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Abstract

Wave Propagation and Light-Matter Interactions in Optical
Nanofibers and Discrete Media

Building on more than 50 years of sustained progress, artificial systems of atoms and
photons are now routinely controllable down to the nanoscale, which paves the way
for simulators and processors powered by the light-matter interaction. In particular
the rapid experimental progress made in platforms of nanoscale photonics and neutral
atoms demands fresh computational studies along with more powerful theoretical tools
in order to simulate these increasingly complex (quantum) optical systems. In this
thesis I contribute to (1) the understanding of current state-of-the-art in experimental
optical nanofiber systems on one hand, and to (2) the general theory of emission into
photonic lattices together with (3) quantum metrology in light-matter platforms. In the
former I (1) systematically investigate light propagation in coupled optical nanofibers
fibers and dispersion potential mediated through these nanofibers for experimentally
relevant parameters, shedding light on effects that may be observed in near-future
setups. In the latter I (2) study hyperbolic lattices exhibiting strongly anisotropic
emission, with results that may have applications in transporting and storing photons
in nanoscale platforms. Additionally, in a collaborative work (3) a proposal is made for
a metrological protocol consisting of quenching through a quantum phase transition to
obtain quantum-limited precision in system measurements.
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Introduction

In the past century hybrid systems of light and matter have seen an explosion in theoret-
ical development and experimental realisations, bringing about technologies ubiquitous
in everyday life, with the laser and LED as well-known examples. At the heart of such
technologies is the basic light-matter interaction, which allows for the manipulation of
both constituents and enables a wealth of applications realised in metrology [14, 15],
manipulation of light [16, 17] and particles [18], and quantum simulation [19]. Whilst
much of the theoretical groundwork for (quantum) optics was laid around half a century
ago [20, 21], it remains a very much active topic of study to this day. In particular, ad-
vances on all fronts – experimental, analytical, and computational – have driven a push
to the nanoscale in optical systems composed of macroscopic dielectric media, point-
like emitters, and light [22, 23, 24]. In this setting, the effect of the sub-wavelength
medium scales on light [22], of the energy dispersion [17, 25], and of the interplay
of optics with quantum mechanics [26] are current key focal points in the theoretical
community. Recent advances are abound, with quantum-limited atomic clocks [27]
realised, simulators of quantum magnetism proposed [28], and optical metamaterials
featuring single-photon nonlinearities fabricated [29]. As the accompanying experi-
ments advance, models previously far from reality come within reach, demanding fresh
theoretical studies with the potential to further expand our optical toolbox. In line
with the following thesis summary, I will present investigations on the propagation of
light and the interaction with emitters in nanoscale optical media representing current
or near-future state-of-the-art.

0.1 Thesis summary

In this thesis, I investigate the propagation of light in continuum and discrete media,
and supplement with studies investigating the consequences of light-matter interaction
in such media. In the introduction I set the stage for the subsequent studies, exploring
light propagation in macroscopic linear dielectric media together with the light-matter
interaction between field and emitter, both in the classical and quantum formalisms.
This discussion touches on existing results in the field.
In the second chapter I focus on setups based around the optical nanofiber, including a
coupled two-fiber system and that of two atoms coupled through an optical nanofiber
via the dispersion potential. Optical fibers are well established as the workhorse for
transporting light over long distances with low loss and their derivative, the optical
nanofiber, additionally offers a flexible platform for interfacing light and matter, offer-
ing powerful methods of manipulation and interfacing beyond free space. A particular
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2 Introduction

system of two coupled fibers naturally allows for the creation of interferometers [30],
sensors [31], and resonators [32], along with light-emitter platforms featuring enhanced
coupling [33] and trapping [34]. While analogue two-waveguide-type structures on the
nanoscale have been experimentally realised [35, 36, 37], a detailed theoretical analysis
of the qualitative features of propagating light in coupled fibers with both radius and
separation on the nanoscale is so far lacking. In the first half of the second chapter I
systematically analyze the travelling modes of the two-fiber system using the approx-
imate coupled-mode theory and using an exact eigenmode expansion for parameters
of current experimental state-of-the-art. The results yield improved predictions on
fiber-fiber mode coupling beyond existing and recent works [32] and shed light on the
electric field profiles in the two-fiber system, which has since seen proposals in atom
trapping [34] and interfacing [33].
In the second half of the second chapter I include a coupling to matter, investigating
the dispersion potential between two ground-state atoms in the vicinity of nanoscale
cylinders of differing material. Long-range dispersion forces at the micro- and nano-
scale have an influence on the properties of matter on the macro-scale, and must also be
taken into account in quantum optical experiments featuring similar length scales [38].
In the additional presence of optical media, anistropy in the resulting dispersion po-
tential can be induced. This allows for tailoring of the potential [39, 40, 41], which
in turn provides additional tools for investigating QED at a fundamental level. De-
spite this being the case, anisotropy in the dipole matrix elements of quantum emitters
has not yet been taken into account yet, to my knowledge, except in the case of free
space [42, 43, 44]. I thus investigate the dispersion potential between two atoms with
distinct matrix elements when mediated through a cylinder of differing materials. I
find that the cylinder-induced anisotropy of the field, together with anisotropic dipole
elements, can result in a dispersion potential enhanced or diminished by orders of mag-
nitude compared to free space. The findings both offer insight into dispersion forces in
general strongly anisotropic environments and realistic predictions specifically in the
case of existing optical nanofiber platforms.
In the third chapter I move from the open waveguide to the cavity, and investigate
the quantum metrological applications of the collective light-matter coupling between
atoms and a cavity – the archetypal Dicke model [45, 46]. One of the simplest quan-
tum models – a collective spin coupled to a bosonic mode – the Dicke model features
a quantum phase transition and symmetry breaking of the ground state. In the con-
text of quantum metrology, a phase transition is beneficial due to system susceptibility
diverging in the region, which is accompanied by a diverging sensitivity. Whilst this
‘critical quantum metrology’ [47, 48, 49] has been a recent subject of intense focus, a
feature left unaddressed is that a quench through the critical point causes an instability
of the vacuum state and results in a rapid generation of photons, that is, probes. I
present my analytical calculations contributing to an investigation showing that this
quench protocol offers an alternative route to increasing sensitivity in critical quantum
systems. The results offer an alternative viewpoint on critical quantum metrology, and
expand the toolbox of measurement techniques available to optical cavity-style setups.
In the fourth chapter, I consider linear wave propagation in a discrete but open lattice
of bosonic modes via an investigation of the system Green’s function, and study a
range of effective emitter-emitter interactions that can be engineered through emission
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into the structured bath. Extended and periodic optical media offer novel emitter-field
and emitter-emitter interactions determined by the dispersion relation of the under-
lying bath [13, 28, 50, 51, 52, 53]. A particular class of bath is that with hyperbolic
dispersion [9], featuring highly focused emission, sub-wavelength transport to the far
field, and greatly enhanced spectral density of states, with applications in the tailor-
ing of emission and emitter-emitter interactions [54, 55]. Despite their popularity in
the quantum optics community, the discrete nature of realistic hyperbolic materials is
rarely taken into account in theoretical investigations [11, 56], whilst despite the full
power of artifical gauge fields available in photonic [57] and neutral atom [58] systems,
they have yet to be exploited in conjunction with hyperbolic dispersion in quantum
optics. In this work, I investigate the Green’s function associated with a bosonic lattice
featuring hyperbolic-like dispersion along with the induced emitter-emitter interactions
in the Born-Markov approximation. I find unconventional exponentially decaying, yet
disspative emitter-emitter interactions. Upon effecting an artifical gauge field on the
lattice, I also find that quasi-one-dimensional transport of photons can be realised in
higher dimensional baths. The latter finding allows one to construct effective cavities
within structured baths with emitters as the effective mirrors [7, 59]. My work expands
the toolbox of bath effected emitter-emitter interactions and paves the way for studies
combining hyperbolic dispersion with other exotic features of structured baths.
In the fifth and final chapter I conclude the thesis with a summary and outlook. A
summary of the chapters and the corresponding publications is given as follows:

• Chapter 1: Background. This chapter introduces the equations of motion
for (quantum) light in macroscopic dielectric linear media, together with the
equations describing the interacting of light and emitters. Notable consequences
relevant to the thesis are discussed.

• Chapter 2: Optical Nanofibers for Light-Matter Platforms. As an ana-
lytically treatable geometry of an open optical waveguide, the optical nanofiber
is given an extended discussion in the introduction of this chapter, which focuses
theoretically on the guided modes and practically on optical nanofibers as a light-
matter platform. In the first half of the chapter, the coupled mode theory and
the exact eigenmode expansion of the two-fiber system is presented. The notable
findings are presented from the publications [1] and [2] respectively:

Coupling between guided modes of two parallel nanofibers
F Le Kien, L Ruks, SN Chormaic, T Busch

New Journal of Physics 22 (12), 123007 (2020)

Spatial distributions of the fields in guided normal modes of two coupled parallel
optical nanofibers

F Le Kien, L Ruks, SN Chormaic, T Busch
New Journal of Physics 23 (4), 043006 (2021)

In the former the coupled mode theory is used to investigate the coupling between
two optical nanofibers for experimentally realisable parameters and improve upon
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recent works [32]. In the latter the field profiles are comprehensively studied using
the exact eigenmode expansion, and I observe that placing atoms at the center
of the two fibers simultaneously allows for efficient interfacing and trapping. The
field eigenvalues are also compared with the coupled mode theory, and I find that
the discrepancy is large for close fibers and small fiber radii. The two projects
were conceived of by my collaborator, Dr Fam Le Kien. I did part of the analyt-
ical calculations and all of the numerical simulations. All authors contributed to
the interpretation of results and to writing the later versions of the manuscript.
In the latter half of the chapter I explore the dispersion potential between two
ground-state atoms with non-equal dipole transition matrix elements in the pres-
ence of a dielectric cylinder, contained in the work [3].

Waveguide-induced dispersion interaction between two two-level atoms with
orthogonal in-transverse-plane dipoles

FL Kien, L Ruks, T Busch
Applied Physics B 125 (11), 1-7 (2019)

I find that the anisotropic and non-equal matrix elements in conjunction with
different material responses allow for enhancement or diminishing of the disper-
sion potential with respect to free space. This project was conceived of by my
collaborator, Dr Fam Le Kien. I did part of the analytical calculations and all
of the numerical simulations. All authors contributed to the interpretation of
results and to writing the later versions of the manuscript.

• Chapter 3: Quenches Across The Superradiant Phase Transition For
Quantum Metrology

I here introduce (critical) quantum metrology in the context of the Dicke model
of cavity QED. I present my calculations describing the evolution of the field
vacuum state in the superradiant phase along with the measurement statistics
for a quadrature measurement. The calculations are given in the context of a
proposed quantum metrological protocol given by a quench into the superradiant
phase of the Dicke model and followed by a quadrature measurement, which is
discussed in full in the publication [4]

Understanding and Improving Critical Metrology. Quenching Superradiant
Light-Matter Systems Beyond the Critical Point

K Gietka, L Ruks, T Busch
Quantum 6, 700 (2022)

The project was conceived of by my collaborator Dr Karol Gietka. I carried out
analytical calculations concerning the dynamical evolution of the Dicke model,
and the calculations concerning Fisher information obtained using the quadrature
measurement. All authors contributed to the interpretation of results and the
editing of the later versions of the manuscript.
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• Chapter 4: Wave Propagation And Emission In Discrete Baths Ex-
hibiting Hyperbolic Dispersion In this final chapter I consider wave propaga-
tion in and emission into baths described by a tight-binding lattice and exhibiting
a dispersion analogous to that of hyperbolic media, as in the publication [5]

Green’s functions of and emission into discrete anisotropic and hyperbolic baths
L Ruks, T Busch

Physical Review Research 4 (2), 023044 (2022)

In particular, I find that these discrete bosonic baths can mediate tunable dissi-
pative and exponentially decaying interactions between emitters, whilst inclusion
of an artificial magnetic field acting on the baths bosons results in robust quasi-
one-dimensional emission into the 2D bath, that allows two emitters to act as
near-perfect mirrors and form approximate cavity modes. Possibilities for exper-
imental realisation are also discussed. I conceived of and initiated the project,
carried out all analytical calculations and numerical simulations, and wrote the
manuscript. All authors contributed to the final interpretation of results and
writing of the final version.

• Chapter 5: Conclusions. I here provide a summary, in hindsight, of the
individual chapters and of the thesis as a whole.





Chapter 1

Background: Electromagnetism and
the light-matter interaction

1.1 Maxwell’s Equations: Shaping the Electromag-
netic Field

Light is a fundamental part of both our everyday lives and experiments at the cutting-
edge of science. The ability to shape and guide light is intertwined with the advance-
ment of technologies on many fronts, and a common way to control light is by using
linear electric materials. To investigate electromagnetic (EM) waves and light-matter
interactions in an electric linear medium, I start from the macroscopic and classical
formulation of the source-free Maxwell’s equations, described in the frequency domain
for electric field E(r, ω) and magnetic field H(r, ω)

∇ ·H(r, ω) = 0, (1.1)
∇ · (ϵ(r, ω)E(r, ω)) = 0, (1.2)

∇× E(r, ω) = iωµ0H(r, ω), (1.3)
∇×H(r, ω) = −iωϵ0ϵ(r, ω)E(r, ω), (1.4)

The linear electric response of the material, characterised through ϵ(r, ω), creates a
‘potential’ for light, allowing us to shape light beyond the transverse plane waves of free
space. A central goal in (quantum) optics is to reduce the effective mode ‘area’, either
to isolate the light or focus it (upon matter) in a region of interest. Two candidates
for mode area given in [8] and [60, 61], for example, are

A
(0)
eff =

( ∫
drϵ(r,ω)|E(r,ω)|2

)
Maxr[ϵ(r,ω)|E(r,ω)|2] , (1.5)

A
(2)
eff =

( ∫
dr|E|2

)2∫
dr|E|4 . (1.6)

Note in the above dimension is left ambiguous, as one may try to minimize the full 3D
mode volume or a transverse area. In free space, the diffraction limit Aeff ≳ λ2 sets a
lower limit on the field confinement in the transverse plane, and one then resorts to

7
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Figure 1.1: (a) Schematic of the optical cavity, with a standing wave confined between
two highly reflective mirrors (b) Total internal reflection (yellow arrows) due to an
increased dielectric refractive index (blue region) results in an evanescent field profile
(red line) for, say, the x-polarization of an electric field guided by the structure. Taken
from [6] (c) Periodic milling of holes in a dielectric, whose (periodic) refractive index
modulation results in a (d) non-linear dispersion relation (with ω(k) = ω(kx, ky)) for
travelling waves of a given band in the transverse x-y plane.

imposing boundary conditions on the system in order to shape the field. To this end,
one goal is to employ high-reflectivity conducting mirrors, effecting E ≈ 0 outside of a
localized region featuring standing waves – the cavity (see Fig. 1.1(a)).
A complementary paradigm for exploring wave propagation, and the focus of the ma-
jority of this thesis, are extended optical environments. In particular, the conventional
waveguide employed guides fields through regions of larger ϵ via the principal of total
internal reflection. Assuming negligible loss and combining equations (1.3) and (1.4)
to yield the Hermitian eigenvalue problem for H [17],

Θ̂H(r, ω) := ∇× 1

ϵ(r, ω)
∇×H(r, ω) =

(ω
c

)2
H(r, ω) = k2H(r, ω), (1.7)

we minimize the energy of the associated functional

⟨H, Θ̂H⟩
⟨H,H⟩

=

∫
d3r|∇ × E(r, ω)|2∫
d3rϵ(r, ω)|E(r, ω)|2

, (1.8)

to obtain the frequency eigenvalues. One sees indeed that the electric field should be
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concentrated in regions of larger ϵ, whilst minimizing spatial oscillations. An extreme
case of this effect, and the central feature of optical waveguides, is the guided mode.
These modes feature a wave-number beyond the light-line of free space, which demands
that a wave-number perpendicular must be complex and results in an evanescent wave
exponentially decaying away from the waveguide, as can be seen in Fig. 1.1(b). To
ensure orthogonality with other modes, there then must be a discrete number of guided
modes for each frequency ω. For the common step-index material, one finds the bound-
ary conditions for the field components normal and tangential to the surface across
which the permitivity is discontinuous

(E(r+, ω)− E(r−, ω))× n̂ = 0, (1.9)
ϵ(r+, ω)E(r+, ω) = ϵ(r−, ω)E(r−, ω), (1.10)

where r± denotes the limit of position on either side of the interface, and n̂ is the unit
normal. We see that for guided waves, not only is there an electric field outside of the
waveguide for finite ϵ, but at the interface the region of smaller relative permitivity will
have a larger field component, resulting in a larger overall intensity. This means that a
significant portion of the field mode may be comprised of the evanescent field outside
the waveguide, which can be strongly localized in the vicinity of the interface. This in
particular allows the guided field to be efficiently interfaced with nearby media [62],
as I explore in Chapter 2. It is common to guide light over large distances in addition
to confining it, and in these cases dielectrics featuring low loss are the material of
choice. The current limits in low-loss dielectrics are pushed by the likes of silicon and
germanium [63], with refractive indices n =

√
ϵ ≈ 4 at optical wavelengths. For typical

purposes, however, silica (n ≈ 1.45 at optical wavelengths) is commonly used due to its
cheapness and the well-established wealth of fabrication techniques available. Circular
waveguides can be reliably fabricated with lengths of mm, and with radii on the order
of 10s of nm, far below the free-space wavelength of optical light [63, 64]. In particular,
an index n > 1 can allow guided light to be confined in the transverse plane beyond
the diffraction limit (see Chapter 2)[8].
As will be elaborated on in Chapter 4, accompanying spatial confining of system modes
is dispersion engineering of the energy landscape, often employed for light in photonic
crystals [17]. Here, a discrete translational symmetry is imposed onto the refractive
index profile of the system (see Fig. 1.1(c), for an example in lattices of waveguides).
Bloch’s theorem then applies, and the eigenvalue equation for Bloch waves uk(r) =
e−ik·rHk(r) may be obtained

Θ̂k(r)uk(r) = (ik+∇)× 1

ϵ(r)
(ik+∇)× uk(r) =

(
ω(k)

c

)2

uk(r), (1.11)

with uk(r+R) = uk(r), for any lattice vector R in real space and the quasimomentum
vector k in the Brillouin zone (BZ). The dispersion is revealed by the dependence of
ω on k, which is in general different to the dispersion ω(k) = c|k| of free space, as
can be seen for the example in Fig. 1.1(c,d). The modified dispersion can have stark
consequences on the resulting travelling waves, manifest as phenomena analogous to
those in crystalline condensed matter systems:
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• Waves travelling in certain directions (i.e., with a certain group velocity v(k) =
∇ω(k)) or even in all directions may be forbidden at a given frequency. As
a consequence, incident waves with frequency lying in this band gap are then
reflected, resulting in a dielectric mirror

• Light may be slowed down due to the correspondingly low group velocity v → 0
near a band edge. The density of states D(∆) = 1

(2π)d

∫
BZ d

dkδ(∆ − ω(k)) (in
d-D) may also be non-smooth in general – a Van Hove singularity

• Berry curvature corresponding to adiabatic changes in k can give rise to artificial
magnetic fields for light, mimicking single-particle topological phenomena under
focus in condensed matter systems, and allowing the platform to act as a natural
analogue simulator.

Photonic crystal (waveguides) are also routinely fabricated with sub-wavelength trans-
verse length scales in the optical regime, typically featuring refractive indices of 2 ≤
n ≤ 4 [65, 66, 67].
The family of dielectric waveguides form foundational platforms in which guided light
may be shaped in the spatial and temporal domain. On the purely optical front, in-
terest lies in using low-loss dielectric waveguides (such as the silica optical fiber, see
Chapter 3) to transport information for computational applications [68, 69] and, in the
case of periodic media, exploiting the dielectric mirror effect to produce all-dielectric
optical cavities [70, 71]. The real power of these optical platforms, however, lies in
their ability interface with, and mediate interactions in, neighbouring matter.

1.2 Classical light-matter interaction: the Green’s
function

Light-matter interactions are realised in a host of systems, including cold atoms [72],
quantum dots [73], defects in solid state [74], superconducting qubits [59], and exci-
tons in (say) semiconductor cavities [75]. The influence of light on the emitter allows
one to tailor the resonance and decay rate of emitters by structuring of the EM bath,
whilst the spatially-dependent potential further results in forces on the emitters, un-
locking control over spatial degrees of freedom. Turning the situation on its head with
reciprocity, the point-like emitters may also be used to shape the light further, acting
as nanoscale antennae that can interface far- and near-field radiation. Emission engi-
neering is particularly relevant in probing matter at the nanoscale, whilst judiciously
placed emitters can be used to construct metasurfaces with exotic and tunable optical
responses [11, 29, 76]. This is so far to say nothing of the additional tools available
when quantum degrees of freedom are considered.
In most of this thesis only a single quanta will be considered present in the system,
so that any quantum nonlinearity is not probed and the system can be considered
classically. An exception to this will be the dispersion potential explored in Chapter
2. I thus first discuss the interaction between a classical induced oscillating dipole and
an EM field, from which the quantization scheme and quantum light-matter interac-
tion analysis naturally follows. The equation of motion for the classical electric field
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is obtained after eliminating the magnetic field, now in the presence of a polarization
source

∇×∇× E(r, ω)− k2ϵ(r, ω)E(r, ω) = µ0ω
2P(r, ω) = µ0ω

2P0(ω)δ(r− r0). (1.12)

The (point-like) polarization density is given by P(r, ω) = P0(ω)δ(r− r0) for the delta
function δ(·) with corresponding polarization P0. By linearity, one can obtain the field
for any distribution of current, via decomposing into point-like dipolar sources; the
associated Green’s function containing all information on dipole radiation is given as
the solution to the equation [77]

∇×∇×G(r, r′, ω)− k2ϵ(r, ω)G(r, r′, ω) = Iδ(r− r′), (1.13)

with inverse units of length, and for the identity matrix I. One recovers the electric field
from the general polarization density as follows including a homogeneous component
E0 corresponding to no sources

E(r, ω) = E0(r, ω) + µ0ω
2

∫
d3r′G(r, r′, ω) ·P(r, ω), (1.14)

with the particularly simple expression for the point-like source with no homogeneous
field component

E(r, ω) = µ0ω
2G(r, r′, ω) ·P0(ω). (1.15)

The Green’s function thus contains all the information on the propagation of dipole
radiation given a background medium ϵ(r, ω). The Green’s function takes an intuitive
form in the case of negligible loss (real ϵ) and for non-dispersive material ϵ(r, ω) = ϵ(r):
with the resulting Hermitian problem of Eq. (1.15), one can readily verify the expansion
into normalized field modes Ẽµ [60]

G(r, r′, ω) =
1

k2

∑
µ

(
ω2
µ

ω2
µ − ω2

)
Ẽµ(r)⊗ Ẽµ(r

′)− 1

k2
δ(r− r′)

ϵ(r)
I, (1.16)

for the normalization ∫
d3rϵ(r)Ẽ∗

µ(r) · Ẽµ′(r) = δµµ′ . (1.17)

I note here that the transverse part of the Green’s tensor has the form

G(T )(r, r′, ω) =
∑
µ

(
c2

ω2
µ − ω2

)
Ẽµ(r)⊗ Ẽµ(r

′), (1.18)

where the sums in Eqs. (1.16) and (1.18) are only over transverse (physical) modes
with ∇ ·

(
ϵEµ

)
= 0, and satisfying the usual equation

∇×∇× Eµ(r)− k2ϵ(r)Eµ(r) = 0. (1.19)



12 Background: Electromagnetism and the light-matter interaction

In the present discussion with ϵ real and frequency-independent, I[G] = I[G(T )] [78], so
that consideration of the transverse Green’s tensor G(T ) is sufficient for the imaginary
part [79, 80]. In general, the full Green’s function G, with the implicit inclusion of
non-physical (longitudinal) modes ∇ ·

(
ϵEµ

)
̸= 0, should be used for r ̸= r′ [81, 82],

which results in a different value for the real part. In any case, the above expressions
then show that the Green’s function simply couples all valid fields to the dipole, which
are then propagated away with a mode dependent weight. I finally note the often-used
decomposition of the Green’s function [77, 83, 84, 85]

G(r, r′, ω) = G(0)(r, r′, ω) +G(R)(r, r′, ω), (1.20)

where G(0) is the vacuum Green’s function

G(0)(r, r′, ω) = − 1
3k2
δ(r− r′)I (1.21)

+ exp(ikR)
4πR

[
k2R2+ikR−1

k2R2 I+ 3−3ikR−k2R2

k2R2 R̂⊗ R̂

]
,

and G(R) is the reflected (or scattered) part that depends on the medium. For a
homogeneous bulk electric, one makes the replacement k → kn(ω) = k

√
ϵ(ω) with the

complex square root chosen such that the material is absorbing, i.e., I[k] > 0. The
vacuum self Green’s function exhibits a divergence in the real part R[G(0)(r, r, ω)] →
∞, due to assumption of a point-like dipole resolving arbitrarily high wavenumbers,
and when evaluating both arguments at the same point, one makes the replacement

R[G(r, r, ω)] → R[G(R)(r, r, ω)], (1.22)

as the self-Green’s function is finite for the reflected part (except in the case where the
atom lies at an interface), whilst the full imaginary part remains finite with (for real
k) I[G0(r, r, ω)] =

k
6π
I. Indeed, the renormalization of the real part arising from the

vacuum is typically much smaller than that of the scattered part in practice [86]. In
the rest of this thesis I use the notation G(r, r, ω) with the replacement of Eq. (1.22)
implicitly assumed.
As mentioned, the Green’s function contains all information on wave propagation in
the medium, and salient system features can typically be immediately inferred from
the form of the Green’s function. I briefly highlight a few key examples of the Green’s
function in qualitatively different media to show how the medium characteristics are
manifest in the resulting wave propagation.
The Green’s function in the case of an optical cavity resonant at ω0, with decay rate
κ, and with a single resonant cavity mode E(r) takes the approximate form [60]

Gcavity(r, r
′, ω) ≈

(
c2

2ω0(ω − ω0 − iκ/4)

)
E(r)⊗ E∗(r′), (1.23)

which immediately shows that a Lorentzian peak around resonance and the coherent
single-mode nature of propagation can be observed. The cavity modes typically fea-
ture a sinusoidal dependence along the cavity axis coordinate, so that propagation
within the cavity is in principle without attenuation. For a single-mode 1D waveg-
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uide with periodicity length a along the waveguide axis with coordinate z, the Green’s
function [60, 82]

G1D(r, r
′, ω) =

iac2

2ωv

[
Ek(r)⊗ E∗

k(r
′)Θ(z − z′) + E∗

k(r)⊗ Ek(r
′)Θ(z′ − z)

]
, (1.24)

is obtained for the mode Ẽk(r) with a quasi-momentum (or effective wave-vector in
the case of continuous translational symmetry) k, group velocity v = v(k), and where
Θ(·) is the Heaviside function. Eq. (1.24) captures the essential features of waves in
1D – notably the infinite range propagation, inverse scaling with mode area (noting
that Ẽ has inverse dimensions of square-root-volume), and potential for chiral light-
matter interactions – when Ẽk(r) exhibits a slowly varying field envelope along the
z-axis, the field longitudinal component is π/2 out of phase with the transverse com-
ponent [87]. This feature allows one to select a dipole with (say) P0(ω) ·Ẽk(r) = 0, and
P0(ω) ·Ẽ∗

k(r) ̸= 0. The result according to Eqs. (1.24) and (1.15) is chiral emission with
the field only non-zero for z′ > z. This remarkable result is the cornerstone of chiral
quantum optics, which employs symmetry breaking in the flow of light for applications
in information processing [88] on one hand and fundamental studies of cascaded quan-
tum systems [87, 89, 90] on the other. A final example noted for reference in Chapter
4 is the Green’s function for ω just (say) above the band edge of a one-dimensional
band-gap material. One approximates the dispersion in the vicinity of the band edge
at k0 by [28, 91]

ω(k) = ωb[1− α(k − k0)
2/k20], (1.25)

where α characterises the band curvature [91], and ωb is the band edge frequency.
Assuming small detuning ∆ = ω− ωb > 0 above the edge, that the Green’s function is
dominated by contribution exclusively due to this band, and that the polarization of
Bloch waves varies little around k0, an approximation

GBG(r, r
′, ω) ≈ La

2
R[Ek0(r)⊗ E∗

k0
(r′)]e−|z−z′|/L, (1.26)

can be obtained in a similar manner to that presented in [28] by approximating the
integral corresponding to Eq. (1.16). The localization length is given by L =

√
αωb

∆k20
,

for the detuning ∆ = ω − ωb > 0. Notably, the Green’s function is purely real, and
exponentially decaying due to the inability of photons with frequency ω to travel –
any radiation from the emitter will form a localized ‘cloud’, and power is forbidden
from being radiated away from the dipole. Nonetheless, the evanescent field still allows
the emitter to probe and interact with its surrounding. That GBG is real indicates
the absence of travelling waves at ω, and is further suggestive of reversible dynamics.
Indeed, this scenario is central to band-gap quantum optics [28, 92, 93] that seeks to
engineer long-range and coherent interactions between quantum emitters.
Moving beyond emission of a constant dipole, the interplay between light and mat-
ter becomes apparent when, in addition to the dipolar emission Equation (1.15), one
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considers an induced linear dipole at position r0 such that

P0(ω) = α(ω)E(r0, ω), (1.27)

with (scalar) polarizability α(ω). Including a driving field E0, one obtains a non-trivial
and self-consistent system of equations for both the polarization P0 and the resulting
electric field, specifically

P0(ω) = α(ω)

[
I− α(ω)

k2

ϵ0
G(r0, r0, ω)

]−1

E0(r0, ω) = αeff(ω)E0(r0, ω), (1.28)

that is, the polarizability is renormalized to αeff by the presence of the medium, with
a corresponding total electric field at frequency ω of

E(r, ω) = E0(r, ω) + µ0ω
2αeff(ω)G(r, r0, ω) · E0(r0, ω). (1.29)

When multiple emitters are present, collective modes of the linear system are formed
and, employed en masse, optical elements such as mirrors with sharply peaked responses
may be formed [11, 29]. On the other hand, the average optical force acting on a
polarizable particle is given for a total field E by

F =
1

2
R
[
P0 · ∇E(r0)

]
, (1.30)

so that through Eq. (1.29), the optical force may be shaped on an emitter via its envi-
ronment – a common theme in optical nanofiber (ONF) optics (see Chapter 2) and in
plasmonics, where atoms can be trapped by the strongly confined near-field of nanotips
to precisions of nanometers [94]. Of course, multiple scattering also results in forces on
each of the emitters that are dependent on the total configuration, creating a rich play-
ground for investigating collective optomechanics of levitated nanoparticles [95, 96]. In
these latter scenarios the background medium is often used to engineer strong and long
range interactions between the emitters (see Eq. (1.24)).

1.3 Field quantization in arbitrary electric linear me-
dia

Theoretical machinery has grown more sophisticated since the early quantization schemes
in a box [97], leading to the subsequent quantization in lossless continuum media [98],
and eventually arbitrary linear electric media [99, 100, 101] which employ the classical
EM Green’s tensor (1.13). These general quantization schemes lay the foundation for
studies of light-matter interactions in the presence of electric linear media, and the ap-
plicability of these Green’s-function based methods becomes evident through the wealth
of literature that employ them to this day in engineering emission and interactions in
spin systems [28, 52, 53, 102, 103, 104, 105, 106], in determining transport/transfer
of spin excitations [107, 108, 109], in determining optical properties of emitter-based
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metasurfaces [29, 76], and more. The equation for the quantum electric field Ê(r, ω)
for a given frequency component at frequency ω and position r reads as that of the
classical field in the presence of quantum noise currents ĵ(r, ω)

∇×∇× Ê(r, ω)− ω2

c2
ϵ(r, ω)Ê(r, ω) = iωµ0ĵ(r, ω). (1.31)

In general the frequency-dependent permitivity ϵ(r, ω) is complex, precluding the im-
mediate quantization of the classical Maxwell’s equations due to non-Hermiticity of the
eigenvalue problem. One addresses the damping that would then arise in Ê (and con-
sequently, the bosonic operators) via the introduction of accompanying noise induced
by local current fluctuations in ĵ, consistent with the fluctuation-dissipation theorem.
The electric field is found as the propagated current

Ê(r, ω) = iωµ0

∫
d3r′G(r, r′, ω) · ĵ(r′, ω). (1.32)

In the following I address only the electric field, as the magnetic component follows
similarly and I will only consider the electric dipole interaction when investigating the
light-matter Hamiltonian in any case. The noise is then decomposed into bosonic fields

ĵ(r, ω) = ω

√
ℏϵ0
π

Imϵ(r, ω)f̂(r, ω), (1.33)

satisfying the bosonic commutation relations

[f̂(r, ω), f̂+(r′, ω′)] = Iδ(r− r)δ(ω − ω′). (1.34)

Consideration of the EM field energy gives the Hamiltonian as the sum of harmonic
oscillators

Ĥ =

∫
d3r

∫ ∞

0

dωℏωf̂+(r, ω)f̂(r, ω). (1.35)

The quantization of the field is particularly relevant in periodic media as an analogy to
the tight-binding model can be drawn, establishing a connection between the solid-state
and optics. I present this connection in the following for reference in Chapter 4. In
periodic, lossless, and dispersionless media, one can obtain the Hamiltonian in second
quantization expansion similar to (1.35) but in terms of the Bloch waves of the system

Ĥ = ℏ
∑
µk

ωµ(k)â
+
µkâµk, (1.36)

for the photon annihilation operator âµk acting on the photon of the µ-th band of the
system with quasimomentum k. Note that I neglect the continuum of modes that are
not guided. In this case, the Wannier basis can be constructed

âµj =
1√
N

∑
k

eik·Rj âµk, (1.37)
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where the set {Rj}j is a set of lattice sites of size N → ∞ for the system. One then
obtains the tight-binding form of the Hamiltonian

Ĥ = ℏ
∑
µ

∑
jk

Jµjkâ
+
µj âµk, (1.38)

for

Jµjk = ℏ
∑
k

ωµ(k)e
ik·(Rj−Rk), (1.39)

which can also be written as an overlap integral between the corresponding Wannier
functions for the EM field [110]. That is, a photon hops between orbitals corresponding
to localized Wannier functions localized at each lattice cell. As Wannier functions
are typically exponentially decaying [111], one often neglects site interactions beyond
nearest neighbor, and in addition assumes low energies so that higher bands can be
neglected.
Given the great degree of controlability of state-of-the-art in photonics, one has a
great freedom in engineering bosonic Hamiltonians in both the continuum and discrete
settings. When the quantum degree of freedom is considered for both field and emitter,
the interplay between a bosonic bath and the emitters can be explored similarly to the
classical case including induced polarizability, as we see in the following.

1.4 Atom-field equations of motion

I begin with the paradigmatic light-matter dipolar coupling Hamiltonian that can be
derived from the microscopic system of charges [77], in the case of many distinct two-
level systems (TLS), which are here concretely taken to be atoms. The system reads

Ĥ = Ĥfield + Ĥatom + Ĥint, (1.40)

with the constituents

Ĥfield =
∫
d3r
∫∞
0
dωℏωf̂+(r, ω)f̂(r, ω), (1.41)

Ĥatom = 1
2

∑
j ℏω0σ

z
j , (1.42)

Ĥint = −
∑

j D̂j · Ê(rj), (1.43)

for the dipole operator D̂j, and the Pauli spin-1/2 operator (matrix) σ̂αj acting on
atom j for two level atoms characterised by ground (|g⟩) and excited (|e⟩) states with
resonant frequency ω0. With no permanent dipole moment, the dipole operator must
necessarily take the form

D̂j = d∗σ+
j + dσj = D̂+

j + D̂−
j , (1.44)

with the associated dipole matrix element d = ⟨g|jD̂j|e⟩j and lowering operator σj =
|g⟩j ⟨e|j. In the Heisenberg picture, the equation of motion for the positive-frequency
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component Ê+ of the electric field is obtained as

˙̂
E+(r, ω, t) = iωÊ+(r, ω, t) +

iµ0ω
2

π

N∑
j=1

I[G(r, rj, ω)] · D̂+
j (t). (1.45)

In the limit of weakly saturated atoms σzj ≈ −1, one integrates and obtains the quantum
analogue of Eq. (1.15) [86]

Ê+(r, ω) = Ê+
0 (r, ω) + µ0ω

2
∑
j

G(r, rj, ω) · D̂+
j (ω), (1.46)

with the feedback onto the atomic dipole (ignoring the initial atomic contribution)
entering through [53, 60, 86]

D̂+
j (ω) = α(ω) · Ê+(rj, ω), (1.47)

for the tensor polarizability associated with the transition [77]

α(ω) =
1

ℏ

[ d∗ ⊗ d

ω + ω0 + i0
− d⊗ d∗

ω − ω0 + i0

]
, (1.48)

in agreement with classical intuition, and where (∆ + i0)−1 = limϵ→0+(∆ + iϵ)−1 =
P
(

1
∆

)
− iπδ(∆), with P denoting the Cauchy principal value. In general, nonlinear

coupling to higher-order cumulants in the Heisenberg equations precludes this corre-
spondence. Eqs. (1.46) and (1.47) similarly give a self-consistent system of equations
for the dipole operators and electric field, which results in a renormalization of the
polarization for each emitter. In the Markov approximation, the atomic dipolar re-
sponse is assumed to be sharply peaked around resonance, and the variation of the
Green’s function over this frequency range is assumed negligible. In addition, the
travel time of photons between two emitters is considered negligible in comparison
to the atomic timescales. Then, G becomes local in time, and one may make the
replacement G(r, r′, ω) → G(r, r′, ω0) to find in the time domain (upon taking the
rotating-wave approximation)

Ê+(r, t) = Ê+
0 (r, t) + µ0ω

2
0

∑
j

G(r, rj, ω0) · D̂+
j (t). (1.49)

Alternatively, one may take a more dynamical approach in order to derive the equations
of motion for the atomic population, without assuming weak-saturation of the atoms.
Formally beginning instead from the original Hamiltonian (1.40) and applying the
Born and Markov approximations of bath-spin factorization and a memoryless photonic
environment gives an equation of motion coarse-grained over the fast bath time-scale for
the reduced density matrix ρ̂ of spins only [83, 102] in the interaction picture rotating
as Û = ei(Ĥatom+Ĥfield)t

˙̂ρ =
−1

ℏ2

∫ ∞

0

dτ
[
Ĥint(t),

[
Ĥint(t− τ), ρ̂⊗ |0⟩⟨0|

]]
, (1.50)
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for the field vacuum state |0⟩. One evaluates the exponentials appearing in the integral
by ∫ ∞

0

dτe−iωt = πδ(ω)− iP 1

ω
, (1.51)

to obtain the master equation

ρ̇ = − i

ℏ
[Ĥeff, ρ] + L[ρ], (1.52)

for the effective Hamiltonian and Linbladian

Ĥeff = −ℏ
∑

j,k=1 Ωjkσ̂
+
j σ̂k, (1.53)

L[ρ] = 1
2

∑
j,k=1 Γjk

[[
σ̂k, ρσ̂

+
j

]
+
[
σ̂kρ, σ̂

+
j

]]
. (1.54)

The coefficients determining coherent and incoherent spin exchanges respectively are
given by

Ωjk =
µ0ω2

0

ℏ d∗ ·RG(rj, rk, ω0) · d, (1.55)

Γjk =
2µ0ω2

0

ℏ d∗ · IG(rj, rk, ω0) · d, (1.56)

and are also known as the resonant dipole-dipole interaction (RDDI) elements. Note
that if a driving field is present, one works in the rotating frame that produces an extra
Hamiltonian term corresponding to detuning in Eqs. (1.53), whilst in the interaction
elements Ωjk,Γjk, one makes the replacement ω0 → ωL [83]. For typical detunings
ω0−ωL ∼ Γjj, the variation of the Green’s function is negligible and either can be taken.
It is worth mentioning here the applicability of this setup for quantum simulations.
Although TLSs have been considered to arrive at the flip-flop interactions – tunable
through the photonic environment – in Eqs. (1.53), a wealth of interacting spin models
with dynamical tunability can be created by employing a more complex atomic level
structure and external driving fields for atoms situated in particular next to photonic
crystals [26, 28, 112]. In platforms of one- and two-dimensional crystals coupled two
cold atoms, the basic functionalities (atom trapping, interfacing, measurement) have
been demonstrated [113, 114], suggesting steady progress towards the realization of
engineered many-body quantum models in the near-future.
Beyond the interactions of Eq. (1.53) obtained in the rotating wave approximation, I
note for reference in Chapter 3 that at second order in the atom-field coupling strength,
one in general finds also a single-emitter ground state energy shift due to the presence
of the medium [77, 83]

Ωjj → Ωjj +
µ0
ℏπ

∫∞
0
du u2ω0

ω2
0+u

2d
∗ ·G(rj, rj, iu) · d (1.57)

= Ωjj +
µ0
2π

∫∞
0
duu2Tr

[
α(iu)G(rj, rj, iu)

]
,

which requires that the rotating-wave approximation not be taken. This shift is typ-
ically small compared to other quantities, but generically becomes significant as the
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atom-surface distance is reduced – as an example, Caesium atoms next to an infinite
silica half-space in the non-retarded limit feel the potential [77, 115]

U(z) ∼ C3

z3
, (1.58)

for the van der Waals coefficient C3 = 5.6× 10−49 Jm3, and where z denotes distance
of the atom to the half-space boundary. This already corresponds to a ground-state
energy shift of 1 MHz= O(Γ0/2π) when z ≈ 174 nm, sub-wavelength with respect to
the dominant optical transitions λ0 ∼ 1µm. In the context of trapping this corresponds
to a temperature of approximately 7.64 µK, but when z ≈ 34 nm the shift corresponds
to a temperature of approximately 1 mK and the strong atom-surface attraction then
typically overcomes laser-induced trapping potentials [22, 115], resulting in trapping
limited by dispersion to atom-surface distances on the order of 100nm for Caesium
atoms [114] next to dielectrics with a moderate refractive index. Whilst the dispersion
potential here is found at second order in atom-field coupling and acts only on a single
atom, I will explore in Chapter 2 the two-atom dispersion potential that can be found
at fourth order.

1.4.1 Collective modes: superradiance and subradiance

A recurring theme in this thesis will be the collective modes of coupled systems, be
it the joint modes of a two-fiber coupler (Chapter 2), or the collective excitations of
atoms mediated through the EM field (Chapters 3 and 4). Concretely, in the previous
example of atoms coupled through the field, the collective modes are can be readily
analyzed in the single excitation subspace. Recalling the Heisenberg equation of motion
for operators corresponding to Eq. (1.53), one obtains the linear set of equations [53]

σ̇ = i

(
Ω+

i

2
Γ

)
σ = igσ, (1.59)

where we have the vector of atomic coherence expectations σ = (⟨σ1(t)⟩, . . . , ⟨σn(t)⟩)
and matrices Ω = [Ωjk]jk,Γ = [Γjk]jk. The real and imaginary part of the eigenvalues
of the matrix g will then determine the collective resonances and decay rates respec-
tively, with the eigenvector giving the profile σ of spin coherences. In particular, any
collective decay rate Γ is restricted by 0 ≤ Γ ≤

∑
j Γjj, with saturation of the left in-

equality yielding subradiant collective states and the saturation of the right inequality
yielding superradiant states. These two situations showcase the extremes of collective
radiation of emitters with, in the case of identical emitters, either an N -fold (for N
atoms) enhancement of decay rate, or a perfectly non-radiating state that does not
decay. (Note that the dynamical superradiant decay is not to be confused with the
phenomenon of steady-state superradiance in the Dicke model of cavity QED, to be
touched upon in Chapter 3.) A transparent example of this behaviour can be observed
in cavity QED. Assuming the standard longitudinal cos(kz) dependence of the cavity
mode field, one can obtain the RDDI interaction elements from (1.23) in a driven cavity
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(with the fast cavity eliminated [53]) as

Ωjk = − g2∆c

∆2
c+κ

2/4
cos(kzj) cos(kzk), (1.60)

Γjk =
g2κ

∆2
c+κ

2/4
cos(kzj) cos(kzk), (1.61)

where g is the atom-cavity coupling, κ is the cavity decay rate and ∆c = ωp−ωc is the
detuning between the cavity frequency ωc and the probe field frequency ωp. Regardless
of emitter position, there is then always a single superradiant mode that couples to the
cavity field

σj ∝ cos(kzj), Ω + iΓ/2 =
g2(−∆c + iκ/2)

∆2
c + κ2/4

n∑
j=1

cos2(kzj), (1.62)

and n− 1 subradiant modes that are decoupled. For emitters placed at antinodes, and
assuming resonance ∆c = 0, one constructs the collective spin operator

Ŝ =
1√
N

n∑
j=1

σ̂j, (1.63)

to obtain the Linbladian

L[ρ] = Γ

2

([
Ŝρ, Ŝ+

]
+
[
Ŝ, ρŜ+

])
, (1.64)

which again reveals an enhancement of N in the decay rate of the superradiant mode
over single-body emission. In addition to the immediate enhancement of emission into
the cavity [116], superradiant emission has applications in quantum memories [117],
lasing [118], and enhanced cooling schemes [119]. Superradiant decay has further been
experimentally verified in a range of settings [37, 74, 120, 121]. Due to their inherent
decoupling from the EM field, subradiant modes are more difficult to excite [122],
but promise long-lived decoherence free subspaces [123] for information processing and
‘tailored’ subradiance may be used for information transport, e.g., to selectively excite
desired modes of a neighboring optical nanofiber, whilst remaining decoupled from the
undesired free-space modes [107].



Chapter 2

Optical Nanofibers for Light-Matter
Interfaces

2.1 Background

The ONF is a simple extension of the optical fiber – a component ubiquitous in today’s
society – that can be obtained by heating and stretching [124, 125] a standard (typically
silica) optical fiber to create a tapered region with a diameter of the order of 100s of
nanometers. A schematic of the resulting structure is given in Fig. 2.1. After decades
of progress in optical fiber technologies and their branching into ONFs, the current
state-of-the-art standard allows silica ONFs with lengths of millimeters and a realised
attenuation of 2.6×10−5 dB/mm for wavelengths of 780 nm [126] to be routinely fabri-
cated with radii at the waist of 200 nm [127], well below free-space optical wavelengths.
ONFs support discrete electromagnetic modes guided by total internal reflection that
feature evanescent fields (see Fig. 2.1), which exponentially decay outside of the fiber,
and allow for external interfacing with matter. With the realisation of low-loss ONFs
with a deeply-sub-wavelength diameter of 50 nm in 2003 [64], interest rekindled in
extending the numerous applications of standard optical microfibers to nanoscale plat-
forms. Similarly to optical micro-fibers, the ONF has found uses in light guiding as
part of miniaturized optical circuits [128, 129], along with efficient couplers [130], res-
onators [32, 131], and optical sensors [30, 132, 133]. On the other hand, the interface
provided by the evanescent field makes the ONF a powerful platform in the quantum
optical realm when interfacing with emitters. Here the ONF boasts strong optical
near fields for particle trapping [34, 115], guiding [134, 135, 136], and detection [133].
The significant coupling into the fiber also allows for efficient photon collection and
generation [33, 62, 93] through the guided mode, whilst the infinite-range and strong
interactions through the ONF realise the basic building block for a quantum infor-
mation network [68, 69], and enable the simulation of a host of long-range and open
many-body quantum systems in a 1D bath [7, 90, 137, 138]. Indeed, the broadband
and open 1D nature of the ONF is a key distinguishing feature in comparison to, say,
optical cavities. When considered alongside their low-cost and relative ease of integra-
tion with existing platforms, ONFs, (or 1D waveguides in general) have been cemented
as an indispensable tool in realising flexible and powerful light-matter interfaces.

21
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Figure 2.1: Schematic of a tapered optical fiber. The ONF (central region) is obtained
by heating and stretching a standard optical fiber. The cladding (blue) of the original
optical fiber becomes the core of the ONF, which is surrounded by a ‘cladding’ of
vacuum. Red denotes a guided pulse of light, which extends outside as an evanescent
field.

2.1.1 ONFs for sensing, measurements and interferometers

Aside from applications in quantum optics, ONFs excel in metrological applications
and transporting and transforming information. A common role of ONFs is that of a
coupler, allowing one to interface two spatially separated working components. A clas-
sic example is the coupling of Fabry-Perot optical cavities [139, 140, 141, 142], allowing
high efficiency large bandwidth coupling, in addition to whispering gallery resonators
[143, 144], where the guided modes of the ONF overcome phase-mismatching that
occurs when attempting to excite cavity modes by free space beams. In fact, optical
cavities can be formed from ONFs themselves [145, 146, 147, 148], which allows for long
on-axis cavity lengths on the order of metres, as there are (ideally) no off-axis modes
to carry away energy. Aside from their roles as passive optical elements, the ONF also
plays a more central role when it comes to sensing and manipulation of matter present
in the evanescent field. The base functionality of the light-matter interaction is that of
a refractive index sensor, which is employed directly to measure the refractive index of
gases [149], and indirectly in order to determine the positions and sizes of micro- and
nano-particles [133, 150, 151] via scattering into fiber modes. Conversely, injecting light
into the fiber further allows one to manipulate nearby particles [134, 135, 136, 152] due
to the large component of electric field in the vicinity of the fiber. Recent all-optical
applications of the ONF include twisted-fiber interferometers [32], measurement of the
vdW potential [153], and measurement of the spin angular momentum of light [154].
More recently, ONFs have received a great deal of attention as a platform for interfacing
light and (quantum) emitters.

2.2 ONFs coupled to neutral atoms

2.2.1 Trapping and interfacing of particles

To create an interface between light and matter, reliable trapping schemes that can
localize single particles are an indispensable part of the quantum optical toolbox. Com-
mon laser trapping schemes make use of the induced dipole potential [83], where we
assume a polarizable particle with a single resonance and a laser field detuned from
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resonance by ∆ (cf. the optical force in Eq. (1.30))

U(r,∆) = −1

2
α(∆)|E(r)|2. (2.1)

In the regime of large ∆, the polarizability (for projected dipole matrix element d) may
be approximated as

α(∆) = − d2

ℏ∆
, (2.2)

due to the imaginary part scaling as O(∆−2) [83, 115] – this feature ensures that high
laser powers can be used to create deep trapping potentials without compromising
incoherent scattering, provided detuning is large enough. Then, in evanescent-field
trapping schemes, one may launch far red-detuned light through the ONF in order
to attract atoms towards regions of high intensity near the surface where centrifugal
forces provide a balancing force [155], or one may launch blue-detuned light to guide
particles towards regions of low intensity, applied in ‘slot’-style (ONF) waveguides
featuring a central intensity minimum [34, 61, 65]. In general geometries, one may
launch both red- and blue-detuned light with distinct evanescent decay lengths to
create a combination of attractive and repulsive forces, balancing near the surface
of the dielectric: proposed for 1D waveguides in 2000 [156], the so-called two-color
trap was theoretically treated for ONFs in 2004 [115], and has seen almost universal
adoption in atom-ONF platforms [22, 120, 127, 157, 158], and also in 2D dielectric
platforms [159, 160]. Here trapping depths on the order of mK can be achieved [22, 115].
Current state of the art allows Cesium atoms to be trapped for 1s and near the motional
ground state (with ground-state occupation more than 50% in all three directions)
300nm from hot ONFs, using a combination of two-color traps and degenerate Raman
cooling [158] to satisfy the sub-mK requirements demanded by the trap depth.

2.2.2 Collective response of quantum emitters to guided modes

ONF losses are negligible within typical fiber lengths of interest (1mm-1m), which
means that emitters coupled to the ONF can interact over arbitrarily large distances
– this feature lies at the heart of many quantum optical applications. Demonstrated
theoretically in 2004 [161] for two emitters and in 2007 for many [162], the ONF
guided modes allow for coherent interference between the emission of coupled emitters
placed along the ONF. Neglecting for clarity the effective single-body emission into
radiation modes, one can then describe the purely dissipative interactions in terms
of a collective spin as in Eq. (1.64), resulting in super- (sub-)radiance when (anti)-
symmetric states of the emitters are excited. Remarkably, despite the fact that the
single-atom coupling Γ1D into the ONF is typically small compared to the decay rate
Γ′ into non-guided vacuum modes, placing N atoms along the ONF allows the optical
depth NΓ1D

2Γ′ to be arbitrarily increased. For increasing N, the spin-wave corresponding
to the superradiant mode has an overlap with the ONF guided mode closer and closer
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Figure 2.2: (a) Schematic for realising an effective cavity using two atomic mirrors
of equally spaced atoms; the atoms with labelling ±1 form two superradiant collective
modes that are π out of phase, producing an overall subradiant cavity mode, which the
atom at j = 0 couples to. (b) Intensity profile of the effective cavity mode. (c) Rabi
oscillations of an initially excited impurity atom placed in the effective cavity (black
line) vs single-atom decay rate without the cavity atoms (dashed red line). Taken from
[7].

to unity, with a channel efficiency

f =
NΓ1D

Γ′ +NΓ1D

, (2.3)

and f = 0.96 has been achieved for a chain of N = 100 Cesium atoms trapped at
a distance of 100 nm from a ONF of radius a = 200 nm [162]. Note here that the
decay Γ′ into radiation modes in principle sets a bound on the collective spin lifetime,
in contrast to the losses κ from the cavity mode. Whilst the single-body emission into
radiation modes (typically on the order of ∼80-99%) cannot be neglected in practice,
the ratio between coupling to radiation modes and collective coupling to the guided
mode can be arbitrarily increased with increasing atom number, so that on relevant
timescales the coupling to the guided mode is the dominant mechanism. Formation of
superradiant atomic chains is at the core of collective-atom-fiber interfaces, and was
experimentally observed in 2017 [121] for a cloud of atoms, whilst the associated large
Bragg reflection of the array was observed in 2016 [157]. An early theoretical proposal
for applications of this effect was to demonstrate an encompassing of cavity QED within
waveguide QED, by realising atomic ‘mirrors’ using arrays of atoms trapped along the
ONF ([7], see Fig. 2.2), and has been experimentally realised in the equivalent circuit
QED of superconducting qubits in 2019 [59]. Coupling of the cavity mode to an impu-
rity atom then scales as Γ1D

√
N

2
. Using a modest N = 900 and 20% coupling into the

fiber Γ1D = Γ′/4, the hallmark Rabi oscillations [163] of cavity QED are observed in
the oscillation of the impurity population.
When employed in conjunction with 3-level Λ-type atoms, the large collective coupling
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allows a single and long-lived collective excitation to be stored within a superposition
of two ground states of the atomic chain upon illumination through the fiber, and
read out at will. This concept was explored in [7], and realised experimentally in [120].
This ability to control photons and interface with atoms at the single quantum level re-
alises a foundation for quantum-information processing in atom-ONF systems, spurring
on experimental progress aimed at bringing practical systems closer to realisation, in
addition to fundamental physical investigations aiming to explore the functionalities
available to the ideal atom-fiber system. To select a few, recent notable findings in-
clude the experimental generation of strongly bunched and anti-bunched light, using
the non-linear photon-photon interactions mediated by atomic arrays [164]; realisation
of mechanical analogues of the celebrated Dicke model (see Ch. 3) by using strong
artificial magnetic field arising due to strong polarization gradients [165] that couple
the motional atomic states to the spin states [166]; chiral amplifiers of ONF-guided-
light [167] exploiting the spin-orbit coupling [87] of tightly confined fields.

2.3 Theory and principles of the ONF

One of the attractive qualities of the ONF is its amenity to theoretical treatment,
which under mild modelling assumptions allows one to completely specify the system
eigenmodes analytically. In the following we model an ONF as an infinite cylinder with
a step-refractive index profile n(r) surrounded by a vacuum and given in cylindrical
coordinates r = (r, φ, z)

n(r) =

{
n1 r < a,

1 r > a,
(2.4)

for the fiber radius a and constant refractive index n1 > 1, which for now we take to be
real, given the low losses of silica in the optical wavelengths [126, 127]. The resulting
eigenvalue problem (1.7) is Hermitian, and admits an orthonormal set {Eµ}µ of field
modes characterised by the super-parameter µ that we specify later. The ONF features
translational invariance along the z-axis, along with rotational symmetry about the
ONF axis, so solutions take the form

Eµ(r) = Eµ(x, y)eifβz = eµ(r)e
i(fβz+lφ), (2.5)

where f = ±1 indicates the direction of propagation, l = . . . ,−2, 1, 0, 1, 2, . . . is the
azimuthal mode number, and β = β(µ) is the (conserved) propagation constant. Gen-
erally for 1D waveguides, the field components along the fiber axis (the longitudinal
field components) decouple [16, 168](

∇2
⊥ + [k2n(x, y)2 − β2]

)[
Eµz
Bµz

]
= 0, (2.6)
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for the transverse Laplacian ∇2
⊥ = ∇2

x+∇2
y, and the transverse components are readily

obtainable as

[
Eµ⊥
Bµ⊥

]
=

i

n2k2 − β2

(
β + k

 0 −
(
ϵ0
µ0

)1/2
n2
(
µ0
ϵ0

)1/2
0

 · ẑ×

)
∇⊥

[
Eµz
Bµz

]
. (2.7)

The boundary conditions are the standard interface conditions for step-discontinuities
in Maxwell’s equations (Eqs. (1.9)) along with Eµ(x, y),Hµ(x, y) → 0 at infinity in
the transverse plane, completing the eigenvalue problem and allowing the nature of
eigenmodes to be deduced as follows. As the ONF refractive index is n1 > 1, and n1 is
the largest index in the system, it follows that the propagation constant is restricted
to

|β| < kn1. (2.8)

If |β| < k, the wavevector is possible in free space (lies within the light line), and the
wave is physically not guided by the ONF; in Eq. (2.6) we see that outside the fiber the
longitudinal components may be expanded as outgoing and incoming Hankel waves,
which decay weakly as (x2 + y2)−1/2 in the far-field. In this case we may specify each
eigenmode by

µ = (β, l, p, f), (2.9)

where β < |k| and p = ±1 describes the two polarizations. This continuum of eigen-
modes with propagation constant within the light line are known as the radiation
modes. On the other hand, one argues that a wave confined to the fiber core – the
guided modes – allow

k < |β| < kn1. (2.10)

In this case, examination of (2.6) with Eq. (2.10) satisfied reveals the field outside
the ONF may only be a single outgoing, and exponentially decaying, evanescent field,
required for conservation of total wavevector. Therefore, a consistency condition for
β must be satisfied [8, 16, 168], which is the eigenvalue problem for guided modes.
For each specification of the fiber (radius a, refractive index n1), and of the free-
space wavevector k, there exist a finite number of β values satisfying the consistency
condition, with the number of β values determined by the dimensionless fiber parameter

V = ka
√
n2
1 − 1. (2.11)

In the ONF a distinction can be made for the guided modes by mode type N describing
the field polarizations: one finds hybrid (H) modes, modes in which both electric and
magnetic fields have a component in the longitudinal direction; this may be contrasted
with the transverse (T) modes, in which one of the electric or magnetic fields is entirely
transverse. Within these categories we further specify the dominantly longitudinal field
for hybrid modes, leading to labelling HE and EH for dominant electric and magnetic
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field respectively, whilst for the transverse fields we used notation TE (transverse elec-
tric) and TM (transverse magnetic) respectively. Within these mode specifications,
the electric field is only further distinguished by distinct solutions β to the eigenvalues
problem, which are labelled by m = 1, 2, . . . for each l, and again the polarization index
p = ±1. The guided modes are then completely specified by the super-index

µ = (k,N, l,m, p, f), (2.12)

where N = (HE,EH,TE,TM), and (l,m) may only take finitely many values for each
k. Up to degeneracies in p and f , the mode type is typically written as Nlm. With
these derivations complete, one numerically obtains the electric field profile by simply
solving the nonlinear eigenvalue equation for β and inputting this into the electric
field profiles obtainable from (2.6) and (2.7). A plot of the effective wave numbers
available for varying fiber radius is given in Fig. 2.3(a), and the key feature for our
purposes is that there always exists a guided mode – the fundamental mode HE11 – for
all values of a, or equivalently V . One also observes in Fig. 2.3(b) the field intensity
profile of the fundamental mode. The large in-fiber concentration of the electric field
as well as the jump in intensity when heading out of the fiber are apparent. In the
regime where only the single solution β0 exists, the fiber is said to be single-mode, and
any guided solution of Maxwell’s equations must be proportional to eiβ0z, yielding the
Green’s function corresponding to Eq. (1.24) when radiation modes are disregarded.

Relating to the Green function magnitude, the effective mode radius reff =

√
A

(2)
eff /π

(recall Eq. (1.6)) is given in Fig. 2.4 (a). One observes an optimal effective mode
radius below the diffraction limit λ/2 for the fundamental HE11 mode, and from Fig.
2.4, one sees that a significant portion of the field is concentrated in the vicinity of the
surface. In interfacing single emitters outside the fiber, it is important that neither the
field concentration inside the fiber nor the effective mode area are too large. A good
measure of concentration inside the fiber is the fractional power inside the waveguide,
given for an eigenmode as [8]

ηp =
Pin

P
, (2.13)

where P(in) is the propagating power (inside the fiber) [8, 16]. The fractional power in
the fiber can be seen in Fig. 2.4(b), where more and more of the power (and hence
electric field) becomes spread out in the region outside the fiber, resulting in reduced
coupling to a single emitter. These considerations usually lead to experimental ONF
radii of 200 nm being used [22, 120, 134, 154, 157], where both reff is small and ηp is
not too small.

2.4 Coupled optical fiber systems

2.4.1 Background

Introducing a second ONF into the system results in evanescent coupling between two
optical elements and thus a relative phase between propagating rays of the two ONFs.
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Figure 2.3: (a) Propagation constant normalized to the free-space wavenumber as a
function of fiber radius a, for λ = 780 nm , n1 = 1.4537. (b) Intensity profile of the
(quasicircularly polarized) HE11 mode for a = 400 nm, λ and n1 as in (a). Taken from
[8], with figures relabelled.

Figure 2.4: (a) The effective mode radius for the eigenmodes of the ONF for varying
fiber radius. Constant parameters are the same as Fig. 2.3. (b) Fraction of modal
power given (Eq. (2.13)) lying outside of the fiber, with constant parameters same as
(a). Taken from [8], with figures relabelled.
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These two principles guide the usage of coupled waveguide systems as optical elements
and when interfacing with emitters, realising a wealth of applications including as cou-
plers, sensors, interferometers and improved light-matter platforms. On the side of
fundamental physics, arrays of many coupled waveguides allow for the simulation of
solid-state physics in periodic media. With the rise of the ONF in the early 2000s, one
of the first proposals featuring the two-fiber system was given in 2005 in [169], where
the two fibers each play the role of an arm of a Mach-Zehnder inteferometer, and one
fiber acts as sample probe. This setup was experimentally realised shortly after in
2008 [30], with the ONF providing a minimally-invasive, low-cost, and flexible plat-
form for sensitive measurements. In addition the coupled ONF region can also directly
play the measuring role when sensing temperature as in [31]. Recently, Fabry-Perot
Resonators were even formed from a single looped ONF, where the region of coupling
between the fiber and itself acts as a tunable beam splitter [32]. Of course, a finite-
length coupling region can also simply serve to transport light from an undesirable
channel to a more desirable one, with single photons efficiently collected by a plas-
monic waveguide coupled to a nearby low-loss ONF for transportation [170]. With this
single-emitter integrated system as just one example, multiple-waveguide style setups
also naturally have a range of applications in the quantum optical domain.
Moving into the realm of quantum optics, the coupled-waveguide system has seen re-
cent employment in particular due to the additional elements of field confinement and
symmetry provided by the extra waveguide. For two waveguides close to one another
the strong hybridization of the individual fiber modes can give rise to eigenmodes with
effective wavevectors closer to that of vacuum than single fibers, i.e., much of the guided
field lies in the vaccuum region between the two waveguides, and strengthens coupling
to emitters using further confinement in the transverse plane (as opposed to group
velocity engineering, see (1.24)). An early experimental realisation of an effective two-
waveguide system was given in a ‘slotted’ waveguide [171], where new guided modes
with effective index close to that of the external region were indeed observed. The
effective coupled waveguide setup has additionally been proposed for trapping of cold
atoms [35, 172] and realized for the trapping of nanoparticles [173], where the trap-
ping schemes mentioned in Section 2.2.1 can produce greater intensities for trapping at
identical powers due to the field localization in the slotted region. A high-profile and
recent use of an effective two-waveguide system in cold-atom platforms is the ‘alligator’
photonic crystal waveguide, whose principles were conceptualized in [61] and which
was consequently realised in [65]. Further benefits of atom trapping in the center of the
two-waveguide geometry were highlighted in the theory here, such as restoring Casimir-
Polder forces helping to deepen the trapping potential in a transverse direction, and the
application of trapping in low-intensity minima [34, 174, 175] surrounded by regions
of large intensity which further works to reduce scattering losses. As a final bonus,
the low-intensity minimum of the mode used for trapping is compensated by a high
intensity maximum for the aforementioned partnering super-mode, which is strongly
coupled to atoms situated in the trap and can be used for effective probing. The pow-
erful atomic trapping and interfacing platform offered by the two-waveguide geometry
forms a strong foundation upon which the principles of photonic crystal waveguides
have been applied, resulting in a plethora of novel experimental [37, 92] observations
and proposals [28, 35, 53, 176] for exploring quantum light-matter platforms in the
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past decade (note that in current realisations in the ‘alligator’ crystal, the atoms are
actually trapped slightly above the surface due to technical limitations. This has been
addressed in [114], and trapping at the center of the structure should soon be possi-
ble). Finally, and most recently, a pure two-fiber system has also been explored in the
context of coupling to emitters, where in-fiber coupling efficiencies up to 55% where
found [33] at optical wavelengths, which can be compared with approximately 30% for
the single fiber [62].
A final example of optical couplers goes beyond the two-waveguide setups introduced
previously, featuring periodic 1D or 2D arrays, where photons emulating electrons trav-
elling in the solid-state. 1D arrays of ONFs received the first treatment in 1965 [177]
which was followed by a experimental realisation in Gallium arsenic in 1972 [178].
Here, diffraction characteristic of a discrete 1D system was observed. As the rela-
tionship between Maxwell’s equations and Schrödinger’s equation became more firmly
rooted, coupled waveguide lattices found a place simulating quantum dynamical phe-
nomena difficult to observe in traditional solid-state. A classical example is that of
Bloch oscillations [179, 180] – whereas the small ratio of electron scattering time (due
to defects) to oscillation period has precluded observation in natural crystals [181],
arrays of coupled waveguides do not suffer from this shortcoming, and have allowed
for direct observation [182] in space, where the spatial waveguide axis plays the role of
time and refractive index modulations effect the potential. Furthermore, readily real-
isable complex variations of the refractive index has allowed for the extension of such
simulations into the PT -symmetric [183] domain [184]. With PT -symmetric theory of
coupled optical waveguides established only in 2007 [185], experimental observations
in the past 5 years [186] have paved the way for exploration of non-Hermitian physics
in higher dimensions, with very tangible applications in lasing [187] and topological
matter [188]. Heading towards the quantum realm, classical analogues of the quantum
zeno effect are further readily observable in arrays of optical waveguides [189], where
again the conditions of observation are readily satisfied [181, 189, 190]. Recalling the
quantized nature of the electromagnetic field, low photons numbers finally allow for
the exploration of all the aforementioned effects and more in conjunction with the
non-classical nature of light [191], [192], providing a foundation for investigating PT -
symmetric quantum mechanics as part of future quantum systems.
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2.4.2 Coupled mode theory for two coupled fibers

The ubiquitous approximation used to describe the approximate eigenmodes of a sys-
tem of evanescently coupled optical waveguides is coupled mode theory [16, 168] (CMT).
This is, at its core, a perturbative method of describing the equations of motion for
the full system mode amplitudes as an approximate linear combination of eigenmodes
of the single waveguide systems, whereby the effective wavevectors of the joint sys-
tem can be determined as eigenvalues of the (linear) equations of motion. Analysis of
coupled waveguides was first carried out using CMT in 1954 [193, 194], where linear
equations of motion for the single-waveguide modes amplitudes were determined in
the full two-waveguide system by heuristic considerations. A more rigorous approach
was taken in 1958 [195], where variational minimization was used to give the ‘best’
approximation to a system of two microwave tubes using only linear combinations of
the single-tube systems. Applications to the specific case of ONFs was given in the
1970s [196, 197], whilst the treatment not assuming orthogonal modes [198, 199] gave
the general coupled mode equations typically used in current works [184, 186, 190]. The
coupled theory is well-suited to investigations where there is not a severe overlap of
the evanescent mode of one waveguided with the (large) refractive index modulations
caused by another [200, 201]. This means that the two ONFs may even be touch-
ing, provided the refractive index variations are not too large [202]. In this regime of
‘weak coupling’, linear combinations of the single fiber modes describe the two-fiber
system well. Note, however, that these are rough qualitative criteria and no systematic
conditions for validity of the CMT have been determined yet. Certainly, for optical
wavelengths, moderate refractive indices n1 ∼ 1.5, and separations on the order of
µm, the CMT reproduces the wavevectors of the two-ONF systems well [200, 203], and
has been used to great effect in treating couplers [204, 205] and interferometers [32]
employed in experiments [30, 131], in addition to usage in the wealth of investigations
treating arrays of coupled waveguides[206, 207, 207, 208].
In brief, CMT condenses the interactions between single-waveguide modes down to
three processes: (i) coupling between bare amplitudes of distinct modes (ii) self-
coupling of modes of a single waveguide (i.e., distinct polarizations) due to scatter-
ing from the other waveguides (iii) coupling between longitudinal amplitude gradients
of modes (butt coupling) [168]. In almost all of the literature – including in studies
of coupled ONFs – the weak coupling conditions are deemed well satisfied and, fur-
ther, only the amplitude coupling effect is taken into account. This is in contrast
to the fact that as the weak-coupling conditions become closer to being violated, the
latter two coupling effects may become significant, and cannot be neglected in gen-
eral [16, 168]. In particular, advancements in optical fabrication have lead to routinely
produced coupled-waveguide systems on the nanoscale and with short separation dis-
tances [30, 32, 131, 209], where it is not clear that the inclusion of only condition (i)
is satisfactory; more accurate predictions including all the effects is necessary when
operating in these regimes.
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2.4.3 Summary and investigation outline

Returning to the early historical realisations, one of the simplest non-trivial case of two
coupled waveguides is that of two lossless ONFs, which offers analytical tractability
and simplicity whilst providing insight into the dynamics of more complex coupled-
waveguide systems. Given the theoretical and experimental relevance of this system,
it is crucial to provide accurate theoretical predictions corresponding to current state-
of-the-art and near-future experimental setups. In this section, I therefore analyze
the eigenmodes of the coupled-two-ONF system, using the approximate CMT and the
exact eigenmode expansion. The eigenvalues are numerically calculated using both
methods for experimentally realisable parameters, and I analyze the validity of the
approximate theory in this regime. The approximate theory can be invalidated for
experimentally relevant regimes where the CMT is typically used in the literature,
and I further analyze the effective coupling between single-ONF eigenmodes in the full
two-ONF system using the CMT. For particular parameters, the single-ONF modes
may completely decouple from one another in the CMT. I finally analyze the electric
field profiles of eigenmodes using the exact theory and observe that one mode has
a large intensity in the region between the fibers – ideal for probing emitters – and
one mode has a zero-intensity minimum in the region between the fibers – ideal for
use in blue-detuned atomic traps. These results simultaneously provide theoretical
predictions directly relevant to experimental ONF state-of-the-art, offer insight into
general coupled-waveguide systems, and reaffirm the current usage of two-waveguide
style systems in quantum optics.
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Figure 2.5: (a) The two ONF system. (b) Cross-section of the two-fiber geometry.
Taken from [2]

2.4.4 Coupled Mode Theory: Mathematical Details

The goal is to obtain an approximate description of the eigensolutions of the two-ONF
system shown in Fig. 2.5 in terms of the eigensolutions of the single-fiber systems.
Take the fibers to have radius a and a minimal surface-to-surface separation of d. Due
to the non-orthogonality of a pair of modes with one chosen as an eigenmode of each
fiber, scattering from the opposite waveguide in general couples an eigenmode of one
fiber to every other eigenmode of the other waveguide. However, in a waveguide with
continuous translational symmetry, coupling between modes of different propagation
constant is relatively weak due to the phase mismatch [16, 168, 170, 210], which means
that one may select a single frequency-wavevector pair (ω, β(ω)), for frequency ω = ck
and free-space wavenumber k and wavelength λ = 2π/k respectively, and focus on the
coupling between modes with these parameters. As the guided modes are typically the
working photonic component, we focus on these modes, noting again that due to phase
mismatch the coupling to radiation modes within the light line is in general weak. With
the frequency-wavevector pair fixed, the polarization index p is the only free variable,
and one assumes the total electric and magnetic fields of the two fiber system with free
space wavevector k takes the form

E =
∑

jpA
(p)
j E

(p)
j , (2.14)

H =
∑

jpA
(p)
j H

(p)
j . (2.15)
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Here, use j to refer to the each of the fibers 1 and 2. Substituting these fields into the
variational expression for the eigenvalue ω2 and minimizing functionally over ampli-
tudes [16, 168, 199, 210] leads to the approximate coupled mode equations:

∑
j′p′

c
(pp′)
jj′

dA
(p′)
j′

dz
− i
∑
j′p′

ν
(pp′)
jj′ A

(p′)
j = 0, (2.16)

with

ν
(pp′)
jj′ =

ωϵ0
∫
dr (n2 − n2

j′)(E
(p)∗
j · E (p′)

j′ )

2
∫
dr Re[E (p)∗

j ×H(p)
j ]z

, (2.17)

c
(pp′)
jj′ =

∫
dr {[E (p)∗

j ×H(p′)
j′ ]z + [E (p′)

j′ ×H(p)∗
j ]z}

2
∫
dr Re[E (p)∗

j ×H(p)
j ]z

. (2.18)

In the above n = n(r) is the refractive index variation due to both of the fibers,
whilst nj = nj(r) is that due to the fiber j. The elements ν(pp

′)
jj′ have inverse units of

length, which upon normalization via c(pp
′)

jj′ give a characteristic length scale over which
a transfer of amplitudes occur. When the mode fields are normalized, one obtains for
the dimensionless parameters [16]

c
(pp′)
jj = δpp′ , (2.19)

and a physical distinction between ν(pp
′)

jj′ for j = j′ and j ̸= j′ can also be made – these
quantities correspond to the self-wavenumber shift and butt coupling constants respec-
tively [1, 168]. Assuming identical and lossless waveguides, we note the Hermiticity
relation (for equal propagation constants)

σ
(pp′)∗
jj′ = σ

(p′p)
j′j , σ = c, ν. (2.20)

Note that for far separated fibers, one can argue by inspection of the integrand in Eq.
(2.18) that v(pp

′)
jj ∼ e−dqv

(pp′)
jj′ if d ≫ 1/q [168], and where q =

√
β2 − k2 is the inverse

penetration length of the evanescent field, so that neglecting ν(pp
′)

jj is justified. On the
other hand Eq. (2.18) represents a power overlap [16, 168, 210], so that c(pp

′)
jj′ ≪ 1 (i.e.,

reducing to an identity matrix) again for large fiber separations and j ̸= j′. Applying
the inverse of the c-matrix in Eq. (2.16) yields the standard linear equations of motion

dA
(p′)
j

dz
− i
∑
j′p′

ξ
(pp′)
jj′ A

(p′)
j = 0, (2.21)

where under the assumptions of c(pp
′)

jj′ ≪ 1 and v
(pp′)
jj ≪ v

(pp′)
jj′ the ξ-matrix is approxi-

mately Hermitian, yielding the tight-binding equations of motion commonly employed
in the literature [206, 207, 207, 208]. Note that almost all works considering evanescent
waveguide coupling neglect the self-coupling and butt coupling. In general, for forward
co-propagating modes βj = βj′ > 0 the c-matrix should be positive definite [211],
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yielding a PT -symmetric effective Hamiltonian (i.e., the ξ-matrix in Eq. (2.21)) when
the inverse is applied. As a side note, typically in the literature the PT -symmetry in
waveguide arrays is obtained by introducing an imaginary component to the waveguide
refractive indices [184, 185, 186, 188] as the c-matrix is chosen to be the identity. To
my knowledge, there exists no investigations into the PT -symmetric effects induced
by the inclusion of the c-matrix elements. Returning to the present discussion, the
symmetry of the particular two-fiber system dictates that the orthogonal quasi-linear
polarizations along and perpendicular to the axis joining the two fibers do not couple to
one another. We can then select the (quasi)linearly x- and y-polarized fiber modes [8]
as the single fiber basis elements, and see that

σ
(pp′)
jj′ = 0, (2.22)

for p ̸= p′, so that (2.21) further reduces to

dA
(p)
j

dz
− i
∑
j

ξ
(p)
jj′A

(p)
j = 0, (2.23)

for each p, where the double (pp) superscript has been abbreviated to (p). The linear
equations then suggest coherent oscillations akin to Rabi oscillations between the two
modes for each polarization. Assuming initial amplitudes A(p)

1 (0), A
(p)
2 (0), the ampli-

tudes of the two fibers then evolve as[
A

(p)
1 (z)

A
(p)
2 (z)

]
= eiδpz

[
cos(ηpz) i sin(ηpz)
i sin(ηpz) cos(ηpz),

][
A

(p)
1 (0)

A
(p)
2 (0)

]
, (2.24)

where the eigenvalues of the two-fiber system are given for each polarization and can
be written as

λp = i(δp ± ηp), (2.25)

δp =
ν
(p)
jj −c(p)

jj′ν
(p)

jj′

1−c(p)2
jj′

, (2.26)

ηp =
ν
(p)

jj′−c
(p)

jj′ν
(p)
jj

1−c(p)2
jj′

, (2.27)

which leads to λp ∼ ±iηp under assumptions of c(p)jj′ ≪ 1 and v
(pp′)
jj ≪ v

(pp′)
jj′ . On one

hand the single-fiber propagation constant splits due to two-fiber coupling as β →
β + δp ± np, with corresponding two-ONF eigenmodes given as the (anti)-symmetric
sum of the single fiber modes. On the other hand, the coefficients ηp and δp represent an
inverse length over which power transfer and a global phase rotation occur respectively,
so that the assumptions above lead to neglecting of the phase shift caused due to
coupling. However, this is not in general a valid assumption; in the following, the
coupling coefficients obtained using the CMT in a standard two-ONF system will be
investigated, along with the deviations from the commonly employed results obtained
by neglecting self-coupling and butt coupling.
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2.4.5 Findings

Let us study typical ONF parameters realisable in current state-of-the-art silica ONF
systems [30, 32, 131, 209]: a refractive index of n1 = 1.45, optical wavelength λ = 800
nm, and fiber radii of 100nm and up, with arbitrary separation permissible. In Figs.
2.6 and 2.7, the dependence of the coupling coefficients in Eq. (2.16) are shown, with
the prescription

κp = ν
(pp)
jj′ , (2.28)

cp = c
(pp)
jj′ , (2.29)

χp = ν
(pp)
jj . (2.30)

The immediate observation from Fig. 2.6 (b) and (c) is that neither cp nor χp are
negligible for a range of d up to around d ≈ λ/2; this then results in δp taking values
comparable to ηp, at least for closer fiber separations d ≈ 100 nm. Retaining the butt
coupling cp and self-energy coupling χp takes on further importance upon inspection
of Fig. 2.6(a) and (2.27). In Fig. 2.6(a), κp takes strictly positive values, so that
neglecting cp, χp results in ηp taking positive values only also. However, inclusion of all
terms allows competition between self-energy and coupling to drive the power transfer
coefficient to zero, effectively decoupling the waveguides for judiciously chosen system
parameters. This effect distinguishes coupling of vector electromagnetic waves from a
scalar coupling between a TLS and field, for example, where the system is characterised
by a single coupling strength generating oscillations at any non-zero value. Indeed, in
Fig 2.7 one observes the power-transfer coefficient taking zero values for both the x-
and y- polarizations. Note, however, that the zero-power transfer is obtained in the
CMT, and exact analysis will generally need to be performed. As for the polarizations
themselves, a noteworthy point is the distinct shift of propagation constant experienced
by distinct polarizations. When an input beam that is a combination of both x- and y-
polarizations is injected into a fiber, one will then observe a beating in the amplitude
oscillatiaons due to competition between the two propagation constants. Denoting the
power as

P
(p)
j (z) = |A(p)

j (z)|2P0, (2.31)

the quasi-circular polarization can be obtained from the two quasi-linearly polarized
fields as

Ecirc =
1√
2

(
E(x) ± iE(y)

)
, (2.32)

so that one has the total power in a single ONF given by

P circ
j (z) =

(
|A(x)

j (z)|2 + |A(y)
j (z)|2

)
P0, (2.33)

which we simply shorten to Pj in Fig. 2.8. In Fig. 2.8(a) and (b), one observes the
pure oscillation of amplitude between the two ONFs, although after two periods the
difference in effective power-transfer already becomes apparent. This discrepancy then
results in the beating observed in Fig. 2.8(c) for the quasicircularly polarized input
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Figure 2.6: (a,b,c) The directional coupling coefficient, butt coupling coefficient, and
self-coupling coefficient respectively, normalized to the free-space wavenumber k where
applicable, for varying separation between two coupled ONFs. The wavelength of light
is λ = 800 nm, with fiber radius a = 200 nm and core index n1 = 1.45. The red
solid (blue dashed) line gives coupling between x- (y-)polarizations. (d,e) The power-
transfer coefficient and phase shift coefficient respectively, normalized to the free-space
wavenumber, as a function of varying fiber radius. Parameters are the same as (a,b,c).
Taken from [1]

field. It is worth noting that competition between the two modes results in an additional
and highly-system-parameter-dependent length scale in the form of the beating length

2π
β1−β2 [72]. In multi-mode single fibers, mode beating has been used to measure ONF
radii to within angstroms [212] and for sensitive sensing within water [213]. In a similar
manner the beating observed here could be used to characterise systems of coupled
optical waveguides. As with the other results of this chapter, it is important to note
that the results hold only in the approximation of the CMT, and in general an exact
investigation is required.
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Figure 2.7: (a,b) Power transfer coefficient for the x− and y- polarization respec-
tively, normalized to free-space wavenumber, as a function of (identical) fiber radii and
separation. All other parameters are the same as in Fig. 2.6(a,b,c). Taken from [1]

Figure 2.8: Power of the guided field in the two ONFs 1 and 2 respectively as a
function of propagation distance z, in units of micrometers. in (a) and (b) the input
field is x- and y- polarized respectively, whilst in (c) the input field in quasi-circularly
polarized (see Eq. (2.32). Parameters are a = 200nm, λ = 800nm, d = 0, and
n1 = 1.45. Taken from [1]

2.4.6 Publication [1]: Coupling between guided modes of two
parallel nanofibers

The results of this chapter are published in [1] as

Coupling between guided modes of two parallel nanofibers
F Le Kien, L Ruks, SN Chormaic, T Busch

New Journal of Physics 22 (12), 123007 (2020)
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Dr Le Kien conceived of and initiated the project. I carried out all numerical simu-
lations, and performed the analytical derivation of the differential equation solutions.
All authors contributed to the interpretation of results and writing of the later versions
of the manuscript.
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2.5 Exact analysis of the two-fiber system

Whilst the approximate CMT has been employed to great success over many decades,
experimental advances have miniaturized optical components down to the nanoscale,
comparable to optical wavelengths and where the full coupled-mode theory can be
invalidated due to strong hybridization of modes [202]; the effect can be a dramatic
modification of the propagation constants [201] of the two-fiber system in addition to
the eigenmode polarization profiles [203]. Notably, the CMT may even suggest the
existence of eigenmodes beyond the cutoff of the full two-fiber system [201], whilst
polarizations of the exact system are suggested to deviate strongly from a simple
(anti)symmetric linear sum [203]. Amongst other scenarios, experimentally realised
‘slot’-style waveguides [35, 37, 172, 173] and ONF couplers [30, 31, 32] frequently enter
such regimes; despite the interest surrounding the two-ONF (and more generally, two
waveguide) setup, there is not to my knowledge a comprehensive investigation treating
the exact features of the electric field profiles in this fundamental setup. Such knowl-
edge would both be directly applicable to existing multiple-ONF platforms and could
provide insight that can carry over into other coupled-waveguide style setups. In this
investigation, the analytical calculations behind the eigenmode expansion of a system
of two coupled ONFs are detailed, and numerical calculations of the electric field pro-
files are explored. In addition, the discrepancy with the coupled mode approximation
in the notable regime where the ONF radii, the wavelength of light, and the distance
between the two fibers are all of the same order of magnitude are discussed.

2.5.1 Expansion into eigenmodes

I again consider the two-fiber system as shown in Fig. 2.5, but now seek the exact
eigensolutions to Maxwell’s equations. Before proceeding with the fine details, one can
immediately draw up some expectations for the two-fiber system in the most relevant
case of equal fibers. Although cylindrical symmetry of the system is destroyed, reflec-
tion about the x- and y-axes leave the fiber-system invariant. One then expects to
be able to specify four polarization corresponding to combinations of the modes with
even/odd symmetry about the x/y-axis. Indeed, we will see that these symmetries
manifest as Ez → ±Ez upon reflection about the x or y-axis. With these expectations
in mind, and bearing in mind also the cylindrical symmetry of the single-fiber system,
one proposes the expansion of the electric field of guided modes in terms of cylindrical
harmonics of both fibers [202, 214] (recall from Eq. (2.7) that the transverse compo-
nents can be obtained from the longitudinal components), where inside fiber j the field
takes the form

Ez =
∞∑
n=0

[AnjJn(hjrj) cosnφj + EnjJn(hjrj) sinnφj],

Hz =
∞∑
n=0

[BnjJn(hjrj) sinnφj + FnjJn(hjrj) cosnφj],

(2.34)
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and outside the two fibers takes the form

Ez =
2∑
j=1

∞∑
n=0

[CnjKn(qrj) cosnφj +GnjKn(qrj) sinnφj],

Hz =
2∑
j=1

∞∑
n=0

[DnjKn(qrj) sinnφj +HnjKn(qrj) cosnφj]. (2.35)

Here, we have introduced the fiber parameters

hj =
√
k2n2

j − β2, q =
√
β2 − k2. (2.36)

We can first use the system symmetry to specify four types of polarizations in the two
fiber system. One specifies the so-called even/odd modes via the prescription

Xnj = (−1)nνXnj′ , X = A,B,C,D,E, F,G,H, (2.37)

where ν specifies whether the mode is even/odd, i.e., whether the Ez is unchanged/flips
sign upon inversion (x, y) → (−x,−y) in the transverse plane. Note the convention
that the odd mode corresponds to ν = 1 (no sign flip) and the even mode to ν = 0 (sign
flip). Furthermore, Graf and Gegenbauer’s addition theorem [215] shows that cosine
and sine terms are not coupled to one another through the scattering process, so one
may specify E-sine modes (corresponding to x-quasilinear polarization, or TE-modes in
[114]) with all Anj, Bnj, Cnj, Dnj = 0, or E-cosine modes (corresponding to y-quasilinear
polarization, or TM modes in [114]) with all Enj, Fnj, Gnj, Hnj = 0. Connecting to the
CMT, the 2× 2 = 4 specifications corresponding to combinations of the odd/even and
sine/cosine specification approximately correspond to choosing the (anti)symmetric
combinations of the x− and y- (quasilinear-)polarizations for the single fibers. With
the polarization specified, one obtains the eigenvalue equation for guided modes by
applying Graf and Gegenbauer’s addition theorem [215] to expand circular harmonics
of one fiber in terms of the circular harmonics of the other, matching the angular orders
via boundary conditions at each of the fiber interfaces. This yields eight equations for
each mode order n. As our system is described by eight free parameters for each n,
one again obtains a consistency condition to determine the effective wavevector β. As
the other fiber couples all azimuthal numbers of one waveguide, the resulting system
of equations is infinite, but for a fixed solution the coefficients drop off exponentially
for n→ ∞, and a cutoff order of Nmax < 19 (in these calculations) is determined [202]
such that the solution for β converges.

2.5.2 Findings

In the following the salient results obtained in the relevant case of two identical fibers
are presented, with additional numerical simulations demonstrating the full field be-
haviour for non-equal fibers [2]. In Fig. 2.9, the propagation constants of the two-
identical-ONF system are plotted for each of the four modes (we operate in the regime
where no more than four modes of the two-ONF system exist) with varying fiber radii
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Figure 2.9: Propagation constants normalized to the free space wavenumber k =
2π/λ, for λ = 800 nm and n1 = 1.4533 as (a,b) the (equal) fiber radii are varied with
fiber separation d fixed (c,d) d is varied with the fiber radii remaining fixed. Taken
from [2].

and distance. A stark difference between the predictions of the coupled-mode theory
and the exact results can be seen in the cutoff β = k for the odd modes when the
fiber radii (Fig. 2.9(a,b)) or the two-fiber distance (Fig. 2.9(d)) are reduced. For any
distance of separation, it can be expected that there is always a cutoff for the odd
modes with reduction of radii (as observed in Fig. 2.9(a,b)), as the evanescent leakage
from the core dominates and eigenmodes approach the (two) even polarizations of free
space. For variation of d, the picture is somewhat more complex, as a cutoff occurs
in Fig. 2.9(c) for fiber radii of a = 200nm, but not in Fig. 2.9(d), for fiber radii
of a = 150nm. This could be attributed to the fact that for small enough radii and
small enough separation, light at the given wavelength becomes unable to resolve the
two separate structures, yielding the two polarizations expected of an (approximate)
single-mode ONF. To compare with our previous results of the CMT, in Fig. 2.10 the
difference

ηp = (β(p)
ν − β

(p)
ν′ )/2, (2.38)

between the odd (ν = 1) and even (ν ′ = 1) modes is plotted for the p = x (Ez-cosine)
and p = y (Ez-cosine) polarizations respectively, alongside the predictions from the
CMT. Excepting cutoffs, the CMT predicts ηp well, except for fibers with small radii
that are (nearly) touching with d ⪅ 100nm (Fig. 2.10(a,c)); for refractive index of
n1 ≈ 1.45 corresponding to silica, one cannot then expect to obtain accurate results
using CMT when the ONF separation is on the order of d ⪅ 100nm, or when the ONF
radius becomes too small, i.e. a = 150nm. However, if the mode cutoffs are taken into
account, then for the remaining modes the CMT gives reasonably accurate results for
the propagation constants.

A further crucial distinction between the exact theory and CMT can be seen upon
inspection of the electric field profiles, particularly at the two-ONF center, (x, y) =
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Figure 2.10: Power transfer coefficients (2.27) as the (a,b) fiber separation is varied
(c,d) fiber radii are varied for the (a,c) x−polarized (b,d) y-polarized mode. Parameters
are λ = 800 nm and n1 = 1.4533. Taken from [2].

(0, 0). Notably, every polarization component of the odd-Ez-sine mode is odd under
reflection about either the x− or y-axis. This means that E(0) = 0, producing a zero-
intensity minimum at the center of the two fibers, which can be observed in Fig. 2.11
(a,b,e). One can check that the CMT does not predict a zero-intensity minimum, which
is hence a result of strong mode hybridization, and can apparently not be predicted by
inspection of Maxwell’s equations. The absence of any intensity is particularly relevant
as an atom with polarizability α(ω) experiences an average scattering rate

⟨Γsc⟩ =
I[α(ω)]

4ℏ
⟨|E|2⟩, (2.39)

where the brackets denote expectation over atomic wavefunction. Assuming a Gaussian
(in 1D, for simplicity) form of the atomic wavefunction with extent ar ≪ λ and centered
at 0, a non-zero intensity E(0) ̸= 0 binds the scattering rate from below by ⟨Γsc⟩ ∼
I[α(ω)]|E|2

4ℏ [34], whilst for a zero intensity, the scattering then becomes gradient-limited,
depending on the atomic spread ⟨Γsc⟩ ∼ I[α(ω)](|E|2)′′a2r

4ℏ , where the prime denotes the
derivative in the spatial variable. This principle should play a significant role in a blue-
detuned atomic trapping scheme, where scattering in the (zero)-intensity minimum
would be greatly reduced, for the predicted heating rate due to spontaneous emission
is given as

dEsc

dt
= Er⟨Γsc⟩, (2.40)

for atom mechanical energy E and recoil energy Er = h2k2

2m
. I note that both a fully

quantum [216] and semiclassical [217] treatment revealed a heating term proportional
to the gradient of the electric field, which is in principal on the same order of the scat-
tering rate Eq. (2.39) and which is due to fluctuations in absorption. This result adds
a correction to (2.40), and suggests even at zero intensities that intensity curvature
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fundamentally bounds heating from below at lower temperatures. As atoms may now
be cooled close to the limit of single motional quanta [158], it is desirable to reexamine
the heating rates in the quantum regime for atoms trapped next to ONFs, and deter-
mine fundamental heating limits set by (two-color) beginning from first principles.
Whilst a complete theoretical characterisation of heating in evanescent traps is incom-
plete, blue-detuned traps nonetheless offer advantages of reduced scattering and un-
desirable level shifts for atoms traps in potential minima. Experiments applying zero-
intensity blue-detuned traps have yielding promising results, with the zero-intensity
minimum realising the core component of a bottle beam trap [218, 219] and being used
in conjunction with the pondermotive force to create state-independent traps for Ry-
dberg atoms [220]. However, I am not aware of any scheme employing zero-intensity
minima in trapping of individual atoms via evanescent fields of coupled waveguide sys-
tems. The recent realisation of Rydberg states in the vicinity of ONFs [221] raises the
possibility of coherent Rydberg trapping using a blue-detuned Ez-sine mode. On the
other hand, the even Ez-cosine mode sees high intensity (see Fig. 2.11(c,d,f)) in the
region between the two fibers, and is thus well suited to probing and interfacing nearby
cold atoms. The particularly strong coupling to Ez-cosine style modes has been noted
in other two-waveguide style platforms [35, 61].

Figure 2.11: Electric field intensity profiles (a,b,c,d) along a slice in the transverse
plane (e,f) in the full transverse plane for (a,b,c) the odd Ez-sine mode (c,d,f) the even
Ez-cosine mode. The fiber radii are a1 = a2 = 200nm, and the refractive indices are
n1 = n2 = 1.4533.
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2.5.3 Publication [2]: Spatial distributions of the fields in guided
normal modes of two coupled parallel ONFs

The results of this chapter are published in

Spatial distributions of the fields in guided normal modes of two coupled parallel
optical nanofibers

F Le Kien, L Ruks, SN Chormaic, T Busch
New Journal of Physics 23 (4), 043006 (2021)

Dr Le Kien conceived of and initiated the project. I carried out all numerical sim-
ulations, and contributed to the analytical considerations of solutions. All authors
contributed to the interpretation of results and writing of the later versions of the
manuscript.
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2.5.4 Experimental considerations

The presented results are directly applicable to current experimental setups realising
coupled silica-ONF systems at optical wavelengths with separations on the order of 100s
of nm or less [30, 32, 131, 209], where the weak-coupling assumption begins to break
down. As a cold-atom platform, slot waveguides realising the effective ‘two-waveguide’
setup have recently seen coupling to thermal atomic gases [36], but to my knowledge
maneuvering of individual cold atoms into the trapping sites at the center has not yet
been experimentally realised. The recent proposal for atomic positioning within the
‘alligator’ photonic crystal using optical conveyor belts [114] suggests that in principle
cold atoms can be positioned in the center of two waveguides with a spacing of d = 250
nm between the surfaces, so that a similar scheme could be realised in slotted [173]
waveguides, and two-ONF systems. Whilst trapping is sensitive to as little as 10% size
differences between the two waveguides [2, 34], ONFs can typically be fabricated with
a small variations of ±5% in radius [212] even for ultra-thin 100nm fibers [222], which
should then not pose a problem.

2.5.5 Outlook and conclusions

Since publishing, the works [1, 2] comprising this chapter have led to subsequent inves-
tigations in a variety of scenarios. Inclusion of the butt- and self-coupling coefficients
allowed us to provide a more complete picture of the two-ONF interferometer/resonator
scenario considered in [32], which has been taken into consideration by the authors. In
a follow-up work by my collaborator Dr Le Kien, the odd Ez-sine mode was exploited to
create a long-lived atomic trap centered between the two waveguides [34], and reported
greatly increased trapping and coherence times for Cesium atoms trapped with light
blue-detuned from the D1 (λ = 894 nm) and D2 (λ = 780 nm) lines. Specifically, trap
depths on the order of mK should be possible, similar to the current two-color trap
standard [22, 115], but the predicted coherence-limited and recoil-limited trap lifetimes
of 5.8 s and 4.8 hr respectively are orders of magnitude larger than those of the two
color trap. Similarly attractive figures of merit could also be expected to be achieved in
analogous two-waveguide geometries [61, 173]. Furthermore, even without exploiting
the group velocity effect of PCWs [61], coupling of emission to the guided mode of a
two-ONF system can reach 30% [33] for a separation d = 150 nm and radii a = 135
nm, which can be compared for couplings of 10% in the single-fiber setup [22]. In both
cases the atom-fiber separation is 75nm. The combination of simultaneous efficient
trapping and coupling means it would thus be beneficial to further explore [114] the
experimental possibly of exploiting the two-waveguide geometry as a light-matter plat-
form. Furthermore, the results of this work have lead to the forces (‘optical bonding’)
between two ONFs being investigated [223], with possible applications to optically tun-
able mechanical structures. Finally, my colleague Dr Kritika Jain is following up on
this work with a construction of the full Green’s function for the full two-fiber system in
order to investigate the effective emitter-emitter interactions induced through photons
of the two-fiber system.
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2.6 Ground State Dispersion Potential for two Emit-
ters in the Presence of a Dielectric Cylinder

2.6.1 Background

The dispersion potential between neutral yet polarizable quantum emitters at zero
temperature is a notable example of a pure quantum phenomenon in electrodynamics
that demands fluctuations of the emitters and/or the EM field in their ground state.
The dispersion interaction is long range, (i.e., decays as a power law) and is strong
enough to dictate emergent dynamics in systems of varying scales. Notable examples
in nature can be found in the dynamics of cell membranes [224] on the microscopic
level and in the organism-surface adhesion mechanisms on the organism level [225],
and even in contribution to the initial formation of orbiting bodies on the planetary
scale [226]. Aside from these interests, dispersion interactions also play a prominent
role in experimental quantum optical setups. One the one hand, the development of
clean experimental light-matter systems has given us unprecedented control over single
emitters/media and their environment, so that the dispersion potential may be used
to study fundamental physics, including models of physics on small length scales [227],
and play a key role in microscopy [228] and atomic manipulation [83] (one may see
the review [38] for further applications). However, in the very same setups these
dispersion forces can also have detrimental effects, chiefly in the form of the resulting
attraction typically dominating at short range and causing atoms to stick to surfaces
(adsorption) [114, 229, 230, 231] – this is especially a problem in interfacing Rydberg
atoms with huge dipole moments with nanophotonic structures [221, 231, 232].

Whilst the celebrated results concerning the case of e.g., two identical emitters in
a vacuum [233] and other basic geometries [234] have been around for many decades,
more realistic predictions in nature and in advancing experimental setups require the
study of dispersion interactions of emitters in the presence of general macroscopic
media. In another success for the Green’s function in QED, the dispersion interaction
between two emitters in the presence of arbitrary linear dielectric media was derived
in 2006 [235], which has amongst others, recently enabled the discovery of enhanced-
magnitude Casimir-Polder interactions and enhanced chiral vdW forces for emitters
in the vicinity of 2D materials [55], and 2D chiral media respectively [236]. On the
other hand, optical waveguides offer a simplified quasi-1D geometry and experimentally
realisable platform to probe natural manifestations of the dispersion interaction in a
structured environment very much distinct from a 3D or 2D bulk. Here, significant
deviations from the vacuum theory were found, with interactions reduced to short range
exponential decay when placed on the axis of a perfectly reflecting hollow cylinder on
one hand [39], and more recently, enhanced interaction magnitude and power law decay
(1/R3,compared with 1/R6) in transmission lines [41] found on the other. These effect
can both enable more efficient probing of dispersion effects, and could be used in
conjunction with other phenomena exploiting dispersion, i.e., the Rydberg blockade
mechanism.
For spherically symmetric emitters, the polarizability – generally a tensor – reduces to
a scalar, so that any anisotropy in the resulting emitter-emitter dispersion potential
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enters through the electromagnetic environment (the Green’s function). For ground-
state atoms, this isotropy assumption is typically made [41, 77, 235, 237]. However,
this assumption is violated in, for example, molecules, and the dispersion potential
between a single anisotropic particle and a surface has been explored in [42, 43, 238,
239, 240, 241], where a key feature is that anisotropy can result in repulsive forces as
opposed to the typically attractive ground-state dispersion forces, whilst for particular
orientations of the dipole transition matrix element particular power-law contributions
can be eliminated. Moving to the case of body-assisted emitter-emitter dispersion
interactions, recent investigations treated the case of identical emitters with preferred
dipole orientations [39, 40] in a cylindrical geometry, whilst the case of distinct dipole
matrix transition elements has been studied in the vacuum [42, 43, 44]. As with the
surface-emitter interaction, the dispersion interaction can be enhanced or diminished
(including elimination of particular power-law terms) by choosing specific dipole matrix
transition elements, and the results shed light on the emitter anisotropy as an extra
degree of freedom in engineering dispersion interactions.

2.6.2 Investigation outline

Despite the interest surrounding the dispersion interaction in polarizable media, to
the best of my current knowledge there exist no studies investigating the integra-
tion of two emitters whose dipole transition matrix elements are misaligned, that is,
dj ̸= dk in Eqs. (2.43), and in a 1D geometry. As experimental advances continue on
the nanoscale, investigations into dispersion interactions featuring anisotropic emitters
and environment could reveal new mechanisms for probing the fundamentals of QED
and for manipulating matter on the nanoscale. In this chapter, I introduce the the-
ory of and discuss the ground-state dispersion interaction between two emitters in the
presence of one-dimensional cylindrical media. In particular, for atoms in a vacuum
the Green’s tensor does not couple two dipoles whose matrix elements are orthogonal
and lie in the plane perpendicular to the line joining them, but the media-induced
anisotropy then re-couples these elements, producing a dispersion interaction for this
pair of dipole elements that is in a sense infinitely enhanced beyond the vacuum.
With this analytical observation as starting point, I numerically calculate the Green’s
function of dispersive and absorbing cylindrical media and determine the dispersion
interaction between the two atoms as the distance along the waveguide axis is varied. I
find that the interaction dispersion of two atoms with orthogonal dipole transition ma-
trix elements may be considerably enhanced at longer ranges or diminished at shorter
ranges compared to the dipole-averaged dispersion potential experienced by atoms in
free space. In comparison to vacuum induced dispersion, the cylinder-mediated po-
tential sees a minimum, which in principle permits ground-state optical binding along
the cylinder axis. Considering the case of different dispersive (and lossy) media, I
find the enhancement is greater for gold and silicon, in contrast to silica. The results
are directly relevant for experimental cold-atom-ONF platforms, whilst offering more
fundamental insights to dispersion effects induced purely by media scattering.
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2.6.3 Theory

As expanded on in Chapter 1, a (single-body) energy shift is found at second order in
the emitter-field coupling. Although derived as part of the (dynamical) master equation
(1.52), the appearance of this self coupling term is made clearer considering stationary
second-order perturbation theory for the full light-matter coupling Hamiltonian Ĥint

(see (1.41)) [235]

∆E = −
∑
I

⟨0|Ĥint|I⟩⟨I|Ĥint|0⟩
EI − E0

, (2.41)

where the sum is made over intermediate states I distinct from the ground state and |0⟩
denotes the vacuum. Note that the parity of the photon/atom creation/annihilation
terms means that perturbative contributions at odd orders will be zero; retaining the
counter-rotating terms in the Hamiltonian allows pair-creation terms such as f̂+(r, ω)σ̂+

j

to couple the vacuum to an intermediate state I containing one photon and one emitter
excitation. I must then be coupled again to the vacuum via the corresponding pair-
annihilation f̂+(r, ω)σ̂j, yielding only single-emitter energy shifts contributing to the
full system. At fourth order in atom-field coupling, one obtains [235]

∆E = −
∑

I,II,III

⟨0|Ĥint|I⟩⟨I|Ĥint|II⟩⟨II|Ĥint|III⟩⟨III|Ĥint|0⟩
(EI − E0)(EII − E0)(EIII − E0)

. (2.42)

Here, the intermediate states I and III are again pair-excitations of a single photon
and single emitter, but these states need not correspond to the same emitter, as they
can be coupled through II as a state containing (i) two photonic excitations (ii) two
emitter excitations or (iii) two emitter and two photonic excitations. Isolating all
contributions from intermediate states containing excitations of emitters j, k yields the
two-body ground-state potential in terms of the system Green’s function G and atomic
polarizability tensor α (recall (1.48)) [235]

Ujk(rj, rk, ω0) = −2µ2
0

ℏπ

∫ ∞

0

duu4ω2
0

(ω2
0 + u2)2

[
dj ·G(rj, rk, iu) · d∗

k

]2
, (2.43)

= −ℏµ2
0

2π

∫ ∞

0

duu4Tr
[
αj(iu) ·G(rj, rk, iu) ·αk(iu) ·G(rk, rj, iu)

]
for atomic dipole transition matrix elements dj,dk, positions rj, rk, and where identical
transition frequencies ω0 for two-level atoms are assumed. Tr denotes the trace.

Dependence on relative permitivity

In a dielectric and homogeneous isotropic medium (with the vacuum as a special case
of a bulk medium), the Green’s function is simply determined by the (scalar) relative
permitivity ϵ(ω). As an example, the permitivities corresponding to silica (SiO2),
silicon (Si), and gold (Au) can be well modelled by the Sellmeier equation [242], the
Drude [39], and the Drude-Lorenz [39] models respectively, which can all be captured
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in the standard Lorentzian dielectric response function

ϵ(ω) = ϵ∞ +
∑
j

ω2
pj

ω2
j − ω2 − iΓjω

. (2.44)

For gold and silicon, one considers only the single resonance, with ϵ∞ = 1, ωp =
2π× 2.07 PHz, Γ = 10−3 ×ωp, ω0 = 0 Hz and ϵ∞ = 1.035, ωp = 2π× 21.7 PHz, Γ = 0
Hz, ω0 = 2π × 6.6 PHz respectively. The formula for silica, with multiple resonances,
is given in [115]. Note that at imaginary frequencies ϵ(ω) is (necessarily) real, and
ϵ(ω) → 1 as ω → ∞ due to causality [77] (whilst both choices ϵ∞ ̸= 1 and Γ = 0 in Eq.
(2.44) violate causality, the difference is acceptably small within optical wavelengths
of interest, with the dielectric function for silica having seen application in [39]).

Example in a bulk medium

With this machinery in place, one may begin by considering the simplest bulk medium
ϵ(r, ω) = ϵ(ω). For example, one obtains from Eq. (1.21) the standard results in free
space for the retarded and non-retarded dispersion potentials as

Unon-retarded
jk (rj, rk, ω0) = −C6

R6 , (2.45)

U retarded
jk (rj, rk, ω0) = −C7

R7 , (2.46)

for the vdW coefficients

C6 =
1

32π2ℏϵ20ω0

|dj · d∗
j − 3(dj · R̂)(d∗

k · R̂)|2, (2.47)

C7 =
c

32π3ℏϵ20ω2
0

{
13|dj · d∗

k|2 + 63|dj · R̂|2|d∗
k · R̂|2 − 56R[(d∗

j · dk)(dj · R̂)(d∗
k · R̂)]

}
,

(2.48)

where the unit separation vector is given as R̂ =
rj−rk
|rj−rk|

. In the absence of anisotropy
in the state and transitions, one may average over dipole orientations to obtain a mean
dispersion which, for the retarded potential, results in the dispersion coefficient of a
homogeneous bulk medium

C7 =
23ℏc
64π3ϵ20

αj(0)αk(0)

n(0)ϵ2(0)
, (2.49)

for n(iu) =
√
ϵ(iu), as only the long wavelengths (u→ 0) contribute significantly. The

scalar polarizability is obtained by averaging as αj(ω) = 1
3
Tr[αj(ω)]. Note also that

it is ideal to include the full dispersion of the material when calculating the dispersive
interaction in order to prevent possible violations of no-go theorems [243] and as the
frequency response across all (imaginary) frequencies is used in the calculation (2.43):
in the non-retarded limit and after averaging over transition orientations one finds for
i.e., bulk materials that the C6 coefficient is in principle determined by the material
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Figure 2.12: Schematic of two TLS near a cylindrical waveguide in the vacuum.
Taken from [3].

and dipole response at all frequencies [235]

C6 =
3ℏ

16π3ϵ20

∫ ∞

0

du
αj(iu)αk(iu)

ϵ2(iu)
, (2.50)

which reduces to the expression in the vacuum for isotropic two-level atoms

C̄6 =
d2jd

2
k

48π2ℏϵ20ω0

. (2.51)

For example, taking only the D2 transition of a ground-state caesium atom into account,
one obtains [244] d = 3.80×10−29 Cm, yielding C̄6 ≈ 2.42×10−73 Jm6. In the presence
of inhomogeneity, a C6/7 coefficient alone will be insufficient to describe the dispersion
interaction in either regime.

Dispersion interactions mediated through a cylinder

I now advance to the case of dispersion interactions featuring both anisotropic polar-
izabilities and inhomogeneous background media. Concretely, I consider a cylindrical
medium, outside of which (in the vacuum) the emitters are situated – the setup is
shown in Fig. 2.12. Due to cylindrical symmetry the (reflected part of the) Green’s
function can be determined analytically as the infinite sum over effective wavevectors,
polarizations, and azimuthal mode number for both source and receiver outside of
fiber [85]

G(R)(r, r′, ω) =
i

8π

∑
F,F′=M,N

∞∑
n=−∞

∫ ∞

−∞
dβ
Rn

FF′(β)Fn(β, r)⊗ F
′∗
n (β, r

′)(√
k2 − β2

)2 , (2.52)
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where the cylindrical vector functions Mn,Nm correspond to TE/TM modes of the
cylindrical geometry with azimuthal mode number n

Mn(β, r) = ∇× [ϕn(β, r)ẑ], (2.53)
Nn(β, r) =

1
k
∇×Mn(β, r), (2.54)

(∇2 + β2)ϕn = 0 =⇒ ϕn = Jn(β⊥ρ)e
i(nθ+βz), (2.55)

and Rn
FF′ are the Fresnel reflection coefficients for the source outside of the fiber and

can be determined by applying the boundary conditions for the Green’s function [85].
Note that the cylinder permitivity dependence is implicitly contained within Rn

FF′ . For
real frequencies and in lossless media, numerical calculation of (2.52) is intricate due
to the presence of both poles and branch points on the real axis [85, 107]. However,
when imaginary frequencies are considered, the integrand is regular on the real axis.
Combined with exponential decay of the integrand in β, I simply perform the integral
in (2.52) for each n, and terminate upon sufficient convergence of the sum.

2.6.4 Findings

The key observation underlying this investigation lies in the fact that, considering
emitter anistropy, one sees in the vacuum that

dj ·G(0)(rj, rk, iu) · d∗
k = 0,

for all u > 0 when the following are satisfied

dj ⊥ d∗
k, (2.56)

(dj · R̂)(d∗
k · R̂) = 0, (2.57)

as a consequence of the vacuum plane-wave polarization. This condition yields a com-
plete annihilation of the dispersion potential Ujk = 0 for all such configurations sat-
isfying (2.56), and shows that preferred and distinct anisotropy axes for each dipole
element can produce significantly different interactions than those exhibited by aligned
dipoles, even in an isotropic environment. By exploiting the dipole orientations, one
can then engineer dispersion interaction mediated entirely through the cylinder: recall-
ing the decomposition of the Green’s function G = G(0) +G(R) into vacuum part and
scattered part, one finds for emitters satisfying (2.56) that the dispersive interaction is
mediated purely through the cylinder-scattered part

Ujk(rj, rk, ω0) = −2µ20
ℏπ

∫∞
0

duu4ω2
0

(ω2
0+u

2)2

[
dj ·G(R)(rj, rk, iu) · d∗

k

]2
, (2.58)

so that utilising anisotropy can allow one to remove background vacuum-induced ef-
fects, offering a clearer distinction. It is the dispersion (2.58) that I investigate here,
and in order to provide a meaningful comparison between the cylinder-induced dis-
persion potential and that of the vacuum, I propose a measure of enhancement by
the ratio between the observed dispersion potential and the dipole-averaged potential
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corresponding to free space

Ujk(rj, rk, ω0)

Ū
(0)
jk (rj, rk, ω0)

. (2.59)

The bar here denotes that the potential U (0) corresponding to free space should be aver-
aged over all dipole orientations (i.e., α → 1

3
Tr[α]I), and will be crucial as a benchmark

in our study as the interaction between the two orthogonal dipole orientations is zero
in free space, which naively produces an infinite enhancement factor.

Figure 2.13: (a) Normalized absolute value of the dispersion potential as a function
of normalized emitter separation k0z = k0|z1 − z2| and for varying radial distance
r/a in for emitters the vicinity of a silica ONF with radius a in the vacuum. (b)
Dispersion enhancement factor (2.59) with varying k0z and r/a for a silica ONF in
vacuum. The inset shows the dipole-orientation-averaged dispersion potential in free
space. (c) The normalized dispersion potential (d) The enhancement factor (2.59) with
varying k0z, for the three cylinder materials gold, silicon, and silica. In all Figures the
fiber radius a = 250 nm, the free-space wavelength λ0 = 852 nm, and the two dipoles
have the orientations in Cartesian coordinates d1 = d√

2
(1, 1, 0),d2 = d√

2
(1,−1, 0).

Unless specified otherwise, r/a = 1.2. Taken from [3].

The main findings of the work can be summarized in Fig. 2.13. As can be seen in
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Fig. 2.13(a), the anisotropy induced by the fiber results in potential minimum as the
separation between the two emitters is varied along the (silica) cylinder axis. This
is in contrast to the purely attractive interactions observed for orientation-averaged
dipoles in free space. Whilst not averaging in free space can produce repulsive inter-
actions [42, 43], the potential is still monotonic as a function of distance. In contrast,
provided that confinement in the radius and axial directions are provided in our case,
one observes in Fig 2.13(a) that a stable binding of the two emitters is possible in the
z-direction purely by virtue of the cylinder-mediated dispersion forces. This is not a
violation of the no-go theorem [243] for dispersion mediated stable-binding configura-
tions in ground state atoms as, similarly to that in the two-waveguide trap [34, 61],
stable configurations via dispersion forces are possible along at most 2 axes, provided
that a restoring mechanism is present along the others. The potential dip was also
observed in the cylindrical geometry in [39], but for identically oriented dipoles, the
monotonic vacuum contribution is larger and generally washes out the potential mini-
mum. In Fig. 2.13 (b) and (d), one can further see a drastic reduction of the dispersion
potential relative to the dipole-averaged free-space potential. Indeed, whilst the free-
space potential diverges as (2.46), the contribution (2.58) from the cylinder tends to a
finite value (seen in (a,c)) in the near-field. The vacuum free-space contribution always
produces a divergence in the near field so that to annihilate this contribution the dipole
orientations must be specifically chosen. The final key feature of the cylinder-induced
dispersion can be seen in Fig. 2.13 (b,d), where the cylinder enhances the dispersion
potential beyond the vacuum averaged dispersion potential for large separations. This
is not an enhancement of the power-law [39, 41], but reflects the enhanced confinement
of the guided modes over a range of frequencies contributing to the dispersion poten-
tial. Despite the loss present, for materials seeing large R[ϵ] (such as gold and silicon),
an enhancement of the dispersion potential is observed over longer distances. Due to
the lossy nature of these materials, however, the enhancement may be expected to be
reduced for greater separations z.

2.6.5 Publication [3]: Waveguide-induced dispersion interac-
tion between two two-level atoms with orthogonal in-
transverse-plane dipoles

The main results of this chapter are published in

Waveguide-induced dispersion interaction between two two-level atoms with orthogonal
in-transverse-plane dipoles
FL Kien, L Ruks, T Busch

Applied Physics B 125 (11), 1-7 (2019)

Dr Le Kien conceived of and initiated the project. I carried out all numerical simula-
tions, and contributed to the analytical considerations of the dispersion potential. All
authors contributed to the interpretation of results and writing of the later versions of
the manuscript.
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2.6.6 Experimental prospects

As the long-range enhancement in our setup is simply a multiplicative factor due to
material, we focus on observing the dispersion with the near-field vacuum contribution
cancelled at short ranges. As can be seen from e.g., Fig 2.13 (b,d) in the cylindrical
geometry the largest dispersion induced collective frequency shift is on the order of
10−8γ0 ∼ 2π×0.52 Hz ∼ 0.025 nK for z = 0 and in the case of gold, so that the effect is
currently far too small to be observed in existing cold-atom-ONF style platforms [158].
As explored in [41], performing this experiment in superconducting transmon qubits
coupled to a coplanar-waveguide transmission line in principle allows the resulting
collective frequency shift (due to finite contribution from the TEM mode) to be on the
same order or larger than dephasing and decay, and so should in principle be observable
in terms of magnitude only. Experimentally the qubit orientation, and thus the dipole
orientation, can be modulated by physically rotating the qubits [245, 246], which in
turn allows one to tune coupling with the waveguide modes. However, more detailed
calculations are necessary due to the differing polarization structure in transmission
lines.

2.6.7 Conclusions and outlook

In this section I explored the dispersion potential between two neutral polarizable emit-
ters in the ground state, in the presence of a dielectric cylinder and when preferred
and distinct dipolar orientations are selected for the emitters. Choosing the dipole
orientations and emitter separation vector all to be orthogonal to one another results
in a zero dispersion potential due to transverse free-space modes at all frequencies.
This resulted in a zero dispersion potential at all distances, in contrast to the power-
law divergence and decay observed in the near- and far-field respectively for isotropic
dipoles. In the presence of a dielectric cylinder, anisotropy due to scattering from the
cylinder re-couples the two emitters, so that a dispersion potential purely due to cylin-
der scattering is obtained. This dispersion potential was numerically investigated as a
function of the emitter separation along the cylinder axis, for different dispersive and
absorbing materials, and found that the dispersion potential can be severely diminished
compared to free space in the near-field, or enhanced in the far field, with a stable po-
tential minimum appearing in the intermediate regime. The near-field diminishing is
due to the cancellation of the divergent vacuum contribution to dispersion, whilst the
far-field enhancement is due to the presence of guided modes of the cylinder.
Since publication, the work comprising this chapter [3] has seen reference in [247], where
the dispersion potential in band-gap style cylindrically layered media was investigated,
where dispersion was found to be inhibited with increasing emitter separation along
the cylinder axis (e.g., as in [39, 248]). In [249], the many magnetic sub-levels and
distinct dipole orientations corresponding to these transitions were summed up to give
experimental predictions for the dispersion potential for a single realistic multi-level
cesium atom in the vicinity of an ONF.





Chapter 3

Quenches Across a Phase Transition
in Quantum Metrology

3.1 Introduction

3.1.1 Background

Measurement is a core aspect of any physical science, and the central aim of quan-
tum metrology is to use the additional correlations available to quantum system in
order to improve measurement precision beyond that obtainable in classical systems,
with all other resources set equal. Specifically, whilst measurement by N classically
uncorrelated probes produces a sample deviation of the sample mean scaling as 1/

√
N

(the standard quantum limit (SQL)), entanglement between the probes allows one to
go beyond; for example, using maximally entangled states of N two-level atoms, one
obtains a 1

N
scaling [250] bound for precision determined by fundamental quantum

uncertainty. Our understanding of quantum metrology, and protocols along with it,
have been theoretically developed over many decades [251, 252, 253, 254], with im-
provements over the SQL realised in proof-of-concept experiments[250, 255, 256] in
a range of platforms. By their nature, advancements in quantum metrology are in-
tertwined with a deepened understanding of quantum systems, and a recent avenue
exploiting a fundamental quantum phenomenon for metrological purposes is critical
quantum metrology [47, 48, 49, 257, 258]. Critical quantum metrology exploits high
system sensitivity to parameters driving a phase transition when near the critical point
to generate a correspondingly high sensitivity in parameter estimation. These proto-
cols use well-established and robust adiabatic preparation [259, 260] of the ground state
near the phase transition as part of a dynamic protocol that further takes into account
the system preparation time, also an important resource in metrology [260]. On one
hand, critical metrological protocols have been shown to operate in some circumstances
at the optimal limit [48] (albeit with the requirement of nonstandard measurements),
whilst in other systems only a modest and sub-optimal improvement of scaling over the
SQL has been achieved [49, 260, 261]. Critical quantum metrology remains in an early
stage, and whilst the standard approach of (non-adiabatic) evolution near the critical
point is commonly studied, it is crucial to contrast this approach with alternatives in
order to understand the limits and assess suitability for specific applications.

57
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3.1.2 Chapter outline

In this chapter I introduce key concepts in quantum metrology and critical quantum
metrology. Within the archetypal Dicke model of cavity QED, I discuss the possibility
of exploiting quenches across the superradiant phase transition as a dynamical metro-
logical protocol in critical quantum metrology, as opposed to the commonly employed
(non)-adiabatic evolution near the vicinity of the critical point and in a single phase.
In this framework, I summarize my calculations detailing system evolution following a
quench in the Dicke model and the statistics of the homodyne measurement performed
after the quench; my calculations were used in showing that the optimal sensing with a
sensitivity exponentially increasing in time can be achieved using this protocol. More
generally, the calculations play a role in showing that quenches across the critical point
followed by homodyne measurement in the Dicke model (which is realised in a host of
quantum platforms) can be used for optimal sensitivity in a simple protocol that takes
into account probe preparation, and offers an alternative approach to precision sensing
in critical quantum systems.

3.2 Quantum Metrology in critical systems
The basic idea of metrology is to gain information on a system parameter λ by making
measurements. To see this effect in action, consider an unbiased estimator Θ̂ of a
system parameter λ classically, such that

E[Θ̂|λ] = λ. (3.1)

A bound on the variance can be provided by the classical Fisher information (CFI) F

Var[Θ̂] ≥ 1

F(λ)
, (3.2)

which is given by

F(λ) =

∫
dx

(
∂ log f(x;λ)

∂λ

)2

f(x;λ), (3.3)

where f(x;λ) is the underlying probability distribution of observing x given that the
true parameter is λ. Classically, one estimates λ by repeating N independent runs
of the experiment, inducing an estimator Θ̂j for each run and an overall distribu-
tion fN(x;λ) =

∏N
j=1 f(xj;λ). Fisher information is additive under independent runs,

FN(λ) = NF(λ), so that the (say) unbiased estimator Θ̂N = 1
N

∑N
j=1 Θ̂j satisfies

Var[Θ̂N ] ≥
1

FN(λ)
=

1

NF(λ)
, (3.4)

that is, N independent measurements may yield a variance reduced by a factor of N –
the SQL. However, no such statement is made for correlated probe measurements. By
utilising quantum correlations in conjunction with non-local measurements, one may
hope to surpass this limit. When estimating a parameter λ of a quantum system, one
prepares the density matrix ρ̂(λ) and the positive operator-valued measurement that
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together define a probability distribution and the corresponding CFI. The quantum
Fisher information (QFI) is then given as the maximum of the CFI over all choices
of positive operator-valued measurements [262], and the quantum Cramer-Rao (CR)
bound then is naturally defined in analogy with the CFI as

Var[Θ̂] ≥ 1

I(λ)
, (3.5)

for the QFI I(λ). Its expanded state space allows one to go beyond the 1
N

scaling
in variance set by classical uncorrelated probes. At an absolute maximum, the QFI
may scale as the size of the Hilbert space, resulting in I ∼ 2N in a system of N
spins [263]. However, in the typical physical scenario, where for each N there are k-
body (for constant k) parameter-sensitive coupling terms present, one instead observes
a scaling I ∼ Nk [264]. At face value, there is then an attractive enhancement to
be gained in metrology by exploiting the larger quantum state space. In practice,
however, the time taken to prepare the system also constitutes a finite resource. This
can be accounted for by allowing the density matrix ρ̂ to be time dependent, evolving
according to the preparation procedure until measurement. Recent investigations have
accounted additionally for the time taken to prepare probes states [265, 266, 267] as
part of dynamical metrological protocols, which often gives a sobering reality check on
apparently attractive protocols that can require longer state preparation times [260].
In the following I discuss the case of metrology in critical quantum systems, where
state preparation time is of crucial importance.

3.2.1 Critical quantum metrology

Given the system parameter λ, one may quantify how eigenstates (say, the ground
state) |Ψ(λ)⟩ change under (adiabatic) variation of λ via the fidelity susceptibility
χ(λ)

|⟨Ψ(λ)|Ψ(λ+ dλ)⟩| = 1− 1

2
χ(λ)(dλ)2 +O((dλ)3), (3.6)

where χ(λ) = 1
4
I(λ) [260]. Assuming that λ can drive a quantum phase transition,

one expects a divergence in the susceptibility of system states around the transition in
the thermodynamic limit (or a maximum in a finite system), which has been explored
extensively in the context of metrology [49, 257, 260] and naively corresponds to a
diverging QFI. However, despite the surface-level divergence one observes in the QFI,
inclusion of the (diverging) time taken to adiabatically prepare a near-critical state
restores the realised QFI within the CR bound [260], and often produces sub-optimal
sensitivity in the form of a small constant prefactor [49] or a reduction in the power-
law scaling of the QFI with the number of elementary subsystems N either up until
a given time [260], or even for all times [48]. Further, attempts to compensate for
time using optimized non-adiabatic state preparation (shortcuts to adiabaticity) over
arbitrarily short times have recently been show to fail in attaining the Heisenberg limit
in general [261]. Nonetheless, critical quantum metrology in principle has the potential
to provide optimal sensing and represents a novel fusion of two current topics of great
interest yet in its early stages.



60 Quenches Across a Phase Transition in Quantum Metrology

However, one might instead ask about the effect of quenching through the critical
point, which in general takes the system out of the ground state. Recent studies
have shown quenches near the critical point within a single system phase can rapidly
generate squeezing [268] useful for metrology and allow for sensitivity saturating the
CR bound up to a constant prefactor [47, 48], although these results say nothing with
respect to the QFI theoretically obtainable when quenching through the critical point.
In the following, I present my calculations detailing the evolution of the archetypal
Dicke model when quenched across the superradiant phase transition, along with the
measurement statistics corresponding to the consequent homodyne measurement. In
the bigger picture, my calculations have formed a key component of a proposal with my
collaborator Dr. Karol Gietka showing that quenches across phase transitions can be
employed as an alternative metrological protocol optimally saturating the CR bound
in critical quantum systems.

3.2.2 Dicke model

The famous Dicke model [45, 46, 269] describes a privileged bosonic mode interacting
with a collective spin via the dipole-coupling style Hamiltonian

ĤD = ΩŜz + ωâ+â+
g√
N
(â+ â+)Ŝx, (3.7)

for spin frequency Ω, boson frequency ω, and coupling (Rabi frequency) g. The spin
operators satisfy [Ŝα, Ŝβ] = iϵαβγŜ

γ, with Ŝx2 + Ŝy2 + Ŝz2 = S(S + 1) for spin length
S = N/2 (N is the number of contributing spin-1/2 systems) whilst the bosonic com-
mutation relation [â, â+] = 1 is satisfied. The Dicke model has been realised in the
context of coupling a cavity to the bosonic phonon modes of ultracold gases [270],
similarly in the coupling of center-of-mass excitations to spins in a Coulomb crys-
tal [271], and finally for atoms in optical cavities, using Raman-laser-assisted transi-
tions [272]; attempts to realise the Dicke model are aplenty due to its relevance to
fundamental quantum mechanics and applied quantum optics. On the one hand, the
Dicke model offers a particularly simple construction for a quantum system featuring
a zero-temperature phase transition, and is a rich playground for studying entangle-
ment, quantum chaos [273], and quantum information [274]. On the applications side
the coherent pumping mechanism offered by the counter-rotating terms allows for the
study of lasing-like dynamics [275], whilst the possibility to generate entangled cat
states [271, 276] offers a promising metrological resource for quantum sensing.

The superradiant phase transition

For our purposes, the key feature of the Dicke model is the superradiant phase transi-
tion. The number of total excitations

N̂ = â+a+ Ŝz +N/2, (3.8)

gives a conserved quantity in the parity P̂ = (−1)N̂ , whose symmetry characterises
the two phases of the system: the normal phase and the superradiant phase, where



3.2 Quantum Metrology in critical systems 61

the ground states preserve/spontaneously break the symmetry respectively. One may
analyze the thermodynamic limit S → ∞ using a mean-field approximation [269, 277]
to find a phase transition at the critical coupling strength

gc =
√
Ωω. (3.9)

In the original quantum model (3.7) in the thermodynamic limit, one finds an energy
gap

√
δe scaling near the critical point as

√
δe ∼ ω

√
1− g2

g2c
, (3.10)

which is responsible for the critical slowing down [48, 258, 260] experienced by adia-
batic protocols evolving the system in the ground state near the critical point. Beyond
the critical point, the former vacuum(-like) ground state with ⟨â⟩/

√
N ∼ 0 becomes

unstable, birthing two symmetry-broken ground states with macroscopic bosonic oc-
cupations near the transition scaling as

⟨â⟩√
N

∼ ±
(
g

gc
− 1

)1/2

. (3.11)

The instability of the vacuum ground state combined with the macroscopic photonic
occupation in the new ground state provides the ingredients for generation of large
photon numbers on short timescales. Before moving on to the metrological proto-
col exploiting this phenomena, I detail the dynamical evolution of the Dicke model
beginning from the vacuum state and present my calculations.

3.2.3 Quenches across the superradiant phase transition

Analysis of the Dicke model near the thermodynamic limit can be greatly simplified by
a Schrieffer-Wolff transformation [278] that provides an effective spin-free description
in terms of free-field evolution combined with squeezing. For ω

Ω
→ 0, the Schrieffer-

Wolff transformation [278] yields the low-energy effective Gaussian Hamiltonian ĤG for
the bosonic mode only when projected onto the spin-down state |↓⟩ with Ŝz eigenvalue
−N/2

⟨↓| ĤD

ω
|↓⟩ ≈ ĤG

ω
=

(
1− g2

2g2c

)
â+â− g2

4g2c
(â+2 + â2) =

ω

2

(
p̂2 +

(
1− g2

g2c

)
x̂2
)
, (3.12)

for the standard quadrature x̂, p̂. With this approximation the spectrum is unbounded
from below for g > gc and (3.12) can not be used to describe the eigenstates there,
but for an initially prepared vacuum state, the Hamiltonian is valid dynamically for
photon numbers up to the order of [279]

⟨n̂⟩ = ⟨â+â⟩ ∼ NΩ

ω

(
g2

g2c
− g2c
g2

)
, (3.13)
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i.e., until the higher powers of â become relevant. In the following I assume (3.13) to
be valid, which can always taken to be the case by choosing N large. The resulting
Hamiltonian is quadratic in the bosonic operators and can be solved exactly in the
Heisenberg picture via a Bogoliubov transformation. The linear equations of motion
are obtained as

d

dt

[
â+

â

]
= iω

[
1− g2

2g2c
− g2

2g2c
g2

2g2c
−(1− g2

2g2c
)

][
â+

â

]
= iA

[
â+

â

]
, (3.14)

yielding [
â+(t)
â(t)

]
= exp(iAt)

[
â+(0)
â(0)

]
. (3.15)

Assuming an inital vacuum state, the first moments vanish at all times and the (Gaus-
sian) system is completely characterised by the second moments. As a key example,
the photon number is then given by

⟨n̂⟩(t) = 1

2
∣∣∣g2cg2 − g2

g2c

∣∣∣ g
2

g2c

∣∣∣∣ sin(ωt
√
1− g2

g2c

)∣∣∣∣2, (3.16)

displaying an exponential growth due to squeezing as the vacuum is unstable in the
superradiant phase [280]; this growth is analogous to that observed in classical linear
dynamical systems, and is central to the metrological proposal for quenching across a
phase transition

3.2.4 Metrological protocol

With the Dicke model and salient evolution dynamics established, I now briefly present
the proposed metrological protocol. Concretely, we consider to prepare an initial vac-
uum photonic state corresponding to the ground state of the Dicke Hamiltonian (3.7)
deep within the normal regime g ≪ gc. We then quench the system (far) into the su-
perradiant phase g ≫ gc, and after some time perform the square of the measurement
Q̂ defined by an angle ϕ

Q̂(ϕ) =
âeiϕ + â+e−iϕ√

2
, (3.17)

which has been shown to offer (near)-optimal measurement in a number of quantum
metrological protocols [48, 49, 281], although the optimal homodyne measurement in
the superradiant phase has not been treated to my knowledge. In our case we can
choose to measure the bosonic or spin frequency, λ = ω,Ω, but the general conclusions
remain identical. As the QFI associated with measuring the frequency λ of the single-
mode bosonic systems scales as I(λ) ∼ ⟨n̂⟩2 [253], one could expect at most exponential
growth of the QFI in time according to (3.16). Indeed, numerical simulations in the
full Dicke model performed by Dr Gietka [4] confirm the exponential growth of QFI
with a leading order scaling

I(λ) ∼ exp(
√

|δe|t), (3.18)
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Figure 3.1: Logarithm of the normalized QFI log(I(λ)λ2) for (a) λ = ω (b) λ = Ω as
a function of normalized time tω, and the normalized coupling g/gc. The dashed line
indicates the critical point g = gc for comparison. Taken from [4].

which is shown in Fig. 3.1, for measurement on ω or Ω. Recalling the definition
(3.10), this indeed means that in the superradiant phase I ∼ ⟨n̂⟩2 to leading order.
In summary, a quench into the superradiant phase triggers an exponential growth of
photons over time, which in turn is associated with an exponentially growing QFI. The
squeezing of the photons results in the factor of I ∼ ⟨n̂⟩2. It remains to show that the
QFI can be saturated using a practically realisable measurement, which I show to be
the case for a homodyne detection scheme in the following.

Homodyne detection

As our Hamiltonian is Gaussian and the homodyne measurement is linear, the result-
ing distribution for the measurement statistics of the evolved state is also Gaussian.
Furthermore, the Hamiltonian (3.12) does not displace the photonic state away from
the vacuum, so that ⟨ψ(t;λ)|Q̂(ϕ)|ψ(t;λ)⟩ = 0, for the initial vacuum state |ψ(0)⟩. As
mentioned previously, we can characterise the measurement by the second moment

⟨ψ(t;λ)|Q̂2(ϕ)|ψ(t;λ)⟩. (3.19)

Indeed, considering the CFI for a Gaussian distribution with parameter dependence
variance and zero mean, we see that the Fisher information for the second-moment
measurement on the evolved state admits the simple expression

FQ̂(ϕ),|ψ⟩(t;λ) = F =
(∂λE[Q̂(ϕ)

2])2

Var[Q̂(ϕ)2]
, (3.20)

where expectations are taken in the state |ψ(t;λ)⟩. In the superradiant phase one
sees from the linear equations (3.14) that all products of operators will exponentially
grow/decay in time, or be constant. Exact expressions are in general cumbersome and
are given in [4], but the particular case of g =

√
2gc (corresponding to pure squeezing

in (3.12)) gives the simple expression when ω is considered the unknown parameter

F(t;λ) =
2 cos2(2ϕ) sinh4(ωt)

ω2(cosh(2ωt)− sin(2ϕ) sinh(2ωt))2
. (3.21)
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Fixing ϕ = π/4− ϵ/2 for ϵ≪ 1 one finds

F(t;λ) ≈ 2ϵ2 sinh4(ωt)

ω2(cosh(2ωt)− (1− ϵ2/2) sinh(2ωt))2
, (3.22)

whilst for t≫ log(ϵ)/ω one drops all the exponentially small terms in t and the notable
result is obtained

F(t, λ) ∼ 1

2ω2(ϕ− π/4)
. (3.23)

That is, the Fisher information can be made arbitrarily large over time scales (ignoring
the relatively inconsequential log ϵ) t ∼ ω−1 provided one has precise control over
the quadrature angle. In general, one can produce an arbitrarily large QFI for any
final value of g/gc, but as per the earlier discussion, one should ensure to choose the
quadrature within range of the optimal angle

ϕopt = cos−1

(√∣∣∣∣1− g2

g2c

∣∣∣∣), (3.24)

which can be seen in Fig. 3.2. As ϕ is chosen futher from ϕopt, one observes a long-
time CFI exponentially smaller than the QFI, which saturates according to (in the
example of g =

√
2gc) (3.23). In existing works [48, 49, 281] it is typically implicitly

assumed that a quadrature measurement for any given ϕ is exactly attainable, whilst
these results show that in practice small deviations from the desired value can result
in an obtainable CFI even exponentially smaller than the QFI. In addition, this result
extends the results of [49] to show that standard quadrature measurements can also in
principle be optimal in the superradiant phase of the Dicke model.

Figure 3.2: Ratio of the classical Fisher information induced by the quadrature
measurement Q̂(ϕ) to the quantum Fisher information FQ̂(λ)/I(λ) as a function of
normalized time ωt for (a) λ = ω (b) λ = Ω. Taken from [4].

,
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3.3 Publication: Understanding and Improving Crit-
ical Metrology. Quenching Superradiant Light-
Matter Systems Beyond the Critical Point[4]

The results presented in this chapter are contained in the manuscript [4] as

Understanding and Improving Critical Metrology. Quenching Superradiant
Light-Matter Systems Beyond the Critical Point

K Gietka, L Ruks, T Busch
Quantum 6, 700 (2022)

The project was conceived of and initiated by Dr Gietka. In addition, the numerical
simulations and the analytical results concerning the QFI was obtained by Dr Gietka. I
carried out the analytical calculations concerning the dynamical evolution of the Dicke
model under the Schrieffer-Wolff transformation, and the calculations concerning the
CFI under the quadrature measurement scheme, which was used to compare with
numerics in Fig. 3.2. All authors contributed to the interpretation of results and the
editing of the later versions of the manuscript.

3.4 Conclusions and outlook
I have derived the exact evolution for the quadratic bosonic Hamiltonian dynamically
approximating the Dicke model and used it to obtain exact analytical forms for the CFI
under the quadrature measurement. In conjunction with the results of my collaborator
Dr. Karol Gietka, we found that that quadrature measurements of the bosonic mode
of a Dicke mode quenched deep into the superradiant regime can result in a measuring
sensitivity exponentially increasing with time and saturating the CR bound, which also
shows for the first time that homodyne measurements can be optimal in the superra-
diant phase. I have additionally derived the long-time limit of the FI obtained in the
homodyne measurement, and shown that it is also bounded in practice by the precision
with which the quadrature angle in the detection scheme can be prepared; this final
result serves as a reminder that the ability to prepare the desired measurement basis
is also a limiting factor in metrology.
In the greater picture this work sheds light on quenches in quantum critical systems as
part of quantum metrological schemes operating at or near the fundamental Heisenberg
limit, in contrast to protocols operating near, but not beyond, the critical point. In
addition, the saturation of the QFI using quadrature measurements in the superradiant
phase is also a novel result, whilst the observation that obtainable FI is bounded by
controlability of the measurement device is also not typically addressed in the field.
Since publication, our work has been cited and used as a platform for further study
of dynamical quantum metrological protocols in critical systems, including a nonlinear
Rabi model [282] and in the sensing of qubit frequency when coupled to a two-photon
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Kerr resonator [283]. Moving forward, further theoretical investigations are required
to determine in what practical scenarios the standard approach of critical quantum
metrology and our proposed approach of quenching are appropriate. An additional av-
enue is to explore the protocol experimentally. The scheme can in principle be applied
to any setup simulating the Dicke model, from optical cavities [284], to ion traps [271],
and ultracold gases [270]. In these setups either the frequency of the bosonic or the
spin mode can be measured using this scheme. Indeed, the (dynamical) phase tran-
sition and exponential growth of photons has been experimentally observed in the
self-organization of a Bose-Einstein condensate coupled to an optical cavity in [285],
and this platform is routinely realised, making it ideal for realising the protocol.



Chapter 4

Wave Propagation and Emission in
Discrete Baths Exhibiting Hyperbolic
Dispersion

4.1 Background

In the previous chapters I have introduced two ends of the spectrum in quantum op-
tics; one is the single-mode optical cavity, whilst the other is the open optical nanofiber
supporting a continuum of modes. For spatially extended systems exhibiting a discrete
translational symmetry, however, one gains access to both control over dimensional-
ity and dispersion of travelling waves, which offers new degrees of control over the
excitations in the bath. Originally, these structured baths were manifest as photonic
crystals in the optics community, where a wide range of applications were found in
controlling classical waves for sensing, imaging, and information transport [17, 286].
In the quantum optics community, the endgame of bath engineering typically lies in
the potential applications when coupling to a quantum emitter; here one may seek
to simulate condensed matter systems in the spin degree of freedom [28], or imprint
the quantum statistics generated by spins into photons [93]. The results are typically
witnessed via coupling of an emitter to the bath: dispersion engineering allows for
the shaping of emission in space for focussing [287], subwavelength imaging [9], and
complete photonic localization [52]. In the Markovian approximation, emitter-emitter
interactions mediated through a bath have an accompanying spatial dependence, which
can result in coherent population transfer when the emitters are resonant outside of
the band[52] or perfectly super-subradiant states in higher dimensional baths [288].
Periodic and discrete media are realisable in a host of controllable Hamiltonian sys-
tems beyond the solid-state, including photonic crystals [66, 113, 289], cold atoms in
optical lattices [19], and coupled cavity-like systems in superconducting circuits [290],
as well as transmission lines [291] and metamaterials [292]. With these experimental
advancements, more and more exotic tailoring of baths has come within reach, and I
will now introduce two particular paradigms of importance along with their current
state – those of hyperbolic materials and magnetic baths.

67
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4.1.1 Hyperbolic media

Hyperbolic media first gained attention in the optics community [293] after their initial
realisation in plasmas [294]. The enhancement, instead of decay, of evanescent waves
in hyperbolic materials, enables a slew of potential imaging applications [295] in these
settings, with a perfect negative-refractive-index lens chief among them [296], and now
analogue simulators of hyperbolic materials can in principle be realised in many of the
setups mentioned previously. Specific realisations for a hyperbolic material have been
reported in metamaterials [9, 55], in optical lattices [297], transmission lines [291], and
coupled cavity systems [298]. Under the assumption of an effective continuum medium,
hyperbolic media features both a diverging density of states [9] and a diverging decay
lengths [10, 55, 299] of the system Green’s function. When coupled to quantum emit-
ters, this results in infinite broadband Purcell factors and infinite-range interactions
respectively. These two features form the backbone of quantum optics investigations
with hyperbolic emitters [299], with the former feature being particularly attractive
when contrasted with optical cavities. The main applications include engineering of
single-body [300] and collective [55] spontaneous and thermal [54, 301] emission. Re-
cently, long-range emitter-emitter interactions mediated through hyperbolic metamate-
rials was experimentally observed [302], whilst hyperbolic materials coupled to optical
nanofibers have been shown to act as a platform for efficient broadband single-photon
collection [303].

The continuous medium approximation

Although it can offer a clear picture of the dynamics with analytically tractable calcu-
lations, the continuous treatment of hyperbolic media ignores the finite length scale of
the underlying crystal used to effect the hyperbolic material, and a treatment taking
into account the discrete nature of the crystal is both necessary to tame divergences
and to discover the realistic contribution of finite-size effects. To this end, direct stud-
ies on the effects of discreteness in effective counterparts [11, 56] in hyperbolic media
have been carried out, although inclusion of effects such as polarization and the full
electromagnetic field continuum makes it difficult to establish salient physical phenom-
ena in the former, and only a basic comparison on the spatial profile of field emission
was made with the continuum case in the latter. Most recently, tight-binding lat-
tices with similar features to hyperbolic material were investigated in the context of
tilted Dirac cones [304, 305], and were shown to feature highly anisotropic and tunable
emitter-emitter interactions, which can furthermore be experimentally implemented in
sub-wavelength arrays of quantum emitters. However, in these studies an association
with hyperbolic media was not explicitly drawn, and the focus was rather on the Dirac-
cone bound states. Whilst a wealth of results exist both for structured baths treated
by tight-binding models and hyperbolic media separately, the salient phenomena of
emitter-emitter interactions mediated through discrete baths featuring hyperbolic-like
dispersion has so far eluded investigation.
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4.1.2 Magnetic baths for quantum emitters

In conjunction with all of the above techniques for dispersion engineering, an addi-
tional layer of functionality is realised when an artificial magnetic field is effected on
the lattice, unlocking the power to simulate charged electrons of the solid state in a
clean environment. Since theoretical proposals in the 2010s [306, 307, 308] experimen-
tal realisations of artifical magnetic fields, or artifical gauge fields in real space have
been reported in photonic [309], cold-atom [310], and superconducting qubit [311] sys-
tems, where as an added bonus effective magnetic field strengths far exceeding their
condensed matter counterparts can be realised. Whilst topological bosonic lattices are
of interest with simulation of the solid-state in mind, in the past 10 years the introduc-
tion of nonlinearities in the form of quantum emitters have gained attention through
theoretical investigations. On the one hand, qubits may be coupled en-masse to sites
of the bath, creating a playground to explore strongly interacting topological phases
of matter [312, 313]. On the other hand, the case of few emitters may be employed to
study decay into topological baths [314, 315] and the associated emitter-emitter inter-
actions. In two dimensions in particular, a magnetic field pointing out of the lattice
naturally defines a setup akin to the 2D electron system, albeit of strongly interacting
polaritons [13] that engage in chiral and long-range interactions with one-another to
allow for the study of a range of topological spin systems. Despite the separate interest
in artificial gauge fields for photons, and in materials exhibiting hyperbolic-like disper-
sion, the two have not been studied in conjunction in the quantum optics community,
to the best of my knowledge. Such a combination is well documented in the condensed
matter community where many studies of magnetic fields applied to ‘quasi-1d con-
ductors’ (materials exhibiting hyperbolic-like dispersion, or an ‘open Fermi surface’)
have been carried out [316, 317, 318], and recently a link has been established between
hyperbolic-like dispersion and nonlinear magneto-resistance in layered transition metal
dichalcogenides [319]. However, the focus in these systems is typically on the spectral
properties of the electronic system, whilst this avenue is as of yet unexplored in the
context of coupled quantum emitters.

4.1.3 Background and chapter summary

Emitters coupled to structured baths have wide ranging applications from the simula-
tion of condensed matter systems to quantum nonlinear elements in optics. Hyperbolic
materials and baths subject to effective magnetic fields have applications in emission
engineering and the study of topological matter respectively, but the emitter-emitter
interactions of the former have not yet been investigated in the simple tight-binding
toy model most suited to uncovered the salient physics, and there has also not yet been
an investigation in conjunction with the latter.
In this chapter I build upon studies of toy models of structured baths by considering
emission into tight-binding lattices mimicking hyperbolic media and featuring photons
subject to artifical gauge fields. I explore the RDDI for two emitters coupled to a
hyperbolic bath and find regimes offering directionally tunable exponentially decaying
interactions between emitters and notably, interactions becoming almost purely inco-
herent for certain directions. Whilst exponentially decaying coherent interactions are
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a well-known consequence of emitters coupled beyond a band edge [28, 52, 91, 320],
exponentially decaying incoherent interactions are a much less documented and studied
phenomenon; these interactions thus open up simulation possibilities for an additional
class of dissipative short-range spin models, and throw a spotlight on hyperbolic ma-
terials for use in cold-atom simulator systems.
On the other hand, I also explore the intersection of hyperbolic and magnetic baths
by studying emission into a bath with anisotropic hoppings in addition to phase accu-
mulation effected by an artificial gauge field, finding that emission into the magnetic
and hyperbolic bath is quasi-1D and topologically protected. I investigate the emis-
sion profile using semiclassical theory, and demonstrate an application in the form of
effective cavity modes generated in the 2D bath using the emitters as effective mir-
rors [7, 59]. My results offer new methods for transporting and storing photons in
higher-dimensional media.

4.2 Model and basic analysis

As necessary, the approximation of considering only the lowest orbitals allows a contin-
uum physical system (photonic crystals, atomic lattices, waveguide lattices, etc.) to be
described in the single-excitation regime by the tight-binding Hamiltonian. Restrict-
ing to two dimensions, and a square-like lattice symmetry, one obtains the bosonic
Hamiltonian (for N ×N sites) as

Ĥ =
∑
⟨jk⟩

Jjkâ
+
j âk, (4.1)

for [âj, â+k ] = δjk with j indexing the lattice site with position rj = (xj, yj), and coupling
is nearest-neighbor with Jjk = Jx (Jy) for two neighboring sites in the x (y) direction.
The lattice vectors are given by ax (y) = ax̂ (aŷ). As the rotating frame can be used
to eliminate the (identical) single-site terms, we assume that the bosonic frequency is
equal to zero. The system is assumed translationally invariant, and I expand the site-
localized bosonic operators in terms of momentum-localized operators as per the Bloch
theorem. One therefore expands for k = (kx, ky) with kx/y = 2π

Na
(−N/2, . . . , N/2− 1)

ârj =
1
N

∑
k e

ik·rj âk, (4.2)
âk = 1

N

∑
rj
e−ik·rj ârj , (4.3)

with
[âk, â

+
k′ ] = δkk′ . (4.4)

Substituting this into the Hamiltonian (4.1) gives the Bloch Hamiltonian

Ĥ =
∑
k

ω(k)â+k âk, (4.5)

with ω(k) = 2[Jx cos(kxa)+Jy cos(kya)] describing the dispersion relation of the single
band in the thermodynamic limit. The dispersion is shown for Jy = 2Jx = 2J in Fig.
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4.3(a). As the quantum problem is also linear, one may apply the Green’s function
in the same manner as the full continuum electromagnetic field case, namely, as the
inverse of the eigenvalue operator

Ĝ(∆) = (∆ + i0− Ĥ)−1, (4.6)

whilst the matrix elements describing the propagation of a bosonic excitation of fre-
quency ∆ from site k to site j are given by [321]

G(rj, rk,∆) = ⟨0|arjĜ(∆)â+rk |0⟩, (4.7)

where |0⟩ denotes the lattice vacuum state. In the thermodynamic limit N → ∞,
the Green’s function satisfies the discrete wave equation in the presence of a point-
source [322]

δm,0δn,0 =2∆G(max + nay,∆)

− Jx[G((m+ 1)ax + nay,∆) +G((m− 1)ax + nay,∆)]

− Jy[G(max + (n+ 1)ay,∆) +G(max + (n− 1)ay,∆)], (4.8)

for zero-boundary-conditions at infinity, which admits the solution

G(rj, rk,∆) = G(rj − rk,∆) = G(ρ,∆) =
A

(2π)2

∫
BZ
dk
ψ(k, rj)ψ

∗(k, rk)

∆ + i0− ω(k)
, (4.9)

where the Bloch wavefunction ψ in the square lattice takes the basic form ψ(k, r) =
eik·r, and the unit cell area is A = a2. In the thermodynamic limit, one integrates over
the Brillouin zone (BZ) kx/y ∈ [−π/a, π/a], and the Green’s function depends only on
the separation ρ = rj − rk in the square lattice. We see the standard expansion in
terms of system eigenfunctions and eigenvalues similarly to (1.16) in Chapter 1. The
difference lies in the rotating wave approximation effectively having been already made,
and the eigenvalue of the electromagnetic eigenvalue problem being equal to ∆2. An
analogous role of the Green’s function Eq. (4.9) is played when considering Markovian
coupling of two emitters to the bath (|g| ≪ |Jx/y|)

Ĥ → Ĥ +
∆

2
(σ̂zj + σ̂zk) + g

[
(σ̂j â

+
rj
+ σ̂+

j ârj) + (σ̂kâ
+
rk
+ σ̂+

k ârk)], (4.10)

for the usual Pauli matrices with [σ̂αj , σ̂
β
k ] = 2iσ̂ϵαβγσ̂

γ
j δjk. Tracing out the bath degrees

of freedom then gives the master equation (1.53) from Chapter 1, although this time
we have coupling coefficients

Ω = g2R[G(ρ,∆)], (4.11)
Γ = −2g2I[G(ρ,∆)], (4.12)

so that wave propagation (and thus emitter-emitter coupling in the Markovian approx-
imation) is entirely determined by the dispersion relation ω(k) and the detuning ∆ of
the atomic frequency from the (zero) bosonic frequency. Further analysis can be made
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upon inspection of the imaginary part of the Green’s function, which we can rewrite
as a regular sum of plane waves weighted by the local density of states

Γjk = A
∫
S

dk

2π

eik·ρ

v(k)
, (4.13)

for the resonant level set, or isosurface, S = S(∆), the set of all wavevectors k such that
ω(k) = ∆. The group velocity magnitude v(k) = |v(k)| = |∇ω(k)| is encountered in the
denominator. To make analytical observations, one can consider the limit where ρ = |ρ|
exceeds any length scale set by the variation of ω(k). The integrand is highly oscillatory
for large ρ and a modification of the stationary phase argument for manifolds [323, 324]
reveals that the dominant contribution results in a power law decay coming from the
neighbourhood of the wavevector(s) k0 such that

v(k0) ∝ ρ, (4.14)

i.e., from the wavepackets propagating from the source to the receiver. Indeed, as-
suming that a single k0 exists, then in this case the full Green’s function may be
approximated as [5, 287]

|G| ∼ A

√
|m(k0)|

|v(k0) ·m(k0) · v(k0)|

(
v(k0)

2πρ

)1/2

, (4.15)

for the effective mass tensor [m−1(k)]jl =
∂2ω
∂kj∂kl

, exhibiting the characteristic ρ(d−1)/2

dependence observed in the far field of a dD bath. It is long been alluded to, and has
recently been clearly documented [325], that the (local) shape and (global) volume of
the isosurface S has a strong connection with the far-field profile of travelling waves,
and in particular, the effective emitter-emitter interactions induced. The relation is
manifest for short-range interaction globally on S in (4.13), and for long-range inter-
actions locally on S in (4.15). In order to craft emitter-emitter interactions, one then
changes the shape and volume of S; in the isotropic square lattice with Jx = Jy, for
example, S takes the form of a perfect square at ∆ = 0, so that wave packets with
only four group velocities v ∝ (±1,±1) exist. Although the Markovian approximation
breaks down when coupling emitters to this non-smooth dispersion, the spatial emis-
sion profile is well-captured by this intuition, and one observes perfectly directional
emission into one of four directions into the far-field, producing quasi-one dimensional
waves in the 2D bath, and allowing the formation of perfectly subradiant states [288].
On the other hand, reducing the volume of S (and allowing the group velocity to go
to zero) means that a large ρ is required to produce oscillations with a much smaller
length scale than that set by S – the interaction range of two emitters becomes inversely
proportional to the volume of S, producing long range oscillating interactions [325].
Finally, reducing the volume of S whilst retaining finite group velocity would suggest
that the incoherent interactions in (4.13) should tend to zero, retaining only the coher-
ent part Ωjk. This situation naturally arises in the case of band degeneracies – Dirac
points [50] in two dimensions and Weyl points [51] in three dimensions – where again
the Markovian approximation breaks down, while emitter-emitter interactions resonant
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at the degeneracy are purely coherent. As is further witnessed in the latter, control
of the shape of S as the degeneracy is approached (with respect to ∆) also allows the
power-law decay of the coherent interactions to be tuned in different directions [51].
Whilst a plethora of effective emitter-emitter interactions are available by these simple
modulations of the dispersion relation, within the tight-binding model one may effect
particularly exotic dispersion when the (nearest-neighbor) interaction is allowed to be
anisotropic and/or complex. These cases give rise to the hyperbolic-like media and
to artifical gauge fields for photons respectively. As I show, the former is directly an
application of modifying the shape of the dispersion relation, and I begin with this.

4.3 Hyperbolic media

4.3.1 Continuum medium analysis

Hyperbolic media were traditionally considered in the context of continuum dielectric
materials, and I first discuss them in this context in order to contrast with the discrete
case of the tight-binding lattice. Considering a non-magnetic material with diagonal
and anisotropic permitivity in the Cartesian basis, ϵxx = ϵ⊥, ϵyy = ϵ⊥, ϵzz = ϵ∥, the
dispersion relation is given by [9]

k2x + k2y
ϵ∥

+
k2z
ϵ⊥

=

(
ω

c

)2

= k2, (4.16)

which for different signs of the permittivities is plotted in Fig. 4.1. In practice, deep-
subwavelength periodicity and anisotropy are jointly employed in order to produce
effective negative permitivities for light, and in turn produce effective negative refrac-
tive indices when homogenized over larger length scales [326]. For ϵ∥ϵ⊥ < 0, one obtains
a hyperbola for the isofrequency surfaces, hence the phrasing ‘hyperbolic medium’. The
realistic finite-size dispersion is seen in the periodic termination at the edge of the BZ,
similar to that observed in the tight-binding model in Fig. 4.3. Crucially, the key
distinction between the hyperbolic-like dispersions and the dispersions of the previous
chapter is one of global topology; the ‘open’ nature of the dispersion has notable con-
sequences on resonant emission into and wave propagation within the bath, as we now
see. Taking the leading order approximation for the electromagnetic Green’s function
due to extraordinary waves (including polarization) with ϵ⊥ < 0, ϵ∥ > 0, gives [10]

G(ρ,∆) =
−ik2eikρe√

|ϵ⊥|ρe
ϵ̂, (4.17)

for the permittivity-induced effective ‘distance’

ρe =
√

ρ · ϵ̂ · ρ, (4.18)

and

ϵ̂ = ϵ⊥ϵ∥ϵ
−1. (4.19)
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Figure 4.1: Constant-ω dispersion surfaces (4.16) for differing signs of permittivity.
Taken from [9].

Figure 4.2: (a) Electric field amplitude for the emission of a dipole aligned along the
z-axis [10]. (b) Green’s function for a discrete lattice taking into account the discrete
nature of a metamaterial [11]. (c) Experimental image of magnetic field in hyperbolic
metamaterial constructed from a 2D transmission line [12].

We then see that beyond the cone defining ρe = 0, the Green’s function changes from
oscillating along rays to exponentially decaying, with the hyperbola (4.16) admitting
the cone as asymptote. One sees an effective light cone for emission, which is shown
in Fig. 4.2 as a drastic drop of the electric field amplitude outside of the light cone,
whose boundary – the caustics – are determined as the rays whose angle θ with the
x-y plane is the solution to ϵ∥ sin2 θ + ϵ⊥ cos2 θ = 0.

On the caustic itself, the field intensity and the Green’s function (4.17) see a divergence,
which is associated with a diverging decay length

leff =
(
k
√
ρ̂ · ϵ̂ · ρ̂

)−1
, (4.20)

for the field for ρ̂ = ρ/ρ almost oriented along the caustic [55]. I note, as referenced
earlier, that the diverging volume of the isofrequency surface corresponds to a diver-
gence in the imaginary part of the self-Green’s function – the density of states [9] –
which in turn gives an diverging Purcell factor in continuum media.
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4.3.2 Hyperbolic-like dispersion in the tight-binding lattice -
Section IV of [5]

Starting from the square tight-binding model (4.1) and setting Jy = 2Jx = 2J yields
the hyperbolic-like dispersion shown in Fig. 4.3. Note that in the tight-binding model a
hyperbolic dispersion may also be obtained simply by inducing anistropy, in contrast to
the complex schemes required in dielectrics to induce negative permitivities. Choosing
∆ = −J , no such k0 satisfying (4.14) is available for a range of ρ, specifically such that
the set

{v(k) with k in S(∆)}, (4.21)

contains no vector proportional to ρ. In this case, the most ‘extremal’ group velocity
vector defining the boundaries of the light cone can be seen to lie at the point k∞ such
that

|m(k∞)| → ∞, (4.22)

which is denoted as the white dot in Fig. 4.3(a). That is, the caustics are defined
by wavepackets of diverging effective mass and correspond to zero-curvature points on
the isosurface, which result in the longer range interactions on the caustic. Specifically,
degenerate stationary-phase arguments [323] predict a power-law decay due to infinitely
massive excitations of ρ−1/3 on the caustic, in contrast to the ρ−1/2 decay observed
strictly within the light-cone. Beyond the caustic, the principle of non-stationary
phase [323] applied to (4.13) dictates a decay of Γ faster than any polynomial, whilst
extra calculations show this to be the case for Ω also [5, 287]. Hence, one observes a
drastic drop in emission along the x-axis in Fig. 4.2, corresponding to exponentially
decaying tails of evanescent waves. For comparison the continuum limit of ∆

J
, ka → 0

(k = |k|) yields effectively homogenous media [10, 56], where the Green’s function
is [327]

G(ρ,∆) ≈ 1

4

√∣∣∣∣JyJx
∣∣∣∣H(1)

0

(
1

a

√
ρ · σ · ρ

)
=

1

4

√∣∣∣∣JyJx
∣∣∣∣H(1)

0

(
ρ

a

√
ρ̂ · σ · ρ̂

)
, (4.23)

for some real amplitude A, where

σ =

[
σx 0
0 σy,

]
=

[ ∆
Jx

0

0 ∆
Jy
,

]
(4.24)

is an anisotropy tensor and ρ̂ = ρ/ρ. Eq. (4.23) plays the role of the Green’s function
(4.9) for hyperbolic media in a scalar and 2D baths. Similarly to previously, when
σxσy < 0, the equation σxρ2x + σyρ

2
y = 0 determines the caustics, beyond which purely

real exponential decay is observed. Fixing ρ̂y/ρ̂x gives an effective decay length as in
(4.20), but where σ plays the role of ϵ̂. Specifically, κ approaches 0 as κ ∼

√
θ̃, where√

θ̃ is the angle between the caustic and ρ. However, there are notable distinctions
between the observations of the continuum model and the discrete model, whose be-
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haviour is summed up in Fig. 4.3: in (b) and (c) one observes the exponential decay of
the magnitude of Green’s function elements along the rays lying outside the caustics,
with the decay length 1/κ diverging near the caustic. In contrast to the divergence pre-
dicted by (4.23), a divergence of 1/κ happens in the sense that a profile |G| ∼ exp(−κρ)
is no longer valid, as at the caustic finite Green’s function elements with decay ∝ ρ−1/3

are observed in contrast to the divergence in the continuum. Within the light cone
∝ ρ−1/2 as mentioned in (4.15). I also note that in the discrete case κ ∼ θ̃3/2 near the
caustic, in contrast to κ ∼

√
θ̃ of the continuum case; this can be attributed to the

existence of finite k with v(k) proportional to the caustic, in contrast to the continuum
case where such v(k) only asymptotically approaches the caustic line. In Fig. 4.3(e)
the analytical prediction of this scaling law is compared with the κ obtained by fitting
the 2D evanescent wave profile

exp(−αθ̃3/2ρ)
ρ1/2

, (4.25)

to the exact numerically obtained magnitude of the Green’s function, where α is de-
termined by higher-order derivatives of ω at k∞. A final and key feature of system
dynamics may be found in Fig. 4.3(d), where the ratio of real and imaginary parts of
the Green’s function are observed. Approximately outside of the light cone, Ω drops
by orders of magnitude relative to Γ, so that G is almost purely imaginary there. A
clearer comparison is given in the inset of (c), when travelling along the ray y = 0,
one observes an exponential decay of Γ, which itself is orders of magnitude larger than
Ω is the vicinity of zero separation. This finding is one of the main results of [5], as
to my knowledge exponentially decaying and incoherent interactions between emitters
are seldom discussed in the literature (see below).
As Γ drops off exponentially, one can then construct purely dissipative interactions cor-
responding to incoherent short-range spin flips in the effective non-Hermitian Hamil-
tonian. For example, coupling a chain of spins to the x-axis of the lattice, one ap-
proximately obtains the dissipator acting effectively only on nearest neighbors in the
Born-Markov approximation

L[ρ] = Γ

2

∑
jk

exp(−α|j − k|)
|i− j|1/2

(
[σkρ, σ

+
j ] + [σk, ρσ

+
j ]
)
. (4.26)

This is in contrast to the standard exponentially decaying coherent coupling (recall
Eq. (1.26)) typically observed for emitters resonant outside of a band [91, 91, 105,
320], and the incoherent contribution from travelling (Hankel) waves that typically
decay as a power law. Assuming a small decay-length, one may then approximate
the above via nearest-neighbor interactions (care should be taken to ensure positive-
definiteness). (Driven-)dissipative spin systems are a recent topic of focus [328, 329,
330], but short-range dissipative interactions of this form have not yet been studied
to my knowledge. As an opposite limit to all-to-all cavity interactions (excluding the
trivial single-body emission case), such models could shed further light on the nature
of many-body dissipative quantum dynamics. Given the flexibility of light-matter
systems, the above dissipator could also be engineered in conjunction with driving in



4.4 Artificial gauge fields for bosons 77

order to extend to analysis on driven-dissipative systems.

Figure 4.3: (a) Dispersion relation for Jy = 2Jx = 2J, with ∆ = −J . The white
dot k∞ denotes the line’s inflection point with |m(k∞)|

v(k∞)·m(k∞)·v(k∞)
→ ∞, where v(k∞)

gives one of the caustic vectors (see (b)), upon which symmetry then gives the other.
(b) Magnitude of the ratio of the Green’s function (omitting the frequency argument)
G(0,ρ) to G0 = G(0,0) on a log scale, where each dot denotes a lattice site. Dash-
dotted green lines denote the caustics, given as the group velocity vector v(k∞) and
its mirror image in the BZ. (c) log |JG| for varying tan θ = ρy/ρx. For reference,
arg[v(k∞)] ≈ 1.92. Inset: JΩ, JΓ for θ = 0. (d) Ratio between |Ω| and |Γ| on a log scale.
(e) Dimensionless inverse decay length κ/a of Γ beyond the caustic. The diamonds (the
solid line) give the value through exact calculation of the Green’s function (obtained
by fitting to (4.25)). Taken from [5].

4.4 Artificial gauge fields for bosons

One challenge faced at first glance by quantum optical systems for structured baths is
that the neutral system excitations (phonons and photons) lack a net charge, in con-
trast to electrons in the solid-state. In addition to forming a central component in many
working devices such as accelerators and microscopes, the interaction of charged par-
ticles with electromagnetic fields gives rise to the celebrated quantum Hall effect [331],
which has notable implications in both theoretical and applied topological physics;
clean and highly tunable simulators of such systems would therefore be ideal. In the
tight-binding lattice picture, a magnetic field is manifest as a Peierl’s phase accumu-
lated along with hopping:

Jjkâ
+
j âk → Jjke

iϕjk â+j âk, (4.27)



78
Wave Propagation and Emission in Discrete Baths Exhibiting Hyperbolic

Dispersion

for
ϕjk =

∫ rk

rj

A(r) · dr, (4.28)

given a gauge field A(r), corresponding to the magnetic field B(r) = ∇ ×A(r). The
potential A is unique up to A → A + ∇χ for arbitrary χ, and so the total phase
Φ =

∑
□ ϕjk accumulated over hopping around the plaquette □ is uniquely defined. In

order to circumvent a lack of charge, novel proposals for generating the Peierls phase
by periodically modulating the lattice couplings Jjk [306, 307], or through generation
of a relative phase between two internal states [308] have been made. These phases
can also be applied in conjunction with anisotropy in the hopping parameters, which
brings us to the current investigation.

4.4.1 Emission into magnetic baths - Section V of [5]

In the following section I introduce an artifical gauge field onto the square lattice
exhibiting anisotropic couplings. The analysis is carried out in 2D, but similar conclu-
sions can be made in higher dimensions. To the best of my knowledge at the time this
work was carried out, the analytical and computational analysis of the Green’s function
was impractical in this regime due to the splitting into (a possibly infinite) number of
sub-bands. Since then I have become aware of [332], which in principle allows one
to readily calculate the Green’s function including artifical gauge fields. Hence, I here
resort to semiclassical arguments concerning the trajectory of wavepackets, along with
real-time simulation of emission for one or more emitters coupled to the bath. As
discussed earlier, the effect of an artifical gauge field on the tight-binding lattice is to
include a complex hopping phase. In free space, the dispersion relation is isotropic,
and from the continuum limit of the lattice model with equal x and y couplings, for
example, one may reproduce the standard Landau orbits [13, 333] of electrons in a
magnetic field. In the spirit of the lattice length scale becoming small, one may instead
consider the semiclassical equations of motion for a wavepacket localized around k0 in
momentum space, whose spatial extent far exceeds a single lattice site. The square
lattice does not exhibit Berry curvature, and so the semiclassical equations of motion
for the wavepacket are dependent purely on the isofrequency contour and the real-space
magnetic field

ṙ = v(k), (4.29)
k̇ = −v(k)×B. (4.30)

Taking the case of the magnetic field pointing out of the lattice, B = Φ
a2
ẑ, one sees

from (4.29) that the wavevector simply traces out the isosurface that contains k0, and
from there the wavepacket evolution in position space is determined. The wavepacket
evolution is then confined to a closed loop, or to a semi-infinite trajectory depending
on whether S is open (an open orbit) or closed (a closed orbit). In the case of the open



4.4 Artificial gauge fields for bosons 79

orbit, one finds the characteristic length and temporal periods

l =
∫
dr = 1

B

∫
S
dkv(k)
v(k)

= ây

α
, (4.31)

τ =
∫
dt = 1

B

∫
S

dk
v(k)

= Γ
2α
, (4.32)

for the flux

α =
Φ

2π
, (4.33)

and where Γ is the imaginary part of the self-Green’s function element for a single
emitter. Viewing resonant emission as approximately a transfer of excitation into a
sum of wavepackets lying on S then suggests that full emission profile itself should have
the characteristic length and time scales of (4.31). As the emitter enforces an initially
localized excitation, one should expect to see re-localization of the emission profile at
each spatial period also, up to evanescent waves. Indeed, this effect is witnessed in the
excitation profiles given in Fig. 4.4(a,b): after a time nτ = nΓ

2α
one sees the complete

formation of n spatial periods with length l = a/α = 100a. Particularly of note is the
fidelity of the refocussing – in (c) a cross-section of the lattice is presented along the
x-axis (where the emitter lies), and at (x, l) (after one spatial period). Any exponential
tails due to evanescent fields present at y = 0 are almost completely non-existent by y =
l, where one sees that the lattice population at t = 6τ is effectively negligible at all but
the central ‘refocussing’ site at (0, l), corresponding to the initial single-site-localization
originating from the emitter. It is worth noting that once the magnetic field strength α
is fixed, the spatial period is only dependent on the lattice vector, whilst the single-site
resolution refocussing is in principle preserved for arbitrary system parameters that
result in periodic orbits. In general, when band transitions and Berry curvature can be
neglected these statements should hold for arbitrary lattices, whilst the specific profile
of the emission pattern will be determined by the microscopic particulars. As one varies
the emitter detuning ∆, the period will remain constant until becoming ill defined at
∆ = ±2J, where S crosses the van-Hove singularities (kx, ky) = (0,±π/a), (±π/a, 0)
(see Fig. 4.3(a)) – at this point Γ → ∞ and a topological transition of the dispersion
relation is observed, with the open orbit discontinuously deformed into a closed orbit,
reproducing again Landau levels for emission. The quasi-1D emission can then be
said to be topologically robust with respect to the dispersion relation ω(k). This is
in contrast to the standard topology of the literature where topologies of the system
can be determined by the Bloch wavefunction, with two distinct topologies possible for
identical dispersion relations [292, 334, 335]. The transition corresponding to dispersion
was observed in polaritons in hyperbolic materials in a work published shortly after the
initial submission of my own [336], albeit without an effective magnetic field. In the
present discussion, the topological nature of 1D emission naturally affords robustness
to scattering from local perturbations, where beyond the near-field, scattered fields
are again confined by local gauge constraints to travel in one dimension. In addition,
weak global perturbations (such as random disorder producing a distribution of bosonic
frequencies) that do not appreciably couple the emitter to waves beyond the Van-Hove
singularity also do not destroy the (average) quasi-1D transport in the system. A
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Figure 4.4: Emission into the magnetic bath 111 (1201) sites across in the x(y)
direction. Jy = 2Jx = 2J and ∆ = −J , with α = 0.01. In (a-c), g = 0.1J, and in
(d-e), g = 0.025J. (a) Bath population at t = 6τ for an emitter prepared in the excited
state, and located at the central white diamond. (b) Bath population at t = τ . Green
lines give semiclassical trajectories evolving from the emitter with k sampled from S.
Arrows correspond to photonic current [13]. (c) Bath population along the x axis when
y = 0, l. (d) Total emitter population for one, two, and three emitters, each separated
by 3l. The two-atom (three atom) subradiant state Eq. (4.34) (Eq. (4.35)) is prepared.
(e) Bath population at t = 10τ for two emitters separated a distance 3l and prepared
as in (d). Taken from [5].

summary of this behaviour is contained in Fig. 4.5. Perhaps the most remarkable
feature is observed in (c-f): even for moderate spread χJ of the bosonic frequency
on the order of the x-hopping strength J , the ‘focussing’ of emission is well retained
on average. One may also examine the bosonic populations on a bath cross-section
(x, 2l) (for free x) after a time of 3τ, as in Fig. 4.4(c). The central ‘refocussing’ site
sees average population orders of magnitude large than its immediate neighbors, even
beyond a standard deviation of the neighboring populations.
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Figure 4.5: Parameters are as in Figure 4.4 with g = 0.025J . (a) Bath population
at t = 3τ in the presence of an obstruction (white line) at y = l/2, x ∈ [−10a, 10a]
obtained by decoupling all obstruction sites from the lattice. (b) Averaged bath pop-
ulation at time t = 3τ for disorder χ = 0.5. (c-f) Average log-populations for the
cross-section y = 2l in the presence of varying disorder parameter χ. The solid lines
give the average whilst the shadow denotes a standard deviation. In (f) the population
in the presence of no disorder corresponding to Figure 4.4(a) is shown for comparison.
Taken from [5].

The robust refocussing capability of emission in the hyperbolic and magnetic bath
lends credibility to a final application that I now present. Recall that the coupling
of an emitter to a photon is dependent upon the ratio of the emitter cross-section to
the photon ‘area’. In the current investigation, a situation akin to a quasi-1D system
occurs where waves resonant with the emitter are confined to travel in one dimension,
and thus the emitter-field coupling will depend on the transverse extent of the field
relative to that (single-site-extent) of the emitter. Notably, at the refocussing point the
travelling wave is almost localized down to the single site (see Fig. 4.4), identical to the
spatial extent of the emitter. Neglecting the exponential tails away from the central
focussing point, this means that an emitter placed at the refocussing point should have
a near unity probability to interact with the incoming wave, creating an almost ideal
1D waveguide QED scenario, where the atoms can act as perfect mirrors [7, 59] – in
particular, perfectly superradiant and subradiant states should be possible. In [5], I
consider the case of multiple emitters coupled to the bath, placed at integer multiples
of the characteristic length apart from one another. Although imperfect, the emitters
form an approximate bound state in the continuum [337], where the photon is localized
between the two emitters, which themselves exist in the (approximately) subradiant
state

|ψ⟩ ∝ 1√
2

(
σ̂+
1 − σ̂+

2

)
|0⟩ , (4.34)
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for the system vacuum state |0⟩ . As mentioned, the sites around the refocussing points
are populated (albiet almost vanishingly), meaning that there is a transmission of the
photon simply associated with the photon at these sites not interacting with the emit-
ter. Placing additional emitters at further refocussing points along the unperturbed
emission trajectory then allows one to interface with the remaining component of the
photon, enhancing the fidelity of the subradiant state for each extra emitter. I present
the results in Fig. 4.4(d) for one, two, and three emitters. After an initial delay as-
sociated with photonic propagation [337], the bound state in the continuum is formed
for 2 and 3 emitters, with the single emitter decay rate γ being cut by approximately
a factor of 10 for each extra emitter. For reference, the three emitter subradiant state
is given as

|ψ3⟩ ∝
1√
6

(
σ+
1 − 2σ+

2 + σ+
3

)
|0⟩ . (4.35)

4.5 Publication [5]: Green’s functions of and emission
into discrete anisotropic and hyperbolic baths

Many of the results of this chapter are published in [5] as

Green’s functions of and emission into discrete anisotropic and hyperbolic baths
L Ruks, T Busch

Physical Review Research 4 (2), 023044 (2022)

I conceived of and initiated the project, carried out all analytical calculations and
numerical simulations, and wrote the manuscript. All authors contributed to the final
interpretation of results and writing of the final version.

4.6 Outlook

4.6.1 Experimental considerations

The tight-binding model realising hyperbolic dispersion in a discrete lattice is experi-
mentally feasible in metamaterial-based transmission lines [12, 291, 338], and coupled
cavity-type systems in superconducting circuits [290, 292] operating at microwave fre-
quencies, in addition to the approximate realisations as the lowest band in optical lat-
tices [19] and photonic crystals [60], and natural hyperbolic media [55]. On the other
hand, the artifical gauge field can be realised in coupled microwave [298] and optical
resonators [339], and even using cold atoms as an effective waveguide (in the single pho-
ton regime) [340]. At present, realisation of qubit coupling and artificial gauges fields
is ideal in the microwave regime. Whilst current realisations of quantum emitters cou-
pled to magnetic baths (with the possibility for distinct coupling strengths) exist in
1D [292], the realisation of qubits within 2D bosonic lattices should also be possible
using current state-of-the-art in superconducting qubit circuits [341], with integration
of emitters into 2D array of microwave cavities [313] and into coupled topological arrays
of resonators [342, 343] the most promising paths. As an example, we consider a setup
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similar to [298] consisting of a lattice of microwave cavities that in principle support
coupling to transmon qubits, and refer to experimentally realisable parameters cited
in the supplemental material of [13], where a similar consideration was made. The
bosonic frequency ranges from ωc ∼ 0.1− 10 GHz with a near-negligible broadening of
∆ωc ∼ ±1 Mhz and quality factor Q ∼ 103− 105 corresponding to possible decay rates
of γc ∼ 5 × 10−2-1 MHz, whilst the transmon qubits have frequencies of ω0 ∼ 3 − 5
GHz (and can be tuned over ranges of δω0 ∼ 100 MHz) with decay into other channels
γ0 ∼ 1 KHz. The spin-boson coupling can take values g ∼ 1 − 100 MHz. Hoppings
can be tuned between J ∼ 20 − 100 MHz, with deviations of about ∆J ∼ 1 MHz.
Additionally, whilst equal couplings in the x- and y- directions are chosen in [298],
the evanescent coupling between the cavities should in principle be adjustable via the
physical dimensional of the cavity setup, inducing anisotropy and weaker coupling in
(say) the x- direction. The final consideration lies in the flux α: in [313], α takes
distinct values α = 1/4, 1/6. Here, whilst the periodic quasi-1D emission will remain,
the validity of the semiclassical approximation is not as clear. Nonetheless, in similar
setups the option of tuning α freely is available [311]. One then chooses the parameters
so that the magnetic temporal period is much less than the decay corresponding to the
boson/spin decay

τ ≪ 1/γe, 1/γ0. (4.36)

Approximating the emitter decay rate into the non-magnetic bath as γ ∼ g2

J
with

Green’s function element Γ ∼ J−1, one arrives at reasonable parameters producing a
detuning ∆ = ω0 − ωc ∼ −J given by

ωc = 5.1× 103 MHz, γc = 5× 10−2 MHz, ω0 = 5× 103 MHz, (4.37)
γ0 = 5× 10−2 MHz, α = 1/50, J = 100 MHz, g = 5 MHz,

τ−1 = 2α
Γ

= 4 MHz, γ = 0.25 MHz.

That is, both the emitter timescale γ and the magnetic period τ−1 are at least an
order of magnitude greater than the associated decay frequencies γc, γ0, and so the
dynamics should be observable whilst remaining in the semiclassical regime (α ≪ 1)
and Markovian regime (g ≪ J.) As in this case the hopping deviations saitsfy ∆J/J ∼
1/100, the fluctuations in hopping strengths should not be too detrimental to observing
dynamics.

4.6.2 Conclusions and continuations

One of the main results of this work was to shed light on the emitter-emitter interac-
tions that can be mediated by lattices with hyperbolic-like dispersion when using a toy
tight-binding model where the discrete nature of the lattice is taken into account and
salient dynamics can be deduced. In addition to analytic derivations regarding emission
into a discrete bath featuring hyperbolic-like dispersion, the notable finding was that
directionally-tunable exponentially decaying interactions that are dominantly disspa-
tive can be realised in this regime. When considered in the context of the corresponding
spin models, these incoherent terms translate into purely dissipative and exponentially
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decaying interactions. Dissipative interactions are usually associated with travelling
waves generating long-range power-law-type interactions, and exponentially decaying
kernel represents an unconventional medium between typical long-range collective dis-
sipation and individual decay. Theoretical investigations on driven-dissipative systems
experiencing this short-range collective dissipation may be fruitful in order to pin down
the role of incoherent dynamics in quantum spin systems. In addition, my results shed
further light on hyperbolic materials as a medium for engineering emitter-emitter in-
teractions for spin models, and it could be fruitful to explore how dynamics might be
realised in the full three dimensional material with polarization effects included.
The other main result of the work was the exploration of emission into a magnetic bath
exhibiting hyperbolic dispersion. The results represent a departure from the studies
of closed Landau orbits [13], but reveal alternative methods for transporting photons
and shaping emitter-emitter interactions in higher-dimensional media, with a novel
application in the ‘atomic mirror’-based cavity [7, 59]. In addition, my results high-
light the role of topological transitions with respect to dispersion, where discontinuous
changes in topology of isosurfaces fundamentally alters emission dynamics. From here
one might try to devise a 3D tight-binding mode exhibiting traditional topological
phases recreating those discovered in the full 3D metamaterials [344], whilst one could
also explore applications in polaritonic 2D materials following the recent high profile
experimental realisation of polaritons in hyperbolic metamaterials [336].



Conclusion

In this thesis, I have studied wave propagation in continuum and discrete media, to-
gether with its implications when coupled to quantum emitters in studies of the dis-
persion potential and the Dicke model of cavity QED. I have systematically studied
the travelling waves of coupled optical nanofibers, and complemented the studies with
an investigation of the two-body ground-state dispersion potential between two atoms
situated next to a nanoscale cylinder. In the setting of cavity QED, I have provided
key analysis of out-of-equilibrium dynamics in the Dicke model in order to support the
concept of quenches in critical quantum systems for metrological protocols. Finally, I
have analysed wave propagation and emission in discrete hyperbolic media, with the
unconventional inclusion of artifical gauge fields on the lattice. My work has resulted
in 5 peer-reviewed publications. Brief summaries of the chapters and works contained
within are given below.

4.7 Optical Nanofibers For Light-Matter interfaces

I have investigated the travelling waves of a system consisting of two parallel nanofibers,
using the approximate coupled mode theory and an exact eigenmode expansion. The
former provides a realistic characterisation of power coupling between two fibers for
existing experimental parameters, moving beyond approximations typically employed
in the literature. The latter explores and highlights when the approximate mode theory
can break down, and in particular sheds light on the strongly hybridized electric field
profiles of two coupled fibers; the insights have lead to further extensions with the
inclusion of quantum emitters, leading to theoretical observation of high coupling into
guided modes, and improved atomic traps, in the two-fiber system. I have, in addition,
investigated the ground-state dispersion potential between two cold atoms situated next
to an optical nanofiber, and found that the fiber-induced anisotropy in conjunction with
a preference for the atomic dipole may enhance or diminish the interaction potential
by orders of magnitude with respect to free space. Whilst the results of the publication
were obtained in the context of a nanoscale cylinder where the effect is too weak to be
measured, they may be experimentally measurable in transmission lines. The works
have been published in New Journal of Physics 22.12 (2020): 123007; New Journal of
Physics 23.4 (2021): 043006; Applied Physics B 125.11 (2019): 1-7.
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4.8 Quenches Across a Phase Transition in Quantum
Metrology

I have analytically derived the full out-of-equilibrium dynamics of the linear bosonic
Hamiltonian effectively approximating the Dicke model, and used the results to cal-
culate the classical Fisher information corresponding to a quadrature measurement
following a quench of the Dicke model into the superradiant regime. My results have
shown that a quadrature measurement may be optimal in the superradiant phase of
the Dicke model, and they have been applied to show that an exponentially growing
and optimal Fisher information can be obtained following a quench through a critical
point. This offers a possible alternative to standard critical quantum metrology for
high-precision sensing. The results are published in Quantum 6 (2022): 700.

4.9 Wave Propagation and Emission in Discrete Baths
Exhibiting Hyperbolic Dispersion

In this finally study I have investigated the Green’s function of a discrete lattice ex-
hibiting hyperbolic-like dispersion, and explored the consequences when emitters are
coupled to the bath in the Born-Markov approximation. I have investigated the Green’s
function beyond the usually studied light-cone in the anisotropic square lattice. Here
I found exponentially decaying and dominantly dissipative interactions that can be
used for engineering unconventional spin models with a high tunability through the
relative orientation of the emitters. I further considered the inclusion of an artifical
gauge field on the lattice, which to the best of my knowledge is currently unexplored in
the literature when considered in conjunction with a hyperbolic-like dispersion. Here
I have found topologically protected quasi-1D emission into higher-dimensional baths,
which resulted in the formation of quasi-1D dark states formed between two or more
emitters coupled to the lattice. My results offer new methods for transporting and
storing photons in linear media and open up the class of effective spin models available
to quantum emitters coupled through structured media. This work has been published
in Physical Review Research 4.2 (2022): 023044.
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