happen for
ω = 0, the spectral representation of Eq. (G.16) yields

SCL
S (q = 0, ω) =

4

β

1

ω−0
δ(ω) +O(T 2) . (G.17)

Combining Eq. (G.7) and Eq. (G.16), we get Eq. (3.85). And considering their respec-
tive spectral representation Eq. (G.8) and Eq. (G.17), we obtain Eq. (3.86).

G.3 Quadrupole Moments: Classical Structure Fac-
tor for q 6= 0

Next, we consider the structure factor for quadrupole moments of spin

SCL
Q (q) =

∑

αβ

〈Q̂αβ
q Q̂βα

−q〉 , (G.18)

where the scalar contraction implied by the sum on α, β respects SU(2) symmetry. In
this case the source term is

∆H[hi] = −
∑

i

hαi,βQ̂αβ
i . (G.19)

The quadrupole components Q̂αβ
i in the function of the classical fluctuations can be

found using Eq. (1.68) and Eq. (3.10). This is given by Eq. (3.35), where we keep
terms up to linear order in the fluctuations. Using Eq. (3.25), we can express ∆H[hi]
in terms of the fluctuations that diagonalize the BBQ Hamiltonian. After performing
a Fourier transform, and rewriting the Hamiltonian in the form of Eq. (3.68), we get

C̃[hq] =
√
N

(
−4

3
hyyq +

2

3
(hxxq + hzzq )

)
, (G.20)
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where we neglected 2nd order terms in fluctuations, since they only contribute for q = 0,
and

Ñ1[hq]T =
(

0, i
√

2
2
ξ1
q, 0, − i

√
2

2
ξ1
q

)
,

Ñ2[h−q] =




0
i
√

2
2
ξ1
−q

0

− i
√

2
2
ξ1
−q


 ,

(G.21)

where
ξ1
q = (hxyq + hyxq ) , ξ2

q = (hyzq + hzyq ) . (G.22)

The total quadrupole structure factor is given by Eq. (G.18). According to Eq. (3.74)
and Eq. (3.75), and using Eq. (G.21), we obtain

SCL
Q (q 6= 0) =

4

βωq,1
+

4

βωq,3
+O(T 2) =

8

βω+
q

+O(T 2) , (G.23)

where we used Eq. (3.22a). Its spectral decomposition [Eq. (3.73)] becomes

SCL
Q (q 6= 0, ω) =

8

βω+
q
δ(ω − ω+

q ) +O(T 2) . (G.24)

G.4 Quadrupole Moments: Classical Structure Fac-
tor at q = 0

We now consider the quadrupole structure factor at the Γ–point, which is defined as

SCL
Q (q = 0) =

∑

αβ

〈Q̂αβ
q=0Q̂βα

q=0〉 . (G.25)

We follow the same procedure as depicted in Section 3.3.4. The relevant source term
for quadrupole moments is given by Eq. (G.19). We use Eq. (3.16) for the BBQ
Hamiltonian as well as Eq. (3.10) and Eq. (1.68) to express Eq. (G.19) up to second
order in terms of the fluctuations. For the total Hamiltonian given by Eq. (3.51),written
in the form of Eq. (3.77), we obtain

Mk[hq=0] =




Ak + α1 −Bk 0 β1

−Bk Ak + α1 β1 0
0 β1 Ak + α2 −Bk
β1 0 −Bk Ak + α2


 , (G.26)

N1[hk]T = −i
2

(
−ξ1

k, ξ1
k, ξ2

k, −ξ2
k
)
,

N2[h−k] = i
2




−ξ1
−k

ξ1
−k
ξ2
−k
−ξ2
−k


 ,

(G.27)
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C[hq=0] =
√
N

(
4

3
hyq=0,y −

2

3
(hxq=0,x + hzq=0,z)

)
, (G.28)

where we define

α1 = 2√
N

(hxq=0,x − hyq=0,y) , α2 = 2√
N

(hzq=0,z − hyq=0,y) ,

β1 = 1√
N

(hxq=0,z + hzq=0,x) ,

ξ1
k = (hxk,y + hyk,x) , ξ2

k = (hyk,z + hzk,y) .

(G.29)

We diagonalize Eq. (G.26) to obtain the eigenmodes. We find

ωk,1[hq=0] = Ak +B2
k +

1

2
(α+ + ∆) , (G.30a)

ωk,2[hq=0] = Ak −B2
k +

1

2
(α+ + ∆) , (G.30b)

ωk,3[hq=0] = Ak +B2
k +

1

2
(α+ −∆) , (G.30c)

ωk,4[hq=0] = Ak −B2
k +

1

2
(α+ −∆) , (G.30d)

where
α+ = α1 + α2 , ∆ =

√
(α1 − α2)2 + 4β2

1 . (G.31)

Finally, we use Eq. (3.82) and Eq. (3.83) to compute the quadrupole structure factor
at the Γ–point given by Eq. (G.25). When calculating Eq. (3.82) and Eq. (3.83), we
use Eq. (G.28) and Eq. (G.30), and for the last term, we simply invert Eq. (G.26) and
multiply by the vectors expressed in Eq. (G.27). We obtain

SCL
Q (q = 0) =

8

β

1

ω+
0

+
8

3
N − 8

β

∑

k

[
1

ω+
k

+
1

ω−k

]
+O(T 2) .

(G.32)

However, we note that at the Γ–point, ω+
0 = 0. Therefore, in order to get rid of

confounding divergent terms, we rewrite the quadrupole structure factor as

SCL
Q (q = 0) = − 8

β

1

ω−0
+

8

3
N − 8

β

∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
+O(T 2) .

(G.33)

Because the q = 0 contributions are coming from the ground state and happen for
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ω = 0, the spectral representation of Eq. (G.33) yields

SCL
Q (q = 0, ω) = − 8

β

1

ω−0
δ(ω) +

8

3
Nδ(ω)

− 8

β

∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
δ(ω) +O(T 2) .

(G.34)

Combining Eq. (G.23) and Eq. (G.33), we obtain Eq. (3.89). Considering their respec-
tive spectral representation given by Eq. (G.24) and Eq. (G.34), we obtain Eq. (3.91).

G.5 A-matrices: Classical Structure Factor q 6= 0

The matrix Âαβ is the most fundamental object describing the spins, and their structure
factors is defined by

SCL
A (q) =

∑

αβ

〈Âαq βÂβ−q α〉 . (G.35)

We note that the sum on the contracted indices α, β preserves the full U(3) symmetry
of the representation. The corresponding source term is

∆H[hi] = −
∑

i

hαi,βÂαi β . (G.36)

The components of the A matrix Âαi β in terms of the classical fluctuations are given
in Eq. (3.10). After expressing them as a function of the fluctuations that diagonalize
the BBQ Hamiltonian [Eq. (3.25)], we obtain Eq. (3.34), where we keep terms up to
linear order in the fluctuations. After performing a Fourier transform, and rewriting
the total Hamiltonian [Eq. (3.51)] according to Eq. (3.68), we get

C̃[hq] =
√
Nhyyq , (G.37)

where we neglected 2nd order terms in fluctuations, since they only contribute for q = 0,

Ñ1[hq]T =
(
i
√

2
2
ξ1
q,

i
√

2
2
ξ1
q, − i

√
2

2
ξ2
q − i

√
2

2
ξ2
q

)
,

Ñ2[h−q] =




i
√

2
2
ξ1
−q

i
√

2
2
ξ1
−q

− i
√

2
2
ξ2
−q

− i
√

2
2
ξ2
−q


 ,

(G.38)

where
ξ1
q = (hxyq + hyxq ) , ξ2

q = (hyzq + hzyq ) . (G.39)

The total structure factor for A matrices is obtained by computing Eq. (G.35).
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According to Eq. (3.75), and Eq. (3.74), and using Eq. (G.38), we obtain

SCL
A (q 6= 0) =

1

βωq,1
+

1

βωq,2
+

1

βωq,3
+

1

βωq,4
+O(T 2)

=
2

βω+
q

+
2

βω−q
+O(T 2) , (G.40)

where we used Eq. (3.22). Its spectral decomposition is given by

SCL
A (q 6= 0, ω) =

2

βω+
q
δ(ω − ω+

q ) +
2

βω−q
δ(ω − ω−q )

+O(T 2) . (G.41)

Again replacing the eigenvalues by their expressions given in Eq. (3.22), we have

SCL
A (q 6= 0, ω) =

2

β

1

Aq +Bq
δ(ω − ω+

q )

+
2

β

1

Aq −Bq
δ(ω − ω−q )

+O(T 2) . (G.42)

G.6 A-Matrices: Classical Structure Factor at q = 0

We now consider the structure factor for the A–matrix at the Γ–point, which is defined
as

SCL
A (q = 0) =

∑

αβ

〈Âαq=0 βÂβq=0 α〉 . (G.43)

Again, we follow the procedure depicted in Section 3.3.4. The relevant source term for
dipole moments is given by Eq. (G.36). We use Eq. (3.16) for the BBQ Hamiltonian as
well as Eq. (3.10) to express Eq. (G.36) up to second order in terms of the fluctuations.
For the total Hamiltonian given in Eq. (3.51), and written in the form of Eq. (3.77),
we obtain

Mk[hq=0] =




Ak − α1 −Bk 0 −β1

−Bk Ak − α1 −β2 0
0 −β1 Ak − α2 −Bk
−β2 0 −Bk Ak − α2


 , (G.44)

N1[hk]T = i
2

(
−hxk,y, hyk,x, hyk,z, −hzk,y

)
,

N2[h−k] = −i
2




−hyk,x
hxk,y
hzk,y
−hyk,z


 ,

(G.45)
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C[hq=0] = −
√
Nhyq=0,y , (G.46)

where we defined

α1 = 1√
N

(hxq=0,x − hyq=0,y) , α2 = 1√
N

(hzq=0,z − hyq=0,y) ,

β1 = 1√
N
hzq=0,x , β2 = 1√

N
hxq=0,z .

(G.47)

We diagonalize Eq. (G.26) to obtain the eigenmodes. We find

ωk,1[hq=0] = Ak −
1

2
(α+ −∆−) , (G.48a)

ωk,2[hq=0] = Ak −
1

2
(α+ + ∆−) , (G.48b)

ωk,3[hq=0] = Ak −
1

2
(α+ −∆+) , (G.48c)

ωk,4[hq=0] = Ak −
1

2
(α+ + ∆+) , (G.48d)

where

α+ = α1 + α2 ,

∆− =

√
α2
− + 4(B2

k + β1β2 −
√
B2

k(α2
− + β2

−)) , (G.49)

∆+ =

√
α2
− + 4(B2

k + β1β2 +
√
B2

k(α2
− + β2

−)) ,

with

α− = α1 − α2 ,

β− = β1 − β2 . (G.50)

Finally, we use Eq. (3.83) and Eq. (3.82) to compute the structure factor for the A–
matrix at the Γ–point given by Eq. (G.43). When calculating Eq. (3.83) and Eq. (3.82),
we use Eq. (G.46) and Eq. (G.48), and for the last term, we simply invert Eq. (G.44)
and multiply by the vectors in Eq. (G.45). We obtain

SCL
A (q = 0) =

2

β

[
1

ω+
0

+
1

ω−0

]

+N − 2

β

∑

k

[
1

ω+
k

+
1

ω−k

]
+O(T 2) . (G.51)

Again, just as for the quadrupole structure factor, we note that at the Γ–point, ω+
0 = 0.

Therefore, in order to get rid of confounding divergent terms, we rewrite the structure



244 Classical Structure Factors

factor as

SCL
A (q = 0) = N − 2

β

∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
+O(T 2) . (G.52)

Because the q = 0 contributions are coming from the ground state and happen for
ω = 0, the spectral representation of Eq. (G.52) yields

SCL
A (q = 0, ω) = Nδ(ω)

− 2

β

∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
δ(ω) +O(T 2) .

(G.53)

Combining Eq. (G.40) and Eq. (G.52), we obtain Eq. (3.93). Considering their respec-
tive spectral representation given by Eq. (G.41) and Eq. (G.53), we obtain Eq. (3.94).



Appendix H

System Size Dependence of the
Ordered Moment

In this Appendix, I present the details of the manufacturing of Section 3.4.2. More
precisely, I explain how the simulation data for the ordered moment is fitted and how I
calculated the ordered moment to extract its scaling behaviour with respect of system
size, using the prediction obtained from the low temperature classical analytical theory
[Section 3.3].

In Table (H.1), I show the temperature intervals on which the corresponding ordered
parameters values are used for the fits of the slope α(L) of the ordered parameters in
Fig. 3.5 (a), for different system sizes.

System size L Tmin Tmax
L=12 0.01 0.100177
L=24 0.01 0.100177
L=48 0.0252403 0.100177
L=96 0.0343658 0.100177

Table H.1: Temperature intervals used for fitting the parameter α(L) according to
Eq. (3.108).

I also present here how the ordered moments as expressed by Eq. (3.99) and pre-
sented in Fig. 3.5 (b) are calculated. In order to compute Eq. (3.99), a sum in k–space
needs to be performed. I here also show that the sum scales logarithmically with the
system size L by explicitly calculating the coefficient µ corresponding to the logarithmic
behavior [Eq. (H.6)]. To do this, I calculate the sum numerically for different system
sizes L and fit it according to Eq. (H.6) (as shown by the orange line in Fig. 3.5 (b)).
Additionally, I also transform the sum into an integral and extract the logarithmic
scaling behavior.

In order to perform the sum in reciprocal space appearing in the analytical pre-
diction of the order moment given in Eq. (3.99), the Brillouin zone is turned into a
parallelogram of area 8π√

3
, as it is spanned by the reciprocal vectors Ka and Kb given

in Eq. (D.2). We then discretize it into N = L2 tiles of dimension δA given by

δka = 1
L
Ka , δkb = 1

L
Kb , (H.1)
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such that
δA =

8π2

√
3L2

. (H.2)

In order to compare the logarithmic behaviour of the sum in Eq. (3.99) over re-
ciprocal vectors performed numerically with the analytical logarithmic behaviour, we
consider

1

N

∑

k

Ik ⇒ NδA
∑

kx,kx

Ik =

∫
Ikdk . (H.3)

We can now sum over the k–space numerically, or integrate analytically.
In Eq. (H.3), we take as integrant the term expressed as a sum in the result obtained

in Eq. (3.99), as we wish to compute the temperature–dependent part of the ordered
moment given in Eq. (3.99)

1

N

∑

k

Ik =
8

N

∑

k 6=0

[
1

ω+
k

+
1

ω−k

]
. (H.4)

Using Eq. (3.22), we obtain

Ik =
16Ak

ε2k,1
, (H.5)

where εk,1 is given in Eq. (4.11). We then compute the discrete sum numerically accord-
ing to Eq. (H.3) for the different system sizes, including the ones given in Table (H.1).
When performing the sum, we also avoid the origin k = (0, 0), where εk,1 vanishes,
(indeed, γ(0) = 1, and according to Eq. (3.17), A0 = B0) and which is not included in
the sum of Eq. (3.99) . For a specific system size, we then get a number as the result
of the discrete sum obtained for that specific system size. These numbers are plotted
as the red dots in Fig. 3.5 (b) as a function of the system size.

According to Eq. (3.108), we assume that the system size dependency should be of
the form

− dSCLQ (q = Γ)

dT

∣∣∣∣∣
T=0

=
1

N

∑

k

Ik ∼ C + µ log(L) +
ν

L
+

ξ

L2
. (H.6)

We use Eq. (H.6) to fit the results obtained by computing the discrete sum in Eq. (H.3),
i.e, the red dots in Fig. 3.5 (b). The fit is shown in in Fig. 3.5 (b) by the orange line.

Additionally, we want to investigate how accurate the discrete sum is, compared to
the integration, and how it depends on system size. If we consider the integral version
in 2–dimensions for polar coordinates, we can cut off to some small ks = 4π√

3L
in order

to avoid the origin k = (0, 0) as follows:
∫
Ikdk = 2π

∫ kf

ks

Ikkdk . (H.7)

For the FQ state, where we chose, J1 = 0.0 and J2 = −1.0, the coefficients Ak and Bk
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[Eq. (3.17)] and the dispersion relation εk,1 [Eq. (4.11)] become

Ak = z ,

Bk = −zγ(k) ,

ε2k = z2(1− γ(k)2) . (H.8)

For the triangular lattice, the geometrical factor is given by Eq. (D.5), and for suffi-
ciently small values of k, we can use the Taylor expansion on it. We obtain

γ(k) ' 1− 1

4
(k2
x + k2

y) = 1− 1

4
k2 , (H.9a)

ε2k ' z2 1

2
k2 , (H.9b)

Ik =
16Ak

ε2k,1
' 16z

z2 1
2
k2

=
32

zk2
, (H.9c)

2π

∫ kf

ks

Ikkdk ' 2π

∫ kf

ks

32

zk2
kdk . (H.9d)

Since z = 6 for the triangular lattice, we have

2π16

3

∫ kf

ks

1

k
dk =

2π16

3
(log(kf )− log(ks)) ,

=
2π16

3
log(L) +

2π16

3
log(kf )−

2π16

3
log(

4π√
3

) , (H.10)

where in the last line, we used the fact that we chose the cut–off according to ks = 4π√
3L
.

Before we fit the sum with the expression given by Eq. (H.6), we need to account for
correction coming from the tiling of the k-space as explained in Eq. (H.3). Therefore,
we need to divide by

δA ∗N =
8π2

√
3
. (H.11)

From Eq. (H.6), we can obtain the value for the coefficient µ for Eq. (H.10), which we
can compare with the fit from the values of the sum calculated numerically as shown
in Fig. 3.5 (b) :

µana =
2π16
3

8π2√
3

= 4√
3π

= 0.735 , µnum = 0.735 . (H.12)





Appendix I

Dynamical Structure Factors Within
Zero–Temperature Quantum Theory

In this appendix, I provide the details of the method used to calculate the zero–
temperature quantum structure factors in Section 4.2.

In Section 4.2.1, I presented how to calculate dynamical structure factors at finite
energy through the explicit calculation of matrix elements within the quantum the-
ory of fluctuations. Here, I provide details about its application to dipole moments
[Appendix I.1], quadrupole moments [Appendix I.3], and A–matrices [Appendix I.5],
which are summarized in the main text in Section 4.2.3, Section 4.2.4, and Section 4.2.5,
respectively.

In Section 4.2.2, I explain how the calculation for the static structure factors (ω = 0)
can also be computed through functional derivatives of the ground–state energy, in
order to account for the ground–state and zero–point energy contribution at q = 0.
Here, I show calculations for the dipole moments [Appendix I.2], quadrupole moments
[Appendix I.4], and A–matrices [Appendix I.6].

I.1 Dipole Moments: Quantum Structure Factor at
General Values of q

We consider first the spin dipole dynamical structure factor

SQM
S (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µ

〈Ŝµq(t)Ŝµ−q(0)〉 . (I.1)

Substituting Eq. (4.4) in the expression for spin operators, Eq. (1.67), and keeping
terms to linear order, we find

Ŝxi ' i(b̂†i − b̂i) , (I.2a)

Ŝyi ' 0 , (I.2b)

Ŝzi ' −i(â†i − âi) . (I.2c)
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Performing a Fourier transform and using the Bogoliubov transformation Eq. (4.12),
we can express these as

Ŝxq ' iξS(q)(β̂†−q − β̂q) , (I.3a)

Ŝyq ' 0 , (I.3b)

Ŝzq ' −iξS(q)(α̂†−q − α̂q) , (I.3c)

where ξS(q) is the coherence factor

ξS(q) =
∆q +Bq√
∆2

q −B2
q
. (I.4)

Using Eq. (4.42), we can then calculate the structure factor for dipole moments as

SQM
S (q, ω) =

∑

µ,k

∣∣∣〈nk|Ŝµq|0〉
∣∣∣
2

δ(ω − ωnk) + SGS
S (q = 0, ω) , (I.5)

where |0〉 is the FQ ground state [Eq. (3.4)], and

|nk〉 = α̂†k|0〉 ⊗ β̂†k|0〉 , (I.6)

represents the first excited states where ⊗ implies a direct product, as the bosons α̂†q
and β̂†q are independent. By using Eq. (I.6), we account for the 1st excited states
and we therefore disregard the ground state and zero-point energy contribution to the
structure factors, which is expressed by the term SGS

O (q = 0, ω) in Eq. (I.5).
Finally, we find

SQM
S (q, ω) = 2ξS(q)2δ(ω − ε(q)) + SGS

S (q = 0, ω) (I.7a)

= 2

√
Aq +Bq√
Aq −Bq

δ(ω − ε(q)) + SGS
S (q = 0, ω) , (I.7b)

where we used Eq. (I.4) and Eq. (4.13) in the last line. Detailed calculations for q = 0
contributions to the dipole moment structure factor can be found in Appendix I.2.
More precisely, SGS

S (q = 0, ω) is given by Eq. (I.16), which combined with Eq. (I.7b)
gives the total quantum structure factor for the dipole moments expressed in Eq. (4.71).

I.2 Dipole Moments: Contribution of the Ground State
to the Quantum Structure Factor at q = 0

We consider the structure factor at q = 0 for dipole moments of spin

SGS
S (q = 0) =

∑

α

〈Ŝαq=0Ŝα−q=0〉T=0
. (I.8)
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The relevant source term is given by Eq. (G.2). According to Eq. (1.67) and using
Eq. (4.4), we can express Eq. (G.2) in function of fluctuations orthogonal to the FQ
ground state [Eq. (3.2)]. Considering fluctuation terms up to 2nd order, we have

Ŝxi = −i(b̂i − b̂†i ) ,

Ŝyi = i(â†i b̂i − âib̂
†
i ) , (I.9)

Ŝzi = −i(â†i − âi) .

After performing a Fourier transform, and considering the source term Hamiltonian
∆H[hαi,β] [Eq. (G.2)] at q = 0, we have

∆H[hq] = −
∑

q

[
ihx−q(b̂†q − b̂q)− ihz−q(â†q − âq)

]
δq,0

−
∑

k

i√
N
hyq=0(â†kb̂k − âkb̂†k) . (I.10)

And using Eq. (4.5) for the BBQ Hamiltonian, the total Hamiltonian [Eq. (3.51)] in
terms of the bosons takes the same form as in Eq. (4.50), where Mk[hq=0] is given by

Mk[hq=0] =




Ak −Bk − i√
N
hyq=0 0

−Bk Ak 0 i√
N
hyq=0

i√
N
hyq=0 0 Ak −Bk

0 − i√
N
hyq=0 −Bk Ak


 , (I.11a)

where Ak and Bk are given in Eq. (3.17) and where N[hk] is given by

N[hk] = i




hz−k
−hzk
−hx−k
hxk


 , (I.11b)

and where C[hq=0] holds
C[hq=0] = 0 . (I.11c)

Following the procedure depicted in Section 4.1 and detailed in Appendix C, we
perform a Bogoliubov transformation. The eigenvalues εk,λ are given by

εk,1[hq=0] = −εk,2 = +
√
A2

k −B2
k +

1√
N
hyq=0 , (I.12a)

εk,3[hq=0] = −εk,4 = +
√
A2

k −B2
k −

1√
N
hyq=0 . (I.12b)

After performing the Bogoliubov transformation, the Hamiltonian can be rewritten as
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follows:

H =E0 + ∆E0[hq=0] +
∑

k

[
εk,1[hq=0]α̂†kα̂k + εk,3[hq=0]β̂†kβ̂k

]
, (I.13)

where C[hq=0] is disregarded since it is null [Eq. (I.11c)], and where ∆E0[hq=0] is the
zero–point energy

∆E0[hq=0] =
1

2

∑

k

[εk,1[hq=0] + εk,3[hq=0]] . (I.14)

According to Eq. (4.64), the ground state contribution to the first moments yield

〈Sxq〉T=0
= 〈Szq〉T=0

= 0 , (I.15a)

〈Syq〉T=0
=

1

2

∑

k

[
1√
N
− 1√

N

]
= 0 . (I.15b)

And according to Eq. (4.65) and Eq. (I.8), the spin dipole structure factor at q = 0
yields

SGS
S (q = 0) = 0 . (I.16)

Indeed, the ground state is quadrupolar and does not break time–reversal symme-
try. Therefore, at zero temperature, the contribution of quantum fluctuations from
the zero–point energy should average to zero for the spin dipole moments. The spec-
tral representation of Eq. (I.16) is then also trivially null. Combining Eq. (I.7b) and
Eq. (I.16), we obtain Eq. (4.71).

I.3 Quadrupole Moments: Quantum Structure Fac-
tor at General Values of q

We now consider the dynamical structure factor associated with quadrupole moments

SQM
Q (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µν

〈Q̂µν
q (t)Q̂µν

−q(0)〉 . (I.17)

Following the same steps as for the spin–structure factor, we use Eq. (4.4) to express
the quadupole components up to linear order in Eq. (1.68). We find

Q̂i
∼=




2
3

−â†i − âi 0

−â†i − âi −4
3

−b̂†i − b̂i
0 −b̂†i − b̂i

2
3


 . (I.18)
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An equivalent calculation of matrix elements in the Bogoliubov basis [Eq. (4.12)] yields

Q̂q
∼=




2
3

√
Nδ(q) ξQ(q)(α̂†−q + α̂q) 0

ξQ(q)(α̂†−q + α̂q) −4
3

√
Nδ(q) ξQ(q)(β̂†−q + β̂q)

0 ξQ(q)(β̂†−q + β̂q) 2
3

√
Nδ(q)


 , (I.19)

where N is the number of sites and where ξQ(q) is the coherence factor for quadrupoles
defined as

ξQ(q) =
Bq −∆q√
∆2

q −B2
q
. (I.20)

Using Eq. (4.42), we can then calculate the structure factor for quadrupole moments
as defined in Eq. (I.17). We obtain

SQM
Q (q, ω) =4ξQ(q)2δ(ω − ε(q)) + SGS

Q (q = 0, ω) (I.21a)

=4

√
Aq −Bq√
Aq +Bq

δ(ω − ε(q)) + SGS
Q (q = 0, ω) , (I.21b)

where we used Eq. (I.20) and Eq. (4.13) in the last line.
Detailed calculations for q = 0 contributions to the quadrupole moment struc-

ture factor can be found in Appendix I.4. More precisely, SGS
Q (q = 0, ω) is given by

Eq. (I.32), which combined with Eq. (I.21) gives the total quantum structure factor for
the quadrupole moments expressed in Eq. (4.78).

I.4 Quadrupole Moments: Contribution of the Ground
State to the Quantum Structure Factor at q = 0

We now consider the quadrupole structure factor at the Γ–point, which is defined as

SGS
Q (q = 0) =

∑

αβ

〈Q̂αβ
q=0Q̂βα

q=0〉T=0
. (I.22)

We follow the same procedure as depicted in Section 4.2.2. The relevant source term for
quadrupole moments is given by Eq. (G.19). We can express Eq. (G.19) up to second
order in terms of the bosons by using Eq. (4.4) and Eq. (1.68). We use Eq. (4.5) for
the BBQ Hamiltonian. For the total Hamiltonian given by Eq. (3.51), written in the
form of Eq. (4.50), we find that Mk[hq=0] is given by

Mk[hq=0] =




Ak + α1 −Bk β1 0
−Bk Ak + α1 0 β1

β1 0 Ak + α2 −Bk
β1 0 −Bk Ak + α2


 , (I.23a)
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that N[hk] is given by

N[hk] =




ξ1
−k
ξ1
k

ξ2
−k
ξ2
−k


 , (I.23b)

and that C[hq=0] holds

C[hq=0] =
√
N

(
4

3
hyq=0,y −

2

3
(hxq=0,x + hzq=0,z)

)
, (I.23c)

with Ak and Bk being given in Eq. (3.17) and with the following definitions

α1 = 2√
N

(hxq=0,x − hyq=0,y) , α2 = 2√
N

(hzq=0,z − hyq=0,y) ,

β1 = 1√
N

(hxq=0,z + hzq=0,x) ,

ξ1
k = (hxk,y + hyk,x) , ξ2

k = (hyk,z + hzk,y) .

(I.24)

Following the procedure depicted in Section 4.1 and detailed in Appendix C, we perform
a Bogoliubov transformation. The eigenvalues εk,λ are given by

εk,1[hq=0] = −εk,2[hq=0] =
√
A2

k −B2
k + β2

1 +
1

2

(
α2

1 + α2
2

)
+Akα+ −∆

(
Ak +

α+

2

)
, (I.25a)

εk,3[hq=0] = −εk,4[hq=0] =
√
A2

k −B2
k + β2

1 +
1

2

(
α2

1 + α2
2

)
+Akα+ + ∆

(
Ak +

α+

2

)
, (I.25b)

where α+ and ∆ are defined in Eq. (G.31). After performing the Bogoliubov trans-
formation, the Hamiltonian can be rewritten as follows:

H =E0 + ∆E0[hq=0] + C[hq=0]

+

[∑

k

εk,1[hq=0]α̂†kα̂k + εk,3[hq=0]β̂†kβ̂k

]
, (I.26)

where C[hq=0] is given in Eq. (I.23c), and where ∆E0[hq=0] is the zero–point energy
and yields

∆E0[hq=0] =
1

2

∑

k

[εk,1[hq=0] + εk,3[hq=0]] . (I.27)
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According to Eq. (4.64), the ground state contribution to the first moments yield

〈Qxxq=0〉T=0
= −2

3

√
N +

1√
N

∑

k


 Ak√

A2
k −B2

k


 , (I.28a)

〈Qxyq=0,y〉T=0
= 〈Qyxq=0〉T=0

= 0 , (I.28b)

〈Qxzq=0,z〉T=0
= 〈Qzxq=0〉T=0

= 0 , (I.28c)

〈Qyyq=0,y〉T=0
=

4

3

√
N − 1√

N

∑

k


 2Ak√

A2
k −B2

k


 , (I.28d)

〈Qyzq=0,z〉T=0
= 〈Qzyq=0〉T=0

= 0 , (I.28e)

〈Qzzq=0〉T=0
= −2

3

√
N +

1√
N

∑

k


 Ak√

A2
k −B2

k


 . (I.28f)

Before calculating the structure factor, we note that, as given in Eq. (I.28), the
first quadrupole moments consist of two terms with different scaling behaviour with
respect to the parameter we expand fluctuations about, which is the length of the spin
s. Indeed, similarly to multi-bosons expansion, or its linear spin-wave version with
Holstein–Primakoff bosons or Schwinger bosons in the case of a su(2) representation
of the spin, we assume the fluctuations to be sufficiently small compared to the spin
length s. In other words, C[hq=0] from Eq. (I.23c) and the eigenvalues in Eq. (I.25)
scale with s as

C[hq=0] ∼ shµq=0µ , (I.29a)

εk,λ[hq=0] ∼ s

√

Const.+
hµq=0µ

s2
+
O(h2

q=0)

s2
. (I.29b)

Their derivatives with respect to hµq=0,µ that enters the quadrupole moments [Eq. (4.64)]
yield

C[hq=0]

∂hµq=0,µ

∣∣∣∣
h=0

∼ s , (I.30a)

∂εk,λ[hq=0]

∂hµq=0,µ

∣∣∣∣
h=0

∼ s√
Const.

∂
hµq=0µ

s2

∂hµq=0,µ

∣∣∣∣∣
h=0

∼ 1

s
.

This implies that the scaling behaviour of the first quadrupole moments goes as

〈Qµµ
q=0〉T=0

∼ s+
1

s
, (I.31)

where s is the length of the spin. We now argue that because our approximation is valid
up to linear order in 1

s
, i.e., second order in fluctuations, we can disregard 1

s2
terms.

1
s2

terms are physical but should not enter into our level of approximation. Indeed,
one would expect additional contributions to the 1

s2
term coming from higher orders
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in perturbation theory. However, we do not take these into account here and simply
consider terms up to 1

s
. According to Eq. (4.65) and Eq. (I.22), the spin quadrupole

structure factor at q = 0 yields

SGS
Q (q = 0) =

8

3
N − 8

∑

k

[
Ak√

A2
k −B2

k

]
+O(

1

s2
) . (I.32)

Its spectral representation is given by

SGS
Q (q = 0, ω) =

(
8

3
N − 8

∑

k

[
Ak√

A2
k −B2

k

])
δ(ω) +O(

1

s2
) . (I.33)

Combining Eq. (I.21) and Eq. (I.33), we obtain Eq. (4.78).

I.5 A–Matrices : Quantum Structure Factors at Gen-
eral Values of q

The most fundamental objects in our theory are not dipoles or quadrupoles, but the
A–matrices which describe the quantum state of the spin–1 moment. It is therefore
useful to introduce a dynamical structure factor

SQM
A (q, ω) =

∫ ∞

−∞

dt

2π
eiωt

∑

µν

〈Âµν(t)Âνµ(0)〉 . (I.34)

Neglecting 2ndorder and higher terms, Eq. (4.4) becomes

Âi '




0 â†i 0

âi 1 b̂i
0 b̂†i 0


 . (I.35)

Once again we can use the Bogoliubov basis [Eq. (4.12)] to find

Âq ∼=




0 ξ−A (q)α̂†−q − ξ+
A (q)α̂q 0

−ξ+
A (q)α̂†−q + ξ−A (q)α̂q

√
Nδq,0 −ξ+

A (q)β̂†−q + ξ−A (q)β̂q

0 ξ−A (q)β̂†−q − ξ+
A (q)β̂q 0


 , (I.36)

where N is the number of sites and ξ+
A (q) and ξ−A (q) are the coherence factors for

A–matrices defined as

ξ+
A (q) =

ξS(q) + ξQ(q)

2
, (I.37a)

ξ−A (q) =
ξS(q)− ξQ(q)

2
, (I.37b)

where ξS(q) and ξQ(q) are defined in Eq. (I.4) and Eq. (I.20) respectively.
Using Eq. (4.42), we can then calculate the structure factor for quadrupole moments
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as defined in Eq. (I.34). We obtain

SQM
A (q, ω) = 2(ξ+

A (q)
2

+ ξ−A (q)
2
)δ(ω − ε(q)) + SGS

A (q = 0, ω) (I.38a)

=
1

2
(ξS(q)2 + ξQ(q)2)δ(ω − ε(q)) + SGS

A (q = 0, ω) (I.38b)

= 2
Aq√

A2
q −B2

q
δ(ω − ε(q)) + SGS

A (q = 0, ω) , (I.38c)

where we used Eq. (I.37) in the second line and Eq. (I.20), Eq. (I.4) and Eq. (4.13) in the
last line. Detailed calculations for q = 0 contributions to the A–matrix structure factor
can be found in Appendix I.6. More precisely, SGS

A (q = 0, ω) is given by Eq. (I.39),
which combined with Eq. (I.38c) gives the total quantum structure factor for the A-
matrices expressed in Eq. (4.86).

We also note that written in the form that includes the coherence factors, the sum
rule [Eq. (3.96)] for q 6= 0 is easily verified.

I.6 A-matrices: Contribution of the Ground State to
the Quantum Structure Factor at q = 0

For the quantum zero temperature structure factor for the A–matrices at q = 0, we
make use of the sum rule given in Eq. (3.96). This leads to

SGS
A (q = 0) =

1

4
SGS

Q (q = 0) +
1

2
SGS

S (q = 0) +
1

3
Nδq,0

= N − 2
∑

k

[
Ak√

A2
k −B2

k

]
+O(

1

s2
) , (I.39)

where we used Eq. (I.16) and Eq. (I.32). Its spectral representation yields

SGS
A (q = 0, ω) =

(
N − 2

∑

k

[
Ak√

A2
k −B2

k

])
δ(ω) +O(

1

s2
) . (I.40)

Combining Eq. (I.38c) with Eq. (I.40) gives the total quantum structure factor for the
A-matrices expressed in Eq. (4.86).


