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1 Introduction

1.1 Setup and motivation

Higher-spin (HS) gravity [1–3] is the conjectured interacting theory of an infinite tower
of massless gauge fields of all spins. It can be thought of as a “smaller cousin” of string
theory. In its simplest version, the theory lacks a realistic GR limit. However, it has the
virtues of being native to 4 spacetime dimensions, and consistent with both signs of the
cosmological constant. We consider here the “smallest” version of HS gravity in 4d: the
so-called minimal type-A theory, which has a single, parity-even field of every even spin.
This theory admits a particularly simple holographic dual [4–6] via AdS/CFT: a free O(N)
vector model on the 3d boundary of AdS4, whose primary single-trace operators form a
tower of conserved HS currents. A major reason to be interested in this particular duality
is that it also admits a positive cosmological constant [7], providing a concrete model of
dS4/CFT3. In the present paper, we stick for simplicity to AdS4, in Euclidean signature.

The biggest outstanding question in HS theory concerns its locality properties. In
general, since the theory involves infinitely many massless fields interacting at all orders in
derivatives, it was always expected to be non-local in some way. Moreover, at the classical
level, the only length scale in the theory is the cosmological curvature radius. Thus, the
theory was expected to be non-local at the cosmological scale. Though exotic, this still
implies a positive expectation of some degree of locality: in particular, at distances much
larger than the AdS radius, one expects the couplings to vanish sufficiently fast.

This expectation was put to the test, by a research program to explicitly reproduce
the theory’s vertices from its holographic boundary correlators. For 3-point correlators,
bulk locality is satisfied automatically: all gauge-invariant cubic vertices for given spins
(s1, s2, s3) can be reduced to a finite set of structures with finitely many derivatives [8].
Nevertheless, it seems significant that the particular cubic vertex [9] found for the minimal
type-A theory takes a remarkably simple form. However, at the 4-point level, disaster
strikes: the spin-0 quartic bulk vertex, derived in [10], turns out [11] to be as non-local as
an exchange diagram. This result was foreshadowed some years before, in the flat-spacetime
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context [12, 13]. In particular, the authors of [12] conjectured that some additional degrees
of freedom should be added to make the theory local. A more subtle resolution is being
advocated in e.g. [14, 15]: to keep the same degrees of freedom, but to extend the ordinary
notion of locality to so-called “spin-locality”.

Our own approach to the locality problem is to try and mimic string theory: inter-
actions that appear non-local in terms of field theory may become local when viewed in
terms of more appropriate structures, such as the string worldsheet. While HS gravity (in
its simplest version) doesn’t give rise to strings, it does contain an analogous object — the
Didenko-Vasiliev “BPS black hole” solution [16, 17]. The analogy between this solution
and the string is twofold. First, one can view the fundamental string (and all the other
branes of string theory) as BPS solutions of supergravity [18, 19], with the Didenko-Vasiliev
(henceforth, DV) solution playing the analogous role in HS gravity. Second, in AdS/CFT,
one can view the string as the bulk dual of boundary Wilson lines or loops [20, 21], which
contain as a Taylor expansion the whole tower of local single-trace boundary operators
(whose bulk duals are the string’s modes). Similarly, in HS holography, the DV solution is
the bulk dual [22, 23] of the boundary bilocal operator [24–26], which contains as a Taylor
expansion the tower of local boundary HS currents (whose bulk duals are the individual
HS gauge fields). Due to these analogies, we believe that the key to understanding HS
theory lies in the bulk dynamics of not just HS fields, but also DV solutions.

Our focus is on the linearized DV solution [16], which consists simply of linearized HS
fields, sourced by a particle-like singularity located on a geodesic “worldline” in the AdS4
bulk. This particle-like source is charged under the gauge fields of all spins, following a
BPS-like proportionality pattern. In [22, 23], we explored the bulk interaction between two
such solutions, showing that it reproduces the CFT correlator of two boundary bilocals.
In that case, the “interaction” was simply that of charged particles exchanging (an HS
multiplet of) gauge fields, with no self-coupling among the gauge fields themselves. In the
present paper, we extend the analysis to three DV solutions, and ask what kind of bulk
interactions can reproduce the corresponding cubic CFT correlator. Here, the cubic self-
interaction of the HS gauge fields becomes important. In fact, in an appropriate limit, the
DV solutions reduce to usual boundary-bulk propagators [23], and the boundary correlator
is then captured fully by the on-shell cubic vertex found by Sleight and Taronna [9]. Our
goal in this paper will be to step away from this limit, and study the locality and gauge-
invariance properties of the resulting bulk interactions.

Our eventual goal is to reformulate the entirety of HS theory in terms of cubic interac-
tions between DV solutions [27], entirely bypassing the need for quartic or higher vertices.
It is this larger project that lends importance to the locality of such cubic interactions.

The formalism we’ll employ is the same as in [9], combining Fronsdal’s “metric-like”
approach to linearized HS fields [28, 29] with the radial-reduction approach to bulk AdS
fields [30], where we choose the scaling weights to match those of the relevant boundary-
bulk propagators (as opposed to the more common choice [8], which simplifies the gauge-
invariance analysis for general vertices).
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(a)

(b)

(c)

Figure 1. Bulk diagrams for the connected correlator 〈O(`1, `
′
1)O(`2, `

′
2)O(`3, `

′
3)〉 of three bound-

ary bilocals, in terms of bulk DV solutions and their “worldlines”: (a) the Sleight-Taronna cubic
vertex; (b) double exchanges of HS fields between the worldlines; (c) a new vertex, coupling two
HS fields to a worldline.

1.2 Summary of locality results

We will argue that the cubic correlator of boundary bilocals is reproduced by a set of local
Witten diagrams that couple the corresponding DV solutions and their geodesic “world-
lines”. These diagrams can be divided into three groups:

(a) The Sleight-Taronna vertex [9] coupling the three DV solutions.

(b) Exchange of two HS gauge fields between the three geodesic “worldlines”. This is
just a product of two pairwise interactions between the DV solutions, of the type
considered in [22, 23]. In particular, it doesn’t involve self-interaction of HS fields.

(c) A new vertex, coupling the fields of two DV solutions to the “worldline” of the third.

These different terms (a)-(c) comprising the correlator are depicted in figure 1. Let us now
comment on the extent to which each term is known, and the sense in which it is local.

Term (a) — the on-shell cubic coupling of HS fields — is known explicitly [9], and is
local in the traditional sense, i.e. it involves a finite number of derivatives for each set of
spins (s1, s2, s3). Note, however, that the DV solutions contain all spins. Therefore, the
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sum over spins will introduce an infinite tower of derivatives, and with it some degree of
non-locality. Fortunately, as we’ll argue in section 4.6, this non-locality is in fact at the
scale of ∼ 1 AdS radius, matching the original expectation for HS theory.

Term (b) consists of simple diagrams whose only “vertices” are the local minimal
couplings [22] between an HS-charged particle and an HS gauge field. As such, it is fully
known, and manifestly local if we agree to view the DV solutions’ worldlines as HS-charged
particles. If one tried instead to express these diagrams as a cubic vertex between HS fields,
that vertex would of course be non-local.

Now we turn to term (c) — a new vertex, which will be discussed at length in sec-
tion 4. One may alternatively view it as an “off-shell” correction to the Sleight-Taronna
vertex (i.e. a correction proportional to the free equations of motion), due to the DV fields
not being source-free, and thus possessing Fronsdal curvature, concentrated on the corre-
sponding “worldlines”. Even for fixed spins, this new vertex may include an infinite tower
of derivatives. The question then is whether the resulting non-locality is restricted to ∼ 1
AdS radius. We will argue that this question can be reframed as a set of proxy crite-
ria, involving not the vertex formula itself, but rather its contribution to the correlator
in certain limits. We will then show that our criteria are indeed satisfied, once the other
contributions (a)-(b) to the correlator are taken into account. We won’t evaluate the new
vertex explicitly, aside from a numerical study in one simple case (section 5).

An alternative concise way of introducing the three terms (a)-(c) is as follows:

(a) We draw the most obvious cubic coupling between the three DV solutions, via the
Sleight-Taronna vertex. We find that this doesn’t reproduce the boundary cubic
correlator of bilocals.

(b) We add the double-exchange diagrams, still constructed purely from known elements.
We find that the boundary correlator is still not reproduced.

(c) We parameterize the difference between the boundary correlator and terms (a)-(b)
in terms of a new vertex (or, alternatively, an off-shell correction to the Sleight-
Taronna vertex). Our main result is then that this new vertex has appropriate
locality properties.

Finally, note that our terms (a)-(c) don’t include any gauge corrections to the Sleight-
Taronna vertex, i.e. corrections due to the DV solutions not being in transverse-traceless
gauge. The vanishing of such corrections is one of our results, derived in section 3 and
summarized below.

1.3 Plan of the paper

The rest of the paper is structured as follows. In section 2, we review the formalism of [9]
for HS fields in Euclidean AdS4, along with other relevant ingredients: the free vector
model on the boundary, asymptotics of bulk fields, boundary-bulk propagators, the DV
solution and the Sleight-Taronna vertex.
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Section 3 contains our gauge-invariance results for the Sleight-Taronna vertex. We
show that, if one merely symmetrizes the original vertex formula from [9] over permuta-
tions of its 3 legs, then the vertex’s gauge invariance is extended from source-free fields
in transverse-traceless gauge (as originally intended in [9]) to source-free fields in general
traceless gauge. In section 3.3, we prove that this extended gauge-invariance holds up to
boundary terms. Then, in section 3.4, we show that the boundary terms also vanish under
appropriate assumptions on the fields’ asymptotics, which in particular are satisfied by the
DV solution away from its singular worldline.

In section 4, we present our main argument vis. the locality structure of the general
cubic correlator and the new vertex. In section 5, we illustrate the locality argument by
a numerical analysis in a simple case: a single DV solution coupled to a pair of spin-0
boundary-bulk propagators. In section 6, we outline an alternative technique for calculat-
ing the relevant bulk diagram, using a new non-traceless gauge [23] for the DV solution.
Section 7 is devoted to discussion and outlook.

We note that section 3’s gauge-invariance result for the Sleight-Taronna vertex is not
essential for the abstract locality argument in section 4. However, the existence of this
nice result reinforces our sense that the paper’s main idea — of combining the DV solution
with the Sleight-Taronna vertex — is on the right track.

2 Preliminaries

2.1 Bulk geometry

To write the Sleight-Taronna vertex in a simple form, one must use an embedding-space
formalism, and in particular the radial reduction approach of [30]. Thus, we describe
Euclidean AdS4 as the hyperboloid of unit timelike radius within 5d flat spacetime R1,4:

EAdS4 =
{
xµ ∈ R1,4 |xµxµ = −1, x0 > 0

}
. (2.1)

Here, indices (µ, ν, . . . ) are 5-dimensional, and are raised and lowered with the Minkowski
metric ηµν = diag(−1, 1, 1, 1, 1). 4d vectors at a point xµ ∈ EAdS4 are simply 5d vectors
vµ that satisfy v · x ≡ vµx

µ = 0. Covariant derivatives in EAdS4 are simply flat R1,4

derivatives, followed by a projection of all indices back into the EAdS4 tangent space:

∇µvν = P ρµ(x)P σν (x)∂vσ
∂xρ

; (2.2)

P νµ (x) ≡ δνµ −
xµx

ν

x · x
. (2.3)

With lowered indices, the projector P νµ (x) becomes the 4d metric of EAdS4 at x:

gµν(x) ≡ Pµν(x) = ηµν −
xµxν
x · x

. (2.4)

Our use of different letters for P νµ and gµν is purely cosmetic.
Since HS fields carry many symmetrized tensor indices, it is convenient to package

them as functions of an auxiliary “polarization vector” uµ ∈ R1,4. Thus, we encode a
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rank-p symmetric tensor by a function of the form:

f(x, u) = 1
p! u

µ1 . . . uµpfµ1...µp(x) . (2.5)

We denote flat R1,4 derivatives w.r.t. xµ and uµ as ∂µx and ∂µu , respectively. The tensor rank
of fµ1...µp , and the fact that it’s tangential to the EAdS4 hyperboloid, can be expressed as
constraints on f(x, u):

(u · ∂u)f = pf ; (x · ∂u)f = 0 . (2.6)

Tracing a pair of indices on fµ1...µp is encoded by acting on f(x, u) with the operator ∂u ·∂u.
A factor of the metric EAdS4 metric (2.4) can be encoded as:

gµνu
µuν = u · u− (u · x)2

x · x
. (2.7)

It is convenient to introduce a notation for the traceless part of a symmetric EAdS4 tensor
t̂µ1 . . . t̂µs at a point x. This traceless part can be encoded by the function:

T (p)(x, t̂, u) ≡ 1
p!u

µ1 . . . uµpTµ1...µp(x, t̂) = (t̂ · u)p
p! − traces

= 1
p!

bp/2c∑
n=0

(
p− n
n

)(
−1

4(t̂ · t̂)(gµν(x)uµuν)
)n

(t̂ · u)p−2n

= 1
2pp!

bp/2c∑
n=0

(
p+ 1

2n+ 1

)(
−(t̂ · t̂)(qµν(x, t̂)uµuν)

)n(t̂ · u)p−2n ,

(2.8)

where, in the third line, we introduced the 3d metric qµν = gµν − t̂µ t̂ν
t̂·t̂ of the subspace

orthogonal to both xµ and t̂µ.
So far, everything was defined on the EAdS4 hyperboloid x · x = −1. The idea of the

radial reduction approach [30] is to define our functions f(x, u) also away from x · x = −1,
by introducing a scaling law of the form (x · ∂x)f = −∆f with some weight ∆, usually
chosen to match the conformal weight of relevant boundary data. This gives meaning to
the 5d flat derivative ∂µx in all directions, which can lead to substantial simplifications, in
particular for the Sleight-Taronna vertex. Within this formalism, the EAdS4 symmetrized
gradient, divergence and Laplacian take the form:

u · ∇ = u · ∂x + u · x
x · x

(u · ∂u − x · ∂x) ; (2.9)

∂u · ∇ = ∂u · ∂x + u · x
x · x

(∂u · ∂u) ; (2.10)

∇ · ∇ = ∂x · ∂x + 2 u · x
x · x

(∂u · ∂x) +
(
u · x
x · x

)2
(∂u · ∂u)

− 1
x · x

(
(x · ∂x)2 + 3(x · ∂x)− u · ∂u

)
.

(2.11)

In these expressions, we see two kinds of correction terms:

• The ∼ u · x terms serve to project the 5d derivatives back into EAdS4.
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• The terms on the bottom line of (2.11) are just a constant multiple ∆(∆ − 3) − p
of the EAdS4 curvature - 1

x·x (which we set equal to 1 in (2.1)). The 4d Laplacian
∇ · ∇ is then the EAdS4 projection of the 5d d’Alembertian ∂x · ∂x, shifted by this
constant.

2.2 Fronsdal fields in the bulk

Let us review the form of Fronsdal’s field equations for linearized HS fields [29] in the above
framework. In Fronsdal’s formalism, a spin-s field (more precisely, gauge potential) is a
totally symmetric rank-s tensor with vanishing double trace. This can be encoded by a
scalar function h(s)(x, u), as in (2.5). For its scaling weight, we choose ∆ = 1 + s — the
conformal weight of the dual boundary currents. This is the choice of [9], which brings the
Sleight-Taronna vertex into a simple form. Note that this weight is different from that in
the general literature on HS cubic vertices [8], where the dual weight choice ∆ = 2 − s is
used. Overall, the constraints on the field h(s)(x, u) read:

(u · ∂u)h(s) = sh(s) ; (x · ∂u)h(s) = 0 ; (2.12)
(x · ∂x)h(s) = −(s+ 1)h(s) ; (∂u · ∂u)2h(s) = 0 . (2.13)

Gauge transformations take the form:

h(s) → h(s) + (u · ∇x) Λ(s) = h(s) +
(
u · ∂x + (2s− 1)u · x

x · x

)
Λ(s) , (2.14)

where Λ(s) represents a traceless gauge parameter with s − 1 tensor indices and weight
∆ = s, i.e.:

(u · ∂u)Λ(s) = (s− 1)Λ(s) ; (x · ∂u)Λ(s) = 0 ; (2.15)
(x · ∂x)Λ(s) = −sΛ(s) ; (∂u · ∂u)Λ(s) = 0 . (2.16)

Out of the field h(s), we can construct a gauge-invariant curvature, which generalizes the
s = 2 linearized Ricci tensor to all spins. This is the Fronsdal tensor Fh(s), where the
operator F is given by:

F = −∇ · ∇+ 2 + 2s− s2

x · x
+ (u · ∇)(∂u · ∇)−

(1
2(u · ∇)2 + gµνu

µuν

x · x

)
(∂u · ∂u)

= − ∂x · ∂x +
(
u · ∂x + (2s− 1)u · x

x · x

)
(∂u · ∂x)

−
(
u · u
x · x

+ 1
2

(
u · ∂x + (2s+ 1)u · x

x · x

)(
u · ∂x + (2s− 3)u · x

x · x

))
(∂u · ∂u) .

(2.17)

F is a second-order differential operator with respect to x. The Fronsdal tensor Fh(s) has
the same tensor properties as the potential h(s), but with scaling weight increased by 2:

(u · ∂u)Fh(s) = sFh(s) ; (x · ∂u)Fh(s) = 0 ; (2.18)
(x · ∂x)Fh(s) = −(s+ 3)Fh(s) ; (∂u · ∂u)2Fh(s) = 0 . (2.19)
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In analogy with GR, we can rearrange the trace of Fh(s) to obtain the Einstein tensor:

Gh(s) =
(

1− 1
4(gµνuµuν)(∂u · ∂u)

)
Fh(s) . (2.20)

This has the same tensor properties (2.18)–(2.19), but also satisfies a conservation law of
the form:

(∂u · ∇)Gh(s) = (gµνuµuν)(. . . ) , (2.21)

i.e. the EAdS4 divergence of Gh(s) vanishes up to trace terms. This allows us to write a
gauge-invariant quadratic action for linearized HS fields:

Ss =
∫
EAdS4

d4x s!h(s)(x, ∂u)
(1

2Gh
(s)(x, u)− J (s)(x, u)

)
. (2.22)

Here, J (s)(x, u) is an external HS current, which must be conserved in the same sense (2.21)
as Gh(s). The field equations for the action (2.22) read simply:

Gh(s)(x, u) = J (s)(x, u) . (2.23)

This formalism for HS theory is substantially simplified in a traceless gauge (which can
also be viewed as a framework in its own right [31, 32]). In this gauge, the double-traceless
condition (∂u ·∂u)2h(s) = 0 is strengthened into ordinary tracelessness (∂u ·∂u)h(s) = 0. The
remaining gauge freedom is parameterized by (2.14)–(2.16), with the further constraint:

(∂u · ∇)Λ(s) = 0 . (2.24)

Since Λ(s) is traceless, we see from (2.10) that its 4d divergence (∂u · ∇)Λ(s) is equal to the
5d one (∂u · ∂x)Λ(s). Thus, the constraint (2.24) can also be written as:

(∂u · ∂x)Λ(s) = 0 . (2.25)

In this gauge, the Fronsdal operator (2.17) simplifies into:

F = −∇ · ∇+ 2 + 2s− s2

x · x
+ (u · ∇)(∂u · ∇)

= −∂x · ∂x +
(
u · ∂x + (2s− 1)u · x

x · x

)
(∂u · ∂x) .

(2.26)

Note also that the trace of the Fronsdal tensor now reads simply:

(∂u · ∂u)Fh(s) = 2(∂u · ∇)2h(s) = 2(∂u · ∂x)2h(s) . (2.27)

With the exception of section 6, we will work in traceless gauge throughout. For source-free
fields, one can specialize further to transverse-traceless gauge, by imposing also the zero-
divergence condition (∂u ·∇)h(s) = 0, or, equivalently, (∂u ·∂x)h(s) = 0. A gauge parameter
that preserves traceless gauge, i.e. that satisfies (2.24)–(2.25), will shift the divergence of
h(s) as:

(∂u · ∇)h(s) → (∂u · ∇)h(s) +
(
∇ · ∇+ s2 − 1

x · x

)
Λ(s) , (2.28)

or, equivalently:

(∂u · ∂x)h(s) → (∂u · ∂x)h(s) +
(
∂x · ∂x + 2(2s− 1)

x · x

)
Λ(s) . (2.29)
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2.3 Boundary theory

The 3d boundary of EAdS4 is given by the projective lightcone in R1,4, i.e. by null vectors
`µ ∈ R1,4, ` · ` = 0, modulo rescalings `µ ∼= ρ`µ. Boundary quantities will transform
under such rescalings as (` · ∂`)f = −∆f , according to their conformal weights ∆. We
describe 3d vectors at a boundary point `µ as 5d vectors λµ that satisfy λ · ` = 0, modulo
shifts λµ ∼= λµ + α`µ. For a boundary scalar f(`) with weight ∆ = 1

2 , we can define the
conformal Laplacian �`f . In the embedding-space language, this is the same as the 5d
d’Alambertian (∂` · ∂`)f , provided that f is extended away from the ` · ` = 0 lightcone in a
way that preserves the scaling law (` · ∂`)f = −1

2f . The operator �` itself has conformal
weight 2.

The CFT that lives on our 3d boundary is a free O(N) vector model. It is convenient
to assume that N is even, and package the vector model’s N real fields as N

2 complex fields
χI(`) with complex conjugates χ̄I(`), where I = 1, . . . , N2 is a color index. The theory then
takes the form of a U(N/2) vector model, whose action reads simply:

SCFT = −
∫
d3` χ̄I(`)�`χ

I(`) , (2.30)

where χI and χ̄I each have conformal weight ∆ = 1
2 . The propagator for these fundamental

fields reads:

GCFT(`, `′) = 1
4π
√
−2` · `′

; �`GCFT(`, `′) = −δ
5
2 ,

1
2 (`, `′) , (2.31)

where the superscripts on the boundary delta function δ(`, `′) denote its conformal weight
with respect to each argument.

The fundamental single-trace operators in the theory (2.30) are the bilocals:

O(`, `′) ≡ 2χI(`)χ̄I(`′)
G(`, `′) . (2.32)

Here, we made an unconventional normalization choice, which makes O(`, `′) invariant
under rescalings of `, `′. Thus, our O(`, `′) depends only on the actual choice of two
boundary points, which will allow a cleaner interpretation of the bulk dual. The numerical
factor in (2.32) is chosen to ensure the proper relative normalization of the first and second
terms in eq. (4.1) below.

By Taylor-expanding the bilocals (2.32) around ` = `′, we obtain the local single-trace
primaries, i.e. the tower of HS currents [33–35] (including the honorary spin-0 “current”
χ̄I(`)χI(`)). These local currents can be encoded conveniently by contracting their indices
with a null polarization vector λµ at `µ, satisfying λ · λ = λ · ` = 0:

j(s)(`, λ) = λµ1 . . . λµsjµ1...µs(`) . (2.33)
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Figure 2. Boundary Feynman diagram for a quartic correlator of bilocals O(`i, `
′
i). From the point

of view of the operator O(`1, `
′
1) in the shaded region, the other operators couple to it as a single

bilocal, in this case as O(`2, `
′
4).

The currents’ relation to the bilocal (2.32) is then expressed compactly via a differential
operator D(s), as:

j(s)(`, λ) = D(s)(∂`, ∂`′ , λ)
[
χI(`)χ̄I(`′)

]∣∣∣
`=`′

= 1
2 D

(s)(∂`, ∂`′ , λ)
[
G(`, `′)O(`, `′)

]∣∣∣
`=`′

;
(2.34)

D(s)(∂`, ∂`′ , λ) = is
s∑

m=0
(−1)m

(
2s
2m

)
(λ · ∂`)m(λ · ∂`′)s−m . (2.35)

The connected correlators of bilocals (2.32) are given by simple 1-loop Feynman diagrams
composed of propagators (2.31) (see figure 2), with the normalization factor in (2.32) simply
along for the ride:

〈
O(`1, `′1) . . .O(`n, `′n)

〉
= 2n∏n

p=1G(`p, `′p)
× N2

 n∏
p=1

G(`′p, `p+1) + permutations

 , (2.36)

where the product in the numerator is cyclic, i.e. `n+1 ≡ `1, and the sum is over cyclically
inequivalent permutations of (1, . . . , n). From these bilocal correlators, one can derive the
correlators of local currents j(s), via the Taylor expansion (2.34).

Up to the boundary field equation �`χ
I(`) = �`′χI(`′) = 0, the local currents (2.34)

span the full space of single-trace operators. This means in particular that, given two
points `, `′ and a compact boundary region B that includes them, the bilocal O(`, `′) is
equivalent to some superposition of local currents (2.34) inside B:

O(`, `′) ∼=
∞∑
s=0

∫
B
d3LA

(s)
`,`′(L, ∂λ) j(s)(L, λ) , (2.37)

where A(s)
`,`′(L, λ) is some configuration of traceless spin-s sources at the boundary point L:

(λ ·∂λ)A(s) = sA(s) ; (L ·∂L)A(s) = (s−2)A(s) ; (∂λ ·∂λ)A(s) = (L ·∂λ)A(s) = 0 . (2.38)
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The sense in which the equivalence (2.37) holds is that the l.h.s. and r.h.s. have the same
correlators with any number of operators O or j(s) with support in the complement B̄
of B. On the other hand, to check that some configuration of local sources A(s) in B

satisfies (2.37), it is sufficient to check just the quadratic correlators with local currents j(s)

in B̄. This can be seen in two steps. First, in any correlator of one single-trace operator in
B and (n− 1) such operators in B̄, the diagrams (2.36) are always arranged such that the
operator in B effectively couples to a single bilocal in B̄ (see figure 2). Thus, it’s enough to
match the quadratic correlators with bilocals in B̄. But, using now the equivalence (2.37)
for B̄, we see that these can be reconstructed from the quadratic correlators with local
currents.

Again, the theory described above is not quite the O(N) vector model, but the U(N/2)
one. However, we can obtain the O(N) model by simply truncating the single-trace op-
erators (2.32), (2.34) from all those invariant under U(N/2) to those invariant under the
larger group O(N). For the bilocals (2.32), this requires symmetrizing over `↔ `′:

O+(`, `′) = 1
2
(
O(`, `′) +O(`′, `)

)
, (2.39)

whereas for the local currents (2.34), it requires restricting to even spins s. It’s easy
to see that the even-spin currents j(s) can indeed be constructed from the symmetrized
bilocal (2.39). For odd N , the above construction starting from U(N/2) doesn’t directly
apply. However, the end results for the correlators are the same, with N simply an overall
prefactor, as in (2.36).

2.4 Boundary asymptotics of bulk fields

In this subsection, we set up a framework for discussing the asymptotic behavior of fields
in EAdS4. For this purpose, it’s convenient to use Poincare coordinates (z, ya) for EAdS4:

xµ(z, ya) = 1
z

(
1 + z2 + y2

2 ,
1− z2 − y2

2 , ya
)

; dx · dx = dz2 + dy2

z2 , (2.40)

where y2 ≡ δabyayb. The boundary of EAdS4 can be similarly parameterized as:

`µ(ya) =
(

1 + y2

2 ,
1− y2

2 , ya
)

; d` · d` = dy2 . (2.41)

The parameterization (2.41) chooses a flat section of the R1,4 lightcone, defined by ` ·
n = −1

2 , where nµ =
(

1
2 ,−

1
2 ,
~0
)
. The bulk and boundary coordinates (2.40)–(2.41) are

related by:
xµ(z, ya) = 1

z
`µ(ya) + znµ . (2.42)

In the limit z → 0, the bulk point x(z, ya) asymptotes to the boundary point `(ya), in the
precise manner defined by (2.42).

To study the asymptotics of tensor fields, it is convenient to use an orthonormal basis
(e0, ea) along the (z, ya) coordinate axes:

eµ0 (z, ya) = −z ∂x
µ

∂z
; eµa(ya) = z

∂xµ

∂ya
. (2.43)
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In the boundary limit z → 0, the R1,4 components of the “tangential” basis vectors eµa are
z-independent, while those of the “radial” vector eµ0 behave as:

eµ0 (z, ya) = xµ(z, ya) +O(z) = 1
z
`µ(ya) +O(z) . (2.44)

We can now discuss the asymptotics of symmetric bulk tensor fields (2.5) by describing
the z → 0 scaling of their different components in the orthonormal (e0, ea) basis. For a
rank-p field f(x, u), we’ll use the compact notation [f ]q,p−q to refer to its components with
q indices along e0 and p− q indices along ea.

2.5 Boundary-bulk propagator

The boundary-bulk propagators dual to the boundary HS currents (2.34) read [36]:

Π(s)(x, u; `, λ) = − (
√

2)s(m · u)s
16π2(` · x)2s+1 ; mµ(x; `, λ) ≡ (λ · x)`µ − (` · x)λµ , (2.45)

where we chose a non-standard normalization for later convenience. With respect to its
bulk arguments (x, u), the propagator Π(s) satisfies the standard constraints (2.12)–(2.13)
for a Fronsdal field, as well as the traceless and transverse gauge conditions (∂u · ∂u)Π(s) =
(∂u·∇)Π(s) = 0. With respect to its boundary arguments (`, λ), Π(s) has the same conformal
weight (` · ∂`)Π(s) = −(s + 1)Π(s) and tensor rank (λ · ∂λ)Π(s) = sΠ(s) as the boundary
currents (2.34), and is invariant under the shift symmetry λµ → λµ + α`µ.

The propagator (2.45) is a special case (p, w) = (s, s+ 1) of the general formula:

f(x, u; `, λ) ∼ (m · u)p
(` · x)p+w , (2.46)

which spans the solution space of the free field equations for rank-p symmetric, transverse-
traceless fields with arbitrary mass parameterized by w:

(∂u · ∂u)f = (∂u · ∇)f =
(
∇ · ∇ − w(3− w) + p

x · x

)
f = 0 . (2.47)

Let’s now apply the formalism of section 2.4 to discuss the asymptotic behavior of the
general propagator (2.46). Let us choose Poincare coordinates (2.40)–(2.41) such that the
boundary source point `µ in (2.46) is at ya = 0, i.e. `µ =

(
1
2 ,

1
2 ,
~0
)
. We can also choose

the polarization vector λµ as λµ = (0, 0, λa), which becomes λµ = λaeµa in terms of the
orthonormal basis at ya = 0. The ingredients of the tensor field (2.46) at an arbitrary bulk
point xµ(z, ya) now read:

` · x = −z
2 + y2

2z ; mµ = (λ · y)eµ0 + 1
z

(
z2 + y2

2 λa − (λ · y)ya
)
eµa , (2.48)

where λ · y ≡ δabλ
ayb. Assuming ya 6= 0, we see that in the small-z limit ` · x scales as

z−1, while mµ has ∼ z−1 components along eµa and a ∼ z0 component along eµ0 . Thus, at
ya 6= 0, the various components of f scale at small z as:

ya 6= 0 : [f ]q,p−q ∼ zw+q . (2.49)
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Now, note that under w → 3 − w, the field equations (2.47) do not change. Therefore,
the same field equations must also support the asymptotics [f ]q,p−q ∼ z3−w+q. In a neigh-
borhood of the boundary, the two asymptotics ∼ zw+q and ∼ z3−w+q constitute a pair of
independent boundary data (more precisely, within each set, it is the q = 0 data that’s
independent, with the q > 0 data determined from it). For a regular solution in all of
EAdS4, these two boundary data cease to be independent, i.e. one becomes linearly deter-
mined by the other. In particular, a closer inspection of the solution (2.46) reveals that it
also contains the “other” asymptotics ∼ z3−w+q, as a delta-function-like distribution with
support at ya = 0. Rotational invariance and the dilatation symmetry (z, ya)→ (ρz, ρya)
fix this delta-function-like piece to take the form:

ya = 0 : [f ]q,p−q ∼ z3−w+q(e0 · u)q(λ · u)p−q(λ · ∂y)q δ3(y) , (2.50)

where λ · ∂y ≡ λa ∂
∂ya . Specializing back to (p, w) = (s, s + 1), we obtain, for our original

propagator (2.45):

ya 6= 0 : [Π(s)]q,s−q ∼ zs+1+q ; (2.51)
ya = 0 : [Π(s)]q,s−q ∼ z2−s+q(e0 · u)q(λ · u)s−q(λ · ∂y)q δ3(y) . (2.52)

2.6 Bulk geodesics

The Didenko-Vasiliev solution is the field of an HS-charged source concentrated on a bulk
geodesic. Before describing the solution and its properties, it is useful to discuss bulk
geodesics in their own right.

A geodesic in EAdS4 is a hyperbola in the R1,4 embedding space. The hyperbola’s
asymptotes are two lightrays through the origin in R1,4, or, equivalently, two points on
the conformal boundary of EAdS4. In fact, (oriented) bulk geodesics are in one-to-one
correspondence with (ordered) pairs of boundary points. We can parameterize a geodesic’s
boundary endpoints by two lightlike vectors `µ, `′µ, keeping in mind the usual redundancy
of such vectors under rescalings. The geodesic itself can then be parameterized as:

γ(`, `′) : xµ(τ ; `, `′) = eτ `µ + e−τ `′µ√
−2` · `′

, (2.53)

where τ is a proper-length parameter. If we allow rescalings of xµ away from the EAdS4
hyperboloid x · x = −1, then the geodesic (2.53) becomes just a 2d plane in the R1,4

embedding space — the plane spanned by `µ, `′µ.
The distance of a bulk point x ∈ EAdS4 from a geodesic γ(`, `′) can be parameterized

by the function:

R(x; `, `′) =
√

2(` · x)(`′ · x)
(` · `′)(x · x) − 1 . (2.54)

This has weight 0 (i.e. is invariant) under rescalings of `µ, `′µ, as well as rescalings of xµ.
For xµ on the x · x = −1 hyperboloid, R(x; `, `′) is just the flat R1,4 distance between xµ
and the (`, `′) plane. This is related to the geodesic EAdS4 distance χ as R = sinhχ.
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We can define a delta function that localizes x ∈ EAdS4 on the geodesic γ(`, `′), i.e.
at R = 0, as:

δ3(x; `, `′) =
∫ ∞
−∞

dτ δ4(x, x(τ ; `, `′)) , (2.55)

where δ4 is the delta function on EAdS4, and x(τ ; `, `′) is the proper-length parameteri-
zation (2.53) of the geodesic. The formula (2.55) assumes that xµ lies on the x · x = −1
hyperboloid. If we allow rescalings of xµ away from x · x = −1, an even simpler definition
becomes possible: we can define δ3(x; `, `′) as just the standard flat 3d delta function in
R1,4 with support on the (`, `′) plane. With this definition, δ3(x; `, `′) has weight ∆ = 3
with respect to xµ (and weight 0 with respect to `µ, `′µ).

Given a geodesic γ(`, `′) and a bulk point xµ that doesn’t necessarily lie on it, one can
define at x the following pair of EAdS4 vectors:

tµ(x; `, `′) = 1
2

(
`′µ
`′ · x

− `µ
` · x

)
; (2.56)

rµ(x; `, `′) = − xµ
x · x

+ 1
2

(
`µ
` · x

+
`′µ
`′ · x

)
, (2.57)

Here, rµ(x; `, `′) points radially away from the γ(`, `′) geodesic, while tµ(x; `, `′) points
“parallel to” γ(`, `′), in the sense of parallel transport along rµ. These vectors satisfy:

t · x = r · x = t · r = 0 ; t · t = − 1
x · x

· 1
1 +R2 ; r · r = − 1

x · x
· R2

1 +R2 . (2.58)

We can then construct a complex null vector in the (t, r) plane:

kµ(x; `, `′) = 1
2

(
tµ + irµ

R

)
; k · k = 0 ; (k · ∇)kµ = 0 . (2.59)

In Lorentzian signature, kµ would be a real, affine tangent to radial lightrays emanating
from γ(`, `′). The distance function R and the null vector kµ will be the main ingredients
of the Didenko-Vasiliev solution below.

2.7 Linearized DV solution

The Didenko-Vasiliev solution [17] is a solution of the non-linear Vasiliev equations, struc-
turally similar to supergravity’s BPS black holes. We will be interested here in the solution’s
linearized version [16], which consists of a multiplet of Fronsdal fields (one for each spin),
satisfying the Fronsdal field equation (2.23) with a particle-like source concentrated on a
bulk geodesic γ(`, `′).

In terms of the building blocks from section 2.6 above, the DV solution is described
by the following multiplet of Fronsdal fields:

φ(s)(x, u; `, `′) = 1
πR
√
−x · x

×

 1 s = 0
2
s! (i
√

2)s(u · k)s s ≥ 1
. (2.60)

Here, the spin-dependent normalization factors come from the master-field expression
in [17], which was translated into canonically normalized Fronsdal fields in [22], by matching
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the normalizations of 2-point functions
〈
j(s)j(s)

〉
in both languages. In its bulk arguments

(x, u), φ(s) satisfies the standard constraints (2.12)–(2.13) for a Fronsdal field, as well as the
traceless gauge condition (∂u ·∂u)φ(s) = 0. In the minimal HS theory, we include only even
spins in (2.60). While the potentials (2.60) are complex, their gauge-invariant curvatures
are always real, i.e. the imaginary part of (2.60) is pure gauge. For odd spins, these reality
properties are reversed.

The Einstein curvature of the DV solution (2.60), i.e. the bulk source in its Fronsdal
equation (2.23), is given by a delta function at R = 0, as:

Gφ(s)(x; `, `′) = 4
s! (i
√

2)s δ3(x; `, `′)
[
(u · t)s − double traces

]
. (2.61)

Here, δ3(x; `, `′) is the geodesic delta function (2.55), with support on R = 0; tµ is the
vector (2.56), which at R = 0 becomes just the tangent to γ(`, `′), normalized as t·t = − 1

x·x ;
and “ − double traces” means that we subtract ∼ (gµνuµuν)2 pieces so as to satisfy the
double-tracelessness condition (∂u · ∂u)2Gφ(s) = 0. Eq. (2.61) shows explicitly the HS
charges carried by the geodesic. In particular, the factor of (i

√
2)s encodes the BPS-

like proportionality between the HS charges of different spins. In terms of the traceless
structure (2.8), the Einstein curvature (2.61) and the corresponding Fronsdal curvature
can be written as:

Gφ(s) = 4(i
√

2)s δ3(x; `, `′)
(
T (s)(x, t, u)− θ(s− 2)(gµνuµuν)

4s(x · x) T (s−2)(x, t, u)
)

; (2.62)

Fφ(s) = 4(i
√

2)s δ3(x; `, `′)
(
T (s)(x, t, u) + θ(s− 2)(gµνuµuν)

4s(s− 1)(x · x) T
(s−2)(x, t, u)

)
, (2.63)

where θ is the step function:

θ(p) =
{

1 p ≥ 0
0 p < 0 , (2.64)

and we assume the convention that θ(p) for negative p vanishes “stronger than anything
else”, so that e.g. θ(s−2)

s(s−1) is zero for s = 0.
It was recently understood [22, 23] that the DV solution (2.60) is the bulk dual of the

bilocal boundary operator O(`, `′) from (2.32), in the same way that the boundary-bulk
propagators (2.45) are the bulk duals of the local boundary currents (2.34). The main
aspect of this correspondence is an agreement between the on-shell bulk action (2.22) for
a pair of interacting DV solutions, and the CFT correlator of the corresponding bound-
ary bilocals. The relevant Feynman/Witten diagrams are shown in figure 3. The bulk
action (2.22) in this case (for each spin channel) can be expressed as an integral Ss[φ(s)

1 , γ2]
of the first DV solution’s field φ(s)(x, u; `1, `′1) ≡ φ1 over the second DV solution’s worldline
γ(`2, `′2) ≡ γ2. The explicit formula for this action, with a general field h(s)

1 (x, u) in place
of φ(s)

1 , reads:

Ss[h(s)
1 , γ2] = −4(i

√
2)ss!

∫ ∞
−∞

dτ h
(s)
1
(
x(τ ; `2, `′2), ẋ(τ ; `2, `′2)

)
. (2.65)
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Figure 3. Bulk and boundary diagrams for the correlator of two boundary bilocals. On the left,
each bilocal is represented in the bulk by a Didenko-Vasiliev solution. The solid lines represent each
solution’s central geodesic “worldline”, where its Fronsdal curvature is concentrated. The wavy line
represents the multiplet of HS gauge fields exchanged between the two worldlines. On the right,
each bilocal is represented by a dashed line, while the solid lines represent propagators (2.31) of
the fundamental boundary fields χI , χ̄I . Upon restricting to even spins, one should average the
boundary diagram under `1 ↔ `′1.

Note that, despite the apparent asymmetry, Ss[φ(s)
1 , γ2] is the same as Ss[φ(s)

2 , γ1] (this is
obvious from the Witten diagram in figure 3).

The holographic duality between the bulk action and the boundary correlator now
takes the form:

−N
∞∑
s=0

Ss[φ(s)
1 , γ2] =

〈
O(`1, `′1)O(`2, `′2)

〉
, (2.66)

where the sum is over all spins, and the correlator on the r.h.s. is from the U(N/2) vector
model. The restriction to even spins and the O(N) vector model is immediate:

−N
∑

even s

Ss[φ(s)
1 , γ2] =

〈
O+(`1, `′1)O+(`2, `′2)

〉
. (2.67)

The prefactor N on the l.h.s. can be thought of as an inverse Planck’s constant, converting
a classical bulk action into a proper quantum correlator:

N ≡ 1
~
. (2.68)

Our aim in the present paper is to study the extension of eq. (2.67) from the quadratic to
the cubic level.

Another aspect of the DV-solution/boundary-bilocal correspondence is that in the
bilocal→local limit (2.34), the DV solution simply reduces to the boundary-bulk propaga-
tors [23]:

1
2 D

(s̃)[G(`, `′)φ(s)]∣∣∣
`,`′

= δs,s̃ Π(s)(x, u; `, λ) , (2.69)

where, on the l.h.s. , we act on G(`, `′)φ(s)(x, u; `, `′) with the differential operator
D(s̃)(∂`, ∂`′ , λ) from (2.35), and then set ` = `′. On the r.h.s. , δs,s̃ is a Kronecker symbol
imposing s = s̃, and Π(s) is the boundary-bulk propagator (2.45). One application of the
limit (2.69) is to impose it on the DV solution φ

(s)
1 in (2.66), making a boundary-bulk
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propagator Π(s)(x, u; `1, λ1) ≡ Π(s)
1 (with a single spin s picked out of the HS multiplet).

This produces a bulk calculation for the CFT correlator of a bilocal with a local current, as:

−NSs[Π(s)
1 , γ2] =

〈
j(s)(`1, λ1)O(`2, `′2)

〉
, (2.70)

where, for even s, we can replace O → O+. An alternative bulk calculation of the same
correlator is to evaluate the asymptotic electric field strength (or, in the s = 0 case, the
boundary data with weight ∆ = 1) of the DV field φ(s)(x, u; `2, `′2) at `1. This calculation
was carried out in [37].

2.8 Relation to geodesic Witten diagrams

The holographic relation (2.66) for the quadratic correlator of bilocals, as depicted in
figure 3, is closely related to the literature on geodesic Witten diagrams [38, 39]. There,
the contribution of a particular OPE block to a quartic correlator is computed by a Witten
diagram much like figure 3, with two geodesics exchanging a bulk field that corresponds to
the conformal block in question. Our eq. (2.66) can be seen as a special case of this general
relation.

To see this in detail, let us (for the sake of this discussion) lift the restriction of the
boundary vector model (2.30) to color-singlet operators. The fundamental colored fields
χI then become primaries in their own right, and we can consider the quartic correla-
tor

〈
χI(`1)χ̄I(`′1)χJ(`2)χ̄J(`′2)

〉
. Expanding this in an OPE in the (11′|22′) channel, we

find that two kinds of primaries contribute: the identity, and the tower of single-trace HS
currents (2.34). In this decomposition, the single-trace blocks precisely describe the con-
nected correlator 〈O(`1, `′1)O(`2, `′2)〉, while the identity block describes its disconnected
counterpart 〈O(`1, `′1)〉〈O(`2, `′2)〉. Thus, the connected correlator 〈O(`1, `′1)O(`2, `′2)〉 can
be computed by summing over the single-trace blocks, which, in the language of geodesic
Witten diagrams, becomes the sum over exchanged spins in figure 3.

Finally, we should comment on a cosmetic difference between figure 3 and the original
construction of geodesic Witten diagrams [38]. In the original construction, there are ad-
ditional boundary-bulk propagators (corresponding in our case to the boundary operators
χI), which connect the endpoints of each geodesic to the vertex that emits/absorbs the
exchanged field. In figure 3, such propagators are absent. In fact, these propagators don’t
affect the mathematical structure of the diagram, because their product ∼ 1/

√
(` · x)(`′ · x)

for x on the geodesic, i.e. at R = 0, is just a constant (cf. (2.54)).

2.9 Alternative non-traceless gauge for the DV solution

In [23], we found expressions for the DV solution in a set of alternative, non-traceless
gauges. We will use one of these in section 6. The HS potentials in these new gauges,
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denoted in [23] as Φ(s), Φ′(s) and Φ(s)
symm, read:

Φ(s) = (i
√

2)s
πR
√
−x · x

(
T (s)(x, t+ r, u) + θ(s− 2)(gµνuµuν)

4s(s− 1)(x · x) T
(s−2)(x, t+ r, u)

)
; (2.71)

Φ′(s) = (i
√

2)s
πR
√
−x · x

(
T (s)(x, t− r, u) + θ(s− 2)(gµνuµuν)

4s(s− 1)(x · x) T
(s−2)(x, t− r, u)

)
; (2.72)

Φ(s)
symm = 1

2
(
Φ(s) + Φ′(s)

)
, (2.73)

featuring the same tensor structure as the Fronsdal curvature (2.63). The virtue of the
gauges (2.71)–(2.73) is their simple behavior when applying the boundary field equation,
i.e. the boundary conformal Laplacian, at one or both of ` and `′:

�`
Φ(s)
√
−` · `′

= − (`′ · x)2

(−` · `′)5/2 Fφ
(s) ; (2.74)

�`′
Φ′(s)√
−` · `′

= − (` · x)2

(−` · `′)5/2 Fφ
(s) ; (2.75)

�`�`′
Φ(s)

symm√
−` · `′

= −(i
√

2)s(x · x)2

(−` · `′)5/2

[
Q(s) + θ(s− 2)(gµνuµuν)

4s(s− 1)(x · x) Q(s−2)
]
. (2.76)

Here, Fφ(s) are the gauge-independent Fronsdal tensors (2.63), proportional to the geodesic
delta function, while Q(p) is a traceless tensor involving the geodesic delta function and its
bulk Laplacian:

Q(p)(x, u; `, `′) ≡ 1
p!u

µ1 . . . uµpQµ1...µp = T (p)(x, t, u)
(
∇ · ∇+ p(p− 1)

x · x

)
δ3(x; `, `′) .

(2.77)
We see that the r.h.s. of (2.74)–(2.76) are all delta-function-like distributions which vanish
away from the geodesic γ(`, `′). This can be viewed as a bulk version of the free field
equation �`χ

I(`) = �`′χ̄I(`′) = 0 on the boundary, which becomes �`
O(`,`′)√
−`·`′ = �`′

O(`,`′)√
−`·`′ =

0 in terms of bilocals.

2.10 Sleight-Taronna on-shell cubic vertex

Let us now review the Sleight-Taronna cubic vertex [9] for on-shell HS fields. In general,
a cubic vertex is a symmetric scalar function of three HS fields h(si)

i (i = 1, 2, 3) and their
spacetime derivatives. To keep track of which field the derivatives act on, it’s convenient
to use a “point-split” formalism. This means that the three fields are temporarily associ-
ated with different spacetime points xµi , which we set equal after acting as needed with
derivatives ∂µxi . Similarly, the vertex’s tensor structure can be encoded by using a dif-
ferent polarization vector uµi to package each field’s indices as in (2.5). The vertex will
then contain derivatives ∂µui , which “expose” the fields’ tensor indices before contracting
them appropriately into a scalar. Thus, a general cubic vertex is a differential operator
V (s1,s2,s3)(∂x1 , ∂u1 ; ∂x2 , ∂u2 ; ∂x2 , ∂u3), which must contain si factors of ∂ui for each i = 1, 2, 3.
Overall, the bulk action from coupling the three HS fields h(si)

i via the vertex V (s1,s2,s3)
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evaluates to:

Ss1,s2,s3 [V ;h1, h2, h3] = −
∫
EAdS4

d4xV (s1,s2,s3)(∂x1 , ∂u1 ; ∂x2 , ∂u2 ; ∂x3 , ∂u3)

× h(s1)
1 (x1, u1)h(s2)

2 (x2, u2)h(s3)
3 (x3, u3)

∣∣∣
x1=x2=x3=x

.

(2.78)

The specific on-shell vertex discovered in [9] is given by the simple formula:

V
(s1,s2,s3)

ST (∂x1 , ∂u1 ; ∂x2 , ∂u2 ; ∂x3 , ∂u3) =
8
(
i
√

2
)s1+s2+s3

Γ(s1 + s2 + s3)
×
[
(∂u1 · ∂x2)s1(∂u2 · ∂x3)s2(∂u3 · ∂x1)s3 + (∂u1 · ∂x3)s1(∂u2 · ∂x1)s2(∂u3 · ∂x2)s3

]
.

(2.79)

We wrote the vertex (2.79) as a sum of two tensor structures, each corresponding to a cyclic
ordering of the 3 legs. Taking the average over both orderings makes (2.79) completely
symmetric under permutations. The 3-point function calculation of [9] did not require
this averaging, but it will prove important for gauge invariance beyond transverse-traceless
gauge. Note that the vertex (2.79) doesn’t carry on overall factor of ∼ 1√

N
, due to our

normalization choices (2.32)–(2.35) for the boundary operators and our decision in (2.66)–
(2.68) to separate a factor of N from the N -independent “classical” action. The factor
of is1+s2+s3 in (2.79) does not appear in [9], and is due to the factor of (−i)s in our
definition (2.34)–(2.35) of the boundary currents.

The cubic-scalar case s1 = s2 = s3 = 0 has a well-known singularity: the coupling
in (2.79) vanishes, but the bulk integral in (2.78) diverges. Through dimensional regular-
ization, upon inserting the appropriate dimension-dependence in (2.79), one can show that
the answer is given by a boundary integral:

S0,0,0[VST;h1, h2, h3] = − lim
D→4

V
(0,0,0)

ST

∫
EAdSD

dDxh
(0)
1 (x)h(0)

2 (x)h(0)
3 (x)

= −8
∫
d3` h

(0)
1 (`)h(0)

2 (`)h(0)
3 (`) ,

(2.80)

where h(0)(`) is the analytic continuation of the bulk field h(0)(x) onto the R1,4 lightcone.
Since h(0)(x) has scaling weight ∆ = 1, this is the same as evaluating its weight-1 boundary
data.

Now, the main result of [9] is that the simple vertex formula (2.79), acting on three
boundary-bulk propagators Π(si)(x, u; `i, λi) ≡ Πi, reproduces the CFT correlator of the
corresponding boundary HS currents j(si)(`i, λi) ≡ j(si)

i :

−NSs1,s2,s3 [VST; Π1,Π2,Π3] =
〈
j

(s1)
1 j

(s2)
2 j

(s3)
3

〉
, (2.81)

where N again plays the role of an inverse Planck constant, as in (2.66)–(2.68). Abstractly,
eq. (2.81) defines the action of the vertex VST on a certain class of field configurations,
spanned by the boundary-bulk propagators. This class of field configurations is defined by
three constraints:
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• Source-free, i.e. vanishing Fronsdal curvature.

• Transverse-traceless, i.e. vanishing divergence and trace.

• Decaying with weight ∆ = s + 1 as x approaches the boundary, except near the
insertion points `i.

3 Gauge invariance of Sleight-Taronna vertex for traceless source-free
fields

In this section, we prove that the Sleight-Taronna vertex (2.79) is gauge-invariant up to
boundary terms, when restricted to source-free, traceless fields. This extends the original
statement in [9], which was that each of the two cyclic terms in (2.79) is gauge-invariant
when further restricted to source-free, transverse-traceless fields. We will use the techniques
of [8] for manipulating a cubic vertex in the radial-reduction formalism (see also [40]),
while adjusting for the fact that our bulk fields have scaling weight ∆ = s+ 1 rather than
∆ = 2 − s. Finally, in section 3.4, we identify a class of field asymptotics for which the
gauge invariance is complete, i.e. the boundary terms in the gauge transformation also
vanish.

3.1 Notations and method

First, we introduce compact notations for various contracted derivatives (note that the
field labels i, j = 1, 2, 3 aren’t subject to the Einstein summation convention):

�i ≡ ∂xi · ∂xi ; Di ≡ ∂ui · ∂xi ; Yij ≡ ∂ui · ∂xj ; Zij = ∂ui · ∂uj . (3.1)

With this notation, the Sleight-Taronna vertex (2.79) becomes:

V
(s1,s2,s3)

ST =
8
(
i
√

2
)s1+s2+s3

Γ(s1 + s2 + s3)
[
Y s1

12 Y
s2

23 Y
s3

31 + Y s1
13 Y

s2
21 Y

s3
32
]
. (3.2)

Now, consider a gauge transformation (2.14) of e.g. the field h3 (where we suppress the
spin superscripts to reduce clutter):

δh3(x3, u3) =
(
u3 · ∂x3 + (2s− 1)u3 · x3

x3 · x3

)
Λ3(x3, u3) . (3.3)

Our statement is that, for source-free traceless fields, the cubic action (2.78) changes under
this transformation by at most boundary terms. To make the calculation tractable, we
follow [8] in writing the bulk integral (2.78) as a 5d integral over R1,4 with a delta function
inserted:

Ss1,s2,s3 = 2
∫
d5x δ(x · x+ 1)

× V (∂x1 , ∂u1 ; ∂x2 , ∂u2 ; ∂x3 , ∂u3)h1(x1, u1)h2(x2, u2)h3(x3, u3)
∣∣∣
xi=x

.
(3.4)
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Thus, the gauge-invariance statement that we wish to prove takes the form:∫
d5x δ(x · x+ 1)

[
Y s1

12 Y
s2

23 Y
s3

31 + Y s1
13 Y

s2
21 Y

s3
32
] (
u3 · ∂x3 + (2s3 − 1)u3 · x3

x3 · x3

)
h1h2Λ3

∣∣∣∣
xi=x

= boundary terms , (3.5)

where h1, h2 are subject to the constraints for traceless Fronsdal fields on EAdS4 with
vanishing Fronsdal tensor:

(xi · ∂ui)hi = (∂ui · ∂ui)hi = 0 ; (xi · ∂xi)hi = −(s+ 1)hi ; (3.6)

(∂xi · ∂xi)hi =
(
ui · ∂xi + (2s− 1)ui · xi

xi · xi

)
Dihi , (3.7)

and Λ3 is subject to the constraints for a traceless, divergence-free gauge parameter:

(x3 · ∂u3)Λ3 = (∂u3 · ∂u3)Λ3 = 0 ; (x3 · ∂x3)Λ3 = −sΛ3 ; D3Λ3 = 0 . (3.8)

Our method of proof will be to manipulate the differential operator inserted between δ(x ·
x + 1) and h1h2Λ3 in (3.5). We will use the “weak equality” sign “≈” to denote that two
operators are equal when sandwiched between δ(x · x + 1) and h1h2Λ3 and integrated as
in (3.5), up to boundary terms. The main strategy is to commute various factors within
the operator to the left or to the right, where they can vanish or simplify. When on the
right, we can use the fields’ properties (3.6)–(3.8) as:

(. . . )(xi · ∂ui) ≈ (. . . )(∂ui · ∂ui) ≈ 0 ; (3.9)
(. . . )(xi · ∂xi) ≈ −(si + 1)(. . . ) [for i = 1, 2] ; (. . . )(x3 · ∂x3) ≈ −s3(. . . ) ; (3.10)

(. . . )(∂xi · ∂xi) = (. . . )
(
ui · ∂xi + (2s− 1)ui · xi

xi · xi

)
Di [for i = 1, 2] ; (3.11)

(. . . )D2
i = 0 [for i = 1, 2] ; (. . . )D3 = 0 , (3.12)

where the D2
i identity comes from the Fronsdal tensor’s trace (2.27).

When on the left, we can use the coincidence relation xµi = xµ and the EAdS4 condition
x · x = −1:

xi · (. . . ) ≈ x · (. . . ) ; (x · x)(. . . ) ≈ −(. . . ) . (3.13)

Also, a factor of uµi on the left always vanishes, because it implies that there are more ∂ui
derivatives than factors of ui to its right:

ui · (. . . ) = 0 . (3.14)

Finally, a total derivative ∂µx = ∂µx1 + ∂µx2 + ∂µx3 on the left can be integrated by parts, as:

∂x · (. . . ) ≈ −(3 + x · ∂x)x · (. . . ) . (3.15)

This arises from acting with ∂x on the delta function δ(x · x + 1) that always implicitly
stands to the left of our operator. In more detail, for any vector fµ, we have:∫

d5x δ(x · x+ 1)(∂x · f) = −2
∫
d5x δ′(x · x+ 1)(x · f) + boundary terms . (3.16)
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Denoting ρ ≡
√
−x · x, the radial part of the integral (3.16) can now be written as:

2
∫
ρ4dρ δ′(ρ2 − 1)(x · f) = −

∫
dρ δ(ρ2 − 1) d

dρ

(
ρ3(x · f)

)
. (3.17)

Identifying d
dρ with x · ∂x, this yields the desired prescription (3.15).

3.2 Two Lemmas

Before proving (3.5), let us establish two useful identities, or Lemmas. The first one
concerns the commutation of a factor of xi · xi + 1 from the right of a differential operator
to the left (where it becomes simply zero).

Lemma 1. Assuming only the tangential and traceless properties (3.9), the following iden-
tity holds:

Y p1
12 Y

p2
23 Y

p3
31 D

n1
1 D

n2
2 D

n3
3 (x3 · x3 + 1) ≈ −2p1p2Z12Y

p1−1
12 Y p2−1

23 Y p3
31 D

n1
1 D

n2
2 D

n3
3 . (3.18)

To prove this, let us start from the l.h.s. of (3.18), and commute one of the xµ3 factors
to the left:

Y p1
12 Y

p2
23 Y

p3
31 D

n1
1 D

n2
2 D

n3
3 (x3 · x3) = x3µY

p1
12 Y

p2
23 Y

p3
31 D

n1
1 D

n2
2 D

n3
3 xµ3

+ n3Y
p1

12 Y
p2

23 Y
p3

31 D
n1
1 D

n2
2 D

n3−1
3 (x3 · ∂u3) + p2Y

p1
12 Y

p2−1
23 Y p3

31 D
n1
1 D

n2
2 D

n3
3 (x3 · ∂u2) .

(3.19)

The second term vanishes due to (3.9). In the first and third terms, we commute xµ3 to the
left again (omitting a vanishing term ∼ ∂u2 · ∂u2):

Y p1
12 Y

p2
23 Y

p3
31 D

n1
1 D

n2
2 D

n3
3 (x3 · x3 + 1) = n3(x3 · ∂u3)Y p1

12 Y
p2

23 Y
p3

31 D
n1
1 D

n2
2 D

n3−1
3

+ 2p2(x3 · ∂u2)Y p1
12 Y

p2−1
23 Y p3

31 D
n1
1 D

n2
2 D

n3
3 + p2n3Z23Y

p1
12 Y

p2−1
23 Y p3

31 D
n1
1 D

n2
2 D

n3−1
3 .

(3.20)

Now, in the first term of (3.20), we commute x3 · ∂u3 to the right, where it vanishes. The
commutator with Dn3−1

3 gives ∂u3 · ∂u3 which vanishes, while the commutator with Y p2
23

cancels the third term in (3.20). We are thus left with only the second term, in which we
can trade the x3 on the left for x2:

Y p1
12 Y

p2
23 Y

p3
31 D

n1
1 D

n2
2 D

n3
3 (x3 · x3 + 1) = 2p2(x2 · ∂u2)Y p1

12 Y
p2

23 Y
p3−1

31 Dn1
1 D

n2
2 D

n3
3 . (3.21)

We now commute x2 · ∂u2 to the right, where it vanishes. The only non-vanishing contri-
bution comes from commuting with Y p1

12 , which yields the desired result (3.18).
Our second Lemma presents a particular situation in which integration by parts works

just like in flat spacetime, where total-derivative terms of the form ∂x · f can be simply
discarded.

Lemma 2. Assuming only the tangential and traceless properties (3.9), a scaling prop-
erty of the form (3.10) with arbitrary scaling weights (. . . )(xi · ∂xi) = −∆i(. . . ), and the
integration-by-parts property (3.15), the following identity holds:

(Y12 − ∂u1 · ∂x)p1(Y23 − ∂u2 · ∂x)p2(Y31 − ∂u3 · ∂x)p3 ≈ Y p1
12 Y

p2
23 Y

p3
31 . (3.22)
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Equivalently (expanding ∂µx = ∂µx1 + ∂µx2 + ∂µx3 in the parentheses and reshuffling the field
labels):

Y p1
13 Y

p2
21 Y

p3
32 ≈ (−1)p1+p2+p3(Y12 +D1)p1(Y23 +D2)p2(Y31 +D3)p3 . (3.23)

As an aside, eq. (3.23) is closely related to the fact that for boundary-bulk propagators
in transverse-traceless gauge, the two terms in the vertex (2.79) yield the same result (i.e.
that in this gauge, there’s no need to write both terms).

Let us now prove the Lemma’s statement, in the form (3.22). First, we apply the
integration-by-parts prescription (3.15) to all the factors of ∂u1 · ∂x. This yields factors of
x · ∂x and x · ∂u1 . The former simply yield some multiplicative constants due to the scaling
weights; the latter can be written as x1 ·∂u1 , and then commuted from the left to the right,
where it vanishes. The commutation yields:

• Zero from commuting with Y12, Y23 or Y31 − ∂u3 · ∂x.

• ∂u1 · ∂u1 ≈ 0 from commuting with ∂u1 · ∂x.

• Z12 from commuting with ∂u2 · ∂x.

After these manipulations, we are left with a polynomial in Y12, Y23, ∂u2 · ∂x, Y31− ∂u3 · ∂x
and Z12. The next step is then to integrate by parts all the factors of ∂u2 ·∂x. Analogously
to the previous step, this yields factors of x2 · ∂u2 , which we proceed to commute from the
left to the right. The commutation yields:

• Zero from commuting with Y23, Y31 or Z12.

• ∂u2 · ∂u2 ≈ 0 from commuting with ∂u2 · ∂x.

• Z12 from commuting with Y12.

• Z23 from commuting with ∂u3 · ∂x.

We are now left with a polynomial in Y12, Y23, Y31, ∂u3 · ∂x, Z12 and Z23. Finally, we
integrate by parts the factors of ∂u3 · ∂x. Commuting the resulting factors of x3 · ∂u3 from
left to right, we get:

• Zero from commuting with Y12, Y31, Z12 or Z23.

• ∂u3 · ∂u3 ≈ 0 from commuting with ∂u3 · ∂x.

• Z23 from commuting with Y23.

We finally end up with a polynomial in Y12, Y23, Y31, Z12, Z23. But this is an artifact of
the particular order 1 → 2 → 3 in which we chose to integrate by parts the factors of
∂ui · ∂x. By choosing 2 → 3 → 1 or 3 → 1 → 2 instead, we’d end up with polynomials
in Y12, Y23, Y31, Z23, Z31 or Y12, Y23, Y31, Z31, Z12, respectively. This is consistent only if the
answer doesn’t depend on the Zij ’s at all, i.e. if the nonzero ∼ Zij commutators in our
manipulations above all cancel. Therefore, the answer simply consists of the original factors
of Y12, Y23, Y31, as claimed in (3.22).
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3.3 Proof of gauge invariance up to boundary terms

We are now ready to prove eq. (3.5), i.e.:

[
Y s1

12 Y
s2

23 Y
s3

31 + Y s1
13 Y

s2
21 Y

s3
32
] (
u3 · ∂x3 + (2s3 − 1)u3 · x3

x3 · x3

)
≈ 0 . (3.24)

We begin by manipulating the first term in (3.24), namely Y s1
12 Y

s2
23 Y

s3
31(

u3 · ∂x3 + (2s3 − 1)u3·x3
x3·x3

)
. The calculation is lengthy, and consists of iterating the fol-

lowing steps:

• Commute any factors of uµi to the left, where they vanish.

• Rewrite any factor of ∂xi · ∂xj with i 6= j as e.g. ∂x1 · ∂x2 = 1
2
(
∂x · (∂x1 + ∂x2 − ∂x3)−

�1 −�2 + �3
)
, and integrate the first term by parts.

• Evaluate any factor of x·∂x or xi ·∂xi according to the scaling weight of the expression
to its right.

• Rewrite any factor of x · ∂xi on the left as xi · ∂xi , so it can be evaluated as above.

• Commute any factor of xi · ∂xj with i 6= j to the left, where it can become xj · ∂xj
and be evaluated as above.

• Rewrite any factor of x ·∂ui on the left as xi ·∂ui , and commute it to the right, where
it vanishes.

• Convert any factor of Y13, Y21, Y32 back into factors of Y12, Y23, Y31 by writing e.g.
Y13 = ∂u1 · ∂x −D1 − Y12, and integrate the first term by parts.

• Use eq. (3.18) (Lemma 1) to convert any term with a factor of Zij into terms without
it.

• Rewrite any factor of �1 or �2 on the right using the source-free condition (3.11),
unless it occurs in the combination D1�1 or D2�2, in which case the rewriting results
in a closed loop.

• Use eq. (3.12) to discard any terms with D2
1 or D3 on the right.

The result of this procedure reads:

Y s1
12 Y

s2
23 Y

s3
31

(
u3 · ∂x3 + (2s3 − 1)u3 · x3

x3 · x3

)
≈ −s3Y

s1
12 Y

s2
23 Y

s3−1
31

(
�3
2 + 2s3 − 1

x3 · x3

)
+ s1s3Y

s1−1
12 Y s2

23 Y
s3−1

31 D1

(
s1 + s2 + s3 − 1 + �1 −�3

4

)
(3.25)

− s2s3Y
s1

12 Y
s2−1

23 Y s3−1
31 D2

(
s1 + s2 + s3 − 1 + �2 + �3

4 + 2s3 − 1
x3 · x3

)
− s1s2s3Y

s1−1
12 Y s2−1

23 Y s3−1
31 D1D2

(
s1 + s2 + s3 − 1 + 1

4

(
�2 + 2s1 − 1

x1 · x1
+ 2s2 − 1

x2 · x2

))
.
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In transverse-traceless gauge, the fields h1, h2 and the gauge parameter Λ3 would satisfy
D1 ≈ D2 ≈ �3 + 2(2s3−1)

x3·x3
≈ 0 (cf. (2.29)), making the variation (3.25) simply vanish. In

general traceless gauge, we must work a bit harder. To proceed, let us apply analogous ma-
nipulations to the second term in (3.24), namely to Y s1

13 Y
s2

21 Y
s3

32

(
u3 · ∂x3 + (2s3 − 1)u3·x3

x3·x3

)
.

The result can be directly read off from (3.25), by interchanging the field labels 1↔ 2:

Y s1
13 Y

s2
21 Y

s3
32

(
u3 · ∂x3 + (2s3 − 1)u3 · x3

x3 · x3

)
≈ −s3Y

s1
13 Y

s2
21 Y

s3−1
32

(
�3
2 + 2s3 − 1

x3 · x3

)
− s1s3Y

s1−1
13 Y s2

21 Y
s3−1

32 D1

(
s1 + s2 + s3 − 1 + �1 + �3

4 + 2s3 − 1
x3 · x3

)
(3.26)

+ s2s3Y
s1

13 Y
s2−1

21 Y s3−1
32 D2

(
s1 + s2 + s3 − 1 + �2 −�3

4

)
− s1s2s3Y

s1−1
13 Y s2−1

21 Y s3−1
32 D1D2

(
s1 + s2 + s3 − 1 + 1

4

(
�1 + 2s1 − 1

x1 · x1
+ 2s2 − 1

x2 · x2

))
.

Now, let us apply eq. (3.23) (Lemma 2) to each term on the r.h.s. of (3.26). We get:

Y s1
13 Y

s2
21 Y

s3
32

(
u3 · ∂x3 + (2s3 − 1)u3 · x3

x3 · x3

)
≈ s3(Y12 +D1)s1(Y23 +D2)s2Y s3−1

31

(
�3
2 + 2s3 − 1

x3 · x3

)
(3.27)

− s1s3Y
s1−1

12 (Y23 +D2)s2Y s3−1
31 D1

(
s1 + s2 + s3 − 1 + �1 + �3

4 + 2s3 − 1
x3 · x3

)
+ s2s3(Y12 +D1)s1Y s2−1

23 Y s3−1
31 D2

(
s1 + s2 + s3 − 1 + �2 −�3

4

)
+ s1s2s3Y

s1−1
12 Y s2−1

23 Y s3−1
31 D1D2

(
s1 + s2 + s3 − 1 + 1

4

(
�1 + 2s1 − 1

x1 · x1
+ 2s2 − 1

x2 · x2

))
,

where we fixed the sign factors in (3.23) using the fact that s1 + s2 + s3 is even, and
used (3.12) to discard any terms proportional to D2

1, D2
2 or D3. The last step is to expand

the r.h.s. of (3.27) in powers of D1,D2, again discarding terms proportional to D2
1 or D2

2.
The result is precisely minus the r.h.s. of (3.25), thus proving the desired relation (3.24).

3.4 Constraining the boundary contribution

So far in this section, we’ve been evaluating gauge variations up to boundary terms. Let
us now tackle the question of boundary terms, under a certain assumption on the fields’
asymptotics. Specifically, consider a traceless (not necessarily transverse) spin-s pure-gauge
field, whose components in an orthonormal Poincare basis (see section 2.4) decay towards
the boundary as zs+1 or faster:

h̃(s)(x, u) = (u · ∇)Λ(s)(x, u) ; (∂u · ∂u)h̃(s) = 0 ; (3.28)
[h̃(s)]q,s−q = O(zs+1) . (3.29)

Our claim is that the on-shell cubic correlator formula (2.81) continues to hold when the
boundary-bulk propagators Π(s) are shifted by such pure-gauge fields:

−NSs1,s2,s3 [VST; Π1 + h̃1,Π2 + h̃2,Π3 + h̃3] =
〈
j

(s1)
1 j

(s2)
2 j

(s3)
3

〉
. (3.30)
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This is equivalent to saying that a gauge transformation of the form (3.28)–(3.29) has no
effect on correlators of the form (3.30):

Ss1,s2,s3 [VST; Π1 + h̃1,Π2 + h̃2, h̃3] = 0 . (3.31)

From our previous result (3.5), we already know that (3.31) is true up to boundary terms.
Our goal now is to show that the boundary terms also vanish. Unfortunately, it’s difficult
to track all the specific boundary terms that arise from the various integrations by parts
in sections 3.2–3.3, especially the ones that occur in the proof of Lemma 2. Instead, we
will simply consider all possible boundary terms, and show that they all vanish by power
counting.

To perform this asymptotic power counting, we invoke the formalism of Poincare co-
ordinates with a normalized basis from section 2.4. Near the boundary z → 0, derivatives
with respect to the “radial” coordinate z and the “tangential” coordinates ya scale as:

∂

∂z
= O(z−1) ; ∂

∂ya
= O(1) . (3.32)

Switching to normalized derivatives, i.e. derivatives along unit vectors, this becomes:

e0 · ∇ = O(1) ; ea · ∇ = O(z) . (3.33)

Now, a key difficulty in our analysis is that the boundary terms in the gauge transforma-
tion (3.31) involve not the pure-gauge field h̃3 itself, but rather its gauge parameter Λ3. We
therefore need to understand how the condition (3.29) on h̃(s) constrains the asymptotics
of Λ(s). To do this, we note that Λ(s) satisfies (cf. (2.28)):

(∂u · ∂u)Λ(s) = (∂u · ∇)Λ(s) = 0 ; (3.34)(
∇ · ∇+ s2 − 1

x · x

)
Λ(s) = (∂u · ∇)h̃(s) . (3.35)

This is nothing but an inhomogeneous version of the transverse-traceless field eqs. (2.47)
for the rank-(s − 1) “field” Λ(s), with weight w = s + 2 (or, equivalently, w = 1 − s), and
with the divergence (∂u · ∇)h̃(s) in the role of a source term. We quickly see from (3.33)
that the z scaling of this source term is the same as that of h̃(s) itself, namely:[

(∂u · ∇)h̃(s)]
q,s−1−q = O(zs+1) . (3.36)

Note that (∂u · ∇)h̃(s) is a divergence-free symmetric rank-(s − 1) tensor (the second di-
vergence of h̃(s) vanishes due to (2.27)), and that (3.36) is the natural scaling for such
divergence-free (i.e. conserved) quantities.

Now, eqs. (3.34)–(3.35) determine the gauge parameter Λ(s) up to boundary conditions,
which are governed in turn by the source-free version of (3.34)–(3.35). As we saw in
section 2.5, these boundary conditions are associated with two possible z scalings for the
normalized Poincare components [Λ(s)]q,s−1−q, namely ∼ zs+2+q and ∼ z1−s+q. Our claim
is then that the correct solution of eqs. (3.34)–(3.35) is the one with the ∼ z1−s+q boundary
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data vanishing. To see that this is the case, note that the dominant z scaling of this
solution is:

[Λ(s)]q,s−1−q = O(zs+1) , (3.37)

since the remaining ∼ zs+2+q boundary data is dominated by the O(zs+1) source term.
This then implies the desired scaling (3.29) for the pure-gauge field h̃(s) = (u · ∇)Λ(s)

itself. Any other solution of (3.34)–(3.35) will differ from this one by a solution Λ′(s) to
the homogeneous equations, corresponding to a transverse-traceless pure-gauge (and thus
source-free) field h̃′(s). But, by the analysis of section 2.5, any such nonzero field would
contain [h̃′(s)]q,s−q ∼ z2−s+q boundary data, in contradiction with our assumption (3.29).
And if h̃′(s) is zero, then we can simply throw away the contribution Λ′(s) to the gauge
parameter, and return to the original solution Λ(s) with vanishing ∼ z1−s+q boundary data.
The upshot of this analysis is that our pure-gauge field h̃(s) can be described by a gauge
parameter Λ(s) that scales near the boundary as (3.37).

We are now ready to assemble the subsection’s main claim (3.31). The most general
boundary contribution from turning on the pure-gauge field h̃3 is a boundary integral over
some function of the fields Π1 + h̃1 and Π2 + h̃2, the gauge parameter Λ3, and their EAdS4
derivatives. Since volume measure scales as ∼ z−3, the integral will vanish if the integrand
vanishes faster than z3. Let us now show that this is the case. Away from the source points
`1 and `2, we see from (2.51), (3.33), (3.37) that the fields and the gauge parameter scale as
O(zs1+1), O(zs2+1) and O(zs3+1) respectively, while the EAdS4 derivatives scale as O(1).
Since at least s3 is greater than zero (otherwise, there’s no gauge transformation to speak
of), we conclude that the overall power of z is greater than 3, as required.

It remains to consider the contributions from the source points `1 and `2, where Π1 and
Π2 have the delta-function-like contributions (2.52). Let us focus e.g. on the contribution
from `1. We can integrate by parts to remove any boundary derivatives ea · ∇ from Π1,
moving them onto Π2 + h̃2 and Λ3. Now, consider separately the different components
[Π1]q1,s1−q1 of Π1. These scale as ∼ z2−s1+q1 , while Π2 + h̃2 and Λ3 still scale as O(zs2+1)
and O(zs3+1) respectively. The overall power of z thus appears to be 4− s1 + q1 + s2 + s3,
which is a problem if s1 − q1 > s2 + s3. However, in that case, a new consideration comes
into play. Recall that s1 − q1 is the number of indices on Π1 that are tangential to the
boundary. By rotational invariance, these must be contracted with indices on Π2 + h̃2, Λ3,
or derivatives. But Π2+h̃2 and Λ3 have only s2 and s3−1 indices respectively, which implies
that at least s1−q1−s2−s3+1 indices must be contracted with tangential derivatives ea ·∇,
each of which contributes an extra power of z, according to (3.33). Overall, we conclude
that the delta-function-like contributions to the boundary integrand scale as O(z5), and
thus their integral also vanishes.

This concludes our derivation of the invariance relation (3.31). We’ve thus shown
that the Sleight-Taronna vertex correctly computes the cubic correlator (3.30) in a general
traceless gauge with the asymptotic behavior (3.29).
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4 Bulk locality structure of general cubic correlator

In this section, we state and argue our main claims vis. the bulk locality structure of the cu-
bic correlator 〈O+(`1, `′1)O+(`2, `′2)O+(`3, `′3)〉 of boundary bilocals. We begin in section 4.1
by laying out the structure of the bilocal-local-local correlator
〈j(s1)(`1, λ1)j(s2)(`2, λ2)O+(`3, `′3)〉, which involves a new interaction vertex between the
DV geodesic “worldline” γ3 and the fields h1, h2. In section 4.2, we describe a general
ansatz for this new vertex. In sections 4.3 and 4.4, we state and verify locality criteria
for the new vertex, in the directions perpendicular and parallel to γ3, respectively. In
section 4.5, we extend the new vertex beyond transverse-traceless gauge. Finally, in sec-
tion 4.6, we show how the bulk diagrams for the general bilocal3 correlator can be “stitched
together” from bilocal-local-local ones.

4.1 Bulk structure of (local,local,bilocal) correlator

Consider the cubic correlator between two local currents j(s1)(`1, λ1) ≡ j
(s1)
1 and

j(s2)(`2, λ2) ≡ j
(s2)
2 , and one bilocal operator O+(`3, `′3). For even s1 and s2, the CFT

correlator is automatically symmetric under `3 ↔ `′3. This allows us to replace the sym-
metrized bilocal O+(`3, `′3) by the unsymmetrized one O(`3, `′3) ≡ O3, which will slightly
simplify the analysis.

At the linearized level, the operators j(s1)
1 , j

(s2)
2 ,O3 are dual in the bulk to a pair of

boundary-bulk propagators Π(s1)(x, u; `1, λ1) ≡ Π1 and Π(s2)(x, u; `2, λ2) ≡ Π2, and a DV
solution φ(s)(x, u; `3, `′3) ≡ φ3 associated with a worldline geodesic γ(`3, `′3) ≡ γ3. Our
statement is that the cubic correlator can be constructed from these bulk objects as:〈

j
(s1)
1 j

(s2)
2 O3

〉
= −N

(∑
s3

Ss1,s2,s3 [VST; Π1,Π2, φ3]

− Ss1 [Π1, γ3]Ss2 [Π2, γ3] + Ss1,s2 [Vnew,TT; Π1,Π2, γ3]
)
.

(4.1)

We will also consider the case where Π1,Π2 are shifted by traceless pure-gauge fields h̃1, h̃2,
as in section 3.4, subject to the asymptotic condition (3.29). For this case, we claim that
a relation of the form (4.1) will hold again, as:〈
j

(s1)
1 j

(s2)
2 O3

〉
= −N

(∑
s3

Ss1,s2,s3 [VST; Π1 + h̃1,Π2 + h̃2, φ3]

− Ss1 [Π1 + h̃1, γ3]Ss2 [Π2 + h̃2, γ3] + Ss1,s2 [Vnew; Π1 + h̃1,Π2 + h̃2, γ3]
)
.

(4.2)
Each term in (4.1)–(4.2) describes a different bulk diagram, as depicted in figure 4. The
meaning of each term is as follows (referring to the input fields Πi or Πi + h̃i with i = 1, 2
as simply hi):

• The Ss1,s2,s3 [VST;h1, h2, φ3] term describes the three fields h1, h2, φ3 coupled by the
Sleight-Taronna cubic vertex, just like in the standard 〈jjj〉 correlator (2.81). To sup-
port our replacement of the symmetrized O+(`3, `′3) by the unsymmetrized O(`3, `′3),
we simply define VST to vanish for odd s3.
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Figure 4. The bulk diagrams that describe the correlator 〈j1j2O3〉 of two local boundary currents
and one bilocal. VST is the Sleight-Taronna cubic vertex, while Vnew is a new vertex that couples
two HS fields to a DV particle’s worldline. We argue that the non-localities in Vnew are confined to
∼ 1 AdS radius.

• The Ss1 [h1, γ3]Ss2 [h2, γ3] term is a product of two quadratic actions of the form (2.65),
(2.70). It describes a diagram where each of the fields h1, h2 couples independently
to the geodesic γ3. Such a term is natural if we consider γ3 as not just a source for
the DV solution φ3, but as the physical worldline of a (infinitely heavy) particle.

• Finally, the Ss1,s2 [Vnew;h1, h2, γ3] term describes a new cubic vertex coupling both
fields h1, h2 to the γ3 worldline. The additional “TT” subscript in (4.1) refers to the
fact that the vertex in that formula couples transverse-traceless fields, as opposed
to (4.2), where transversality is dropped.

The new interaction term Ss1,s2 [Vnew;h1, h2, γ3] can be written a bit more explicitly as:

Ss1,s2 [Vnew;h1, h2, γ3] = −
∫ ∞
−∞

dτ V (s1,s2)
new

(
∂x1 , ∂u1 ; ∂x2 , ∂u2 ; ẋ(τ ; `3, `′3)

)
× h(s1)

1 (x1, u1)h(s2)
2 (x2, u2)

∣∣∣
x1=x2=x(τ ;`3,`′3)

.
(4.3)

This is similar to a usual cubic diagram formula (2.78), except the integral is over γ3
instead of the entire EAdS4, and the vertex V (s1,s2)

new is allowed to depend on the geodesic’s
tangent vector ẋµ. The different powers of ẋµ in the vertex can be viewed as couplings
to the different spins s3 of the HS multiplet carried by the DV “particle” on γ3. It is
worth emphasizing that any cubic quantity can be reproduced by an action (4.3) with a
sufficiently general vertex V (s1,s2)

new . The non-trivial part of our statement is that this vertex
satisfies appropriate locality criteria, which we’ll describe below.

4.2 Ansatz for Vnew,TT

Let us now describe a general ansatz for Vnew,TT — the new vertex that reproduces the
correct cubic correlator as in (4.1), when coupling two boundary-bulk propagators Π1,Π2
to a geodesic worldline γ3. These propagators span the space of source-free, transverse-
traceless fields h(s), and we’ll consider the vertex as acting on such fields.

A source-free field h(s) in transverse-traceless gauge is completely determined by bound-
ary data — for instance, in the language of sections 2.4–2.5, by the coefficient of z2−s in
its tangential components [h(s)]0,s in the asymptotic limit z → 0. Assuming analyticity,
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one can equally well formulate such boundary data on a geodesic γ, via a tower of spatial
derivatives at each proper “time” τ . To construct a basis of such derivatives, we decompose
the field into components along the geodesic’s “time” direction ẋµ = tµ vs. the “spatial”
directions perpendicular to it, spanned by the 3d metric qµν ≡ gµν − tµtν . We then take
either zero or one 3d curls, followed by an arbitrary number of 3d gradients, and extract
the totally symmetric & traceless part with respect to the 3d metric qµν . Thus, a basis of
boundary data on a geodesic γ for a source-free, transverse-traceless field h(s)(x, u) is given
by the following 3d tensors, encoded as usual through a “polarization vector” uµ, at each
point xµ(τ) on γ:

{
h(s)(τ, u)

}n
l,+ = (qµνuµ∇ν)l−s+n(qµνuµ∂νu)s−n(t · ∂u)nh(s)(x, u)

∣∣∣
x=x(τ)

− 3d traces ; (4.4){
h(s)(τ, u)

}n
l,− = (qµνuµ∇ν)l−s+n(εµνρuµ∇ν∂ρu)(qµνuµ∂νu)s−n(t · ∂u)nh(s)(x, u)

∣∣∣
x=x(τ)

− 3d traces .
(4.5)

Here, l denotes the tensors’ 3d rank (i.e. their angular momentum number), and the ±
superscript denotes their spatial parity. Tensors with the same 3d structure (l,±) are
distinguished by the superscript n, which denotes the number of indices on h(s) taken
along the time direction. εµνρ ≡ εµνρσλtσxλ is the 3d “spatial” Levi-Civita tensor, and
“− 3d traces” means subtracting ∼ qµνu

µuν terms so as to make the result traceless. n

runs from 0 to s for the even tensors (4.4), and from 0 to s− 1 for the odd tensors (4.5). l
runs from s− n to ∞ in both cases.

The general ansatz for the vertex Vnew,TT can now be assembled by constructing the
data (4.4)–(4.5) for the fields h1, h2 on the worldline γ3, and then coupling the pieces with
matching parity η = ± and angular momentum l:

Ss1,s2 [Vnew,TT;h1, h2, γ3] = −
∫ ∞
−∞

dτ
∑
l,η

∑
n1,n2

{
h

(s1)
1 (τ, ∂u)

}n1
l,η
Kn1,n2
s1,s2,l,η

(∂τ )
{
h

(s2)
2 (τ, u)

}n2
l,η
,

(4.6)
where

{
h

(s1)
1 (τ, ∂u)

}n1
l,η

refers to computing
{
h

(s1)
1 (τ, u)

}n1
l,η

as in (4.4)–(4.5) and then sub-
stituting uµ → ∂µu , in order to contract the tensor indices with those of

{
h

(s2)
2 (τ, u)

}n2
l,η
.

The non-trivial information about the vertex is now contained in the kernel
Kn1,n2
s1,s2,l,η

(∂τ ). Once again, a sufficiently general K can describe any cubic quantity with
the prescribed spacetime symmetries. In particular, there exists a K that reproduces the
cubic CFT correlator as in (4.1). Our task will be to show that this K is sufficiently local,
i.e. that its non-locality is constrained to ∼ 1 AdS curvature radius. With respect to the
geodesic γ3, this locality statement can be split into two parts. First, we can speak of
“radial locality”, transverse to γ3. This amounts to Kn1,n2

s1,s2,l,η
(∂τ ) vanishing fast enough

as the numbers l − s1 + n1, l − s2 + n2 of “spatial” derivatives increase. Second, we can
speak of “time locality”, along γ3. This amounts to Kn1,n2

s1,s2,l,η
(∂τ ) being analytic in time

derivatives ∂τ , and its Taylor coefficients vanishing fast enough with increasing powers of
∂τ . In this paper, we will not calculate Kn1,n2

s1,s2,l,η
(∂τ ), and thus we won’t be able to check

these locality properties directly. Instead, we will formulate proxy criteria for them in
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(a) (b)

Figure 5. Illustration of our radial locality criterion. In panel (a), we see an interaction that is not
localized near the geodesic, i.e. that involves the fields Π1,Π2 arbitrarily far from it. In the limit
of nearby source points `1, `2, this creates contributions with “short” propagators, which become
singular at `1 = `2. In panel (b), we see an interaction that is localized near the geodesic. The
propagators from `1, `2 are now “long”, and the `1 = `2 limit has no singularities.

terms of the behavior of the diagram Ss1,s2 [Vnew,TT; Π1,Π2, γ3] in certain limits, and then
demonstrate that these criteria hold.

4.3 Radial locality of Vnew,TT

4.3.1 Formulating the criterion

Our proxy criterion for radial locality is as follows.

Radial locality criterion. A vertex Vnew,TT coupling two boundary-bulk propagators
Π1,Π2 to a geodesic worldline γ3 is radially local, if its action Ss1,s2 [Vnew,TT; Π1,Π2, γ3]
as a function of the source points `1, `2 is analytic at `1 = `2.

The motivation for this criterion is depicted in figure 5. A radially local vertex should
only involve the fields Π1,Π2 near (i.e. within ∼ 1 AdS radius from) the γ3 worldline. In
that situation, depicted in figure 5(b), the diagram is analytic near `1 = `2, because it
never involves “short” propagators that would go singular in the limit. In contrast, in
figure 5(a), we see a “vertex” that couples Π1 and Π2 far from γ3. This allows for “short”
propagators from `1, `2, which cause a singularity at `1 = `2, i.e. an infinity in the diagram
itself or in its derivatives with respect to `1, `2. There is no third possibility, in the sense
that the vertex cannot depend on only one of Π1,Π2 at points distant from the geodesic.
This is clear from the ansatz (4.6), where the number of “spatial” derivatives acting on
Π1,Π2 can grow only together, governed by the angular momentum number l.

Note the similarity between figure 5(a) and the VST diagram from figure 4. Indeed,
if we were to foolishly express the “field-field-field” diagram ∑

s3 Ss1,s2,s3 [VST; Π1,Π2, φ3]
as a “field-field-worldline” diagram Ss1,s2 [ṼST; Π1,Π2, γ3], then ṼST would constitute an
example of a radially non-local vertex. It’s easy to see that this is consistent with our
criterion above, by noting e.g. that the diagram diverges at `1 = `2. To see this in detail,
note that the `1 → `2 limit is conformal to the `3 → `′3 limit, where the dominant con-
tribution to the DV field φ3 is a spin-0 boundary-bulk propagator, φ(0)

3 ∼
√
−`3 · `′3 Π(0)

3 .
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Figure 6. An intermediate step in the radial locality argument. To the left of the dashed hyper-
surface Σ, the DV field of γ3 is source-free, and can be written (up to gauge) as a superposition of
boundary-bulk propagators.

Thus, the dominant piece of ∑s3 Ss1,s2,s3 [VST; Π1,Π2, φ3] behaves at `3 → `′3 like a stan-
dard cubic diagram ∼

√
−`3 · `′3 Ss1,s2,0[VST; Π1,Π2,Π3] computing the cubic correlator

∼
√
−`3 · `′3

〈
j

(s1)
1 j

(s2)
2 j

(0)
3

〉
, which diverges at `1 = `2. Since we were careful to keep track

of the conformal weights, it’s clear that the divergence at `1 = `2 holds also in the original
conformal frame, where `3, `′3 are not necessarily close.

Moreover, the radial non-locality depicted in figure 5(a) is similar in nature to the
infamous non-locality of HS theory’s quartic scalar vertex in [11]. Indeed, the problem with
the quartic vertex is that it hides within it the structure of a bulk-bulk propagator, giving
the would-be contact diagram the structure of an exchange diagram. Again consistently
with our criterion, this diagram is indeed singular at `1 = `2, reproducing (up to a numerical
coefficient) the short-distance singularity of the quartic CFT correlator.

4.3.2 Verifying that the criterion holds

Having established and motivated our radial locality criterion, let us now demonstrate that
it holds for the vertex Vnew,TT that satisfies eq. (4.1). First, let us notice that the `1 → `2
limit can be characterized as the limit of large bulk distance between the geodesic γ(`1, `2)
and the geodesic worldline γ3. Now, let us draw a bulk hypersurface Σ that splits EAdS4
into two regions: a region Ω12 containing γ(`1, `2), and a region Ω3 containing γ3. This
splitting of EAdS4 is depicted as a dashed line in figure 6. The asymptotic boundary is
also split into two regions by Σ, which we’ll denote as B12 and B3. Crucially, we assume
that Σ, like γ3, is very far from γ(`1, `2).

Now, consider the restriction to Ω12 of the DV field φ3. Within this region, φ3 is a
solution to the source-free Fronsdal equation. From [37], we know the following about its
Weyl field strength at boundary points L12 belonging to the region B12:

• The magnetic field strength (in the spin-0 case, the boundary data with weight ∆ = 2)
vanishes.

• The electric field strength (in the spin-0 case, the boundary data with weight ∆ = 1)
matches the bilocal-local correlators

〈
O(`3, `′3) j(s)(L12, λ12)

〉
.
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Now, since it is source-free with vanishing magnetic boundary data on B12, the restriction
of φ3 to Ω12 must be, up to gauge, a superposition of boundary-bulk propagators Π3 with
source points in B3 (see figure 6):

φ(s3)(x, u; `3, `′3)
∣∣∣
x∈Ω12

=
∫
B3
d3L3A

(s3)
`3,`′3

(L3, ∂λ) Π(s3)(x, u;L3, λ) + h̃
(s3)
3 (x, u) . (4.7)

Here, the coefficients A(s3)
`3,`′3

describe some traceless boundary sources as in (2.37), while
h̃3 is a pure-gauge field. Furthermore, since the r.h.s. of (4.7) has the same electric field
strength on B12 as the original field φ3, we conclude that the corresponding boundary
currents in B3 have the same quadratic correlators with currents in B12 as the original
bilocal O(`3, `′3):∫

B3
d3L3A

(s)
`3,`′3

(L3, ∂λ)
〈
j(s)(L3, λ) j(s)(L12, λ12)

〉
=
〈
O(`3, `′3) j(s)(L12, λ12)

〉
(4.8)

for all L12 ∈ B12 .

From the discussion in section 2.3, it then follows that
∫
B3
d3L3A

(s)
`3,`′3

(L3, ∂λ) j(s)(L3, λ)
and O(`3, `′3) have the same correlators with any operators in B12. In particular, they have
the same cubic correlators with our original local currents j(s1)

1 and j(s2)
2 :∫

B3
d3L3

∑
s3

A
(s3)
`3,`′3

(L3, ∂λ)
〈
j

(s1)
1 j

(s2)
2 j(s3)(L3, λ)

〉
=
〈
j

(s1)
1 j

(s2)
2 O3

〉
. (4.9)

Now, consider the behavior of φ3 at the asymptotic boundary B12, by examining the
formula (2.59)–(2.60) for the DV solution. Since we’re away from the worldline endpoints
`3, `

′
3, the asymptotic boundary is a large-R regime. R itself scales asymptotically as

R ∼ z−1, implying that the norms (2.58) of tµ and rµ scale as
√
t · t ∼ z and

√
r · r ∼ 1.

It is now easy to see that φ(s3)
3 satisfies the condition (3.29) at B12, i.e. its components

in a normalized Poincare basis scale as O(zs3+1). Since this is true of the propagators Π3
in (4.7), we conclude that it must be true of the pure-gauge field h̃3 as well.

We are now ready for the main part of the radial-locality argument. Consider the field
φ̂3, defined by the r.h.s. of (4.7) throughout the bulk, i.e. in Ω3 as well as Ω12. Thus, φ̂3
agrees with φ3 in Ω12, but is source-free in the entire bulk. We assume that the pure-gauge
field h̃3 is extended in such a way that it continues to satisfy the scaling condition (3.29)
at B3 as well as B12. This is easy to arrange: by the logic of section 3.4, it is sufficient to
ensure that the divergence (∂u ·∇)h̃3 satisfies (3.36) — the natural scaling for a divergence-
free symmetric tensor — and then choose the solution of eqs. (3.34)–(3.35) with vanishing
∼ z1−s+q boundary conditions.

Now, consider the bulk analogue of the correlator equation (4.9). The r.h.s. of (4.9) is
calculated by the three diagrams of (4.1), whereas the l.h.s. is calculated by the standard
Sleight-Taronna cubic diagram Ss1,s2,s3 [VST; Π1,Π2,Π3], with the appropriate sum over s3
and integral over L3. By the results of section 3, this diagram stays unchanged when we
shift the propagators Π3 by the pure-gauge field h̃3 as in (4.7). Thus, the bulk analogue
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Figure 7. The main step in the radial locality argument. The Vnew,TT diagram is expressed as a
combination of terms that are manifestly analytic at `1 = `2.

of (4.9) can be written as:∑
s3

Ss1,s2,s3 [VST; Π1,Π2, φ̂3] =
∑
s3

Ss1,s2,s3 [VST; Π1,Π2, φ3]− Ss1 [Π1, γ3]Ss2 [Π2, γ3]

+ Ss1,s2 [Vnew,TT; Π1,Π2, γ3] .
(4.10)

Each of the two VST diagrams in (4.10) contains a bulk integral over the position x of
the Sleight-Taronna vertex. The Ω12 portion of this integral cancels between the l.h.s.
and r.h.s. , because φ3 and φ̂3 are equal there. We conclude that Ss1,s2 [Vnew,TT; Π1,Π2, γ3]
is given by the difference between the Ω3 portions of the two VST diagrams, plus the
double-exchange term Ss1 [Π1, γ3]Ss2 [Π2, γ3]; this situation is depicted in figure 7. Now,
notice that all of these terms involve “long” propagators stretching from `1 and `2 into the
distant region Ω3. Thus, the three terms are all analytic at `1 = `2, and therefore so is the
Vnew,TT diagram. This concludes our argument for the radial locality of Vnew,TT.

4.4 Time locality of Vnew,TT

4.4.1 Formulating the criterion

We now turn to our proxy criterion for “time” locality of the new vertex. First, let us
notice that the geodesic γ3 induces a coordinate system on EAdS4 and its boundary.
Setting `µ3 = (1

2 ,
1
2 ,
~0) and `′µ3 = (1

2 ,−
1
2 ,
~0), this coordinate system reads:

xµ(τ,R,n) =
√

1 +R2 (cosh τ, sinh τ,~0) +R (0, 0,n) ; (4.11)
`µ(τ,n) = (cosh τ, sinh τ,n) , (4.12)
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(a) (b)

Figure 8. Illustration of our “time” locality criterion. We consider a field-field-worldline interaction
in the limit of large “time” separation |τ1 − τ2| between `1 and `2. If the interaction is local, i.e.
decays exponentially with the distance ∆τ along the geodesic, the diagram will exponentially decay
with |τ1 − τ2|. This can happen through some combination of the scenarios in panels (a), (b).
In panel (a), the diagram is dominated by contributions with ∆τ ≈ |τ1 − τ2|, and is governed
by the interaction’s decay with ∆τ . In panel (b), the diagram is dominated by contributions with
∆τ = O(1), and its exponential decay in |τ1−τ2| is due to the “long” boundary-bulk propagators. If
the interaction is not time-local, the dominant contribution will always be panel (a), and its failure
to decay exponentially in |τ1 − τ2| will be governed by the interaction’s failure to decay in ∆τ .

where R is the distance function (2.54) from γ3, and n ∈ S2 is a 3d unit vector. In
particular, the length parameter τ along γ3 extends into a “time” coordinate τ throughout
the bulk and boundary, with “time translations” τ → τ + c being a spacetime symmetry
(in embedding space, these are just boosts in the (`3, `′3) plane). Our time locality criterion
now reads:

Time locality criterion. A vertex Vnew,TT coupling two boundary-bulk propagators Π1,Π2
to a geodesic worldline γ3 is time-local, if its action Ss1,s2 [Vnew,TT; Π1,Π2, γ3] vanishes
exponentially at large time difference |τ1 − τ2| between the source points `1 and `2.

Let us explain the reasoning behind this criterion. We assume that radial locality
is satisfied, so that Vnew,TT couples the fields Π1,Π2 only in the vicinity of γ3. Then,
our desired time-locality property is for this coupling to vanish exponentially for points
separated by large distances ∆τ along γ3. The premise of our criterion is that exponential
decay at large |τ1 − τ2| on the boundary is a good proxy for the desired exponential decay
in ∆τ on the geodesic. To become convinced of this, let us consider in detail the diagram
Ss1,s2 [Vnew,TT; Π1,Π2, γ3] at large |τ1 − τ2| (see figure 8).

If the vertex couples Π1 and Π2 at approximately the same point x(τ) on the geodesic
with ∆τ = O(1), the diagram will appear as in figure 8(b). This features boundary-bulk
propagators that stretch across long intervals |τ1 − τ | and |τ − τ2|. Let us examine the
behavior of such “long” propagators. We focus on e.g. the Π1 propagator, with source
point `µ1 = (cosh τ1, sinh τ1,n1) at τ1 � 1, and assume that the polarization vector λµ1 has
O(1) components (λτ1 ,λ1) along the τ axis and the 2-sphere:

λµ1 = (λτ1 sinh τ1, λ
τ
1 cosh τ1,λ1) . (4.13)
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The building blocks of the propagator (2.45) then read:

`1 · x = − cosh(τ1 − τ) ≈ −e
|τ1−τ |

2 ;

mµ
1 =

(
0, λτ1 ,λ1 cosh(τ1 − τ)− λτ1n1 sinh(τ1 − τ)

)
= O

(
e|τ1−τ |) . (4.14)

We conclude that the “long” propagator Π1 scales as O
(
e−(s1+1)|τ1−τ |

)
, and similarly for

Π2. The product of the two propagators at the geodesic therefore scales as:

Π1Π2 = O
(
e−(min(s1,s2)+1)|τ1−τ2|) = O

(
e−|τ1−τ2|) . (4.15)

Thus, if the vertex couples Π1 and Π2 at distances ∆τ = O(1), the diagram decays exponen-
tially at large |τ1 − τ2|, consistently with our criterion. Now, consider the complementary
situation, depicted in figure 8(a): “short” O(1) boundary-bulk propagators, followed by a
coupling of fields at distance ∆τ ≈ |τ1 − τ2| along the geodesic. In this case, the large-
|τ1−τ2| behavior of the diagram is directly dictated by the large-∆τ behavior of the vertex,
again in agreement with our criterion. For a non-local vertex, the interaction of figure 8(a)
will always dominate; for a local vertex, the interaction may be dominated by figure 8(a)
or 8(b), or some combination of the two. In any case, we see that exponential decay of the
diagram as a function of |τ1− τ2| on the boundary is a faithful proxy for exponential decay
of the vertex as a function of ∆τ on the geodesic.

As with radial locality, it is easy to find an example of a vertex that isn’t time-local.
Such a vertex can be obtained by foolishly writing the product term Ss1 [Π1, γ3]Ss2 [Π2, γ3]
in (4.1) in terms of a single field-field-worldline vertex, as Ss1,s2 [Vprod; Π1,Π2, γ3]. This is
immediately non-local by our criterion, since the diagram doesn’t depend on τ1− τ2 at all.

Finally, note that our radial and time locality criteria have different relationships with
the holographic UV/IR inversion. In the bulk, both criteria are concerned with the vertex’s
IR behavior. In the case of radial locality, this translates into the UV limit `1 = `2 on the
boundary: as expected, the radial direction behaves holographically. On the other hand,
for time locality, IR in the bulk stays IR on the boundary: the “time” coordinate τ is
common to both, and does not get inverted.

4.4.2 Verifying that the criterion holds

Having established and motivated our “time” locality criterion, let us now demonstrate
that it holds for the vertex Vnew,TT that satisfies eq. (4.1). As in section 4.4.1, we set:

`µi = (cosh τi, sinh τi,ni); λµi = (λτi sinh τi, λτi cosh τi,λi) ; (4.16)

`µ3 =
(1

2 ,
1
2 ,
~0
)

; `′µ3 =
(1

2 ,−
1
2 ,
~0
)
, (4.17)

with i = 1, 2. Again, we are interested in the limit of large |τ1 − τ2|, and assume that the
polarization components λτi ,λi are O(1).

We begin by examining the CFT correlator
〈
j

(s1)
1 j

(s2)
2 O3

〉
in the large |τ1 − τ2| limit.

To simplify the analysis, we point-split the currents j(s1)
1 and j

(s2)
2 into bilocals O(`1, `′1)

and O(`2, `′2), where:

`′µi = (cosh τ ′i , sinh τ ′i ,n′i) ; τ ′i − τi = O(1) , (4.18)

– 36 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
2

again with i = 1, 2. We can revert back to the local currents by taking derivatives at
`′µi = `µi , as in (2.34). These translate simply into derivatives (with O(1) coefficients) with
respect to the coordinates (τi,ni) and (τ ′i ,n′i) at (τ ′i ,n′i) = (τi,ni). Thus, we consider the
CFT correlator:

〈O1O2O3〉 = 4N × G(`′3, `1)G(`′1, `2)G(`′2, `3) +G(`′3, `2)G(`′2, `1)G(`′1, `3)
G(`1, `′1)G(`2, `′2)G(`3, `′3) , (4.19)

where G(`, `′) is the boundary propagator (2.31). The factor of G(`1, `′1)G(`2, `′2) is just
an artifact of the normalization in our point-splitting procedure j(si)

i → Oi, and we leave
it as-is. The other boundary propagators in (4.19) can be constructed from the scalar
products:

`3 ·`′3 = −1
2; `3 ·`i = −1

2e
−τi ; `′3 ·`i = −1

2e
τi ; `1 ·`2 = − cosh(τ1−τ2)+n1 ·n2 , (4.20)

and similarly for `1 → `′1 and/or `2 → `′2. For τ1 − τ2 large and positive (negative),
the second (first) term in (4.19) dominates. Overall, the result is an O(1) term with an
O
(
e−|τ1−τ2|

)
correction:

〈O1O2O3〉 = N

4π2G(`1, `′1)G(`2, `′2)
(
e(τ ′1−τ1+τ ′2−τ2)/2 +O

(
e−|τ1−τ2|)) . (4.21)

Now, the key observation is that the O(1) term in (4.21) is precisely reproduced by the
double-exchange term in our bulk formula (4.1). Indeed, upon extending the point-splitting
procedure j(si)

i → Oi to the bulk fields Πi → φi, the double-exchange term becomes:

N
∑
s1,s2

Ss1 [φ1, γ3]Ss2 [φ2, γ3] = 1
N
〈O1O3〉〈O2O3〉

= 4N × G(`′3, `1)G(`′1, `3)
G(`1, `′1)G(`3, `′3) ×

G(`′3, `2)G(`′2, `3)
G(`2, `′2)G(`3, `′3)

= Ne(τ ′1−τ1+τ ′2−τ2)/2

4π2G(`1, `′1)G(`2, `′2) .

(4.22)

Thus, the difference between (4.21) and (4.22) is O
(
e−|τ1−τ2|

)
. Reverting back to local

currents j(si)
i , this becomes:

〈
j

(s1)
1 j

(s2)
2 O3

〉
−NSs1 [Π1, γ3]Ss2 [Π2, γ3] = O

(
e−|τ1−τ2|) . (4.23)

The Sleight-Taronna contribution ∑s3 Ss1,s2,s3 [VST,Π1,Π2, φ3] also decays at large “time”
separation as e−|τ1−τ2|. This is easy to see by extending our analysis of Π1,Π2 in sec-
tion 4.4.1 above, away from the γ3 geodesic. Setting the bulk position x of the Sleight-
Taronna vertex at an arbitrary point (4.11), we see that the building blocks of e.g. Π1 have
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essentially the same large-|τ1 − τ | behavior as in (4.14):

`1 · x = −
√

1 +R2 cosh(τ1 − τ) +R (n1 · n) ≈ −e
|τ1−τ |

2
√

1 +R2 ;

mµ
1 =

√
1 +R2 (0, λτ1 ,λ1 cosh(τ1 − τ)− λτ1n1 sinh(τ1 − τ)

)
+R

(
(λ1 · n)

(
cosh(τ1 − τ), sinh(τ1 − τ),n1

)
− (n1 · n)

(
λτ1 sinh(τ1 − τ), λτ1 cosh(τ1 − τ),λ1

))
= O

(
e|τ1−τ2|) .

(4.24)

Therefore, the R1,4 components of Π1 scale as O
(
e−(s1+1)|τ1−τ |

)
, and likewise for Π2. As

a result, similarly to (4.15), the Sleight-Taronna diagram vanishes as O
(
e−|τ1−τ2|

)
at large

time separation. Together with (4.23), this implies that the Ss1,s2 [Vnew,TT; Π1,Π2, γ3] con-
tribution to the correlator (4.1) also vanishes as O

(
e−|τ1−τ2|

)
, i.e. that Vnew,TT satisfies our

time locality criterion.

4.5 Vnew beyond transverse-traceless gauge

Let’s now consider shifting the boundary-bulk propagators Πi (i = 1, 2) by traceless pure-
gauge fields h̃i subject to the asymptotic condition (3.29). The field-field-worldline vertex
Vnew,TT from (4.1) must then be generalized into the vertex Vnew from (4.2). Let us discuss
the necessary corrections Vnew − Vnew,TT to the vertex, and show that they preserve the
locality properties established above for Vnew,TT. Following section 3.4, we denote the
gauge parameters corresponding to h̃i as Λi, recalling that these can be chosen so that
their components in an orthonormal Poincare basis vanish asymptotically as (3.37).

We now proceed in two steps. First, we will show that under the gauge shift Πi →
Πi + h̃i, the variation of the bulk diagrams in (4.1) is a local functional of the fields Πi

and gauge parameters Λi in the vicinity of the worldline γ3. Second, we’ll show that this
variation can be subsumed into a local vertex correction Vnew − Vnew,TT.

4.5.1 Gauge variation of uncorrected bulk diagrams

Let’s now go over the bulk diagrams (4.1), and discuss their variation under the gauge
shift Πi → Πi + h̃i. For the Vnew,TT diagram, we already established the ansatz (4.6), and
argued that it’s local on γ3. Thus, Ss1,s2 [Vnew,TT; Π1,Π2, γ3] is a local functional of Πi on
γ3, and similarly Ss1,s2 [Vnew,TT; Π1 + h̃1,Π2 + h̃2, γ3] is a local functional of Πi + h̃i on γ3.
Therefore, the difference between the two is also a local functional of Πi and h̃i on γ3.

The double-exchange diagram Ss1 [Π1, γ3]Ss2 [Π2, γ3] is not affected by the gauge shift at
all. Indeed, the effect of a gauge transformation on the field-worldline action (2.65) consists
of evaluating the gauge parameter at the worldline’s endpoints, its indices contracted with
the worldline’s unit tangent [23]:

Ssi [h̃i, γ3] = −4(i
√

2)sisi! Λ(si)
i

(
x(τ ; `3, `′3), ẋ(τ ; `3, `′3)

)∣∣∣∞
τ=−∞

. (4.25)

For each of the endpoints, we can choose a Poincare frame such that ẋµ becomes the unit
vector eµ0 in the z direction at z → 0. The scaling (3.37) of Λi then tells us that the gauge
transformation (4.25) indeed vanishes.
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Finally, the Sleight-Taronna diagram ∑
s3 Ss1,s2,s3 [VST; Π1,Π2, γ3] will be affected by

the gauge shift, but in a controlled way. In section 3, we showed that VST is invariant under
such gauge transformations, but that was in the absence of a γ3 worldline carrying Fronsdal
curvature. Thus, in the present setup, VST will get a gauge variation proportional to the
Fronsdal curvatures Fφ(s3)

3 , i.e. localized on γ3. The local nature of this gauge variation
is somewhat disrupted by the sum over s3. However, we can show that it remains local
within ∼ 1 AdS radius. Indeed, the potential source of non-locality is in derivatives of Πi

or Λi contracted with the indices of Fφ(s3)
3 . The question is then how the coefficients of

such derivatives behave with increasing spin. The spin-dependence (2.63) of Fφ(s3)
3 itself

is ∼ (
√

2)s3 , while the coupling constant in (2.79) goes as ∼ (
√

2)s3/Γ(s1 + s2 + s3) =
O
(
(
√

2)s3/s3!
)
(remembering that gauge transformations require s1 or s2 to be greater

than 0). Thus, derivatives of order s3 come with O(2s3/s3!) coefficients. This is a special
case a = 2 of the scaling as3/s3!, which governs the Taylor expansion ∑n

an

n!∇
n of a shift

by distance a. Therefore, the point at which Πi or Λi are evaluated is effectively shifted
by O(1) AdS radii, as desired.

4.5.2 Locality of the vertex corrections

So far, we established that the gauge shift Πi → Πi + h̃i induces variations in the bulk
diagrams of (4.1) that are local, in the sense that they involve the fields Π1,Π2 and gauge
parameters Λ1,Λ2 within ∼ 1 AdS radius of each other and of the worldline γ3. What
remains is to show that these variations can be incorporated as new local terms in the
vertex Vnew, which only sees the fields Πi + h̃i and not the gauge parameters Λi. To do
this, we can follow the same logic as with ordinary cubic vertices: we’ll first show that the
variation strictly vanishes for transverse-traceless h̃i, and then conclude that in the general
traceless case, it’s local not only in Λi, but in the h̃i themselves.

We thus begin by considering transverse-traceless pure-gauge fields h̃i (for this purpose,
we lift the asymptotic condition (3.29), which would have forced such fields to vanish). For
such pure-gauge fields, the asymptotic value limz→0 z

si−2[h̃i]0,si defines a pure-gauge field
on the boundary, derived from the gauge parameter limz→0 z

si−1[Λi]0,si−1. The shifted
bulk fields Πi+ h̃i in this setup remain in the space spanned by boundary-bulk propagators
Π(si), with coefficients shifted by this boundary gauge transformation. We assume that the
boundary gauge shift limz→0 z

s1−2[h̃1]0,s1 vanishes at the points `2, `3, `′3, and likewise for
1 ↔ 2. Such a gauge shift leaves us within the domain of applicability of eq. (4.1), with
the CFT correlator unchanged. Therefore, the gauge variation of the sum of bulk diagrams
in this case must also vanish. Since we already established that this gauge variation is
local, we conclude that it vanishes for any transverse-traceless shift h̃i, regardless of its
asymptotic behavior.

The upshot of the preceding paragraph is that, in our original context of traceless shifts
h̃i subject to the asymptotic condition (3.29), the gauge variation of the bulk diagrams must
be proportional to the deviation (3.35) from transverse-traceless gauge. This makes the
gauge variation local not only in Λi, but in the fields h̃i themselves, specifically through
their divergences (∂u · ∇)h̃i. This variation can then be canceled by adding to the vertex
Vnew,TT corrections proportional to (∂u ·∇)h̃i. In this way, we are able to construct a local
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vertex Vnew that satisfies the correlator formula (4.2) in the more general gauge defined by
Πi + h̃i.

4.6 Stitching together the correlator of three bilocals

We are now ready to graduate from the bilocal-local-local correlator
〈
j

(s1)
1 j

(s2)
2 O3

〉
to the

general correlator
〈
O+

1 O
+
2 O

+
3

〉
of three (even-spin) bilocals. Our claim is that this can be

expressed in the bulk as a straightforward sum of interactions between the three DV fields
φi and their worldlines γi (i = 1, 2, 3), constructed from the same building blocks that we
established in (4.1)–(4.2) (see figure 1 for the corresponding diagrams):

〈O+
1 O

+
2 O

+
3 〉 = −N

( ∑
s1,s2,s3

Ss1,s2,s3 [VST;φ1, φ2, φ3] (4.26)

−
∑
s1,s2

Ss1 [φ1, γ3]Ss2 [φ2, γ3]−
∑
s2,s3

Ss2 [φ2, γ1]Ss3 [φ3, γ1]−
∑
s3,s1

Ss3 [φ3, γ2]Ss1 [φ1, γ2]

+
∑
s1,s2

Ss1,s2 [Vnew;φ1, φ2, γ3] +
∑
s2,s3

Ss2,s3 [Vnew;φ2, φ3, γ1] +
∑
s3,s1

Ss3,s1 [Vnew;φ3, φ1, γ2]
)
.

Similarly, we claim that local-bilocal-bilocal correlators are given by:

〈
j

(s1)
1 O+

2 O
+
3

〉
= −N

( ∑
s2,s3

Ss1,s2,s3 [VST; Π1, φ2, φ3]

− Ss1 [Π1, γ3]
∑
s2

Ss2 [φ2, γ3]− Ss1 [Π1, γ2]
∑
s3

Ss3 [φ3, γ2]

+
∑
s2

Ss1,s2 [Vnew; Π1, φ2, γ3] +
∑
s3

Ss3 [Vnew; Π1, φ3, γ2]
)
.

(4.27)

We will focus below on the more general case (4.26); the arguments can be adapted trivially
to (4.27) as well.

To demonstrate the relation (4.26), we divide the bulk into regions, much like we did
in section 4.3.2; see figure 9. Each region contains one of the geodesics γi. We denote the
regions as Ωi, and their asymptotic boundaries as Bi. By the same logic as in section 4.3.2,
the DV field φ1 in the regions Ω2,Ω3 can be expressed as a superposition of boundary-bulk
propagators Π1 with boundary sources on B1, shifted by a pure-gauge field h̃1 that satisfies
the asymptotic condition (3.29). Again as in section 4.3.2, we can continue this expression
for φ1 back into region Ω1, making a bulk field φ̂1 which is everywhere a superposition
of Π1’s gauge-shifted by h̃1, which agrees with φ1 in Ω1,Ω2, and whose boundary data
is a superposition of local currents on B1 that have the same correlators with anything
supported on B2, B3 as the original bilocal O1. In the same way, we can construct source-
free fields φ̂2, φ̂3 out of the other DV fields φ2, φ3. We can then use the already established
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〈jjj〉 and 〈jjO〉 formulas (3.30), (4.2) to write 〈O1O2O3〉 in four different ways:

〈O+
1 O

+
2 O

+
3 〉=−N

∑
s1,s2,s3

Ss1,s2,s3 [VST; φ̂1, φ̂2, φ̂3] (4.28)

=−N
( ∑
s1,s2,s3

Ss1,s2,s3 [VST; φ̂1, φ̂2,φ3]+
∑
s1,s2

(
Ss1,s2 [Vnew; φ̂1, φ̂2,γ3]−Ss1 [φ̂1,γ3]Ss2 [φ̂2,γ3]

))

=−N
( ∑
s1,s2,s3

Ss1,s2,s3 [VST;φ1, φ̂2, φ̂3]+
∑
s2,s3

(
Ss2,s3 [Vnew; φ̂2, φ̂3,γ1]−Ss2 [φ̂2,γ1]Ss3 [φ̂3,γ1]

))

=−N
( ∑
s1,s2,s3

Ss1,s2,s3 [VST; φ̂1,φ2, φ̂3]+
∑
s3,s1

(
Ss3,s1 [Vnew; φ̂3, φ̂1,γ2]−Ss3 [φ̂3,γ2]Ss1 [φ̂1,γ2]

))
.

Now, recall that the VST diagrams consist of a standard local integral (2.78) over EAdS4,
which can be decomposed into a sum of integrals over the regions Ωi. We can then use the
fact that φi and φ̂i are equal outside of Ωi to write e.g. Ss1,s2,s3 [VST; φ̂1, φ̂2, φ3] as the Ω1∪Ω2
portion of Ss1,s2,s3 [VST; φ̂1, φ̂2, φ̂3], plus the Ω3 portion of Ss1,s2,s3 [VST;φ1, φ2, φ3]. Similarly,
we can replace e.g. Ss1,s2 [Vnew; φ̂1, φ̂2, γ3] with Ss1,s2 [Vnew;φ1, φ2, γ3], and Ss1 [φ̂1, γ3] with
Ss1 [φ1, γ3], since the value and derivatives of φ̂1, φ̂2 on γ3 are the same as those of φ1, φ2.
With these substitutions, when we add the last three lines of (4.28) and subtract twice the
first line, we obtain the desired formula (4.26).

There remain two subtleties worth addressing. First, are e.g. φ1 and φ̂1 really inter-
changeable inside Ss1,s2 [Vnew;φ1, φ2, γ3], or in the Ω2∪Ω3 portion of Ss1,s2,s3 [VST;φ1, φ2, φ3]?
One may worry that the answer is sensitive to the order of operations. For each spin, and
at each order in derivatives, φ1 and φ̂1 are indeed the same within Ω2∪Ω3, and in particular
on the worldlines γ2, γ3. Thus, if we evaluate the derivatives before performing the sums
over spins and angular momenta in (4.6) and (4.26)–(4.28), our logic will hold. But what if
we perform the sums first? Might they lead to φ̂1 being effectively evaluated inside Ω1, and
thus “noticing” its difference from the original φ1? This seems especially pertinent given
that the worldlines γi can lie arbitrarily close to each other, and thus to the boundaries
between the regions Ωi.

Our claim is that such a problem will not occur. This is because our construction only
involves infinite towers of traceless derivatives:

• In the Sleight-Taronna vertex VST from (2.79), the derivatives are traceless in EAdS4,
since their indices are always contracted with traceless HS fields.

• In the new vertex Vnew,TT in transverse-traceless gauge, our ansatz (4.4)–(4.6) implies
that all derivatives are traceless in the 3d space transverse to the worldline.

• The vertex corrections Vnew − Vnew,TT from section 4.5 are constructed from gauge
variations of VST and Vnew,TT, and thus also inherit their traceless-derivatives struc-
ture.

Now, towers of traceless derivatives can define initial data for a source-free field, and they
can generate translations along lightrays in Lorentzian signature. However, they can’t
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Figure 9. The different terms in our procedure to “stitch together” the correlator of three bilocals
out of bilocal-local-local correlators. In the regions that do not contain its worldline, each DV field
can be viewed as a gauge-transformed superposition of boundary-bulk propagators.

generate translations over any finite distance in Euclidean signature, nor can they “tell the
difference” between a field that’s source-free everywhere and one that is merely source-free
in a finite neighborhood. Thus, we are safe from the vertices “noticing” the difference
between e.g. φ1 and φ̂1 outside of Ω1.

The last subtlety we’d like to address is the effect of the sums over spins in (4.26) on
the locality of the bulk diagrams. For fixed spins, we already know that VST is strictly
local, and that Vnew is non-local at most within ∼ 1 AdS radius. How do the sums over
spins affect these properties? For VST, the sum over spins introduces an infinite tower of
derivatives, which indeed leads to some non-locality (we’ll see this explicitly on an example
in section 5). However, we’ll now argue that this non-locality is confined within ∼ 1 AdS
radius. This stems from a series of observations:

• The powers of derivatives in the vertex formula (2.79) are just the spins si themselves.

• Their coefficients are the coupling constants in (2.79). As one or more spins grow
large, these scale as ∼ (

√
2)s1+s2+s3

(s1+s2+s3−1)! = O
(

(
√

2)s1+s2+s3
(s1−1)!(s2−1)!(s3−1)!

)
.
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• The derivatives in (2.79) are contracted with DV fields (2.60), whose spin-dependence
amounts to an extra factor of

√
2 kµ whenever the spin is raised by 1.

• The real and imaginary parts of kµ = 1
2(tµ + irµ/R) both have norms between 0 and

1
2 : tµ goes from unit norm on the worldline to zero norm an infinity, while rµ/R does
the reverse.

Overall, we see that the tower of derivatives in the VST diagram is bounded by a product of
Taylor series of the form ∏

i

∑
si

2si
(si−1)!(ki ·∇)si , which (up to a shift by one derivative) de-

scribe translations by the vectors 2kµi , whose real and imaginary parts have norm bounded
by 1. The non-locality is therefore indeed confined to ∼ 1 AdS radius.

Finally, for Vnew, our claim is that the sum over spins in (4.26) does not extend its
non-locality beyond ∼ 1 AdS radius. To see this, one can rerun the locality arguments from
sections 4.3–4.4, with boundary bilocals O+

1 ,O
+
2 in place of the currents j(s1)

1 , j
(s2)
2 , and

with DV fields φ1, φ2 (involving all even spins) in place of the boundary-bulk propagators
Π1,Π2.

5 Example: locality in the (0,0,bilocal) correlator

In this section, we perform a (partially numerical) study of the
〈
j

(0)
1 j

(0)
2 O3

〉
correlator,

between two spin-0 boundary “currents” and one bilocal. This will serve as a concrete
example for several of the features discussed in section 4.

5.1 Bulk scalar modes

As in section 4.4, we fix the bilocal’s endpoints at `µ3 = (1
2 ,

1
2 ,
~0) and `′µ3 = (1

2 ,−
1
2 ,
~0),

and use these to induce a coordinate system (4.11)–(4.12) on the bulk and boundary. We
then use these coordinates’ R × SO(3) symmetry to arrange the scalar fields h1, h2 into
modes with “time” frequency ω and angular momentum numbers l,m. Since the bilocal is
invariant under the R × SO(3), we can only have coupling between modes of h1, h2 with
equal l, and equal & opposite ω and m. Moreover, by SO(3) symmetry, it’s sufficient to
study the m = 0 modes. Thus, we are interested in modes of the form:

hω,l(x) = eiωτψω,l(R)Pl(n · n0) , (5.1)

where Pl is a Legendre polynomial, and n0 is some fixed 3d unit vector. The modes’ radial
dependence ψω,l(R) is found by solving the field equation (∇ · ∇ + 2)h(0) = 0 in EAdS4.
This can be simplified by using the equation’s conformal invariance, and the conformal
relation between EAdS4 and R× (half-S3):

dx · dx = (1 +R2)dτ2 + dR2

1 +R2 +R2dΩ2 = (1 +R2)
(
dτ2 + dα2 + sin2 αdΩ2

)
, (5.2)

where dΩ2 is the 2-sphere metric. The S3 angle α is defined as α ≡ arctanR, and the
asymptotic boundary R = ∞ becomes the S3 equator α = π

2 . The problem now reduces
to solving the Laplacian equation (∇ ·∇− ω2 − 1)ψ̂ = 0 on the half-S3. The solution that
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is regular at R = 0 (i.e. at α = 0) is an S3 spherical harmonic (see e.g. [41]) with complex
angular momentum number (this is allowed because our S3 doesn’t continue beyond α = π

2 ):

ψ̂ = 1√
sinα

P
− 1

2−l
− 1

2 +iω(cosα)Pl(n · n0) , (5.3)

where Pml is the associated Legendre function. Note that despite the appearance of a
complex parameter, P−

1
2−l

− 1
2 +iω = P

− 1
2−l

− 1
2−iω

is a real function. Converting back from α to R,
and multiplying by the conformal factor 1√

1+R2 , we obtain the radial dependence of our
modes (5.1) as:

ψω,l(R) = 1√
R
√

1 +R2
P
− 1

2−l
− 1

2 +iω

( 1√
1 +R2

)
. (5.4)

In the asymptotic analysis of the modes (5.1), we can use R−1 as the holographic coordinate
z. Thus, the asymptotic data of the modes (5.1) with weights ∆ = 1, 2 can be extracted as
the coefficients of R−1 and R−2 respectively in the boundary limit xµ(τ,R,n)→ R`µ(τ,n)
at R→∞:

hω,l(x) −→
xµ→R`µ

ϕω,l(`)
R

+ πω,l(`)
R2 +O

( 1
R3

)
; (5.5)

ϕω,l(`) = eiωτPl(n · n0)P−
1
2−l

− 1
2 +iω(0) ; (5.6)

πω,l(`) = eiωτPl(n · n0)
(
P
− 1

2−l
− 1

2 +iω

)′
(0) = −eiωτPl(cos θ)P

1
2−l
− 1

2 +iω(0) , (5.7)

where the value and derivative of the Legendre functions at zero can be found in e.g. [42].
The ∆ = 2 boundary data (5.7) can be used to decompose our modes (5.1) in terms of the
boundary-bulk propagators Π(0)(x; `) (2.45), whose own boundary data reads (see e.g. [22]):

Π(0)(x; ˆ̀) = − 1
16π2(x · ˆ̀)

−→
xµ→R`µ

− 1
16π2(` · ˆ̀)R

− δ3(`, ˆ̀)
4R2 +O

( 1
R3

)
. (5.8)

Comparing (5.7) with (5.8) and denoting the boundary coordinates of ˆ̀ as (τ̂ , n̂), we get
the decomposition:

hω,l(x) = 4P
1
2−l
− 1

2 +iω(0)
∫
dτ̂ eiωτ̂

∫
d2n̂Pl(n̂ · n0) Π(0)(x; τ̂ , n̂) . (5.9)

From this, we read off the boundary dual of the bulk modes (5.1) as a superposition of
spin-0 “currents”:

j
(0)
ω,l = 4P

1
2−l
− 1

2 +iω(0)
∫
dτ eiωτ

∫
d2nPl(n · n0) j(0)(τ,n) (5.10)

5.2 Ingredients of the correlator

We are now ready to plug the above (ω, l) modes into the correlator formula (4.1). On the
boundary side, this describes a correlator between O(`3, `′3) ≡ O3 and two spin-0 operators
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of the form (5.10), i.e. j(0)
ω,l and j

(0)
−ω,l. In coordinate space, the CFT correlator (2.36) for

this case reads:〈
j(0)(`1)j(0)(`2)O(`3, `′3)

〉
= NG(`1, `2)

G(`3, `′3)
(
G(`1, `3)G(`2, `′3) +G(`2, `3)G(`1, `′3)

)
= NG(`1, `2)

2π cosh τ1 − τ2
2 .

(5.11)

In frequency space, the CFT propagator G(`1, `2) becomes just the inverse of minus the
conformal Laplacian:

G(`1, `2) = − 1
�`
−→ 1

ω2 + (l + 1
2)2 , (5.12)

while the factor of cosh τ1−τ2
2 becomes a frequency shift ω → ω ± i

2 . Overall, the CFT
correlator

〈
j

(0)
ω,l j

(0)
−ω,lO3

〉
reads:

〈
j

(0)
ω,l j

(0)
−ω,lO3

〉
= 32N

2l + 1

(∫ ∞
−∞

dτ

)(
P

1
2−l
− 1

2 +iω(0)
)2

Re 1
ω(ω + i) + l(l + 1) , (5.13)

where the appearance of an infinite τ integral is a standard expression of “time” translation
symmetry.

Let us now turn to the bulk side of the correlator formula (4.1), where the scalar
bulk fields hω,l and hω,−l are interacting with the DV field φ3 and its worldline γ3. We
begin with the Sleight-Taronna diagram ∑

s S0,0,s[VST;hω,l, h−ω,l, φ3]. Due to the singular
behavior (2.80) of V (0,0,0)

ST , we must treat the cases s = 0 and s > 0 separately. The s = 0
diagram can be evaluated using the ∆ = 1 boundary data of the modes h±ω,l and of the
DV field φ

(0)
3 . The former is given by (5.6), while the latter is just the coefficient of 1

R

in (2.60), i.e. 1/π. Plugging these into (2.80), we get:

−NS0,0,0[VST;hω,l, h−ω,l, φ3] = 32N
2l + 1

(∫ ∞
−∞

dτ

)(
P
− 1

2−l
− 1

2 +iω(0)
)2

. (5.14)

We now turn to the Sleight-Taronna diagram with s > 0. The relevant vertex (2.79) reads
simply:

V
(0,0,s)

ST (∂x1 ; ∂x2 ; ∂u3) =
8
(
i
√

2
)s

(s− 1)!
[
(∂u3 · ∂x1)s + (∂u3 · ∂x2)s

]
. (5.15)

Plugging in our scalar modes h±ω,l(x) and the DV field (2.60), this becomes (keeping in
mind that the participating spins s are even):

V
(0,0,s)

ST hω,l h−ω,l φ
(s)
3 = 16

πR(s− 1)!
[
h−ω,l(2k · ∂x)shω,l + hω,l(2k · ∂x)sh−ω,l

]
, (5.16)

where kµ = kµ(x; `3, `′3) is the null vector (2.59) generated by the γ3 geodesic. In our
coordinates (4.11), the derivative 2k · ∂x along kµ reads:

2k · ∂x = t · ∂x + i

R
r · ∂x = 1

1 +R2
∂

∂τ
+ i

∂

∂R
. (5.17)
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Since kµ is null k·k = 0 and affine (k·∇)k = 0, the line {xµ+2akµ|a ∈ R} is a (complexified)
lightray in both R1,4 and EAdS4. Explicitly, this lightray takes the form:

xµ → xµ + 2akµ : (τ,R,n)→
(
τ − i arctan(R+ ia) + i arctanR,R+ ia,n

)
. (5.18)

Shifting the field hω,l(x) along this lightray, we get:

hω,l(x+ 2ak) = eiωτeω[arctan(R+ia)−arctanR] ψω,l(R+ ia)Pl(n · n0) . (5.19)

In terms of these shifted fields, the (2k · ∂x)s derivatives in (5.16) can be recast as ds

das .
Integrating the vertex (5.16) over EAdS4 with the measure d4x = R2dR dτd2n, we get:

−NS0,0,s[VST;hω,l, h−ω,l, φ3] = 128N
(2l + 1)(s− 1)!

(∫ ∞
−∞

dτ

)
(5.20)

×
∫ ∞

0
RdRψω,l(R) d

s

das

(
cosh

[
ω(arctan(R+ ia)− arctanR)

]
ψω,l(R+ ia)

)∣∣∣∣
a=0

,

where ψω,l(R) is the radial dependence function (5.4). Summing the diagrams (5.20) over
spin channels s, we get essentially a Taylor series, carrying the scalar fields from a = 0 to
a = ±1 along the complex lightray (5.18), i.e. from xµ to xµ ± 2kµ. Explicitly, the sum
of (5.20) over positive even s reads:

−N
∑

even s>0
S0,0,s[VST;hω,l, h−ω,l, φ3] = 128N

2l + 1

(∫ ∞
−∞

dτ

)
(5.21)

× Re
∫ ∞

0
RdRψω,l(R) d

da

(
cosh

[
ω(arctan(R+ ia)− arctanR)

]
ψω,l(R+ ia)

)∣∣∣∣
a=1

.

We see here an example of a feature discussed in section 4.6: the sum over spins introduces
some non-locality into the Sleight-Taronna diagram, by effectively shifting the fields from
one point xµ to another xµ ± 2kµ. However, this non-locality is contained within ∼ 1 AdS
radius, since both the real and imaginary parts of 2kµ have norms between 0 and 1.

Let us now turn to the other bulk diagrams on the r.h.s. of (4.1). The double-exchange
diagram Ss1 [Π1, γ3]Ss2 [Π2, γ3] will appear in our setup as a delta-function term ∼ δ(ω),
since it does not depend on the “time” difference τ1 − τ2 between the boundary source
points `1, `2. Therefore, this diagram will not contribute at any nonzero frequency ω. This
leaves only the Vnew diagram, which must therefore account for any difference between
the CFT correlator (5.13) and the Sleight-Taronna diagrams (5.14), (5.21). Eliminating
common factors, we can express this relationship as:

Wnew = WCFT −W
(0)
ST −

∑
even s>0

W
(s)
ST , (5.22)

where the known pieces are given by:

WCFT =
(
P

1
2−l
− 1

2 +iω(0)
)2

Re 1
ω(ω + i) + l(l + 1) ; (5.23)

W
(0)
ST =

(
P
− 1

2−l
− 1

2 +iω(0)
)2

; (5.24)

W
(s)
ST = 4

∫ ∞
0

RdRψω,l(R) ds

das

(
cosh

[
ω(arctan(R+ ia)− arctanR)

]
ψω,l(R+ ia)

)∣∣∣∣
a=0

(for s > 0) , (5.25)
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with the sum formula:∑
even s>0

W
(s)
ST = 4 Re

∫ ∞
0

RdRψω,l(R)

× d

da

(
cosh

[
ω(arctan(R+ ia)− arctanR)

]
ψω,l(R+ ia)

)∣∣∣∣
a=1

.

(5.26)

5.3 Locality analysis

Having been brought to the form (5.22)–(5.26), the bulk and boundary diagrams can now
be readily evaluated in Mathematica, for various values of the “time” frequency ω and
angular momentum number l. In particular, we can examine the behavior of the new
vertex’s contribution Wnew, and compare to the locality discussion in section 4. We begin
with radial locality. By our criterion from section 4.3, this requires Wnew to be regular
at `1 = `2. Thus, in frequency space, we expect Wnew to decay exponentially at large
frequencies. In our present simple context of

〈
j

(0)
1 j

(0)
2 O3

〉
correlators, we can make this

expectation more detailed.
Let us start in coordinate space. For the moment, let’s consider the EAdS4 boundary

as the 3-sphere {`µ ∈ R1,4|`µ`µ = 0 ; `0 = 1}. We then fix `3, `
′
3 at two opposite poles

(1, 0,±na), with na some 3d unit vector, and set `1, `2 nearly coincident at (1, 1,±ξa/2),
for some infinitesimal 3d vector ξa with norm |ξ|. The CFT correlator (5.11) then diverges
as G(`1, `2) ∼ 1/|ξ|. In Fourier space at large frequencies, this becomes (cf. (5.12)):

WCFT ∼
1

Ω2 . (5.27)

Here, we introduce Ω as a generic notation for boundary frequencies, combining ω and l as
Ω ≈

√
ω2 + l2 at large ω and/or l.

Now, let’s consider the contributionsW (s)
ST from the Sleight-Taronna diagram in various

spin channels. To do this, it is helpful to apply a conformal transformation to the boundary
3-sphere, stretching the distance between `1, `2 by a factor of ∼ |ξ|−1 so as to bring them
to opposite poles (1, 0,±ξa/|ξ|), while squeezing the distance between `3, `

′
3 and bringing

them to (1,−1,±|ξ|na); see figure 10. After this conformal transformation, the DV fields
φ

(s)
3 behave at leading order as spin-s boundary-bulk propagators Π(s)

3 , with prefactors
(i.e. boundary polarization tensors) of the form ∼ |ξ|s(na1 . . . nas − traces). By rotational
invariance, the Sleight-Taronna diagram then takes the form ∼ ξa1

|ξ| . . .
ξas

|ξ| |ξ|
s(na1 . . . nas −

traces) = na1 . . . nas(ξa1 . . . ξas − traces). We can now undo the conformal transformation,
picking up a factor of ∼ 1/|ξ| due to the combination of weights w.r.t. `1, `2, `3, `′3:

∆1 + ∆2 −∆3 −∆′3 = 1 + 1− 1
2 −

1
2 = 1 . (5.28)

Thus, the small-ξ behavior of W (s)
ST in the original conformal frame is ∼ (ξa1 . . . ξas −

traces)/|ξ|. For s = 0, this is divergent at ξa = 0; for general spins, the s’th derivative
with respect to ξa is divergent. In frequency space, such singular short-distance behavior
translates into power laws at large frequencies:

W
(s)
ST ∼

1
Ωs+2 . (5.29)
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Figure 10. A conformal transformation on the boundary that clarifies the behavior of the〈
j

(0)
1 j

(0)
2 O3

〉
correlator in the `1 = `2 limit.

Our radial-locality expectation can now be phrased in detail as follows. At large boundary
frequencies Ω, the spin-0 Sleight-Taronna diagram W

(0)
ST should match the ∼ Ω−2 behavior

of the CFT correlator (5.27), leaving a ∼ Ω−4 remainder; this remainder should be matched
by the spin-2 diagramW

(2)
ST , leaving a ∼ Ω−6 remainder, which should be matched byW (4)

ST ,
and so forth. When all the spin-channels W (s)

ST have been taken into account, the remaining
discrepancy, associated withWnew, should decay exponentially as ∼ e−κΩ, with some order-
1 coefficient κ.

These expectations are nicely confirmed by numerics. In fact, the numerics shows
that it’s sufficient for either ω or l to be large, and that values of 3 ∼ 5 already behave
as “large”. In figure 11, we display log-log plots of the relative discrepancy W

(0)
ST

WCFT
− 1

as a function of frequency, showing a ∼ Ω−2 behavior, as predicted above. Similarly, in
figure 12, we display log-log plots of W

(0)
ST +W (2)

ST
WCFT

− 1, showing that it behaves as ∼ Ω−4.

Most importantly, in figure 13, we display log plots of
∑

s
W

(s)
ST

WCFT
− 1 = − Wnew

WCFT
, showing its

exponential decay. The exponential decay is particularly clean when l grows with ω fixed
at a small value, or when ω and l grow together as ω = l + 1

2 (inspired by the boundary
Laplacian formula (5.12)). In other setups, the exponential decay is noisier, sometimes
with superposed periodic patterns. The exponent κ varies widely between setups, but is
always of order 1.

Finally, let us turn to the issue of “time” locality. Here, our statement in section 4.4 was
that the CFT correlator and all bulk diagrams decay exponentially at large time separation
|τ1 − τ2|, with the exception of matching O(1) terms (4.21)–(4.22) in the CFT correlator
and the double-exchange diagram. In frequency space, the O(1) terms from (4.21)–(4.22)
become delta-function contributions ∼ δ(ω), which aren’t visible in our analysis. This
leaves the terms that should decay exponentially at large |τ1 − τ2|, which, in frequency
space, means the absence of singularities at small ω. Thus, we expect WCFT and W (s)

ST to
behave regularly as ω approaches zero. As we can see in figure 14, this expectation is also
borne out by the numerics.
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(c) ω = 0.01, 4 ≤ l ≤ 10. Slope is −1.978.

Figure 11. Numerical log-log plots of the relative discrepancy between the CFT correlator and
the spin-0 Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As expected,
the discrepancy decays with frequency as ∼ Ω−2.
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(b) l = 0, 4 ≤ ω ≤ 9. Slope is −4.25.
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(c) ω = 0.01, 4 ≤ l ≤ 10. Slope is −3.82.

Figure 12. Numerical log-log plots of the relative discrepancy between the CFT correlator and
the (spin-0)+(spin-2) Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As
expected, the discrepancy decays with frequency as ∼ Ω−4.
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(d) l = 5, 0.1 ≤ ω ≤ 9. Slope is −1.54.

5 6 7 8 9 10
l

-20

-15

-10

log
∑s=0
�

WST
(s)

WCFT

-1

(e) ω = 0.01, 4 ≤ l ≤ 10. Slope is −2.5.

Figure 13. Numerical log plots of the relative discrepancy between the CFT correlator and the
all-spin Sleight-Taronna contributions, at large boundary frequencies ω and/or l. As expected, the
discrepancy decays with frequency exponentially. This expresses the radial locality of the new bulk
vertex.
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Figure 14. Numerical plots of the CFT correlator and bulk Sleight-Taronna contributions in
various channels, at l = 0, 5 and 0.001 ≤ ω ≤ 0.1. The regular behavior at ω → 0 expresses
exponential decay at large “time” separations, which implies the “time” locality of the new vertex.
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6 Alternative approach to Sleight-Taronna diagram for (0,0,bilocal)

At an early stage of this work, we carried out exploratory calculations of the Sleight-
Taronna contributions S0,0,s[VST; Π1,Π2, φ] to the

〈
j

(0)
1 j

(0)
2 O

〉
correlator, using a different

approach from that of the previous section. Though we didn’t get far along this path, we
report the details here for future reference. The idea is to calculate not the diagram itself,
but its boundary Laplacians �` and/or �`′ with respect to the endpoints of the bilocal
O(`, `′). This has the advantage of reducing the bulk integral to just a 1d integral over
the worldline γ, because the boundary Laplacians (2.74)–(2.76) of the DV field are delta-
function-like distributions with support on γ. However, this is true not for the DV field
in the original gauge (2.60), but in the recently discovered gauges (2.71)–(2.73). Because
these gauges are not traceless, we must pay the price of extending VST beyond traceless
gauge, where it is no longer given by the simple formula (2.79).

In this section, we describe one analytic calculation with the above technique. Using
the DV field Φ(s)

symm in the gauge (2.73), we will demonstrate the vanishing of the double
Laplacian �`�`′S0,0,s[VST; Π1,Π2,Φsymm] for any spin s ≥ 2, in the simple case where the
scalar propagators Π1,Π2 have the same boundary source point `1 = `2. The reason for
using the double Laplacian instead of a single Laplacian �` or �`′ is its symmetry under
`↔ `′, which simplifies the worldline integral.

6.1 Extending V (0,0,s)
ST beyond traceless gauge

Our first task is to extend VST beyond traceless gauge. For general spins (s1, s2, s3), this
extension is not fully known (the somewhat incomplete state of the art for general cubic
vertices in AdS is [43]; note that it uses the formalism of [8] rather than [9], i.e. scaling
weights 2 − s rather than s + 1 with respect to the embedding-space coordinates xµ).
However, in the special case V (0,0,s)

ST , the extension is easy to work out. We begin by
writing the original vertex in the form:

V
(0,0,s)

ST h1h2h
(s) ∼ Jµ1...µsh(s)

µ1...µs , (6.1)

where Jµ1...µs is a bulk spin-s current constructed from the scalar fields h1, h2, and we hide
the coupling constants in the proportionality symbol “∼”. The fact that V (0,0,s)

ST is gauge-
invariant within traceless gauge corresponds to the statement that Jµ1...µs is conserved in
EAdS4, up to trace terms and a gradient term:

∇µ1J
µ1...µs = ∇(µ2 J̃µ3...µs) + traces . (6.2)

Knowing J̃µ1...µs−2 , we can construct a corrected current Ĵµ1...µs , which is conserved up to
trace terms only:

Ĵµ1...µs = Jµ1...µs − s

2 g
(µ1µ2 J̃µ3...µs) ; ∇µ1 Ĵ

µ1...µs = traces . (6.3)

This then defines a vertex that is gauge-invariant without restriction to traceless gauge:

V̂
(0,0,s)

ST h1h2h
(s) ∼ Ĵµ1...µsh(s)

µ1...µs = Jµ1...µsh(s)
µ1...µs −

s

2 J̃
µ1...µs−2h(s)

µ1...µs−2ν
ν . (6.4)
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Now, in the particular vertex formula (2.79), the current Jµ1...µs reads:

Jµ1...µs = Pµ1
ν1 . . . P

µs
νs

(
h1∂

ν1...νsh2 + h2∂
ν1...νsh1

)
, (6.5)

where ∂ν1...νs ≡ ∂ν1 . . . ∂νs are 5d partial derivatives with respect to xµ ∈ R1,4, and Pµν are
the projectors (2.3) from R1,4 onto the EAdS4 hyperboloid. When contracting with the
HS field h

(s)
µ1...µs in (6.1), these projectors can be omitted. However, they are important

for calculating the covariant divergence in (6.2). Using the definition (2.2) of the EAdS4
covariant derivative, and setting x · x = −1 at the end, we calculate the divergence as:

∇µ1J
µ1...µs = Pµ2

ν2 . . . P
µs
νs

(
∂ρh1∂

ν2...νs∂ρh2 − sh1∂
ν2...νsh2 + (1↔ 2)

)
+ traces , (6.6)

which should be equal (up to traces) to ∇(µ2 J̃µ3...µs) = Pµ2
ν2 . . . P

µs
νs ∂

(ν2 J̃ν3...νs). It is now
easy to guess and verify an expression for J̃µ1...µs−2 :

J̃µ1...µs−2 =Pµ1
ν1 . . . P

µs−2
νs−2

s−2∑
n=0

(−1)n
(
∂(ν1...νn∂ρh1∂

νn+1...νs−2)∂ρh2−s∂(ν1...νnh1∂
νn+1...νs−2)h2

)
.

(6.7)
Putting everything together and reverting to the notation of section 2.10, the corrected
vertex reads:

V̂
(0,0,s)

ST ∼ (∂u3 · ∂x1)s + (∂u3 · ∂x2)s

− s

2(∂u3 · ∂u3)(∂x1 · ∂x2 − s)
s−2∑
n=0

(−1)n(∂u3 · ∂x1)n(∂u3 · ∂x2)s−2−n .
(6.8)

6.2 Inserting the double Laplacian of the DV field

The currents (6.5), (6.7) are to be integrated against the double Laplacian (2.76)–(2.77) of
the DV field:

(Φ(s)
symm)µ1...µs ∼ Qµ1...µs −

1
4g(µ1µ2Qµ3...µs) ; (6.9)

Qµ1...µp = Tµ1...µp

(
∇ · ∇ − p(p− 1)

)
δ3(x; `, `′) ; (6.10)

Tµ1...µp = tµ1 . . . tµp − traces , (6.11)

to form the cubic diagram:

�`�`′S0,0,s[VST;h1, h2,Φsymm]

∼
∫
EAdS4

d4x

(
Qµ1...µs −

1
4g(µ1µ2Qµ3...µs)

)(
Jµ1...µs − s

2g
(µ1µ2 J̃µ3...µs)

)
(6.12)

=
∫
EAdS4

d4x

(
Qµ1...µsJ

µ1...µs + 1
2Qµ1...µs−2

(
s

s− 1 J̃
µ1...µs−2 − 1

2J
νµ1...µs−2
ν

))
.

Using the free field equation (∂ · ∂)hi = 0 and the scaling property (x · ∂)hi = −hi for the
two scalar fields i = 1, 2, we can evaluate the trace Jνµ1...µs−2

ν as:

Jνµ1...µs−2
ν = Pµ1

ν1 . . . P
µs−2
νs−2 h1gσρ∂

ρσν1...νs−2h2 + (1← 2)

= − 1
x · x

Pµ1
ν1 . . . P

µs−2
νs−2 h1xσxρ∂

ρ∂σ∂ν1...νs−2h2 + (1← 2)

= −s(s− 1)
x · x

Pµ1
ν1 . . . P

µs−2
νs−2

(
h1∂

ν1...νs−2h2 + h2∂
ν1...νs−2h1

)
.

(6.13)

– 54 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
2

To simplify the integral (6.12), we first move around the derivatives in the traceless struc-
ture (2.77) as:

Qµ1...µp =
(
∇ · ∇ − p(p+ 2)

)(
Tµ1...µpδ

3(x; `, `′)
)
. (6.14)

This follows from:(
(∇ · ∇)tµ

)
δ3(x; `, `′) = −3tµδ3(x; `, `′) ; (∇νtµ)∇νδ3(x; `, `′) = 3tµδ3(x; `, `′) , (6.15)

which in turn follows from:

∇µtν = −2t(µrν) ; ∇µrν = gµν − tµtν − rµrν ; (6.16)
rµδ3(x; `, `′) = 0 ; (r · ∇)δ3(x; `, `′) = −3δ3(x; `, `′) . (6.17)

We can now use (6.14) to integrate (6.12) by parts, moving the Laplacians ∇ · ∇ onto the
currents Jµ1...µs , J

νµ1...µs−2
ν , J̃µ1...µs−2 . Then the delta functions, now free of derivatives,

yield the following integral over the worldline γ(`, `′):

�`�`′S0,0,s[VST;h1, h2,Φsymm] ∼
∫ ∞
−∞

dτ

(
Tµ1...µs

(
∇ · ∇ − s(s+ 2)

)
Jµ1...µs

+ 1
2Tµ1...µs−2

(
∇ · ∇ − s(s− 2)

) ( s

s− 1 J̃
µ1...µs−2 − 1

2J
νµ1...µs−2
ν

))
.

(6.18)

Now, recall that Jµ1...µs , J
νµ1...µs−2
ν , J̃µ1...µs−2 take the form (6.5), (6.7), (6.13) of EAdS4

projections of simple (but not tangential to EAdS4) embedding-space tensors. To evaluate
EAdS4 derivatives of such quantities, we use following identities, which hold for any R1,4

tensor fµ1...µp , and are straightforward to develop from the basic formula (2.2):

∇ρ(P ν1
µ1 . . . P

νp
µpfν1...νp) = P ν1

µ1 . . . P
νp
µp

(
P σρ ∂σfν1...νp −

p

x · x
gρ(ν1fν2...νp)σx

σ
)

(6.19)

(∇ · ∇)(P ν1
µ1 . . . P

νp
µpfν1...νp) = P ν1

µ1 . . . P
νp
µp

([
∂ · ∂ − 1

x · x

(
(x · ∂)2 + 3(x · ∂)− p

)]
fν1...νp

− 2p
x · x

∂(ν1

(
fν2...νp)ρx

ρ)+ p(p− 1)
(x · x)2 g(ν1ν2fν3...νs)ρσx

ρxσ
)
.

(6.20)

With some further manipulation, we can bring (6.20) into the alternative form:

(∇ · ∇)(P ν1
µ1 . . . P

νp
µpfν1...νp) = P ν1

µ1 . . . P
νp
µp

([
∂ · ∂ − 1

x · x

(
(x · ∂)2 + 3(x · ∂) + p

)]
fν1...νp

− 2p
x · x

xρ∂(ν1fν2...νp)ρ + p(p− 1)
(x · x)2 g(ν1ν2fν3...νs)ρσx

ρxσ
)

= P ν1
µ1 . . . P

νp
µp

([
∂ · ∂ − 1

x · x

(
(x · ∂)2 + x · ∂ + p

)]
fν1...νp

− 2(p+ 1)
x · x

xρ∂(ν1fν2...νpρ) + p(p− 1)
(x · x)2 g(ν1ν2fν3...νs)ρσx

ρxσ
)
.

(6.21)

For Jµ1...µs and its trace, it’s convenient to apply (6.20). However, for J̃µ1...µs−2 , it’s more
convenient to apply (6.21), since by construction, a symmetrized gradient reduces it to the
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divergence (6.6) of Jµ1...µs . Using (∂ · ∂)hi = 0 and (x · ∂)hi = −hi for the scalar fields
i = 1, 2, setting x · x = −1, and working up to trace terms, we get:

(∇ · ∇)Jµ1...µs = Pµ1
ν1 . . . P

µs
νs

(
2∂ρh1∂

ν1...νs∂ρh2 − (s2 + 2)h1∂
ν1...νsh2

− 2s2∂(ν1h1∂
ν2...νs)h2

)
+ (1↔ 2) + traces ;

(6.22)

(∇ · ∇)Jνµ1...µs−2
ν = s(s− 1)Pµ1

ν1 . . . P
µs−2
νs−2

(
2∂ρh1∂

ν1...νs−2∂ρh2

− (s2 − 4s+ 6)h1∂
ν1...νs−2h2 − 2(s− 2)2∂(ν1h1∂

ν2...νs−2)h2
)

+ (1↔ 2) + traces ;
(6.23)

(∇ · ∇)J̃µ1...µs−2 = 2s(s− 1)Pµ1
ν1 . . . P

µs−2
νs−2

(
−∂ρh1∂

ν1...νs−2∂ρh2 + (s− 1)h1∂
ν1...νs−2h2

+ (1↔ 2)
)

+ Pµ1
ν1 . . . P

µs−2
νs−2

s−2∑
n=0

(−1)n
(
2∂(ν1...νn∂ρσh1∂

νn+1...νs−2)∂ρσh2

+ s(s+ 2)∂(ν1...νn∂ρh1∂
νn+1...νs−2)∂ρh2

− s(s2 − 2)∂(ν1...νnh1∂
νn+1...νs−2)h2

)
+ traces .

(6.24)

Plugging this back into the worldline integral (6.18), and pulling out an overall factor of 2,
we arrive at the following expression for the diagram:

�`�`′S0,0,s[VST;h1,h2,Φsymm]

∼
∫ ∞
−∞

dτ

(
Tµ1...µs

[
∂νh1∂µ1...µs∂

νh2−(s2+s+1)h1∂
µ1...µsh2−s2∂(µ1h1∂

µ2...µs)h2+(1↔ 2)
]

− 1
4Tµ1...µs−2

[
s(3s−1)∂νh1∂

µ1...µs−2∂νh2−s(s−1)(s2−s+3)h1∂
µ1...µs−2h2

−s(s−1)(s−2)2∂(µ1h1∂
µ2...µs−2)h2+(1↔ 2) (6.25)

− 2s
s−1

s−2∑
n=0

(−1)n∂µ1...µn∂νρh1∂
µn+1...µs−2∂νρh2

− 4s2

s−1

s−2∑
n=0

(−1)n∂µ1...µn∂νh1∂
µn+1...µs−2∂νh2+2s2

s−2∑
n=0

(−1)n∂µ1...µnh1∂
µn+1...µs−2h2

])
.

6.3 Evaluating the `1 = `2 case

We now specialize to the case where the scalar fields h1, h2 are both proportional to the
boundary-bulk propagator from the same boundary source point `1 = `2 ≡ L:

h1(x) = h2(x) = − 1
L · x

. (6.26)

The embedding-space derivatives of h1, h2 are then given by:

∂µ1...µnh1 = ∂µ1...µnh2 = n!
(
− 1
L · x

)n+1
. (6.27)
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Plugging this into (6.25) and pulling out an overall factor of 2(−1)s+1, we get (note that
all terms with contracted derivatives vanish, since Lµ is null):

�`�`′S0,0,s ∼
∫ ∞
−∞

dτ

(
Tµ1...µsL

µ1 . . . Lµs

(L · x)s+2

[
(s2 + s+ 1)s! + s2(s− 1)!

]
− 1

4
Tµ1...µs−2L

µ1 . . . Lµs−2

(L · x)s
[
s(s− 1)(s2 − s+ 3)(s− 2)!

+ s(s− 1)(s− 2)2(s− 3)!− s2
s−2∑
n=0

(−1)nn!(s− 2− n)!
])

.

(6.28)

Using the identity:
p∑

n=0
(−1)nn!(p− n)! = 2(p+ 1)!

p+ 2 , (6.29)

which holds for all even p, we simplify (6.28) as (pulling out an overall factor of (s+ 1)!):

�`�`′S0,0,s ∼
∫ ∞
−∞

dτ

(
(s+ 1)Tµ1...µsL

µ1 . . . Lµs

(L · x)s+2 − s− 1
4
Tµ1...µs−2L

µ1 . . . Lµs−2

(L · x)s
)
. (6.30)

We thus need to evaluate quantities of the form (cf. (2.8), and note that p = s, s − 2 is
even):

Tµ1...µpL
µ1 . . . Lµp = p! T (p)(x, t, L) = 1

2p
p/2∑
n=0

(
p+ 1

2n+ 1

)
(−qµνLµLν)n(t · L)p−2n . (6.31)

Here, xµ is a point on the γ(`, `′) geodesic, tµ is the unit tangent to the geodesic at xµ, and
qµν = ηµν + xµxν − tµtν is the metric of the 3d space perpendicular to both. Without loss
of generality, we can choose the bilocal’s endpoints `µ, `′µ and the boundary source point
Lµ of the scalar fields as:

`µ =
(1

2 ,
1
2 , 0, 0, 0

)
; `′µ =

(1
2 ,−

1
2 , 0, 0, 0

)
; Lµ = (1, 0, 1, 0, 0) . (6.32)

This sets the geodesic at xµ = xµ(τ ; `, `′) = (cosh τ, sinh τ,~0), with unit tangent tµ =
(sinh τ, cosh τ,~0). We thus have:

x · L = − cosh τ ; t · L = − sinh τ ; qµνL
µLν = 1 . (6.33)

This allows us to evaluate (6.31) as:

Tµ1...µpL
µ1 . . . Lµp = 1

2p
p/2∑
n=0

(
p+ 1

2n+ 1

)
(−1)n sinhp−2n τ = 1

2p Im(sinh τ + i)p+1 . (6.34)

Dividing by (L · x)p+2 = coshp+2 τ and integrating over τ , we get:∫ ∞
−∞

dτ
Tµ1...µpL

µ1 . . . Lµp

(L · x)p+2 = 1
2p Im

∫ ∞
−∞

dτ

cosh τ

(
tanh τ + i

cosh τ

)p+1

= 1
2p Im

∫ π

0
dβ (cosβ + i sin β)p+1 = 1

2p
∫ π

0
dβ sin[(p+ 1)β] = 1

2p−1(p+ 1) .
(6.35)

where we substituted tanh τ ≡ cosβ. Plugging (6.35) back into (6.30), we see that the two
terms in (6.30) cancel. Thus, we managed to show that in this simple case, the diagram
�`�`′S0,0,s[VST; Π,Π,Φsymm] vanishes.
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7 Discussion

In this paper, we showed that the boundary correlator of three bilocals in HS holography
can be reproduced by physically sensible bulk structures, which extend the Sleight-Taronna
cubic vertex without sacrificing the principle of locality. We also showed that the Sleight-
Taronna vertex itself satisfies nice gauge-invariance properties outside its intended range
of applicability.

The most important direction for future work is to write down explicitly the new
field-field-worldline vertex Vnew from section 4. As we’ve seen, this requires calculating
Sleight-Taronna diagrams for two boundary-bulk propagators and one DV solution. The
worldline localization technique of section 6 may prove helpful, but it comes with the
difficulty of extending the Sleight-Taronna vertex beyond traceless gauge in one of its three
“legs”.

Our paper was carefully phrased to refer to the minimal type-A bulk theory, dual to the
O(N) model on the boundary. However, we repeatedly found it convenient to talk about
e.g. the un-symmetrized bilocals O(`, `′) of the U(N/2) model, rather than the symmetrized
ones O+(`, `′) of the O(N) model. It is thus tempting to extend the entire discussion to
the U(N/2) model, by allowing all integer spins in the bulk. In fact, most of our results
and arguments can be immediately generalized in this way (note that the calculations in
sections 5–6 in any case involve only even spins, and would not be affected).

The only unknown is whether, with the inclusion of odd spins, the Sleight-Taronna
vertex (2.79) continues to reproduce the boundary correlators

〈
j

(s1)
1 j

(s2)
2 j

(s3)
3

〉
as in (2.81).

Since
〈
j

(s1)
1 j

(s2)
2 j

(s3)
3

〉
vanishes for odd s1 + s2 + s3, it is sensible to define V (s1,s2,s3)

ST = 0 for
this case; in fact, in transverse-traceless gauge, the definition (2.79) already has this prop-
erty, due to section 3’s Lemma 2. Thus, the remaining question is whether the vertex (2.79)
reproduces the correlators for (even,odd,odd) combinations of spins (s1, s2, s3). We expect
that the answer is yes, but we haven’t worked it out one way or the other. Section 3’s
gauge-invariance results for the vertex (2.79) hold just as well in the (even,odd,odd) case.
Section 4’s locality arguments also survive the extension to odd spins. Specifically, if the
Sleight-Taronna vertex correctly describes the (even,odd,odd)

〈
j

(s1)
1 j

(s2)
2 j

(s3)
3

〉
correlator,

then the statements of section 4 simply carry through. If not, then the (even,odd,odd) cor-
relator will still be described by some local vertex; unlike the Sleight-Taronna vertex, this
may require some gauge corrections when generalized from transverse-traceless to general
traceless gauge, but these will again be local. With such corrections taken into account,
the main statements of section 4 vis. the locality of the new field-field-worldline vertex
Vnew will continue to hold.

As noted in the Introduction, our larger ambition is to use the cubic structure explored
in this paper as a building block for constructing all the correlators of HS theory, in a way
that repackages all non-locality into the structure and interactions of DV solutions and their
geodesic “worldlines”. This idea will be explored in detail in a separate publication [27].
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