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Abstract

Machine Learning Applications for the Study and Control of

Quantum Systems

In this thesis, I consider the three main paradigms of machine learning – supervised,
unsupervised, and reinforcement learning – and explore how each can be employed as
a tool to study or control quantum systems. To this end, I adopt classical machine
learning methods, but also illustrate how present-day quantum devices and concepts
from condensed matter physics can be harnessed to adapt the machine learning models
to the physical system being studied. In the first project, I use supervised learning
techniques from classical object detection to locate quantum vortices in rotating Bose-
Einstein condensates. The machine learning model achieves high accuracies even in the
presence of noise, which makes it especially suitable for experimental settings. I then
move on to the field of unsupervised learning and introduce a quantum anomaly detec-
tion framework based on parameterized quantum circuits to map out phase diagrams
of quantum many-body systems. The proposed algorithm allows quantum systems to
be directly analyzed on a quantum computer without any prior knowledge about its
phases. Lastly, I consider two reinforcement learning applications for quantum control.
In the first example, I use Q-learning to maximize the entanglement in discrete-time
quantum walks. In the final study, I introduce a novel approach for controlling quan-
tum many-body systems by leveraging matrix product states as a trainable machine
learning ansatz for the reinforcement learning agent. This framework enables us to
reach far larger system sizes than conventional neural network-based approaches.
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Introduction

The field of machine learning has achieved remarkable successes in recent years ranging
from agents beating the best human players at games [7], to deep neural networks
that locate and classify objects in images with unprecedented accuracies [8], and to
powerful language models that compose texts indistinguishable to those written by
humans [9]. These impressive results have surged an interest in machine learning in
a wide range of areas including the natural sciences and physics [10–12]. The first
examples of machine learning techniques applied to condensed matter and quantum
physics encompass supervised learning techniques to classify phases of matter [13, 14],
unsupervised learning methods to variationally represent quantum many-body states
[15], and reinforcement learning approaches to control quantum systems and protect
them from noise [16, 17]. Since these pioneering works, machine learning methods have
become a widely-used tool within the quantum domain. Modern areas of application
include quantum phase detection [18–20], quantum state reconstruction [21], quantum
error correction [22–24], quantum circuit optimization [25–28], and quantum control
[16, 29–32].

In turn, ideas from statistical physics have been borrowed to develop an under-
standing and a theory of deep learning [10]. Additionally, tools from computational
many-body physics and more specifically tensor networks, have been used as novel
model architectures for machine learning tasks [33–35]. Tensor networks were origi-
nally developed for the efficient simulation of quantum many-body systems [36, 37].
These systems suffer from the so called curse of dimensionality, i.e., their Hilbert space
dimension grows exponentially with the system size. Similarly, modern training data
sets containing images or texts also represent high dimensional data and can potentially
benefit from tensor network methods. Thus, tensor network-based machine learning
techniques have been applied to typical learning tasks like classification [38–41] and
generative modeling [42–44].

A completely different machine learning paradigm that recently emerged is quantum
machine learning. Instead of utilizing parameterized neural networks that are evaluated
on classical computers, quantum machine learning models are defined as parameterized
quantum circuits on a quantum computer [45–48]. It is then expected, though still
disputed, that quantum machine learning can lead to a speedup for certain tasks and/or
leverage non-classical features to give rise to higher accuracies than attainable with fully
classical techniques. At present, quantum machine learning is still in its infancy mostly
since current quantum devices are still too noisy and small-scale to fully explore and
understand their capabilities [49]. Despite these challenges, quantum machine learning
techniques have already been applied to various supervised and unsupervised learning
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2 Introduction

tasks [47, 50–52].
Machine learning presents a promising tool to advance science and to help us in

solving various open problems in physics and the quantum technologies in particular.
Whether it is to automate or optimize certain tasks, detect patterns in data, or discover
new physics, machine learning has numerous potential areas of application. In this
thesis, I will discuss four such examples of machine learning applications that assist us
in studying and controlling quantum systems. I will cover applications from all three
areas of machine learning, i.e., supervised, unsupervised, and reinforcement learning.
Furthermore, I will demonstrate how classical machine learning techniques, quantum-
inspired ones, and fully quantum machine learning approaches can each be effectively
harnessed when applied to quantum mechanical systems.

In the first project, I devise a deep learning-based object detection framework that
is able to locate quantum vortices in density snapshots of atomic Bose-Einstein con-
densates (BECs) [1]. Similar to their classical counterpart, the dynamics of quantum
vortices gives rise to rich and complex non-equilibrium processes like turbulence and
chaos [53–59]. However, as a prerequisite for the study of these out-of-equilibrium
phenomena we require to trace the precise positions of all vortices in the BEC over
time [60]. This task is significantly more challenging for experimental data, where of-
ten only the density profile of the wavefunction is available, and effects of noise and
finite temperatures blur the characteristic features of vortices. Hence, I propose a su-
pervised machine learning model that is motivated by state-of-the-art computer vision
techniques for predicting the precise positions of all vortices in simulated BEC density
images. Our framework achieves high test set accuracies and is able to locate vortices
both in ground state and in the more challenging out-of-equilibrium configurations.
Furthermore, the detection is robust to different sources of noise that commonly arise
in experimental settings.

In the next study, I turn to an unsupervised learning application and introduce a
quantum anomaly detection framework that allows us to map out phase diagrams of
quantum many-body systems directly on quantum hardware [2]. Classifying phases
of matter and predicting the location of their phase boundaries often requires expert
human knowledge and prior intuition about the physical system at hand, such as which
order parameters to analyze [61]. It would hence be desirable if this task can be
automated and potentially lead to the discovery of novel phases of matter [18, 62–
65]. Furthermore, with the possibility of performing large-scale quantum simulations
on near-term quantum computers grows the need for quantum algorithms that let us
investigate these quantum systems natively on the physical devices [49]. In this work,
I and my collaborators propose a quantum analog of anomaly detection that is based
on a quantum autoenoder. The variational quantum algorithm is able to discover
the phases of the paradigmatic transverse-longitudinal field Ising model [66, 67] and
the extended Bose Hubbard model with dimerized hoppings [68]. Moreover, we show
that the framework can already be leveraged on present-day quantum computers by
performing it on one of the IBM Quantum devices.

In the last two projects, I showcase how reinforcement learning can be employed for
solving quantum control problems. In the first project, I use tabular Q-learning to max-
imize the entanglement generation in discrete-time quantum walks [3]. Entanglement
can be regarded as a resource for many quantum information processing tasks such as
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quantum computation, quantum communication, or quantum teleportation [69]. Each
of these applications have a physical realization in terms of the discrete-time quantum
walk [70–75]. Hence, it is important to find fast and robust schemes for creating highly
entangled states such that quantum walks can be leveraged in optimal ways. To that
end, I and my co-authors devise a reinforcement learning agent that learns to prepare
highly entangled states over a class of different initial states. Moreover, we introduce a
deterministic sequence of quantum walk coin operators which can universally generate
high entanglement irrespective of a localized initial state.

In the last study, I apply reinforcement learning techniques to the control of quan-
tum many-body systems [4]. As previously mentioned, these systems suffer from the
curse of dimensionality which makes it infeasible to exactly simulate large systems on
classical computers. Consequently, it is even more challenging to devise optimal con-
trol strategies thereof. Quantum many-body control, however, is essential for quantum
technologies that are nowadays based on harnessing a large number of correlated par-
ticles [76–80]. Hence, in this work I propose a novel Q-learning framework in which
both the quantum states as well as the agent are represented by tensor networks. This
learning architecture allows us to efficiently train the quantum state-aware agent on
large system sizes which would be inaccessible with conventional neural network ap-
proaches. Furthermore, I show that the trained agents can generalize their protocols
to unseen states, are robust to noise, and can self-correct protocols as the system is
being time-evolved.

This thesis is structured around the four main projects each of which forms the
basis of one chapter. A brief outline of the thesis is given below.

• Chapter 1 provides the fundamentals of machine learning techniques that form a
prerequisite for the subsequent chapters. Additionally, some of the past successes
of machine learning applications in the quantum domain are discussed.

• Chapter 2 is based on the content of publication [1]: Friederike Metz, Juan
Polo, Natalya Weber, and Thomas Busch, Deep-learning-based quantum vortex
detection in atomic Bose–Einstein condensates, Machine Learning: Science and
Technology 2, 035019 (2021).

• Chapter 3 is based on the content of publication [2]: Korbinian Kottmann,
Friederike Metz, Joana Fraxanet, and Niccolò Baldelli, Variational quantum
anomaly detection: Unsupervised mapping of phase diagrams on a physical quan-
tum computer, Phys. Rev. Research 3, 043184 (2021).

• Chapter 4 is based on the content of publication [3]: Aikaterini Gratsea, Friederike
Metz, and Thomas Busch, Universal and optimal coin sequences for high en-
tanglement generation in 1D discrete time quantum walks, Journal of Physics
A: Mathematical and Theoretical 53, 445306 (2020).

• Chapter 5 is based on the content of the preprint article [4]: Friederike Metz and
Marin Bukov, Self-Correcting Quantum Many-Body Control using Reinforcement
Learning with Tensor Networks, arXiv:2201.11790 [quant-ph] (2022).





Chapter 1

Machine learning fundamentals

Machine learning is a subfield of artificial intelligence and can be defined as learning
from data or experience. The modern form of machine learning does not require features
or rules to be explicitly programmed. Rather, it is often synonymous with a model
that is trained, i.e, optimized over some data examples. The optimized model then
provides the solution to the problem by evaluating it on different data inputs. In this
chapter, I will introduce the basics of (quantum) machine learning. I will focus on only
those concepts that are relevant for the main part of this thesis. For a comprehensive
introduction to machine learning and its applications in the physical sciences I refer to
Refs. [10–12, 81–83].

I will start by revisiting the three main categories of machine learning in Section
1.1. Section 1.2 introduces classical machine learning models, i.e., neural networks
and its variants. Section 1.3 establishes tensor networks as quantum-inspired machine
learning ansatze. In Section 1.4 I will discuss models that are evaluated on quantum
devices which are therefore referred to as quantum machine learning models. Finally,
in Section 1.5 I will review some of the most famous applications of machine learning
in the quantum sciences.

1.1 Machine learning categories

The current zoo of machine learning algorithms can be loosely separated into three
main paradigms according to the structure of the available training data. These are
supervised, unsupervised, and reinforcement learning. Note that in recent years other
categories have emerged as well, such as semi-supervised and self-supervised learning.

1.1.1 Supervised learning

Supervised learning describes the branch of machine learning where one has access to
labeled training data D = {(xi, ŷi)}, i.e., for every training data input xi, a correct
label or output ŷi is known. The task is to learn a model that given different inputs
x predicts the correct outputs ŷ. The labels can be continuous numbers in which
case the task is referred to as regression, or discrete numbers which corresponds to a
classification problem. For example, predicting house prizes from features of the house

5



6 Machine learning fundamentals

like size, number of rooms, etc. would be considered a regression problem while labeling
objects contained in images is a classification task. Note that there are also situations
which involve both regression and classification, e.g., imagine we not just want to label
an object in an image, but also precisely locate it within said image. This scenario is
commonly known as object detection.

The models that are being learned to predict labels from inputs are usually com-
prised of parameterized functions f✓(x) which can range from simple linear models with
just a handful of parameters ✓ to highly complex deep neural networks with billions
of parameters. The learning or training of a machine learning model then amounts
to optimizing the parameters ✓ such that the mapping between the data input x and
output y = f✓(x) is most accurate. The performance of a model is often measured in
terms of a cost or loss function C. In the case of regression a widely used cost function
is the mean squared error (MSE) between the predicted labels y and the ground truth
ŷ

C =
1

NT

NTX

i=1

|y(xi)� ŷi|2, (1.1)

where NT denotes the size of the training data set. However, other cost functions like
the cross entropy might be more suited for a given task. Minimizing a loss function
is the central objective in most machine learning algorithms including the cases of
unsupervised and reinforcement learning.

1.1.2 Unsupervised learning

Unsupervised learning applies to those data sets D = {(xi)} that do not contain
any labels, i.e., no extra information about the data is supplied. This is the default
situation for most collected data since labeling usually requires human experts, is time-
consuming, and often not possible at all. The goal of unsupervised learning is therefore,
loosely speaking, to learn some patterns about the data at hand. Hence, the tasks are
diverse and include a range of concepts such as dimensional reduction, clustering, den-
sity estimation, generative modeling, anomaly detection etc. For example, in density
estimation the probability distribution underlying the data is learned, generative mod-
eling allows new, similar data to be generated and anomaly detection finds outliers
in otherwise homogeneous data sets. Especially, the field of generative modeling has
gotten widespread attention due to the generation of artificial photos, art, and text
that are indistinguishable from human created ones [9, 84, 85].

1.1.3 Reinforcement learning

The last of the three major ML categories – reinforcement learning – deals with the
problem of control tasks and games [86]. No data is a priori required, but rather
the data or experience is collected as part of the algorithm. Learning is enabled via
interactions and feedback in a trial and error fashion in analogy to how dogs are taught
to sit.

Most RL problems are phrased in the language of an agent and environment (see
Fig. 1.1). The agent is the abstract entity making decisions and performing actions
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Figure 1.1: Reinforcement learning feedback loop between agent and environment.
At each time step t the agent receives information about the current state st of the
environment. Depending on this state, the agent then chooses an action at via a policy
function ⇡. In turn, the environment transitions to a new state st+1 depending on the
previous state st and performed action at. Additionally, a reward signal rt is computed
at each time step and supplied to the agent to improve the policy ⇡.

while the environment is the system that is being controlled. The interactions between
agent and environment occur in discrete time steps. At each step t the agent can
observe the current state st of the environment. Depending on this state, the agent
then chooses to perform a specific action at. The function that maps states to actions is
commonly referred to as policy ⇡ and can be understood as the strategy that the agent
follows. Each applied action in turn changes the state of the environment. Despite
the updated state information, the agent also receives a scalar reward signal rt at
each time step that guides the agent to perform improved actions, that is, the reward
reinforces “good” behavior. The reward can also be negative in which case it serves as a
punishment. The resultant feedback loop between agent and environment constitutes
a Markov Decision Process (MDP).

The overall goal in RL is to maximize the expected sum of future rewards by finding
an optimal policy ⇡⇤, i.e., by always acting optimally in each state. There are various
RL algorithms that can be leveraged for this task. Model-based RL algorithm use
or build a model of the environment as part of the training while in model-free RL
techniques the environment is considered a black-box. Furthermore, there are policy-
gradient approaches where the optimal policy is explicitly learned and value-function-
based approaches where the optimal policy is found implicitly by learning so called
Q-values. The choice of RL algorithm depends on various factors, such as whether the
state and action spaces are discrete or continuous or how time-expensive interactions
with the environment are.

In modern RL tasks the policy (or equivalently the Q-value) are often approximated
by parameterized functions which are then optimized as part of the algorithm. Similarly
to how neural networks have revolutionized the fields of (un)-supervised learning, deep
RL has led to some of the most impressive results in control tasks and game playing.
Famous examples of the latter are the success of deep RL agents in Atari games,
Starcraft, and the board-game Go [7, 87, 88].



8 Machine learning fundamentals

Figure 1.2: (a) Sketch of a single artificial neuron (perceptron). It computes the dot
product of the input data x and the trainable weights w, adds a bias, and applies a
nonlinearity ⇣. The output is often called the activation a of the neuron. (b) Exemplary
sketch of an all-to-all connected neural network with two hidden layers. Each edge
corresponds to a single neuron, while vertices represent the weight matrices.

1.2 Classical machine learning

The first class of machine learning (ML) models I introduce are fully classical ones,
i.e., standard and widely-used models within the machine learning community. These
are stored, evaluated, and trained on classical computers (e.g. on a CPU or GPU).
ML models can be divided into two categories: deep learning models and those not
based on neural networks. Examples of the latter are a simple linear model, support
vector machines or decision trees. In the following, I will focus on neural network-based
approaches and introduce the basics of neural networks, convolutional neural networks
(CNN), and autoencoders (AE). A more comprehensive introduction to the field of
deep learning can be found in Refs. [89–93].

1.2.1 Neural networks

Artificial neural networks are non-linear, parameterized functions inspired by the neu-
ral networks in our brains. An NN processes the input data sequentially via several
layer-wise transformations. The basic building block of an NN is a single neuron (or
perceptron) as shown in Fig. 1.2(a). It takes a vector x as input, computes its inner
product with a weight vector w, adds a scalar bias b, and feeds the result through a
nonlinear function ⇣

a = ⇣

 
X

i

wixi + b

!
. (1.2)

The scalar output signal a is called the activation of the neuron. A neural network
layer is composed of many such neurons so that we can express the combined activation
output vector a over all neurons after each layer as a = ⇣(Wx + b), where W and b
have been promoted to a matrix and vector respectively. For convenience, I define
zi ⌘

P
j
wijxj + bi to be the affine part of the perceptron transformation.

The first layer of a neural network takes the data x as input and is therefore called
input layer while all subsequent layers l take the activations al�1 from the previous layer
l � 1 as their input. The activations aL of the final output layer L provide the model
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output (see Fig. 1.2(b)). The intermediate layers are commonly referred to as hidden
layers and the number of hidden neurons in each layer is called their hidden dimension.
Note that the number of neurons in the input and output layers are determined by the
problem, i.e, the dimensions of the input and output spaces. The weights and biases
of all layers together comprise the trainable parameters of the neural network.

The non-linear transformation ⇣ after each layer operation is essential and, in fact,
gives deep NNs much of their expressive power. Without any non-linearities the NN
computation would reduce to a simple affine transformation and would therefore be
able to represent only very limited dependencies. However, NNs with a single non-
linear hidden layer can already serve as universal function approximators [94, 95]. In
practice, deep NNs with many hidden layers but small hidden dimensions turn out to
be more expressive than shallow neural networks with the same number of parameters,
i.e, a large hidden dimension. This observation gave rise to the field of deep learning
with architectures comprised of many hidden layers. Common choices for the non-
linear activation function ⇣ are the rectified linear unit (ReLU) ⇣(z) = max(0, z), and
the tanh function ⇣(z) = tanh(z). Note that the nonlinearity is conventionally applied
elementwise.

The parameters in a neural network are usually optimized via gradient descent with
the goal of minimizing some cost function C. Gradient descent is an iterative method
for finding local minima of an objective function. In each step the model parameters
are updated by moving in the opposite direction of the gradient of the cost function

✓  ✓ � ↵@C(✓)

@✓
, (1.3)

where ↵ represents the learning rate which is typically chosen small enough to prevent
overshooting the local optima.

The gradients of the cost function with respect to each of the parameters are ob-
tained through backpropagation which is an efficient, reverse automatic differentiation
technique for computing derivatives of nested functions [96]. In its essence, backprop-
agation amounts to repeatedly applying the chain rule. For backpropagation to be
applicable we need to assume that the cost function can be written in terms of the NN
output y(x) and is represented as a sum (or average) over different training examples,
i.e.,

C =
1

NT

NTX

n=1

g (y(xn), ŷn) , (1.4)

where ŷn is the ground-truth label for a given input xn. This assumption is valid for
most cost functions including the mean-squared error (MSE) g = |y(xn) � ŷn|2. The
partial derivative of the cost function with respect to a particular parameter ✓ (weight
or bias) therefore computes to

@C

@✓
=

1

NT

NTX

n=1

X

i

@g

@yi(xn)

@yi(xn)

@✓
. (1.5)

The backpropagation algorithm traverses the NN in reverse and first computes the
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gradients with respect to the weights and biases in the last layer L

@yi
@bL

j

=
@⇣

@zL
j

�ij, (1.6)

@yi
@wL

jk

=
@⇣

@zL
j

�ija
L�1
k

, (1.7)

where �ij is the Kronecker delta and the dependence on the input data xn has been
omitted. Similarly, we can derive an expression for the derivatives for all subsequent
layers

@yi
@bl

j

= �l
ij
, (1.8)

@yi
@wl

jk

= �l
ij
al�1
k

, (1.9)

where

�l
ij

=

X

k

�l+1
ik

wl+1
kj

@⇣

@zl
j

, and �L
ij

=
@⇣

@zL
i

�ij. (1.10)

The last two equations represent the recursive application of the chain rule. Note that
to compute all gradients we require the activations al to be known for each input data
point xn and each layer l. Hence, we first need to evaluate the NN on the input data
which is called a forward pass. Accordingly, the gradient taking step is referred to
as the backward pass. Optimizing all parameters in a conventional neural network
requires only one forward and one backward pass both of which are efficient in that
they have run times scaling only linear in the number of parameters [97]. Due to
this reason, backpropagation together with modern, hardware-accelerated automatic
differentiation libraries opened the door to the use of deep learning architectures with
billions of parameters.

1.2.2 Convolutional neural networks

The structure of the standard, fully-connected neural network introduced above does
not take into account any properties that the input data might have. However, for
some tasks and forms of data we already know that certain structures are present and
can be exploited. Consider for example the problem of finding dogs in images. The
features that define a dog (e.g. tail, snout, legs) take up only certain parts of an image
and hence are inherently local. Moreover, the precise position of the dog within an
image should not matter as the neural network makes its prediction. Thus, we can
assume that the model should be translationally invariant. A type of neural network
that explicitly leverages locality and translational invariance are convolutional neural
networks (CNN) which are therefore particularly suited for image processing tasks
[90, 98, 99].

For simplicity, I will introduce CNNs for the case of two dimensional (2d) input
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Figure 1.3: Visualization of a convolutional neural network (CNN) with two convo-
lutional, one pooling, and one final fully-connected layer. In a convolutional layer a
kernel or filter is applied to small patches of the input images (along all channels) which
is then strided along the full image to produce a feature map. Different kernels give
rise to distinct features each represented by another channel. The pooling operation
reduces patches of the input image to a single number via taking their mean or max
values.

data, i.e., images. However, CNNs can straightforwardly be generalized to one or
higher dimensions. A CNN consists of several layers each of which can perform one of
two operations: a convolutional or a pooling transformation (see Fig. 1.3). Importantly,
each of these layers maps a 2d input image back onto a two dimensional space called
feature map. Similarly to the standard fully-connected NN, in a convolutional layer
we apply a weight matrix wjx,jy

ix,iy
that maps the pixel value pix,iy at positions ix, iy of

the input image to a pixel value pjx,jy at positions jx, jy of the output image: zjx,jy =P
ix,iy

wjx,jy

ix,iy
pix,iy + bjx,jy . However, we restrict the weight matrix to be translationally

invariant by allowing it to only depend on pixel position differences rather than absolute
positions, i.e., wjx,jy

ix,iy
= w(ix� jx, iy � jy). Hence, the resultant weight matrix elements

automatically share some of their values. On top of that, we also set those weight
matrix elements to zero for which |ix � jx| > K, |iy � jy| > K, where K is called
the kernel size∗. The latter restriction makes the model local as an output pixel only
depends on a small local patch of input pixels.

Instead of thinking in terms of weight matrices, we can also adopt the notion of
kernels (or equivalently filters) as is common in computer vision. The truncated weight
matrix w0,0

ix,iy
defines the kernel and to obtain each output pixel value pjx,jy we simply

stride it over the input image. Besides the kernel size K, we also have to specify the
stride S which determines how many pixels are skipped when the kernel is moved over
the input image. Both of these hyperparameters can have different values for each
layer and have to be determined for each problem separately. Finally, each pixel in
a two dimensional image is usually not defined by one value, but rather by its three
red, green, blue (RGB) color channels. Similarly, one is usually interested in extracting
several distinct feature maps from the input and hence a convolutional layer outputs
a number of different channels C. Therefore, the kernel at a given layer l is in fact a
4d tensor of dimensions Kl ⇥Kl ⇥ Cl�1 ⇥ Cl.

∗In principle, the kernel size K can be different in the x and y directions. However, in practice it
is often chosen to be symmetric.
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The other operation that is typically present in CNNs is pooling. Here, the input
image is coarse-grained, i.e., its resolution is reduced, similarly to the block decimation
procedure in the real-space renormalization group. We divide the input image into
small equally sized patches and reduce each patch to a single number in the output
map by, for example, choosing the maximum value, or taking the mean over all pixels
in a patch. In contrast to convolutional layers, the pooling operation is conventionally
applied separately to each input channel and thus does not change the number of
channels. Also note that pooling does not involve any trainable parameters. Pooling
layers are usually inserted only at a few locations in the CNN. The convolutional and
pooling operations within a CNN are commonly followed by a final fully-connected
layer before the output can be read off (see Fig. 1.3).

The advantage of CNNs does not only lie in their ability to leverage short-range
correlations, local features, and symmetries in the input data, but also that the in-
herent weight sharing mechanism greatly reduces the overall number of optimizable
parameters. Hence, deep CNNs can be trained much more efficiently than their dense,
fully-connected NN counterpart while reaching the same or even better test set accura-
cies. CNN architectures have been used to produce some of the most impressive results
within deep learning. A famous example is image recognition where images of a large
class of objects have to be annotated (e.g. using the ImageNet data set) [100]. Another
example is the more challenging problem of object detection where several objects can
be present within an image and the task is to locate and annotate each of them [8].

1.2.3 Autoencoders

Neural networks and its variants like the CNN can be employed as parameterized
ansatze for any kind of machine learning task. However, there also exist special net-
works that are designed for specific use cases. The autoencoder (AE) is one such ex-
ample [90, 101, 102]. It was developed for unsupervised learning, i.e, situations where
no labels for the training data are present, and can solve a variety of different tasks
like representation learning, dimensional reduction, denoising, or anomaly detection.

An autoencoder consists of two parts, an encoder and a decoder which can be
represented by standard neural networks, CNNs, or other types of networks. The
encoder f✓ takes the d-dimensional data vector x as input and maps it onto an m-
dimensional space, called latent space: z = f✓(x). The decoder g� in turn takes the
latent space representation z and maps it back to the original space: x̂ = g�(z). The
goal of the AE is to reconstruct the original input data at the output x ' x̂ (see
Fig. 1.4). This can be achieved by finding optimal encoder and decoder parameters ✓
and � that minimize the mean-squared error between model in-and outputs

C =
1

NT

NTX

n=1

|xn � x̂n|2. (1.11)

In principle, it is trivial to find a function that exactly reproduces the input for all
training data points; in fact the identity operation would always satisfy the requirement
by definition. However, the autoencoder has the special property that the latent space
dimension is chosen much smaller than the input dimension m ⌧ d (see Fig. 1.4).
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Figure 1.4: The autoencoder takes an input x, encodes it into a latent space variable
z on a low-dimensional manifold, and subsequently decodes the latent space repre-
sentation again to reproduce the original input x ' x̂. The latent space serves as a
bottleneck through which information about the input has to pass.

Hence, the information about the input has to pass through a low dimensional manifold,
a bottleneck, before it can be reconstructed again. The encoder therefore has to learn to
imprint the most characteristic features of the data onto the latent space such that the
maximum amount of information can be used by the decoder to accurately reproduce
the input.

After successful training, the encoder of the AE can be used as a feature extractor
or dimensional reduction technique for data that is similar to the training data [102].
AEs can also be leveraged for the task of anomaly detection [103]. In that case, we train
the autoencoder on a homogeneous training data set for which we minimize the recon-
struction error [Eq. (1.11)]. When testing the AE afterwards on anomalous data that
possesses different features than the training data, the AE will fail in reconstructing
the inputs and give rise to a large reconstruction error. A peak in the reconstruction
loss can therefore be regarded as a syndrome of data anomalies.

Autoencoders have also been used for denoising images [104]. In this context, the
AE takes as input a noisy image and has to output the corresponding denoised one.
To that end, it is trained by minimizing the error between the original noise-free image
and the model output. Similar methods can for example also be applied to the task of
coloring black-and-white images [105]. Finally, with a few modifications autoencoders,
or specifically variational autoencoders, can be leveraged for generative modeling, i.e,
for generating completely new data examples that are similar to the original training
data [106].

1.3 Quantum-inspired machine learning

This section is devoted to yet another class of classical machine learning models which
are, however, inspired by methods developed within the field of computational quantum
many-body physics. The main motivation stems from the fact that both, machine
learning and quantum many-body physics deal with high-dimensional data that has to
be processed in efficient ways. In the following, I will introduce the basics of tensor
networks and the matrix product state as a specific example for a quantum-inspired
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Figure 1.5: Pictorial representation of tensor networks and tensor operations. (a)
Visualization of a scalar (rank-0 tensor), vector (rank-1 tensor), matrix (rank-2 tensor)
and a rank-5 tensor. Common tensor operations are the (b) tensor product, (c) the
trace, and (d) the contraction of two or more tensors. (e) Example of a tensor network
that results in a rank-4 tensor after contracting over all closed indices.

machine learning ansatz.

1.3.1 Tensor networks

Tensors can be considered as a generalization of vectors and matrices. A tensor Ti1,...,ir

with r indices of dimensions d1 ⇥ · · · ⇥ dr is defined as an element of Cd1⇥···⇥dr . The
number of indices of a tensor is also commonly called its rank. A convenient way of
visualizing tensors and algebraic operations thereof are tensor diagrams as shown in
Fig. 1.5 [37, 107–110]. Using this notation, a tensor is usually denoted by a vertex
(e.g. a circle, square, or triangle) and a number of legs equal to the rank of the
tensor. Fig. 1.5(a) shows the diagram for a scalar, vector, matrix, and rank-5 tensor
respectively.

All common tensor operations can be expressed using the diagrammatic approach.
The tensor product defined by

[A⌦ B]i1,...,ir,j1,...,js := Ai1,...,ir · Bj1,...,js (1.12)

corresponds to the tensors being put next to each other (Fig. 1.5(b)). The trace defined
by summing over two common indices∗

[Tra,b A]
i1,...,ia�1,ia+1,...,ib�1,ib+1,...,ir

= Ai1,...,ia�1,↵,ia+1,...,ib�1,↵,ib+1,...,ir
(1.13)

is represented by the corresponding legs of the tensor being joined and forming a loop
(Fig. 1.5(c)). And similarly, the contraction of two tensors, e.g.,

Cj1,...,js
i1,...ir

= Ai1,...↵...irB
j1,...,↵,...,js (1.14)

is denoted by the respective legs being joined (Fig. 1.5(d)). Tensor contractions include
the vector-dot product, matrix-vector multiplication, and matrix-matrix multiplication

∗We use the Einstein convention, i.e, repeated indices are summed over.
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as special cases.
We are always able to change the rank of a tensor by reshaping the indices due to the

fact that vector spaces are isomorphic as long as the total dimensions are equal. In the
diagrammatic representation, reshaping a tensor corresponds to either the grouping
or splitting of legs depending on whether the rank is lowered or raised. Note that
while the positioning of the legs in a tensor diagram is usually arbitrary, we will follow
a convention where co-and contra-variant indices point in opposite directions. This
ensures that only valid contractions between for example a bra and ket vector are
possible.

A tensor network refers to the collection of several tensors (see Fig. 1.5(e) for an
example). Open legs of the network determine the indices of the composite tensor and
therefore its rank. Closed legs, i.e., legs that start and end in a tensor, are contracted
over. The value of the resultant combined tensor can be computed by performing the
corresponding index summations as indicated by the network connections. While the
order in which indices are contracted does not affect the final result, it usually plays
a significant role in terms of the involved computational complexity. In fact, finding
the optimal order of contractions for an arbitrary network is shown to be NP-complete
[111, 112]. Examples of tensor networks allowing for efficient computations are matrix
product states (MPS) [113–116], tree tensor networks (TTN) [117], and the multi-scale
entanglement renormalization ansatz (MERA) [118, 119].

1.3.2 Matrix product states

Matrix product states (MPS) were originally developed as a numerical tool for the
efficient simulation of one dimensional quantum many-body systems [113–116, 120].
In parallel, they have also been known within the applied mathematics community as
tensor trains [121]. In the following, I will briefly introduce MPS from a physicist’s
viewpoint. For a more comprehensive review I will refer to Refs. [36, 37, 107, 108, 122].

Consider a quantum system that is defined on a one dimensional lattice, such as a
linear chain of N spins with a local Hilbert space dimension di at site i (di = 2 in the
case of spin-1/2). The quantum state | i of the full Hilbert space H = Cd1⇥...⇥dN can
be represented as a rank-N tensor

| i =

X

j1,...,jN

 j1,j2,...,jN |j1, j2, . . . , jNi , (1.15)

where ji 2 {1, . . . , di}. Note that the number of parameters in this ansatz and conse-
quently the memory resources scale exponentially with the system, i.e., for a uniform
local Hilbert space dimension di = d, we deal with a dN dimensional vector – this is
commonly referred to as the curse of dimensionality.

A matrix product state is a decomposition of the rank-N tensor into a collection
of N rank-3 tensors as depicted in Fig. 1.6. In the first step of the decomposition, we
group all but the first index together to obtain a matrix  j1,k and apply a singular value
decomposition (or equivalently a Schmidt decomposition) to it:  j1,k = Uj1,↵S↵V

⇤
↵,k

,
where U and V are isometries. Next, we take the tensor V , group the indices (↵, j2)
and (j3, . . . , jN) together and perform another singular value decomposition (SVD)
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Figure 1.6: Decomposition of a wavefunction  (upper left) into a MPS (lower left).
Tensors are split off the original wavefunction by performing successive singular value
decompositions. The singular value matrix S can be absorbed into the adjacent tensor.

splitting off the tensor at site 2. We repeat this procedure until we have reached the
final site N . The diagonal singular value matrices can be absorbed into either of the two
neighboring tensors. This leaves us with the MPS representation (see box in Fig. 1.6)

 j1,...,jN =

X

↵1,...,↵N�1

A[1]j1
↵1

A[2]j2
↵1↵2

. . . A[N�1]jN�1
↵N�2↵N�1

A[N ]jN
↵N�1

. (1.16)

Each tensor belongs to one site i of the chain and has one physical index ji as well as
one or two virtual indices ↵i,↵i+1 that are summed over. The dimension of the virtual
indices are determined by the SVD and called bond dimension �. Assuming a uniform
bond dimension � for all indices ↵i we find that the number of parameters in the
MPS ansatz scale roughly as Nd�2. Hence, for a fixed bond dimension � the memory
requirements scale only linear in the system size N as opposed to the exponential
scaling we observe for the full rank-N wavefunction.

MPS can also be considered as a variational ansatz for quantum states. The number
of variational parameters are determined by the bond dimension � which is related to
the maximum amount of entanglement that can be shared across a bond between two
subsystems. Consider for example the von Neumann entanglement entropy between an
arbitrary bipartition A/B of the MPS which is defined in terms of the reduced density
matrix ⇢A = TrA | i h | of either of the two subsystems

S (NA) = �Tr ⇢A log ⇢A  log(�). (1.17)

The entanglement entropy can be expressed using the eigenvalues s↵ of the reduced
density matrix, i.e., the singular values, and is therefore upper bounded by the loga-
rithm of the bond dimension �. Thus, the bond dimension can be chosen independent
of the subsystem size NA as long as the entanglement entropy does not scale with the
subsystem size. The quantum states fulfilling this condition are the so called area-law
entangled states in 1d and provide the class of states for which an MPS description is
indeed efficient [123, 124]. Interestingly, this class is equivalent to the family of ground
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Figure 1.7: Steps for calculating the overlap of two MPS states efficiently. The indices
which are contracted at each step are highlighted by thick lines. We first contract over
the physical index and then over the two virtual ones giving rise to the diagram on the
lower left. We can then repeat this scheme until the network is fully contracted.

states of local gapped Hamiltonians [125]. Note that most states of the many-body
Hilbert space do not fall into this category and instead follow a volume law of entan-
glement, that is, the entanglement entropy is extensive and hence grows linearly with
the system size.

The bond dimension of an MPS, and with that the entanglement, can be controlled
via performing SVDs across bisections and truncating the singular value matrix by
throwing away the smallest entries. Hence, we can also regard the MPS as a compres-
sion of the quantum many-body state where the level of compression is determined
by the bond dimension. Equivalently, we can also consider the bond dimension as the
quantity controlling the expressivity of an MPS ansatz similarly to the hidden dimen-
sion of a neural network. As long as the bond dimension is chosen sufficiently large,
an MPS can represent any quantum state or tensor.

Let me also briefly illustrate how the overlap h |�i of two MPS wavefunctions can
be efficiently computed with time and memory resources scaling only linearly in the
system size N . Calculating overlaps of two MPS is an important subroutine of many
MPS-based algorithms. The overlap corresponds to the contraction of two MPS over
all virtual and physical indices as shown in Fig. 1.7. We start at one side and first
contract over the physical index followed by the two virtual indices. The result is a
tensor network diagram shortened by one site for which we can repeat the steps above
until we fully reduced it to a scalar.

Finally, MPS are not only efficient in terms of their memory usage, but also many
relevant computations on quantum states can be performed efficiently within the MPS
framework, such as the overlap computation as outlined above. Furthermore, there
exist efficient MPS-based algorithms for calculating ground states of (local) Hamiltoni-
ans (e.g. DMRG) [36, 126] and for time evolving quantum states (e.g. TEBD, TDVP)
[118, 127, 128]. These algorithms feature a linear complexity scaling with the system
size. This favorable scaling make MPS therefore a powerful numerical framework for
classically simulating 1d quantum many-body systems well beyond exact diagonaliza-
tion regimes (N > 20).

As a final remark, let me note that there is also a straightforward generalization of
MPS to operators and density matrices called matrix product operator (MPO) [129].
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Furthermore, a variety of tensor networks have been developed for simulating quantum
states with different properties such as the MERA for critical states [118], or PEPS for
systems defined on higher dimensional lattices [130].

1.3.3 Tensor network-based machine learning

Similarly to how tensor networks can be used as variational ansatze for quantum states,
we can employ them as trainable models for machine learning tasks. Tensor networks
can be used to compress the weights of neural networks providing a form of regulariza-
tion [34], added to existing learning architectures creating hybrid ansatze [35], or used
completely in place of neural networks [33]. In the following, I will introduce the latter
of these approaches in more detail.

One of the early applications of tensor networks to machine learning was by Stouden-
mire and Schwab [33]. They considered the typical MNIST example of classyfing hand-
written digits. In analogy to support vector machines and kernel methods, the model
is chosen to be linear and represented by a single weight matrix W . However, it is
defined in a high-dimensional embedding space of the input images x, described by the
map �

f `(x) = W ` · �(x), (1.18)

where ` is the index for each of the 10 classification labels. While the linearity of
the ansatz would greatly limit the expressivity, the model receives its power from
the nonlinear embedding of the input images in the higher dimensional feature space.
Different mappings � are possible. In the original work each grayscale pixel xi is
mapped to a spin-1/2 degree of freedom (i.e., a vector) via

�si (xi) =

h
cos

⇣⇡
2
xi

⌘
, sin

⇣⇡
2
xi

⌘i
, (1.19)

such that white pixels result in a spin-up state, black pixels in the spin-down state and
intermediate pixel values in a superposition thereof. Applying this feature map to one
full image x gives rise to a product state of differently oriented spin-1/2 particles

�
s1s2···sN (x) = �s1 (x1)⌦ �s2 (x2)⌦ · · ·�sN (xN) . (1.20)

The weight matrix W `

s1s2···sN maps from the 2
N dimensional feature space to the 10

dimensional label space and can be regarded as a (N + 1)-rank tensor. Hence, the
number of parameters in the ansatz and the complexity of evaluating it scale exponen-
tially in the input image size N . Therefore, we instead represent the weight matrix as
a matrix product state (see Fig. 1.8)

W `

s1s2···sN =

X

↵1,...,↵N�1

A↵1
s1

A↵1↵2
s2

· · · A`;↵i↵i+1
si

· · · A↵N�1
sN

. (1.21)

Note that the index ` corresponding to the output label vector has to be attached to
one of the tensors in the ansatz. However, the label index can be moved to any other
position in the MPS via performing SVDs.

For simplicity the cost function C is chosen to be the mean squared error between



1.3 Quantum-inspired machine learning 19

Figure 1.8: Tensor network representation of the machine learning model used in
Ref. [33]. The input image x is first mapped to a product state of spin-1/2 particles
via a nonlinear map �(x) and then contracted with the weight matrix W ` resulting in
a vector of classification probabilities. Representing the weight matrix as an MPS gives
rise to the tensor network diagram on the right side. Here, the trainable parameters
(tensors) are denoted by squares to differentiate them from the input (circles).

the function output and the one-hot encoding of the classification labels Ln

C =
1

2

NTX

n=1

X

`

�
f ` (xn)� �`Ln

�2
. (1.22)

The loss function can be minimized using conventional gradient descent or any of its
variants and the gradients with respect to each tensor in the MPS can be computed
via backpropagation. However, the linearity of the MPS ansatz also allows for other
optimization routines involving only local updates which are motivated by the density
matrix renormalization group (DMRG) algorithm [36, 126]. Here, at each step of the
optimization we only consider one or two tensors at a time and keep all others fixed. We
then calculate the gradient with respect to the tensor and perform a gradient descent
step. Alternatively, one can rephrase the cost function optimization in terms of a
linear equation problem which can be solved via fast numerical linear-algebra routines.
Note that the latter approach is only possible since the model is linear in each of its
parameters (tensors). After the tensor has been updated, the steps above are repeated
for an adjacent tensor. In this way, the full ansatz is optimized by sweeping back and
forth through the MPS. If two tensors are updated in every step, we first contract them
into one tensor, update the resultant composite one, and then split it again via an SVD.
The advantage of the two-site update is that the bond dimension can be adapted as
part of the optimization algorithm, i.e., we can set a truncation threshold below which
singular values are automatically truncated. This gives rise to an optimization routine
which not only updates the model parameters, but also optimizes the overall number
thereof.

The use of MPS for supervised learning tasks like MNIST have been further ex-
plored in several works [38–41]. Similarly, MPS can also be leveraged for unsupervised
learning such as generative modeling [42–44] or anomaly detection [131]. Different
training schemes for MPS have been investigated in Refs. [132, 133]. It was shown
that gradient-based optimization of MPS can suffer from so called Barren plateaus, i.e,
the gradients vanish exponentially in the system size similarly to the training of pa-
rameterized quantum circuits [132–134]. MPS, or more specifically its operator analog
MPO, have also been employed for compressing weight matrices in conventional neural



20 Machine learning fundamentals

networks [34]. Here, each weight matrix is first reshaped into a higher rank tensor
and then expressed as an MPO using far fewer parameters. The achievable test set
accuracies were on par with uncompressed neural network architectures, however, often
allowed for faster convergence. MPS have also been leveraged as a feature extractor or
dimensional reduction technique for classical data in a quantum machine learning set-
ting [35, 135, 136]. The data is first mapped to a small feature space and then encoded
into qubits followed by the application of a parameterized quantum circuit. The MPS
and the quantum circuit are optimized end-to-end giving rise to a hybrid architecture
which has been applied both to a classification [35, 135] and a reinforcement learning
problem [136].

Similarly to MPS, we can also use other tensor networks as parameterized machine
learning ansatze. A natural extension of MPS to two dimensional systems are PEPS
which have already been applied to the typical MNIST classification task [137]. More-
over, TTN and the MERA have been investigated as ansatze and shown to give superior
performance to MPS in many tasks likely due to their ability of capturing long-range
correlations more efficiently [138–142]. Other generalized tensor network architectures
such as locally purified states or string-bond states have also been previously consid-
ered for machine learning [143, 144]. Note that there also exists a connection between
tensor networks and some neural network architectures [145–147]. For example, it was
shown that MPS and restricted Boltzmann machines (RBM) can be mapped onto each
other [147].

1.4 Quantum machine learning

In this final section, I turn to machine learning models that are quantum, i.e., they
are (partly) represented and evaluated on quantum devices. The motivation for these
quantum machine learning (QML) algorithms is two-fold: On one hand, we hope that
using quantum resources allows for a substantial better scaling of the model and train-
ing complexities similarly to how some quantum algorithms can gives rise to expo-
nential speedups over their classical counterparts. On the other hand, we know that
there are non-classical patterns that quantum systems can efficiently represent and
that could potentially be leveraged by QML. Consequently, quantum machine learning
models might perform better (achieve higher accuracies) than classical machine learn-
ing methods. Note that none of these promising advantages has yet been demonstrated
in real-world examples.

In the following, I will first introduce the circuit model of quantum computation,
give a general overview of quantum machine learning approaches, and discuss varia-
tional quantum algorithms as a specific example. General introductions to the field of
quantum machine learning can be found in Refs. [148–151].

1.4.1 Gate-based quantum computing

The basic entity storing the information of a quantum computation is the qubit [99].
A qubit is a two-level system like a spin-1/2 degree of freedom and its state is fully
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specified by two complex numbers a and b

| i = a|0i+ b|1i. (1.23)

Since the quantum state has to be normalized, h | i = 1, we require that |a|2+|b|2 = 1.
Alternatively, we can describe the qubit via three, real-valued angles �, ✓,�

| i = ei�
✓

cos
✓

2
|0i+ ei' sin

✓

2
|1i
◆

, (1.24)

where � is a global phase and therefore often omitted. The angles ✓ and � can be
interpreted as the polar and azimuthal angles of a unit vector. Hence, a pure single-
qubit state represents a point on the surface of a unit sphere in 3d, referred to as the
Bloch sphere. The computational basis states |0i and |1i correspond to the north-and
southpoles of the Bloch sphere respectively, while the uniform superposition | i =
1
2(|0i+ |1i) lies along the equator.

The composite state of several qubits lives in the tensor-product Hilbert spaces
of each constituent qubit, i.e., | i 2 C2n . Hence, we again encounter the curse of
dimensionality if we were to store the 2

n-dimensional n-qubit state on a classical com-
puter. Instead, on an ideal quantum computer the information is inherently stored
and processed using only n qubits. A general quantum computation is represented by
a quantum circuit which can roughly be decomposed into three steps: qubit initial-
ization, the application of unitary operators (so called quantum gates), and the final
measurement∗. Depending on the algorithm these steps have to be repeated and are
followed by classical post-processing of the measurement statistics.

By convention, qubits are always initialized in their “ground state” | i = |0i⌦n.
The qubit state is then altered by applying unitary gates Ui that, in principle, can act
on all qubits | 0i = UL · · · U2U1 | i. The unitary operators that have to be applied
depend on the respective algorithm being implemented. Similarly to the finite set of
classical logic gates realizable on classical computers, a physical quantum computer
will not be able to natively perform arbitrary quantum gates. Instead, only a subset
of operations will be supported and an arbitrary unitary first has to be decomposed
into the corresponding native gate set of the physical device. It has been previously
shown that any (global) unitary can be decomposed into only two-and single-qubit
gates [152, 153]. Furthermore, there are a number of different gate sets that allow
for universal quantum computation [99]. For example, the CNOT (CX), H, S, and
T gates defined below constitute such a universal set. The Hadamard gate H, phase
gate S, and T gate are single-qubit gates and in the computational basis their matrix
representation is given by

H =
1p
2


1 1

1 �1

�
, S =


1 0

0 i

�
, T =


1 0

0 ei
⇡
4

�
. (1.25)

For instance, the Hadamard gate H maps a computational basis state |0i to a uniform

∗It is also possible to perform mid-circuit measurements where the result is used in the subsequent
quantum computation. Hence, it might also be necessary to repeatedly reinitialize qubits as part of
the computation.
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Figure 1.9: A circuit diagram of an exemplary quantum circuit of three qubits in-
volving Hadamard gates H, phase gates S, T gates, and CX (CNOT) gates. A line
(or wire) represents a qubit which is usually initialized in the |0i state. Circuit oper-
ations are read left to right. At the end of the circuit all qubits are measured in the
computational basis.

superposition state |+i ⌘ 1
2(|0i+ |1i). The controlled-NOT or CX gate is a two-qubit

gate defined by

CNOT =

2

664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

775 . (1.26)

It applies a bit-flip (Pauli-X gate) to the second qubit (target qubit) conditional on
the first qubit (control qubit) being in the |1i state. In general, a two-qubit unitary
like the CX gate entangles the qubits it acts on.

Apart from the examples above, another widely-used operation realized in many
current quantum devices are parameterized rotation gates

RP (✓) = exp(�i✓P/2) = cos(✓/2)I � i sin(✓/2)P, (1.27)

which define a rotation with angle ✓ about an axis P on the Bloch sphere. The generator
P of the rotation is usually given by one of the Pauli operators P = {X, Y, Z}.

Finally, to obtain the result of a quantum computation we require one or more
qubits to be measured. Measurements are usually projective and performed in the
computational basis. Hence, the probability of measuring a specific bitstring m given
the pure quantum state | i is p(m) = h |Pm| i, where Pm is the projector onto the
computational basis state |mi. After the state has been measured, it is destroyed,
i.e., the state has been projected onto the corresponding outcome |mi. Often one is
interested in measuring probabilities or expectation values of observables rather than
single bitstrings. In this case, we have to repeatedly run the quantum circuit and
average over the measurement outcomes. If measurements of operators other than
Pauli-Z are required, we additionally have to perform basis transformations before the
measurement. We can represent a given quantum computation defined by its gates and
measurements via a circuit diagram as shown in Fig. 1.9.

1.4.2 Quantum machine learning and NISQ

Quantum machine learning has become an ubiquitous term and nowadays encompasses
a variety of different ideas and approaches. First of all, I will use the term quantum
machine learning whenever a part of the machine learning algorithm is substituted
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by a quantum computation (irrespective of whether the data is classical or quantum).
Hence, the case of using fully classical machine learning techniques for quantum data –
also sometimes referred to as QML in the literature – is not discussed in the following,
but will be the content of Section 1.5.

Originally, QML referred to the usage of specific quantum algorithms for speeding-
up certain linear algebra operations in classical machine learning techniques [149].
Methods like gradient descent, Newton’s method, principal component analysis, or
support vector machines can be sped up using quantum algorithms such as amplitude
amplification, phase estimation, the HHL algorithm (matrix inversion), and quantum
random access memory [154–156]. A different approach to quantum machine learning
is to “quantize” classical machine learning models and hence, to fully store, train, and
evaluate them using quantum systems. For example, there already exists proposals
for nonlinear quantum perceptrons, which could represent the basic building blocks of
quantum neural networks [157–160]. Moreover, some architectures such as Boltzmann
machines have a straightforward generalization to the quantum case [161].

What most of the approaches above have in common is that they require large-
scale, fault tolerant quantum computers to solve the specific problem and provide
any gain (speed-up) over the classical algorithms. However, we are currently in the
noisy-intermediate scale quantum (NISQ) era, that is, current state-of-the-art quantum
computers are subject to various sources of noise and consist on the order of only 100
physical qubits [49]. The errors are still too large and the system sizes too small in order
to harness quantum error correction strategies that would suppress errors to arbitrary
degrees. Instead, physicists devise heuristic error mitigation strategies to reduce the
effects of noise and develop algorithms tailored to NISQ devices which let us explore
their current capabilities [45, 46].

Similarly, different quantum machine learning approaches have been explored on
NISQ computers [45–47]. One prominent example for supervised classification tasks
is quantum kernel estimation [50, 162, 163]. In kernel methods, the input data x is
first mapped to some higher dimensional feature space �(x) and then classified via a
decision boundary, i.e., a hyperplane [164]. The classification result y(x) = ±1 for an
input x can be expressed as a linear combination of kernels (x,x0

) = h�(x),� (x0
)i,

that is, inner products of feature maps in the high dimensional space

y(x0
) = sign

nX

i=1

wiŷi (xi,x
0
) , (1.28)

where wi are parameters to be optimized and ŷi is the known label for data point
xi. The linearity of the ansatz gives rise to a convex optimization problem in the
coefficients wi.

In quantum kernel estimation, the input data x is instead mapped to a quantum
state |�(x)i in a Hilbert space. A quantum circuit is then used to compute the inner
products of different feature maps (x,x0

) = h�(x)|�(x0
)i. Finally, the extracted

kernels are fed into an optimization routine on a classical computer.
A related class of NISQ algorithms that can be used for near-term QML are varia-

tional quantum algorithms (VQA) [45, 46, 48]. These methods are explained in detail
in the next section. In a nutshell, they also require the classical data to be first encoded
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into a quantum state |�(x)i. However, instead of computing kernels and calculating
Eq. (1.28), we use a parameterized circuit U(✓) as the model and directly calculate the
output in the quantum Hilbert space. Training the model then amounts to optimizing
the quantum circuit itself, i.e., its parameters ✓ similarly to a classical neural network
ansatz [165, 166].

1.4.3 Variational quantum algorithms

Variational quantum algorithms (VQA) describe a class of quantum algorithms which
are all based on the variational optimization of parameterized quantum circuits [45–
48]. VQAs can be employed for a variety of different problems including ground state
search, Hamiltonian simulation, and quantum machine learning. In the following, I
will introduce VQAs from a machine learning perspective in which case they are also
sometimes referred to as variational quantum classifiers or quantum neural networks.

At the core of VQAs lies a parameterized quantum circuit U(✓) which can be
interpreted as the model that has to be trained. The model output is computed by
first applying the unitary U(✓) to the input state |�(x)i

| (x,✓)i = U(✓) |�(x)i , (1.29)

and then measuring the resultant state | (x,✓)i. The choice of cost function depends
on the problem, but is usually written in terms of a fidelity or expectation value of the
final state | (x,✓)i. For example, in the case of a classification task where labels ŷi
have been encoded into some quantum states |ŷii, the cost function C can be expressed
in terms of the infidelity of the target state |ŷii and the circuit output | (xi,✓)i

C(✓) =

NTX

i=1

⇥
1� |hyi| (xi,✓)i|2

⇤
. (1.30)

While the model is evaluated on a quantum device, the optimization routine for the
model parameters ✓ is performed on a classical computer. Therefore, VQAs are also
often called hybrid quantum-classical algorithms (see Fig. 1.10).

The choice of the circuit ansatz U(✓) depends on various factors such as the problem
we are trying to solve and hardware limitations. On one hand, we would like to make
the circuit ansatz as expressive as possible by using deep circuits, all-to-all connected
entangling gates, and a large number of parameters. However, with current NISQ
devices, the state fidelities quickly deteriorate with growing circuit depths due to noise.
Moreover, most quantum hardware currently have only very limited qubit connectivities
(e.g. nearest neighbor connections on a heavy hex lattice as is the case for the IBM
Quantum devices). Hence, entangling arbitrary qubits that are not adjacent on the
device requires several SWAP operations which artificially increases the depth of a
circuit and with it the introduced errors.

A common choice for the circuit ansatz U(✓) that addresses this trade-off between
expressivity and hardware constraints are so called hardware-efficient ansatze [167].
They are typically comprised of a very limited gate set including a single two-qubit gate
(e.g. the CX or CZ gate) and a few parameterized single-qubit gates (i.e. Rx, Ry, Rz
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Figure 1.10: The quantum-classical feedback loop of variational quantum algorithms.
Left box: The machine learning model is represented by a parameterized quantum cir-
cuit U(✓) which can be decomposed into several layers l of identical sub-circuits. In
the hardware efficient ansatz, each layer l usually consists of a block of parameterized
single-qubit rotation gates (squares) and fixed entangling gates (lines connecting differ-
ent wires). Classical data first has to be mapped to a quantum state on the circuit, for
example by applying an input-dependent encoding unitary E(x). The final output of
the quantum circuit is measured and aggregated into an average quantity like a fidelity
or expectation value. Right box: The optimization of the parameters ✓ is performed
on classical hardware via minimizing a cost function C. The updated parameters are
then used in the next evaluation of the circuit.

gates). The circuit is then built up from several identical layers l of smaller cir-
cuit blocks that each consist of single qubit gates RP (✓l,i) applied once to all qubits
i = 1, . . . , n, and an entangling unitary Wl. The entangling unitary W is, in turn, de-
composed into several two-qubit gates that are usually applied to only adjacent qubits
on the physical device (see Fig. 1.10). Hence, in total we can express the circuit ansatz
U(✓) as

U(✓) =

LY

l=1

Ul(✓l)Wl =

LY

l=1

 
nO

i=1

RP (✓l,i)

!
Wl, (1.31)

where L denotes the total number of layers. Note that the optimizable parameters ✓
enter only through the single-qubit rotations while the two-qubit entangling gates are
generally fixed. Furthermore, we usually allow the parameters ✓l,i to be different for
each qubit i and layer l. I discuss the explicit optimization methods for the circuit
parameters further below.

When employing VQAs for machine learning on classical data we also have to specify
a data-to-qubit mapping. Different qubit encodings have been previously proposed
[50, 150, 162, 168]. An efficient encoding for current NISQ devices is the data uploading
approach in which the input data x is mapped to the qubit state |�(x)i via an input-
dependent unitary E(x)

|�(x)i = E(x) |0i . (1.32)
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The unitary E(x) can be constructed similarly to the circuit ansatz U(✓) of Eq. (1.31),
i.e., it consists of several layers l of parameterized, single-qubit rotations R(xl,i) and
entangling gates Wl

E(x) =

LY

l=1

Ul(x)Wl. (1.33)

Here, LE is the total number of layers of the data encoding circuit. It is also possible
to introduce another set of parameters � into the data uploading unitary E(x,�) and
hence, also optimize over the qubit mappings. Alternatively, one can also merge the
two parts of data encoding and trainable model into a global circuit U(x,✓) where
data uploading and parameterized layers are alternated [169]. This scheme, referred to
as data reuploading, has been proven universal for classification and shown to give rise
to a Fourier series in the data [169, 170].

The final component of VQAs is the classical optimization of circuit parameters
✓. VQAs give rise to a standard multivariate optimization problem for which we
can use any classical optimization method such as gradient descent. Gradient-based
approaches require us to estimate the partial derivatives of the circuit output f(x;✓)

(e.g. an expectation value or a fidelity) with respect to each parameter ✓i. If the
parameters in the circuit U(✓) enter solely via the single-qubit rotation gates RP (✓i),
we can compute the gradients exactly using the parameter-shift rule [165, 171]

@f(x; ✓i)

@✓i
=

1

2

h
f
⇣
x; ✓i +

⇡

2

⌘
� f

⇣
x; ✓i �

⇡

2

⌘i
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Hence, the gradients can be expressed via the same variational circuit U(✓) albeit
shifted parameter values. Each gradient calculation therefore requires two “forward
passes”, i.e., evaluations of the objective function f(x;✓). Note, however, that the
objective function usually represents an expectation value or a fidelity and therefore
we need to collect, in principle, a large number of circuit measurements to estimate
f(x;✓) with high enough precision. The training of quantum circuits using exact
gradients is therefore considerably less efficient than the training of classical neural
networks. The latter involves only a single forward and backward pass (both of which
have the same complexity scaling) to compute the gradients with respect to all neural
network parameters. Moreover, with the use of parallelization techniques or modern
GPUs, the gradient computation can be efficiently parallelized over the whole input
data. This stands in contrast to the training of VQAs where the number of forward
passes (circuit evaluations) scales linearly with the number of parameters and the
training data size.

Due to these reasons, other optimization strategies for parameterized quantum cir-
cuits have been explored [46]. One notable example is the simultaneous perturbation
stochastic approximation (SPSA) algorithm [172]. SPSA is a stochastic method that
computes approximate gradients ĝ (x;✓) which are then used as a replacement for the
exact gradients in the conventional gradient descent update rule. SPSA estimates the
gradients via a modified finite difference method: instead of computing the finite differ-
ences separately for each parameter, we sample a random perturbation vector � and
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apply it to all parameters simultaneously

ĝ (x;✓)
i
=

f (x;✓ + c�)� f (x;✓ � c�)

2c�i

, (1.35)

with c being a small positive number. Estimating the gradients via this method has two
major advantages. First, each optimizer step now only requires two function evaluations
in order to obtain the gradients for all parameters. Hence, the number of required
circuit executions per iteration does not scale with number of parameters. Second,
since the gradient computation is based on stochastic perturbations, the performance
of SPSA can be robust to the noise and stochasticity introduced by physical devices
[50, 167].

Despite the issues of efficient trainability, VQAs currently face an additional chal-
lenge regarding their optimization, the so called Barren plateaus phenomenon [173].
Barren plateaus arise when the expectation value of the gradient and its variance van-
ish exponentially with the circuit depth or the number of qubits. In this case, the loss
function landscape is mostly flat and interspersed with many narrow gorges of local
minima [173]. The appearance of Barren plateaus is related to the curse of dimension-
ality, i.e., the exponentially growing Hilbert space dimension as the number of particles
is increased. Several approaches have been proposed for alleviating the Barren plateau
problem [45, 46]. For example, it has been shown that using local cost functions instead
of global ones [174], using layerwise optimization strategies for the circuit [175], and
choosing initial parameters that are already close to the optimum [176] can each help
in reducing the occurrence of Barren plateaus.

1.4.4 Quantum autoencoder

The quantum autoencoder (QAE) is a specific example of a variational quantum al-
gorithm and generalizes the idea of classical autoencoders to the quantum case [177].
Thus, the goal is to first compress a set of quantum states {| ii} into a low-dimensional
latent space representation, and then to reconstruct the original states again given just
the latent state information.

Similarly to the classical AE, the quantum circuit representing the QAE can be
separated into an encoder and decoder part. The encoder circuit consists of a param-
eterized unitary UE(✓) that is applied to an input quantum state | i defined on n
qubits. Since all quantum operations are unitary, the dimensionality of the qubit state
after the encoder circuit will be unchanged. Hence, we additionally need to trace out
(or measure) part of the system to effectively reduce its dimension. After the informa-
tion has been encoded onto a smaller number of k qubits, we apply the decoder circuit
UD(✓). To match the dimensions of the original state again, the decoder unitary is
applied to a product state of the latent qubits and additional ancilla qubits (i.e. qubits
initialized in the |0i⌦(n�k) state). The final state ⇢out at the output of the QAE can be
expressed as

⇢out(✓) = UD(✓)

h
TrT

⇣
UE(✓) | i h | U †

E
(✓)

⌘
⌦ |0i h0|⌦(n�k)

i
U †
D
(✓), (1.36)
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Figure 1.11: Circuit diagram of the quantum autoencoder. The information of the
input state ⇢in is mapped to a low-dimensional latent representation by first applying
the encoder unitary U(✓) and then measuring a subset of qubits, called trash qubits.
The decoder reconstructs the input state again by applying the inverse U †

(✓) of the
encoder unitary to the product state of latent qubits and ancilla qubits (i.e. qubits
initialized in the all-zero state). An ideal autoencoder is able to perform lossless com-
pression such that ⇢out = ⇢in for all data inputs. When training the autoencoder it is
sufficient to evaluate only the encoder part of the circuit up to the dashed vertical line.

where TrT (· · · ) denotes a partial trace over the n�k “trash” qubits that are discarded
and ⇢in = | i h | is the density matrix of the input state.

Due to the unitary property of quantum computing, lossless compression (that is
⇢out = ⇢in) can only be achieved if the encoder maps all input states | ii to states
| 0

i
i ⌦ |ai, where |ai is an input-independent reference state. For simplicity, we can

take the reference state to be the all-zero state |ai = |0i⌦(n�k). In this case, it is easy
to see that the decoder circuit UD(✓) has to be the inverse of the encoder circuit, i.e.,
UD(✓) = U †

E
(✓) in order to always fulfill the requirement that ⇢out =⇢in. Hence, from

now on I will omit the subscripts. The circuit diagram of the quantum autoencoder is
depicted in Fig. 1.11.

The ansatz for the parameterized QAE unitary U(✓) can be chosen as for any other
variational quantum algorithm. Training the QAE then amounts to optimizing the
shared encoder and decoder parameters ✓. A natural figure of merit we can minimize
is the average infidelity between the in-and output states defined by

C1 = 1� 1

NT

NTX

i=1

h i|⇢out,i(✓)| ii. (1.37)

An alternative objective would be to optimize the encoder unitary U(✓) such that the
trash qubit state is always equal to the all-zero state |0i⌦(n�k)

C2 = 1� 1

NT

NTX

i=1

h0|TrT̄
⇣
UE(✓) | ii h i| U †

E
(✓)

⌘
|0i, (1.38)
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where TrT̄ (· · · ) now denotes a partial trace over the k qubits in the latent space. The
advantage of the second cost function C2 is that the overall circuit depth for evaluating
it is effectively cut in half, since we only have to execute the encoder circuit. In contrast
to classical autoencoders, the QAE therefore allows us to only optimize the encoder
which then automatically amounts to also improving the decoder. Moreover, the loss
function C2 has the additional advantage that it does not require knowledge of the
initial state as it is only defined via the trash qubit fidelities. Hence, it allows us to
train autoencoders also on quantum states whose exact form is unknown.

In the original proposal, the QAE has been applied to the compression of ground
states of the Hubbard model and molecular Hamiltonians [177]. Since then it has also
been used on classical data such as for the compression of images of handwritten digits
[178]. Furthermore, the QAE has already been experimentally realized on a photonic
quantum device [179].

1.5 Machine learning for quantum data

In this section I will briefly review some past applications of machine learning in the
quantum domain that are related to the subsequent chapters. For a more comprehen-
sive and detailed review of the field I refer to Refs. [10–12, 81–83].

The problem of phase classification of (quantum) many-body systems represents
one of the most famous applications of deep learning to the physical sciences [13, 14].
In one of the early studies, supervised learning techniques were used to classify ground
states of the Ising model and the Toric code [13]. The model was trained on states deep
within the two phases and then tested along the whole parameter range. The location of
the phase transition was indicated by an abrupt change of the classification probability.
van Nieuwenburg et al. [14] used a similar supervised learning approach, however, did
not require prior knowledge about the location of the critical point. Instead, they
labeled the training data ground states by guessing the point of the phase transition
in parameter space. The model is then trained on the (falsely) labeled data set. These
steps are repeated by choosing different parameter values for the critical point and
relabeling the data set accordingly. The final prediction accuracy of the trained models
determines the actual location of the phase transition since the model can classify the
phases most accurately if the training data was labeled correctly. Note that in contrast
to the first example of Ref. [13], this approach requires to optimize a separate neural
network for each different parameter value and hence is considerably more expensive.
Supervised learning techniques have been applied to the phase classification of strongly-
correlated fermionic systems [180], topological systems [181–183], and systems out-of-
equilibrium [184, 185].

Fully unsupervised techniques for phase detection based for example on PCA, ad-
versarial NNs or autoencoders have also been explored [18–20, 64, 186, 187]. In Ref. [18]
Kottmann et al. use the idea of anomaly detection to map out the phase diagram of
the extended Bose Hubbard model. An autoencoder is trained on ground states of a
small corner of the phase diagram. For these training examples, the model learns an
accurate latent representation of the input states and hence is able reproduce them at
the output. However, when tested on the whole parameter regime, the autoencoder
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fails in replicating the input and consequently gives rise to a large reconstruction er-
ror. Plotting the error across the phase diagram reveals the location and approximate
boundaries of all distinct phases. Unsupervised methods for phase discovery have also
been applied to study topological [63, 64], frustrated [188], and higher dimensional
systems [62].

Another prominent example of a deep learning application in the quantum sci-
ences are neural quantum states (NQS) [15]. Similarly to how tensor networks can
be harnessed as variational ansatze to efficiently represent quantum many-body wave-
functions, deep neural networks represent yet another expressive parameterized ansatz
that can be leveraged for this task. In one of the first works Carleo et al. [15] used a
restricted Boltzmann machine (RBM) to learn the ground states of the transverse field
Ising and the antiferromagnetic Heisenberg model as well as non-equilibrium states
after quench dynamics. The RBM was trained via the already established variational
Monte Carlo method. Neural quantum states have been proven to be more expressive
than tensor network-based approaches given the same number of parameters [147, 189].
In particular, it was shown that NQS can efficiently represent volume-law entangled
states [190, 191], topologically non-trivial states [192, 193], and frustrated systems
[194, 195]. The NQS framework was later generalized to excited states [196], fermionic
systems [197], and open quantum systems [198–201]. Furthermore, algorithms for the
time evolution of NQS have been developed as well [202, 203].

A related idea to NQS is that of neural-network quantum state reconstruction [21].
Quantum state tomography usually requires computational resources scaling exponen-
tially in the system size both, in terms of storing the state and in terms of the number
of measurements. Torlai et al. [21] showed that representing the quantum states as a
neural network (specifically an RBM) allowed for a significant reduction of the required
number of measurement samples. They demonstrated their framework by reconstruct-
ing the highly entangled W state as well as ground states of a Heisenberg model on
synthetically generated data. These methods were later also successfully applied to
experimental data from a programmable Rydberg quantum simulator [204].

Reinforcement learning (RL) has already been adopted in a variety of different
quantum control problems. In one of the first examples [17], a policy-gradient algorithm
was used to learn error correction strategies for qubits undergoing decoherence. To that
end, the RL agent had to learn protocols composed of gates and measurements that
encode the qubit state into a multi-qubit system, measure individual qubits to extract
information, and correct errors by applying gates. The RL state was given by a lower
dimensional representation of the completely positive map which describes the entire
noisy quantum evolution. The reward function represented the recoverable quantum
information at each time step. Once the policy network was successfully trained on
the full state information, it served as a teacher network to another recurrent neural
network which was optimized in a supervised fashion solely on measurement outcomes
(rather than the state information which is not available in experiments). Note that
RL has also been leveraged in other works for optimizing quantum error correction
codes [22–24].

Another promising area of application for RL is that of quantum state preparation
which presents a necessary subroutine for many modern quantum technologies. For
example, Bukov et al. [16] considered the Q-learning algorithm with linear function
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approximation to prepare a specific target ground state of the Ising model with trans-
verse and longitudinal fields. The RL state was given by the current time step and the
value of the magnetic field. The possible actions were either to increase or decrease the
field by a fixed amount. Lastly, the reward at each step was chosen to be zero except
for the final state where it equaled the fidelity with respect to the target state. Bukov
et al. showed that the optimal protocols devised by the RL agent performed comparably
to conventional optimal control techniques. Further, they discovered a spin-glass-like
phase transition in the control landscape as a function of the total protocol duration.

Since these early works, RL has been applied to numerous other quantum control
problems [29–32, 205–213]. For instance, RL has been used to prepare spin ice states
[29], ground states across quantum phase transitions [212], for quantum control scenar-
ios in the presence of noise [30], and for state preparation problems specific to certain
quantum simulator platforms [31, 32, 206]. Furthermore, RL has been combined with
other control techniques for the purpose of quantum state preparation [211]. Apart
from these standard optimal control applications, RL methods have been harnessed
for quantum metrology [214, 215] and for quantum circuit compiling, i.e, the task of
decomposing global unitaries into the local gate set of a respective quantum device
[25–28].
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2.1 Introduction

Non-equilibrium behaviour of classical and quantum systems is ubiquitous in nature
and includes interesting and complex phenomena such as turbulence and chaos, which
are still only partially understood [216, 217]. Bose-Einstein condensates (BECs) pro-
vide a particularly versatile platform for studying and simulating general features of
non-equilibrium dynamics, due to the high level of control over the experimental sys-
tems [218, 219]. In particular, rapidly rotating BECs can support quantum vortices,
which are considered a key component of superfluid turbulence [53]. Unlike their clas-
sical counterparts quantum vortices are restricted to quantized circulation due to the
condition that the wave function has to be single valued at all points. This leads to a
well-defined velocity profile that is given by the gradient of the phase [220]. Numer-
ous experiments have generated vortices in BECs [221] and observed the formation of
vortex-antivortex pairs [222], vortex rings [223], and vortex lattices [224]. Furthermore,
in-situ density imaging of vortex cores has opened the door to the analysis of their real-
time dynamics [225–227] and thus, the experimental study of chaos, turbulence, and
other out-of-equilibrium dynamics [54, 228–231]. For example, recent results include

33
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the detection of persistent vortex clusters emerging from the turbulent flow of high-
energy vortex configurations [57, 232], the experimental realization of the quantum
analogue of the Kármán vortex street [233], and the observation of vortex-antivortex
pairing in a turbulent BEC [234].

However, the study of quantized vortices and specifically their dynamics requires
to first infer their precise location within a BEC [60]. For ground states the task
of detecting vortices is straightforward, since they are arranged in a clear pattern
with pronounced density minima at their core centers [224, 235] and therefore can
be easily spotted by eye or via automated processes. On the other hand, in non-
equilibrium configurations vortices are located at random positions following no distinct
order. Furthermore, local density minima not corresponding to vortices can emerge as
a consequence of phononic excitations, making the detection of vortices considerably
more difficult [236]. In numerical simulations that model the dynamics of BECs one
usually has access to the full condensate wave function and hence also to its phase.
The phase profile provides a clear indication of the existence of a vortex through a
phase winding of 2⇡ around the position of a vortex core. Therefore, vortex detection
algorithms for non-equilibrium configurations mainly rely on the BEC phase profile to
distinguish vortices from other defects [236, 237]. However, in experiments the phase
profile and thus the information encoded therein is not easily accessible. Moreover, non
zero temperatures and the presence of noise pose an additional challenge for accurately
detecting vortices and hence require the development of more elaborate methods.

In this chapter we show that a machine learning based vortex detector can reliably
and accurately locate vortices within out-of-equilibrium BEC density images. It can
distinguish vortices from other local density minima even in situations that are difficult
for the human eye. In contrast to conventional vortex detection algorithms, such
as blob detection, the neural network does not require hard-coded features or fine
tuning of parameters [60, 237]. In addition, the model is robust, i.e., it performs
well on simulated data with experimentally relevant sources of noise and generalizes
to configurations it has not been trained on, which would not be possible with more
traditional object detection methods like template matching [238]. Hence, we anticipate
that our vortex detector can be broadly employed in experimental studies of non-
equilibrium vortex configurations where only the BEC density is accessible. On the
other hand, in numerical simulations of the BEC the phase profile is available and can
be provided to the neural network as additional information. In this case the model is
also able to accurately classify the circulation direction of each vortex.

In recent years machine learning techniques have become a widely adopted tool
in the field of quantum physics [12, 83]. Specifically in the area of BECs, machine
learning methods have been used to optimize the cooling process for the atomic gas
[239], learn the Kosterlitz-Thouless transition [182], and devise control schemes for the
creation of quantum vortices [240]. On the other hand, deep learning based object
detection has celebrated remarkable successes in the field of classical computer vision,
achieving state-of-the-art results in areas like face, vehicle, and medical image detection
[241, 242]. Hence, neural network based object detection promises to be a powerful tool
for the physical sciences as well and has already been successfully employed in a few
cases [243, 244], as for instance to detect and identify characteristics of atomic clouds
[245] or to locate dark solitons in a BEC [246]. Finally, let us note that deep learning
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approaches have also been applied to the detection of vortices in classical fluids such as
locating rotor blade tip vortices [247] or eddies in ocean currents [248]. Motivated by
these recent successes, in this work we employ a convolutional neural network (CNN)
ansatz for the task of vortex detection which can achieve high accuracies on our test
data and is therefore very well suited for the problem of locating vortices in BECs.

This chapter is organized as follows: I first present the theoretical model used to
simulate BECs and describe how vortices emerge in Section 2.2. Section 2.3 introduces
the machine learning based vortex detector. The results of training the model and its
ability to generalize to different trapping geometries and different levels of noise are
discussed in Section 2.5. Section 2.4 provides further details on the training data, the
network architecture, the evaluation metrics, and the features learned by the CNN.

2.2 Physical system

We consider a dilute and weakly-interacting Bose-Einstein condensate rotating around
the z-axis with rotational frequency ⌦. At zero temperature and assuming a tight
harmonic confinement in the z direction such that the transverse dynamics is frozen
out, i.e., !z � !?, we can describe the dynamics of the Bose gas in the co-rotating
frame by means of the two-dimensional mean field Gross–Pitaevskii equation (GPE)
of the form [249, 250]
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with  being the condensate wave function, !? the frequency of the harmonic trap,
Lz = xpy�ypx the angular momentum operator, and r =

p
x2 + y2 the radial distance.

The effective two-dimensional interaction strength is given by g = g3D/(
p

2⇡az) with
az =

p
~/m!z and g3D = 4⇡~2as/m being the harmonic oscillator length scale of the

transverse tight confinement and the three-dimensional interatomic interaction strength
respectively. Here as is the s-wave scattering length. Note that Eq. (2.1) is analogous
to the more general nonlinear Schrödinger equation which can describe a variety of
different systems [251]. From here onward we use harmonic oscillator units by setting
~ = !? = m = 1 and choose interaction strengths g 2 [50, 600] as well as rotation
frequencies ⌦ 2 [0.65, 0.95] which correspond to experimentally accessible parameter
regimes.

Above a critical rotation frequency ⌦c, the ground state of Eq. (2.1) possesses
vortices [252–254]. For large rotation frequencies these vortices arrange themselves in
a triangular lattice geometry [224], while for smaller frequencies different configurations
can arise [235]. As an example, Fig. 2.1(a)-(b) shows the numerically obtained density
distribution | (r)|2 and phase profile of the ground state wave function when g =

452 and ⌦ = 0.816. The vortices are clearly defined through a density dip at their
cores and through the characteristic 2⇡ phase winding in the phase. Note that the
detailed structure of the vortex core depends on the trapping potential [219, 220]:
in a homogeneous BEC, the width of a vortex core is fixed by the balance between
the kinetic and interaction energy, with a typical core size given by the healing length
⇠ =
p

8⇡nas, where n corresponds to the density. In trap systems, the size of the vortex
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(a) (b) (c) (d)

Figure 2.1: Examples of BEC density and phase profiles for the stationary ground
state (a),(b) and for a non-equilibrium configuration (c),(d). The ground state is
computed via imaginary time evolution with the GPE using an interaction strength
g = 452 and a rotation frequency ⌦ = 0.816. Phase imprinting of additional vortices
and a subsequent real time evolution gives rise to the out-of-equilibrium configuration.

core depends also on the local chemical potential, which gives rise to slightly larger sizes
in low density regions. In addition, vortices surrounded by very low densities at the
outer part of the BEC will not contribute to the rotational energy of the system and
are therefore irrelevant from a physical point of view [255].

The vortices carried by the ground state all rotate in the same direction, i.e.,
they have a winding number with the same sign, which is determined by the rota-
tion frequency ⌦. Situations where vortices of different rotation directions co-exist
can be created for instance by forcing the superfluid to flow around an obstacle po-
tential [256, 257] or through the process of phase imprinting [55, 258–261]. In the
latter case, a single vortex centered at (x0, y0) is generated by applying a phase mask
�IMP(r) = arctan (y � y0, x� x0) with a 2⇡ phase winding in the desired direction. The
time-evolution of configurations with multiple vortices of unequal rotation direction fea-
tures interesting out-of-equilibrium processes such as vortex - antivortex annihilation
and the emergence of other low energy excitations. Furthermore, it has been shown
that a three and four vortex-system with one counter-rotating vortex can already lead
to chaotic dynamics [54–56] and that large vortex systems can give rise to quantum
turbulence [53, 57–59]. Figure 2.1(c)-(d) displays a density and phase profile snapshot
during a representative time evolution after phase imprinting additional anti-vortices.
While the vortex cores are still clearly visible in the image of the condensate phase, it
is more challenging to pinpoint their exact location in the density snapshot.

2.3 Machine learning model

In the following we introduce our neural network based vortex detector which is moti-
vated by state-of-the-art object detectors such as YOLO and Objects as Points [8, 262].
The general task of object detection is to locate each object in an image, draw the cor-
responding bounding boxes, and associate them to a specific class. Here, we are only
interested in detecting vortices and therefore our problem reduces to that of binary
classification. In Section 2.5.2 we consider the case where the detector also learns to
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Figure 2.2: The network takes as input images of dimension 256 ⇥ 256 with the
condensate density alone (a), or the density and phase profile as two separate channels
(b). The images are fed through 7 convolutional and 3 maxpool layers until the final
layer outputs 3 matrices of dimension 64 ⇥ 64. Each entry of the 64 ⇥ 64 matrices is
associated with a distinct 4⇥4 cell in the original image and represents the probability
of a vortex core being present inside the cell (I), and the scaled x (II), and y (III)
position of the vortex within that cell.

distinguish between vortices and anti-vortices as two separate classes. Furthermore,
since the sizes of vortices across the simulated images do not vary significantly, we fo-
cus on predicting the position of each vortex core rather than the full bounding boxes.
If necessary the size of a vortex core can be determined by calculating the healing
length of the condensate.

The vortex detector takes as input gray-scale images I 2 [0, 1]
W⇥H⇥C with equal

width and height, W = H = 256, and a number of channels C = 1, 2 depending
on whether the density profile or both density and phase profiles are provided to the
neural network in two separate channels (see Fig. 2.2). In principle, the output of the
detector can assign a probability to each image pixel corresponding to whether the
pixel represents a vortex core or not. However, due to the large dimensions of the
input image, we divide it into a W

R
⇥ H

R
grid with R = 4 such that each 4⇥ 4 grid cell

is responsible for detecting at most one object. We estimated the size of vortices in
our data set and thus, ensured that the grid is chosen fine enough such that at most
one vortex is present in any cell. The output Yijk of the neural network is therefore a
tensor of dimensions 64 ⇥ 64 ⇥ 3 where the 3 channels correspond to the probability
of a vortex core being present, and the scaled x and y positions of the core within its
grid cell.

In the following, we denote the neural network prediction by Y and the ground-truth
label by Ŷ . The latter are obtained by a brute-force detection method described in
detail in Section 2.4.1. Our training and test data is comprised of both ground state and
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out-of-equilibrium configurations which are obtained through numerical simulations of
the GPE (see Eq. (2.1)) with parameter values sampled uniformly from the range g 2
[50, 600] for the interaction strength and ⌦ 2 [0.65, 0.95] for the rotation frequency. The
obtained density and phase profiles are normalized such that their pixels lie between
[0, 1] before being input to the convolutional neural network (CNN). The architecture
is composed of 7 convolutional layers and 3 maxpool operations (see Fig. 2.2). The full
details of the architecture, the training, and the chosen hyperparameters are provided
in Section 2.4.2. We use the ADAM optimizer [263] and a loss function C given by

C =

X

batch

X

ij
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where w1, w2 are hyperparameters. The first term in the loss function is the weighted
cross entropy loss responsible for learning the correct assignment of vortex probabilities
to each grid cell. We found that giving a higher weight to learning positive predictions
stabilizes training since otherwise the network often learned to detect no vortices at all,
likely due to the sparsity of vortices within an image. The last term is a mean-squared
error (MSE) loss for the x and y positions of a vortex. Note, that only those entries of
Y with an existing vortex core contribute to this part of the loss function while all other
entries are ignored and in general have arbitrary values. For evaluating and comparing
the performance of the object detector we use widely adopted metrics in the field of
object detection such as precision, recall, average precision (AP), and the F1 score that
we compute on the test data set. For their definitions we refer to Section 2.4.3.

2.4 Training details

The code used to train and evaluate the machine learning model can be found on
GitHub [264].

2.4.1 Training data generation

Object detection belongs to the category of supervised learning tasks and therefore
requires labeled training data. In order to include a variety of different vortex config-
urations for training, we use both ground states and non-equilibrium states generated
within different parameter regimes. For each training example an interaction strength
g and a rotation frequency ⌦ are uniformly sampled in the range g 2 [50, 600] and
⌦ 2 [0.65, 0.95]. The ground state is obtained through imaginary time evolution us-
ing the split-step method [265]. To create out-of-equilibrium configurations containing
both vortices and anti-vortices, we employ the method of phase imprinting [260] where
between 4 � 7 vortices are placed at random locations and with random circulation
directions. We perform a short imaginary time propagation that simulates a small
thermal relaxation of the system and a subsequent real-time evolution after which a
snapshot of the condensate wave function is saved. The extracted condensate density
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Figure 2.3: Distribution of the number of vortices across the training set for ground
states (a) and out-of-equilibrium configurations (b). The combined distribution has a
mean value of 18.7 vortices per image.

and phase images comprise the training and test input data which include 1000 ground
state samples and another 1000 out-of-equilibrium samples. The combined data set of
2000 images is randomly split into a training set containing 1600 images and a test set
including the remaining 400 images.

The ground truth label for each image are the positions of all vortex cores inside the
BEC. We obtain the x and y coordinates within pixel resolution through a combination
of different techniques. We first apply a mask to the density and phase profiles cutting
off regions outside the BEC. Hence, we ensure that only vortices strictly within the
condensate are detected. As the cutoff threshold we choose 15% of the maximum
density | |2. Next, we find all local density minima within an image. For each local
minimum we calculate the phase gradient along a closed loop centered at the minimum,
check whether the slope equals ±1, and the loop adds up to ±2⇡, thus displaying the
characteristic 2⇡ phase winding. If all these conditions are met, the corresponding pixel
position is stored in the list of labels. Note that this brute-force method of detecting
vortices is not perfectly accurate and misses or mistakenly places vortices in a few
cases. Hence, some of the labels used for training are corrupt, however, the overall
excellent performance of the detector on the test data suggests that the training of the
network is robust against the errors in the training set.

We found that the number of vortices within a single image varied between 0 to
65 in our data set. The distribution of the number of vortices across all images is
shown in Fig. 2.3. The dependence of the number of vortices on the applied rotation
frequency ⌦ is nonlinear, i.e., for a large range of sampled rotation frequencies the
number of vortices increases only slowly, while in the high frequency regime the number
grows more rapidly [266]. The effect can be observed in the distributions which are
asymmetric and slightly shifted towards a lower number of vortices with a mean value
of 18.7 vortices per image.



40
Deep-learning-based quantum vortex detection in atomic Bose–Einstein

condensates

Layer Filter Stride Pad Channels
conv 1 3⇥ 3 1 1⇥ 1 1/2⇤ ! 10

conv 2 3⇥ 3 1 1⇥ 1 10! 10

maxpool 1 2⇥ 2 2 10! 10

conv 3 3⇥ 3 1 1⇥ 1 10! 20

conv 4 3⇥ 3 1 2⇥ 2 20! 20

maxpool 2 2⇥ 2 2 20! 20

conv 5 3⇥ 3 1 1⇥ 1 20! 30

maxpool 3 2⇥ 2 1 30! 30

conv 6 3⇥ 3 1 1⇥ 1 30! 40

conv 7 1⇥ 1 1 40! 3/4⇤

maxpool 4 3⇥ 3 1 1⇥ 1 3/4⇤ ! 3/4⇤

Table 2.1: Neural network architecture. The number of input and output channels
(marked with a star) differ between learning tasks. The final maxpool layer serves as
non-max suppression.

2.4.2 Neural network architecture and training

The architecture of the neural-network based vortex detector is based on SlimNet, a
convolutional neural network (CNN) specifically designed for detecting small objects
[267]. It contains convolutional as well as maxpool layers as depicted in Table 2.1. The
network takes as input images of size 256⇥ 256 which can be either the density profile
or the density and phase profiles provided in two separate channels. All convolutional
layers are followed by relu activations except for the last layer, which uses a sigmoid
activation instead. The output Y of the network after the final convolutional layer is
a 64 ⇥ 64 ⇥ 3 tensor where each of the three channels corresponds to the probability
of detection, and the scaled x, and y positions respectively. For example, an output
Yij1 = 1 would indicate that a vortex is present in the grid cell denoted by ij and the
precise position of the core within that grid cell can be read off by checking Yij2 for the
x and Yij3 for the y coordinates. On the other hand, all grid cells where Yij1 = 0 do not
contain a vortex and therefore the second and third output channels can be ignored. In
the case where the circulation direction of a given vortex is also classified, the output
contains 4 channels with the first two representing the probability for a vortex and
anti-vortex respectively. The final maxpool layer serves as a non-max suppression to
eliminate multiple detections of the same vortex.

We implement the CNN and train it using Julia’s machine learning library Flux
[268]. We use the ADAM optimizer [263] with a batch size of 100, a learning rate ⌘ =

0.001, and decay rates �1 = 0.9 for the first and �1 = 0.999 for the second momentum
estimates. The weights in the loss function of Eq. (2.2) are set to w1 = w2 = 10 and the
network is trained for 100 ⇠ 500 epochs depending on the learning task. 100 epochs
of training took on the order of 10 minutes on a NVIDIA TITAN X Pascal GPU. A
subsequent forward pass took 0.0025 sec for a single image and 0.009 sec for a batch
of 100 images therefore allowing for real-time detection once the model is successfully
trained.
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2.4.3 Evaluation metrics

To evaluate and compare the performance of the vortex detector for each different
learning task we use standard metrics in the field of object detection such as precision
and recall [241]. Precision describes how many of the detections within an image
are accurate, while recall quantifies how many of the actual objects in an image are
detected. Denoting true positives by TP , false positives by FP , and false negatives by
FN , precision and recall are defined through

Precision =
TP

TP + FP
, (2.3)

Recall =
TP

TP + FN
. (2.4)

The machine learning model outputs the probability for a vortex to be present in each
grid cell. A confidence threshold is used to discard low probability detections and
label high confidence predictions as positives P . Conventionally, a larger confidence
threshold increases precision while decreasing recall and vice versa. For each different
detection task we calculate an optimal confidence threshold that maximizes the har-
monic mean of precision and recall, which we describe further below. To distinguish
true positives from false positives, the object detection community usually computes
the intersection over union (IoU) given by the ratio of the intersection area and union
area of the detected bounding box and the ground-truth bounding box. If the IoU is
larger than a predefined value, the detection is considered to be a true positive TP
while it is labeled as a false positive FP otherwise. In our case the vortices across im-
ages are of similar sizes and therefore we can use a simple distance measure between the
detected vortex position and the ground-truth position instead of the IoU. We choose
the pixel-wise euclidean distance and an arbitrary distance thresholds of

p
5. Hence,

all detections that are within ⇠ 2 pixels of their ground-truth position are identified
as positives.

As mentioned before there exists a trade-off between precision and recall controlled
by the value of the confidence score threshold. To examine the performance of the
model across different confidence thresholds, we plot precision against recall for 10
different threshold values in Fig. 2.4. Each curve of a different color corresponds to
one of the separately trained models. From each point on a curve we can determine
the F1 score, i.e., the harmonic mean between precision and recall

F1 = 2⇥ Precision⇥ Recall
Precision + Recall

. (2.5)

The optimal confidence threshold corresponds to the maximum F1 score which is used
for generating all labeled plots within this work. Furthermore, we calculate the average
precision (AP) as the mean over the precision values p(r). Finally, we also provide the
precision and recall values computed at the optimal confidence threshold as another
meaningful performance metric of the vortex detector. In the case of multi-class detec-
tion considered in Section 2.5.2 the AP and F1 scores are first calculated separately for
each class and then averaged to obtain mean average precision and a mean F1 score.
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Figure 2.4: Precision - recall curves for the training tasks of Section 2.5.1 (a) and
Section 2.5.2 (b). Precision/recall values are calculated for 10 different confidence
thresholds in the equally spaced interval between [0.05, 0.95]. The precision/recall
values corresponding to the highest F1 score are shown in Table 2.2 together with the
maximum F1 score and the average of the precision values (AP).

2.4.4 Visualization of the CNN layers

To elucidate the inner workings of the trained CNN we visualize the output after the
fourth convolutional layer for a particular input image in Fig. 2.5. Each image corre-
sponds to the output of one of the 20 channels and gives information about the features
learned by the network. Figure 2.5(a) shows the feature maps after training on only
BEC density images. Here, the network clearly learns to separate the condensate from
the background by applying different masks. It also detects all density minima within
the condensate, however, each channel seems to focus on slightly different characteris-
tics such as the depth, size, or shape of a minima. On the other hand, the feature maps
plotted in Fig. 2.5(b) were obtained when training with phase and density images. In
this case, an interpretation is less evident, but we can observe that the network takes
advantage of the additional information supplied by the phase profile. Interestingly, we
found that the output of CNN layers trained on noisy images did not differ significantly
from the ones shown here. Therefore, the model also learns to de-noise the input if
necessary and thus, ignores any spurious features contained in the noise itself.

2.5 Results

2.5.1 Vortex detection using density only

First, we train the object detector directly on density images obtained from simulations
with the GPE, i.e., without any addition of noise. Figures 2.6(a)-(b) show two repre-
sentative density images with white circles corresponding to the ground truth and red
crosses to the prediction of the trained model. Overall, we achieve a precision of 96.6%

and a recall value of 97.2% on the test data (all other computed evaluation metrics can
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(a)
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Figure 2.5: Example output after the 4th convolutional layer of the CNN when
training only on density images (a) or on density and phase images (b).
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be inferred from Table 2.2). Precision and recall are calculated through comparison
with the ground truth position obtained from the brute-force detection method which
is not always accurate itself. Hence, our CNN likely performs better than the computed
metrics.

While the network detects all vortices in Fig. 2.6(a) with nearly perfect accuracy,
we observe deviations from the ground truth label in the example shown in Fig. 2.6(b).
Here, the model detects additional vortices at the boundary of the condensate. How-
ever, the corresponding phase profile in Fig. 2.6(c) features the characteristic phase
winding at the location of the additional detections and hence these can be interpreted
as vortices as well. In general we found that in most of the cases where the number
of ground-truth detections and model detections differ, the missing/additional vortices
lie at the boundary of the BEC and are often accompanied by a lower confidence
probability. Note that the ground-truth labels were obtained using a brute-force de-
tection algorithm which involves applying an arbitrarily chosen mask to the density
images cutting off low density regions and therefore excluding any vortices that are not
strictly within the BEC (see Section 2.4.1 for further details). Hence, during training
the neural network also learns that vortices located in very low density regions should
not be detected as such, however, it does not have access to the specific mask used
in the brute-force detection algorithm. Therefore, it likely learns a slightly different
density cutoff which gives rise to the additional detections in the test data.

To emulate experimental conditions we trained separate networks on images with
two different sources of noise. The first type is Gaussian random noise with mean zero
which is added to each pixel of the normalized condensate density images and mimics
the measured density distributions in for example Ref. [269]. We trained three inde-
pendent CNNs each with a different level of noise, i.e., a different standard deviation
(� = 0.1, 0.2, 0.5), and plot the resulting predictions together with their ground-truth
in Fig. 2.6(d)-(f). As a another example of experimentally relevant noise we con-
sider stripes in the density images which resemble the fringe patterns that can arise
in absorption imaging due to unwanted interference effects [270, 271]. To mimic this
pattern we add a sinusoidal modulation to the density with randomly chosen direc-
tion and period. In addition, we add Gaussian random noise to the amplitude of the
modulation itself. Figures 2.6(g)-(i) show the corresponding density images together
with the model prediction where the amplitude A of the modulation and the amount
of noise increases from left to right (A = 0.2, 0.5, 1.0, � = 0.2, 0.5, 1.0). As expected,
for both considered types of noise the performance of the detector deteriorates as the
amount of noise increases which is also reflected by a smaller precision and recall value
(see Table 2.2). In general we found that, as the noise grows, first only the predicted
vortex positions become less accurate while for larger amounts of noise the model starts
to entirely miss or mistakenly place vortices.

Note that although we have trained separate models for each different level of noise,
we observed that each of the trained networks is able to generalize well to a different
strength and type of noise which is crucial for real experimental situations where the
amount of noise will likely change between measured images and experimental runs.
For example, the model trained solely on strong Gaussian noise with � = 0.5 achieved
both a precision and recall of approximately 90% on the test images containing a lower
amount of noise and hence performs only slightly worse than the networks that have
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Figure 2.6: The locations of the vortex cores within each image are indicated by
red crosses for the model prediction and by white circles for the ground truth obtained
through the brute-force detection method. The CNN model was trained and tested only
on BEC density images and therefore does not have access to the information encoded
in the phase profile. (a) and (b) show two examples of BEC density configurations
while (c) is the corresponding phase profile for the density image in (b) provided here
as a guide for the eye. (d) - (f) display density distributions to which random Gaussian
noise is added with growing standard deviations from left to right (� = 0.1, 0.2, 0.5).
In (g) - (i) a sinusoidal modulation with Gaussian noise is added instead where the
amplitude A and the amount of noise increase from left to right (A = 0.2, 0.5, 1.0).
Note that the pixels in the density images are normalized to lie between [0, 1] before
including any noise and before being fed to the neural network.
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Precision Recall AP F1
Detection using density only (fig. 2.6)

(a),(b) w/o noise 96.6 97.2 95.1 96.9
(d) weak Gaussian noise 93.9 93.8 91.1 93.9
(e) moderate Gaussian noise 92.1 90.5 88.2 91.3
(f) strong Gaussian noise 84.7 78.2 78.5 81.3
(g) weak stripes 90.9 90.5 88.2 90.7
(h) moderate stripes 88.4 88.3 83.4 88.4
(i) strong stripes 85.0 83.9 78.8 84.5

Detection using density and phase (fig. 2.7)
(a),(d)weak Gaussian noise 95.1 95.5 92.4 95.3
(b),(e) moderate Gaussian noise 92.4 92.3 88.0 92.3
(c),(f) strong Gaussian noise 78.0 74.7 69.4 77.2

Detection and classification (fig. 2.8)
w/o noise, vortex/anti-vortex 94.9 96.5 92.3 95.7

Table 2.2: Detector performance metrics (precision, recall, (mean) average precision
(AP), and maximum F1 score) computed on the test data for each trained model (see
Section 2.4.3 for their definitions). In the case of detection using BEC density images
only, the Gaussian noise is added to the normalized density distributions with mean
zero and standard deviations � = 0.1 (weak), � = 0.2 (moderate) � = 0.5 (strong). The
stripe pattern was achieved by adding a sinusoidal modulation instead with amplitudes
A = 0.2 (weak), A = 0.5 (moderate), A = 1.0 (strong). Finally, in the case of using
both the density and the phase profiles as input to the CNN, the Gaussian noise was
added directly to the real and imaginary parts of the wave function.

been directly trained on those data sets. The same model also performed well on im-
ages with weak stripes, however, for the case of moderate and strong stripes the model
performance is considerably worse. This trend is however expected since the stripe pat-
tern contains unique features that the model has not been exposed to during training.
We also found that a network trained on a lower noise level generalizes to a certain
extent to data involving more noise. For instance, the network trained on images with
weak stripes achieves good accuracies on the test images with weak/moderate Gaussian
and stripe noise with F1 scores over 80%, and only has difficulties locating vortices
in images with a very large amount of noise. A summary of the computed evaluation
metrics for the two examples discussed here is given in Table 2.3 in Section 2.5.3.

2.5.2 Vortex detection using density and phase

In numerical simulations of the GPE one has access to the full mean-field condensate
wave function rather than just its density. Hence, we can provide both the density and
the phase profile as input to the CNN in two separate channels in analogy to the three
color RGB channels of a conventional image. In order to make the detection more
challenging, we add Gaussian random noise to the real and imaginary part of the wave
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Figure 2.7: BEC density (a)-(c) and corresponding phase (d)-(f) configurations after
adding Gaussian random noise to the real and imaginary parts of the condensate wave
function. The amount of added noise increases from left to right. The model prediction
is again denoted by red crosses while the ground truth is indicated by white circles.
All images are normalized to lie between [0, 1].

function which gives rise to the density and phase distributions depicted in Fig. 2.7(a)-
(c) and Fig. 2.7(d)-(f) respectively. We train three models on different levels of noise
and show the predicted vortex locations together with their ground truth in Fig. 2.7.
The achieved performance metrics can be read off Table 2.2. Especially for the case
of weak noise, the detector performs very well with precision and recall values both
above 95% suggesting that the network exploits the additional information encoded in
the BEC phase profile.

Furthermore, having access to the phase profile allows us to determine the direction
of circulation through the sign of the phase winding. In the images shown in this
chapter (see for example Fig. 2.8(d)-(f)) the circulation direction can be easily inferred
by checking the direction of the color gradient when moving in a clock-wise loop around
a vortex core, i.e., whether the color changes continuously from yellow to blue or vice
versa. Hence, we next train the network to also classify the sign of circulation for
each vortex. The CNN is slightly altered to output 4 channels, the first two now
corresponding to the probability of vortices and anti-vortices in a specific grid cell
and the last two channels again contain the information about the precise location
of a detected vortex. The loss function in Eq. (2.2) is changed accordingly. Figure
2.8 shows three exemplary density and phase images where the model prediction is
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Figure 2.8: BEC density (a)-(c) and corresponding phase (d)-(f) configurations. The
predicted vortex locations from the network are indicated by crosses and the ground
truth by circles. The model was trained to also classify the circulation direction of a
vortex with vortices depicted in red and anti-vortices in white.

represented as crosses and the ground-truth as circles while vortices are depicted in red
and anti-vortices in white. The model is able to accurately distinguish the circulation
direction and in particular classifies all windings correctly for the images shown here.
Moreover, it finds all vortices within the high-density region of the condensate which
is also reflected by high precision and recall values as shown in Table 2.2.

2.5.3 Generalization to different sources and levels of noise

The models considered above were all trained on data sets containing a specific source
and level of noise. However, real experimental images will not be subject to just a single
source of noise and the amount of noise will likely vary between images. Therefore,
we also test how well a model trained on a specific noise configuration generalizes to
other types and levels of noise. As two examples we consider a model trained only
on data with strong Gaussian noise or only on images with weak stripes. We show
the computed performance metrics for both models tested on all different data sets
in Table 2.3. The values suggest that the networks indeed generalize to unseen noise
strengths and types especially if the amount of noise the model is tested on is lower
compared to the one present in the training data.
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Precision Recall AP F1
(a) Model trained on data with strong

Gaussian noise and tested on data with:
w/o noise 91.2 91.4 82.1 91.3
weak Gaussian noise 92.3 89.3 83.3 90.8
moderate Gaussian noise 91.0 87.7 83.3 89.3
strong Gaussian noise* 84.7 78.2 78.5 81.3
weak stripes 87.6 81.3 71.9 84.3
moderate stripes 65.9 58.4 51.0 61.9
strong stripes 46.4 44.8 37.8 45.6

(b) Model trained on data with weak stripes
and tested on data with:

w/o noise 91.6 91.6 71.1 91.6
weak Gaussian noise 90.1 82.8 86.6 86.3
moderate Gaussian noise 83.1 76.1 85.8 79.5
strong Gaussian noise 61.6 41.0 64.2 49.3
weak stripes* 90.9 90.5 88.2 90.7
moderate stripes 83.4 77.1 79.4 80.1
strong stripes 61.7 53.1 58.3 57.1

Table 2.3: Detector performance metrics (precision, recall, average precision (AP),
and maximum F1 score) for a model trained on images with (a) strong Gaussian noise
(� = 0.5) and (b) weak stripe noise (A = 0.1). Each of the two models is tested on
all data sets containing a different strength and/or source of noise. The type of noise
marked with a star represents the corresponding data set on which the model was
trained. The Gaussian noise is added to the normalized BEC density with mean zero
and standard deviations � = 0.1 (weak), � = 0.2 (moderate) � = 0.5 (strong). The
stripe pattern resulted from adding a sinusoidal modulation to the normalized density
with amplitudes A = 0.2 (weak), A = 0.5 (moderate), A = 1.0 (strong).

2.5.4 Generalization to different trap geometry

The networks considered in this work have been trained solely on BEC configurations in
a harmonic trap. To examine whether the same model can be used to detect vortices in
different trap geometries, we generate additional images of a BEC in a ring shaped trap.
The potential in the GPE (Eq. (2.1)) is replaced by V =

1
2m!

2
r
(r � r0)2 with r0 being

the toroidal radius and !r the radial trapping frequency. An example of a resulting
condensate density and phase profile after real time evolution is shown in Fig. 2.9(a),(d).
We test some of our previously trained networks on these new configurations without
any further training and indicate the predictions together with their ground truth in
Fig. 2.9. The model is able to accurately locate the vortices within the high density
regions for images without (Fig. 2.9(a)) and with noise (Fig. 2.9(b)-(c)) while it detects
additional vortices at the border of the condensate. Increasing the confidence threshold
will likely result in fewer false positive detections. Due to the overall good performance
we observe for the ring shaped potential, we expect that our trained models generalize
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Figure 2.9: Density (a)-(c) and corresponding phase (d)-(f) configurations for a BEC
in a ring shaped trap. A weak Gaussian noise is added to the density in (b) and a
stripe pattern is added to the density in (c). Each density image is fed through the
corresponding trained network with the resulting predictions displayed as red crosses
and the ground truth as white circles. The phase profile is shown for pure visualization
purposes that is, only the density images were used as input to the CNN.

well to other trap geometries of similar symmetry.

2.6 Conclusion

In this work we have presented a machine learning based vortex detector that can
accurately predict the locations of vortices within two-dimensional BECs trapped in
harmonic potentials. The machine learning model is based on a convolutional neural
network (CNN) and takes as input either an image of the BEC density only or both,
the BEC density and phase profiles. We first studied the experimentally more relevant
case where only the condensate density is available and thus used for training and
testing. Without any sources of noise the detector is able to reliably locate all vortices
within an image. Moreover, the model performs well on non-equilibrium configurations
that involve local density minima not corresponding to vortices. Hence, it learns to
distinguish density minima arising due to vortices from those caused by other low
energy excitations even in cases that are challenging for the human eye.

To simulate more realistic experimental conditions, we trained the network on den-



2.6 Conclusion 51

sity images with two different types of added noise that is, Gaussian noise and spurious
stripe patterns arising due to unwanted optical interference effects [269–271]. In either
case, the achieved accuracy of the trained detector decreases with the amount of added
noise as expected. However, overall the performance is still impressive given that it
is nearly impossible to locate any vortices by eye in those images that contain a high
level of noise. In contrast to the experimental setting, in numerical simulations both
the density and phase profile of a BEC are available and therefore can be used to also
distinguish the circulation direction of each vortex. In this case our detector learns to
correctly classify the sign of circulation as well. Finally, the network is also able to ac-
curately locate vortices in noisy configurations where Gaussian noise is added directly
to the wave function itself. Due to the robustness of the detection against noise, it
might be promising to train the detector on configurations generated by the stochastic
GPE, which models BECs at finite temperatures [237, 272, 273].

We trained and tested the CNN using ground-truth labels obtained through a brute-
force detection algorithm which already provides the position of vortices to a very good
precision. This raises the question whether a machine learning approach is even nec-
essary and advantageous. However, the brute-force detection algorithm has certain
disadvantages: It involves searching for density minima and checking whether the con-
ditions for a vortex, such as a 2⇡ phase winding, are fulfilled which is neither efficient
nor easily parallelizable. Furthermore, the algorithm does not achieve perfect accuracy
itself, i.e., it misses vortices or mistakenly places them at times. Additionally, the
method heavily relies on the phase profile of the BEC for labeling out-of-equilibrium
configurations, where local density minima may arise due to other excitations in the
quantum system. However, in experiments the phase information is not easily accessi-
ble and therefore the algorithm cannot be straightforwardly applied in these settings.
Finally, our brute-force method only works for simulated images without noise. While
it is in general possible to improve the algorithm to also detect vortices in images with
specific sources of noise, the implementation would be considerably more cumbersome.
On the other hand, our machine learning based detector is robust to various sources of
noise in the input data and does not rely on any hand engineered features.

The presented network can be trained in less than an hour on a single GPU and
did not require elaborate hyperparameter tuning for any of the tasks considered here.
Furthermore, the CNN is able to process several images in parallel and can therefore
detect vortices in a large batch of input images fast given that the computation is
performed on a GPU. For example, processing a batch of 100 images takes only on
the order of milliseconds. The machine learning model can also be straightforwardly
integrated with a GPU solver of the Gross–Pitaevskii equation which would eliminate
the need to transfer data between CPU and GPU [274]. As a possible next step the
vortex detector could be combined with a tracking algorithm enabling the study of
real-time dynamics of vortices in BECs such as in Refs. [54–56]. It would also be
interesting to compare the performance of our model to different architecture choices
and object detection techniques, and we hope that our results can serve as a benchmark
for further research on quantum vortex detection methods.

While the neural network has only been trained on images of BECs in a uniform
harmonic trap, we found that the same model can detect vortices in ring-shaped traps
without any additional training, and hence we expect that the detector also generalizes
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to other trapping geometries of similar symmetry. Moreover, we observed that a model
trained on a particular strength and type of noise also worked well on different levels of
noise. The promising generalization capabilities and the fact that the model performs
well on density images alone with sources of noise and in the presence of spurious density
minima suggests that the detector will be advantageous for experiments studying the
dynamics of vortices in non-equilibrium states [57, 231, 232].

Our work was one of the first that applied deep-learning based object detection
techniques to AMO physics with the goal of automating experimental data postpro-
cessing tasks. Shortly after our paper a similar work by Guo et al. appeared [246]. They
employ a convolutional neural network for detecting and locating single solitons in ex-
perimental density images of BECs. Guo et al. [275] later generalized this framework
to the detection of multiple solitons per image by borrowing techniques established in
our work. Moreover, our vortex detector has been used by Kim et al. [276] for locating
vortices in experimental BEC density images of 87Rb atoms trapped in an external
potential. The vortex detector allowed Kim et al. to study the spontaneous formation
of vortices under quench dynamics of the Bose gas. This work therefore demonstrates
that our framework can also be successfully applied to experimental data.
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The text in this chapter is largely based on the following publication, but extended to
provide additional content.
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Variational quantum anomaly detection: Unsupervised mapping

of phase diagrams on a physical quantum computer
Phys. Rev. Research 3, 043184 (2021)

This project developed as part of a quantum computing hackathon that me and my
co-authors participated in. I implemented the quantum autoencoder in Qiskit (Python)
and worked on the VQAD simulations for the TLFI and DEBHM model. All authors
contributed to the discussions, the interpretation of the results, and the writing of the
manuscript. Parts of this chapter are also contained in the PhD thesis of Korbinian
Kottmann [277], but each of us only submit our specific contributions for the evaluation
for our respective PhDs.

3.1 Introduction

Quantum simulation is one of the most promising applications of near-and far-term
quantum computing [49]. Current noisy-intermediate scale quantum (NISQ) devices
still feature too large error rates and too few qubits to allow for quantum error correc-
tion and consequently fault-tolerance. However, the development of variational quan-
tum algorithms and error mitigation techniques already opens the door to small-scale
quantum simulations of condensed matter systems and molecules [45–48]. Notable
examples of these hybrid quantum-classical algorithms are the variational quantum

∗indicates co-first authorship
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eigensolver (VQE) [278] or the quantum approximate optimization algorithm (QAOA)
[279] for ground state search, and the time-dependent variational algorithm (TDVA)
[280] or projected-variational quantum dynamics (p-VQD) [281] for time evolution.
Yet, with the rapid progress in quantum simulation techniques also grows the need for
tools to analyze the simulated quantum systems natively on the respective devices.

Meanwhile, the field of classical computational many-body physics has markedly
benefited from harnessing machine learning techniques to study the properties of quan-
tum systems [10, 81]. A prominent example is the use of deep neural networks for
classifying phases of matter [13, 14]. These schemes rely on labeled training data and
hence, often require some prior knowledge about the system at hand such as the num-
ber of different phases and their approximate locations in the phase diagram. However,
recently fully unsupervised techniques have been proposed as well which eliminate the
need for expert knowledge or prior intuition altogether [18–20, 64, 186, 187].

On the other hand, the analogous field of quantum machine learning (QML) is
relatively young. In QML parameterized quantum circuits are trained to solve typical
learning problems like classification or generative modeling [47, 50–52]. However, quan-
tum machine learning applications to quantum states and in particular to the problem
of quantum phase classification are still limited.

In this work, we propose a variational quantum algorithm based on the idea of
anomaly detection for investigating quantum systems in a fully automated and unsu-
pervised fashion. In anomaly detection one generally tries to find anomalous examples
in an otherwise homogeneous data set of “normal” data points. The model output
that determines to which type the input data belongs is referred to as an anomaly
syndrome. The model is trained solely on normal data points for which it outputs a
specific value (typically zero). Hence, it does not require any training labels. When
confronted with unseen anomalous data during testing the anomaly syndrome results
in a different value, thus indicating that the input features different properties than
the training data.

Our algorithm can be considered as the quantum analog of the classical anomaly de-
tection framework introduced in Ref. [18]. Here, the authors trained a neural network-
based autoencoder to reproduce ground states in one of the phases of the extended Bose
Hubbard model. The cost function served as the anomaly syndrome and by plotting
its value across ground states for different parameter regimes, they were able to recover
the full phase diagram. This method was later applied to topological, frustrated, and
higher dimensional systems [62, 63, 188].

Similarly, we use a quantum autoencoder to perform anomaly detection on ground
states that are simulated on a quantum computer. Hence, quantum systems can be
studied end-to-end on the same device they are simulated on without requiring any
prior knowledge about their phases. We showcase our algorithm by mapping out the
phase diagrams of the dimerized extended Bose Hubbard model and the Ising model
with transverse and longitudinal fields. Furthermore, we perform our framework in the
presence of noise, both on a classical simulator and a real physical quantum device.

This chapter is organized as follows: Section 3.2 introduces the quantum anomaly
detection framework and the underlying quantum autoencoder. In Section 3.3, I discuss
the results of training the VQAD framework on ground states of the transverse longi-
tudinal field Ising model and the dimerized extended Bose Hubbard model. Finally,
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Figure 3.1: Overview of our proposal. First, the quantum states are prepared via
VQE. Then, they are processed through the anomaly syndrome, consisting of a param-
eterized unitary U(✓) and a measurement of a subset of qubits, referred to as trash
qubits. Ry indicates a parameterized y-axis rotation and CZ a (fixed) controlled-z
gate.

Section 3.4 provides some additional details regarding the VQAD training.

3.2 Proposal

The task of detecting anomalies in ground states of quantum many-body Hamiltoni-
ans can be loosely divided into two sub tasks: Preparing the ground state for specific
Hamiltonian parameters, and computing an anomaly syndrome indicating whether the
state corresponds to a normal example or an anomaly. An overview of our proposed
algorithm is shown in Fig. 3.1. The problem of state preparation on quantum com-
puters is one of ongoing research, and in principle, one can use any state preparation
subroutine for preparing the ground state. Here, we choose the Variational Quantum
Eigensolver (VQE) as it has the lowest hardware requirements while achieving reliable
results on current devices [167, 278]. The VQE algorithm iteratively minimizes the
expectation value of a Hamiltonian with the ansatz circuit to find the ground state by
optimizing the parameters of the circuit via a quantum-classical feedback loop. We
choose a minimal ansatz as depicted in Fig. 3.1 that is sufficient for simulating the
Ising Hamiltonian discussed in Section 3.3.2. A shallow ansatz allows us to run both,
the quantum simulation, and the quantum anomaly detection on real noisy devices.
For more complex systems, the problem of finding a suitable hardware efficient ansatz
can be addressed for example by the adaptive VQE algorithm [282]. In this work we
employed the VQE implementation provided by the Qiskit library [283] and optimized
it using simultaneous perturbation stochastic approximation (SPSA) [284]. For all
technical details we refer to Section 3.4.

Once the ground state is prepared on the quantum device a subsequent circuit
serves as the anomaly syndrome. Our circuit ansatz is inspired by the recently pro-
posed quantum auto-encoder, which similar to its classical counterpart can be used for
compression of classical and quantum data [177, 178]. It is composed of several layers
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each consisting of parameterized single qubit y-rotations and controlled-z gates. After
the final layer a predefined number nt of trash qubits is measured in the computational
basis. The objective is to decouple the trash qubits from the rest of the system, ef-
fectively compressing the original ground state into a smaller number of qubits. The
circuit parameters are then optimized to faithfully compress states that are considered
normal. However, when the optimized circuit is tested on anomalous states not seen
during training, it is expected that the circuit fails to decouple the trash qubits from the
rest of the system. To quantify the degree of decoupling we use the Hamming distance
dH of the trash qubit measurement outcomes to the |0i⌦nt state, i.e., the number of 1s
in a bit-string of measurement outcomes [178]. The cost function C can then be defined
as the Hamming distance averaged over several circuit evaluations C = 1/N

P
N

i
dHi,

where N is the number of performed measurements or shots. The cost function can
also be rewritten in terms of expectation values of local Pauli-z operators Zj

C =
1

N

NX

i=1

dHi =
1

2

ntX

j=1

(1� hZji) . (3.1)

The VQAD circuit achieves perfect compression if the trash qubits are fully disentan-
gled from the remaining qubits and mapped into the pure |0i⌦nt state resulting in a
cost equal to zero.

The specific circuit ansatz for the anomaly syndrome is shown in Fig. 3.1 for the case
of nt = 2 trash qubits. Each layer of the circuit starts with parameterized single-qubit
y-rotations applied to every qubit followed by a sequence of entangling controlled-z
gates. The currently available NISQ devices are inherently noisy and the computations
are subject to gate errors. To minimize the number of two-qubit gates we apply the
controlled-z gates only between trash qubits and non-trash-qubits as well as between
trash qubits themselves instead of an all-to-all entangling map [178]. This entangling
map is physically motivated as the goal of the circuit is to disentangle the trash qubits
from the rest, with the trash qubits resulting in the |0i⌦nt state. In a single layer each
non-trash qubit will be coupled to exactly one trash qubit. This entangling scheme is
repeated in the subsequent layers until every non-trash qubit has been coupled to each
trash qubit exactly once, i.e., the number of layers of the circuit is equal to nt. After
the final layer, additional single-qubit y-rotations act on the trash qubits before they
are measured.

Barren Plateaus are the fundamental obstacle prohibiting training of variational cir-
cuits with increasing numbers of qubits [173]. It was previously shown that using local
cost functions and circuits featuring a number of layers scaling at most logarithmically
in the system size can prevent the occurrence of Barren Plateaus [174]. Additionally
for realistic devices, gate errors lead to decoherence, making quantum simulation on
real devices a challenging task even for small systems and low depths [285]. The former
calls for a minimal number of layers while the latter calls for a minimal number of gates
overall. Therefore, we seek a minimal solution for our variational circuit that we want
to implement on a readily available NISQ-era quantum computer. On the other hand,
it is desirable to have an ansatz as general as possible to be able to capture a wide
range of problems (see circuit complexity [286, 287]). For the anomaly syndrome, we
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propose an ansatz that aims at compromising between being general enough to com-
press the ground states of the investigated systems while still being trainable. One way
to make our circuit scalable for larger systems is to choose the number of trash qubits
nt = blog2 Lc, where L is the total number of qubits. Together with the fact that our
cost function is composed of only local operators, the training is expected to not suffer
from Barren Plateaus [174].

Note that in principle the trash qubits can be placed anywhere in the circuit, how-
ever, when performing computations on a real quantum device it proved advantageous
to explicitly take the qubit connectivity structure of the device into account in order
to reduce the number of required SWAP operations. Specifically here, we placed the
trash qubits in the middle of the IBM Quantum devices.

The training and inference procedure is identical to the classical anomaly detection
schemes for mapping out phase diagrams [18]. In the first step, one randomly chooses
a training region in the phase diagram that represents normal data, which is an arbi-
trary definition. Note that no prior knowledge about the phase diagram is therefore
required. The circuit representing the anomaly syndrome is then trained on ground
states of the training region, and tested on the whole phase diagram. States in the same
phase as the training data are normal and can be disentangled, leading to a low cost.
Anomalous states can be inferred through an increase in the cost function signaling
that the corresponding ground state cannot be disentangled by the optimized circuit.
From the resultant cost profile, we can deduce the phase boundary between the phase
the circuit has been trained on and any other phases in the diagram. This procedure
is then repeated by training in the anomalous region from the previous iteration until
all phase boundaries are found.

Anomaly detection is a semi-supervised learning task. The setting is typically that
one is provided with one class of data that is well known, normal data, and aims at
finding outliers of that distribution, anomalous data. An archetypical example is credit
card fraud where a big database of normal transactions is provided and one aims at
finding fraudulent ones. We consider anomaly detection semi-supervised as labeled
data (x, “normal”) is provided for training while (x, “anomalous”) is to be inferred.
Here, however, we arbitrarily define (x, “normal”) and iteratively find the different
classes (phases of matter). The definition of (x, “normal”) is arbitrary and does not
necessitate prior knowledge. Furthermore, it is merely a means to an end to find the
different classes. In that sense, the way anomaly detection is used to map out the
phase diagram can be regarded as an unsupervised learning method.

Note that in previous works, where the same task has been tackled with classical
machine learning techniques, it has been shown that a single ground state was sufficient
to successfully train the model [62]. This feature stems from the fact that ground states
within the same phase share similar properties and there is very little variance when
changing the physical parameters inside one phase. We observe this feature also in the
training of the VQAD.
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3.3 Results

3.3.1 Simulations with ideal quantum data

In order to test the performance of VQAD, we first study the one-dimensional extended
Bose Hubbard model with dimerized hoppings (DEBHM) [68],

H = �
L�1X

i=1

(J + �J(�1)
i
)(b†

i
bi+1 + h.c.) +

+
U

2

LX

i

ni(ni � 1) + V
L�1X

i

nini+1, (3.2)

where b†
i
(bi) is the bosonic operator representing the creation(annihilation) of a particle

at site i of a lattice of length L. The tunneling amplitudes J � �J (J + �J) indicate
hopping processes on odd (even) links connecting nearest-neighbor sites, while V rep-
resents the nearest-neighbor repulsion. Here, we take the hardcore boson limit, i.e., the
on-site repulsion U/J ! 1, such that the local Hilbert space is two-dimensional and
each site can only accommodate 0 or 1 bosons. This model can be effectively mapped
into a spin-1/2 system [288].

Previous studies of the DEBHM model at half filling (n̄ = 0.5) have demonstrated
the existence of three distinct phases [68]. For small and intermediate values of V/J
and �J > 0, we find a topological Mott insulator (TMI) displaying features analogous
to a symmetry protected topological phase appearing in the dimerized spin-1/2 bond-
alternating Heisenberg model [288]. On the other hand, for negative values of �J we
expect a trivial Mott insulator (MI), while in the regime where the nearest-neighbor
repulsion dominates, a charge density wave (CDW) appears.

In Fig. 3.2(a)-(b), we study the phase diagram of the model in Eq. (3.2) in terms of
the parameters �J and V/J , using the density matrix renormalization group algorithm
(DMRG) [36, 108, 126]. In order to differentiate between the Mott insulating phases
and the CDW, one can compute the CDW order parameter

OCDW =

L/2X

i=1

(�1)
i�ni, (3.3)

which detects staggered patterns in the density. In Fig. 3.2(a) we report a vanishing
value of OCDW everywhere but in the region with large values of V/J , which corresponds
to the CDW∗. To characterize the TMI we study the entanglement spectrum (ES),
which is expected to be doubly degenerate in a topologically non-trivial phase [289]
due to the existence of edge states. The entanglement spectrum {�i} is defined in
terms of the positive real-valued Schmidt coefficients {↵i} of a bipartite decomposition

∗In the definition of OCDW , we consider only half of the sites of the system because the DMRG
algorithm outputs a symmetric state, which is a superposition of the two degenerate ground states.
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Figure 3.2: (a)-(b) Phase diagram of the DEBHM from Eq. (3.2) using (a) the order
parameter OCDW defined in Eq. (3.3), and (b) the degeneracy of the entanglement
spectrum, DES, defined in Eq. (3.4). The results were obtained from DMRG simula-
tions for a system of length L = 12 at half filling n̄ = 0.5. We fix the maximum bond
dimension BD = 50 and the maximum number of bosons per site to n0 = 1. (c)-(e)
Cost/anomaly syndrome of a VQAD trained on a single ground state (indicated by
a cross) of the L = 12 DEBHM using nt = 6 trash qubits in the (c) MI phase, (d)
CDW phase, and (e) TMI phase. The cost at each data point is the Hamming distance
averaged over 1000 measurement shots using an ideal quantum device simulator.

of the system by ↵2
i

= exp(��i). We determine its degeneracy using

DES =

X

i

(�1)
ie��i . (3.4)

In Fig. 3.2(b), we show that the quantity DES vanishes only for small nearest-neighbor
interaction strengths V and positive values of �J , which correponds to the TMI. The
trivial MI and CDW phases do not show a degeneracy and hence do not host topological
edge states.

In the following, we test the capabilities of the VQAD with ideal states obtained
from DMRG simulations. The anomaly syndrome is trained using a single representa-
tive ground state within one of the phases such that the cost measured at the trash
qubits is minimised and the states of this phase can be efficiently compressed by the
circuit. Afterwards, the trained circuit processes all states from the full phase diagram,
ideally with similarly low cost in the same phase and significantly higher cost in other
phases.

In Fig. 3.2(c)-(e) we show the resultant cost diagram for three circuits, each opti-
mized at a different point in the phase diagram. Indeed, ground states outside of the
training phase give rise to a large cost and hence are correctly classified by the VQAD
as anomalous. Surprisingly, a single ground state example (indicated by the cross) was
sufficient to successfully train the VQAD and infer all three phases. Similar results
were recently reported for the case of classical anomaly detection using neural network
auto-encoders [62].

To demonstrate the robustness of the VQAD against noise present in currently
available NISQ devices we apply a depolarizing noise channel after each gate with error
probabilities perr = 0.001 (single-qubit gates) and perr = 0.01, 0.07 (two-qubit gates)
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Figure 3.3: Cost of a VQAD trained on a single ground state in the MI phase (marked
by the cross) of the DEBHM with L = 12 sites and nt = 2 trash qubits. The gates
of the VQAD circuit are subject to depolarizing noise with perr = 0.001 (single-qubit
gates) and (a) perr = 0.01, (b) perr = 0.07 (two-qubit gates). The chosen values are
motivated by the error probabilities of real devices.

and show two exemplary cost profiles of the trained anomaly detector in Fig. 3.3. Since
the noise becomes more prominent with larger circuit depths, we used the two-layer
VQAD circuit ansatz with only two trash qubits in this case. While it is not possible to
reach a cost of zero in the training phase, the optimization still converges and all three
phases can be successfully inferred. Hence, this suggests that even if the VQAD is not
able to fully disentangle the trash qubits, the phase diagram can still be recovered from
the resultant cost profile.

3.3.2 Experiments on a real quantum computer

We have seen that with ideal quantum data, VQAD can map out non-trivial phase dia-
grams including topologically non-trivial phases with and without noise in the anomaly
syndrome. Next, we discuss its performance in real-noise simulations, that is with noise
profiles and qubit connectivities from a real quantum device. Furthermore, we perform
the quantum simulation subroutine, i.e., the ground state preparation via VQE, on the
same circuit. For this task, we consider the paradigmatic transverse longitudinal field
Ising (TLFI) model [66]

H = J
LX

i=1

ZiZi+1 � gx

LX

i=1

Xi � gz

LX

i=1

Zi, (3.5)
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Figure 3.4: Real-noise simulations of the staggered magnetization Ŝ (a) and the
anomaly syndrome (b) for the TLFI model. We trained the anomaly syndrome in the
ordered phase on a state with positive Ŝ, indicated by the purple cross. Inside the
ordered phase, there is a perfect correlation between low cost states for positive Ŝ,
and very high cost where VQE converged to a negative Ŝ. The paramagnetic phase is
detected by a plateau in the anomaly syndrome.

where Xi, Zi are the Pauli matrices on site i, J is the coupling strength, and gx, gz are
the transverse and longitudinal fields, respectively. For gz = 0 the model is exactly solv-
able and shows a quantum phase transition from a ferromagnetic (antiferromagnetic)
phase for gx/J < 1 and J negative (positive) to a paramagnetic one for gx/J > 1 [61].
In the following we set J = 1 and vary the longitudinal and transverse fields. In this
regime the model is not exactly solvable and the phase diagram has been extensively
studied numerically [67, 290]. The antiferromagnet-paramagnet quantum phase tran-
sition is best characterized by the order parameter which in this case is the staggered
magnetization

Ŝ =

LX

i=1

(�1)
i
Zi

L
. (3.6)

We simulate the ground states of the Hamiltonian in Eq. (3.5) using VQE for L = 5.
On a noisy device, long-range entangling gates are performed by consecutive local two-
qubit gates (SWAP operation), increasing the actual circuit depth. A large number of
consecutive gates leads to decoherence due to gate errors and destroys the results. With
the circuit presented in Fig. 3.1 for the VQE subroutine, we found a trade-off between
expressibility and noise tolerance with a circular entanglement distribution and only
one layer. Additionally, we performed measurement error mitigation [291], which can
further improve the results of the cost function as seen in Fig. 3.6 in Section 3.4.

For small values of gx and gz, in the ferromagnetic ordered phase, the ground states
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Figure 3.5: Real device VQAD experiments: We show the order parameter Ŝ com-
pared to the VQAD results both for execution on ibmq_jakarta and noisy simulators
with the same noise profile. We trained on a single ground state in the ordered (a) and
paramagnetic (b) phase. For sampling Ŝ, we use the same parameters for the VQE
circuit in simulation and experiment. All values for Ŝ in the paramagnetic phase are
negative, hence, for better visualization we plot its absolute value |Ŝ|. For training
the anomaly syndrome, the optimized parameters from the simulation are taken as an
initial guess.

 ' |10101i (hŜi = 1) and  ' |01010i (hŜi = �1) have a similar energy, which is why
the optimization can get stuck in local minima. Hence, in the ordered phase, VQE can
converge to both a state with positive or negative staggered magnetization, or an equal
superposition of the two as can be seen in Fig. 3.4(a). The VQAD simulation results
in Fig. 3.4(b) show a perfect correlation between positive hŜi and low cost, and vice
versa, negative hŜi and high cost - which, intuitively, can be expected∗. The disordered
phase is detected from the plateau of high cost (⇠ 1).

We see that VQAD also performs well under realistic conditions, so we next test the
algorithm on a physical device. For this task, we use the L = 5 qubits on ibmq_jakarta
[291]. To avoid jumps in the staggered magnetization in the ordered phase and im-
prove convergence of the VQE optimization, we reuse already optimized parameters
at neighboring points in the phase diagram as a good initial guess. Due to a large
computation time overhead per execution on the real device, we additionally prepared
pre-optimized parameters for both subroutines from a realistic noisy simulation, and
use these as initial guesses for the optimization on the device. We found that for

∗In a very hand-wavy way, we can understand this as we train the circuit U to perform U |10101i =
| i ⌦ |00itrash such that U |01010i = | i ⌦ |11itrash if we input a state with opposite ordering.
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Figure 3.6: Comparison of the trash qubit measurement outcomes with and without
measurement error mitigation. The anomaly syndrome circuit has been trained with
and without error mitigation on a ground state of the TLFI model in the ordered
phase in real-noise simulations. Ideally, all of the 1000 shots would result in the 00

bit string. By mitigating the measurement errors we improve the results towards this
desired outcome.

computing the staggered magnetization it is actually not necessary to re-run the VQE
optimization on the physical device, and we can achieve faithful results by directly
using the optimized parameters from the simulation as seen in Fig. 3.5. The resulting
cost values for the optimized circuit, plotted in Fig. 3.5, clearly distinguish the two
phases, with the cost from the experiment showing solely an almost constant offset
compared to the noisy simulation.

3.4 Training details

The code to run the simulations and experiments discussed above can be found in
our repository on GitHub [292]. The optimization of the circuit parameters was per-
formed using simultaneous perturbation stochastic approximation (SPSA) [167, 284].
To obtain the results presented in Fig. 3.2 of Section 3.3.1, a VQAD circuit ansatz
composed of 6 layers (6 trash qubits) was employed resulting in 6L + 6 parameters.
For the noisy simulations and real-device execution discussed in Section 3.3.2, we used
the ansatz in Fig. 3.1, counting 2L and 2L + 2 parameters for the quantum simulation
and anomaly syndrome, respectively. In classical real-noise simulations, we used 500

VQE optimization iterations for the initial ground state optimization, and 200 itera-
tions for all subsequent optimizations where the previously optimized parameters were
taken as initial guesses. For the anomaly detection circuit, we found converged results
with less than 100 optimization iterations. As an example, calculating the expectation
value of the magnetization takes roughly 2� 10 seconds on a commercial laptop (here:
i7-4712HQ), while the real-device execution takes about 30 seconds. Furthermore, we
used measurement error mitigation [291] provided by the Qiskit library to improve the
results of the VQAD simulations in the presence of noise as illustrated in Fig. 3.6.
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3.5 Conclusion

We proposed a novel quantum anomaly detection framework (VQAD) for mapping out
phase diagrams of quantum many-body Hamiltonians. VQAD does not rely on labeled
training data nor does it require prior knowledge about the system and its phases.
We demonstrated the algorithm on the paradigmatic mixed-field Ising model and the
dimerized extended Bose Hubbard model which hosts a topologically non-trivial phase.
In both cases we were able to recover all distinct phases by training the VQAD ansatz
on a single respective ground state. Furthermore, we tested the framework under noisy
simulations and on one of the IBM Quantum devices.

Our proposed algorithm allows quantum systems simulated on a quantum computer
to be analyzed end-to-end directly on the physical device without the need for measur-
ing order parameters or for performing expensive quantum state tomography. Hence,
we anticipate VQAD to become especially useful once experimental devices reach the
classically intractable regime. One of the current challenges of variational quantum
algorithms including VQAD are the various sources of noise and error that are present
in current NISQ devices. However, with the recent progress in experimental hardware,
error mitigation strategies, and circuit optimization techniques, we expect that VQAD
can be applied reliably for quantum simulation tasks in the near future.

An interesting next step is to apply the VQAD framework to other systems than
those discussed here (e.g., Heisenberg models, fermionic systems, time-dependent sys-
tems, etc.). Furthermore, one could investigate quantum state complexity and issues
regarding the trainability of variational quantum algorithms with the VQAD model
[174]. Finally, classical autoencoders allow us to interpret their latent space repre-
sentation and hence gain additional insights about the system being studied [293].
Interpreting the quantum autoencoder and the information stored in the latent qubits
is therefore an interesting future direction of this work.

Since the publication of this chapter, several works appeared that use supervised
and unsupervised quantum machine learning techniques to study quantum systems on
quantum computers in a similar fashion [294–296]. For example, Szoldra et al. [294]
used our VQAD framework to identify scar states in excited quantum many-body sys-
tems. They applied it to the PXP model and a disordered, interacting spin ladder
model and successfully classified these systems into families of quantum scar states
that share common features. Monaco et al. [295] devised a different quantum machine
learning algorithm based on quantum convolutional neural networks for mapping out
phase diagrams on quantum computers. Similarly to our work, they trained their model
only on a few quantum-integrable states of the full phase diagram for which an analyt-
ical solution is known. As an example they considered the axial next nearest neighbor
Ising model and successfully identified all of its phases and phase boundaries. Finally,
Herrmann et al. [296] also utilized a quantum convolutional neural network to detect
symmetry-protected topological phases of quantum spin systems. They demonstrated
that the machine learning approach leads to higher classification accuracies than a di-
rect measurement of the string order parameter when performed on a noisy quantum
device.

Apart from the quantum machine learning applications to quantum data discussed
above, quantum anomaly detection and quantum autoencoders have also been applied
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to classical learning scenarios. Chai et al. [297] performed quantum anomaly detec-
tion on a quantum computer to identify anomalous audio samples. Park et al. [298]
used quantum autoencoders for one-class classification of handwritten digits and the
Fashion-MNIST data sets. They showed that their scheme outperforms other widely-
used techniques like PCA and support vector machines. Lastly, Ngairangbam et al. [299]
applied a quantum autoencoder-based anomaly detector to high energy physics data.

Another interesting recent result that is related to findings in our work is presented
in Ref. [300]. Specifically, Caro et al. investigated the generalization capabilities of
parameterized quantum circuits as a function of the training data size. Similarly to
our observation that very few training examples are already sufficient for the model
to learn a faithful representation, Caro et al. showed that accurate generalization is
possible from a very small number of training data points. In particular, they proved
that the generalization error scales as

p
T/N where T is the number of parameterized

gates and N is the training data size. As an example, they considered the problem
of phase classification using a quantum convolutional neural network for which they
numerically demonstrated that the number of required training examples is roughly
independent of the number of qubits. Moreover, for the task of circuit compiling Caro
et al. showed that as few as two training data points are already sufficient to obtain
good generalization performances as long as the parameters are initialized close to the
solution.





Chapter 4

Universal and optimal coin sequences

for high entanglement generation in

1D discrete time quantum walks

The text in this chapter is largely based on the following publication, but extended to
provide additional content.

Aikaterini Gratsea, Friederike Metz, and Thomas Busch
Universal and optimal coin sequences for high entanglement

generation in 1D discrete time quantum walks
Journal of Physics A: Mathematical and Theoretical 53, 445306 (2020)

The project emerged during an internship of Aikaterini Gratsea who I had the
pleasure to supervise during her visit at OIST. I provided guidance, knowledge on
reinforcement learning, and feedback. Furthermore, I contributed to the interpretation
of the results, the writing of the manuscript, produced the final plots, and derived the
asymptotic limit of the universally entangling coin sequence. All authors contributed
to the discussions and the editing of the manuscript.

4.1 Introduction

Entanglement, the non-classical correlations between (in principle separated) particles,
is harnessed in many quantum technologies nowadays and is often the key ingredient
in providing an advantage over their classical counterparts [69]. As such, entanglement
can be considered as a resource for many quantum information processing applications
including quantum computation [99], quantum teleportation [301], quantum cryptogra-
phy [302], quantum dense coding [303], and quantum metrology [304]. It is therefore not
surprising that the study of entanglement generation and maximization has emerged
as an important research topic.

Historically, the focus has been mostly on investigating the entanglement between
multiple particles of a quantum system. However, it is also possible to consider the
entanglement between two completely distinct degrees of freedom such as position and
spin [305–307]. This form of entanglement has been coined hybrid entanglement and
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was already experimentally observed in a systems of neutrons [308] and photons [309,
310]. In principle, the entangled degrees of freedom could belong to the same particle
allowing for interesting physics at the single-particle level and a resultant reduction of
resources.

A platform where hybrid entanglement is naturally created are quantum walks, the
quantum counterpart of the classical random walk [311–314]. Here, a particle hops
along a discrete lattice in a direction dependent on its internal spin state. Quantum
walks have been proposed using both a continuous-time [315] and discrete-time formu-
lation [311]. Additionally, quantum walks can be defined on an infinite line, a cycle
[316], higher dimensional lattices [317], and arbitrary graphs [318]. They have already
been realized in a variety of different physical systems such as cold atoms in optical
lattices [319–322], superconducting qubits [323, 324], trapped ions [325, 326], photonic
platforms [327–329] and nuclear magnetic resonance systems [330, 331].

Quantum walks provide a universal model for quantum computation [70, 71] and
have numerous applications within the quantum information processing domain [332].
They are used for quantum search algorithms [333, 334], quantum communication
protocols [72, 73], quantum teleportation [74, 75], and quantum transport [335, 336].
Quantum walks have also recently been leveraged in both classical and quantum ma-
chine learning [337–339]. For example, quantum walk neural networks have been pro-
posed that learn the coin operators to appropriately diffuse the information within a
graph neural network [337]. Moreover, Schuld et al. [339] used stochastic quantum
walks on graphs to define a quantum neural network.

The process of hybrid entanglement generation in quantum walks has been in-
vestigated in several works [340–345]. Vieira et al. [340, 341] showed that temporally
disordered quantum walks can lead to maximal entanglement in the asymptotic limit of
an infinitely long quantum walk. At each time step a random coin operator is sampled
and used for the evolution. They also showed that the disorder-induced entanglement
is independent of the initial state which is in contrast to previous works that proposed
entanglement generation procedures albeit highly dependent on the initial conditions
which are therefore less robust to imperfections in the state preparation [346, 347].
While the approach by Vieira et al. always leads to maximally entangled states, the
large number of required time steps makes this scheme impractical for experiments
with finite coherence times. Hence, it has been proposed to frame the problem of en-
tanglement maximization as an optimization problem [344, 345]. Gratsea et al. [345]
showed that using the Schmidt norm as a cost function and the coin operators at each
times step as free parameters to optimize, one can achieve maximally entangled states
in less than 20 steps. However, the optimal parameters were highly dependent on the
initial state and required general coin operators to be implemented in an experiment.

In this work, we tackle the problem of high entanglement generation in discrete-time
quantum walks using two complementary approaches. The first scheme introduces a
deterministic sequence of coin operators that leads to large amounts of entanglement
for a whole class of localized initial states. The coin sequences are comprised only of
the Hadamard and Fourier coin, two widely used coin operators that can be readily
implemented in quantum walk experiments. Furthermore, the sequences are defined
for any odd number of time steps and hence, the duration of the quantum walk can be
kept arbitrarily short. The initial state independence and the few number of required
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time steps make this scheme a robust and experimentally feasible way of creating highly
entangled states in a quantum walk. Note that the dynamics of quantum walks with
different deterministic coin operator sequences have already been investigated in terms
of their diffusive behaviors [348–350]. Examples of previously studied coin sequences
are periodic [348] and aperiodic ones such as the Fibonacci, Thue-Morse, and Rudin-
Shapiro sequence [349, 350].

The second approach used within our work builds on the aforementioned idea of
coin operator optimization. However, instead of optimizing the free parameters of a
general SU(2) rotation matrix which might be difficult to realize experimentally, we
again restrict ourselves to only the Hadamard and Fourier coins. We use reinforcement
learning (RL), specifically Watkin’s Q-learning algorithm [86, 351], to obtain an opti-
mal sequence of Hadamard and Fourier coin operators that gives rise to large amounts
of entanglement. Moreover, employing an RL algorithm allows us to optimize over
a range of initial states such that the resultant optimal sequences produce high en-
tanglement with only a minor dependence on the initial conditions. We find that the
RL-based approach on average leads to larger Schmidt norms than the deterministic
coin sequences.

In Section 4.2, I first review the notion of the one dimensional discrete time quantum
walk, hybrid entanglement, and the Q-learning algorithm. In Section 4.3 I introduce
the universal entangling coin sequence and present the results of the RL optimization
procedure. Finally, I conclude this chapter in Section 4.4 with a brief summary of this
work and subsequent developments within the field.

4.2 Background

4.2.1 Quantum walk

Discrete-time quantum walks are the quantum analog of the famous classical random
walk which describes the motion of a particle on an infinite line dependent on the
outcome of a coin toss. At every time step, the coin is flipped and the particle moves
in one direction if the coin shows head and in the other direction if it shows tails.
Similarly, the discrete-time quantum walk is also defined in terms of a particle hopping
on a discrete lattice in discrete time steps (see Fig. 4.1) [311–314]. We describe the
position x of the particle via a state of the infinite-dimensional Hilbert space Hw with
computational basis states {|xi : x 2 Z}. The coin degree of freedom is represented
by a separate two-dimensional Hilbert space Hc spanned by {|"i , |#i} which could
correspond to the spin of an electron or the polarization of a photon. Hence, the full
state of the particle lives in the tensor product space of the walker and coin Hilbert
spaces H = Hw ⌦Hc.

At each step of the quantum walk, the position basis states are altered depending
on the direction of the spin state, i.e., |x, "i ! |x + 1, #i and |x, #i ! |x � 1, "i. The
unitary operator S that performs this conditional shift takes the form

S =

X

x

|x� 1, "i hx, #| + |x + 1, #i hx, "| . (4.1)
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Figure 4.1: Diagrammatic representation of the 1D discrete time quantum walk. At
each time step, the particle jumps to an adjacent site depending on its internal spin
degree of freedom.

The coin toss is represented by a unitary operator C acting non-trivially only on the
coin (spin) degrees of freedom. The role of this operator is to mix the spin states after
each shift operation, or phrased differently, to produce superpositions of spin states at
each distinct position. The most widely used coin operator is the Hadamard coin

C = Ix ⌦Hc, Hc =
1p
2


1 1

1 �1

�
, (4.2)

which is considered unbiased since it maps each computational basis state into a uni-
form superposition thereof. However, in principle any SU(2) rotation can take the place
of the coin operator, i.e.,

C = Ix ⌦ ei�


ei⇠ cos(↵) ei⇣ sin(↵)

�e�i⇣
sin(↵) e�i⇠

cos(↵)

�
, (4.3)

defines a valid coin operator with �, ⇠, ⇣ 2 [0, 2⇡] and ↵ 2 [0, ⇡/2]. Another widely
used coin operator is the Fourier coin

F =
1p
2


1 i
i 1

�
. (4.4)

A quantum walk progresses by repeatedly applying first the coin operator followed
by the shift operator. If we take the initial state of the quantum walker to be | 0i then
the quantum state after t time steps will be

| (t)i = (SC)
t| 0i. (4.5)

The quantum walk displays some notable differences to its classical counterpart.
First of all, the evolution of the quantum state is governed by unitary dynamics which
is reversible and therefore not random. Note however, that if we were to measure
the quantum state after each step of the walk, the randomness introduced by the
measurement process together with the collapse of the wave function would give rise
to a classical random walk [311]. Hence, in what follows measurements will always be
deferred to the final time step of the quantum walk in order to fully exploit quantum
properties like interference and entanglement.
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Another peculiar difference between the quantum and the classical random walk
are the asymptotic probability distributions obtained after long times when starting
with a particle centered at the origin [314]. The probability distribution of the classical
random walk with an unbiased coin follows a Gaussian normal distribution with mean
zero and a standard deviation scaling as ⇠

p
t. On the other hand, the corresponding

distribution of the quantum walk using the Hadamard coin is not Gaussian and gives
rise to a ballistic expansion instead, i.e., the standard deviation scales with ⇠ t. Addi-
tionally, the distribution will in general be asymmetric with respect to the origin due
to interference effects. The quadratically faster spreading gives the quantum walk its
advantage in many of the previously discussed application areas [332].

Finally, the quantum walk also allows us to study (and harness) its quantum prop-
erties such as entanglement. In the discrete-time quantum walk entanglement naturally
arises between the position and coin degrees of freedom and therefore it constitutes a
unique platform to study hybrid entanglement. For example, in the case of an elec-
tron this entanglement would manifest itself between its position and spin, whereas in
photonic systems one can leverage quantum walks to entangle the angular momentum
with the polarization of a photon.

While any entanglement measure can be used to quantify the amount of hybrid
entanglement in the system, in what follows we focus on the Schmidt norm [352]. We
perform a Schmidt decomposition on the bipartite system of walker and coin

| i =

2X

i=1

� 
i

�� i

w

↵
⌦
�� i

c

↵
, (4.6)

where � 
i
� 0 are the Schmidt coefficients. Note that the Schmidt coefficients are

equal to the eigenvalues of the reduced density matrices of either of the subsystems,
e.g. Trw(| i h |), and can therefore be straightforwardly computed by tracing out the
position degrees of freedom. The Schmidt norm is defined as

k| ikp :=

 
2X

i=1

⇣
� 
i

⌘p
!1/p

, (p � 1). (4.7)

In the subsequent work we set p = 1. A maximally entangled state corresponds to a
Schmidt norm of

p
2, while a non-entangled state gives rise to a value of 1.

4.2.2 Q-learning

We implement the off-policy Q-learning algorithm with the goal of maximizing the
hybrid entanglement between the walker and the coin degree of freedom [351]. Each
training episode consists of a fixed number of time steps n of the quantum walk. Since
we are interested in maximizing the entanglement after the evolution is complete, we
set all rewards at intermediate time steps to zero and allow for a nonzero reward only
at the final time step, which we set to the Schmidt norm.

At each time step of the quantum walk, the agent can choose between two actions
defined as A 2 {H ,F}, where H and F correspond to the Hadamard and Fourier coin
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operator respectively (see Eq. (4.4)). This choice is made after obtaining information
about the current state of the environment. One way of defining the RL state would
be to use the full quantum state of the system at each time step of the quantum
walk. However, since the quantum state is essentially a vector of continuous complex
numbers, it cannot be straightforwardly employed in tabular (discrete) RL settings and
more sophisticated methods like neural network function approximators are needed
[86]. However, in our case we can use the fact that the dynamics of the system are
deterministic and therefore the history of actions (applied coins) contains the same
information for a fixed initial state. Specifically, for a given number of time steps n
and a specific initial state  0, there are 2

n possible sequences. For example, for the
case n = 2 the complete set of sequences are {HH 0, HF 0, FH 0, FF 0}. Hence,
no information about the intermediate physical states is needed and the RL states are
simply given by S 2 {init, H, F, HH, HF, FH, FF}. Here, init refers to the initial
state of the environment before the quantum walk evolution has started.

For obtaining the optimal policy ⇡⇤
(S) = A, which indicates the optimal action to

take given the current state, we employ the Q-Learning algorithm which is based on
learning an optimal Q function. The Q value Q⇡

(S, A) of a state-action pair is defined
as the expected cumulative future reward when starting in state S, taking action A,
and following the policy ⇡ thereafter

Q⇡
(S, A)

.
= E⇡

"
X

i

Ri

���S, A

#
. (4.8)

Therefore, the Q value Q(S, A) is a measure of how promising it is to choose the
respective action A in a state S. The optimal Q value Q⇤

(S, A) is simply defined as
the maximum Q value over all policies Q⇤

(S, A) = max⇡ Q⇡
(S, A). In case the optimal

Q function is known for all state-action pairs, the optimal policy can be inferred by
selecting actions that maximize the Q value, i.e., a greedy action selection

⇡⇤
(S) = arg max

A

Q⇤
(S, A). (4.9)

Hence, it suffices to learn the optimal Q values which can be achieved through an
iterative update rule known as Temporal Difference learning

Q(Si, Ai)! Q(Si, Ai) + ↵
h
Ri + max

A

Q(Si+1, A)�Q(Si, Ai)

i
, (4.10)

where ↵ 2 [0, 1] is the learning rate and the term in the brackets is called the target.
It can be shown that the Q values eventually converge to their optimal values if the
policy that is followed during training has a finite probability of visiting all state-action
pairs [86]. Here, we use an ✏-greedy action selection during training, i.e., the agent acts
randomly with probability ✏ and otherwise takes action Ai which maximizes the Q value
in the current state: Ai = argmax

A
Q(Si, A). Moreover, for a better trade-off between

exploration of the full action space and exploitation of high rewards, ✏ is exponentially
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Figure 4.2: Schmidt norm S computed after evolution with the sequence seq⇤
(2m +

1) = [(H, F )
m, F ] for m = 1, ..., 5 as a function of the initial state parameter ✓ when

� = 0. The black dashed line indicates the maximum achievable value and the brown
dashed-dotted line the asymptotic value for m!1.

decaying after each training episode i

✏(i) = (✏init � ✏fin) exp


�8i

Nepisodes

�
+ ✏fin, (4.11)

with ✏init and ✏fin being the initial and final value of ✏, respectively. The exponential
decay ensures that at the beginning of training the agent acts mostly random and ex-
plores a variety of different actions while towards the end of training actions are chosen
more deterministically according to the target policy. Once training has successfully
converged, the optimal policy is given by a fully greedy action selection given through
Eq. (4.9).

4.3 Hybrid entanglement creation

4.3.1 Universal entangling coin sequence

We are interested in generating highly entangled states during a quantum walk inde-
pendent of the initial state. Since the final amount of entanglement cannot be fully
independent for all possible initial states [346, 347], we restrict the initial state to the
class of localized states

| 0i = cos(✓/2) |0, "i+ ei� sin(✓/2) |0, #i , (4.12)

with zero relative phase (� = 0). Hence, the problem reduces to finding a sequence
of coin operators in time that generates entanglement independent of the initial state
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Figure 4.3: Schmidt norm S after evolution with the sequence seq⇤
(2m + 1) =

[(H, F )
m, F ] as a function of the number of steps n = 2m + 1 (only odd time steps are

displayed). Each point is an average over 1000 random initial states with � = 0. The
variances calculate to zero suggesting that the sequences seq⇤ generate states with an
amount of entanglement being independent of ✓. The dashed line denotes again the
maximum achievable Schmidt norm while the brown dashed-dotted line indicates the
asymptotic value reached for n = (2m + 1)!1.

parameter ✓. For this we propose a sequence given by seq⇤
(2m+1) = [(H, F )

m, F ], m 2
Z for a quantum walk with 2m+1 time steps. This sequence consists of an alternating
application of the Hadamard and Fourier coin with an additional Fourier coin applied
at the final time step and hence always describes a quantum walk with odd number
of steps. In Fig. 4.2 we plot the Schmidt norm at the end of the quantum walk
evolution with the proposed sequence for several different time steps as a function of
the parameter ✓. One can easily see that the value of entanglement is always very
close to the maximal amount possible and indeed independent of ✓ for each sequence.
However it depends on the number of steps taken for short sequences, but quickly
converges to a value close to S/

p
2 = 0.99 for larger values of n (see Fig. 4.3). The

derivation of the asymptotic limit of this sequence is shown in Section 4.3.2. Each
point in Fig. 4.3 is obtained after averaging over 1000 random angles ✓ and the zero
variances confirm that the Schmidt norm is independent of the parameter ✓. Therefore,
from now on we will refer to the sequence seq⇤ as a universal entangler for the class of
initial states defined by � = 0.

In the following we will give an intuitive explanation of how the universal behavior
emerges from this sequence. Generally, the Schmidt norm can be calculated from the
reduced density matrix of the coin degree of freedom after tracing out the walker states.
Representing the reduced density matrix ⇢ as a vector on the Bloch sphere

⇢ =
1

2
I + ~↵~�, (4.13)
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where ~↵ is the Bloch vector and ~� is a vector of Pauli matrices, the Schmidt norm can
be expressed in the form

S =

r
1

2
+ | ~↵ | +

r
1

2
� | ~↵ |, (4.14)

which only depends on the norm of the Bloch vector ~↵. During the evolution with
the universal entangling sequence, the behavior of the Bloch vector ~↵ follows a peri-
odic pattern. Specifically, after each application of the Hadamard operator the Bloch
vector points along the x-axis, while the subsequent application of the Fourier op-
erator projects it onto the y-axis. For example, the sequence [H, F, H] gives rise
to ~↵3 = ((cos ✓ + sin ✓)/4, 0, 0), whereas after the sequence [H, F, H, F ] we obtain
~↵4 = (0, (� cos ✓ + 4 sin ✓)/16, 0). At the end of the time evolution, an additional
Fourier coin is applied, which rotates the Bloch vector into a ✓-dependent direc-
tion in the x-y plane with a norm that is independent of ✓. For example, after the
evolution with the sequence seq⇤

(5) = [H, F, H, F, F ], the Bloch vector calculates to
~↵5 = (cos ✓/16, sin ✓/16, 0) with | ~↵5 |= 1/16 and the Schmidt norm is independent
of ✓ and approximately equal to 1.4114. The same property is also observed in the
asymptotic limit when m!1 (see Section 4.3.2).

In order to better understand the behavior of the universal entangling sequence,
we explore the role of the two coin operators H and F . The Fourier operator seems
to be of significant importance for generating highly entangled states. Generally, it
increases the localization of the quantum state [353] which has been associated with an
enhancement in the entanglement [343]. On the other hand, the Hadamard operator
belongs to the class of rotation matrices [354] and we have found that replacing it
with a more general unbalanced operator does not change the universal behavior of the
sequence. The generalized Hadamard operator H̃ is given by

H̃(!) =


cos(!) sin(!)

sin(!) � cos(!)

�
, (4.15)

so that the sequence takes the new form of [(H̃(!), F )
m, F ]. Figure 4.4 shows the

Schmidt norm after a 5, 7, and 15 step quantum walk as a function of the parameter !
for initial states with zero relative phase. Each data point was obtained after averaging
over 1000 random angles ✓ of the initial state and the variance again calculates to zero
in all cases. Therefore the amount of entanglement created is still independent of ✓.
Moreover, the plot suggests that by properly choosing the parameter ! for a given
length of the sequence, the performance of the universal entangling sequence can be
improved and a state close to a maximally entangled state can be reached.

Let us finally note that the effect of a nonzero relative phase � in the initial state
can be cancelled out in two ways using the phase operator Z given by

Z =


1 0

0 e�i�

�
. (4.16)

The phase operator can be applied either directly to the initial state or to the coin
operators. In the latter case, the H and F operators are altered to HZ and FZ, re-
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Figure 4.4: Value of the Schmidt norm as a function of the generalized Hadamard
operator parameter ! after the sequence [(H̃(!), F )

m, F ] for a 5-step (blue), 7-step
(orange) and 15-step (green) quantum walk. Each point is an average over 1000 random
initial states with � = 0. The variances calculate to zero and the dashed line indicates
the maximum achievable Schmidt norm.

spectively. However, this requires that the relative phase of the initial state is known
beforehand, which can be the case if the creation process of the initial state is deter-
ministic.

4.3.2 Asymptotic limit of the universal entangling coin sequence

In the following we derive the asymptotic limit of the coin reduced density matrix under
the universal entangling sequence, i.e. seq⇤

(2m + 1) = [(H, F )
m, F ] with m ! 1,

which allows us to calculate the asymptotic value of the Schmidt norm and prove its
independence of the initial state angle ✓. We follow the approach of Refs. [355, 356]
where the evolution of the reduced density matrix of the coin degree of freedom is
directly computed through an effective superoperator in Fourier space.

The quantum walk shift operator S of Eq. (4.1) can be expressed in momentum
space after performing a Fourier transform defined by |ki =

P
x
eikx|xi, which leads to

Sk = |ki hk|⌦
�
e�ik |#i h"| + eik |"i h#|

�
. (4.17)

The combined effect of the shift and coin operator can therefore be reduced to a 2⇥ 2

matrix acting on the coin degree of freedom only and for the Hadamard and Fourier
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coin we obtain

SkH =Ik ⌦
1p
2

✓
eik �eik

e�ik e�ik

◆
, (4.18)

SkF =Ik ⌦
1p
2

✓
ieik eik

e�ik ie�ik

◆
. (4.19)

These operators act on the full quantum state | i (coin and momentum degree of
freedom), however, we can also directly work in the reduced space of the coin which
can be represented as a vector on the Bloch sphere as

⇢ = Trk (| i h |) = ↵0I + ↵1�1 + ↵2�2 + ↵3�3. (4.20)

For an arbitrary initial state of Eq. (4.12) the Bloch vector components yield

~⇢0 =

0

BB@

↵0

↵1

↵2

↵3

1

CCA =
1

2

0

BB@

1

cos' sin ✓
� sin' sin ✓

cos ✓

1

CCA . (4.21)

During the quantum walk evolution the reduced density matrix transforms according
to an effective evolution superoperator Lk and after n steps of the quantum walk is
given by

⇢n =

Z
⇡

�⇡

dk

2⇡
(Lk)

n ⇢0. (4.22)

Using the vector notation of Eq. (4.21), the operator Lk can be represented as a 4⇥ 4

matrix. The matrix entries are obtained after working out how each of the Pauli ma-
trices transforms under the combined effect of shift and coin operator, i.e., Eqs. (4.18)
and (4.19). For the case of the Hadamard and Fourier coin the superoperators compute
to

LH

k
=

0

BB@

1 0 0 0

0 0 sin 2k cos 2k
0 0 cos 2k � sin 2k
0 �1 0 0

1

CCA , (4.23)

LF

k
=

0

BB@

1 0 0 0

0 cos 2k 0 � sin 2k
0 � sin 2k 0 � cos 2k
0 0 1 0

1

CCA . (4.24)

Hence, two steps of the quantum walk with a Hadamard coin applied at the first time
step and a Fourier coin applied at the second time step, give rise to the following
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superoperator

LHF

k
= LF

k
LH

k

=

0

BB@

1 0 0 0

0 sin 2k sin 2k cos 2k cos
2
2k

0 cos 2k � sin
2
2k � sin 2k cos 2k

0 0 cos 2k � sin 2k

1

CCA . (4.25)

Since we are interested in the long time behavior, we first diagonalize the matrix above
before exponentiating it to the desired power. The eigenvalues are given by

�0 = 1, �1 = 1, �2 = ei(�+⇡), �3 = e�i(�+⇡), (4.26)

with
cos � =

1

2
(1 + sin

2
2k). (4.27)

After n = 2m steps of the quantum walk with a Hadamard and Fourier coin applied
at alternating time steps we obtain

�
LHF

k

�m
= B

0

BB@

1 0 0 0

0 1 0 0

0 0 eim(�+⇡)
0

0 0 0 e�im(�+⇡)

1

CCAB†, (4.28)

where the matrix B contains the corresponding eigenvectors as column entries

B =

0

BB@

1 0 0 0

0 v11 v12 v13
0 v21 v22 v23
0 v31 v32 v33

1

CCA . (4.29)

When taking the limit m ! 1, the oscillatory terms e±im(�+⇡) vanish due to the
stationary phase theorem. Therefore, we get the following expression for the asymptotic
superoperator

�
LHF

k

�m ���!
m!1

0

BB@

1 0 0 0

0 |v11|2 v11v⇤
21 v11v⇤

31

0 v21v⇤
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which only involves the components of the first eigenvector
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The superoperator L⇤
k

of the universal entangling sequence is obtained by acting with
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an additional final Fourier superoperator LF
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The asymptotic limit of the reduced density matrix can then be calculated by perform-
ing the momentum integrals for each matrix entry separately giving rise to
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In the last line we used that � = 0 for the initial states considered here. The final state
lies in the x� y plane of the Bloch sphere with a norm independent of the angle ✓. As
a consequence the Schmidt norm defined in Eq. (4.14), which is only a function of the
length of the Bloch vector, is also independent of ✓ and computes to
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This value matches the asymptotic behavior we observe in Fig. 4.3.

4.3.3 Optimal coin sequences

Let us next address the question whether we can find coin sequences that perform
better on average than the universal entangling sequence, i.e., that generate higher
values of entanglement across all initial states. To solve this optimization problem
efficiently we employ the Q-Learning algorithm described in Section 4.2.2. We should
emphasize that for a given number of steps n, the goal is to find the optimal sequence of
coins out of the 2

n possible sequences that maximizes the Schmidt norm (the reward)
for all initial states. Our RL framework allows us to solve for this objective due to the
agents ignorance of the quantum state. Even though different initial quantum states
are used for each episode, the agent has access only to the states defined by the history
of actions and hence no information about the quantum state is used for training.

For a better comparison to the previous section, we again restrict the initial states
to a subspace defined by � = 0. For each episode of training, the remaining initial
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Figure 4.5: Learning curves for the optimization problems. The episodic reward
(Schmidt norm) is averaged over 300 ((a), (b)) or 400 ((c), (d)) independent runs.
The light blue area corresponds to the confidence interval and dashed lines denote the
maximally achievable reward of

p
2. (a)-(c) Learning curves for the 5, 7, and 15 step

quantum walk where the initial state parameter � is set to zero and the parameter
✓ is sampled from a uniform distribution at the beginning of each new episode. (d)
Learning curve for the 5 step quantum walk where both initial state parameters � and
✓ are sampled at the beginning of each training episode.

state parameter ✓ is sampled from a uniform distribution such that each episode is
initialized with a different quantum state. All instances of training were performed
using the Q-Learning algorithm [351] with Q values initialized to zero. We found a
learning rate of ↵ = 0.7 to give the best results overall. The exploration parameter ✏
decays exponentially throughout the training from an initial value of ✏i = 0.9 to a final
value of ✏f = 0.01.

As an example we show the learning curves and results of the RL optimization
obtained for a 5, 7, and 15 step quantum walk in Figs. 4.5-4.6. The Schmidt norm
achieved by the optimal sequence is plotted as a function of the parameter ✓. Dashed
lines of the same color correspond to the respective universal entangling sequence from
the last section. Notice that in the case of a 5 step quantum walk the universal sequence
and the optimal sequence coincide, i.e., the RL agent finds [H, F, H, F, F ] to be optimal.
For the cases of a 7 and 15 step quantum walk the optimal sequences differ from the
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Figure 4.6: Schmidt norm reached after an evolution of 5-step (blue), 7-step (orange),
and 15-step (green) quantum walk with the optimal sequence (solid line) and the
universal entangling sequence (dotted dashed line). The black dashed line denotes the
maximum achievable Schmidt norm. In the case of a 5-step quantum walk the optimal
and universal entangling sequence coincide. The optimal sequences are [H, F, H, F, F ],
[F, H, H, H, F, H, H], and [F, H7, F, H6

] respectively and were obtained using the Q-
Learning algorithm.

universal ones and the obtained Schmidt norm is not independent of the initial state
anymore. However, in both cases the amount of entanglement exceeds that of the
universal sequence for all initial state parameters ✓.

In order to validate the result, we compared the reinforcement learning algorithm
with a simple brute-force method for the case of the 5 step quantum walk. The brute-
force algorithm explores all of the possible 2

5
= 32 coin sequences for 1000 random

initial states and computes the average Schmidt norm for each sequence. We find that
the policy giving rise to the highest average entanglement is indeed the sequence the
RL algorithm suggested previously: [H, F, H, F, F ]. While for quantum walks with
only a few steps a simple brute-force method as described above is able to identify
optimal policies, the RL algorithm becomes advantageous for larger numbers of time
steps. The number of possible coin sequences grows exponentially with the number of
steps and hence quickly becomes intractable by any brute-force method.

Finally, we train an RL agent on completely random initial states, where both �
and ✓ are uniformly sampled at the beginning of each episode. For a five step walk the
optimal sequence suggested by the RL agent is [F, F, H, H, H] and in Fig. 4.7 we show
the values of the achieved Schmidt norm as a function of the initial state parameters.
One can see that the final amount of entanglement depends slightly stronger on the
initial state compared to the previous cases where we only considered initial states with
� = 0. This is not surprising since it is known that quantum walks of only a few steps
cannot generate highly entangled states in a fully universal way for all initial states at
the same time [346, 347]. However, the RL algorithm is still able to identify a sequence



82
Universal and optimal coin sequences for high entanglement generation in

1D discrete time quantum walks

0 ⇡/2 ⇡

✓

0

⇡

2⇡

�

0.970

0.975

0.980

0.985

0.990

0.995

S
/p

2

Figure 4.7: Schmidt norm obtained by evolving with the optimal policy
[F, F, H, H, H] as a function of the initial state parameters � and ✓.

that, at least on average, performs better than others.

4.4 Conclusion

We proposed two different schemes for creating highly entangled states in a 1D discrete
time quantum walk. First, we showed that a specific sequence of Hadamard and Fourier
coin operators leads to large Schmidt norms independent of the localized initial state.
The sequences are composed of an alternate application of Hadamard and Fourier
coins with an additional Fourier coin applied at the final time step. The sequences are
defined for any odd number of steps and hence, the overall quantum walk time duration
can be kept short which is important for many experimental realizations. Moreover,
we demonstrated that by replacing the Hadamard coin with arbitrary (fixed) rotation
operators allows the final entanglement to be tuned further while maintaining the
universal-entangling property. Finally, we derived an expression for the asymptotic
state of the deterministic coin sequences, i.e., in the limit of an infinitely-long quantum
walk, and computed the corresponding Schmidt norm that would be asymptotically
attained.

In the second approach, we used a reinforcement learning (RL) algorithm to maxi-
mize the hybrid entanglement over different sequences of Hadamard and Fourier coin
operators. Employing an RL-based approach over other search algorithms is advanta-
geous since the space of possible sequences grows exponentially in the number of time
steps and thus, a brute-force optimization would quickly become intractable. More-
over, the proposed algorithm allows us to find optimal coin sequences for a whole class
of different initial states. Therefore, our entanglement generation sequences are more
robust to imperfections in the initial state preparation process. The obtained optimal
protocols for different number of steps on average give rise to larger Schmidt norms
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than the deterministic sequences. However, the resultant values vary with the initial
state parameters in contrast to the previous case.

Our work has motivated further research in the field of entanglement generation
in quantum walks and has already been cited several times since its publication. Tao
et al. [357] experimentally studied the hybrid entanglement in a photonic quantum walk
system. They compared different approaches of creating highly entangled states and
verified that by using optimized coin operators maximal entanglement can be reached
in a few steps only. Zhang et al. [358] proposed a position-inhomogeneous quantum
walk in which a position-dependent coin operator involving a parameterized phase is
used at every time step. They showed that maximal entanglement can be achieved
for any odd number of quantum walk steps. Furthermore, Zhang et al. demonstrated
an experimental realization of their proposal within an optical network setup. Finally,
Naves et al. [359] considered a quantum walk with a time-dependent shift operator
referred to as elephant quantum walk, where the position step size is randomly sampled
at every time step. It was shown that for certain step size distributions, the generalized
elephant quantum walk gives rise to maximally entangled states independent of the
localized initial state and coin operator.

Our work has been one of the first that applies classical machine learning tools
to quantum walks. Shortly after our publication, another paper appeared in which
supervised learning is used to estimate coin operator parameters in a quantum walk
from its final distribution [360]. Additionally, our approach of utilizing reinforcement
learning to obtain universal optimal protocols for a range of initial conditions, has
been picked up in other areas outside the domain of quantum walks. For example, He
et al. [31] applied reinforcement learning to the problem of state preparation in semi-
conductor double quantum dots and demonstrated its capabilities of devising protocols
for arbitrary initial states.





Chapter 5

Self-correcting quantum many-body

control using reinforcement learning

with tensor networks

The text in this chapter is largely based on the following preprint article, but extended
to provide additional content.

Friederike Metz and Marin Bukov
Self-Correcting Quantum Many-Body Control using

Reinforcement Learning with Tensor Networks
arXiv:2201.11790 [quant-ph] (2022)

I performed the numerical simulations, the theoretical analysis, and wrote a first
version of the manuscript. Marin Bukov supervised the work. All authors contributed
to the discussions, the interpretation of the results, and the editing of the manuscript
draft.

5.1 Introduction

Quantum many-body control is an essential prerequisite for the reliable operation of
modern quantum technologies which are based on harnessing quantum correlations.
For example, quantum computing often involves high-fidelity state manipulation as a
necessary component of most quantum algorithms [167, 279]; In quantum simulation,
the underlying AMO platforms require to prepare the system in a desired state before
its properties can be measured and studied [77–79]; And quantum metrology relies on
the controlled engineering of (critical) states to maximize the sensitivity to physical
parameters [361, 362]. Many-body control can also be considered in its own right,
as a numerical tool which offers insights into concepts such as quantum phases and
phase transitions [363]. Moreover, it can reveal novel theoretical phenomena such as
phase transitions in the control landscape [364], and bears a direct relation to our
understanding of quantum complexity [365].

Compared to single- and few-particle physics, working in the quantum many-body
domain introduces the formidable difficulty of dealing with an exponentially large
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Figure 5.1: Illustration of the QMPS framework for state preparation. The optimized
QMPS agent outputs a control protocol as a sequence of operators Âj, which time evolve
the initial spin state into the desired target state (marked by a star).

Hilbert space. A specific manifestation is the accurate description and manipulation of
quantum entanglement shared between many degrees of freedom. This poses a limita-
tion for classical simulation methods, since memory and compute time resources scale
exponentially with the system size. Fortunately, there exists a powerful framework to
simulate the physics of one-dimensional (1d) quantum many-body systems, based on
matrix product states (MPS) [36, 37, 113, 126]. MPS provide a compressed represen-
tation of many-body wave functions and allow for efficient computation with resources
scaling only linearly in the system size for area-law entangled states [123, 124].

While MPS-based algorithms have been used in the context of optimal many-body
control to find high-fidelity protocols that manipulate interacting ultracold quantum
gases [366–368], the advantages of deep reinforcement learning (RL) for quantum con-
trol, have so far been investigated using exact simulations of only a small number
of interacting quantum degrees of freedom. Nevertheless, policy-gradient and value-
function RL algorithms have recently been established as useful tools in the study of
quantum state preparation [16, 29–32, 205–213], quantum error correction and miti-
gation [17, 22–24], quantum circuit design [25–28], and quantum metrology [214, 215];
quantum reinforcement learning algorithms have been proposed as well [136, 369–372].
Thus, in times of rapidly developing quantum simulators which exceed the computa-
tional capabilities of classical computers [373], the natural question arises regarding
scaling up the size of quantum systems in RL control studies beyond exact diagonal-
ization methods.

In this work, we develop a new deep RL framework for quantum many-body control,
based on MPS in two complementary ways. First, we adopt the MPS description of
quantum states: this allows us to control large interacting 1d systems, whose quantum
dynamics we simulate within the RL environment. Second, representing the RL state in
the form of an MPS, naturally suggests the use of tensors network as (part of) the deep
learning architecture for the RL agent, e.g., instead of a conventional neural network
(NN) ansatz. Therefore, inspired by earlier examples of tensor-network-based machine
learning [33, 42, 144], we approximate the RL agent as a hybrid MPS-NN network,
called QMPS. With these innovations at hand, the required computational resources
scale linearly with the system size, in contrast to learning from the full many-body wave
function. Ultimately, this allows us to train an RL agent to control a larger number
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Figure 5.2: Many-body control studies in the ground state phase diagram of the
quantum Ising model, analyzed in this work: an RL agent is trained to prepare the
critical state of the transverse field Ising model from random initial states (Ctrl Study
A, magenta), the z-polarized product state from a class of paramagnetic ground states
(Ctrl Study B, green), and the critical state of the mixed field Ising model from para-
magnetic ground states of opposite interaction strength (Ctrl Study C, cyan).

of interacting quantum particles, as required by present-day quantum simulators. Our
proposed QMPS framework is illustrated in Fig. 5.1.

As a concrete example, we consider the problem of state preparation and present
three case studies in which we prepare different ground states of the paradigmatic
mixed field Ising chain (see Fig. 5.2). We train QMPS agents to prepare target states
from a class of initial (ground) states, and devise universal controls with respect to
experimentally relevant sets of initial states. In contrast to conventional quantum
control algorithms (such as CRAB or GRAPE [366, 367, 374]), once the optimization is
complete, RL agents retain information during the training process in form of a policy
or a value function. When enhanced with a deep learning architecture, the learned
control policy generalizes to states not seen during training. We demonstrate how this
singular feature of deep RL allows our agents to efficiently control quantum Ising chains
(i) starting from various initial states that the RL agent has never encountered, and
(ii) in the presence of faulty or noisy controls and stochastic dynamics. Thus, even in
analytically intractable many-body regimes, an online RL agent produces particularly
robust control protocols.

This chapter is organized as follows: In Section 5.2, I introduce the problem of quan-
tum many-body control. In Section 5.3, I revisit the Q-learning algorithm and explain
how it can be enhanced with function approximation for continuous state spaces. Sec-
tion 5.4 establishes the reinforcement learning problem and our proposed framework,
that is, a Q-learning agent based on matrix product states. The results of applying
our scheme to different state preparation scenarios are presented in Section 5.5. In
Section 5.6 I discuss how the QMPS framework can be intregatd in present-day NISQ
device simulations. Section 5.7 provides additional details regarding the control studies.
And finally, in Section 5.8 I present the details of the QMPS optimization.
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5.2 Quantum many-body control

Consider a quantum many-body system in the initial state | ii. Our objective is to find
optimal protocols that evolve the system into a desired target state | ⇤i. We construct
these protocols as a sequence of q consecutive unitary operators U(⌧) =

Q
q

j=1 U⌧j ,
where U⌧j2A are chosen from a set A. To assess the quality of a given protocol, we
compute the fidelity of the evolved state w.r.t. the target state:

F (⌧) = | h ⇤| U(⌧) | ii |2. (5.1)

Throughout the study, we focus on spin-1/2 chains of size N with open boundary
conditions. The system on lattice site j is described using the Pauli matrices Xj, Yj, Zj.
As initial and target states we select area-law states, e.g., ground states of the quantum
Ising model (see Section 5.5). In order to control chains composed of many interacting
spins, we obtain the target ground state using DMRG [36, 126], and represent the
quantum state as an MPS throughout the entire time evolution.

We choose a set of experimentally relevant control unitaries A which contains uni-
form nearest-neighbor spin-spin interactions, and global rotations: A = {e

±i�t±Âj},
with

Âj 2 A =

⇢X
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Ŷi,
X

i
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Two-qubit unitaries are capable of creating/decreasing the entanglement of the state.
Note that MPS-based time evolution is particularly efficient for such locally applied
operators and the resulting protocols can be considered as a series of quantum gates.

The time duration (or angle) �t± of all unitary operators is fixed and slightly differ-
ent in magnitude for positive and negative generators Âj, and kept constant throughout
the time evolution. Hence, the problem of finding an optimal sequence reduces to a
discrete combinatorial optimization in the high-dimensional space of all possible series.
For a fixed sequence length q, the number of all distinct sequences is |A|q; therefore, a
brute-force search quickly becomes infeasible and more sophisticated algorithms, such
as RL, are needed. By fixing both q and �t± prior to the optimization, in general, we
will not be able to come arbitrarily close to the target state.

5.3 Background

5.3.1 Tabular Q-learning

In RL, a control problem is defined within the framework of an environment that
encompasses the physical system to be controlled, and a trainable agent which chooses
control actions to be applied to the system (see Fig. 5.3) [86]. The environment is
described by a state space S and a set of physical laws that govern the dynamics of the
system. At each time step t during the episode, the agent observes the current state
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st 2 S and receives a scalar reward signal rt. The agent then chooses actions according
to a strategy, called policy ⇡(a|s) – a function that assigns a probability to every action
a depending on the current state s of the environment [86]. The goal is to find the
optimal policy ⇡⇤

(a|s), i.e., the optimal action to take in any state s that maximizes
the expected return R = E⇡

hP
T

t=0 rt|s0 = s
i

starting from state s and following the
policy ⇡. In this work, we consider episodic tasks involving a termination condition
(e.g., a fidelity threshold) which the agent has to reach within a fixed number of steps
T . Once the termination condition is satisfied, the episode is over and the environment
is reset. This is in contrast to non-episodic tasks which continue indefinitely.

Q-learning is a model-free RL algorithm in which the agent learns an optimal policy
⇡⇤

(a|s) solely via observing environment transitions, i.e., without knowing or building
a representation of the environment dynamics, and without access to any prior infor-
mation about the system [351]. To every fixed policy ⇡ (optimal or sub-optimal), we
can assign a Q-function, defined as the expected return starting from state s, taking
action a, and following the policy ⇡ afterwards:

Q⇡
(s, a) = E⇡

"
TX

t=0

�trt|s0 = s, a0 = a

#
. (5.3)

The discount factor � 2 (0, 1] gives a higher importance to immediate rewards and
therefore ensures stability for continuing, non-episodic RL tasks.

In Q-learning, the optimal policy ⇡⇤ is found indirectly through learning the optimal
Q-value function Q⇤

(s, a) that gives the maximum expected cumulative discounted
reward:

Q⇤
(s, a) = max

⇡

Q⇡
(s, a). (5.4)

Once the optimal Q-values are known, the optimal policy is deterministic: ⇡⇤
(s) =

arg maxa Q⇤
(s, a), i.e., it is given by greedily taking actions according to the maximum

optimal Q-value in each state.
When the state space is discrete, the optimal Q-function can be learned using tab-

ular Q-learning through an iterative update rule derived from the Bellman optimality
equation [351]

Qk+1 (s, a)  Qk (s, a) + ↵�k, (5.5)
�k = r(s, a) + �max

a0
Qk (s0, a0

)�Qk (s, a) ,

where k denotes the iteration step of the algorithm, ↵ 2 (0, 1] is the learning rate,
and �k is the temporal difference error. Note that Q-learning requires isolated tuples
(s, a, r, s0), known as transitions, and not complete trajectories. Moreover, due to the
presence of the max function in the update-rule above, the algorithm is off-policy : this
means that the transitions can come from any policy (also old ones) – and yet the new
updated Q-function approaches the optimal Q⇤.

Convergence is guaranteed if each possible state-action pair (s, a) can, in principle,
be visited infinitely often. To fulfill this condition the agent has to explore sufficiently
different state-action pairs. At the same time, the agent should also exploit the high-
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reward transitions, especially towards the end of training when the Q-value estimates
have mostly converged to their true values. A common choice of behavior policy to
follow during training that satisfies this Exploration-Exploitation dilemma, is an ✏-
greedy policy:

a =

(
random action with probability ✏
arg maxa0 Q⇡

(s, a0
) otherwise

, (5.6)

i.e. the agent chooses a random action with some small probability ✏ and the greedy
action maximizing the Q-value otherwise. The hyperparameter ✏ can be decreased,
e.g., exponentially, starting from a value close to 1 (exploration-dominated regime) at
the beginning of training, to a small value, e.g., ✏ = 0.01, leading to less exploration
and more exploitation as training progresses.

5.3.2 Deep Q-Learning

For large or continuous state spaces, such as Hilbert spaces, the tabular Q-learning
algorithm described above is inapplicable. In such cases, it is only possible to learn an
approximation to the optimal Q-values, Q✓(s, a) ⇡ Q⇤

(s, a), given by a parameterized
function, e.g., a neural network [87]. The parameters ✓ of the variational ansatz are
then optimized by minimizing the expected mean-square temporal difference error

Ck(✓k) = E(s,a,r,s0)⇠R

⇣
yk �Q✓k

(s, a)

⌘2�
,

yk = r + �max
a0

Q✓̄k
(s0, a0

) . (5.7)

The minibatch of transitions (s, a, r, s0), used in each optimization step k, is uniformly
sampled from a fixed-size replay buffer R that contains previously collected transitions
from agent-environment interactions. Since Q-learning is an off-policy algorithm, tran-
sitions used for updating the Q-value do not have to coincide with the target policy
allowing the use of experience replay. Thus, the subroutine of collecting environment
transitions can be run independently and, if necessary, in parallel to the optimization
subroutine, thus speeding up training. Therefore, the use of a replay buffer makes
Q-learning more data-efficient than policy gradient methods.

Note that the RL loss function Ck in Eq. (5.7) is different from the loss in super-
vised learning, in that the regression target yk = r + �maxa0 Q✓̄k

(s0, a0
) itself depends

on the parameterized Q-values that have to be learned; therefore, the target (i.e., the
label) changes in the course of training. This running target makes DQN different from
ordinary gradient descent, and is the reason for the lack of convergence guarantees in
DQN. To stabilize deep Q-learning, a second target Q-value network Q✓̄k

(s, a) is intro-
duced whose parameters ✓̄ are held fixed during the optimization step. The optimized
parameters ✓ are periodically copied to the target network ✓̄  ✓.

Finally, we also employ Double Q-learning to reduce overestimation errors in the
Q-values [375]. Here, the regression target is replaced by

yDouble
k

= r + � Q✓̄k
(s0, argmax

a0
Q✓k

(s0, a0
)). (5.8)



5.4 Proposal 91

5.4 Proposal

5.4.1 Reinforcement learning (RL) framework

In the following, we outline the control scenario to be solved by the RL agent, i.e., we
define the RL states, actions, and the reward function.

States — In our quantum many-body control setting, the RL state space S com-
prises all quantum states | i of the 2

N -dimensional many-body Hilbert space. Here,
we consider states in the form of an MPS with a fixed bond dimension � : if � <�max

is smaller than the maximum bond dimension �max = 2
N/2, long-range entanglement

cannot be fully captured, and the resulting MPS becomes a controlled approximation
to the true quantum state.Hence, state preparation of volume-law entangled states is
restricted to intermediate system sizes when using MPS. On the other hand, for large
system sizes, the control problems of interest typically involve initial and target states
that are only weakly entangled such as ground states of local many-body Hamiltonians.
In these cases, the optimal protocol may not create excessive entanglement suggesting
that the system follows the ground state of a family of local effective Hamiltonians,
similar to shortcuts-to-adiabaticity control [376], and thus, justifying a MPS-based
description.

Actions — If not specified otherwise, the set of available actions A contains local
spin-spin interactions and single-particle rotations, as defined in Eq. (5.2).

Rewards — Since our goal is to prepare a specific target state, a natural figure
of merit to maximize is the fidelity Ft = |h t| ⇤i|2 between the current state | ti and
the target state | ⇤i. To avoid a sparse-reward problem caused by exponentially small
overlaps in many-body systems, we choose the log-fidelity per spin at each time step
as a reward: rt = N�1

log(Ft). Moreover, we set a fidelity threshold F ⇤, which the
agent has to reach for an episode to be terminated successfully. Note that the agent
receives a negative reward at each step; this provides an incentive to reach the fidelity
threshold in as few steps as possible, in order to avoid accruing a large negative return
R =

P
T

t=1 rt, thus leading to short optimal protocols. For assessing the performance of
the QMPS agent to prepare the target state, we show the final single-particle fidelity
Fsp =

N
p

F as it represents a more intuitive quantity than the related log fidelity used
in quantum simulation experiments.

We note in passing that we do not fix the length of an episode (the number of
protocol steps) beforehand and the agent is always trying to find the shortest possible
protocol to prepare the target state. However, we terminate each episode after a
maximum number of allowed steps even if the target state has not been successfully
prepared yet: otherwise episodes, especially at the beginning of training, can become
exceedingly long leading to unfeasible training times.

5.4.2 Matrix product state ansatz for Q-learning (QMPS)

We choose Q-learning to train our RL agent (see Section 5.3.1), since it is off-policy
and, thus, more data-efficient compared to policy gradient methods. The optimal Q-
function Q⇤

( , a) defines the total expected return starting from the state | i, selecting
the action a and then following the optimal protocol afterwards. Intuitively, the optimal
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|✓Qi

| i

�Q

� 

df

fNN
✓

QMPS agent

st
at

e
| 

t
i,

re
w

ar
d

r t
action

Â
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Figure 5.3: Q-learning framework (QMPS) based on matrix product states. The RL
environment encompasses a quantum many-body spin chain represented in compressed
MPS form which is time evolved according to globally applied unitary operators chosen
from a predefined set A. The reward rt is given by the normalized log-fidelity between
the current state | ti and the target | ⇤i. The QMPS agent is represented by a param-
eterized Q-value function Q✓( , a) composed of a MPS |✓Qi which is contracted with
the quantum state MPS | ti, and a subsequent neural network (NN) which outputs a
Q-value for each different action Â. The trainable parameters of the QMPS are deter-
mined by the feature vector dimension df and the bond dimension �Q.

action in a given state maximizes Q⇤
( , a). Hence, if we know Q⇤

( , a) for every state-
action pair, we can solve the control task. In Q-learning this is achieved indirectly, by
first finding Q⇤. This approach offers the advantage to re-use the information stored
in Q⇤ even after training is complete.

Since the state space is continuous, it becomes infeasible to learn the exact Q⇤-values
for each state. Therefore, we approximate Q⇤ ⇡ Q⇤

✓
using a function parametrized by

variational parameters ✓, and employ the DQN algorithm to train the RL agent [87]. In
this work, we introduce a novel architecture for the Q⇤-function, based on a combination
of a MPS and a NN, called QMPS, which is specifically tailored for quantum many-
body states that can be expressed as a MPS (see Fig. 5.3). We emphasize that the
QMPS is independent of the MPS representation of the quantum state, and has its
own bond dimension �Q.

To calculate Q✓( , a) for each possible action a in a quantum state | i, we first
compute the overlap between the quantum state MPS and the QMPS. The contraction
of two MPS can be performed efficiently and scales only linearly in the system size
for fixed bond dimensions. The output vector of the contraction corresponding to the
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dangling leg of the central QMPS tensor, is then interpreted as a feature vector of
dimension df , which is used as an input to a small fully-connected neural network (see
Fig. 5.3). Adding a NN additionally enhances the expressivity of the Q⇤

✓
ansatz by

making it nonlinear. The final NN output contains the Q⇤-values for each different
action.

The QMPS feature vector can be naturally written as an overlap between the quan-
tum state MPS | i and the QMPS |✓Qi. Thus, the Q⇤-value can be expressed as

Q✓( , a) = f✓
�
N�1

log
�
|h✓Q| i|2

��
, (5.9)

where f✓(·) denotes the neural network. We additionally apply the logarithm and divide
by the number of spins N in order to scale the QMPS framework to a larger number
of particles. Note also that the QMPS does not represent a physical wave function (it
is not normalized); however, for ease of notation, we still express it using the bra-ket
formalism.

Thus, the trainable parameters ✓ of the Q⇤-function contain the N+1 complex-valued
QMPS tensors |✓Qi, plus the real-valued weights and biases of the subsequent NN. The
QMPS feature dimension df and the QMPS bond dimension �Q are hyperparameters
of the optimization, which determine the number of variational parameters of the MPS
in analogy to the hidden dimension of neural networks.

Note that the resources (time and memory) for training the QMPS framework scale
at worst polynomially in any of the parameters of the system and the ansatz, such as
the QMPS bond dimension �Q, the feature dimension df , and the local Hilbert space
dimension d=2. Furthermore, QMPS reduces an exponential scaling of the resources
with the system size N to a linear scaling in N , therefore, allowing efficient training
on large spin systems.

5.5 Results

Our MPS-based RL framework is specifically designed for preparing low-entangled
states in 1d, such as ground states of local gapped Hamiltonians. Hence, in the sub-
sequent case studies we consider ground states of the 1d mixed field Ising model as an
exemplary system:

ĤIsing = J
N�1X

j=1

ẐjẐj+1 � gx

NX

j=1

X̂j � gz

NX

j=1

Ẑj, (5.10)

where gx (gz) denotes a transverse (longitudinal) field. In the case of negative interac-
tion strength and in the absence of a longitudinal field gz = 0, the system is integrable,
and has a critical point at gx = 1 in the thermodynamic limit, separating a paramag-
netic (PM) from a ferromagnetic phase (FM) (see Fig. 5.2). For gz >0, the model has
no known closed-form expressions for its eigenstates and eigenenergies. In addition,
for positive interactions, the phase diagram features a critical line from (gx, gz)=(1, 0)

to (gx, gz)=(0, 2) exhibiting a transition from a paramagnetic to an antiferromagnetic
phase (AFM).
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5.5.1 Universal ground state preparation from arbitrary initial

quantum states for N = 4 spins

In the noninteracting limit, J = 0, the QMPS agent readily learns how to control a
large number of spins (see Section 5.7.1). Instead, as a nontrivial benchmark of the
QMPS framework, here we teach an agent to prepare the ground state of the 4-spin
transverse field Ising model at (J =�1, gx = 1, gz = 0), starting from randomly drawn
initial states. While this control setup can be solved using the full wave function
and a conventional neural network ansatz, the uniform initial state distribution over
the entire continuous Hilbert space creates a highly non-trivial learning problem and
presents a first benchmark for our QMPS framework. Moreover, system sizes of N⇠4

spins already fall within the relevant regime of most present-day studies using quantum
computers, where gate errors and decoherence currently prevent exact simulations at
larger scales [167, 285, 377].

We first train an agent (QMPS-1) to prepare the target ground state within 50
protocol steps or less, setting a many-body fidelity threshold of F ⇤⇡0.85. The initial
states during training are chosen to be (with probability p = 0.25) random polarized
product states, or (with probability p=0.75) random reflection-symmetric states drawn
from the full 2

4
= 16 dimensional Hilbert space∗. In this way the QMPS-1 agent has

to learn to both disentangle highly entangled states to prepare the Ising ground state,
but also to appropriately entangle product states to reach the entangled target (the
learning curves of the QMPS-1 agent are shown in Fig. 5.12 in Section 5.7.1). After
this training stage, we test the QMPS-1 agent on a set of 10

3 random initial states and
find that in ⇠ 99.8% of the cases the fidelity threshold is successfully reached within
the 50 allowed steps. A (much) better fidelity cannot be achieved by the QMPS-1
agent alone, due to the discreteness of the action space and the constant step size used,
rather than limitations intrinsic to the algorithm.

To improve the fidelity between the final and the target state, we now train a second,
independent agent (QMPS-2) with a tighter many-body fidelity threshold of F ⇤⇡0.97.
The initial states are again sampled randomly as mentioned above; however, we first
use the already optimized QMPS-1 agent to reach the vicinity of the target state within
F >0.85. Then, we take those as initial states for the training of the second QMPS-2
agent. This two-stage learning schedule can in principle be continued to increase the
fidelity threshold even further. The learning curves of the QMPS-2 optimization are
shown in Fig. 5.4(a). In Fig. 5.4(b)-(c) we present the obtained protocols for four
exemplary initial states. Overall, the combined two-agent QMPS is able to reach the
fidelity threshold of F ⇤ ⇠ 0.97 for ⇠ 93% of the randomly drawn initial states within
the 50 episode steps that were imposed during training. We emphasize that this result
is already nontrivial, given the restricted discrete action space, and the arbitrariness
of the initial state.

Let us now exhibit two major advantages of RL against conventional quantum
control algorithms. (i) After training we can double the allowed episode length for
each agent to 100 steps. Since this allows for longer protocols, we find that the target

∗Due to the enforced reflection symmetry, the state space we effectively sample from is 10 dimen-
sional. We sample (Haar) random states by drawing the wave function amplitudes from a normal
distribution followed by normalization.
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Figure 5.4: Universal four-qubit control. (a) Achieved many-body fidelity F̄ between
final and target state during training averaged over 100 training episodes (dark-blue
curve). The best and worst fidelity within each episode window is indicated by the
light-blue-shaded area. The fidelity threshold, F ⇤ ⇠ 0.97, is marked by a gray dashed
line. The inset shows the mean number of episode steps T̄ during training (averaged
over 100 episodes). The maximum number of allowed steps is set to 50. (b)-(e) Two
QMPS agents (see text) are trained with fidelity thresholds F ⇤⇠0.85, 0.97 (gray dashed
lines), to prepare the Ising ground state (J =�1, gx=1, gz =0), starting from (b) the z-
polarized product state, (c) the GHZ state, (d) an Ising antiferromagnetic ground state
at (J =+1, gx=gz =0.1), and (e) a Haar-random state. The QMPS-2 agent starts from
the final state reached by the QMPS-1 agent (purple shaded area). The many-body
fidelity F between the instantaneous and the target state, is shown in the lower part of
each panel. The upper part of the panels shows the control protocol. The colors and
shading of each rectangle indicate the applied action A (see legend); ± stands for the
sign of the action generator, i.e., exp(±i�t±Â). The QMPS-1,2 agents use fixed time
steps of �t± = (⇡/8, ⇡/16)+, (⇡/13, ⇡/21)�, indicated by action rectangles of different
sizes in the protocol. N =4 spins.

state can be successfully prepared for 99.5% of the initial states (compared to the
previously observed 93%). Note that this feature is a unique advantage of (deep) RL
methods, where the policy depends explicitly on the quantum state: during training,
the agent learns how to take optimal actions starting from any quantum state and
hence, it is able to prepare the target state if it is given sufficient time. Moreover, (ii)
in this example we achieve universal quantum state preparation, i.e., the trained RL
agent succeeds in preparing the target state irrespective of the initial state. This is
not possible with conventional control techniques where the optimal protocol is usually
tailored to a specific initial state, and the optimization has to be rerun when starting
from a different state.

5.5.2 Preparation of a polarized product state from paramag-

netic ground states for N = 32 spins

In general, a Haar-random quantum many-body state is volume-law entangled and,
hence, it cannot be approximated by a MPS of a fixed bond dimension. Moreover,
it becomes increasingly difficult to disentangle an arbitrarily high entangled state for
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Figure 5.5: Transverse-field Ising control. (a) Optimal protocol obtained, starting
from an initial ground state at gx = 1.01 (see Fig. 5.4 for action legend). The cyan
shaded segment indicates a generalized Euler-angle-like many-body rotation. (b) Final
single-particle fidelities Fsp starting from initial ground states with transverse field value
gx. The target state is the z-polarized product state. The gray dashed line denotes
the fidelity threshold: it is surpassed for most initial states except at the critical point
gx⇠ 1 (cyan dot). The red vertical dashed lines contain the training region. (c) The
number of actions (unitaries) in the QMPS protocols versus the initial state parameter
gx. The protocol starting from the critical state (gx ⇠ 1) does not reach the fidelity
threshold and is truncated after 50 episode steps. Inset: the half-chain von Neumann
entanglement entropy of final states during training decreases as learning improves.
The dark green curve denotes the average over 200 episodes. N =32 spins.

larger system sizes [378]. Therefore, when working in the truly quantum many-body
regime, we have to restrict to initial and target states that are not volume-law en-
tangled. As an example, here we consider a many-body system of N = 32 spins and
learn to prepare the z-polarized state from a class of transverse field Ising ground
states (J =�1, gz = 0). Once high-fidelity protocols are found, they can be inverted
to prepare any such Ising ground state from the z-polarized state, which presents a
relevant experimental situation (see Section 5.7.2). Many-body ground state prepara-
tion is a prerequisite for both analog and digital quantum simulation, and enables the
study of a variety of many-body phenomena such as the properties of equilibrium and
nonequilibrium quantum phases and phase transitions.

To train the agent, we randomly sample initial ground states on the paramagnetic
side of the critical point: 1.0 < gx < 1.1. The difficulty in this state preparation
task is determined by the parameter gx defining the initial state: states deeper into
the paramagnetic phase are more easy to ‘rotate’ into the product target state, while
states close to the critical regime require the agent to learn how to fully disentangle
the initial state in order to reach the target. We train a QMPS agent on a system
of N = 32 spins which is infeasible to simulate using the full wavefunction, and is far
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out-of-reach for neural-network based approaches. We set the single-particle fidelity
threshold to F ⇤

sp = 0.99 and allow at most 50 steps per protocol.
Figure 5.5(b) shows the successfully reached final fidelity when the trained QMPS

agent is tested on unseen initial states, for various values of gx. First, notice that the
agent is able to prepare the target state also for initial states with gx > 1.1 that lie
outside of the training region (dashed vertical lines). Hence, we are able to extrapolate
optimal control protocols well beyond the training data distribution, without additional
training. However, this is not true for states inside the critical region, gx.1, and in the
ferromagnetic phase (gx⌧1); such a behavior is not surprising, since these many-body
states have very different properties compared to those used for training. Interest-
ingly, it follows that the onset of criticality can be detected in the structure of control
protocols, as the number of required gates (actions) and, in particular, of entangling
unitaries, increases rapidly as one approaches the critical point (see Fig. 5.5(c)).

Discontinuities in the achieved fidelity as can be seen in Fig. 5.5(b) arise due to
the fixed, constant step size: we observe distinct jumps in the final fidelity, whenever
the length of the protocol sequence increases. This is a primary consequence of the
discrete control action space. Its physical origin can be traced back to the need for a
more frequent use of disentangling two-site unitaries, for initial states approaching the
critical region.

Figure 5.5(a) shows the optimal protocol at gx=1.01: first, the agent concatenates
three Ŷ -rotations (�t+ = ⇡/12) in a global gate, which shows that it learns the orien-
tations of the initial x-paramagnet and the z-polarized target (yellow shaded region).
This is succeeded by a non-trivial sequence containing two-body operators. A closer
inspection (see Fig. 5.16 in Section 5.7.2) reveals that the agent discovered a general-
ization of Euler-angle rotations in the multi-qubit Hilbert space (blue shaded region).
This is remarkable, since it points to the ability of the agent to construct compound ro-
tations, which is a highly non-trivial combinatorial problem for experimentally relevant
constrained action spaces. This can be interpreted as a generalization of dynamical
decoupling sequences used in state-of-the-art NMR experiments. We verified that this
protocol is a local minimum of the control landscape.

We also investigated the system size dependence of optimal protocols in this control
study. To our surprise, we find that agents trained on the N =32 spin system produce
optimal protocols that perform reasonably well on smaller (N = 8) as well as larger
(N =64) systems. Hence, this control problem admits a certain degree of transferability,
which worsens for initial states closer to the finite-size dominated critical region (see
Section 5.7.2).

The MPS-based control framework enables us to readily analyze the physical entan-
glement growth during training, via the bond dimension of the quantum state � . The
protocol exploration mechanism in QMPS causes the agent to act mostly randomly
during the initial stages of learning. This translates to random sequences of unitary
gates that can lead to an increase of entanglement entropy (see inset of Fig. 5.5(c)).
In our simulations, we set the maximum allowed bond dimension to � =16, which is
sufficient for the considered initial and target states to be approximated reliably. How-
ever, not all states encountered can be represented with such a small bond dimension,
as reflected by large truncation errors during training (see Fig. 5.18 in Section 5.7.2).
Nonetheless, as training progresses, the agent learns to take actions that do not create
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excessive entanglement as is shown in Fig. 5.5(c). Therefore, the truncation error nat-
urally decreases, as training nears completion. As a consequence, the final converged
protocols visit states that lie within a manifold of low-entangled states. Moreover,
increasing � does not change these results. We believe that this mechanism relies on
the area-law nature of the initial and target states, and we expect it to open up the
door towards future control studies deeper in the genuine many-body regime.

5.5.3 Learning robust critical-region state preparation for N =

16 spins

States in the critical region possess non-trivial correlations and show strong system-
size dependence, which make manipulating them highly non-trivial. In particular,
the required time duration to adiabatically prepare critical states diverges with the
number of particles, whereas sweeping through critical points reveals properties of their
universality classes [379]. Therefore, finding optimal control strategies away from the
adiabatic limit is an important challenge. Critical state preparation is also of practical
relevance for modern quantum metrology, where the enhanced sensitivity of critical
states to external fields is leveraged to perform more precise measurements [361].

Our final objective is to prepare a ground state in the critical region of the mixed
field Ising chain (J = +1, gx = 0.5, gz = 1.5) starting from non-critical paramagnetic
ground states of the same model with flipped interaction strength: J =�1, 1.0<gx <
1.5, 0<gz <0.5 (see Fig. 5.2). Hence, the agent has to learn to connect ground states
of two distinct Hamiltonians. This scenario is often relevant in typical experimental
setups where only a single-sign interaction strength can be realized: e.g., the initial
state comes from the J <0 Ising model, while the ground state of interest belongs to the
antiferromagnatic Ising Hamiltonian. In general, one can use two completely distinct
parent Hamiltonians for the initial and target states, one of which being inaccessible in
the quantum simulator platform at hand, while the other being the object of interest.

We train our QMPS agent on N =16 spins with a single-particle fidelity threshold
of F ⇤

sp =0.97, and a maximum episode length of 50. Figure 5.6(a) shows the achieved
fidelity between the critical target state and the final state, for different initial ground
states corresponding to a rectangular region in the (gx, gz)-plane. Notice that the agent
is able to generalize to unseen initial states lying far outside the training region (white
rectangle), and fails only close to the critical point of the transverse field Ising model
(gx=1, gz =0) and for a few isolated initial states well outside of the training region.

We now demonstrate that our QMPS agent shows remarkable generalization capa-
bilities in noisy environments. In particular, we analyze how robust the trained QMPS
agent is to stochastic perturbations in the time evolution of the state – a common
problem in noisy intermediate-scale quantum (NISQ) computing devices [49]. In what
follows, we consider two different sources of noise independently: (i) At each time step,
with probability ✏, a random action rather than the selected one is enforced. This
type of noise mimics bit- or phase-flip errors, which occur in quantum computing. (ii)
Gaussian random noise with zero mean and standard deviation �, is added to the time
duration �t± of each unitary operator; this can, for instance, result from imperfect
controls in the experimental platform.
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Figure 5.6: Self-correcting mixed-field Ising control. (a),(b) Final single-particle fi-
delity Fsp (top) and corresponding protocol length (bottom) – see colorbars – versus
the initial Ising ground state parameter values gx, gz. The target is a critical state of
the Ising model at (J =+1, gx=0.5, gz =1.5). Training started only from initial states
sampled randomly from the enclosed white rectangle. Each of the two parts of a color-
bar is shown on a linear scale with the fidelity threshold (F ⇤

sp=0.97) and the maximum
episode length during training (50), indicated by short black lines. (c)-(f) Same as
(a)-(b) but for noisy evolution – (c),(d): At each time step, actions other than the one
selected by the agent, are taken with probability ✏=0.02; (e),(f): White Gaussian noise
with standard deviation �=0.01 is added to the time step �t± of all applied unitaries.
(g) Time-dependence of the single-particle fidelity starting from an arbitrary initial
ground state, and following the trained agent. The red curve denotes the unperturbed
(noise-free) QMPS protocol. At time step 5 (indicated by the black arrow), the QMPS
protocol is perturbed by enforcing 5 suboptimal actions. All subsequent actions are se-
lected again according to the trained QMPS policy without perturbation (blue curves).
The inset displays a zoom in the vicinity of the fidelity threshold (dashed gray line),
showing that each protocol terminates successfully. (h) Same as in (g) but for dynam-
ics subject to Gaussian noise at every time step �t±, for 5 different random seeds giving
rise to 5 distinct protocols. N =16 spins.

Noise type (i) is equivalent to using an ✏-greedy policy. Hence, the states encoun-
tered when acting with such a policy, could have (in principle) been visited during
training. Due to the generalization capabilities of RL, it is reasonable to expect that
an agent will act optimally after non-optimal actions have occurred, attempting to
correct the ‘mistake’. In Fig. 5.6(c)-(d) we show the achieved final fidelity (top) and
the required number of steps (bottom) for ✏ = 0.02. Overall, the fidelity threshold
can still be reached in the majority of test cases. The randomness typically results in
longer protocols indicating that the agent indeed adapts to the new states encountered.
Interestingly, in the noise-free case the agent fails to prepare the target state for a few
points outside the training region (orange points in Fig. 5.6(a)); this can be attributed
to incorrectly estimated Q-values which have not fully converged to the optimal ones
outside of the training interval. However, when adding the perturbation, the agent is
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able to correct its mistake in one of the shown instances and prepares the target state
successfully (see Fig. 5.6(c)).

Recall that we use a different time step �t± for positive and negative actions. This
way the agent is not just able to undo a non-optimal action by performing its inverse; it
rather has to adjust the entire sequence of incoming unitaries in a non-trivial way. The
ability of the QMPS agent to adapt is demonstrated in Fig. 5.6(g) where we plot the
fidelity during time evolution starting from an arbitrary initial ground state. At time
step t=5, we perturb the protocol by taking 6 different actions, and let the agent act
according to the trained policy afterwards; this results in 6 distinct protocol branches.
In each of them, the agent tries to maximize the fidelity and successfully reaches the
fidelity threshold after a few extra protocol steps. In Section 5.7.3 we provide further
examples showing that this behavior is generic, and can also be observed for different
initial states.

In contrast to the ✏-noise, adding Gaussian random noise �, (ii), to the time step
duration �t±, results in states that the agent has not seen during training. This source
of noise, therefore, explicitly tests the ability of the agent to generalize beyond the
accessible state space, and in particular to interpolate between quantum many-body
states. Fig. 5.6(e)-(f) displays the achieved fidelity and the corresponding protocol
length for � = 0.01. We find that the QMPS agent is also robust to this type of noise.
In Fig. 5.6(h) we plot the fidelity trajectories starting from the same initial state using 5
different random seeds; this illustrates that our agent adapts successfully to previously
unencountered many-body states, and steers the protocol on-line to reach beyond the
fidelity threshold.

The robustness of QMPS agents to noise and, in general, to stochasticity in the
quantum gates, demonstrates yet another advantage of deep RL methods over conven-
tional quantum control techniques. The latter typically perform suboptimal in noisy
systems since the optimization does not take into account the quantum state informa-
tion during the time evolution, and the optimal protocols are specifically optimized
for a fixed trajectory of quantum states [208]. By contrast, QMPS value functions
are optimized on a large class of states and, as shown above, can interpolate and ex-
trapolate to new, seen and unseen states as long as the deep learning approximation
stays sufficiently accurate. Therefore, unlike conventional quantum control algorithms,
QMPS agents have the ability to automatically self-correct their protocols on-the-fly,
i.e., while the system is being time evolved.

5.6 NISQ device integration

The present QMPS framework requires the quantum state to be accessible at each time
step for both training and inference purposes; yet, quantum states are not observable
in experiments without performing expensive quantum state tomography. Neverthe-
less, there already exist efficient encoding strategies that map MPS into quantum cir-
cuits [380–384]. Moreover, several proposals were recently developed in which MPS are
harnessed for quantum machine learning tasks, for example as part of hybrid classical-
quantum algorithms [35, 135, 385] or as classical pre-training methods [386, 387]. Sim-
ilar ideas can be applied to the QMPS architecture by mapping the trainable MPS
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Figure 5.7: MPS to circuit mapping for the N = 4 MPS of Eq. (5.11) in left orthogonal
form. (a) An MPS with bond dimensions 2�4�2. (b) The truncated MPS with bond
dimensions 2� 2� 2.

to a parametrized quantum circuit, thus directly integrating the QMPS framework in
quantum computations with NISQ devices. This would allow us to perform the ex-
pensive training routine on readily available classical computers while the inexpensive
inference step can be performed on quantum hardware.

In the following we illustrate the QMPS to circuit mapping on the example of the
universal (N = 4) control study presented in Section 5.5.1. The QMPS state
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where we have already contracted the feature tensor with its neighboring tensor A[3]

and ` denotes the feature vector index. Our goal is to rewrite the QMPS state as a
quantum circuit
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i�1↵i

= I↵i�1↵
0
i�1

, (i = 2, 3) (5.13)

X

j4

A[4]j4
↵3

A[4]j4⇤
↵
0
3

= I↵3↵
0
3
. (5.14)

In principle, the resultant tensors A[i] also depend on the feature index ` after perform-
ing the canonicalization. However, in what follows we omit the index ` and assume
that all subsequent steps are performed for each of the indices separately.

The quantum circuit mapping of
��✓`

Q

↵
is depicted in Fig. 5.7(a). We can interpret the

rightmost tensor A[4] as a single-qubit unitary, i.e., G4 = A[4]j4
↵3 as it satisfies Eq. (5.14).

Similarly, we can rewrite the adjacent tensor A[3]j3
↵2↵3 with dimensions 4 ⇥ 2 ⇥ 2 as a
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Figure 5.8: QMPS framework as a hybrid quantum-classical algorithm. On the
quantum device, we first prepare the initial state and apply the already inferred protocol
actions as gates. The resultant state | i presents the input to the QMPS network. To
compute the Q-values, we first apply the inverse of the QMPS circuit unitary U †

✓
and

measure the output in the computational basis. The rate of the all-zero measurement
outcomes is an approximation to the fidelity |h✓Q| i|2 and fed into the neural network
on a classical computer. From the resultant Q-values we can infer the next action and
repeat these steps until the target state is reached.

two-qubit unitary after reshaping the index ↵2: G3 = A[3]j3,↵3

↵2,↵
0
2

. The next tensor A[2]j2
↵1↵2

represents an isometry with input dimension 2 and output dimensions 4⇥2. Hence, we
need to extend the columns of A[2] by padding it with the (2

3� 2) orthonormal vectors
X in the kernel of A[2]† . The resultant square matrix G2 = [X A[2]

] is then chosen as
the three-qubit unitary. Finally, we can apply the same steps to the remaining isometry
A[1]j1
↵1 which gives rise to the two-qubit gate G1.

Using the above mapping, an MPS circuit with bond dimension � = 2
n always

contains at least one (n + 1)-qubit gate. Thus, the N = 4 QMPS with bond dimen-
sion �=4 results in a circuit including a three-qubit gate. However, the native gates
realized in most present-day quantum computers contain at most two-qubit unitaries.
Therefore, gates acting on more than two qubits first have to be decomposed into two-
and single-qubit gates. Performing the decomposition in an exact manner is usually
expensive, requires the use of optimization techniques, and often leads to very deep
circuits nonetheless. With the short coherence times and large error rates of current
quantum devices, it therefore quickly becomes infeasible to execute MPS circuits of
bond dimension � > 2. Hence, we require alternative circuit mappings that give rise to
at most two-qubit gates in the final circuit. The simplest approach is to truncate the
given QMPS to a bond dimension � = 2 MPS (see Fig. 5.7(b) for the corresponding
circuit). However, if the truncation errors are too large, the resultant circuit will not
be an accurate description of the true quantum state anymore. Several approxima-
tive methods have been proposed to bridge this gap and prepare high fidelity states
while restricting to the use of only two-qubit gates [380–384]. Note that all of these
approaches can also be applied to the QMPS ansatz. For the remainder of this work we
will consider the previously described exact mappings of the full � = 4 and truncated
� = 2 QMPS as shown in Fig. 5.7.
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Figure 5.9: Universal four-qubit control. We sample 1000 random initial states and
apply the QMPS circuit framework with a varying number of measurement shots. In (a)
we display the percentage of runs in which the target state is successfully reached (i.e.,
the fidelity threshold of F ⇤⇠ 0.85 is surpassed after at most 50 protocol steps). The
success rate under exact computation (without sampling) is shown as a black dashed
line. The success probability when acting completely random is zero (gray dotted line).
We provide both, the results for the full � = 4 QMPS circuit (purple solid line) and
the truncated � = 2 QMPS (green dash-dotted line). (b) The corresponding average
number of required protocol steps for reaching the fidelity threshold. The standard
deviation is indicated by the shaded areas. The black dashed line corresponds again to
the average value computed via exact techniques, the gray dashed-dotted line indicates
the maximum number of allowed episode steps (50).

To calculate the Q-values Q✓( , a) given an input quantum state | i, we first com-
pute the fidelity between the input and the QMPS state

��⌦✓`
Q

�� 
↵��2 =

��h0| U †
✓
U |0i

��2, (5.15)

which can be obtained via sampling on a quantum computer. Alternatively, the overlap
can also be accessed by performing a SWAP test, albeit requiring additional ancilla
qubits and non-local gates [388, 389]. The computed fidelities for each QMPS circuit
are then fed into the classical neural network giving rise to a hybrid quantum - classical
machine learning architecture as shown in Fig. 5.8. If necessary, the parameters of the
QMPS circuit U✓ can be finetuned by performing some additional optimization.

We test the QMPS circuit framework on the universal ground state preparation
task of Section 5.5.1. In the following we only report results for the QMPS-1 agent
trained on a fidelity threshold of F ⇤⇠0.85. We translate the optimized QMPS to the
corresponding quantum circuit and first investigate how the number of measurement
shots for sampling the fidelity in Eq. (5.15) affects the performance of the QMPS
protocols under an ideal (noise-free) simulator. To that end, we sample 1000 random
initial states and compute the percentage of successfully prepared states (i.e. those
runs for which the fidelity threshold is reached within 50 protocol steps). Moreover, we
also store the corresponding average protocol length and show the results in Fig. 5.9(a)-
(b). Surprisingly, as few as 500 shots are already sufficient to reach success rates of
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Figure 5.10: Universal four-qubit control. We sample 1000 random initial states and
apply the QMPS circuit framework in the presence of noise. We set the number of
measurement shots to 4096 and plot the percentage of runs in which the target state
is successfully reached against the noise strength. The success rate under exact, noise-
free computation (without sampling) is shown as a black dashed line. The success
probability when acting completely random is zero (gray dotted line). We provide
both, the results for the full � = 4 QMPS circuit (purple solid line) and the truncated
� = 2 QMPS (green dash-dotted line). (a) The success rate when adding a depolarizing
noise channel (see. Eq. (5.16)) with error parameter � after each gate. Note that the
noise parameter for all single-qubit gates is always fixed to �1 = 10

�4. (b) The success
percentage when adding Gaussian random noise with standard deviation � to the time
step duration �t± of each action. For comparison, the original, unperturbed time step
sizes �t+ = ⇡/8 and �t� = ⇡/13 which the agent was trained on are indicated by the
vertical lines.

close to unity. There are several reasons for this robust performance: First, in the cases
where the agent predicts a wrong action due to sampling noise, it can easily correct
for the mistake in subsequent time steps since it learned to prepare the target state
from any quantum state. Second, although the quantum circuit output is noisy, we
find that the subsequent neural network does not enhance the noise and still outputs
reasonable values. Finally, since the optimal action is always determined by the argmax
of the Q-values, noise in the output does not affect the chosen actions as long as its
magnitude is sufficiently small. Hence, we can achieve high success probabilities even in
the presence of sampling noise. On the other hand, the average protocol length shown
in Fig. 5.9(b) converges to its value under exact computations only after about 10

4

shots which, however, is still in the feasible regime for many modern quantum devices.
Note that the performance of the truncated QMPS circuit (green lines in Fig. 5.9) is
considerably worse and indicates that we indeed require a bond dimension of � = 4 to
faithfully represent the QMPS agent.

Next, we investigate the effects of noise in the quantum computation on the QMPS
framework. To simulate incoherent errors, we consider a depolarizing noise channel E
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and apply it after each action and QMPS gate

E(⇢) = (1� �)⇢+ �
I

2N
. (5.16)

⇢ denotes the quantum state density matrix and � is the depolarizing noise parameter
which is set to �1 = 10

�4 for all single-qubit gates. We plot the success rate as a function
of the two-and three-qubit gate errors �2/3 for 1000 randomly sampled initial states in
Fig. 5.10(a). For error rates �2/3 < 10

�3 the QMPS agent is able to successfully prepare
the target state in almost all runs. However, the performance quickly deteriorates with
increasing error parameter �. Let us note that we have used the same error rate for
both, two-and three-qubit gates. On a physical quantum device, the three-qubit gate
will be decomposed into a sequence of two-qubit gates and hence the introduced noise
will be amplified. However, the decomposition, the resultant circuit depth, and the
sources of noise vary with the hardware type∗. Thus, we chose the simplified noise
model of Eq. (5.16) in order to study the QMPS circuits in a hardware agnostic way.

Finally, we analyze the robustness of the QMPS agent to coherent gate errors
similarly to the discussion in Section 5.5.3. Coherent errors arise when the actual,
executed gate is different to the gate that has to be applied. These errors can often
be mitigated by calibrating the devices carefully. However, frequent calibration is
expensive and therefore coherent errors can usually not be eliminated fully. We simulate
coherent gate errors for each of the 12 different actions by adding mean-zero Gaussian
random noise of standard deviation � to the time step duration �t±. In contrast
to the discussion in Section 5.5.3, each action gate is fixed, although the angles of
rotation �t are shifted compared to the original step size the agent was trained on.
We again sample 1000 random initial states and show the state preparation success
rates for varying standard deviations � in Fig. 5.10(b). For each of the 1000 runs we
also use a different random seed when sampling the gate noise. We observe that for
standard deviations �< 0.5, the QMPS agent is still able to self-correct the protocols
and reach the target state nonetheless. However, for larger amounts of noise the agent
is not capable of reliably preparing the target state anymore. We expect that the
performance of the QMPS agent can likely be improved by performing some additional
optimization on the quantum device taking into account the exact noise model and
error rates.

5.7 Additional details concerning the control studies

Parameters related to the RL environment and the spin systems of each control study
can be found in Table 5.1.

We provide some ancillary videos to illustrate the optimal policies learned by the
QMPS agent [390]. The description of each video is given below.

Video 1 – Transverse-field Ising control
Bloch sphere trajectory of the reduced density matrix of a single spin in the bulk
(i=15) when starting from the initial ground state at gx =1.01 and acting according

∗For example, transpiling (i.e., decomposing) the QMPS circuit on an IBM Quantum device results
in ⇠ 100 two-qubit gates, while on an IONQ device we require only ⇠ 30 two-qubit gates.
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Parameter Study A
(QMPS-1,QMPS-2)

Study B Study C

system size N 4 32 16
single-
particle
fid. threshold
F ⇤

(0.96, 0.992) 0.99 0.97

max. episode
length T

50 50 50

number of ac-
tions

12 7 12

step size �t+
�
⇡

8 ,
⇡

16

�
⇡

12
⇡

12

step size �t�
�
⇡

13 ,
⇡

21

�
⇡

17
⇡

17

quantum state
bond dim. � 

4 16 16

Table 5.1: RL environment parameters.

to the optimal QMPS protocol. Also shown are the single-particle and many-body
fidelities, the half-chain von Neumann entanglement entropy, the local magnetizations
h�ii, and the local spin-spin correlations h�i�i+1i during each step of the protocol. The
protocol can be divided into three segments involving an initial single-particle rotation
and a final many-body Euler-angle-like rotation which reduces unwanted correlations.

Video 2 – Self-correcting Ising control
Bloch sphere trajectories of the reduced density matrix of a single spin at the edge
(i = 0) and in the bulk (i = 15) when starting from the initial ground state at J =

�1, gx = 1.2, gz = 0.2 and preparing the critical target state. The red arrow/curve
denotes the trajectory obtained via acting with the optimal QMPS protocol. The blue
arrow/curve shows a suboptimal trajectory where at time step t = 5 a different than
the optimal action is chosen. Afterwards, the systems is again evolved according to
the optimally acting QMPS agent. We show two examples of perturbed trajectories
consecutively. In both cases the agent is able to successfully prepare the target state
despite the perturbation, thus illustrating the ability of the agent to generalize and
adapt its protocols on-the-fly.

Video 3 – Self-correcting Ising control
Same as Video 2. However, in this case the blue arrow/curve displays the Bloch sphere
trajectory subject to noisy dynamics. Specifically, at each time step we add white
Gaussian noise with std �=0.05 to the time step duration �t±. We show two examples
of noisy trajectories with different random seeds consecutively. In both cases the agent
is again able to successfully prepare the target state which illustrates the robustness of
the QMPS agent to noisy dynamics.
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Figure 5.11: Universal single-particle control. Upper panel: Single-particle fidelity
between the final and z-polarized target state (✓=0) as a function of the initial state
parameters ✓ and �. In (a),(b) � is held fixed; in (c),(d) ✓ is fixed instead. The agent
is able to surpass the fidelity threshold F ⇤

sp=0.9995, (vertical dashed line) for any state
on the Bloch sphere. Lower panel: The corresponding number of protocol steps used
by the QMPS agent to reach the target state. N =64 spins.

5.7.1 Universal state preparation from arbitrary initial quan-

tum states

Single-particle control

To provide another benchmark of the QMPS framework, we test it in a single-particle
control setting. Our goal is to prepare a specific state (here chosen to be the spin-
up state) from any other single-particle state. We translate this setup to the many-
body regime by considering N = 64 spins uniformly polarized in one direction on the
Bloch sphere, which can be exactly approximated with an MPS of bond dimension
� = 1. Note that an arbitrary single-particle spin state can always be expressed as
| i=cos(✓/2)|0i+e

i�
sin(✓/2)|1i, where 0✓⇡ and 0�<2⇡.

We train a QMPS agent starting each episode from a uniformly sampled state on the
Bloch sphere, with a fixed single-particle fidelity threshold of F ⇤

sp =0.9995, and an ac-
tion set that is composed only of single-particle rotations A={X̂,�X̂, Ŷ ,�Ŷ , Ẑ,�Ẑ}.
Figure 5.11 shows the achieved fidelities between the final and target state for different
initial states represented by the angles ✓ and �. We find in all cases that the QMPS
agent is able to successfully reach the fidelity threshold and hence is capable of per-
forming universal single-particle state preparation. We also plot the protocol length
starting from each initial state, which, as expected, increases as the distance between
the initial and the z-polarized target state (✓=0) becomes larger (see Fig. 5.11(a)).

Universal ground state preparation for N = 4 spins

In Fig. 5.12 we provide the learning curves of the first QMPS-1 agent which was trained
to prepare the Ising ground state with a many-body fidelity threshold of F ⇤⇠0.85 (see
Section 5.5.1).
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Figure 5.12: Universal four-qubit control. Learning curves of the QMPS-1 agent
trained on a many-body fidelity threshold of F ⇤⇠0.85 (gray-dashed line). The achieved
final fidelity F̄ is shown averaged over a window of 100 training episodes. The light-
blue data indicates the range between the best and the worst fidelity values. Inset: The
number of episode steps T̄ averaged over 100 episodes. The maximum number of steps
per episode was set to 50. N =4 spins.

5.7.2 Preparation of a polarized product state from paramag-

netic ground states

This section provides further details on the case study presented in Section 5.5.2.
To speed training up, we restrict the action space to 7 actions for this control setup

with A = {Ŷ , Ẑ,�Ẑ, X̂X̂,�X̂X̂, Ŷ Ŷ ,�Ŷ Ŷ }. This action set was determined by first
training on a smaller system size (N = 8) using all actions and then selecting only
those that appear in the final optimal protocols.

To get an intuition about the difficulty of this control setup, we proceed as follows:
(i) we demonstrate that the initial states are sufficiently far (in the Hilbert space
distance) from the target state, e.g., by computing the fidelity as a function of gx,
see Fig. 5.13 (dashed lines). This corresponds to a protocol where the agent does
not take any action. (ii) an alternative protocol can be produced by noticing that
the initial states are paramagnetic, while the target is a z-polarized state, and thus a
⇡/2-rotation about the y-axis presents a good candidate for the optimal protocol (it
is indeed optimal in the limit gx ! 1). The corresponding fidelities are shown in
Fig. 5.13 (solid lines). Compared to these fidelities, the threshold for the RL agent is
given by the horizontal dashed line; it gives a lower bound on the performance of the
QMPS protocols. Notice that, the QMPS agents are able to considerably improve on
the initial fidelity and outperform the trivial Ŷ -rotations for the considered range of
transverse field values.

The QMPS agent was trained to prepare a specific target state (the z-polarized
state) starting from a class of Ising ground states. In principle, the obtained protocols
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Figure 5.13: Transverse-field Ising control. Single-particle fidelity (blue, left y-axis)
and many-body fidelity (orange, right y-axis) between the target z-polarized state and
an initial Ising ground state for different values of the transverse field gx (dotted curves).
The solid lines show the respective fidelities of the target state and the initial ground
state after applying a single-particle Ŷ -rotation with �t� = ⇡/4. The QMPS agent is
able to improve on the trivial rotation and prepare the target state with single-particle
fidelities Fsp>0.99 (gray dashed line). N =32 spins.

can be inverted to achieve the opposite, i.e. prepare any paramagnetic Ising ground
state from the z-polarized state. This is often the objective in quantum computing
or simulation tasks where the system starts out in a simple product state and is then
brought into the state that has to be investigated or that encodes the solution to
a problem. With a single trained QMPS agent one can generate optimal controls
that, when reversed, prepare a variety of different states that can then be used for
computation. Note however, that the final state reached by using the original QMPS
protocol does not exactly coincide with the target state since we do not achieve a
perfect fidelity of unity. It is therefore not clear whether the inverse protocol, when
starting from the exact target state, prepares the original initial states with an equally
high fidelity or whether it does considerably worse. In Fig. 5.14 we provide the achieved
single-particle fidelities when preparing Ising ground states from the z-polarized state
by reversing the optimal QMPS protocols and compare them to the fidelities of the
original state preparation routine (see Fig. 5.5 of Section 5.5.2). We find that the
fidelities do not differ significantly which justifies that inverse state preparation using
the QMPS protocols is possible in this particular control scenario.

In Fig. 5.15 we display three optimal QMPS protocols starting from initial ground
states at gx = 1.01, 1.1, 1.3, respectively. Interestingly, in all three cases, the agent
learns to initially apply a ⇡/2-rotation about the y-axis which is decomposed into
three consecutive protocol steps since we fix the duration of each applied unitary to
be �t+ =⇡/12. As discussed in Section 5.5.2, the agent is able to successfully prepare
the target state also for initial ground states outside of the training interval, i.e., for
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Figure 5.14: Transverse-field Ising control. Final single-particle fidelities when start-
ing from Ising ground states with transverse field values gx and preparing the z-
polarized target state (blue curve). The orange points show the fidelity when reversing
the state preparation scenario, i.e. one starts from the polarized state and applies the
inverse QMPS protocol to reach the corresponding Ising ground state. The fidelities
achieved by the reversed protocol are comparably high. Therefore they justify that, in
this case study, the trained QMPS agent can be employed for the inverse state prepa-
ration task as discussed in the Section 5.5.2. N =32 spins.
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Figure 5.15: Transverse-field Ising control. Upper panels: Final protocols of the
QMPS agent when starting from a ground state with (a) gx = 1.01, (b) gx = 1.1,
and (c) gx = 1.3. Middle panel: Single-particle fidelities (blue, left y-axis) and many-
body fidelities (blue, right y-axis) between the evolved states and the z-polarized target
state at each protocol step. The fidelity threshold F ⇤

sp = 0.99 is indicated by a gray
dashed line. Lower panel: The corresponding half-chain von Neumann entanglement
entropy calculated at each step of the protocol. The applied unitaries do not create
an excessive amount of entanglement allowing the time evolved states to be described
with a relatively low bond dimension. N =32 spins.

gx > 1.1. Note however, that the predicted Q-values of the QMPS agent can be quite
different from the true return when tested outside of the training interval, yet the
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Figure 5.16: Transverse-field Ising control. Analysis of the optimal QMPS protocol
obtained when starting from the initial ground state at gx = 1.01. Shown are the local
spin-spin correlations h�i�i+1i and the local magnetization h�ii along each direction at
the center of the spin chain (i = 15). The yellow shaded segment indicates the initial
Ŷ -rotations which align the spin along the z-axis; the blue shaded area points to a
generalized Euler-angle-like many-body rotation which reduces unwanted correlations
and disentangles the state. N =32 spins.

policy learned by the agent can still produce meaningful optimal protocols. In the
bottom panels of Fig. 5.15 we show the half-chain von Neumann entanglement entropy
Sent of the encountered states when evolving according to the optimal protocols. The
entanglement entropy stays small and hence, allows the time evolved system to be
simulated with a relatively small bond dimension � (for training we set � =16). Note
however, that the entanglement entropy is not fully reduced to zero at the end of the
protocol which is especially the case for the states close to the critical point. This can be
attributed to the logarithmic scaling of the entanglement entropy in the initial critical
state, with the subsystem size N/2 due to the presence of long-range correlations. While
the agent is able to reduce local correlations effectively (see Fig. 5.16, middle panel),
the short protocol is not capable of destroying all long-range correlations which persist
in the final state. The prepared state, therefore, has a finite many-body overlap with
the separable target state (see orange curves/axis in Fig. 5.15 showing the many-body
fidelity), which explains the discrepancy in the final entanglement entropies.

In Fig. 5.16 we plot the local expectation value of the magnetization along each di-
rection and the local spin-spin correlations at the center of the chain which reveal the
role of each unitary occurring in the protocol sequence corresponding to the state prepa-
ration task shown in Fig. 5.15(a) (gx = 1.01). As already mentioned, the first three
Ŷ -rotations align the state along the z-axis bringing the expectation values of the X̂
and Ŷ component to zero. The role of the remaining unitaries is to decrease unwanted
correlations and consequently to disentangle the state. Note that the hX̂X̂i and hŶ Ŷ i
correlations approach zero in an intertwined manner which is caused by an intricate
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Figure 5.17: Transverse-field Ising control. Upper panel: Final single-particle fidelities
achieved when testing the protocols of a QMPS agent trained on N = 32 spins (blue
curve) on a smaller system size of N = 8 (red curve) and on the larger N = 64 spin
system (green curve). The increase in the single-particle fidelity for N = 8 suggests
that optimized protocols can be transferred to smaller system sizes for this particular
control setup. Lower panel: The opposite scenario, where the protocols of a QMPS
agent trained on N = 8 spins (light red) are tested on larger systems of N = 32 spins
(light blue) and N = 64 spins (light green). The fidelity threshold (gray dashed line)
cannot always be maintained for the larger system size especially close to the critical
point at gx⇠1.

combination of X̂X̂ and Ŷ Ŷ disentangling gates and single-particle Ẑ-rotations. The
latter are important for finely realigning the state after each disentangling operation
and as such preventing the correlations from diverging.

Next, we analyze how well the optimal protocols perform on systems with a dif-
ferent number of spins. To this end, we test the protocols optimized for N =32 spins
(QMPS32) on N =8, 64 spin systems, and vice-versa: protocols obtained after training
on N =8 spins (QMPS8) are tested on the larger N =32, 64 systems (see Fig. 5.17). We
find that the fidelity threshold can still be reached when applying the QMPS32 proto-
cols on smaller system sizes. However, the opposite is not true: the QMPS8 protocols,
in general, give rise to fidelities below the threshold when tested on the N =32, 64 spin
systems. These system-size (in)dependence suggests that, for this particular control
setup, one can devise suitable pretraining techniques for large system sizes, based on
the behavior of agents successfully trained on smaller systems. Moreover, the QMPS
agent tends to find optimal protocols which appear robust to changes in the system
size, and the control task likely admits a solution also in the thermodynamic limit.

Finally let us comment on the quantum state entanglement and the related MPS
bond dimension. During the initial exploratory stage of training, random unitaries
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Figure 5.18: Transverse-field Ising control. Truncation error for the evolved states
encountered during training of the QMPS agent. The dark purple curve shows the
truncation error averaged over a window of 3000 transitions. Training was performed
with a quantum state bond dimension of � =16; N =32 spins.

are applied to the system leading in general to a ballistic growth of the entanglement
entropy. In this case the fixed bond dimension of � = 16 is not always sufficient to
capture the evolved quantum states giving rise to the large truncation errors, shown in
Fig. 5.18. These truncation errors, however, naturally decrease as training progresses
and the action selection becomes more deterministic while the Q-function converges
close to the optimal one. While for training a bond dimension of � = 16 was used,
testing was performed with � =32 for which the truncation errors vanished to machine
precision. This check ensures the stability of the QMPS protocols to changes in the
accuracy of the MPS approximation.

5.7.3 Learning robust critical-region state preparation

This section provides further details on the case study presented in Section 5.5.3.
To compare the achieved fidelities of the QMPS agent reported in Fig. 5.6(a), we

show the fidelities between the initial mixed-field Ising ground states and the critical
target state before any controls are applied in Fig. 5.19. The QMPS agent is able to
reach the target with single-particles fidelities Fsp > 0.97 (corresponding to a many-
body fidelity of F ⇠0.61).

The half-chain von Neumann entanglement entropy of the quantum states during
training is displayed in Fig. 5.20. Similar to the previous case study, during the initial
stages of training the encountered states are highly entangled due to the randomness
of the action selection. Once the agent learns how to reliably prepare the target state,
the entropies decrease and are scattered closely around the target state value (orange
dashed line). We emphasize that critical states possess a logarithmic correction to
the area-law of entanglement, which makes their preparation a non-trivial task. For
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Figure 5.19: Self-correcting mixed-field Ising control. Many-body fidelity F (left)
and single-particle fidelity Fsp (right) between the critical target state and the initial
ground states at transverse and longitudinal field values gx, gz. N = 16 spins. The
trained QMPS agent prepares the target state with many-body and single-particle
fidelities F > 0.61, Fsp > 0.97 respectively, and therefore considerably improves on the
initial fidelity values. N =16 spins.

Figure 5.20: Self-correcting mixed-field Ising control. Half-chain von Neumann en-
tanglement entropy of final states during training. The dark green curve denotes the
average over 200 episodes and the orange dashed line indicates the entanglement en-
tropy of the critical target state. The entropies decrease as learning progresses and
converge to a value close to that of the target state. Inset: Truncation error averaged
over a window of 3000 transitions (dark purple). Training was performed with a quan-
tum state bond dimension of � =16; for testing � =32 was used. N =16 spins.

training we used a relatively small bond dimension of � = 16 which led to the finite
truncation errors shown in the inset of Fig. 5.20. However, training is still successful
and all subsequent tests were performed by setting � = 32 which did not affect the
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Figure 5.21: Self-correcting mixed-field Ising control. Exemplary QMPS protocols
and time-dependence of the single-particle fidelity when starting from an initial ground
state within the training region at J =�1, gx = 1.2, gz = 0.2 (a)-(d), and outside the
training region at J = �1, gx = 1.0, gz = 1.0 (e)-(h). For each subplot the upper
panel displays the optimal QMPS protocol without perturbations, the middle panel
presents an exemplary protocol subject to noise or perturbations, and the bottom
panel shows the single-particle fidelities at each time step for different protocols (the
original, unperturbed QMPS protocol is always indicated by the magenta line). The
single-particle fidelity threshold of F ⇤

sp=0.97 is denoted by a gray dashed line. In (a)-
(b), (e)-(f) the QMPS protocol is modified at time step t = 5 (t = 15) [indicated by
a black arrow] by taking 5 different random actions. Afterwards, the system is again
evolved according to the QMPS agent leading to 5 distinct trajectories (blue lines). In
all but one case the QMPS agent is able to correct for the mistake and successfully
reaches the fidelity threshold. In (c)-(d), (g)-(h) white Gaussian noise with standard
deviation �=0.01 (c),(g), or �=0.05 (d),(h) is added to the time step duration �t±.
The system is evolved with 5 different random seeds (blue lines). The QMPS agent is
again able to adapt its protocol and successfully reaches the fidelity threshold in most
cases. N =16 spins.

QMPS protocols or the final achieved fidelities.
Next, we provide further examples showcasing the ability of the QMPS agent to

self-correct its protocols on-the-fly when the time evolution is noisy or perturbed. In
Fig. 5.21, we consider two different initial ground states, one within the training region
(J = �1, gx = 1.2, gz = 0.2) [(a)-(d)] and one outside (J = �1, gx = 1.0, gz = 1.0) [(e)-
(f)], and analyze the success of state preparation subject to different protocols. In the
upper panels of each subplot in Fig. 5.21 we display the actions of the optimal protocol
(top) and one exemplary protocol that has been perturbed (bottom). The lower panel
always shows the single-particle fidelities at each step of the protocols.

First, we take the optimal QMPS protocols and modify it at time step t=5 (t=15)
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by taking 5 random suboptimal actions instead. Afterwards the system is again evolved
according to the greedily acting QMPS agent giving rise to 6 distinct trajectories (the
magenta line corresponds to the unperturbed one). In most cases the agent is able to
correct for the mistake by adapting the subsequent protocol and reaches the fidelity
threshold nonetheless. However, in one instance (see Fig. 5.21(a)), the resultant QMPS
protocol does not converge and the agent fails to prepare the target state. Hence, the
agent is not able to generalize to states generated by this particular protocol sequence,
and likely predicts wrong Q-values that steer the agent eventually away from the target
state. This is, however, not surprising since the agent has only been trained on states
within a small part of the many-body Hilbert space and therefore, it cannot be expected
to devise successful protocols from arbitrary states.

Note that for the initial state outside of the training interval [(e),(f)], the pertur-
bation of the original QMPS protocol gave rise to a shorter protocol, i.e. the fidelity
threshold is reached in a fewer number of steps. Hence, in this case the original protocol
is not a local minimum of the control landscape. However, this is not surprising, since
the QMPS agent has not been trained on this initial state and therefore, the predicted
Q-values are not guaranteed to have converged to the true optimal values.

Finally, we study the robustness of the QMPS agent to a randomized time step
duration �± by adding white Gaussian noise with standard deviation � = 0.01, 0.05

to it (see Fig. 5.21(c),(d),(g),(h)). We evolve the system with 5 different random
seeds giving again rise to 6 distinct trajectories (the magenta line corresponds to the
unperturbed one). For each of the 5 randomized time evolutions, the QMPS agent
has to eventually adapt its protocol by performing a different sequence of actions. It
successfully prepares the target state in all but one case which falls outside the training
region (see Fig. 5.21(h)). Note here as well that in some instances the agent is able to
devise shorter control protocols compared to the original unperturbed ones. Hence, the
randomized step duration can have a positive effect on the control problem allowing
for faster state preparation protocols.

In Fig. 5.22 we compare the achieved fidelities in the presence of noise when we
evolve with the adapted protocols (bottom) and with the original, noise-free protocol
(top) starting from an initial state J =�1, gx=1.2, gz =0.2 within the training region.
We again consider Gaussian random noise with standard deviations � = 0.01, 0.05

and repeat the time evolution with 100 different random seeds for each of the two
cases. When the noise is weak (� = 0.01), the fixed, unperturbed protocol gives rise
to qualitatively similar fidelity curves regardless of the seed (see Fig. 5.22(a)). We
found that for 90 out of the 100 runs, the protocol successfully prepares the target
state, that is, the fidelity threshold is reached within 50 steps. However, in the cases
where the fidelity threshold is not surpassed, the final fidelities are close to the target
value of F ⇤

sp = 0.97. If we instead allow the QMPS agent to adapt to the perturbed
states, we obtain the fidelity curves in Fig. 5.22(b). The resultant protocols give rise to
qualitatively different trajectories that diverge more towards later time steps (compare
to Fig. 5.21(a)-(d)). However, in this case the agent successfully prepares the target
state for each of the 100 runs. Hence, for sufficiently weak noise strengths, the original
unperturbed protocol is expected to give qualitatively similar results to the noise-free
dynamics. However, even in this example the self-correcting agent has a measurable
advantage over the fixed protocol.
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Figure 5.22: Self-correcting mixed-field Ising. Time-dependence of the single-particle
fidelity when adding Gaussian random noise with standard deviations � = 0.01 (a)-(b),
and � = 0.05 (c)-(d) to the time step duration �t± and starting from an initial ground
state at J =�1, gx=1.2, gz =0.2. For each figure, we sampled 100 different trajectories
(each corresponding to a different random seed). The original, unperturbed QMPS
protocol is always indicated by the magenta line. The single-particle fidelity threshold
of F ⇤

sp = 0.97 is denoted by a horizontal gray dashed line and the number of steps
required to reach the threshold in the noise-free case is indicated by a vertical black
dotted line. In (a),(c) we always evolve according to the fixed, unperturbed QMPS
protocol we obtained from the noise-free simulation. The percentage of successfully
prepared target states within 50 steps is 90% in the case of weak noise (� = 0.01) and
0% in the case of strong noise (� = 0.05). In (b),(d) we use the adaptive QMPS agent
to generate different protocols for each distinct run (compare to Fig. 5.21(a)-(d)). The
respective success percentages are 100% (� = 0.01) and 74% (� = 0.05). Hence, in
both instances, the self-correcting agent is able to improve over the fixed, noise-free
protocol.

This situation changes when we consider the case of strong noise (� = 0.05) as
shown in Fig. 5.22(c)-(d). The fixed, unperturbed protocol leads to diverging fidelity
curves already after a few steps (top). In fact, the success probability for the simulated
100 runs is 0. In contrast, the adaptive agent prepares the target state successfully for
74 out of the 100 instances within the 50 allowed time steps. Moreover, the agent clearly
tries to steer the quantum states towards high fidelity regions. This example therefore
demonstrates that the self-correcting agent is able to improve over the original, noise-
free protocol when the dynamics is being perturbed.

5.8 Details of the QMPS architecture and training

In all examples discussed in this chapter the QMPS tensors are initialized as identity
matrices with Gaussian noise (� = 0.2) added to all components both for the real
and complex parts. The tensors are additionally scaled by a factor of 0.25. The neural
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Parameter Value
number of training episodes Neps 40000 – 80000
optimizer ADAM
learning rate ↵ 5⇥ 10

�5 � 1⇥ 10
�4

batch size 32 – 64
RL discount factor � 0.98

RL buffer size 8000
target network update frequency ntarget 10
initial exploration ✏init 1.0
final exploration ✏final 0.01
exploration decay ✏l exp(�8⇥l/Neps)

QMPS bond dimension �Q 4 – 32
QMPS feature vector dimension df 32 – 72
NN number of hidden layers 2
NN number of hidden neurons 100 – 200
NN nonlinearity tanh

Table 5.2: QMPS training hyperparameters.

network weights and biases are initialized with real Gaussian random numbers (�=0.1).
All parameter values of the QMPS framework are summarized in Table 5.2. The values
of the hyper-parameters including the time evolution step sizes �t± are obtained by
performing a coarse grid-search, i.e. we trained on a few different parameter values
and select the ones which yield best performance results. Note that we adopt slightly
different values for �t+ and �t�. This choice prevents the agent to simply undo an
action by evolving with the inverse operator which helped stabilise training.

As mentioned in Secion 5.5.1 a single QMPS agent is not able to reach arbitrarily
high fidelities due to the discreetness of the action space, the constant step size, and the
fixed maximum episode length. An additional challenge is posed by the large deviation
in the expected return values for states at the beginning and the end of the episode: The
QMPS network is not able to resolve small differences in the reward which is however
required close to the target state where the log fidelities approach zero. Therefore, we
introduce a multi-stage learning scheme in Section 5.5.1 where successive agents with
tighter fidelity thresholds are trained starting from states which are pre-prepared from
agents optimized on smaller thresholds. This training strategy also allows the step size
to be chosen separately for each agent.

We show the pseudocode of the DQN algorithm used for training the QMPS agent
in Algorithm 1. The corresponding Python code can be found on GitHub [391].
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Algorithm 1 QMPS training
Input: Target state | ⇤i, fidelity threshold F ⇤, maximum episode length T , number of

training episodes Neps, learning rate ↵, batch size Nbatch, discount factor �, replay
buffer size Nbu↵ , target network update frequency ntarget, exploration parameters
(✏init, ✏final)

1: Initialize QMPS network Q✓ and copy parameters to target network ✓̄  ✓
2: Reset RL environment (sample initial state | 0i)
3: # Fill replay buffer with random transitions
4: for i = 1, .., Nbu↵ do
5: Select random action a! ±Â
6: Time evolve state | 0i = exp

⇣
±i�t±Â

⌘
| i

7: Compute reward r = N�1
log(|h 0| ⇤i|2)

8: Append transition (| i, a, r, | 0i) to replay buffer
9: Set | i = | 0i

10: if r > F ⇤ or T is reached then
11: Reset RL environment (sample new initial state | 0i)
12: # Start training
13: for l = 1, .., Neps do
14: Reset RL environment (sample initial state | 0i)
15: Compute decay exploration parameter: ✏l = ✏final + (✏init � ✏final) exp(�8l/Neps)

16: for t = 0, .., T do
17: # Update network
18: Sample Nbatch transitions (| i, a, r, | 0i) from replay buffer
19: Compute regression target y = r + � Q✓̄( 

0, argmax
a0 Q✓( 0, a0

))

20: Compute gradients of L(✓) =
P

batch(y �Q✓( , a))
2 w.r.t. parameters ✓

21: Perform gradient descent step using ADAM
22: Every ntarget steps: Copy QMPS parameters ✓ to target QMPS network

✓̄  ✓

23: # RL environment step

24: Select action ±Ât  at =

(
random action with probability ✏l
argmax

a
Q✓( t, a) otherwise

25: Time evolve state | t+1i = exp

⇣
±i�t±Ât

⌘
| ti

26: Compute reward rt = N�1
log(|h t+1| ⇤i|2)

27: Append transition (| ti, at, rt, | t+1i) to replay buffer
28: if rt > F ⇤ or T is reached then BREAK

Optimization

The gradients of the neural network and the QMPS parameters can be computed via
conventional backpropagation and, in principle, any automatic differentiation library
can be employed for this task. However, we obtained a considerable speed-up (factor
of ⇠10) by implementing the gradient computation from scratch. The neural network
takes as input the real-valued QMPS feature vector and therefore the parameters are
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chosen to be real-valued as well. On the other hand, restricting the QMPS tensors
to real numbers greatly limited the expressivity of the ansatz. Hence, each tensor
component is comprised of both a real and imaginary parameter. Due to the overall
QMPS ansatz being not holomorphic (the absolute value is not complex differentiable),
the real and imaginary parameters have to be updated independently by computing
the gradient with respect to each of them separately.

Compute resources

For a system of size N , local Hilbert space dimension d, and uniformly fixed bond
dimension �, the number of MPS parameters scale as N�2d. The quantum state
MPS time evolution (based on SVD and matrix multiplication) as well as the QMPS
optimization (based only on matrix multiplication) scale linear in N and at worst
polynomial in � and d. We have not fixed the bond dimensions of the MPS and QMPS
to be uniform on all sites, but rather let both of them grow exponentially from the
boundary up to a maximum uniform bond dimension in the middle of the MPS. For
the hyperparameters chosen in this study, most time was spent in the optimization step
which requires two forward passes and one backward pass on a batch of input states.
Overall, one full episode of training (including 50 environment and optimization steps)
for N = 16,�Q = 32,� = 16, df = 32, and a batch size of 64 took 6.5 sec on a Intel
Xeon Gold 6230 CPU and 1.8 sec on a NVIDIA Tesla P100 SXM2 GPU. Let us note
that the code has not been optimized for a GPU and with some modifications an even
larger speedup can be expected. Therefore, larger system sizes should also be within
reach in the near future.

5.9 Conclusion

In this work we introduced a tensor network-based Q-learning framework to control
quantum many-body systems. Incorporating an MPS into the deep learning architec-
ture allows part of the Q-value computation to be efficiently expressed as an overlap
between two MPS wave functions. As a result, larger system sizes can be reached
compared to learning with the full wave function. We emphasize that standard RL
algorithms with conventional neural network architectures cannot handle quantum
many-body states, whose number of components scale exponentially with the num-
ber of spins: e.g., for N = 32 spins, there are 2

32 ⇡ 10
10 wavefunction components

to store which is prohibitively expensive. By contrast, our MPS learning architecture
only requires linear scaling with the system size N . Furthermore, we found that the
hyperparameters of the optimization and, in particular, the number of training episodes
do not require finetuning with the system size, and stayed roughly constant (see Sec-
tion 5.8). Summarizing, QMPS proposes the use of a tensor-network variational ansatz
inspired by quantum many-body physics to offer a novel RL learning architecture.

QMPS-based RL is designed for solving the quantum many-body control problem
by learning a value function that explicitly depends on the quantum state. There-
fore, a successfully trained QMPS agent is capable of devising optimal protocols for a
continuous set of initial states, and selects actions on-the-fly according to the current
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state visited. As a result, a QMPS agent has the ability to self-correct mistakes in the
protocols when the dynamics is stochastic, even before the protocols have come to an
end. Moreover, we illustrated that the agent can interpolate and extrapolate to new
quantum states not seen during training. Remarkably, we observed this behavior over
test regions several times the size of the training region. To the best of our knowledge,
there does not exist a quantum control algorithm that exhibits such desirable features,
as these are based on deep learning capabilities: conventional quantum control algo-
rithms require to re-run the optimization when the initial state has been changed, and
thus lack any learning capabilities.

The generalization capabilities, the robustness to noise, and the feasibility of uni-
versal state preparation (for small system sizes) are unique advantages of the QMPS
framework over competitive optimal control algorithms. These features are especially
relevant for experiments and modern quantum technologies that heavily rely on quan-
tum many-body control, and in particular for NISQ devices. We demonstrated that
the present QMPS framework can be integrated in quantum device simulations by
mapping the optimized MPS ansatz to gates in a quantum circuit. The resultant hy-
brid quantum-classical algorithm allows us to control quantum states directly on the
device without the need of performing expensive quantum state tomography. Thus, an
adaptive on-line agent can be trained on the noisy hardware and mitigate the effects
of errors at each step of the computation.

Our work opens up the door to further research on tensor network-based RL al-
gorithms for quantum (many-body) control. Due to the modular structure of the
architecture, the QMPS can be replaced by various tensor networks, such as tree
tensor networks (TTN) [117] or the multi-scale entanglement renormalization ansatz
(MERA) [118]; these would allow different classes of states to be represented efficiently,
and affect the expressivity of the ansatz. It is also possible to use a matrix product
operator (MPO) in place of the MPS, which would require us to calculate an expecta-
tion value rather than a fidelity [129]. Furthermore, if the operators can be made fully
local, i.e., by acting on only two or three sites, we can interpret the trainable parame-
ters as representing a local observable which we can efficiently measure on present-day
quantum devices. Another potential enhancement would be to build symmetries (e.g.
reflection, translational, etc.) into the tensor network ansatz which could ultimately
reduce the required computational resources. Furthermore, we can also consider con-
trolling infinite-sized systems and use the iMPS and iDMRG formalism to simulate
and parameterize the agent instead [36].

Tensor networks come with a comprehensive toolbox for analyzing their properties,
such as the entanglement structure and correlations. Hence, tensor-network-based rein-
forcement learning will enable us to study the data, the training, and the expressivity of
the ansatz using well-understood concepts from quantum many-body physics [38, 392].
Tensor networks and MPS in particular also allow for different optimization strate-
gies that are not based on traditional backpropagation [33]. In analogy to DMRG, we
can compute gradients and update tensors locally at only one or two sites at a time.
Moreover, matrix decompositions like the SVD allow us to adaptively choose the bond
dimension and with that the number of optimizable parameters as part of the train-
ing. It is therefore an interesting future direction to compare the different optimization
approaches in this RL setting.
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In terms of the computational performance, there are several possible improvements
that would potentially allow for faster training. Currently, the main bottleneck is the
optimization of the QMPS network. While it is crucial to choose a large enough bond
dimension when time evolving the quantum states, one can truncate each quantum
state MPS before feeding it into the Q-value ansatz. It would be interesting to see to
what extent the quantum states can be compressed for training to still be successful.
Other possibilities for speeding up training are to use a pre-filled replay buffer, e.g.,
with optimal transitions obtained for smaller system sizes, or to pretrain the QMPS
agent in a supervised manner on said transitions.

Note that it is straightforward to use RL algorithms other than Q-learning in con-
junction with our MPS-based ansatz. For instance, policy-gradient methods instead of
Q-learning allow for continuous action spaces, and hence target states can be reached
with higher fidelity [211]. Similarly, we can relax the constraint on the actions space
of applying each operator uniformly to all spins and instead allow the applied gates to
be different at each site which is usually the case for quantum computing applications.
However, the dimension of such an action space would grow linearly with the number
of particles, and therefore, training would become infeasible in the many-body regime
when using the current tools. Another interesting direction of this work is to employ
multi-task reinforcement learning to learn a goal-dependent policy [393]. This would
allow us to train a single agent to prepare a family of target states and hence, solve a
whole class of control problems at the same time.

Finally, one can also adapt the reward function and, for instance, consider the
energy density, various distance measures beyond the fidelity, or a completely different
objective function such as the entanglement entropy. It would also be interesting to
apply the QMPS control framework to a wide range of different systems, such as,
Heisenberg models, Hubbard models, time-dependent Hamiltonians, and systems in
higher dimensions (e.g. using the 2d PEPS analog of an MPS [130]).



Conclusion

In this thesis, I have discussed four different applications of machine learning tech-
niques to problems in quantum physics. I have showcased how the three machine
learning types – supervised, unsupervised, and reinforcement learning – can each be
leveraged for diverse tasks ranging from vortex detection in rotating Bose-Einstein
condensates, to anomaly detection for unsupervised phase discovery, and to quantum
control. To that end, I have employed both, conventional neural network models,
and tensor network-based approaches which are tools inspired by computational quan-
tum many-body physics. Furthermore, I have demonstrated how present-day quantum
computers can be effectively harnessed for machine learning tasks on quantum data.

In the following I will briefly summarize each of the four main projects of this thesis,
which resulted in three peer-reviewed publications and one preprint article which is cur-
rently under review. For a detailed discussion of each study I refer to the corresponding
chapter in the thesis.

Chapter 2: Deep-learning-based quantum vortex detection in

atomic Bose–Einstein condensates

I developed a vortex detection framework based on convolutional neural networks that
can accurately locate all vortices in density images of atomic Bose-Einstein condensates
(BECs). The technique works both on groundstate and on more challenging non-
equilibrium configurations. Furthermore, the vortex detector gives accurate predictions
even in the presence of different sources of noise. Hence, it is especially suited for post-
processing noisy images obtained from experiments. Additionally, the model trained on
snapshots of BECs in harmonic traps can generalize to images where the BEC is trapped
in a ring-shaped potential instead. I further showed that with minor modification to the
model, the vortex detector can also learn to classify the circulation direction of each
vortex when the phase profile is provided as well. This chapter has been published
in: Machine Learning: Science and Technology 2, 035019 (2021).

Chapter 3: Variational quantum anomaly detection: Unsuper-

vised mapping of phase diagrams on a physical quantum com-

puter

I and my collaborators proposed an unsupervised quantum machine learning frame-
work for discovering phases of quantum many-body systems. The variational quantum
algorithm is based on the idea of anomaly detection and implemented using a quantum
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autoencoder architecture. It allows quantum systems that are simulated on a quantum
computer to be investigated end-to-end on the same device in an automated fash-
ion without requiring prior knowledge about the system at hand. We demonstrated
the framework on the paradigmatic transverse-longitudinal field Ising model and on
the extended Bose Hubbard model with dimerized hoppings which hosts a symmetry
protected topological phase. In each case our anomaly detection scheme was able to
successfully map out the respective phase diagrams using classical simulators. Further-
more, we showed that the algorithm can already be applied on existing noisy quantum
hardware and executed it on an IBM Quantum device. This chapter has been published
in: Phys. Rev. Research 3, 043184 (2021).

Chapter 4: Universal and optimal coin sequences for high entan-

glement generation in 1D discrete time quantum walks

I and my co-authors investigated different approaches for generating highly entangled
states independent of the initial state in 1D discrete-time quantum walks. First, we
proposed a deterministic sequence of coin operators comprised of the Hadamard and
Fourier coin that leads to high amounts of hybrid entanglement irrespective of a class
of localized initial states. We showed that the universal entangling coin sequence works
for any odd number of time steps and derived its asymptotic limit for an infinitely-long
quantum walk. We then compared the Schmidt norms achieved by the deterministic
coin sequence to those obtained from an optimization approach. To that end, we used
Q-learning to maximize the hybrid entanglement in a quantum walk over all localized
initial states. We found that the optimized coin sequences give rise to higher average
Schmidt norms than the deterministic coin sequences. However, the former varies with
respect to the initial state parameters opposed to the Schmidt norms attained from
the deterministic sequence. This chapter has been published in: Journal of Physics
A: Mathematical and Theoretical 53, 445306 (2020).

Chapter 5: Self-correcting quantum many-body control using re-

inforcement learning with tensor networks

I developed a new reinforcement learning framework for controlling quantum many-
body systems. The approach is based on matrix product states which are leveraged
(i) for efficiently simulating the quantum many-body wave function and (ii) as an ef-
ficient machine learning ansatz for the Q-learning agent (QMPS). This allowed us to
reach system sizes that are otherwise inaccessible with exact techniques and neural
network-only approaches. To demonstrate the QMPS framework, me and my collab-
orator considered the mixed field Ising model and three different ground state prepa-
ration problems. First, I showed that for small system sizes of N = 4 spins, a single
QMPS agent can learn to prepare a target state from arbitrary, random initial states
and hence perform universal state preparation. Further, I demonstrated that in certain
situations an agent can generalize and extrapolate its optimal protocols to states not
encountered during training. As a result, the agent is able to successfully devise and
adapt its protocols when the quantum dynamics becomes noisy or stochastic. This
chapter is based on the preprint article: arXiv:2201.11790 [quant-ph] (2022).
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