
Okinawa Institute of Science and Technology

Graduate University

Thesis submitted for the degree

Doctor of Philosophy

Multi-Agent Reinforcement Learning
for Distributed Solar-Battery Energy

Systems

by

Qiong Huang

Supervisor: Kenji Doya

Jan, 2023

Declaration of Original and Sole
Authorship

I, Qiong Huang, declare that this thesis entitled Multi-Agent Reinforcement Learning

for Distributed Solar-Battery Energy Systems and the data presented in it are original
and my own work.

I confirm that:

• No part of this work has previously been submitted for a degree at this or any
other university.

• References to the work of others have been clearly acknowledged. Quotations
from the work of others have been clearly indicated, and attributed to them.

• In cases where others have contributed to part of this work, such contribution
has been clearly acknowledged and distinguished from my own work.

• None of this work has been previously published elsewhere, with the exception
of the following:

Q. Huang, E. Uchibe, and K. Doya. Emergence of communication among re-
inforcement learning agents under coordination environment. In 2016 Joint

IEEE International Conference on Development and Learning and Epige-

netic Robotics (ICDL-EpiRob), pages 57-58. IEEE, 2016
Q.Huang, K. Doya. An experimental study of emergence of communication
of reinforcement learning agents. In International Conference on Artificial

General Intelligence, pages 91-100. Springer, 2019.

Date: Jan, 2023
Signature:

ii

Abstract

Efficient utilization of renewable energy sources, such as solar energy, is crucial for
achieving sustainable development goals. As solar energy production varies in time
and space depending on weather conditions, how to combine it with distributed energy
storage and exchange systems with intelligent control is an important research issue.
In this thesis, I explore the use of reinforcement learning (RL) for adaptive control
of energy storage in local batteries and energy sharing through energy grids. I first
test multiple RL algorithms for energy storage control of single houses. I then extend
the Autonomous Power Interchange System (APIS) from SONY to combine it with
reinforcement learning algorithms in each house. I consider different design decisions in
applying RL: whether to use centralized or distributed control, at what level of detail
actions should be learned, what information is used by each agent, and how much
information is shared across agents. Based on these considerations, I implemented
deep Q-network (DQN) and prioritized DQN to set the parameters of real-time energy
exchange protocol of APIS and tested it using the actual data collected from OIST
DC-based Open Energy System (DCOES). The simulation results showed that DQN
agents outperform rule-based control on energy sharing and that prioritized experience
replay further improves the performance of DQN. Simulation results also suggest that
sharing average energy production, storage and usage within the community helps the
performance. The results contribute to future designs of distributed intelligent agents
and effective operations of energy grid systems.

iii

Acknowledgment

First, I would like to express my deep gratitude to my supervisor Prof. Kenji Doya
for his invaluable patience, feedback and guidance, enthusiastic encouragement, and
useful critiques of this research work. He accepted me into his unit even though I come
from a different background. I also changed my research project, which was a huge
challenge, but he provided me the opportunity to restart a new project and supervised
me throughout the study. I have gained plenty of knowledge under his guidance that
benefits me in critical thinking.

I also would like to thank my academic mentor Prof. Gail Tripp, who generously
provided her knowledge and expertise. I am grateful that she can be my mentor to
support my research study. Her encouragement along the way, guidelines throughout
this energy management project, and continuous help in making decisions for my study
plan take me to this point.

Also, I am grateful to my thesis committee member Prof. Hiroaki Kitano. With the
previous DCOES project carried out in his unit as a benchmark, I can have the chance
to test reinforcement learning approaches in a practical application system. And he
proposed a lot of valuable questions for helping to clarify the scientific questions I can
propose with the project.

I am also grateful to Mr. Kenichiro Arakaki and Mr. Daisuke Kawamoto. Mr.
Arakaki provided all the previous historical data from the DCOES project and gave
me a lot of practical explanations and discussions on the dataset and how the system
works. Mr. Kawamoto from Sony Computer Science Laboratories, Inc. (Sony CSL)
has a lot of critical discussions on the APIS simulators. Without their generous help,
I would take much longer time to figure out how the system functions.

Additionally, this endeavor would not have been possible without the generous
support from the OIST, Graduate School, and Neural Computational unit. Not only
did they finance my research, but also they provided me with consistent help. I also
want to thank my former group leader, Dr. Eiji Uchibe, for his patience, generous
support, and late-night feedback sessions. I would also like to extend my thanks to all
other lab members and Mr. Xianjie Zhang for their help in scientific discussions.

Lastly, I want to give special thanks to my family, especially my parents and my
siblings. Their belief in me has kept my spirits and motivation high during this process.
I would also like to thank my little nephew for all the entertainment and emotional
support. I would like to finally thank Dr. Weiwei Qi for mailing me the hometown rice
noodles which accompanied me through my study time.

iv

Abbreviations

APIS Autonomous Power Interchange System
BMU Battery Management Unit

DCOES Direct Current Open Energy System
DQN Deep Q-Network
DRL Deep Reinforcement Learning
EMU Energy Management Unit
ESS Energy Storage System

GDPG Gibbs Deep Policy Gradient
LSTM Long-Short Term Memory
MDP Markov Decision Process
MG Microgrid
OES Open Energy System

OIST Okinawa Institute of Science and Technology
POMDP Partial Observable Markov Decision Process

PV Photovoltaic
RL Reinforcement Learning

RNN Recurrent Neural Network
RSOC Relative State of Charge

SSR Self Sufficient Rate
TD Temporal Difference

v

Nomenclature

� Discount factor
↵ Learning rate
A Action space
S State space
R Reward function
T State transition probability density function
⇡ Policy in reinforcement learning theory
⇡
⇤ Optimal policy in reinforcement learning theory
V State value function in reinforcement learning
V

⇤ Optimal state value function in reinforcement learning
Q

⇤ Optimal state-action value function in reinforcement learning
Q

⇡ State-action value function in reinforcement learning
at Action taken at the step t
st State at the step t
rt Reward received at the step t
Kc Charing coefficient of the battery
Kd Discharing coefficient of the battery

vi

To my beloved parents, who have encouraged me
attentively.

Contents

Declaration of Original and Sole Authorship ii

Abstract iii

Acknowledgment iv

Abbreviations v

Nomenclature vi

Contents viii

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 The DC-based Open Energy System (DCOES) at OIST 4

1.1.1 Different approaches for optimization of energy grids 7
1.1.2 Bid for markets . 7
1.1.3 Machine learning method for reducing surplus energy 7

1.2 Energy grid systems and machine learning applications 8
1.2.1 Energy management approaches 8
1.2.2 Energy management by reinforcement learning 9

1.3 Thesis outline and contributions . 11

2 Theoretical Background and System Description 13
2.1 Reinforcement learning . 13

2.1.1 Markov decision process (MDP) 14
2.1.2 Partially observable Markov decision process (POMDP) 16
2.1.3 Different methods in RL . 17

2.2 Deep reinforcement learning . 18
2.3 Multi-agent reinforcement learning . 20
2.4 Energy management of the DCOES . 21

2.4.1 Battery charge/discharge control by RSOC 23
2.4.2 The DCOES data preprocessing 24

viii

ix

2.5 Autonomous Power Interchange System (APIS) 26
2.5.1 Energy exchange based on scenario files 27
2.5.2 APIS data flow . 28

2.6 Summary . 29

3 Single House Energy Management with Reinforcement Learning 30
3.1 PV panel and Battery Settings . 30
3.2 Model of battery . 31

3.2.1 Linear simulation model of the battery 31
3.3 Single house RL with the tabular method 32

3.3.1 State and Action representation 33
3.3.2 Tabular Q learning . 34

3.4 DQN with Prioritized experience replay 37
3.4.1 Algorithms . 37
3.4.2 States representation in DRL 37
3.4.3 Simulation results . 38

3.5 Summary . 42

4 Multiple House Energy Management with Reinforcement Learning 45
4.1 Reinforcement learning setup for the APIS 45
4.2 Action and state representations . 46
4.3 Reward and evaluation criteria . 47
4.4 DCOES dataset in OIST . 48
4.5 Choice of action time step and reward settings 49
4.6 Comparison of different DRL methods 49
4.7 Multiple iterations and runs . 52
4.8 Generalization across houses and seasons 56

4.8.1 Shuffled houses ID . 56
4.8.2 Testing with different time periods of the year 57

4.9 Summary . 58

5 Conclusion and Open Issues 60
5.1 Conclusion . 60
5.2 Open issues . 61

Bibliography 63

Appendices 69

A Historical raw data 69

B Scenario file 71

C Formated input data 73

x

D Selection of acceleration 74

E Simulation Result Data Sample 78

List of Figures

1.1 Global energy consumption from 1965 to 2020 (in EJs). 1
1.2 Worldwide energy sector data from BP p.l.c. [4]. 2
1.3 Global installed PV power from 1996 to 2020 (in MW). Source: statistics

are taken from national statistical agencies, international organizations,
and other proprietary sources. Includes data from International Renew-
able Energy Agency (IRENA 2021, Abu Dhabi), BNEF, IHS. 3

1.4 Different architectures of power transmission type [2]. 4
1.5 Topologies for renewable energy system, Werth et al. [66]. 5
1.6 Structure of installation in DCOES. 6
1.7 Landscape of different routes with all 19 houses in the community. . . . 6
1.8 A general microgrid system model with the integration of generations,

storage, and loads components. 8

2.1 Single agent-environment interaction framework in reinforcement learning. 14
2.2 Return function. 16
2.3 Deep neural network structure diagram for the RL agent in MG. 20
2.4 A multi-agent environment interaction framework in reinforcement learn-

ing. 21
2.5 Overall architecture of the OIST DCOES. 22
2.6 Sketch of the house energy storage system. 22
2.7 The organization the Energy Storage Server (ESS) for the DCOES. . . 23
2.8 The battery operation mode control based on the RSOC. 24
2.9 Visualization of valid data of House 214 over every 30s on Jan 1, 2019. 25
2.10 Real-time battery monitoring of each residence 26
2.11 Request/Accept threshold in scenarios. 28
2.12 Data flow in APIS. 28

3.1 Relationship between battery current and change in RSOC, quarter-hour
data; house 214, 2019. 31

3.2 Linear model simulation prediction in different houses. 32
3.3 Sketch of ESS data flow. 33
3.4 Discretized values of states in different bins. 35
3.5 Q learning tabular methods, mean rewards of house 214 in 2019. 36
3.6 Q learning tabular methods, mean rewards of house 215 in 2019. 37
3.7 Mean reward curve of House 214 in different years. 40
3.9 Average reward of house 214, with time cycle features, 2019. 41

xi

xii

3.10 Total reward of house 214, multiple iterations, 2019. 41
3.11 Performance in different cases. 42
3.8 Average reward of different houses in route B. 44

4.1 Statistics of PV production and consumption in different datasets. . . . 48
4.2 Results with different timestep under different conditions; the reward is

set to the sum of purchased power. 50
4.3 Average values in different criteria with different reward settings, DQN. 51
4.4 Actions and scenarios for houses in different cases. 52
4.5 Performance of different states options in different methods. 53
4.6 Average values in different criteria with different iterations, prioritized

DQN. 54
4.7 Cumulative total reward from all houses with regard to multiple itera-

tions in different cases. 55
4.8 Average values in different criteria in different criteria, prioritized DQN,

runs=3 iter=3. 56
4.9 Performance of testing data, training data (iter=5), prioritized DQN. . 58

D.1 Simulated data when gl.acc = 10 with sample data. 75
D.2 Simulated data when gl.acc = 30 with sample data. 76
D.3 Simulated data when gl.acc = 60 with sample data. 77

List of Tables

1.1 Smart Grid domains in conceptual model (Dileep [11]). 3

3.1 PV panel and Battery Settings for route B houses in 2018 and 2019 . . 30

4.1 Mean, Standard deviation, T-test results in shuffled ID. 56

A.1 Raw data for one day from the weather station. 69
A.2 Raw data for one day from one house. 70

C.1 Solar data for 4 houses in Jul, 2019. 73
C.2 Load data for 4 houses in Jul, 2019. 73

E.1 Individual data. 78
E.2 Summary data. 79

xiii

Chapter 1

Introduction

We live in a time of expanding energy demand due to the growth of the global popula-
tion with booming economic activities. According to BP’s Statistical review of world
energy 2021, the global energy consumption increased 371.79% over the past 55 years,
from 155.22 EJ1 in 1965 to 577.10 EJ in 2020 (Figure 1.1) [4]. As fossil fuels dominate
the world’s primary energy, their mining, combustion consumption, and other aspects
are extensive and cause concerning environmental impacts. Destruction of land and
impact on water resources are the most typical environmental impacts of coal mining.
And coal combustion produces sulfur dioxide and nitrogen dioxide, which contribute to
air pollution. Moreover, fossil fuels release various gases and solid wastes during com-
bustion and waste heat during power generation. Using fossil fuels not only produces
a large amount of carbon dioxide, which intensifies the greenhouse effect, jeopardizes
the global climate, and imbalances the ecological balance but also bring about thermal
pollution. The “waste heat” left over from power generation by thermal power plants
is discharged into rivers, lakes, the atmosphere, or oceans, causing thermal pollution
in most cases.

Figure 1.1: Global energy consumption from 1965 to 2020 (in EJs).

So far, the fuels used in countries around the world are almost all fossil fuels, namely
oil, natural gas, and coal. Fossil fuels that have been gradually formed in nature over
millions of years may all be consumed by humans within a few hundred years. Accord-

1EJ: energy symbol for exajoule, 1 EJ = 1018 J.

1

2

ing to observations and studies, there is no coal and oil forming underground today.
In the 20th and 21st centuries, when stepping into the pace of global modernization,
fossil fuels have a potential energy shortage crisis, especially gasoline extracted from
oil, which is one of the reasons for the global oil crisis.

Currently, many countries are actively developing renewable and nuclear energy
sources, which can help reducing reliance on fossil fuels, effectively delaying the con-
sumption speed of non-renewable energy and reasonably regulating the utilization rate
of resources. In the recent BP review report [4], as shown in Figure 1.2a, due to
the COVID-19 pandemic, world energy consumption in 2020 fell drastically compared
with 2019 since the imposition of lockdowns around the world decimated transport-
related demand. However, generation from renewable energies, such as solar, wind,
hydropower, biofuels, etc., continued to grow and reached its largest-ever increase. In
addition, the share of renewable energy rose to record highs of 5.7% and has overtaken
nuclear (4.3% of the share) in Figure 1.2b. Figure 1.2c shows the generation of the
renewable by source in Terawatt-hours (TWh) from 2000 to 2020. We can observe
world solar power generation has continued to grow over the past decade and accounts
for 27% of total renewable energy generation.

(a) World consumption

with different sources in EJ,

1995-2020.

(b) Shares of global pri-

mary energy in percentage

(%), 1995-2020.

(c) Global renewable gen-

eration by source in TWh,

2000-2020.

Figure 1.2: Worldwide energy sector data from BP p.l.c. [4].

The collected statistical data indicates the trend of strong growth in renewable gen-
eration in the power sector, albeit renewable energy accounts for only a small portion
(3.2%) of total power generation. In actual applications, we need to have more signifi-
cant progress on energy efficiency. For instance, solar energy relies highly on weather
conditions. For solar energy data alone, we could notice that its statistics worldwide
capacity (installed photovoltaic (PV) power) expanded exponentially in the past 25
years (Figure 1.3).

Therefore, optimizing the allocation and using the power more efficiently and intelli-
gently has gotten significant attention and interest recently. An intelligent energy grid,
or so-called Smart Grid, has been proposed in using new communication techniques
and information to better utilize electrical power [3, 5, 24, 25, 27, 38, 39, 41, 44]. Al-
though various parties, including the European technology platform, U.S. department
of energy, International Electrotechnical Commission (IEC), Institute of Electrical and

3

Figure 1.3: Global installed PV power from 1996 to 2020 (in MW). Source: statistics
are taken from national statistical agencies, international organizations, and other pro-
prietary sources. Includes data from International Renewable Energy Agency (IRENA
2021, Abu Dhabi), BNEF, IHS.

Electronics Engineers (IEEE), etc., provide different definitions of Smart Grids, the
message is clear that efficiency should be highly concerned as survey Dileep [11] noted.
In this survey, Dileep concluded the domains covered in the Smart Grid from consumer,
markets, utilities, operations, generation, transmission, and distribution perspectives
in Table 1.1. Each sector is interconnected with other domains in forming the Smart
Grid model. Various grids and systems could seek solutions from these domains.

Table 1.1: Smart Grid domains in conceptual model (Dileep [11]).

Domain Actors in the domain

Consumer End users of electricity, may also generate, store and manage the
energy usage

Markets The participants and operators exchange

Utilities The organization that provides service to the consumer

Operations The managers in movement of electricity

Bulk generation The bulk quantity generator of electricity, can be also stored for
future use

Transmission The transporter of electricity over long distance

Distribution The distributor of energy to consumer

Direct Current Open Energy System (DCOES) in Tokoro [56] is a local Smart Grid
constructed covering all domains listed in Table 1.1. This system itself is designed to
be energy efficient. A detailed description of DCOES will be listed in Section 1.1.

1.1 The DC-based Open Energy System (DCOES) at OIST 4

Furthermore, it is expected to be cost-effective to lower the purchase from the utility
grid to save the bills. The detailed description of this system will be illustrated in
Section 1.1. The previous data collected from the microgrid has been proven to increase
self-sufficiency compared with stand-alone scenarios2.

1.1 The DC-based Open Energy System (DCOES) at

OIST

In December 2014, a local DC-based microgrid system was set up at the Okinawa Insti-
tute of Science and Technology (OIST) faculty housing area in Okinawa, Japan [42, 64].
It focuses on re-defining the conventional electricity grid systems in the form of inter-
connected nanogrid subsystems. It is designed to harness a mixture of renewable energy
sources, including solar PV panels, and store the energy in rechargeable batteries. It
is also designed to be deployed in various sorts of communities, especially to share
surplus energy among different nodes. This renewable energy sharing project is orga-
nized by collaborating with three parties: Sony Computer Science Laboratories, Inc.
(Sony CSL), local power supplier Okisokou Co. Ltd, and OIST. In contrast to the
top-down centralized energy systems (Figure 1.4a), this DCOES proposed a novel type
of distributed electric power system with bottom-up architectures (Figure 1.4b) which
allows self-determined energy exchanges between residential nodes within a local DC
microgrid community.

(a) Top-down architectures power transmis-

sion. (b) Bottom-up type energy distribution.

Figure 1.4: Different architectures of power transmission type [2].

In conventional top-down energy systems of the existing electric utility grid, the
energy source is usually remote, and the power flow is unidirectional. The conventional
hierarchical system relies on large-scale power generation on the top and transmits
power down in the grid infrastructure with long electric mileage. Power delivery to the
user end of the chain fully relies on the power plant at the top of the chain. Power flow

2stand-alone refers to the condition where each node in the smart grid only considers stand-alone
home systems with rooftop PV panels and batteries.

1.1 The DC-based Open Energy System (DCOES) at OIST 5

in these networks is synchronized, so it is challenging to have interconnections among
different nodes on the user end. Furthermore, if we implement centralized system
approaches to renewable energy systems, the entire power transmission is managed by
a single entity (Figure 1.5 1○). One advantage of centralized renewable energy systems
is that there are no lost opportunities due to the mismatch of demands and supplies
[66]. However, a single failure can bring down the entire system with catastrophic
blackouts, and centralized systems also come with high initial network costs.

Figure 1.5: Topologies for renewable energy system, Werth et al. [66].

On the other hand, in distributed bottom-up energy systems (Figure 1.5 2○), the
energy source is close to consumers with short electric mileage, and energy stored
in batteries can fill the temporal gap between supply and demand [56]. For instance,
commercial photovoltaic (PV) panels currently applied to homes belong to this category
and are widely used to reduce electricity bills.

The OES further introduces interconnection among different consumers under the
distributed network (Figure 1.5 3○). In this network, a single failure does not provoke
entire system outages, and the initial costs could be much lower. It allows energy
sharing among individual nodes and provides a more flexible way of using renewable
energy.

In the early phase of the DCOES project, 19 inhabited houses and an electric
room (ER, the weather station) were connected as one community in the energy grid.
Each house is equipped with PV panels and an energy storage system (ESS) including
lithium-ion batteries, through which it is connected to the others via DC networks
[57]. Figure 1.6a and 1.6b show the PV panels installed for each house and the ESS,
respectively.

Since 2020, the hillside faculty houses have been divided into three routes A, B,
and C. As illustrated in Figure 1.7, each route contains 7 (route A), 6 (route B), and
6 (route C) houses for further artificial intelligence (AI) agent testbed. With its new
ability to request and receive energy from the local neighbor nodes, this system has
been proven in a real environment to be efficient in the use of renewable energy, flexible
in size, as well as to increase dependability when used with utility electricity.

The DCOES is a distributed, heterogeneous, flexible platform that can scale up
in different regions. In areas like Okinawa with tropical island weather, it is possible
to broadcast the same infrastructure according to the dynamics, distributed energy

1.1 The DC-based Open Energy System (DCOES) at OIST 6

(a) PV panels equipped on the roof of each

house.

(b) Energy storage system (ESS) installed

in each house.

Figure 1.6: Structure of installation in DCOES.

Figure 1.7: Landscape of different routes with all 19 houses in the community.

1.1 The DC-based Open Energy System (DCOES) at OIST 7

resources, and utility grid supplies. Furthermore, a bottom-up design is more resilient
against network failures and blackouts.

1.1.1 Different approaches for optimization of energy grids
So far, various approaches for optimizing the energy exchange have been applied to
the DCOES. Werth et al. [65] devised a peer-to-peer control for DC microgrids. They
compared different topologies with the same input data. They found that PV and
battery with DC exchanges outperformed the PV-only (classic home system) cases and
the standalone (without DC exchanges) cases and performed close to the theoretical
limit of centralized control. They have proven that the bottom-up approach and de-
centralized design in a microgrid are promising under the Information Communication
Technologies (ICT).

In addition, Sakagami et al. [43] also compared the standalone cases and DCOES
case. They calculated the DCOES self-sufficiency rate (DSSR) to evaluate the perfor-
mances in each case and found the optimal configurations of PV and installation cost.
They reported that 4.6 kW PV and 3.6 kWh battery per house is the optimal config-
uration for the DCOES in OIST, and it could be changed with different installation
costs. In addition, the cost recovery period of the DCOES can further be cut down if
more PVs and batteries are installed, while the current recovery period is 15 years.

Furthermore, Werth et al. [66] proposed an evaluation model to analyze the im-
pact of MG topologies on self-sufficiency for a given size of batteries and PV panels.
They utilized three topologies: centralized resources (Figure 1.5 1○), stand-alone re-
sources (Figure 1.5 2○), and a multi-microgrid topology with autonomous exchange
(Figure 1.5 3○) for evaluation. They reported that the interconnected system showed
a 10% increase in performance compared to the stand-alone design.

1.1.2 Bid for markets
Besides the controls mentioned above of the DCOES, Spasova et al. [51] presented a
conceptual solution for trading in the decentralized microgrid. They merged the double-
auction algorithm for the implementation of the trading platform. They reported that
the results indicate that using P2P trading can reduce the electricity cost by 50%. As
it is a conceptual study, they pointed out that further research should be carried out
in order to be more adaptable to different power sources and respond to the individual
prosumer.

1.1.3 Machine learning method for reducing surplus energy
More recently, Kawamoto and Rajendiran [28] showed that using machine learning
techniques could further optimize the energy exchange by minimizing the wasting of
the surplus of solar energy. They compared linear regression, simple RNN (Elman-net),
and LSTM methods in predicting the future hourly consumption from the past days to
maintain the charging space for the battery. Among all methods, Elman-net showed
the best accuracy in demand prediction. The battery could, in advance, reserve more

1.2 Energy grid systems and machine learning applications 8

charging space and reduce the time of wasting surplus energy after the battery gets
fully charged.

One existing problem of the current DCOES is that energy sharing follows a fixed
rule-based policy. It can be manually modified, which is demanding as each house has
different usage and storage level. I want to explore other machine learning methods to
increase the efficiency of energy sharing. There are many previous works using machine
learning approaches in energy management, and I articulate related ones in Section 1.2.

1.2 Energy grid systems and machine learning appli-

cations

Energy management has always been one of the key issues for energy storage systems.
Many previous works have explored different approaches under different conditions
and systems for allocating energy. As Figure 1.8 shows, renewable energy generation
system, storage system, and load are the main elements of a general microgrid system.
The utility grid can include different power generation sources, such as coal, natural
gas, nuclear energy, etc. And the renewable generation system can also include various
types of sources, such as solar power, wind power, water power, etc. While storage
system usually stands for the energy storage sectors, where various types of batteries
can be applied.

Figure 1.8: A general microgrid system model with the integration of generations,
storage, and loads components.

1.2.1 Energy management approaches
Facing the challenges of balancing energy demand distribution and allocation with
different capacities and demands, Trivedi et al. [59] proposed a stochastic cost-benefit
framework for allocating energy storage system in the distribution network for load

1.2 Energy grid systems and machine learning applications 9

leveling based on maximizing the ratio of NB (net benefit)3 over NC (net cost), where
NB is the sum of the arbitrage benefits and the benefits derived from dividing the
other cost components by their differences, and NC is the total cost.

Energy management problems in power systems with renewable energy integration
and/or energy storage have been extensively studied in previous publications. These
problems can be classified into two main categories: on-line and off-line energy man-
agement. On-line categories refer to real-time energy management problems, while
off-line tackles cases where data is collected and management is executed in an off-
line manner. Under stochastic demand and/or renewable energy generation, Codemo
et al. [8], and Grillo et al. [17] investigated the on-line energy management problem
by assuming a stationary stochastic process with known distributions for the demand
and/or renewable energy generation. While Zhang et al. [67] addressed the off-line
energy management problem under the ideal presumption that the generated renew-
able energy and the load demand are either deterministic or known before scheduling.
In addition, Rahbar et al. [40] proposed an off-line optimization approach with a
“sliding-window” based sequential optimization on designing an on-line algorithm.

Furthermore, energy management in islands or confined areas also face a lot of
challenges. Similarly to Okinawa, which includes a major island and some small offshore
islands, many regions are island areas that are isolated or energy deficient. Hybrid
renewable energy has been supplied to fulfill the electricity demands in these places.
Singh et al. [48] presented a study of microgrids in rural areas consisting of PV, wind,
biomass, and battery ESS. They proposed an artificial bee colony (ABC) algorithm to
minimize the total net present cost (NPC) of the system to optimize the allocation of
different energy sources.

1.2.2 Energy management by reinforcement learning
Reinforcement learning (RL) formalizes the idea that punishing or rewarding an agent
for its behavior makes it more likely to forego or repeat that behavior in the future [54].
In addition, reinforcement learning provides a useful framework to conceptualize inter-
action in machine learning, and it has achieved various successes and drawn massive
attention during the past recent years. Examples of successful applications of reinforce-
ment learning are playing video games, such as the breakthrough study pertaining to
the learning of playing Atari games from raw pixels in Mnih et al. [35]. By combining
reinforcement learning (Q-learning) with deep learning (neural networks) to let Deep
Q-network (DQN) agents play classic Atari video games, they found this combination
surpasses the performances of all previous algorithms and achieves a human-level con-
trol. This is a breakthrough not only in reinforcement learning but also in the entire
artificial intelligence domain, as it indicates that trained agents can play on the human
level and even outperform. Other sophisticated strategy games such as Go in Silver
et al. [47], Dota in OpenAI [37], and trained simulated robots to follow human in-
structions in Christiano et al. [7] are all notable research with reinforcement learning
methods.

3Net benefit can be viewed as the financial objective functions. What the objective function
considered is to maximize the economic gains due to energy storage system (ESS) integration.

1.2 Energy grid systems and machine learning applications 10

There are plenty of existing sequential decision-making problems that would take
reinforcement learning into account as a possible solution due to its properties. Many
previous works also tried applying RL to the energy management sector. Guan
et al. [18] presented an approach that uses TD(�) algorithm to derive the optimal
energy storage system control policy, as well as defines the state and action spaces
and reward function so as to reduce residential consumers’ electric bills. They confirm
TD(�) can achieve higher convergence rates and higher performance in non-Markovian
environments4. Kim and Lim [29] also used Q-learning in learning buying, charg-
ing/discharging, and selling actions for a smart energy building. Levent et al. [31]
used dynamic decision-making from training an optimal RL algorithm with past and
limited data-set in an island MG. With a peer-to-peer trade pricing structure, Zhou
et al. [68] used RL to represent the suggested energy trading process as an MDP and
identify the best decision inside the MDP. Moreover, they applied a Fuzzy Q-learning
in trading price rules.

Many reinforcement learning techniques based on deep neural network approaches
have been proposed to improve and learn different tasks, which also happens in smart
grid applications. François-Lavet et al. [15] applied deep RL (DRL) to MG with PV
panels. They introduced a particular deep learning architecture to draw knowledge
from historical time series of consumption and production as well as accessible fore-
casts. The value function’s neural network (NN) representation effectively generalizes
the policy to circumstances corresponding to previously unknown configurations of
power demand and solar irradiation. Similarly, Sogabe et al. [49] utilized Deep Q-
network (DQN) and Gibbs Deep Policy Gradient (GDPG) methods for both discrete
and continuous action space. The outcomes demonstrate that the agent learned to se-
lect behavior that would maximize its reward and had successfully captured the energy
demand and supply characteristics in the training data. Chen and Su [6] applied the
DRL method in local energy trading. The prosumer’s decision-making process was cre-
ated as an MDP with multiple continuous variables by modeling local energy trading
strategies in the proposed holistic market model. Tomin et al. [58] designed DRL for
making decisions under flexible energy sources in MG when there is uncertainty about
future electricity use and weather-dependent PV production at each time step. Hau
et al. [19] also used a value-based reinforcement learning and DQN-based energy man-
agement algorithm for energy trading. They applied a piece-wise utility function in
response to the dynamic environment under dynamic pricing.

Meanwhile, many reinforcement learning methods are typically designed for single
agents (to satisfy MDP properties), which have a bad performance for multi-agent
systems, neither for cooperative nor competitive environments, since the joint action
space of the agents grows exponentially with the number of agents [13]. Approaches
such as Iqbal and Sha [23], Lowe et al. [33] are proposed for multi-agent RL. DRL has
also been explored and applied in multi-agent systems for energy sectors. Foruzan et al.
[14], Vázquez-Canteli and Nagy [60] views energy suppliers and prosumers as agents
in a MAS which tries to optimize their rewards. The purpose of Ahrarinouri et al.
[1]’s work is to explore the multi-agent reinforcement learning approach for residential

4non-Markovian environment: the environment does not satisfy Markov assumptions (i.e., the
probability distribution over the next state depends only on the current state).

1.3 Thesis outline and contributions 11

multi-carrier energy management. Vázquez-Canteli et al. [61, 62] set up a TensorFlow-
based building energy simulator CitySim to monitor the building energy management
problems. After modeling the single building’s heating and cooling issues, they further
broadcasted the work to a multi-agent scale in their CityLearn environment for building
energy coordination and demand response [62, 63].

Previous works have explored various approaches to optimizing energy grids. How-
ever, energy management with RL in a DCOES-like system is not discussed yet.
Whether RL could work in this system needs to be verified. In addition, which re-
inforcement learning methods and components are needed to be considered? As Sec-
tion 1.1 explains, one problem of current methods is improving the efficiency of the
grids. I need to ascertain how to combine the controller with reinforcement learning. I
also need to verify what state-action representations could influence the performances.

1.3 Thesis outline and contributions

With the above DCOES as a test bed, I build intelligent learners (charging/discharging
in batteries and requesting/accepting energy from other agents) and compare them
with the current rule-based controller. I deploy reinforcement learning methods to the
DCOES as reinforcement learning is a promising candidate approach with the capabil-
ity to adapt with regard to the available energy. Section 1.2.2 list some existing energy
management with reinforcement learning methods, and only some of them mentioned
applications to multiple agent systems and could be applied to embedded systems. I
first explored the reinforcement learning method in single-house experiments and fur-
ther extended it to multiple houses cases. The organization of this thesis is structured
as follows:

Chapter 1 Introduction This chapter surveys the background and necessity of
leveling up efficiency in energy usage. In this chapter, the previous study on DCOES
is covered, as well as other related work in energy management with RL methods. The
problem statements and challenges of the thesis work are explained.

Chapter 2 Theoretical Background and System Description This chapter
provides theoretical knowledge in reinforcement learning. Data arrangement and en-
ergy management unit is described, as well as the APIS emulator structures of DCOES.

Chapter 3 Single House Energy management with Reinforcement Learning
This chapter tests the performance of reinforcement learning in single houses with a PV
panel and a battery, without energy exchanges across houses. I developed a battery
simulator and applied different RL methods to the data from different houses with
different input states.

Chapter 4 Multiple houses Energy management with Reinforcement Learn-
ing This chapter presents multiple houses RL using the APIS emulator. Different
options of states with Deep Q-network and with prioritized replay methods are pro-
posed and tested.

1.3 Thesis outline and contributions 12

Chapter 5 Conclusions, Discussion and Perspective In this chapter, I summa-
rize the overall works presented in this thesis and discuss future perspectives.

Contributions of this study

The main contributions of this study come in several folds:

• Data management: historical data collected from all houses and weather sta-
tions are massive and sometimes contains many missing data. Therefore, cleaning
up the data and selecting the related ones as our input states are crucial. Fur-
thermore, I re-arranged the data format to apply to the multiple-house emulator
for multi-agent cases. I made this data public which allows other researchers to
benefit from this for further research.

• Apply reinforcement learning to single houses: whether it is possible to
apply reinforcement learning methods to the houses for energy consumption opens
the first page of my experiments. I first set up a battery simulator for a single
house and verified its usability. Then I compared the tabular method and deep
reinforcement learning method in the single-agent case and found tabular method
is possible to control the current of the energy storages. But it has limitations
in structuring the state representations. The DRL method converges faster in
learning than the tabular method. And having time-of-day information in the
state can reach smoother learning in the early days, and this cyclic value slower
the performance. The learned actions also changed more frequently.

• Compare different options of states influencing the performances for
single houses: I designed for charging and discharging the battery to explore
the reward function of each agent. In addition, I compared different input state
options and compared the performances.

• Setting up multiple agent reinforcement learning to the DCOES: I ap-
plied multi-agent reinforcement learning methods to the energy exchange system.
I set up the action selections for each node (agent) in the DCOES to change the
actions for requesting and accepting power from other nodes according to the
state-action value and found that learned actions can adapt to houses’ battery
status automatically. It infers that manually modifying the exchange rules can
be replaced.

• Compare different options of states influencing the performances in
multiple houses: different options of states and how reinforcement learning
improves the shared energy among each node to reduce the energy consumption
from the external power lines.

Chapter 2

Theoretical Background and System
Description

This chapter introduces the essential knowledge of Reinforcement Learning (RL) and
Multi-agent Reinforcement Learning (MARL). In addition, concepts of the Markov
decision process (MDP), as well as the Partially Observable Markov Decision Process
(POMDP), are introduced. Deep Reinforcement Learning (DRL), multi-agent rein-
forcement learning, DCOES system, and APIS emulator are further explained.

2.1 Reinforcement learning

Reinforcement learning is one subcategory of the machine learning approach [53]. Un-
like supervised learning, which uses labeled datasets to train algorithms to classify data
or predict outcomes accurately, or unsupervised learning, which learns patterns from
untagged data, reinforcement learning is trying to figure out how the agent or AI could
learn an optimal policy over time to maximize its reward value or goal-achieving. In
supervised learning, we know the correct output for every example input. For instance,
for identifying an animal in a picture, we have plenty of training data and must know
the true answer for each training example. While for reinforcement learning, there are
no training examples. It solves problems that never have been solved before. We know
the inputs (states), but correct (i.e., optimal) actions are not provided in contrast to
supervised learning. We can only observe the consequences of actions taken at states
(some effects of that action) after taking some actions. Some actions produce good
outputs, while others don’t. For example, for an agent or a person who performs self-
driving in snow, which has never been done before, they have to learn as they go in
the actual situation. Actions could be chosen from turning the wheel, accelerating, or
breaking. While observing the changes in the environment, such as position or speed,
the agent can get a sense of whether the situation goes good or bad, i.e., the car stays
in the lane or is varying off the road. First, the agent could try random changes like
steering a little left or right or breaking, but once the agent starts to observe the out-
comes, it starts to learn that some actions are more appropriate in certain situations
than others. In reinforcement learning, the system associate actions with positive and
negative rewards (negative values can be a penalty), so the goal is to reinforce actions

13

2.1 Reinforcement learning 14

with higher rewards over time. Actions associated with higher rewards will be more
likely to be repeated in the future, which essentially solves the problem. A typical
framework of single agent-environment interaction in reinforcement learning can be
explained with Figure 2.1.

Figure 2.1: Single agent-environment interaction framework in reinforcement learn-
ing.

RL problems are often formulated as Markov decision processes as RL is a set of
methods that learn an optimal policy in an environment, whereas MDP is a formal
representation of such an environment. MDP description is introduced in the following
section.

2.1.1 Markov decision process (MDP)
A Markov Decision Process (MDP) is defined as a stochastic discrete time control pro-
cess. It refers to processes that make decisions based on some amount of uncertainty.
MDP uses only the current state to evaluate the next actions without any dependencies
on past states or actions. MDPs provide a mathematical form to reinforcement learn-
ing problems as their nice property in sequential decision-making. An MDP model
comprises several elements as follows [46]:

- a (finite) set of states S which describes the current situation of the agent

- a (finite) set of actions A which affects the dynamics of the process, and A(s) is
the admissible action set when state s 2 S

- a set of reward R or reward function Ra(s, s0) which is given to the agent when
it takes an action a 2 As at a state s 2 S, and the state transitions to s

0 2 S

- one-step dynamics function (the state transition probability function) of the en-
vironment T : p(s0|s, a) = p(St+1 = s

0|St = s, At = a) at time t

2.1 Reinforcement learning 15

- discounting factor � 2 [0, 1]

For simplicity, time is divided into discrete steps. At each time step, the agent ob-
serves the state of the environment st 2 S and decides an action at 2 A. For each
state, action, and the next state, there is a transition function T (st, at, st+1) ! [0, 1].
After taking action, the agent receives an immediate reward rt+1 2 R, reflecting how
good the action is, and observes a new state of the environment st+1 2 S. MDP pro-
vides a mathematical framework for modeling decision-making in circumstances where
outcomes are partially determined at random and partially controlled by the decision-
maker.

The goal in RL uses reward assumption and tries to maximize the (expected) cu-
mulative reward via taking a sequence of actions while visiting a sequence of states.
The interaction between the agent and the environment proceeds as follows: initially,
the agent is placed at an initial state s0 2 S, which can be predetermined or sampled
from a distribution over S; then, the agent selects and execute an action a0; the reward
r0 and the next state s1 can be obtained based on the transitions; then the agent would
make the next decision of action based on received reward and execute the next step of
action a1, and the act till it meets the terminal conditions. Its discounted cumulative
return at time step t can be formulated as

Gt = Rt+1 + �Rt+2 + �
2
Rt+3 + �

3
Rt+4 + (2.1)

With the above definition of the expected return, we try to maximize this value with
the discounting rate � (0 � 1, also called discount factor), which determines long-
term rewards with the discounted rate. The larger the value of � is, the more the agent
cares about the future reward; the smaller the value of � is, the greater the discount
would be, so the agent cares more about the immediate reward. In general, � is set
close to 1 in most applications. Furthermore, from the above description that the agent
tries to take a sequence of decisions when calculating the return, and this sequence of
actions is called policy ⇡. There exists an action (for a deterministic strategy) or an
action distribution (for a randomness strategy) for any s 2 S maps to ⇡(s). Then,
based on the policy ⇡, a state value v⇡ could be calculated. For each state s 2 S, the
mapping value can be written as

v⇡(s)
.
= E⇡[Gt|St = s]. (2.2)

Where E⇡ denotes the expected value of policy ⇡ at timestep t. When the agent
chooses an action at a state according to the policy ⇡, V⇡ could be written in the
form of expectation of this distribution as above. In addition, due to the definition
of MDP, Gt could be written as Gt = Rt+1 + �v⇡(St+1) as the Bellman equation in
Equation 2.3.

v⇡(s)
.
= E⇡[Rt+1 + �v⇡(St+1|St = s)]. (2.3)

Figure 2.2 shows how this value is been calculated.
The agent’s main objective is to learn the optimal policy ⇡

⇤ from possible policies
⇡, which produces the highest possible cumulative long-term payoff. If a policy ⇡

0 is
said to excel or equal to a policy ⇡, it is an optimal policy (the optimal policy may
not be unique). The value function of the state v⇡ reveals the accumulative reward the

2.1 Reinforcement learning 16

Figure 2.2: Return function.

agent could get when it acts according to policy ⇡ at state s. An action-value function
q⇡ could be introduced to evaluate the action agent takes at state s. Following the
above explanation of v⇡, q⇡ could be written as

q⇡(s, a)
.
= E⇡[Gt|St = s, At = a] = E⇡[Rt+1 + �q⇡(St+1, At+1)|St = s, At = a]. (2.4)

The agent can use approaches such as dynamic programming (DP) to calculate q
⇤(s, a)

of the optimal policy and then update the policy in Equation 2.5.

q⇤(s, a) = E⇡[Rt+1 + �maxq⇤(St+1, a
0)|St = s, At = a]. (2.5)

The optimal policy has the highest action value at state s, which could be written as
⇡
⇤(s) = arg max

a2A
q
⇤(s, a).

There are some typical ways for action selection based on the current action-value
function, which we also call state-action value (Q-value, Q(s, a)), such as ✏-greedy and
softmax (Boltzmann action selection [53]). Softmax action selection is implemented as
Equation 2.6 with a hyperbolic lowering of the temperature parameter ⌧ ,

⇡(a|s) = e
Q(s,a)/⌧

P
b e

Q(s,b)/⌧
, (2.6)

where ⌧ is a positive scalar that determines the “greediness" of the agent. For high
temperatures, the agent is inclined to select all actions with the same probability while
for low temperatures, the agent tends to behave close to greedy action selection, namely,
the agent is apt to take the action with the highest expected reward.

2.1.2 Partially observable Markov decision process (POMDP)
One feature of the MDP is that if the process fulfills the markovian property, where
the future state is independent of the past with given the present, an optimal policy’s
existence ⇡

⇤ : S ! A could be guaranteed.
Unfortunately, this conclusion could not be applied to the partially observable

Markov decision process (POMDP). The POMDP is a combination of a regular MDP

2.1 Reinforcement learning 17

to model system dynamics with a hidden Markov model that connects partially observ-
able system states probabilistically to observations. Similar to the MDP in the above
section, a POMDP can be described as a tuple as (S,A,R, T,⌦,O, �) as follows [26]:

- a (finite) set of states S which describes the current situation of the agent

- a (finite) set of actions A which affects the dynamics of the process, and A(s) is
the admissible action set when state s 2 S

- a set of reward R or reward function Ra(s, s0) which is given to the agent when
it takes an action a 2 As at a state s 2 S, and the state transitions to s

0 2 S

- one-step dynamics function (the state transition probability function) of the en-
vironment T : p(s0|s, a) = p(St+1 = s

0|St = s, At = a) at time t

- a set of observations ⌦

- a set of observation probabilities O = O(o|s0, a), it is conditioned on the reached
state and the taken action

- discounting factor � 2 [0, 1]

In this case, the agent could not always acquire the current state st. Finding an
optimal policy in POMDP is significantly difficult, and Lusena et al. [34] illustrates
an overview of many variations of POMDP and difficulties in finding optimal policies.
Even if the agent knows Q⇤, it still cannot behave optimally as it cannot always know
the current state s. In POMDPs, the agent cannot directly observe the complete
system state, but the agent makes observations that depend on the state. It uses these
observations to form a belief about what state the system currently is in. This belief
is called a belief state and is expressed as a probability distribution over all possible
states. The solution of the POMDP is a policy prescribing which action to take in each
belief state.

For a single agent, POMDP is already difficult as the belief states continuously
cause an infinite state set. While in multi-agent cases, due to the dynamic changes of
the environment and other agents, it would be much more difficult to solve compared to
MDPs. Furthermore, the time complexity of solving POMDP iterations is exponential
in both states and observations spaces, and the dimensionality of the belief space also
grows with the number of states. In fact, in most applications, the size of real-world
problems is outside the scope of tractable exact solutions.

2.1.3 Different methods in RL
Suppose we have a given task, and state-action transition probability and reward func-
tion is known. We can calculate each state under a certain policy. With this calculation,
we can further update the policy for each state to find the optimal policy. This is the
typical “policy iteration” method.

On the other hand, in the case where the real purpose of updating the state-action
estimation is to compare the difference in the return of each action in a certain state

2.2 Deep reinforcement learning 18

to choose the optimal operation for different states according to the Bellman equation,
the estimation of each state may not need to be absolutely accurate. This is considered
as the “value iteration” method.

The policy iteration method of evaluating and improving policies is unified into
generalized policy iterations (GPI) [54]. It can be considered that in RL, the MDP
framework gives the agent’s perspective on the task (environment), while the GPI tells
the agent how to analyze and learn the basic idea of the task. And this kind of method
to “dynamically plan” the policy based on the state and transition probability is called
the dynamic programming (DP) method.

DP method can be applied to calculate the state-action value Q(s, a), both the
transition and the reward function are required in using DP. For small state-action
spaces, it is an efficient approach, but a lot of environments are accompanied with
large state-action spaces, and the transition probability and rewards of each state-
action pair are not determined in advance in the environment and their dynamics.
To tackle this problem, the temporal difference (TD) approaches such as Q-learning

and SARSA can be applied, by which RL learners can find an optimal policy through
interactions with the environment without knowing the dynamic model of the envi-
ronment. The incremental evaluation equation in TD methods can be written as:
Qt+1(s, a) = Qt(s, a) + ↵[Gt � Qt(s, a)], where Gt = Rt + �Q(st+1, at+1) and at+1 is
the action under st+1 in the next step. The difference between Gt and Qt is called the
TD error. TD methods are reliable and theoretically proven to be convergent if the
learning rate is small enough [55].

Either DP or TD method uses a look-up table by saving each state value (or Q

value) and then continuously updating it. Many tasks in reality would encounter a
very large state and/or state-action space, so it is obviously unrealistic to evaluate
each state according to the previous description. We can use function approximation
to give a more reasonable estimate of the state that has been seen.

2.2 Deep reinforcement learning

Deep reinforcement learning (DRL) combines deep learning and reinforcement learning.
In tabular RL, each state and the Q value of each action in this state are stored in a
look-up table. However, many environments can have a large number of states, and the
computer will not have enough memory to store them as well as it is time-consuming
to search for the corresponding state in a large table under tabular methods. The
neural network (NN) can handle this problem in which we can take the state and
action as the input and obtain the Q value of the action to avoid recording the Q

value in a table. Because deep learning is incorporated, agents can decide what actions
to take with massive inputs, such as every pixel presented on screen in a video game
illustrated in Mnih et al. [35, 36], Silver et al. [47]. In video games environments,
pixels of the screen can be modeled as the input of states in the form of NNs. While
all data passes through the NN with hidden layers and the activation function, the
output layer can be the objective in the RL framework. In Deep Q-Network (DQN),
the value function is approximated with the deep neural network. The Q value function

2.2 Deep reinforcement learning 19

is updated iteratively as Equation 2.7

Q(s, a) Q(s, a) + ↵(r + �max
a0

Q(s0, a0; ✓i) � Q(s, a; ✓i)), (2.7)

where ✓i is the weight of the network at i-th iteration. In DQN, the target Q value
(Q-target) is shown in a grey box and the prediction (Q-predict) is highlighted in a
red box in Equ 2.7. The loss of the network at i-th iteration is calculated with the
mean-squared error between the target value and the prediction in Equation 2.8

Loss =
1

m

mX

j=1

(yj �Q(�(Sj), Aj,!))
2
, (2.8)

where yi denotes the target Q values, and Q(�(Sj), Aj,!) is the predicted Q value.
However, small updates to Q may significantly change the policy in the sequence of
observations and therefore change the data distribution, so having experience replay in
the memory bank can make the NN updates more efficient. With experience replay,
some previous experiences can be randomly sampled for learning. Furthermore, Mnih
et al. [35] also used fixed Q-targets for disrupting correlations between the action and
the target values. When fixed Q-targets are applied, two NNs with the same structure
but different parameters are used. The NN that predicts Q-predict has up-to-date
parameters, while the NN that predicts Q-target only updates parameters periodically.
With these two improvements, DQN could outperform humans in some environments,
such as Atari games.

The main differences between Q-learning and DQN are in three-folds:

• Replay buffer (for repetitive learning)

• Neural network to calculate Q-value

• Temporarily freeze the Q_target parameter.

DQN uses random sampling from the batch memory and the differences between the
prediction and the target network. The agent would take a very long time to learn from
the memory bank when the reward is scarce, and the agent tends to forget the previous
experience. For example, in Montezuma’s Revenge in Atari games, the reward is sparse,
and almost all experiences have no useful information. Schaul et al. [45] modified the
DQN method with Prioritized experience replay (PER) to tackle this problem. In
prioritized DQN, agent samples experience according to the sample priority in memory
rather than random sampling. Therefore it can find the learning samples we need more
effectively. To define sampling priority, they utilize TD-error to decide the learning
order. The larger TD-error is, the more space we have for prediction, which means this
sample needs to be learned more, and the higher priority this sample is. The priority
of experience pi is proportional to the TD-error where pi = |�i| + ", and " is a small
constant ensuring that no transition has zero priority. Adding a hyperparameter ↵, the
priority is calculated from p = p

↵
i , where ↵ 2 [0, 1] controls the difference between high

and low error. To effectively sample according to pi, a ‘sum-tree’ method is applied to
the memory (A SumTree refers to a Binary Tree where the value of a node is equal to

2.3 Multi-agent reinforcement learning 20

the sum of the nodes present in its left subtree and right subtree). Applying DQN and
prioritized DQN methods to energy management systems will be discussed in detail in
later chapters.

Figure 2.3 shows a diagram design in the DRL of MG scenario. For an energy
system with storage, The possible options of state variables can be power production,
load, weather information, time information, and so on. While environment dynamics,
power production, load, battery dynamics, and more can be considered. Action, in this
case, can be discharging/charging action of the battery, sending/receiving energy, and
others.

Figure 2.3: Deep neural network structure diagram for the RL agent in MG.

2.3 Multi-agent reinforcement learning

If there is more than one agent in the environment, i.e., a multi-agent system, all
agents need to interact with the environment, as well as with other agents. Figure 2.4
shows a framework of the multi-agent system for agent-environment interaction in
reinforcement learning.

In real applications, it is also more reasonable and natural to build models with
multiple agents. For multi-agent systems, in general, could not fulfill the MDP prop-
erties. And the reason is quite apparent: one agent’s action will change the environ-
ment, but usually this agent’s behavior and intention are not known to others, and
for other agents, vice versa. They could only observe partial information, and due to
the situation in such a Markov game, reinforcement learning faces many difficulties
in multi-agent system (MAS) studies. Following the self-driving example, apparently,
there would be more than just one automobile on the road, and we have to take other
vehicles into account, such as how to deal with the situation when one car suddenly
breaks, or how to plan the route to avoid traffic jam, or how to manage the situation
when cars keep leaving the lane while others keep joining temporarily. Interactions

2.4 Energy management of the DCOES 21

Figure 2.4: A multi-agent environment interaction framework in reinforcement learn-
ing.

among different vehicles are quite important in this multi-agent system. It might be
possible to consider this problem from a single agent point of view as a super-centralized
brain controls the whole system, but it will bring a plurality of problems [20]. However,
it would be much more natural to consider each car as one agent. Many algorithms
centrally train the strategies of all agents, and after the training, agents can have the
ability to make distributed decisions, such as COMA in Foerster et al. [13] and MAD-
DPG method in Lowe et al. [33]. However, due to the centralized training process, it
also has a certain scalability problem. When the number of agents is large, it may face
the risk of not being able to learn. Besides, there are also methods that use communi-
cation to alleviate the impact of environmental non-stationarity and local observability
by increasing the transfer of information between agents [12, 21, 22].

2.4 Energy management of the DCOES

The Open Energy System on the OIST campus site includes 19 inhabited houses that
are equipped with photovoltaic panels and lithium-ion batteries and interconnected by
a DC power bus line. Figure 2.5 shows the overall architecture of the OIST DCOES.
Charging/discharging and power exchange decisions are made by the energy storage
server (ESS) in each house.

Figure 2.6 illustrates the basic energy inputs and outputs of each house and how
they are connected in a network.

Figure 2.7 shows a detailed organization of the energy storage server (ESS). There
are three input energy sources to the ESS: solar power generated from photovoltaic
panels (pvc charge power), power purchased from the external power supply line (Pow-
ermeter p2), and exchanged power from other houses in the community (DC grid).
The output is AC 100V power consumption in the household through an uninterrupted

2.4 Energy management of the DCOES 22

Figure 2.5: Overall architecture of the OIST DCOES.

Figure 2.6: Sketch of the house energy storage system.

2.4 Energy management of the DCOES 23

power supply (UPS) that performs AC-DC conversion (ups output power). DC power
can be stored locally in the battery through the battery managing unit (BMU) (charge-
discharge power) and exchanged across houses through the DC grid (grid power) In
addition, 200V AC appliances, such as air conditioning, are additionally provided from
the external power line without the control of the ESS.

Figure 2.7: The organization the Energy Storage Server (ESS) for the DCOES.

2.4.1 Battery charge/discharge control by RSOC
In the standard operation of the DCOES, whether to use the local battery power or
commercial utility AC power is decided based on the relative state of charge (RSOC)
of the battery, as illustrated in Figure 2.8. The battery operation mode shows the re-
lationship between the RSOC and UPS modes. UPS modes have two modes, when the
RSOC remains higher than a threshold (30%) the battery operation mode is "BAT-
TERY Mode" (also denoted as UPS mode = 2), in which the household power is
supplied through the DC-AC converter and no utility AC power is used. When the
RSOC drops below the threshold, the batter operation mode turns into the "BYPASS
Mode" (UPS mode = 5), and the utility AC power is used directly. As the RSOC
recovers above another threshold (35%) through recharging from the PV power, DC
grid exchange, or the utility AC power, the battery operation model turns to the
"BATTERY Mode" (UPS mode = 2).

Under this control, the power flow to the battery is determined by the following

2.4 Energy management of the DCOES 24

Figure 2.8: The battery operation mode control based on the RSOC.

equation (numbers are those in Figure 2.7):

Power Flow to Battery = 11○DC Grid power
+ 4○pvc charge power
+ 6○Powermeter p2 (power consumption to the ESS)
� 3○ups output power
� ac_loss (Transition loss)
� dc_loss (ESS loss and DCDC loss).

(2.9)

2.4.2 The DCOES data preprocessing
The original data file and logs are given in .csv format, including 31 data points for
each house and 14 data points for weather stations (See Appendix A). A preprocessing
of data files is necessary for further uses of the data sets. In addition, we currently have
housing data from the year 2014 to 2019, and weather station data from 2015 to 2019.
We also have to remove any unreliable or incomplete data from the data because it is
necessary for our testing and learning processes. We interpolate the forward value (last
previous valid) of the missing points. Figure 2.9 shows data visualization on the first
day of 2019 of house 214 over every 30s. The red line denotes the photovoltaic charge
power, the magenta dashed line denotes the charge-discharge power to the battery,
the black dot line denotes the consumption power, the green dotted curve denotes the
relative state of charge (RSOC) of the battery, and the blue star curve denotes the

2.4 Energy management of the DCOES 25

Figure 2.9: Visualization of valid data of House 214 over every 30s on Jan 1, 2019.

2.5 Autonomous Power Interchange System (APIS) 26

charge/discharge current of the battery of the day. We can tell from the figures that
the RSOC level is changing according to the battery current values, which increase
during the daytime with solar power, and decreases when the solar sources decline
with sunset. Appendix A shows an example of historical log data of one house from
the original file with all data points.

2.5 Autonomous Power Interchange System (APIS)

The Autonomous Power Interchange System (APIS) is an open-source power inter-
change management software that comprises the node software for P2P power inter-
change, the main controller for monitoring and visualization, and emulators of the
DCOES hardware, including ESS [50]. Figure 2.10 shows a real-time battery monitor-
ing of multiple houses. The dotted line represents that there is an energy exchange
happening among 19 nodes. The battery state of charge (0% to 100%) is also depicted
in the green part with different levels.

Figure 2.10: Real-time battery monitoring of each residence

I will use the APIS for energy-sharing experiments, i.e. multi-agent system energy
management. A detailed description of how the APIS works is illustrated below. I will
present the work done with this emulator with RL methods in Chapter 4.

The APIS simulator contains several sub-modules for the overall simulation. It can
realize physical peer-to-peer (PP2P) energy sharing as well as autonomous distributed
control (Werth et al. [65]). It includes an apis-main folder, which is installed for
each node to provide a bi-direction energy exchange. The power exchange policy file
(scenario.json) and each node config file are under this software. In addition, APIS
has an emulator thread called apis-emulator, and we can read all the real-time data

2.5 Autonomous Power Interchange System (APIS) 27

of nodes from the web-API of this emulator. Input and output data from the nodes
are also under this thread, and the discharge/charge rules for the battery are also
implemented with this emulator.

The software that realizes these technologies is organized in the following structure.

APIS system

apis-main (each node)

scenario.json (power exchange rules)

config.json

apis-main_controller

apis-emulator

data (input and output data)

core.py (update battery the ROSC etc.)

apis-web

. . .

2.5.1 Energy exchange based on scenario files
The energy exchange rule for each house is defined by scenario.json files. The struc-
ture of an example of the scenario file from 0 to 1 o’clock is shown as follows. A sample
.json file is given in Appendix B.

A scenario file is defined independently for each node and re-read periodically.
In each time period, the battery status is classified into one of four levels: Excess,
Sufficient, Scare, and Short based on the thresholds specified in the scenario file. The
deal negotiation is carried out after each node compares its own battery RSOC with
the scenario information. A node in Excess status sends a Discharge-REQUEST, while
a node in Scare status sends a Charge-REQUEST to all nodes in the cluster. A node
in Excess or Sufficient status sends Discharge-ACCEPT, while a node in Sufficient or
Scare status sends a Charge-ACCEPT. Once the deal is made, energy exchange starts
between the subsystems for deal execution. Figure 2.11 provides an example of the
scenario settings for a node with the maximum battery capacity of 4.8kWh (the same
as the real local battery system). In this example scenario, the status is Excess when
the RSOC level is over 80% (3840Wh - 4800Wh), Sufficient when the RSOC level is
60%-80% (2880Wh - 3840Wh), Scare when the RSOC level is 40%-60% (1920Wh -
2880Wh), and Short when the RSOC level is lower than 40% (0 - 1920Wh).

2.5 Autonomous Power Interchange System (APIS) 28

Figure 2.11: Request/Accept threshold in scenarios.

2.5.2 APIS data flow
The simulation data flow of APIS is summarized in Figure 2.12.

Figure 2.12: Data flow in APIS.

The input data to the APIS is the load and the solar generation power. The solar
radiation data is hourly data for 24 hours (unit: W/m

2), and the load data is the
consumption power every 30 minutes for 24 hours (unit: kW). We reorganize the
OIST houses data in a specific format to feed into the APIS. An example of input data
is listed in Appendix C.

2.6 Summary 29

The outputs are stored in log files for evaluation as .csv files. Figure 2.12 shows
a sample output variables we could save. Appendix E lists a result of each house’s
individual performance data file and a summarized result data file for all houses.

Choice of the acceleration parameter The APIS is a real-time simulator and has
an acceleration function. The acceleration rate can be set between 1 and 200, which
is used to change the progression of time. This restriction (factor gl.acc) results in
a limitation of speeding up. If gl.acc is set to 30, time in the emulator progresses 30
seconds for each second in the real world. Setting reasonable acceleration parameters is
important to speed up all training experiments as the simulator is a real-time simulator.
If we do not use acceleration, the time used in the simulator would be the same as
the real-time. A detailed acceleration setting and implementation can be found in
Appendix D.

2.6 Summary

I explain the essential theoretical knowledge of RL and MARL in this chapter. The
DCOES battery component and APIS simulator are also introduced. These provide
the groundwork for the following RL implementations.

Chapter 3

Single House Energy Management
with Reinforcement Learning

In this chapter, I test the applicability of reinforcement learning to energy optimization
of single houses without energy exchanges across houses. I first developed a battery
simulator based on a linear battery model for each residence in the community of
faculty houses at OIST. The model is verified with a testing data set. I then use this
model to test different RL methods for learning with different houses and input states.
The results of different cases are discussed.

3.1 PV panel and Battery Settings

There are three routes (route A, B, and C) in the overall DCOES on the OIST campus
(Figure 1.7). For the experiments in this chapter, I select route B for all simulations.
There are seven houses on this route. PV panels and battery information, such as the
PV size and battery capacity, are listed in Table 3.1.

Table 3.1: PV panel and Battery Settings for route B houses in 2018 and 2019

Route House ID Total number of
PV modules

Total PV
Size (kW)

PVC Size
(kW)

Battery
Size (kWh)

B

205 12 2.88 4

4.8

206 12 2.88 2

208 12 2.88 2

212 12 2.796 4

213 12 2.88 2

214 18 4.32 2

215 12 2.88 2

30

3.2 Model of battery 31

3.2 Model of battery

Battery models describe the relationship between RSOC, battery voltage, and battery
current [9, 10]. I assume a linear relationship between the change in RSOC and battery
current. Positive battery current happens when the battery is charged (RSOC rises),
negative battery current means the battery is discharged (RSOC declines), and zero
battery current means no charge/discharge happens. A decay in RSOC even when
there is no charging or discharging should also be considered. Although each house
has slightly different battery charge and discharge coefficients, the battery model could
be simulated as a simple linear model. A more detailed explanation is given in the
following section.

3.2.1 Linear simulation model of the battery
To find the relationship between battery current and RSOC, I visualized the first
30 days of data for house 214 in 2019. Figure 3.1 is the plot of battery current
and the change in RSOC (d_rsoc) per minute. By performing linear regression on
the data points, we can get the estimated coefficients for the linear regression as the
charge/discharge coefficients and the independent term as the decay value in the linear
model.

Figure 3.1: Relationship between battery current and change in RSOC, quarter-hour
data; house 214, 2019.

Thus, a linear model simulator of the system can be generated from the charge/discharge
current of the battery and the relative state of charge (RSOC) of the battery for each

3.3 Single house RL with the tabular method 32

house. The relationship between these variables follows Equation 3.1:

RSOCt+1 =

8
>>><

>>>:

RSOCt + (Kd ⇥ at �Decay)⇥ timestep if at is discharge

RSOCt + (Kc ⇥ at �Decay)⇥ timestep if at is charge

RSOCt �Decay ⇥ timestep if at is idle,

(3.1)

where at is the charge/discharge current and Kd and Kc represent discharge/charge
coefficients, respectively. Decay is the decaying factor of the battery. timestep denotes
the time step of the input data points. Training data uses data from the first 200 days,
and testing data uses data on different days (after 200 days). Figure 3.2 shows the
prediction in house 213 and house 214 by the linear simulator of RSOC. The green
dashed line denotes the simulated RSOC from the linear model, while the yellow curve
is the real RSOC value. The root mean square error (RMSE) between the predicted
RSOC and the real RSOC is 2.11 for house 214 when timestep is 15 minutes, while
the RMSE is 2.41 for house 213 when the timestep is 15 minutes. It indicates that in
different houses, the linear model provides a good estimation of the RSOC.

(a) Linear simulator for quarter-hour data sets, house 213, 2019.

(b) Linear simulator for quarter-hour data sets, house 214, 2019.

Figure 3.2: Linear model simulation prediction in different houses.

3.3 Single house RL with the tabular method

Figure 3.3 shows the energy flow in a single house controlled by the ESS. Here I only
consider two input energy sources, solar power (PV Charger) and external power (p2).
And I am going to use simulated p2 value (purchased power) for all further experiments.
After passing the input data to the ESS, the RSOC value could be calculated. Here
the load is the usage in the house.

3.3 Single house RL with the tabular method 33

Figure 3.3: Sketch of ESS data flow.

3.3.1 State and Action representation
(1) State representation Based on Figure 3.3, I consider the following representa-
tions for state variables:

1) how much production is currently received from the PV charger, which is
pvc_charge_power

2) how much electricity is currently used in the house, which is
ups_output_power

3) relative status of charge of the battery, which is Battery rsoc

4) input power from the utility grid to ESS, which is p2

There could be other options of state, such as solar radiation, outside temperature,
wind speed, etc. For single-house, dcdc_grid_power can be ignored (no exchange
of power from other agents). Depending on the charge/discharge decision, each agent
ends up buying/not buying electricity (p2). State representation for each agent can
be formulated from the above variables depending on the model design.

(2) Action selection The action setting in single-agent RL for energy management
varies according to different designs. There could be selections from different input
energy sources in hybrid MG or charge/discharge the battery of the storage system. To
increase the ESS system’s self-sufficiency rate (SSR), I can adjust the charge/discharge

of the battery.
For a reinforcement learning agent, actions can be charge/discharge power to the

battery. For Q learning that assumes discrete actions, an action can be chosen directly
from a set of battery currents:

A = {�35,�28,�21,�14,�7, 0, 7, 14, 21, 28, 35}(unit: Ampere),

where negative value denotes discharging action to the battery, positive value denotes
charging action to the battery, and 0 denotes idle action to the battery. The range of
action is between an interval of [-35, 35], and different levels of charge/discharge can
also be considered.

(3) Reward design The basic reward is set as the power bought from the commercial
power line. In addition, avoiding over-charging, over-discharging, or heating of the
battery is an important goal. I also set the upper and lower bounds to the reward.

3.3 Single house RL with the tabular method 34

Accordingly, a reward function based on the battery status and charge/discharge/idle
operation can be considered, such as

r
⇤
t (at) =

8
>>>>>>>>><

>>>>>>>>>:

kdp
B
t �t if at is discharge rsocmin < rsoc < rsocmax

�nkd if at is discharge rsoc rsocmin

kcp
B
t �t if at is charge rsocmin < rsoc < rsocmax

�nkc if at is charge rsoc � rsocmin

0 if at is idle otherwise

rt(at) =

8
<

:
r
⇤
t (at)� ⌘

buy
t p

grid
t if p

grid
t > 0

r
⇤
t (at) + ⌘

sell
t p

grid
t if p

grid
t < 0,

where kd is the discharging reward factor; kc is the charging reward factor; rsocmin

and rsocmax are the minimum and maximum relative state of charge, respectively; n is
the plenty factor. p

grid
t = p

load
t � p

PV
t + p

B
t , when p

grid
t > 0, purchasing electricity from

the power line ; when p
grid
t < 0, agent sells electricity to the power line. ⌘

buy
t and ⌘

sell
t

are buying and selling factors. Currently, buying and selling factors are not considered.
Note that reward settings could be different according to different targets.

For simplicity, I set the reward function as the negative value of the net cost, where
cost is the house usage and cost = p2, and p2 is calculated from the battery simulator
with p2 = battery_charge_power + load � pvc_charge_power. The overall goal is
then to minimize the purchasing power from the power supply line (r = �p2).

3.3.2 Tabular Q learning
I first implemented tabular methods with the existing data sets. Similar to the model
from [49] and the above design guidelines, I consider the following setup for the model
for each agent:

State selection Each agent can use sensory information available from its own house.
The most basic sensory state for each house can be the following: S = {spv, srsoc, sload},
where
spv denotes photovoltaic power production;
srsoc denotes the Relative State Of Charge (RSOC) of the battery;
sload denotes power consumption in the house.

The state is formulated from {pv, rsoc, load}, and each input is divided into 4
discrete levels. Thus, I will have |Spv| ⇥ |Srsoc| ⇥ |Sload| = 64 states. I bin values into
discrete intervals. Figure 3.4 shows the discretized values with the histogram bins of
states.

3.3 Single house RL with the tabular method 35

pv(W) :

8
>>>>>><

>>>>>>:

0 when pv 2 [0., 500.]

1 when pv 2 (500., 1000.]

2 when pv 2 (1000., 1500.]

3 when pv 2 (1500., 2000.]

load(W) :

8
>>>>>><

>>>>>>:

0 when consume 2 [0., 590.]

1 when consume 2 (590., 1200.]

2 when consume 2 (1200., 1800.]

3 when consume 2 (1800., 2400.]

rsoc(%) :

8
>>>>>><

>>>>>>:

0 when rsoc 2 [0., 25.]

1 when rsoc 2 (25., 50.]

2 when rsoc 2 (50., 75.]

3 when rsoc 2 (75., 100.]

Figure 3.4: Discretized values of states in different bins.

Action design As explained above, I discretize the actions into 11 different levels
from [-35, 35] (unit: A), which denotes the battery current. Therefore, action values
can be selected from the list: [-35, -28, -21, -14, -7, 0, 7, 14, 21, 28, 35]. Actions are
selected with ✏-greedy method by at

.
= argmaxa Qt(a), where argmaxa denotes taking

action a which maximizes the Q value (referring to Sutton and Barto [54]).

Reward As the goal is to minimize p2 overtime, where I want to be independent
of the commercial energy supply as much as possible, I set the reward function to the

3.3 Single house RL with the tabular method 36

negative value of the purchased power from the AC grid as follows:

reward = �cost
= �(�p2sim)
= battery_charge_power + load� pvc_output_power

= battery_voltage ⇤ action+ load� pvc_output_power,

where p2sim denotes the simulated p2 value.
I then implement Q-learning method with Algorithm 1.

Algorithm 1: Q-learnig (off-policy TD control) for estimating ⇡ ⇡ ⇡⇤ (Sutton
and Barto [54])
1 Initialize Q(s, a) for all s 2 S, a 2 A, arbitrarily
2 set ↵, �, where ↵ 2 [0, 1] and � 2 [0, 1)
3 for each episode do
4 Initialize S

5 for each step of episode do
6 select A from S using policy derived from Q (e.g., ✏-greedy, softmax)
7 take action A, observe new states S

0, and reward R

8 Q(S,A) Q(S,A) + ↵[R + �maxa Q(S 0
, a)�Q(S,A)]

9 S S
0

10 until Termination Condition
11 end
12 end

I implemented Q-learning method with data from house 214 and 215 in 2019 where
↵ = 0.2 and � = 0.95. The mean reward of the days of these houses is shown in
Figure 3.5 and Figure 3.6, respectively.

Figure 3.5: Q learning tabular methods, mean rewards of house 214 in 2019.

As inferred from the reward curve, the average reward increases and gradually ap-
proaches 0, which means it tries to minimize the purchased power from the external

3.4 DQN with Prioritized experience replay 37

Figure 3.6: Q learning tabular methods, mean rewards of house 215 in 2019.

power supply. I also notice that there are some declines in the reward curve approxi-
mately from day 150 to day 240, which is the summer season when energy demand is
greater than in other seasons.

3.4 DQN with Prioritized experience replay

3.4.1 Algorithms
The simple tabular method result above indicates that it is feasible to apply RL to
single-house energy management. As the data collected in the DCOES have many
variables, they are hard to handle by the above look-up table approach. Thus I consid-
ered applying deep RL methods. DQN approach follows Algorithm 2 below. As DQN
uses random sampling, agents would take a very long time to learn from the replay
memory when the reward is scarce. I applied the prioritized DQN method for further
learning. As shown in Algorithm 3, in prioritized DQN, agent samples, according to the
sample priority in memory instead of random sampling, it can find the learning samples
more effectively. pi denotes the priority of transition i, and importance-sampling (IS)
is a Monte Carlo method for evaluating properties of a particular distribution while
only having samples generated from a different distribution than the distribution of
interest (Kloek and Van Dijk [30]).

3.4.2 States representation in DRL
Following the above state representation, I set the state set from S = {spv, srsoc, sload, sp2},
where spv denotes photovoltaic power production, srsoc denotes RSOC of the battery,
sload denotes power consumption in the house and sp2 is input power to ESS. I further
consider the option of the time of the day information as part of the state.

Encoding cyclic features for states The time of the day information is a cyclic
value, and I consider a sin/cos function, which is a standard method for representing
continuous cyclic variables. The most common time attributes are months, days, weeks,

3.4 DQN with Prioritized experience replay 38

Algorithm 2: Deep Q-learning with Experience Replay (Mnih et al. [35, 36])
1 Initialize replay memory D to capacity N
2 Initialize action-value function Q with random weights ✓

3 Initialize target action-value function Q̂ with weights ✓
� = ✓

4 for episode = 1, M do
5 Initialise sequence s1 = {x1} and preprocessed sequenced �1 = �(s1)
6 for t = 1, T do
7 With probability ✏ select a random action at

8 otherwise select at = maxaQ⇤(�(st), a; ✓)
9 Execute action at in emulator and observe reward rt and xt+1

10 Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
11 Store transition (�t, at, rt,�t+1) in D
12 Sample random minibatch of transitions (�j, aj, rj,�j+1) from D

13 Set yj =

8
<

:
rj for terminal ✓j+1

rj + �maxa0 Q̂(�j+1, a
0; ✓�) otherwise

14 Perform a gradient descent step on (yj �Q(�j, aj; ✓))2 with respect to
the network parameters ✓

15 Every C steps reset Q̂ = Q
16 end
17 end

hours, minutes, and seconds which all occur in specific cycles. Other examples might
include features such as seasonal, tidal, or astrological data.

I performed a sine and cosine transformation to encode a cyclical feature:

xsin = sin (
2 ⇤ ⇡ ⇤ x
max(x)

)

xcos = cos (
2 ⇤ ⇡ ⇤ x
max(x)

),

where x denotes time t. For instance, a quarter-hourly recorded data (96 points per
day) could be transformed as following code in python:

data['time_sin'] = np.sin(2 * np.pi * data['time']/96.0)

data['time_cos'] = np.cos(2 * np.pi * data['time']/96.0)

3.4.3 Simulation results
I implement prioritized DQN for the single-house case under the following conditions:
i) one year data for each house in route B;
ii) two year data for house 214;
iii) one-year data with cyclic features in the state for house 214;
iv) multiple iterations of learning for house 214.

3.4 DQN with Prioritized experience replay 39

Algorithm 3: DQN with proportional prioritization (Schaul et al. [45])
Input: minibatch k, step-size ⌘, replay period K and size N , exponents ↵ and

�, budget T .
1 Initialize replay memory H = ?, � = 0, p1 = 1
2 Observe S0 and choose A0 ⇠ ⇡✓(S0)
3 for t = 1 to T do
4 Observe St, Rt

5 Store transition (St�1, At�1, Rt, St) in H with maximal priority pt = maxi<t

pi

6 if t ⌘ 0 mod K then
7 for j = 1 to k do
8 Sample transition j ⇠ P (j) = p

↵
j /

P
i p

↵
i

9 Compute importance-sampling weight !j = (N · P (j))��
/ maxi!i

10 Compute TD-error �j = Rj + �jQtarget(Sj, arg maxaQ(Sj�1, Aj�1))
11 Update transition priority pj |�j|
12 Accumulate weight-change � �+ !j · �j ·5✓Q(Sj�1, Aj�1)
13 end
14 Update weights ✓ +⌘ ·�, reset � = 0
15 From time to time copy weights into target network ✓target ✓

16 end
17 Choose action At ⇠ ⇡✓(St)
18 end

Note that all data are averaged quarter-hour sampled data from the raw data files.
The average reward curve in each condition is shown in the following figures.

Yearly data simulation I implement the yearly data for conditions i)and ii) for
houses with prioritized DQN method, where state representation is S = {spv, srsoc, sload,
sp2}. I first implemented data from house 214 in 2018. Figure 3.7a shows the learned
average daily reward of house 214 in 2018. As there are only 280 days of data are valid,
I further implement data from the year 2019 (Figure 3.7b), as well as a longer time
period by concatenating data from both years (Figure 3.7c).

It can be seen from the training results that the daily average reward for houses
214 in 2018 and 2019 with the prioritized DQN method increased and reached 0.

I then implement the same method for all other houses in the same route. The
average reward of house 205, house 206, house 208, house 212, house 213, and house 215
are shown in Figure 3.8a, Figure 3.8b, Figure 3.8c, Figure 3.8d, Figure 3.8e, Figure 3.8f,
respectively.

Figure 3.8 indicates that the daily average reward for most houses with the pri-
oritized DQN method increases and reaches 0. Since different houses have different
inputs of generated PV power and different usages, performances are also different. In
addition, as shown in Figure 3.6 and Figure 3.8f, the prioritized DQN method outper-
formed the Q-learning method in learning, where the reward reaches 0 earlier and has
a higher value with the same dataset.

3.4 DQN with Prioritized experience replay 40

(a) House 214, 2018

(b) House 214, 2019

(c) House 214, 2018⇠2019

Figure 3.7: Mean reward curve of House 214 in different years.

3.4 DQN with Prioritized experience replay 41

Cyclic features in state I further implement the case iii) with cyclic time infor-
mation. In this situation, state representation is S = {spv, srsoc, sload, sp2, stime}, where
stime uses the sine and cosine transformation I encoded above. The reward in this
condition is shown in Figure 3.9.

Figure 3.9: Average reward of house 214, with time cycle features, 2019.

Adding cyclic time information to the state has smoother learning in the early days
but no significant improvement over the latter days compared with cases without cyclic
information.

Multiple iterations Finally, I implement multiple iterations learning (condition iv))
in house 214 with #EPI = 10. The total reward over multiple epochs is shown in Fig-
ure 3.10.

Figure 3.10: Total reward of house 214, multiple iterations, 2019.

3.5 Summary 42

The total reward in multiple iterations also indicates that the prioritized DQN
approach can improve performance with increased experience.

To illustrate the actual operation of the RL agents, I plot the performance of house
214 in the last 10 days. One run is shown in Figure 3.11a. The cyclical feature’s
performance for house 214 can be found in Figure 3.11b. The blue line indicates the
action of the battery (positive value: charge; negative value: discharge; 0: idle).

(a) Prioritized DQN method, Last 10 days of 2019, house 214.

(b) With the cyclical feature, Last 10 days of 2019, house 214.

Figure 3.11: Performance in different cases.

3.5 Summary

In this chapter, I first proposed a battery model using historical data with linear re-
gression (LR). I confirmed that charge and discharge coefficients and the decay value
can be obtained with LR for individual houses with the battery model. Then I eval-
uated the tabular method, the Q-learning algorithm, for controlling the current to
charge/discharge the battery. I discovered that the tabular method is feasible for con-
trolling the current of energy storage. However, using a look-up table purely to store
the knowledge has limitations in structuring the state representations. Therefore, I
further applied the DRL algorithm to the same problem. By applying the prioritized
DQN method in single-house learning, it is verified that learning converges faster than
the tabular method. In addition, having time-of-day information in the state is able
to reach smoother learning in the early days, but this cyclic value degraded the perfor-
mance. One possible reason is that daily solar power has a cyclic pattern with respect
to solar radiation, while time-of-day is redundant and makes it longer to learn.

3.5 Summary 43

(a) House 205, 2019

(b) House 206, 2019

(c) House 208, 2019

3.5 Summary 44

(d) House 212, 2019

(e) House 213, 2019

(f) House 215

Figure 3.8: Average reward of different houses in route B.

Chapter 4

Multiple House Energy Management
with Reinforcement Learning

This chapter considers how to apply reinforcement learning for the optimization of
energy exchanges across multiple houses using the APIS emulator. I first consider
possible state and action representations for the energy exchange policies. Different
options of state representation with deep Q-network and prioritize-replay methods are
proposed and presented.

For multiple houses, rather than adding energy exchanges between different houses
to my own linear battery simulator used in the previous chapter, I decided to utilize
the open-source APIS software developed by SonyCSL [50].

4.1 Reinforcement learning setup for the APIS

As the APIS is an open-source software simulating real-time energy exchange and
battery charge/discharge control, it opens up the possibility of adding whatever higher-
level control and optimization rules as desired. Thus, I produced the multi-agent RL
system on top of the APIS so that each agent works on each of the node-level controllers.

As discussed in Section 2.5.1, scenario files determine the timing for the energy
exchange. Depending on the battery status, it triggers the energy exchange for deal
negotiation. However, the default scenario files use fixed values for controlling the
exchanges between different nodes. Therefore, it is not flexible enough to adapt to
different energy production and usage profiles of different nodes.

The policy for RL agents for the APIS can have various forms. Similar to the
single house case, actions can be direct real-time control of charge/discharge current
to the battery as well as exchanging current to the DC grid. However, coordinat-
ing charge/discharge decisions across multiple agents requires a real-time arbitration
mechanism to avoid overloading or under-loading. As a negotiation mechanism is
already implemented using the scenario files in the APIS, I decided to take an indi-
rect, higher-level action of rewriting the scenario files to control the energy exchanges
among multiple agents. This allows me to focus on optimizing energy exchanges while
charge/discharge control of the battery is based on the RSOC as explained in 2.4.1.

Based on the APIS structure, I created a separate thread apis-rl in the main APIS

45

4.2 Action and state representations 46

simulator for implementing reinforcement learning algorithms. The overall structure is
then formulated in the following forest structure.

APIS system with RL thread

apis-main (each node)

scenario.json (power exchange rules)

config.json

apis-main_controller

apis-emulator

data (input and output data)

core.py (update battery rsoc etc.)

apis-rl (read data and send back the learned policy)

To produce charge/discharge requests and acceptances adaptively, agents need to
select the status of the battery (excess, sufficient, scarce, and short) by changing the
threshold values. As each node controller has its own scenario file, each RL agent can
dynamically update the rules in its scenario file. In this case, the state for an agent
is read from the emulator’s log web API, and the action is updated by refreshing the
scenario file.

4.2 Action and state representations

Action representation For creating a scenario file, three threshold RSOC values
need to be specified for the borders between Excess, Sufficient, Scare and Short states,
as illustrated in Figure 2.11. Because deep Q-learning assumes discrete actions, I use
RSOC thresholds in discrete values in every 10% step from 20% to 90%. A state-action
value (Q-value) is updated for each action represented by a set of three RSOC thresh-
olds, namely, action[0] for Excess lower bound, action[1] for Sufficient lower bound, and
action[2] for Scarse lower bound, with a constraint of action[0] > action[1] > action[2].

States representation In the multi-house setting, in addition to the state repre-
sentations similar to the single-house cases, it may also be helpful to take into account
the states of other houses and the DC grid. I test three settings of state variables.

1) Stand alone S = {spv, sload, srsoc, sp2}

2) With Community average S = {spv, sload, srsoc, sp2, srsocave , sig}

3) With time of the day information S = {spv, sload, srsoc, sp2, srsocave , sig, stime},

4.3 Reward and evaluation criteria 47

where spv denotes photovoltaic power production, sload denotes power consumption in
the house, srsoc denotes the RSOC of the battery, sp2 is input power purchased from
the utility grid, srsocave denotes the community average RSOC, sig is the exchange grid
current in DCDC, and stime is a two-dimensional encoding of daily cyclic with sine and
cosine components.

4.3 Reward and evaluation criteria

Reward The reward setting is similar to the single house RL, which is the consump-
tion power of the house. The goal of this learning is to minimize the external purchase
power as much as possible. And here, I tried two different reward settings, one using
the sum of purchased power of the community and the other one using individually
purchased power (p2i where i denotes agent i). The reward for each agent i is calculated
from

rewardi = �p2i,

and
rewardi = �

X

i

p2i,

respectively.

Exchanged power Another key evaluation criterion is the exchanged power within
the community. More exchanging power implies that more energy is shared among
different nodes, which allows utilizing any surplus power across houses.

Self-sufficiency rate (SSR) For evaluating the performance of different operation
policies, one important indicator is the self-sufficiency rate (SSR), which is the propor-
tion of the locally supplied energy (by PV panels) in the total energy consumption in
each house or in the community.

In the DCOES, the SSR value is calculated as [42]

SSR =
Ebattery

Econsumption
(4.1)

Here Ebattery and Econsumption are, respectively, the electric power supplied [kWh] during
battery mode, and the total power consumed [kWh] in both battery mode and bypass
mode, as described in Section 2.4.1. The SSR is 100% when all the electric power
consumed in the community is supplied by solar power. On the contrary, the rate is
0% when electric power is only supplied by the external power supplier. Here I calculate
the SSR value (ssr_pv) without considering the AC loss.

I compared the performances with these three evaluation criteria in the following
experiments.

4.4 DCOES dataset in OIST 48

4.4 DCOES dataset in OIST

I prepared both the training and the testing dataset for the different settings for the
cases listed above. The training dataset is sliced from May 8 to Jun 6 (30 days) in 2019
for 4 houses (house 212, house 213, house 214, and house 215). While the testing data
are from 3 different time periods of the same year. The testing input data are from
Feb 2 to Feb 21 (winter season), Jun 14 to Jun 27 (rainy season), and July 21 to Aug 3
(summer season), namely, every two weeks’ data is tested with the saved trained model.
One reason for only having 30 days of data for training is that the APIS is a real-time
simulator with very limited acceleration functions. As I use an acceleration gl.acc = 60
(see section 2.5.1 for more details), applying yearly data would take 6̃.08 days for one
iteration. Therefore, I used monthly data to shorten training hours. Another reason
for picking this dataset is that there are some days with missing data in some houses,
and on some days, solar generation data is not recorded in some houses in the raw data
files. It is necessary to guarantee the selected data have near-complete data points.
Figure 4.1 shows a statistics plot of generated power from the PV panel and energy
demand from the users in different datasets.

(a) Average PV production power [Wh] per day for 4 houses.

(b) Average consumption power [Wh] per day for 4 houses

Figure 4.1: Statistics of PV production and consumption in different datasets.

Moreover, house IDs are transferred into E001, E002, E003, and E004 for further
formatting. A detailed formatted input sol (PV generation) and load data can be
found in Appendix C.

4.5 Choice of action time step and reward settings 49

4.5 Choice of action time step and reward settings

The time step is set to decide the update frequency of the learning. I first implement
the DQN method with different time steps. I set the time step to 1 hour and 3 hours
for the case 1), case 2), and case 3).

Figure 4.2a shows the average purchased power per day with different time steps.
Figure 4.2b shows the average exchanged power per day with different time steps. And
Figure 4.2c depicts the average SSR value with different timestep. The baseline case
with default scenario control is also shown in each condition.

It is clear that with DQN learners, purchased power from the external power line is
reduced in both time step = 1 hour and time step = 3 hours cases. Houses have more
exchanged power compared with the default scenarios in both cases.

There are no significant differences between time step = 1 hour and time step = 3
hours cases in the performance. Therefore, I consider using time step = 3 hours for all
future experiments.

Then I implemented the experiments with reward setting using individual purchased
power.

Figure 4.3a shows the average purchased power per day with different reward set-
tings. Figure 4.3b shows the average exchanged power per day with different reward
settings. And Figure 4.3c depicts the average SSR value with reward settings. It can
be inferred that the case with the sum of the reward in the community slightly out-
performs the case with individual reward settings (note that the y-axis in purchased
power is not starting from 0). And I am focusing on using the sum reward for the
following experiments.

The default fixed scenario for all houses is shown in Figure 4.4a. Meanwhile, actions
in the last week of house E001 and E003 learned with the DQN method are further
visualized in Figure 4.4b and Figure 4.4c, respectively. Request-CHARGE action is
colored in green, Request-DISCHARGE action is colored in the dark blue, and Accept-
CHARGE/DISCHARGE are the orange and light blue areas, respectively. RSOC value
is shown in the black dot curve. The learned action policy of DQN adjusts with respect
to the RSOC level, while the default rule-based control can not realize that.

4.6 Comparison of different DRL methods

DQN agents outperformed the fixed rule-based case in all criteria. I further applied
prioritized DQN (prior-DQN in short form) with different options of input state in
section 4.1. Figure 4.5 shows the performance in comparison of the DQN and the
prioritized DQN method, with the default scenario as the baseline. Three conditions are
stand-alone, with community average and with time-of-day information, respectively.

It can be inferred from Figure 4.5 that DRL methods can outperform the default
energy exchange control. Purchased energy from the external power line decreases.
DRL learners also invoke more shared energy compared with the baseline cases. The
SSR values in different conditions are also increased. Moreover, the prioritized DQN
agents tend to have less purchased power, greater exchanged power and larger SSR
value in all three conditions than the DQN method.

4.7 Multiple iterations and runs 50

(a) Average purchased power per day, different timestep.

(b) Average exchanged power per day, different timestep.

(c) Average SSR, different time step.

Figure 4.2: Results with different timestep under different conditions; the reward is
set to the sum of purchased power.

4.7 Multiple iterations and runs 51

(a) Purchased power, with different reward settings.

(b) Exchanged power, with different reward settings.

(c) SSR value with different reward settings.

Figure 4.3: Average values in different criteria with different reward settings, DQN.

4.7 Multiple iterations and runs 52

(a) Default scenarios for houses E001 - E004.

(b) Actions in last 7 days, house E001, timestep=1hr.

(c) Actions in last 7 days, house E003, timestep=1hr.

Figure 4.4: Actions and scenarios for houses in different cases.

4.7 Multiple iterations and runs

In addition, I repeat multiple iterations under multiple runs with the prioritized DQN
method. Figure 4.8a, Figure 4.8b, and Figure 4.8c shows the average purchased power,
exchange power, and ssr_pv value with standard deviation in different cases for run =
3 and iter = 3, respectively.

In multiple iterations experiments (Figure 4.6), agents with community average
RSOC information have the least amount of purchased power and the most shared
energy on average. While agents with time-of-day information have the largest amount
of purchased power. Note that in cases when houses share more energy, it would lead
to an increase in purchasing some extra energy as well. For performance on average,
cases with community average information performed the best. While the case with
time-of-day information has more exchanged power and a larger SSR value than the
stand-alone case.

By iterative training with multiple runs and iterations, the case using the commu-
nity average RSOC information performs best. In this case, the community purchases
the least external energy and exchanges the most shared energy, and the SSR value
is also the highest of all cases. It can be inferred that the improvements in the per-
formance of multiple runs and iterations in the prioritized DQN method are indeed

4.7 Multiple iterations and runs 53

(a) Average daily purchased power, different methods.

(b) Average daily exchanged power, different methods

(c) Average SSR, different methods.

Figure 4.5: Performance of different states options in different methods.

4.7 Multiple iterations and runs 54

(a) Purchased power, in the 1st and 5th iteration.

(b) Exchanged power, in the 1st and 5th iteration.

(c) SSR value in the 1st and 5th iteration.

Figure 4.6: Average values in different criteria with different iterations, prioritized
DQN.

4.7 Multiple iterations and runs 55

Figure 4.7: Cumulative total reward from all houses with regard to multiple iterations
in different cases.

(a) Average purchased power.

(b) Average exchanged power.

4.8 Generalization across houses and seasons 56

(c) Average SSR value.

Figure 4.8: Average values in different criteria in different criteria, prioritized DQN,
runs=3 iter=3.

obtained by learning. Increasing the number of iterations further outperforms single-
iteration training. The results from multiple runs also indicate a robust improvement
in saving energy.

4.8 Generalization across houses and seasons

4.8.1 Shuffled houses ID
For the selected four houses, energy exchange mostly occurs between houses E001 and
E003, while house E004 did not participate in exchanging power much compared with
other houses. To make sure the input data order will not influence the performance
and make a generalized conclusion, I also shuffled house ID order (exchange E001 and
E004) to compare the performance.

Table 4.1: Mean, Standard deviation, T-test results in shuffled ID.

Criteria
Purchased power Exchanged power SSR

normal shuffled normal shuffled normal shuffled

mean 50527.13 50489.03 2921.93 2941.63 0.5498 0.5490

standard deviation 11974.59 12080.59 1007.85 1011.76 0.1753 0.1727

t-statistic 0.0121 -0.0743 0.0173

p-value 0.9904 0.9410 0.9863

Table 4.1 listed the mean and standard deviation values over 30 days in different
criteria in normal order and shuffled the order of the input data set. I also ran paired
a simple t-test to compare the performances in these two cases [52]. The t-value
measures the size of the difference relative to the variation in the data, and the p-value

4.8 Generalization across houses and seasons 57

is the probability of observing the data with a null hypothesis that they come from
the same distribution. The t-values in these two cases of the daily purchased power,
the exchanged power and the SSR value are very close to 0, while p-values in the three
criteria are close to 1. Therefore, there is no significant difference in the performances
when the input order is changed.

4.8.2 Testing with different time periods of the year
I further use the trained model to test the performance with input data from different
time periods of the year. The testing input data are from Feb 2 to Feb 21, Jun 14
to Jun 27, and July 21 to Aug 3. Figure 4.9 shows the average purchased power,
the average exchanged power, and the average SSR value per day in all test datasets
compared with the trained agent in May.

The plots, as shown in Figure 4.9, indicate that the trained model can primarily
reduce the purchased power in February. Also, daily exchanged power and SSR val-
ues increased the most in February. As the weather and solar generation data and
consumption are similar in early May and the test data in February (Figure 4.1), the
learned model performs the best among other test datasets. While in July, the testing
data had a huge difference compared with the training data (both solar and consump-
tion). In June, most of the dates are rainy, and the daily purchased power decreases
slightly compared with their default cases. Although testing data only has two weeks
of data points for each duration, the above results suggest that sharing average energy
production, storage, and usage within the community helps the performance.

4.9 Summary 58

(a) Average purchased power.

(b) Average exchanged power.

(c) Average SSR.

Figure 4.9: Performance of testing data, training data (iter=5), prioritized DQN.

4.9 Summary

In this chapter, I implemented different DRL methods in the APIS simulator for multi-
house energy sharing. The physical feature of the APIS makes it impossible to speed up
the learning, so it is challenging to apply yearly data to the system. Therefore, I used

4.9 Summary 59

monthly data in May for training the agents. Since I put more emphasis on sharing
energy among different nodes, I took an indirect, higher-level action to control the ex-
changing energy performance. I considered both DQN and prioritized DQN algorithms
to the APIS. Different updating frequencies and different options of state representa-
tions are tested. Training data are tested with stand-alone, community RSOC average,
and time-of-day information conditions.

The results indicate that DRL agents significantly outperform fixed rule-based
agents. The overall consumption from the utility grid is decreased in all DRL methods,
and the total exchanged power gets increased as well. An interesting finding is that in
cases when exchanged energy increases, the overall purchased power may also increase
(the whole network still outperforms baseline cases). The SSR values of the active
agents are also increased compared with default cases. It is important to note that
among the above three options of state representations, sharing average energy pro-
duction, storage, and usage within the community helps the performance. In addition,
by shuffling the input data order, I further confirmed that changing order does not
impact the improved performance across the houses. This is because energy sharing is
carried out sequentially based on the deal information registered in the shared memory
of the APIS.

In addition, the results from applying the learned model from training data to
different testing datasets in different seasons further indicate that the learned model
can also outperform the baseline cases. Another finding is that the learned model
performs the best with similar feature inputs. Meanwhile, data from the summer
season with considerable differences have less good performance compared with other
datasets.

Chapter 5

Conclusion and Open Issues

5.1 Conclusion

An increase in energy consumption is arising with the development of modern technolo-
gies and the growing population. How to optimize allocation and to use energy more
efficiently is critical for energy management. Previous works discussed some specific
aspects of energy allocation, first in a single-agent system with demand-independent
electricity prices and a stationary environment. Meanwhile, the multi-agent system in
energy management has gained increasing attention in recent years. How to combine
efficient use of renewable energy sources with distributed energy storage with intelligent
control is an important research concern. The present study was designed to apply RL
methods in exploring better utilization of renewable energy sources. As shown in this
dissertation, RL methods provide a feasible solution for controlling energy storage. RL
learners could learn policies in decision-making to modify their actions with respect to
the available energy in both single-agent and multi-agent systems.

In Chapter 1, I illustrated an introduction to the need and necessity for applying
artificial intelligence to save energy from a global point of view. As shown in energy
statistical review reports, there is a clear trend in increasing renewable energy con-
sumption. Several systematic reviews of energy grid systems and machine learning
applications have been undertaken. I also introduce the DCOES system in detail and
the algorithms proposed by SonyCSL.

In Chapter 2, I provided the theoretical background of MDP and POMDP to explain
how RL works. In addition, I introduced how the deep-Q network is updated with
neural networks and experience replay. This method is applied in both single-agent and
multi-agent systems in our energy management control. I also explained the APIS, the
essential software for energy sharing among houses in the local community. Moreover, I
outlined the UPS design in the APIS to verify how the battery operates under different
RSOC levels.

In Chapter 3, I first devised a linear battery model for each house. I tested the
Q-learning algorithm for battery current control using yearly data in different selected
houses. In addition, I applied the prioritized DQN method to the same problem. I also
implemented the learning for the battery control by introducing extra time information
in the states. Learning curves in different experiments indicate RL methods can reduce
the purchased power in a single-agent testing environment.

60

5.2 Open issues 61

In Chapter 4, I articulated how I applied DRL methods to the APIS simulator in
the multi-agent system. I implemented both DQN and prioritized DQN approaches
with different time steps, different reward settings, and multiple iterations, as well as
multiple runs. I also performed shuffled house ID in input datasets. Finally, I carried
out experiments using testing datasets with the learned training model.

Note since different houses (agents) have different usages (some are heavy electricity
users while some are not), the energy sharing among different houses would also vary
within different nodes. In the chosen four houses, house 214 is self-sufficient most of the
time and outputs extra energy to other nodes when the exchanging policy requirements
meet. While house 212 and house 215 are requesting charging from other houses in
most deals. I only listed four agents for training while in the physical environment,
but there are 19 nodes in total and 7 nodes in sub-route B. In addition, as the APIS
does not have a speed-up function, I could currently only test the DQN and prioritized
DQN methods. Other MARL methods are not trained. Also, the reward function is
designed directly from p2, while in a more general case, I could also consider other
components in the reward, such as introducing the initial cost of the system or adding
the system loss.

In the present thesis, I used historical data collected from the DCOES in the OIST
faculty houses’ community to explore energy management with RL methods. I inves-
tigated the application of RL algorithms in both single-agent battery control problems
and multi-agent energy-sharing control problems. I mainly applied Q-learning, DQN,
and prioritized DQN approaches in different cases. RL algorithms provide promising
methods in the energy management sector. Agents can learn how to adapt in the face
of energy source uncertainty attributable to RL techniques. For the single node situa-
tion in Chapter 3, the agent can learn to adjust its control of the battery to minimize
the purchased power. The simple tabular method is possible to learn charge/discharge
actions in minimizing the purchasing power. Since deep Q-learning uses the neural
network to update its Q value function. Agents developed the ability to optimize the
weights of connections between neurons by introducing experience replay and fixed
Q-targets. The prioritized DQN method can outperform the Q-learning method in the
battery current control. For the multi-agent system in Chapter 4, agents can also learn
to make decisions to use different sharing thresholds to further minimize the overall
purchased energy from the AC grid and exchange more energy. One finding from this
study is that all DRL methods can reduce the consumed power and increase the SSR
value in AC grids. Another finding is that prioritized experience replay can further
improve the performance of DQN. Moreover, simulation studies imply that sharing the
community’s average energy production, storage, and consumption improves perfor-
mance.

5.2 Open issues

Currently, this thesis work has several open issues for further development.

Different MARL techniques A natural progression of this work is to apply other
general MARL methods for comparing the performance. Currently, MARL algorithms

5.2 Open issues 62

can be mainly divided into two categories. The first category is cooperation-based algo-
rithms, which mainly study how multi-agents learn independently executable strategies
through centralized collaborative training. COMA by Foerster et al. [13], MADDPG
by Lowe et al. [33] (developed from DDPG in Lillicrap et al. [32] for single agent)
are notable methods in cooperation-based type with the centralized critic. The second
category uses algorithms based on communication, which further promotes collabora-
tion between agents by establishing communication between them. MAAC by Iqbal
and Sha [23], RIAL/DIAL by Foerster et al. [12], etc., are candidate methods.

In addition, we can consider applying other machine learning/deep learning meth-
ods for preprocessing the data, such as having a predictive model for further usage and
solar generation to help delay the surplus hour the next day.

Hardware connections Another important practical implication is transferring the
RL controller to the physical power exchange system. The APIS provides different
software which allows the control of actual DC/DC converters and batteries. Current
RL algorithms have been widely employed in video games and other game settings (Go,
majiang, etc.). It would be very inspiring to apply RL methods to the physical energy
management system.

Expanding in local community The distributed topology of the DCOES makes it
possible to scale up and propagate in other local communities. In Japan, smart com-
munities such as Fujisawa SST smart town (see its webpage link in [16]) are equipped
with solar panels and smart network management. Machine learning controllers can
be exported to other urban contexts.

Bibliography

[1] M. Ahrarinouri, M. Rastegar, and A. R. Seifi. Multiagent reinforcement learning
for energy management in residential buildings. IEEE Transactions on Industrial

Informatics, 17(1):659–666, 2020.

[2] K. Arakaki, K. Kuwae, Y. Shimizu, and H. Kitano. A microgrid simulation soft-
ware for dc-based open energy systems–the dcoes simulator. In 2018 International

Conference on Smart Grid (icSmartGrid), pages 136–141. IEEE, 2018.

[3] R. F. Arritt and R. C. Dugan. Distribution system analysis and the future smart
grid. IEEE Transactions on Industry Applications, 47(6):2343–2350, 2011.

[4] BP p.l.c. Statistical review of world energy. http://bp.com/statisticalreview,
2021.

[5] S. Bruno, S. Lamonaca, M. La Scala, G. Rotondo, and U. Stecchi. Load con-
trol through smart-metering on distribution networks. In 2009 IEEE Bucharest

PowerTech, pages 1–8. IEEE, 2009.

[6] T. Chen and W. Su. Local energy trading behavior modeling with deep reinforce-
ment learning. IEEE access, 6:62806–62814, 2018.

[7] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep
reinforcement learning from human preferences. Advances in neural information

processing systems, 30, 2017.

[8] C. G. Codemo, T. Erseghe, and A. Zanella. Energy storage optimization strate-
gies for smart grids. In 2013 IEEE International Conference on Communications

(ICC), pages 4089–4093. IEEE, 2013.

[9] B. K. Das, N. Hoque, S. Mandal, T. K. Pal, and M. A. Raihan. A techno-economic
feasibility of a stand-alone hybrid power generation for remote area application in
bangladesh. Energy, 134:775–788, 2017.

[10] S. Dhundhara, Y. P. Verma, and A. Williams. Techno-economic analysis of the
lithium-ion and lead-acid battery in microgrid systems. Energy Conversion and

Management, 177:122–142, 2018.

[11] G. Dileep. A survey on smart grid technologies and applications. Renewable

energy, 146:2589–2625, 2020.

63

http://bp.com/statisticalreview

64

[12] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson. Learning to communicate
with deep multi-agent reinforcement learning. In Advances in neural information

processing systems, pages 2137–2145, 2016.

[13] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Coun-
terfactual multi-agent policy gradients. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[14] E. Foruzan, L.-K. Soh, and S. Asgarpoor. Reinforcement learning approach for
optimal distributed energy management in a microgrid. IEEE Transactions on

Power Systems, 33(5):5749–5758, 2018.

[15] V. François-Lavet, D. Taralla, D. Ernst, and R. Fonteneau. Deep reinforcement
learning solutions for energy microgrids management. In European Workshop on

Reinforcement Learning (EWRL 2016), 2016.

[16] Fujisawa SST. Fujisawa sustainable smart town. https://fujisawasst.com/EN/
project/, 2014.

[17] S. Grillo, M. Marinelli, S. Massucco, and F. Silvestro. Optimal management
strategy of a battery-based storage system to improve renewable energy integration
in distribution networks. IEEE Transactions on Smart Grid, 3(2):950–958, 2012.

[18] C. Guan, Y. Wang, X. Lin, S. Nazarian, and M. Pedram. Reinforcement learning-
based control of residential energy storage systems for electric bill minimization. In
2015 12th Annual IEEE Consumer Communications and Networking Conference

(CCNC), pages 637–642. IEEE, 2015.

[19] C. Hau, K. K. Radhakrishnan, J. Siu, and S. K. Panda. Reinforcement learning
based energy management algorithm for energy trading and contingency reserve
application in a microgrid. In 2020 IEEE PES Innovative Smart Grid Technologies

Europe (ISGT-Europe), pages 1005–1009. IEEE, 2020.

[20] P. Hernandez-Leal, B. Kartal, and M. E. Taylor. A survey and critique of multia-
gent deep reinforcement learning. Autonomous Agents and Multi-Agent Systems,
33(6):750–797, 2019.

[21] Q. Huang and K. Doya. An experimental study of emergence of communication of
reinforcement learning agents. In International Conference on Artificial General

Intelligence, pages 91–100. Springer, 2019.

[22] Q. Huang, E. Uchibe, and K. Doya. Emergence of communication among rein-
forcement learning agents under coordination environment. In 2016 Joint IEEE

International Conference on Development and Learning and Epigenetic Robotics

(ICDL-EpiRob), pages 57–58. IEEE, 2016.

[23] S. Iqbal and F. Sha. Actor-attention-critic for multi-agent reinforcement learning.
arXiv preprint arXiv:1810.02912, 2018.

https://fujisawasst.com/EN/project/
https://fujisawasst.com/EN/project/

65

[24] S. Javadi and S. Javadi. Steps to smart grid realization. In Proceedings of the

4th WSEAS international conference on Computer engineering and applications,
pages 223–228, 2010.

[25] J. J. Justo, F. Mwasilu, J. Lee, and J.-W. Jung. Ac-microgrids versus dc-microgrids
with distributed energy resources: A review. Renewable and sustainable energy

reviews, 24:387–405, 2013.

[26] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134,
1998.

[27] A. Karabiber, C. Keles, A. Kaygusuz, and B. B. Alagoz. An approach for the inte-
gration of renewable distributed generation in hybrid dc/ac microgrids. Renewable

energy, 52:251–259, 2013.

[28] D. Kawamoto and G. Rajendiran. A study of battery soc scheduling using machine
learning with renewable sources. In ICML 2021 Workshop on Tackling Climate

Change with Machine Learning, 2021. URL https://www.climatechange.ai/

papers/icml2021/58.

[29] S. Kim and H. Lim. Reinforcement learning based energy management algorithm
for smart energy buildings. Energies, 11(8):2010, 2018.

[30] T. Kloek and H. K. Van Dijk. Bayesian estimates of equation system parame-
ters: an application of integration by monte carlo. Econometrica: Journal of the

Econometric Society, pages 1–19, 1978.

[31] T. Levent, P. Preux, E. Le Pennec, J. Badosa, G. Henri, and Y. Bonnassieux.
Energy management for microgrids: a reinforcement learning approach. In 2019

IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pages 1–5.
IEEE, 2019.

[32] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. arXiv preprint

arXiv:1509.02971, 2015.

[33] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In Advances

in Neural Information Processing Systems, pages 6379–6390, 2017.

[34] C. Lusena, J. Goldsmith, and M. Mundhenk. Nonapproximability results for
partially observable markov decision processes. Journal of artificial intelligence

research, 14:83–103, 2001.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602, 2013.

https://www.climatechange.ai/papers/icml2021/58
https://www.climatechange.ai/papers/icml2021/58

66

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[37] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

[38] S. Paul, M. S. Rabbani, R. K. Kundu, and S. M. R. Zaman. A review of smart
technology (smart grid) and its features. In 2014 1st International Conference on

Non Conventional Energy (ICONCE 2014), pages 200–203. IEEE, 2014.

[39] Z. Qu, S. Hou, L. Zhu, J. Yan, and S. Xu. The study of smart grid knowledge
visualization key technologies. TELKOMNIKA Indonesian Journal of Electrical

Engineering, 12(1):323–333, 2014.

[40] K. Rahbar, J. Xu, and R. Zhang. Real-time energy storage management for
renewable integration in microgrid: An off-line optimization approach. IEEE

Transactions on Smart Grid, 6(1):124–134, 2014.

[41] J. R. Roncero. Integration is key to smart grid management. In CIRED Seminar

2008: SmartGrids for Distribution, pages 1–4. IET, 2008.

[42] T. Sakagami, A. Werth, M. Tokoro, Y. Asai, D. Kawamoto, and H. Kitano. Perfor-
mance of a dc-based microgrid system in okinawa. In 2015 International Confer-

ence on Renewable Energy Research and Applications (ICRERA), pages 311–316.
IEEE, 2015.

[43] T. Sakagami, Y. Asai, and H. Kitano. Simulation to optimize a dc microgrid in oki-
nawa. In 2016 IEEE International Conference on Sustainable Energy Technologies

(ICSET), pages 214–219. IEEE, 2016.

[44] N. Saxena, B. J. Choi, and R. Lu. Authentication and authorization scheme for
various user roles and devices in smart grid. IEEE transactions on Information

forensics and security, 11(5):907–921, 2015.

[45] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[46] O. Sigaud and O. Buffet. Markov decision processes in artificial intelligence. John
Wiley & Sons, 2013.

[47] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):
484–489, 2016.

[48] S. Singh, M. Singh, and S. C. Kaushik. Feasibility study of an islanded microgrid
in rural area consisting of pv, wind, biomass and battery energy storage system.
Energy Conversion and Management, 128:178–190, 2016.

https://blog.openai.com/openai-five/

67

[49] T. Sogabe, D. B. Malla, S. Takayama, S. Shin, K. Sakamoto, K. Yamaguchi, T. P.
Singh, M. Sogabe, T. Hirata, and Y. Okada. Smart grid optimization by deep re-
inforcement learning over discrete and continuous action space. In 2018 IEEE 7th

World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Con-

ference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), pages 3794–3796.
IEEE, 2018.

[50] Sony Computer Science Laboratories, Inc. Autonomous power interchange system.
https://github.com/SonyCSL/APIS, 2021.

[51] B. Spasova, D. Kawamoto, and Y. Takefuji. Energy exchange strategy for local
energy markets with heterogenous renewable sources. In 2018 IEEE International

Conference on Environment and Electrical Engineering and 2018 IEEE Indus-

trial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), pages 1–6.
IEEE, 2018.

[52] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.

[53] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998.

[54] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[55] C. Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on arti-

ficial intelligence and machine learning, 4(1):1–103, 2010.

[56] M. Tokoro. Sony csl-oist dc-based open energy system (dcoes). In Proc. 1st Int.

Symp. Open Energy Syst, pages 64–67, 2014.

[57] M. Tokoro. Dcoes: Dc-based bottom-up energy exchange system for community
grid. In 2nd International Symposium on Open Energy Systems, pages 22–29,
2015.

[58] N. Tomin, A. Zhukov, and A. Domyshev. Deep reinforcement learning for en-
ergy microgrids management considering flexible energy sources. In EPJ Web of

Conferences, volume 217, page 01016. EDP Sciences, 2019.

[59] A. Trivedi, H. C. Aih, and D. Srinivasan. A stochastic cost–benefit analysis frame-
work for allocating energy storage system in distribution network for load leveling.
Applied Energy, 280:115944, 2020.

[60] J. R. Vázquez-Canteli and Z. Nagy. Reinforcement learning for demand response:
A review of algorithms and modeling techniques. Applied energy, 235:1072–1089,
2019.

[61] J. R. Vázquez-Canteli, J. Kämpf, G. Henze, and Z. Nagy. Citylearn v1. 0: An
openai gym environment for demand response with deep reinforcement learning.
In Proceedings of the 6th ACM International Conference on Systems for Energy-

Efficient Buildings, Cities, and Transportation, pages 356–357, 2019.

https://github.com/SonyCSL/APIS

68

[62] J. R. Vázquez-Canteli, S. Dey, G. Henze, and Z. Nagy. Citylearn: Standardizing
research in multi-agent reinforcement learning for demand response and urban
energy management. arXiv preprint arXiv:2012.10504, 2020.

[63] J. R. Vazquez-Canteli, G. Henze, and Z. Nagy. Marlisa: Multi-agent reinforce-
ment learning with iterative sequential action selection for load shaping of grid-
interactive connected buildings. In Proceedings of the 7th ACM international con-

ference on systems for energy-efficient buildings, cities, and transportation, pages
170–179, 2020.

[64] A. Werth, N. Kitamura, and K. Tanaka. Conceptual study for open energy sys-
tems: distributed energy network using interconnected dc nanogrids. IEEE Trans-

actions on Smart Grid, 6(4):1621–1630, 2015.

[65] A. Werth, A. André, D. Kawamoto, T. Morita, S. Tajima, M. Tokoro,
D. Yanagidaira, and K. Tanaka. Peer-to-peer control system for dc microgrids.
IEEE Transactions on Smart Grid, 9(4):3667–3675, 2016.

[66] A. Werth, N. Kitamura, M. Tokoro, and K. Tanaka. Evaluation model for multi-
microgrid with autonomous dc energy exchange. IEEJ Transactions on Electrical

and Electronic Engineering, 12(5):676–682, 2017.

[67] Y. Zhang, N. Gatsis, and G. B. Giannakis. Robust energy management for micro-
grids with high-penetration renewables. IEEE transactions on sustainable energy,
4(4):944–953, 2013.

[68] S. Zhou, Z. Hu, W. Gu, M. Jiang, and X.-P. Zhang. Artificial intelligence based
smart energy community management: A reinforcement learning approach. CSEE

Journal of Power and Energy Systems, 5(1):1–10, 2019.

Appendix A

Historical raw data

Table A.1 shows an example of historical log data of the weather station in transposed
format from the original file (14 data points).
Filename: weather_20190501.csv

Table A.1: Raw data for one day from the weather station.

timestamp 2019/5/1 00:00:21 2019/5/1 00:00:51

...

barometer 1008.5 1008.6

inside_temperature 25.3 25.3

outside_temperature 25.8 25.7

wind_speed 2.2 2.7

wind_direction 194 216

rain_rate 0 0

storm_rain 0 0

storm_start_date -1 -1

solar_radiation 0 0

inside_humidity 52 52

outside_humidity 91 91

forecast_icons 3 3

forecast_rule_number 192 192

Table A.2 shows an example of historical log data of one house in transposed format
from the original file (31 data points).
Filename: houseID_20190501.csv

69

70

Table A.2: Raw data for one day from one house.

timestamp 2019/5/1 00:00:21 2019/5/1 00:00:51

...

charge_discharge_power 29 29

rsoc 25 25

pvc_charge_power 0 0

pvc_charge_voltage 0.95 0.95

pvc_charge_current 0 0

pvc_alarm 0 0

battery_rsoc 31 31

battery_voltage 51.9 51.8

battery_current -0.56 -0.56

ups_input_voltage 103.6 103.7

ups_output_power 1709 1716

ups_output_voltage 103.6 103.7

ups_output_current 17.1 15.9

ups_output_frequency 59 60

ups_parameter 80 80

ups_mode 5 5

ups_stop_mode 2 2

ups_operation_schedule 1 1

alarm 0x4010 0x0080 0x0000 0x4010 0x0080 0x0000

dischargeable_time 0 0

dcdc_grid_power -1.22 -1.22

dcdc_grid_voltage 16.1 16.12

dcdc_grid_current -0.02 -0.02

dcdc_battery_power -18.31 -17.09

dcdc_battery_voltage 51.83 51.83

dcdc_battery_current -0.33 -0.32

p1 2513.3 2302.6

p2 1910.7 1831.5

dcdc_temperature 37.62 37.65

dcdc_status 0x0000 0x0000

Appendix B

Scenario file

An example of the power interchange scenario file (JSON) to be refreshed in the APIS
simulator is shown below.

Filename: scenario.json
{
"refreshingPeriodMsec": 5000,

"acceptSelection": {

"strategy": "pointAndAmount"

},

"00:00:00-24:00:00": {

"batteryStatus": {

"4320.0-": "excess",

"3840.0-4320.0": "sufficient",

"3360.0-3840.0": "scarce",

"-3360.0": "short"
},

"request": {

"excess": {

"discharge": {

"limitWh": 4320.0,

"pointPerWh": 10

}

},

"sufficient": {},

"scarce": {},

"short": {

"charge": {

"limitWh": 3360.0,

"pointPerWh": 10

}

}

},

"accept": {

"excess": {

"discharge": {

"limitWh": 3840.0,

"pointPerWh": 10

}

},

"sufficient": {

"discharge": {

"limitWh": 3840.0,

"pointPerWh": 10

}

71

72

},

"scarce": {

"charge": {

"limitWh": 3840.0,

"pointPerWh": 10

}

},

"short": {

"charge": {

"limitWh": 3840.0,

"pointPerWh": 10

}

}

}

}

}

Appendix C

Formated input data

Input data for DCOES in APIS (OIST data) in the corresponding format.
Solar data: For each row, the value is the solar power for every 30 seconds,

beginning at 0:00 for 24 hours (a set of 2880 data points). [unit: W]
Filename: fourhouses_2019_apis_sol_Jul.csv

Table C.1: Solar data for 4 houses in Jul, 2019.

houseID date 00:00:00 00:00:30

...

12:00:00 12:00:30

...

23:59:00 23:59:30

1 2019/7/21 0 0 1178 400 0 0

1 2019/7/22 0 0 832 831 0 0

...

4 2019/7/21 0 0 1187 1169 0 0

4 2019/7/22 0 0 1852 1866 0 0

Load data: For each row, the values denote residence power consumption every
30 seconds for 24 hours, beginning at 0:00 (a set of 2880 data points). Data sets for n
(n=4) households continue in the column direction. [unit: W]

Filename: fourhouses_2019_apis_load_Jul.csv

Table C.2: Load data for 4 houses in Jul, 2019.

houseID date 00:00:00 00:00:30

...

12:00:00 12:00:30

...

23:59:00 23:59:30

1 2019/7/21 913 899 1108 1125 757 736

1 2019/7/22 949 925 1020 1043 1113 1138

...

4 2019/7/21 1994 2036 1494 1569 2273 2252

4 2019/7/22 2288 2320 1236 1187 2030 2022

73

Appendix D

Selection of acceleration

Factor gl.acc is used to change the progression of time in the emulation according to
the number we set. Figure D.1, Figure D.2, and Figure D.3 show the simulated result
of four houses with sample data under different acceleration factors. We select gl.acc

= 60 for all experiments.

74

75

Figure D.1: Simulated data when gl.acc = 10 with sample data.

76

Figure D.2: Simulated data when gl.acc = 30 with sample data.

77

Figure D.3: Simulated data when gl.acc = 60 with sample data.

Appendix E

Simulation Result Data Sample

Table E.1 is a simulation result data for each house generated from the APIS simulator.
Filename: oist_indivLog.csv

Table E.1: Individual data.

id time oesunit_id emu_rsoc

emu_

pvc_

charge_

power

emu_

ups_

output_

power

charge_

discharge_

power

dcdc_

meter_

wg

dcdc_

powermeter_

p2

dcdc_

meter_

ig

E001 2020/5/8 00:01 Oist_E001 49.85 0 244 429.16 0 57 0

E002 2020/5/8 00:01 Oist_E002 49.84 0 271 459.94 0 57 0

E003 2020/5/8 00:01 Oist_E003 49.89 0 140 310.6 0 57 0

E004 2020/5/8 00:01 Oist_E004 49.06 0 2234 2697.76 0 57 0

E001 2020/5/8 00:02 Oist_E001 49.7 0 246 431.44 0 57 0

E002 2020/5/8 00:02 Oist_E002 49.68 0 273 462.22 0 57 0

E003 2020/5/8 00:02 Oist_E003 49.78 0 135 304.9 0 57 0

E004 2020/5/8 00:02 Oist_E004 48.14 0 2204 2663.56 0 57 0

E001 2020/5/8 00:03 Oist_E001 49.55 0 243 428.02 0 57 0

E002 2020/5/8 00:03 Oist_E002 49.53 0 246 431.44 0 57 0

E003 2020/5/8 00:03 Oist_E003 49.67 0 134 303.76 0 57 0

E004 2020/5/8 00:03 Oist_E004 47.23 0 2177 2632.78 0 57 0

...

Table E.2 is a simulation result data for all houses generated from the APIS simu-
lator.

Filename: oist_summary.csv

78

79

Table E.2: Summary data.

time pv demand acin wasted acloss dcloss loss

...

2020/5/8 35366 52020 36155 1033 9123 14751 23874

2020/5/9 27711 48582 42375 1027 10435 11560 21996

2020/5/10 11573 47918 55140 0 12710 6346 19057

2020/5/11 30591 51819 44688 245 10908 11160 22068

2020/5/12 38145 57130 42204 0 10464 12782 23246

2020/5/13 42636 64722 46304 502 10385 14207 24593

2020/5/14 31037 67631 59204 0 12208 10860 23069

2020/5/15 42818 66786 49297 153 11000 12896 23897

2020/5/16 17685 58424 61330 0 12541 8498 21040

2020/5/17 32652 57010 47676 455 11162 11644 22807

2020/5/18 34416 71836 61203 493 12081 11530 23611

2020/5/19 45785 86024 65260 617 12074 13127 25202

2020/5/20 15151 68399 73756 0 14159 6360 20519

2020/5/21 37919 46549 33408 0 9622 13300 22923

2020/5/22 41560 50920 32899 651 9152 14770 23923

2020/5/23 38819 48515 33979 1158 9534 14060 23595

2020/5/24 43369 54029 34636 0 9363 14950 24314

2020/5/25 42493 51684 33615 311 9334 14639 23973

2020/5/26 42546 59741 42244 651 9976 14211 24187

2020/5/27 25254 49968 45801 0 10794 11530 22324

2020/5/28 18505 61821 63605 0 13303 7085 20389

2020/5/29 30939 52870 45392 0 10851 11564 22415

2020/5/30 32807 47758 37532 0 9927 12657 22585

2020/5/31 32476 62945 53927 850 11492 11778 23270

2020/6/1 32161 69812 61170 379 12231 10801 23032

2020/6/2 23691 69533 67848 36 13207 8774 21982

2020/6/3 24161 65434 63056 0 12780 8985 21765

2020/6/4 26051 69464 65807 261 12821 9484 22306

2020/6/5 40600 70558 54260 0 11530 12355 23885

2020/6/6 40054 75340 60526 1506 11976 12260 24237

2020/6/7 36924 84485 72186 1124 12779 11462 24242

sum 1015895 1889727 1586483 11452 349922 360386 710326

avg 32770.8065 60958.9355 51176.871 369.419355 11287.8065 11625.3548 22913.7419

80

avgrsoc wg deltaBatt ssr_real ssr_pv sor r_utility

26 3068 -4545 0.2176 0.5925 0.9716 0.7824

22 3021 -706 0.1132 0.5559 0.9642 0.8868

19 612 -569 -0.1626 0.2296 1 1.1626

25 3196 1168 0.1601 0.6129 0.992 0.8399

24 3307 -210 0.2576 0.664 1 0.7424

21 4538 -572 0.2757 0.6499 0.9884 0.7243

17 4304 -724 0.1139 0.4482 1 0.8861

24 3167 1195 0.2798 0.659 0.9964 0.7202

20 3214 -715 -0.062 0.2905 1 1.062

21 4724 236 0.1679 0.5769 0.9863 0.8321

21 4567 -93 0.1467 0.4778 0.9858 0.8533

18 2776 -492 0.2357 0.5265 0.9867 0.7643

16 2000 -385 -0.084 0.2159 1 1.084

25 3674 1678 0.3183 0.8507 1 0.6817

22 3744 -564 0.3428 0.8051 0.9846 0.6572

24 5401 480 0.3095 0.81 0.971 0.6905

22 4223 -463 0.3504 0.7941 1 0.6496

23 3470 216 0.3538 0.8264 0.9927 0.6462

26 3651 631 0.3034 0.7227 0.9849 0.6966

19 5343 -1394 0.0555 0.4775 1 0.9445

17 1125 -472 -0.0365 0.2917 1 1.0365

21 3914 832 0.1572 0.6009 1 0.8428

20 3371 -167 0.2106 0.6835 1 0.7894

20 4415 -77 0.142 0.5147 0.9745 0.858

21 3062 215 0.1269 0.4638 0.9884 0.8731

19 2998 -284 0.0201 0.3366 0.9985 0.9799

18 2823 -310 0.0316 0.3645 1 0.9684

17 3184 -204 0.0497 0.3721 0.9901 0.9503

18 3126 166 0.2333 0.5778 1 0.7667

21 4065 672 0.2055 0.5406 0.9638 0.7945

21 3272 52 0.1462 0.4377 0.9704 0.8538

648 107355 -5405 4.9799 16.97 30.6903 26.0201

20.9032258 3463.06452 -174.35484 0.16064194 0.54741935 0.99000968 0.83935806

	Declaration of Original and Sole Authorship
	Abstract
	Acknowledgment
	Abbreviations
	Nomenclature
	Contents
	List of Figures
	List of Tables
	Introduction
	The DC-based Open Energy System (DCOES) at OIST
	Different approaches for optimization of energy grids
	Bid for markets
	Machine learning method for reducing surplus energy

	Energy grid systems and machine learning applications
	Energy management approaches
	Energy management by reinforcement learning

	Thesis outline and contributions

	Theoretical Background and System Description
	Reinforcement learning
	Markov decision process (MDP)
	Partially observable Markov decision process (POMDP)
	Different methods in RL

	Deep reinforcement learning
	Multi-agent reinforcement learning
	Energy management of the DCOES
	Battery charge/discharge control by RSOC
	The DCOES data preprocessing

	Autonomous Power Interchange System (APIS)
	Energy exchange based on scenario files
	APIS data flow

	Summary

	Single House Energy Management with Reinforcement Learning
	PV panel and Battery Settings
	Model of battery
	Linear simulation model of the battery

	Single house RL with the tabular method
	State and Action representation
	Tabular Q learning

	DQN with Prioritized experience replay
	Algorithms
	States representation in DRL
	Simulation results

	Summary

	Multiple House Energy Management with Reinforcement Learning
	Reinforcement learning setup for the APIS
	Action and state representations
	Reward and evaluation criteria
	DCOES dataset in OIST
	Choice of action time step and reward settings
	Comparison of different DRL methods
	Multiple iterations and runs
	Generalization across houses and seasons
	Shuffled houses ID
	Testing with different time periods of the year

	Summary

	Conclusion and Open Issues
	Conclusion
	Open issues

	Bibliography
	Appendices
	Historical raw data
	Scenario file
	Formated input data
	Selection of acceleration
	Simulation Result Data Sample

