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Abstract

Supersymmetry and Nonequilibrium Quantum Dynamics

In this thesis I present two studies that use ideas and concepts from supersymmet-
ric quantum mechanics to understand and control the nonequilibrium dynamics of a
quantum many-body system. The two protocols I study involve the quenching of a
spin-polarized Fermi gas and the adiabatic control of single particle states during the
expansion of an infinite square well over a finite time interval. In the first study, I ex-
plore the survival probability and the work probability distribution for quenches within
a hierarchy of potentials created using supersymmetric factorization methods. I show
that in this setting one can take advantage of the degeneracy between supersymmetric
potentials in order to find simplified expressions for these quantities. I also show that
many-body revivals in these systems exist and are robust even at finite temperatures.
For the second study I explore a shortcut to adiabaticity (STA) based on counterdia-
batic driving for the single particle states of the supersymmetric partner potentials
of the infinite square. By calculating the fidelity, quantum speed limit time and the
cost of driving a system, I compare the efficiency of the shortcuts between the ground
state wavefunctions of three supersymmetric potentials and three wavefunctions that
are isospectral to one another. The use of a supersymmetric setting allows me to dis-
tinguish between the dynamical effects stemming from the energy spectrum and from
the distance between the states in Hilbert space. I also show that in the isospectral
case one can develop an intertwining relationship between the counterdiabatic driving
terms using the operators of their single particle Hamiltonians.
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Introduction

Macroscopic effects in quantum mechanics, like superconductivity or the physics of
semiconductors, have played a large role in the technology for several decades. More
recently technology has been developed that allows one to control quantum systems
made from single or few particles only. This has been partly driven by the development
of ideas in quantum information and communication [4–6], which require highly accu-
rate control of the system and high fidelities for dynamical processes. While for atoms
there are many ways to control the internal degrees of freedom with great precision have
been developed in the field of laser spectroscopy, the control over the external degrees
of freedom only became possible recently through the emergence of flexible methods for
trapping atoms in space [7]. By today many different single particle quantum systems
can be prepared in their respective ground states, manipulated into a specific state,
and measured with high precision. While decoherence is still an issue, especially on
longer time scales, a great deal of progress is made in a continuous way.

While many of the tasks one would like to carry out in quantum information re-
quire the development of new ideas for technical realisation, they also often profit from
different ways of looking or exploring them to get additional insight. In this thesis I
will use ideas from supersymmetric quantum mechanics to provide an additional angle
of understanding for the dynamics in ultracold quantum gases [8]. The idea behind
supersymmetric quantum mechanics is that any Hamiltonian can be factorized into
two operators, which can be re-combined to lead to a second, so-called supersymmetric
Hamiltonian [9, 10]. Both these operators have the same eigenspectrum (apart from the
lowest lying state of the first Hamiltonian) [11] and the factorisation operators connect
the eigenstates of the two supersymmetric Hamiltonians. Over the years, many studies
have been carried out that take advantage of this symmetry, making it a powerful tool
in solving initially complex potentials into exactly solvable systems [12–14]. In recent
years there has been a shift in focusing on ultracold atomic systems where supersym-
metry can be applied [15–17] and in my work I will add two more studies in this spirit.
In particular I will take advantage of the fact that supersymmetric operations gives ac-
cess to a library of potentials which can be derived from a single common potential, in
which the eigenspectra are near degenerate with the original potential. This allows one
to induce a dynamics by switching between different supersymmetric potentials which
is mostly driven by changes in the eigenfunctions and not the eigenspectrum, which
makes it possible to identify certain effects of non-equilibrium or controlled systems
that would be otherwise obscured by competing effects.

In particular I present two studies explore the two extremes of what happens to a
system when it is brought out of equilibrium very quickly by means of a quench and
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2 Introduction

what happens when a system evolves over a finite period of time whilst incorporating a
shortcut to adiabaticity. The first study specifically revolves around a quench of a Fermi
gas between partner Hamiltonians [1]. Typically in these studies a gas is prepared using
one potential which is then arbitrarily changed using a parameter of the Hamiltonian
such as the interaction strength between the particles of the gas [18, 19] or a parameter
which changes the strength or functional form of the external potential [20].

I show in my work that using supersymmmetric Hamiltonians to study non-equilibrium
dynamics can help to understand this complex problem by isolating different aspects
of the dynamics of the system. For one, the degeneracy of the energy spectrum be-
tween different Hamiltonians allows one to focus on the influence of the differences
in the eigenfunctions on the dynamics. Furthermore, the existence of a hierarchy of
supersymmetric Hamiltonians allows one to carry out similar studies in many different
systems. This especially lends itself to studying the dynamics of an ultracold gas from
the perspective of the same initial state being quenched into different, related systems.
Using the infinite square well as an example, I show that certain properties of the
eigenspectrum can lead to unexpected dynamics, such as the presence of high survival
probabilities at finite temperatures. This is a striking feature as at finite temperature
one would expect the survival probability to be destroyed due to phase mixing. I show
the supersymmetric potentials offer a clear interpretation of this.

In the second project [2] I study counterdiabatic driving protocols in supersymmet-
ric Hamiltonians [21, 22]. My central idea is that the operators that factorize the single
particle Hamiltonian can also be used for the counterdiabatic term, which relies on the
instantaneous, time-dependent eigenstates. This then allows to extend the intertwin-
ing relationship to the full Hamiltonian. Additionally I explore the costs of driving a
shortcut and the quantum speed limit time within the hierarchy of the supersymmetric
potentials associated with the infinite square well.

The thesis is laid out in two parts. The first part is meant to briefly review the
background material which is central to the entire thesis, specifically the concept of
optical potentials and an outline of supersymmetric quantum mechanics. In the second
part each publication is highlighted as its own chapter. The chapters expand on the
mathematical derivations and calculations used in the publications, whilst also high-
lighting the major contribution supersymmetry had in the work. The layout of the
chapters are as follows:

• Part I: Fundamental Material

– Chapter 1 provides an introduction to ultracold gases and the mechanism
of optical trapping.

– Chapter 2 introduces supersymmetry in the context of quantum mechan-
ics. Here I describe the mathematical structure of supersymmetry, the basic
concepts of factorization and the properties that connect partner Hamilto-
nians.

– Chapter 3 provides a brief description of the numerical techniques used in
my work.

• Part II: Non-equilibrium Dynamics and Quantum Control
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– Chapter 4 highlights and expand on the calculations central to the publi-
cation

Christopher Campbell, Thomás Fogarty and Thomas Busch
Non-equilibrium many-body dynamics in supersymmetric quenching

Phys. Rev. Research 4, 033014 (2022) [1]

– Chapter 5 highlights the work presented in the publication

Christopher Campbell, Jing Li, Thomas Busch and Thomás Fogarty
Quantum control and quantum speed limits in supersymmetric potentials

New J. Phys. 24, 095001 (2022) [2]

Each Chapter will have its own remarks section either addressing additional finding
that are relevant to the Chapters or providing an outlook on future directions for the
research. The thesis will then end on a brief summary of each publication Chapter.
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Chapter 1

Ultracold Atomic Gases

The trapping of ultracold gases has been a phenomenal achievement in the last 40 years,
with the highlighting achievement being the observation of Bose-Einstein condensation
in 1995 [23, 24]. Producing a condensate was a pivotal moment as such systems provide
a clean and controllable platform for low-energy physics to be studied. Nowadays many
laboratories around the world have the means to create and study condensates under
a variety of configurations [6], where the study of quantum gases goes beyond studying
fundamental physics. In fact, the area has moved into a realm where the dynamics and
manipulation of ultracold atom system attempts to serve applicable purposes, with
atomtronics being one of the most prominent of them [6].

The central topic of this thesis revolves around how supersymmetric setups can be
used to study different facets of non-equilibrium quantum dynamics. This includes
quenching as well as controlled dynamics using shortcut to adiabaticity protocols. As
we will see in Chapter 2, supersymmetry deals with Hamiltonians which posses near
exact copies of their respective eigenspectra, which has allowed me to study evolution
in different potentials but with the same spectrum. To start, however, I will first
introduce the idea of optical potentials and comment on recent developments that
allow to large flexibility in the shapes that can be achieved. I will then discuss the
ultracold Fermi gas and point out why it is a versatile gas to study both theoretically
and in experiments. Finally, I will comment on lower dimensions, from an experimental
and theoretical point as well.

1.1 Trapping an Ultracold gas

The most common instrument used to trap a gas of ultracold atoms is the magneto-
optical Trap (MOT) [25]. This type of trapping uses a combination of spatially varying
magnetic fields and counter-propagating laser beams in order to first slow down a gas of
atoms, and then contain the gas in order to prevent it from escaping. The underlying
mechanism for this process is known as Doppler cooling [26, 27], in which through
a series of photon absorption and emission processes, the gas of atoms undergoes a
constant transfer of momentum confining them to a small region of space [28]. In the
following I will provide a brief summary of the process of the cooling an atomic gas,
leading up to the description of the optical potential.

7



8 Ultracold Atomic Gases

1.1.1 Laser Cooling

In order for an atom to absorb a photon the frequency of light required has to corre-
spond to the energy needed for an electron to transition from one state to another in
the atom. However, due to Doppler broadening, i.e. when the motion of the atom is
taken into consideration, these frequencies can broaden. In the atoms frame of refer-
ence, the frequency observed is a Doppler-shifted frequency. Any absorption/emission
process imparts momentum kicks onto the atom, and cooling via laser absorption and
emission can therefore only reach a lower limit, known as the recoil temperature.

The process of cooling an atom can be understood by studying the interactions
between light and matter. Take for example a situation where a neutral atom is
moving towards a laser source pointed in the opposite direction of the atoms path.
If the light is red detuned to the resonant frequency of the atom, a photon will be
absorbed imparting a transfer of momentum in the direction opposite of the atoms
velocity. This slows the atom. When the photon is emitted again, a recoil is imparted
on the atom, however the direction of this recoil is random and therefore averages out
over many such processes. Therefore, using three sets of counter-propagating lasers
beams in all orthogonal spatial directions allows to reduces the velocity of the atoms
over time and thereby the temperature of the gas, T = 1

2kB
mv2. However, this kind of

cooling is limited in the temperature it can achieve and one needs to employ advanced
methods such as polarization gradient or Sisyphus cooling to reach the ultimate recoil
temperature T = (ℏk)2

mkB
. Here k is the wavevector of the light used to cool the atom.

To cool a gas below the recoil limit, other cooling techniques need to be employed,
in particular evaporative cooling. This technique relies on removing the hottest atoms
from the trap and relying on subsequent scattering processes within the gas to re-
thermalise the sample at a lower temperature. While this technique has worked excep-
tionally well for bosons, it is slightly more complicated to drive a Fermi gas into the
degenerate regime, as spin-polarised fermions do not scatter at low temperatures. Ex-
perimentally it was therefore necessary to introduce a second fermionic component or
an additional Bose-Einstein condensate into the trap to facilitate sympathetic cooling
[29, 30].

1.1.2 Optical Potentials

So far we introduced how to cool a gas of atoms but have not addressed how to contain
the gas. Since the atoms are constantly undergoing a momentum transfer due to
photon absorption and emission, which means that they are prone to being kicked out
of the space they occupy, an external trapping potential needs to be constructed as
well. Optical potentials provide a versatile platform for the confinement of atoms once
their velocity is sufficiently low [31].

The optical field of a laser can be written as

E⃗(x, t) = E0(x)e
−iωt + E0(x)e

iωt , (1.1)

where ω is the frequency of the electric field and E0 is the amplitude [32]. Since the
wavelength of the laser is much larger than the size of the atom, the dipole approxi-
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mation can be used to describe the interaction between the field and the atom, namely

V (x, t) = d⃗ · E⃗ . (1.2)

The interaction induces a dipole polarization causing the atom to oscillate at the same
frequency as the field, where the average dipole moment is given by

⟨d⟩ = α(ω)(E⃗(x, t)), (1.3)

and where α is the polarizability of the atom. This dipole interaction induces an energy
shift, the effect of which can be described using an effective potential

U(x) =
1

2
α(ω)E⃗2(x, t), (1.4)

where the time average of the electric field is considered.
The effective potential in Eq. (1.4) gives rise to the force acting on the atomic cloud,

depending on the distribution of the radiation intensity and frequency of the laser. The
polarizability depends on the detuning δ = ω−ωR, where ωR is the resonance frequency
of the atom. For a positive detuning (blue detuning) the laser field acts repulsively
on the atom pushing it towards lower field strengths. On the other hand negative
detuning (red detuning) attracts the atoms to areas of higher field strengths, which
means that both of these can be used for optical trapping. This type of confinement
offers a wide range of versatility in experiments, as optical potentials can be easily
manipulated in order to create unique geometries for a wide range of studies [7, 33, 34].
In the next section I will provide an example of the resulting potential that arises from
the counter-propagating beams, namely the optical lattice [35].

1.1.3 Optical lattice and low dimensional gases

Having counter-propagating laser beams leads to interference and to the formation of
a standing wave. This can be interpreted as a periodic potential for the atoms and is
therefore referred to as an optical lattice [36]. To start consider two laser beams counter-
propagating along the x-direction with electric fields of the form E(x, t) = E0(t)e

±ikxx.
Here the direction of propagation is given by the positive or negative sign, E0 is the
amplitude of the electric field and kx is the wavevector. Through constructive and
destructive interference a sinusoidal standing wave is created, such that the potential
is proportional to Vx ∝ cos2(kxx). Doing the same in the y and z directions with laser
beams of different polarisation or slightly different wavelength to avoid interference in
different spatial directions, a full three dimensional lattice can be formed (see Fig. 1.1
b)

V (x, y, z) = Vx cos
2(kxx) + Vy cos

2(kyy) + Vz cos
2(kzz) . (1.5)

A potential of this nature creates an array of periodic wells formed by the nodes or
anti-nodes of the counter-propagating lasers, depending on the detuning. As mentioned
previously red-detuned light attracts atoms to areas of higher electric fields and the
atoms will align accordingly to the maxima of the lattice. Blue-detuned light, on the
other hand, will attract atoms to areas of minimum intensity.
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Figure 1.1: Illustration of the different geometries of a) an optical lattice of elongated
potentials and b) a three dimensional lattice of spherical potentials. Taken from [3].

A further perk of interfering laser beams is that by only using lattice beams in
certain directions and not in others, one can tune the dimensionality for an atomic gas.
For example, an effectively one-dimensional potential can be created by only applying
counter-propagating laser beams in two directions, such that the atoms are tightly
trapped in these, but can easily move in the remaining one. The effective transverse
trapping frequencies in such a system are much larger than the axial one (ωx ≪ ω⊥)
and the dynamics in the transversal direction is suppressed (if no energy scale exceeds
the transversal harmonic oscillator energy, kbT ≪ ℏω⊥−µ). In experiments this results
in a periodic array of elongated cigar shaped tubes, see Fig. 1.1 a.

While simulating physics in lower dimensions is usually numerically easier, it can
also be drastically different from what one would find in higher dimensions. This is
mostly due to the fact that in lower dimensions correlations are usually much stronger,
which can lead to new phases of matter with unique and interesting properties [37].
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1.2 Experiments in Ultracold gases

The first successful creation of a Bose-Einstein condensate was in a 3D trap and the
system consisted of about 106 atoms [23, 24]. Efforts to realise systems in reduced
the dimensionality culminated in the realisation of a one-dimensional Tonks-Girardeau
gas in 2004 [38, 39]. Parallel to these developments the first ultracold Fermi gases
were being created [29, 30, 40]. The differences in their cooling and stability provided
advantages and disadvantages. While the properties of bosonic gases were to a large
degree determined by the interactions between the particles, in spin-polarised ultracold
Fermi gases s-wave scattering processes were absent due to the Pauli exclusion principle.
This allows these systems to be described using an ideal gas formalism. However,
interactions in Fermi gases could be observed in non-spin polarised systems, which
lead to the observation of superfluidity of fermionic pairs [41] as well as the exploration
into the BEC-BCS crossover region [42, 43].

Undoubtedly, the most interesting property of a fermionic system is its quantum
statistics [44]. In Chapters 4 and 5 I will describe the use of a spin-polarized Fermi
gas in order to study the non-equilibrium many-body dynamics induced by a quench
and controlled many-body dynamics through a shortcut to adiabaticity. At zero tem-
perature the spin-polarized Fermi gas occupies the lowest lying eigenstates and forms
a Fermi sea, and the presence of the Pauli principle has significant implications for the
allowed dynamics.

1.3 Advances in Atom Trapping

The ability to trap a gas in a variety of different geometries is one of the keys for
being able to control the center of mass mode with large flexibility [6]. Over the recent
two decades the precision with which neutral atoms can be trapped has moved from
being able to control the center of mass of atomic clouds to doing the same for single
atoms. New methods for trapping atoms have emerged in recent years that rely on
higher order mode beams, holographic setups, or time-averaging methods. These allow
for the creation of non-trivial potentials such as ring traps when using Laguerre beams
[45], which can also be used to create ring optical lattices [46–48].

More recently optical tweezers have become promising tools, which are made from
highly focused lasers that can trap and move single atoms in their focus with large
precision [17, 49]. This allows to create atomic systems in an atom-by-atom assem-
bly way and therefore offer an unprecedented amount of flexibility. At the same time
experimental progress is made using so-called painted potentials, where averaging the
potential from a fast moving laser beam allows to create a variety of geometries and
configurations in three dimensions [7, 50, 51]. This is done by use of spatial light mod-
ulators (SLMs) with holography in order to shape a potential to a desired structure.
Combined with optical tweezers, atoms can be loaded in these painted potentials cre-
ating complex arrays of optical lattices. Details on how to shape such light structures
have been summarised in several excellent reviews [52, 53], and most recently tech-
niques from supersymmertric quantum mechanics have been used as a means to filter
eigenstates of specific energy levels in order to construct potentials where the spectral
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energies are all prime numbers [54]. For my work in particular one can note that these
techniques make it possible to create also the specific shapes of the supersymmetric
partner potentials required.



Chapter 2

Supersymmetric Quantum Mechanics

In this Chapter I will provide a detailed summary of the mathematical structure and
properties of supersymmetric quantum mechanics used in the work presented. Orig-
inally derived as a method for connecting fermionic and bosonic Hilbert spaces in
high-energy physics, supersymmetry introduces a general closed Lie algebra that con-
nects the Hilbert spaces of two Hamiltonians. In both systems, the eigenspectra remain
the same whilst dynamical comparisons between the Hamiltonians can be made from
the overlap of the wavefunctions alone. In this chapter I will introduce the formal
consequences that arise from the factorization of a Hamiltonian into a set of operators
which allow to create supersymmetric partner Hamiltonians. In particular I will detail
how these operators transform eigenfunctions and lead to intertwining properties of
Hamiltonians. I will show that this method is recursive and, in fact, a hierarchy of
Hamiltonians can be derived from this factorization method. Finally I will present a
case example by factorizing the Hamiltonian of the infinite square well, and explic-
itly build a set of supersymmetric partner potentials that will be used throughout the
thesis.

2.1 Factorization and Hamiltonian Construction

The factorization of a Hamiltonian is a technique that was initially introduced by Dirac
[55]. It was later expanded on by Schrödinger, who applied the factorization method to
a number of examples including the Couloumb potential [9], and by Infeld, who used it
for solving some eigenvalue problems [56] with applications of these explored by Hull
[10, 57]. Further progress was made by Sukumar, who showed that the method could be
applied to any one-dimensional potential as long as there is a normalizable eigenstate
[58]. The basic ingredient of this method are two operators, which mirror those of the
standard creation and annihilation operators used in harmonic oscillators. However,
rather than moving states up and down the eigenspectrum, the transformation occurs
laterally into adjacent Hilbert spaces of the supersymmetric Hamiltonians of the same
family.

Let me start by introducing the algebra central to supersymmetry [8]. In a manner
similar to the creation and annihilation operators of the harmonic oscillator, a single-
particle Hamiltonian with a normalizable ground state wavefunction can be factorized

13
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into a set of two adjoint operators, which throughout this thesis will be written as A
and A†, as

H = − ℏ2

2m

d2

dx2
+ V (x) = A†A. (2.1)

These operators, the annihilation and creation operators respectively, can be written
as

A =
ℏ√
2m

d

dx
+W(x), (2.2)

A† = − ℏ√
2m

d

dx
+W(x), (2.3)

where W(x) is a function commonly known as the superpotential. It is directly related
to the potential in the Hamiltonian (2.1) as

V (x) = W(x)2 − ℏ√
2m

W ′(x)√
2

, (2.4)

where W ′(x) is the spatial derivative of the superpotential. The superpotential can be
calculated from the ground state wavefunction of the first Hamiltonian, when shifting
its energy to zero to ensure that the following annihilation condition is met

A ψ0 = 0 . (2.5)

The superpotential can then be simply found algebraically from

W(x) = − ℏ√
2m

ψ′
0

ψ0

, (2.6)

and, in a situation where the superpotential is known, the ground state wavefunction
can be found with some simple rearrangement from

ψ0 = N exp

(∫ x

0

−
√
2m

ℏ
W(y′)dy′

)
, (2.7)

where N is a normalization constant. With the knowledge of this superpotential one
can now construct a partner Hamiltonian that is supersymmetric to the first one. This
is achieved by simply reversing the order of factorization operators, so that in terms of
the superpotential we have

H(1) = A†A = − ℏ2

2m

d2

dx2
+ V (1)(x) = − ℏ2

2m

d2

dx2
+W(x)2 − ℏ√

2m

W(x)′√
2
, (2.8)

H(2) = AA† = − ℏ2

2m

d2

dx2
+ V (2)(x) = − ℏ2

2m

d2

dx2
+W(x)2 +

ℏ√
2m

W(x)′√
2

, (2.9)

where we have added superscript indices to the Hamiltonians to indicate that they are
partners. As it can be seen above, the two Hamiltonians are both determined by the
common superpotential. In the next section I will discuss a number of helpful relations
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that can be inferred by using the factorization method.

2.2 Properties of SUSY Partner Potentials

Supersymmetric operators and the Hamiltonians created from them possess a number
of unique properties. In the previous section I referred to the operators A and A† as
creation and annihilation operators. This is because similar to the ladder operators in
the harmonic oscillator, the SUSY operators are applied to destroy or create a node in
the state they are applied to [12]. The distinction between the two sets of operators
however is that the ladder operators act in order to increase or decrease the energy
of an eigenstate whereas in supersymmetry the energy remains the same, however the
new state is an eigenstate of the partner potential.

2.2.1 Degeneracy and Wavefunction Transformations

Let us consider a pair of partner Hamiltonians H(1) and H(2) constructed using the
operators A and A†. The Schrödinger equation for an eigenstate of ψ(1)

n of H(1) is
written as

H(1)ψ(1)
n = A†Aψ(1)

n = E(1)
n ψ(1)

n , (2.10)

where we assume that the energy of the ground state is E(1)
0 = 0. If this is not the

case, then the potential would require an energy shift so that the annihilation condition
of the ground state ψ(1)

0 holds true. Despite H(2) being constructed using the same
operators, the state ψ(1)

n is not an eigenfunction of this Hamiltonian. However by using
the operator A on the wavefunction one can write

H(2)(Aψ(1)
n ) = AA†Aψ(1)

n = AH(1)ψ(1)
n = E(1)

n (Aψ(1)
n ) , (2.11)

and similarly for H(1)

H(1)(A†ψ(2)
n ) = A†AA†ψ(2)

n = A†H(2)ψ(2)
n = E(2)

n (A†ψ(2)
n ) . (2.12)

One can see that the operators facilitate a transformation of the eigenfunctions, con-
verting them to eigenfunctions of the partner Hamiltonian. However, this transfor-
mation conserves the eigenvalue which means that the spectra of H(1) and H(2) are
degenerate with the exception of the ground state in H(1).

We now need to describe these transformations between Hilbert spaces. The cre-
ation and annihilation operators act to destroy and create a node in the wavefunction,
which also explains why the annihilation of the ground state of H(1) leads to a vacuum
state, see Eq. (2.5). Since these operators mirror the harmonic oscillator ladder oper-
ators we can use a similar derivation to normalize the transformation [59]. Starting
with the factorized form of the Hamiltonian

⟨ψ(1)
n |A†A|ψ(1)

n ⟩ = ⟨ψ(2)
n−1|ψ

(2)
n−1⟩c∗ncn , (2.13)

where c(∗)n is a normalization constant generated from the operator transformations, we
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find using Eq. (2.10)
E(1)

n = |cn|2. (2.14)

With these considerations the final transformation can then be written as

A|ψ(1)
n ⟩ = cn|ψ(2)

n−1⟩,

A|ψ(1)
n ⟩ =

√
E

(1)
n |ψ(2)

n−1⟩,
A|ψ(1)

n ⟩√
E

(1)
n

= |ψ(2)
n−1⟩ . (2.15)

For a transformation using the creation operators the same procedure is used and can
be generalized as

A†|ψ(2)
n−1⟩√

E
(2)
n−1

= |ψ(1)
n ⟩ . (2.16)

2.2.2 Intertwining Relationships

The degeneracy of the two eigenspectra also introduces an interesting property of
SUSY, namely intertwining relationships. Due to the construction of these Hamiltoni-
ans, annihilation and creation operators can be used to create a relationship between
the two Hilbert spaces. The most straightforward demonstration of this is to apply the
annihilation operator to each Hamiltonian, giving

H(2)A = AA†A = AH(1) . (2.17)

As a consequence, the respective time evolution operators also possess an intertwining
property. For example, the time-evolution operator for H(2) is

U (2)(t) = e−
i
ℏH

(2)t, (2.18)

which can be expanded using a Taylor series of the exponential term as

e−
i
ℏH

(2)t

=
∞∑
k=0

1

k!

(
− i

ℏ
H(2)t

)k

. (2.19)

Applying the annihilation operator to the form from the left, and using the identity in
Eq (2.17), an intertwining relationship for the time-evolution operators is given by

AU (1)(t) = U (2)(t)A. (2.20)

It is interesting to note that this corresponds to a transition from intertwining proper-
ties being time independent to being time dependent. This allows for the dynamics of
a wavefunction to be measured amongst two Hilbert spaces. In particular, this is an
important result to identify if an evolving system possesses supersymmetric properties
[16].
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2.3 Higher order potentials

So far in our derivations of partner Hamiltonians we did start with a given Hamiltonian
H(1) with a ground state ψ0 and constructed a second Hamiltonian H(2) by finding the
superpotential W(x). If the second Hamiltonian also contains a normalizable ground
state wavefunction, then the factorization process can be applied recursively, and a
hierarchical family of supersymmetric Hamiltonians can be constructed [58]. For this
one needs to create a second set of SUSY operators, defined by A(2)ψ

(2)
0 = 0. This

then, in turn, allows to create another partner Hamiltonian by flipping the operators
A(2). In fact, this process can be repeated for the next Hamiltonian, H(3), and one can
obtain a hierarchy of Hamiltonians as

H(2) = A(1)A(1)† =A(2)†A(2)

H(3) =A(2)A(2)† = A(3)†A(3)

H(4) = A(3)A(3)† = A(4)†A(4) . . . . (2.21)

It is important to clarify that while a family of Hamiltonians can be created using this
process, only pairs of Hamiltonians using the same SUSY operators can be considered
partner Hamiltonians. Partner Hamiltonians possess intertwining properties which are
connected to their common superpotential.

For Hamiltonians in the same hierarchy of supersymmetric Hamiltonians, but which
do not possess the same SUSY operators (i.e. which are not adjacent) the procedure of
transforming the eigenfunction between them is relatively straight forward. This time
we allow for the energy of the ground state to be finite, i.e. E(α)

1 > 0 at all orders. The
first operator transformation transforms an eigenfunction as

A(1)|ψ(1)
n ⟩√

∆E
(1)
n

= |ψ(2)
n−1⟩ , (2.22)

where the difference in energy, ∆E(1)
n is between the transformed eigenstate and the

ground state of the original potential ∆E(1)
n = E

(1)
n −E

(1)
1 . This uses operators specific

toH(1) andH(2), as per Eq. (2.21). Between the HamiltoniansH(2) andH(3), a different
set of operators are required, A(2) and A(2)†, and to transform to the next higher order
requires another transformation using this set of operators

A(2)|ψ(2)
n−1⟩√

∆E
(2)
n−1

= |ψ(3)
n−2⟩ , (2.23)

where ∆E
(2)
n−1 = E

(2)
n−1 − E

(2)
1 . In general, to transform the m-th eigenstate of the

original potential to the ground state of the m-th order supersymmetric potential, the
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transformation can be written as m∏
n=1

A(n)√
∆E

(n)
m−n+1

 |ψ(1)
m ⟩ = |ψ(m)

1 ⟩ . (2.24)

2.4 Example: SUSY treatment of Infinite Square Well

To better introduce the system that I use for the work presented in my publications, I
discuss the supersymmetric properties of the infinite square well (ISW) in the following
[58, 60].

I consider a one-dimensional infinite box of length L that is centered around the
origin

V (1)(x) =

{
∞, if |x| > L

2
,

0, if |x| < L
2
.

(2.25)

The single particle eigenstates can be written as

ψ(1)
n (x) =

√
2

L
Un−1

(
sin
(xπ
L

))
cos
(xπ
L

)
, (2.26)

where n = 1, 2, 3.... The functions Un−1(sin
(
xπ
L

)
) are the Chebychev polynomials of

the second kind and the form of these polynomials can be found in many books [61,
62]. Taking the ground state ψ(1)

1 =
√

2
L
cos
(
xπ
L

)
one can use Eq. (2.6) to find the

superpotential as

W(1) =
πℏ√
2mL

tan
(xπ
L

)
, (2.27)

which directly allows to calculate the partner potential of V (1) to be

V (2)(x) =
ℏ2π2

2mL2

(
sec2

(xπ
L

)
+ tan2

(πx
L

))
. (2.28)

For the infinite square well this can be generalised and an analytical form for all higher
order superpotentials can be found as

W(α) = α
ℏπ√
2mL

tan
(xπ
L

)
. (2.29)

The functional forms of the first four supersymmetric potentials together with the
spectrum and the eigenfunctions are shown in Fig. 2.1. In fact, an analytical expression
for the ground and first excited states of the full hierarchy of the supersymmetric
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Figure 2.1: The infinite square well potential and the next three higher order super-
symmetric potentials. The spectra and the eigenfunctions are also shown.

Hamiltonians of the infinite box can be found as [60]

ψ
(α)
1 =

1√
L(t)

[√
πΓ(α + 1)

Γ(α + 1
2
)

] 1
2

cos

(
xπ

L(t)

)α

, (2.30)

ψ
(α)
2 =

1√
L(t)

[
2
√
πΓ(α + 2)

Γ(α + 1
2
)

] 1
2

sin

(
xπ

L(t)

)
cos

(
xπ

L(t)

)α

. (2.31)

I will use these general formulas later in the analytical derivation of different quantities.

2.5 Supersymmetry in Quantum Systems

Recently SUSY QM has made its way into a number of theoretical models and sys-
tems for a variety of reasons. A popular class of potentials to study the influence of
SUSY are hyperbolic functions such as the modified Pöschl–Teller potential [63]. These
potentials, along with other potentials such as Couloumb and 3D harmonic oscillator
potentials, possess relationships with one another [64]. These potentials lead to ad-
vances in physics and chemistry for providing models of the energy spectra of molecules
for example [14]. They are also great examples to demonstrate the properties of su-
persymmetry, for example by showing that the hierarchy related to the sech potential
possesses reflectionless properties [65]. Other Hamiltonians have in recent years been
identified as possessing supersymmetric partners, such as the Jaynes-Cummings model
[66], which can be used to demonstrate the construction of maximally entangled states
[67, 68].

In a more application driven setting, the degeneracy between the different poten-
tials has been suggested to play a useful role in the engineering of specific quantum
systems. For example, the emergence of optical tweezers provides a high level of con-
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trol over single atoms, and the preparation of ground states through tunneling be-
tween supersymmetric partner potentials has been suggested [17]. Analogies between
the Schrödinger equation and the Helmholtz equation have also allowed analogies to
be drawn in quantum optics [69–71]. The analogies of the Helmholtz equation leads
to the continuous transformation and filtering of the modes in waveguides as well as
mode division multiplexing [72, 73]. Finally with the increased precision of spatial light
modulators and their high level of control in the construction of different potentials one
can imagine that, in the not too far future, any potential shape can be experimentally
realised [54].

Quantum dynamics in supersymmetric systems, on the other hand, has not received
much attention in the community by today. Some studies have shown how quantum
systems can be classified as supersymmetric using out-of-time-order correlations and
wavefunction overlaps [16, 74]. Conversely, other works have implemented a Darboux
transformation in order to find time-dependent solutions to the Schrödinger equation
[75–78]. In this thesis I will to present two examples of physics where a supersymmetric
setting is helpful. First, I extend the ideas of Lahrz et al. [16] by exploiting the
intertwining relationship of the time-evolution operators in a quench setting. Second,
I apply time-dependent supersymmetric operators to the dynamics of a shortcut to
adiabaticity (STA). Supersymmetry in conjunction with dynamical invariants has been
studied before in order to extend the SUSY factorization procedure [21, 22], however I
show that intertwining relationships between adjacent potentials also allows to relate
values such as the cost to drive a system to perfect fidelity between potentials of
different order.



Chapter 3

Quantum Dynamics and Numerical
Methods

In this Chapter I will briefly discuss the numerical methods used in the work presented
in the thesis. To motivate this I will start by describing how finite difference methods
are formulated using the Schrödinger equation. From there I will start with the ex-
ample of exact diagonalization to show how one can implement such a scheme to find
the stationary states and eigenspectrum of a Hamiltonian. After that I will turn my
attention to the dynamics of a quantum state and show how modifications to different
schemes can mitigate errors incurred in simulations.

3.1 Finite Difference Methods

Finite difference methods are numerical techniques that allow for the approximation
of derivatives using discretized steps over space and time. This is a technique that is
commonly used to study partial differential equations such as the Schrödinger equation
and other ordinary differential equations [79]. In our case the function to discretize
is the wavefunction and for its time evolution in the Schrödigner equation the time
derivative can be broken up into a forward or backwards difference method respectively
such that

ψ(k+1) − ψ(k)

∆t
≈ ∂ψ(k)

∂t
, (3.1)

ψ(k) − ψ(k−1)

∆t
≈ ∂ψ(k)

∂t
, (3.2)

where ∆t is the size of the step taken and k is an index of time such that t = k ∆t.
For the second order spatial derivative of the single particle Hamiltonian one can make
the approximation

∂2ψj

∂x2
≈ ψj+1 − 2ψj + ψj−1

∆x2
, (3.3)

where ∆x is the spacing of the grid and j is the grids index such that x = a + j∆x,
where a is the lowest value of the grid. Replacing the wavefunction itself with its their

21
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finite difference expression, we obtain

iℏ
2m∆x2

(ψ
(k)
j+1 + ψ

(k)
j−1 − 2ψ

(k)
j )− i

ℏ
V (a+ j∆x)ψ

(k)
j =

ψ
(k+1)
j − ψ

(k)
j

∆t
. (3.4)

The Hamiltonian can be solved in two different ways depending on the purpose. To
find the eigenstates requires one to consider the time independent case and the left
hand side of the equation can be solved using exact diagonalization. To follow the
dynamics of the state over time, the time dependent case is considered and the whole
equation is discretized with particular emphasis on the right hand side using the Crank-
Nicolson method [80]. To illustrate this, I will start by detailing the formalism of exact
diagonalization to show how one can find the eigenstates of a Hamiltonian

3.1.1 Exact Diagonalization

While exact analytical solutions are only available for a very small number of select
Hamiltonians in quantum mechanics, for benign systems the eigenstates and eigenspec-
trum can usually be obtained numerically using the exact diagonalization method. For
this, a given Hilbert space needs to be truncated so that it is spanned by a suitable,
finite basis of N states. The Hamiltonian can then be expanded in this basis and takes
the form of a finite-sized matrix, which can be numerically diagonalized and the eigen-
states and eigenfunctions one finds correspond to the eigenstates and eigenspectrum of
the Hamiltonian.

Starting with the single particle Hamiltonian

H = − ℏ2

2m

∂2

∂x2
+ V (x) , (3.5)

one can approximate the spatial derivative as given in Eq. (3.3). It is to note that
in the position basis it is important to have enough spatial resolution, ∆x, to resolve
the oscillations of the higher lying states, as the precision of this procedure depends
on the size of the basis taken into consideration: states that are closer to the cut-off
energies will be less accurate. In the matrix representation, writing the potential terms
of the Hamiltonian in the discrete spatial basis is straightforward as these are already
diagonal. The kinetic energy terms then make this matrix tridiagonal, leading to

Ĥ = − ℏ2

2m∆x2


−2 1 0 . . . 0

1 −2 1
. . . ...

0
. . . . . . . . . 0

... . . . 1 −2 1
0 . . . 0 1 −2

+diag(V (x1), V (x2), V (x3)...V (xN)) . (3.6)

This simple matrix can then be diagonalized using built-in functionality in, e.g, MAT-
LAB in order to find the eigenfunctions and eigenvalues for a Hamiltonian for any
potential V (x). To increase the accuracy of the derivative, either the number of grid
points considered in the spatial derivative can be increased, or a higher order finite
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difference scheme can be used [81]

∂2ψ

∂x2
≈ −ψj+2 + 16ψj+1 − 30ψj + 16ψj−1 − ψj+2

12∆x2
. (3.7)

The trade off of using a higher order scheme is that the spatial derivative is no longer
tridiagonal and requires a longer time to solve for a given basis. However this can be
mitigated again using sparse matrix functions in MATLAB to reduce the amount of
memory used in the diagonalization process.

3.2 Time-evolution of quantum states

In the Schrödinger picture the evolution of a quantum state |Ψ(t)⟩ can be described
using a unitary time-evolution operator, U(t, t0), such that

|Ψ(t)⟩ = U(t, t0)|Ψ(t0)⟩, (3.8)

where t > t0. The wavefunction itself can be expanded into an orthonormal basis set
|ψn⟩

|Ψ⟩ =
∑
n

cn|ψn⟩ , (3.9)

with cn = ⟨ψn|Ψ⟩ . The time evolution operator follows from the formal integration of
Schrödingers equation as

U(t, t0) = exp

(
−iH(t− t0)

ℏ

)
, (3.10)

= exp

(
−iH∆t

ℏ

)
, (3.11)

where H is the Hamiltonian operator of the system and ∆t is the change in time
∆t = t− t0. A Taylor series expansion can be applied to the unitary operator to write
it in the form

U(t, t0) = 1− iH∆t

ℏ
+O(∆t2) . (3.12)

where O(∆t2) is the error acquired from the expansion. Typically the error can be
a problem when evolving the system, as the scheme does not preserve time reversal
symmetry [82]. This problem is exasperated when the length of time simulated and
the number of time steps required to break up a unitary operator becomes very large,
where

U(t, 0) =
N−1∏
i=0

U(ti +∆ti, ti) . (3.13)

As a result keeping the system unitary over many time-steps becomes an issue. However
one can choose a numerical scheme motivated by finite difference methods in order to
mitigate the error of the evolution [83]. This insures the norm the wavefunction remains
conserved.
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3.2.1 Crank-Nicolson Method

The forward and backwards methods are simple methods to calculate the evolution of
a wavefunction, however this comes at a few disadvantages. In the forward difference
method in Eq. (3.1) the method is classified as explicit, meaning the state at time t+∆t
is solved with the information of the state at time t. This is very intuitive however
incurs a large error if the time step taken is not small enough. Over long run times of
the simulations the stability therefore needs to be carefully checked. The backwards
difference method in Eq. (3.2) is an implicit method to find a solution for the state at the
current time t and at a time of t+∆t. This method is considered unconditionally stable,
however is computationally expensive. A good compromise between the drawbacks of
these two schemes is to use an averaging of both time evolution schemes as in the
Crank-Nicolson approach [83, 84].

For this one starts with the forward method in Eq. (3.1) and rewrites the Hamilto-
nian as

ψ
(k+1)
j − ψ

(k)
j

∆t
=
i

ℏ
Hjψ

(k)
j ,

ψ
(k+1)
j = ψ

(k)
j (1 +

i

ℏ
Hj∆t) . (3.14)

Similarly the backwards method in Eq. (3.2) can be written as

ψ
(k)
j = (1− i

ℏ
Hj∆t)ψ

(k+1)
j , (3.15)

where for the purpose of keeping similar indices k −→ k+1. Both of these methods can
then be averaged such that(

1− i

ℏ
H∆t

2

)
ψ

(k+1)
j = ψ

(k)
j

(
1 +

i

ℏ
H∆t

2

)
. (3.16)

The single order approximation now turns into a second order algorithm with a dis-
cretization error that decreases with O(∆t2).
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Chapter 4

Nonequilibrium many-body dynamics
in supersymmetric systems

4.1 Introduction

In this Chapter I will expand on the mathematical tools used in my publication titled
"Nonequilibrium many-body dynamics in supersymmetric quenching" [1] and highlight
some of the results. A quench is a process in which a many-body system is subjected to
a sudden change in its Hamiltonian, H → H′, which drives the system from its initial
stationary state into a nonequilibrium one, Ψ(t) = e−iH′tΨ(t = 0). Quench protocols
are commonly used to study the response of quantum systems to perturbations as
they allow to probe the excitation spectrum, which can be then be used to study
nonequilibrium thermodynamic quantities such as the work statistics [85, 86] many-
body effects such as thermalization [87] or the orthogonality catastrophe [88]. They also
provide an experimental framework to study many-body localization [89–91]. Ultracold
atoms are perfectly suited to study nonequilibrium phenomena as modern experiments
allows for the accurate measurement of athe density of a gas through time-of-flight
measurements [92], while different interferometric techniques can be used to quantify
the amount of nonequilibrium excitations [93–95].

The degree of control in modern cold atom experiments allows for the modification
of nearly all parts of the systems Hamiltonian, offering different avenues to implement
sudden quenches. The two most common quenches correspond to either a sudden
change in the interactions between particles or the strength of the external trapping
potential. A quench of the interactions between particles can significantly change the
energy spectrum in a non-trivial manner which can lead to complex dynamics and the
destruction of revivals of the initial state [19, 96]. On the other hand a quench of the
potential itself, such as the frequency of a harmonic oscillator [97] or expanding power
law traps [98], can produce scale invariant dynamics even for many-body Bose [99] and
Fermi gases [100, 101]. In fact the density and momentum distribution can be tracked
from these types of quenches, where once the trap frequency is changed the emergence
of excitations in the form of breathing modes can occur in many-body systems [102–
104]. In this Chapter I will explore the dynamics and calculations associated with a
quench of the latter kind, specifically using a quench between the infinite square well

27
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(ISW) and its supersymmetric partner potentials.
While quenching of a trapping potential often means changing only one parameter,

such as the trap frequency of the harmonic oscillator or the length of an ISW, this
preserves the functional form of the potential. For quenches involving purely the ex-
pansion of an ISW one would expect perfect periodic revivals for both non-interacting
fermions and the Tonks-Girardeau gas [105], which is the analog of the well-known Tal-
bot effect in optics [106, 107]. However, the dynamics following an arbitrary quench
can be a lot more complex, especially in many-body systems, and it is important to
identify situations where different effects can be clearly attributed to different phenom-
ena. Quenching between supersymmetric potentials allows one to make an important
simplification, as the eigenspectra before and after the quench are (mostly) identical.
However, the shape of the potential is different and so are their eigenstates, meaning
the wave-function overlaps can play a more important role in the dynamics. Further-
more, the fact that the factorisation operators can be used to transform the eigenstates
between the different supersymmetric Hamiltonians (see Eqs. (2.15) and (2.16)) can
allow one to obtain analytical expression for some of the observables after the quench
[74].

Specifically, the work presented in this Chapter explores the nonequilibrium dynam-
ics of a one-dimensional Fermi gas that is initially prepared in an infinite square well
which is subsequently quenched to a higher order supersymmetric partner potential.
To start I will introduce the non-interacting Fermi-gas, and after that I will expand on
the two quantities used throughout the work: the survival probability and the work
probability distribution. Through these I will explore how supersymmetry influences
the resulting dynamics.

4.2 Degenerate Fermi Gas

For this work I consider a degenerate spin polarized Fermi gas of N particles in a one-
dimensional ISW trap, V (x1, x2, ..., xN). The many-body Hamiltonian can be written
as

H =
N∑
i=1

[
− ℏ2

2m
∇2

i + V (xi)

]
, (4.1)

and the many-body wavefunction and energy are determined by HΨ = EΨ. Since
I consider a non-interacting gas, the many-body wavefunction can be written as a
product of single particle wavefunctions ψi(xj)

Ψ(x1, x2, ..., xN) = ψ1(x1)ψ2(x2)...ψN(xN) , (4.2)

however for a gas of identical particles the coordinates exchange operator P needs to
be included to account for all permutations

PijΨ(x1, . . . , xi, . . . , xj, . . . , xN) = ±Ψ(x1, . . . , xj, . . . , xi, . . . , xN), (4.3)

where the ± denotes the symmetric or anti-symmetric nature of the wavefunction.
For an N particle Fermi gas this can be accounted for by writing the many-body
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wavefunction as a Slater determinant of single particle states as

Ψ(x1, x2, ..., xN) =
1√
N !

N

det
i,j=1

[ψi(xj)] , (4.4)

where the states ψi can be found by solving the single-particle TISE

Hψi =

[
− ℏ2

2m
∇2 + V (x)

]
ψi = Eiψi . (4.5)

For a spin-polarized Fermi gas the Pauli exclusion principle enforces that only one
fermion can occupy each energy level, such that the ground state at zero temperature
has the lowest N levels occupied with total energy E0 =

∑N
i=1Ei. At very low temper-

atures the many-body state has therefore a hard boundary in energy space, known as
the Fermi edge, which is the transition point between occupied and unoccupied states
[108, 109].

In the presence of finite temperature the Fermi edge melts away and is replaced
with a smooth continuous distribution of particles over all states. For single particle
states of energy Ei the average occupation number n̂i is

n̂i =
1

e(Ei−µ)β + 1
, (4.6)

where β is the inverse of the temperature multiplied by the Boltzmann constant, β =
(kbT )

−1, and µ is the chemical potential of the system and
∑∞

i=1 n̂i = N .

4.3 An Overview on Quench Dynamics

In this Section I will give a brief overview of the main quantities used in my work,
i.e. the survival probability and the work probability distribution (WPD). I will show
how the survival probability for non-interacting fermions can be significantly simplified
by taking advantage of the description of the many-body fermionic wavefunction in
terms of single particle states. I will then outline how intertwining relationships and
wavefunction transformations developed in Chapter 2 can be used to simplify a quench
between partner potentials. Lastly I will use the WPD to decompose and identify the
nonequilibrium excitations in the system for both a generic and a SUSY quench.

4.3.1 Survival Probability

When a system is quenched the initial wavefunction undergoes out-of-equilibrium dy-
namics governed by its new Hamiltonian. During the evolution the wavefunction often
exhibits dynamics which increases in complexity and leads to decoherence of the sys-
tem [110, 111]. An important quantity to explore different aspects of an evolving
state is the survival probability, which is also known as the Loschmidt Echo [112, 113].
For a continuously evolving state, the survival probability is a gauge of the orthog-
onality between the time evolved state and the initial state pre-quench, written as
F (t) = |⟨Ψ(0)|Ψ(t)⟩|2. In the case where the survival probability is zero, the two wave-
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functions are orthogonal to each other [88] and therefore this quantity can be used to
measure how far a state is driven away from equilibrium.

Zero temperature

At zero temperature the ground state of a spin-polarised Fermi gas consisting of N
particles is given by a Fermi sea in which all eigenstates of the single-particle Hamil-
tonian H(1) are filled from the lowest lying states up to N -th state with exactly one
particle. For a pure state the survival probability in terms the many-body wavefunction
is written as

F (t) = |O(t)|2 =
∣∣∣⟨Ψ(1)

0 |e−iH(1)teiH
(2)t|Ψ(1)

0 ⟩
∣∣∣2 , (4.7)

where Ψ
(1)
0 is an eigenstate of the Hamiltonian H(1) and H(2) is the quenched Hamil-

tonian. The overlap allows one to study intrinsic effects such as the orthogonality
catastrophe, an effect that arises when a system is subjected to a sudden perturbation
[88]. It predicts that the evolved many-body state of the gas becomes more and more
orthogonal to the initial state with increasing particle number [18, 114, 115]. However,
since Ψ

(1)
0 is the N -body wavefunction of a gas of non-interacting fermions, calculating

the overlap between two many-body states in Eq. (4.7) quickly becomes numerically
intractable for large N . However, one can take advantage of the properties of the Slater
determinant (see Eq. (4.4)) which allows to rewrite the many-body overlap in terms of
more accessible single particle overlaps

O(t) = det[O(t)] , (4.8)

with the overlap matrix for N -particles given by

O(t) =


O11 O12 . . . O1N

O21 O22
. . . ...

... . . . . . . ...
ON1 . . . . . . ONN

 , (4.9)

and the elements being the single particle overlaps

Okl = ⟨ψ(1)
l |e−iH(1)teiH

(2)t|ψ(1)
k ⟩ . (4.10)

Here, ψ(1)
l are single particle eigenstates of H(1), and H(2) is the quenched single particle

Hamiltonian. Inserting a completeness relation for the eigenstates of H(2) gives

Okl =
∞∑

m=1

⟨ψ(1)
l |e−iH(1)t|ψ(2)

m ⟩⟨ψ(2)
m |ψ(1)

k ⟩eiE
(2)
m t, (4.11)

so that the overlap matrix elements can be written as [18, 114, 116]

Okl =
∞∑

m=1

⟨ψ(1)
l |ψ(2)

m ⟩⟨ψ(2)
m |ψ(1)

k ⟩e−i(E
(1)
l −E

(2)
m )t, (4.12)
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where E(1)
l and E(2)

m are the single particle energies of H(1) and H(2). This description
of the many-body overlap now allows to compute the survival probability for larger
numbers of particles without too much computational resources required.

Finite temperature

To describe the dynamics of a system at finite temperatures, the initial state has to be
described by a density matrix given by a Gibbs distribution

ρ0 =
e−H(1)β

Z
|Ψ⟩⟨Ψ| , (4.13)

where Z =
∑

n e
−βEn is the grand canonical partition function. The survival probabil-

ity, F (t), after a quench then becomes

F (t) = |O(t)|2 =
∣∣∣Tr[ρ0e−iH(1)teiH

(2)t
]∣∣∣2 . (4.14)

Similar to the many-body wavefunction at T = 0, Levitov and Lesovik [117]
showed that the trace of the many-body Hamiltonian can also be written as a deter-
minant of the single particle Hamiltonian using the trace formula Tr

[
e−iH(1)teiH

(2)t
]
=

det
[
1 + e−iH(1)teiH

(2)t
]
. The overlap in Eq. (4.14) then becomes

O = det
[
1− n̂i + n̂ie

−iH(1)teiH
(2)t
]
, (4.15)

where n̂i is the Fermi-Dirac distribution from Eq. (4.6). Writing the trace in this form
again only requires the calculation of single particle overlap matrix elements, and of
course taking T = 0 reduces the calculation to the elements of Eq. (4.12).

The expression above was developed to account for the full counting statistics found
in charge transport and the distribution of shot noise. However, it has also recently
found use in describing the overlap dynamics of non-interacting Fermi gases as a mea-
sure of decoherence [118–120]. Experimentally the overlaps can be probed using radio
frequency spectroscopy techniques and Ramsey interferometry, and have been used to
track the nonequilibrium dynamics of quenched Fermi gases [93, 94, 121]. Here a π/2
pulse is applied to the impurity atoms which puts them into a superposition of two
internal Zeeman states, which interact differently with the Fermi gas. This induces
nonequilibrium dynamics in the Fermi gas which can be probed by applying a further
π/2 pulse at a later time and measuring the probability for the impurities to be either
in their ground or excited states. This then allows to extract the many-body overlap
of Eq. (4.7). These techniques have also been shown to allow to use the overlap for the
precise measurement of temperature in ultracold Fermi gases [122, 123].

4.3.2 Quenching with SUSY potentials

The Hamiltonians I use in the quenches discussed below are constructed using the
supersymmetric factorization methods. This means that the eigenspectrum is mostly
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unchanged during a quench, apart from the removal (or addition) of the ground state
level. Furthermore adjacent and iterated intertwining properties exist between super-
symmetric potentials, which will allow to write the overlap matrix elements purely in
terms of the original potential. This can be done by taking the wavefunctions of the
target potential ψ(2)

n and using the supersymmetric operator A(1) in order to write the
wavefunction in terms of ψ(1) by using the transformation Eq. (2.16). Once this is
accomplished, the intertwining property of the time evolution, see Eq (2.20), allows
us to also write the energy in the exponential term e−

i
ℏE

(2)
m t in terms of the original

spectrum.
With these considerations, starting with the elements of the overlap matrix in

Eq (4.12), the overlap elements for SUSY partner potentials can be written as

Okl =
∞∑

m=1

⟨ψ(1)
l |A(1)|ψ(1)

m+1⟩⟨ψ
(1)
m+1|A(1)†|ψ(1)

k ⟩e
− i

ℏ

(
E

(1)
m+1−E

(1)
l

)
t

∆Em+1

. (4.16)

where ∆Em+1 = E
(1)
m+1 − E

(1)
1 . The survival probability can then be calculated using

Eq. (4.8).
For higher order potentials on the other hand, for example a quench between the

initial potential V (1) and its second partner potential V (3), we implement the same steps
as before for a wavefunction transformation and then apply the unitary intertwining
property sequentially. If we start with a wavefunction basis of the second second
partner potential ψ(3)

m the overlap matrix elements can be written as

Okl =
∞∑

m=1

⟨ψ(1)
l |A(2)A(1)|ψ(1)

m+2⟩⟨ψ
(1)
m+2|A(1)†A(2)†|ψ(1)

k ⟩e
− i

ℏ

(
E

(1)
l −E

(1)
m+2

)
t

∆E
(1)
m+2∆E

(2)
m+1

. (4.17)

The derivations provided are kept general as they applies to all SUSY potential hier-
archys and are not exclusive to the infinite square well.

4.3.3 Work Probability Distribution

The dynamical overlap O(t) not only describes the distinguishability of the nonequilib-
rium and initial states, but is also related to the work statistics of the quench dynamics
[101, 124–126]. In particular, the initial decay of O(t) can quantify the moments of the
work distribution [127], with the average work done by the quench given by

⟨W ⟩ = −i∂tO(t)|t=0 . (4.18)

Here O(t) is known as the characteristic function of the work probability distribution
(WPD) which is given by

O(t) =

∫
dt eiWtP (W ), (4.19)
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where O(t) =
∑

n |⟨Ψ
(α)
n |Ψ(1)

0 ⟩|2e−i(Eα
n−E(1)

0 )t can be written as the full sum of the many-
body overlaps. Here we have started by taking the T = 0 case and considering the
initial many-body groundstate Ψ

(1)
0 . Rearranging Eq. (4.19) and differentiating with

respect to t such that −i∂tO(t)|t=0, allows to obtain the work probability distribution
as

P (W ) =
∑
n

|⟨Ψ(α)
n |Ψ(1)

0 ⟩|2 δ (W − (Eα
n − E (1)

0 )). (4.20)

The WPD is measured using two point measurement in time of the probability to find
a system in a particular state after the quench [101, 124–126]. This allows one to un-
derstand the spread of the excitations as a system is quenched to the final Hamiltonian.
It is comprised of the probability of finding the ground state of a Fermi gas at t = 0
with energy E (1)

0 in a state Ψ
(α)
n of the potential α after the quench. The delta term

then ensures the conservation of energy as the amount of work required, W , to bring
an ensemble of fermions from the ground state to an excited ensemble n must equal
the difference in energy of the two states, i.e. W = E (α)

n − E (1)
0 . The energy of each

state is simply the sum of the single particle energies which the gas occupies. For the
ground state this is simply E (1)

0 =
∑N

n=1E
(1)
n where as for the excited ensemble this is

E (α)
n =

∑
E

(α)
ni where {ni}1,2,...,N are a set of quantum numbers for the single particle

states that make up Ψ
(α)
n .

For an N -particle Fermi gas at T = 0 excitations are limited to the very edge of
the Fermi sea. At finite temperature the Fermi edge melts away opening the Fermi
sea and the thermal distribution of the states before quenching needs to be accounted
for [101, 122, 128]. The initial thermal distribution of states is calculated using the
Gibbs factors p(1)s = 1

Z0
eβ(E

(1)
s −Nµ), where Z0 is the grand-canonical partition function

and {sj}1,2,...,N are single particle quantum numbers for the initial state. The WPD
then simply changes to account for this distribution

P (W ) =
∑
s

∑
n

p(1)s

∣∣⟨Ψ(α)
n |Ψ(1)

s ⟩
∣∣2 δ (W −

(
E (α)
n − E (1)

s

))
. (4.21)

Due to the conservation of energy SUSY potentials offer an advantage to the calculation
of the WPD due to the degeneracy of potentials in the SUSY hierarchy. After the
Fermi gas is quenched, particles in the quenched system will occupy states of the
same energy as the initial system. The difference in energy is then the difference of
occupied single particle states that are not degenerate with one another. For example,

the energy difference of the groundstate transition
∣∣∣⟨Ψ(2)

0 |Ψ(1)
0 ⟩
∣∣∣2 after a quench between

V (1) −→ V (2) is simply the energy difference between the non-degenerate occupied states,
namely ∆E = E

(2)
N − E

(1)
1 . Similarly for a quench to V (3) this is the difference of the

first two single particle states in V (1) and the last two single particle states of V (3),
∆E =

∑N
n=N−1E

(3)
n −

∑2
n=1E

(1)
n .
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4.4 Supersymmetric Quenching of the ISW
In my work [1] I consider a quench from an ISW to one of its partner potentials. As laid
out in Section 4.3.2 when a system is prepared in any potential and quenched to one
of its partner potentials, the resulting overlap matrix and its elements can be written
in terms of the single particle states of the initial Hamiltonian. This is accomplished
using a series of SUSY transformations on each of the wavefunctions between the
initial and target potential. Figure 4.1 shows the change of different diagonal overlap
elements Oii(t) after a quench from the ISW to the first partner potential at T = 0.
As one can see at different times post quench the overlaps have moments where the
survival probability reaches F (t) = 1. For odd numbered overlaps however there are 4
times where this occurs (panels (a)), whereas for even numbered overlaps this occurs
at 8 times (panel (b)). This is an effect which arises if the evolving wavefunction
is of even or odd symmetry [129], leading to the observation of different numbers of
revivals for different overlap elements. In the following sections we will expand on this
by calculating the phase of the single particle overlaps at these revival times. The
resulting survival probability for 10 particles calculated from Eq. (4.8) is plotted in
panel (c). Since all individual overlap elements produce revivals at tr/4 regardless of
being odd or even, the resulting survival probability also produces revivals at t = tr/4.
This is further echoed in the probability density in panel (d), which is calculated as

ρ(x, t) =
N∑

n=1

|ψ(1)
n (x, t)|2 =

N∑
n=1

∣∣∣∣∣∑
m

|ψ(2)
m (x)⟩⟨ψ(2)

m (x)|ψ(1)
n (x)⟩e−

i
ℏ (E

(2)
m −E

(1)
n )t

∣∣∣∣∣
2

, (4.22)

and can be found in Figure 4.1 panel (d). This is an example of a quantum carpet
[105, 130], a visual representation highlighting the Talbot effect in matter-waves [131–
133].

The Talbot effect is a diffraction effect that occurs when an incoming plane wave
is incident on a periodic diffraction grating. As a result a fractal pattern emerges at
various distances from the diffraction grating. For matter waves on the other hand
[134] the same diffraction pattern can be created as the wavefunction evolves over
time [107, 135], providing an excellent way for studying the decoherence of a system
[136]. In Figure 4.1 panel (d), at times of tr/4 the probability density returns to its
initial probability density, see panels (e) and (f) for example, producing similar fractal
patterns to that of Talbot oscillations.

The revivals calculated for the SUSY ISW in Figure 4.1 are similar to different
studies on atomic center-of-mass dynamics [105, 135, 136]. However, where our results
differ is when the finite temperature regime is considered. At finite temperature for
a generic symmetric expansion of an infinite box (e.g. the Talbot effect), the overlap
elements dephase with one another. However, I have shown that the overlap elements
for a SUSY quench remain in phase, which allows to see many-body revivals at long
times. This highlights the benefit of using SUSY potentials, specifically for the case
of the ISW. One of the clear differences between the two quenches is that the energy
spectrum for the infinite box changes as the box expands from L1 to L2, while for the
SUSY quenches the energy spectrum is unchanged. To obtain a full picture we have to
explore the effect of SUSY on the time dependent term and build an understanding of
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Figure 4.1: Dynamical overlaps of a) O1,1 b) O10,10 with c) the resulting survival
probability and d) probability density ρ(x, t)|. From the survival probability the density
of the system is plotted for time e) t = 0 and f) t = tr/2. For all plots a 10 particle
Fermi gas is quenched from the ISW to the first partner potential at T = 0.

1) where these revivals come from and 2) why do SUSY quenches retain them at finite
temperature.

4.4.1 Quantum Revivals

Quantum revivals have been present in a number of systems, for example in the collapse
and recombination of Rydberg wavepackets which were found to reform close to their
original shape [137, 138]. Such revivals are, however, not limited to the specific example
settings, but can be described generically as done by Bluhm et al. in 1996 [139]. In fact,
the study of wavefunction revivals is a fundamental problem in quantum mechanics
[135, 140–143] and are most prominently manifested in the aforementioned Talbot
effect, where in the time-evolution of the probability density [105] revivals and fractional
revivals [140] appear.

To look at this more closely, one can consider the revival time for a single particle
state in an infinite box. Bluhm et al. showed [139] that by considering a particle excited
to some mean but predominant excitation level around ñ, weighted probabilities can
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be used to model the approximate energy of this wavepacket. In particular, the energy
can be written using a Taylor expansion with respect to the principle quantum number
of the form

En ≈ Eñ + E
′

ñ (n− ñ) +
1

2
E

′′

ñ (n− ñ)2 +
1

6
E

′′′

ñ (n− ñ)3 + . . . . (4.23)

From this expansion one can obtain different time scales which define various periods of
the system, such as the classical period (Tcl), the revival time (tr)and the super-revival
time (tsup),

Tcl =
2π

|E ′
ñ|

tr =
4π

|E ′′
ñ|

tsup =
12π

|E ′′′
ñ |

. (4.24)

When the survival probability is measured over time these time scales can be observed
as recurrences of the initial state can be identified after being released into a potential
where it is allowed to evolve. For example, in [144] the connection between the survival
probability and the classical period is made using autocorrelation functions, calculated
using the inner product of the time-evolved wavefunction with its state before evolution.

Returning to the ISW, the energy spectrum for a system of width L centered around
the origin is given by

En =
n2π2ℏ2

2mL2
. (4.25)

Taking the second derivative of the energy,

∂2E

∂n2
=

4π2ℏ2

mL2
, (4.26)

allows to obtain the revival time as

tr =
4L2

π
, (4.27)

where we have set ℏ = m = 1. This is an important result because it indicates that
a wavefunction, irregardless of the state it occupies, will return to its original initial
state. For a Fermi-gas of N particles trapped in an ISW potential where each state
is occupied by one particle, all states will return to their initial state at the same
time. Even though for an expanding box two different times can be calculated for each
set of wavefunctions, which are proportional to the box lengths L1 to L2, it is clear
that revivals still occur in accordance with the target potentials box length. In the
context of supersymmetry, since the SUSY partner potentials of the ISW possesses the
same eigenspectra and have the same dependency on L, revivals in the system will
appear as if the gas was simply evolving in just the box. This, however, changes when
temperature is included and the thermal occupation numbers of the states are taken
into account.

Other time scales manifest in the survival probability in different ways. For a
particle in a harmonic oscillator the classical period can be observed at intervals of π

ω

after a trap frequency quench [18, 97]. There is no dependence on the state for the
classical period in the same way that there is no dependence on the revival time for
the ISW. The classical period for the ISW does, however, have a dependence on the
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state a particle is evolving in. This means that for an N body system the survival
probability exhibits smaller, weak revivals in between the predominant revivals, as
the contribution of constructive/destructive interference arises from differing classical
periods. It is therefore important to look at the phase and we will explore this in the
next section.

4.4.2 Revival Retention in Survival Probability

So far we have calculated the revival times for single particle states [144]. For the
ISW this time scale is not state dependent and is only dependent on the length of the
potential. By quenching to a potential within a SUSY hierarchy of the ISW this time
scale is preserved and the single particle states evolve as if they are evolving in the
original potential. However to consider the phase the difference in energy of the single
particle states between potentials needs to be to be taken into account [110, 111], see
Eq. (4.12).

To start let us emphasise that an even-odd effect occurs in the evolution of the quan-
tum states for the ISW [129]. Therefore, it is useful for us to separate the eigenspectra
of the ISW into the ones with even and with odd energies as

Ee
n = E1(2n+ 1)2 and Eo

n = 4E1(n+ 1)2 , (4.28)

for n = 0, 1, 2, 3 . . . . This translates into the expression for the phase dependence of
the exponential term of the overlap as

e−
i
ℏE

e
nt = e−iϕe

n(t) = e−
2πi(2n+1)2

tr
t , (4.29)

e−
i
ℏE

o
nt = e−iϕo

n(t) = e−
8πi(n+1)2

tr
t . (4.30)

For t = tr it is easy to see that the revival time simply becomes an integer multiple of
2π which produces a revival in the survival probability. For our quenches however, one
can see that revivals occur at times of t = tr/4 for even states and t = tr/8 for odd
states [129], which relates to the phases being independent of n

ϕe
n(tr/4) =

π

2
(mod 2π), (4.31)

ϕo
n(tr/4) = 0 (mod 2π) . (4.32)

This result is straightforward to derive however we are interested in the difference of the
phases, in particular the difference in phase of the diagonal of the overlap matrix Oii(t).
The diagonal of the overlap matrix will have much larger contributions compared to
the off-diagonal elements. For the overlap of even and odd states these elements go to
zero and for same parity states of different order the overlap is usually small. For a
quench between partner potentials, for example V (1) → V (2) (or every quench where the
difference in the order of the supersymmetric partner potentials is odd), the diagonal
elements Oii(t) describe a transition from a state with an even quantum number to
one with an odd quantum number in the hierarchy’s original basis, and the phases of
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the overlap matrix elements in Eq. (4.16) can be written as

∆ϕ = ϕe,o
(
tr
4

)
− ϕo,e

(
tr
4

)
= ±π

2
(mod 2π) . (4.33)

For a quench between the original potential and the next-next potential, i.e. V (1) −→
V (3), the overlap matrix for the diagonal in this case is

∆ϕ = ϕe,o
(
tr
4

)
− ϕe,o

(
tr
4

)
= 0 (mod 2π) . (4.34)

The above example is specific to the ISW, however systems with eigenspectra that
have an n2 dependence can be treated in a similar way. This dependence leads to a
common revival time tr for all eigenstates and for all potentials in the hierarchy. For
revival times that are state dependent, on the other hand, this calculation of the phase
is not as straightforward. The effects of having state dependent time scales in regards to
the survival probability will be discussed in section 4.6.1, where the survival probability
for a quench between partner potentials containing the superpotential W(x) = x3 is
described.

4.5 Publication

The results of Chapter 4 using the ISW as an example are published as:

Christopher Campbell, Thomás Fogarty and Thomas Busch
Nonequilibrium many-body dynamics in supersymmetric quenching

Phys. Rev. Research 4, 033014 (2022) [1]

I derived all the analytical results for the supersymmetric intertwining relationships
for the survival probability and description of the phase factor, as well as performed
all numerical simulations and identification of transitions for the work probability dis-
tribution. I also produced the first draft of the paper and all authors contributed to
discussion, interpretation of results and final production of the material published.

4.6 Remarks

The primary potential I have used for my publications and this thesis is the ISW.
Analytical expressions for this potential are known and a detailed description of the
SUSY hierarchy of the potentials is well documented [60]. This allows us to exploit
the intertwining properties and simplify different expressions and quantities such as
the transformation of wavefunctions, creation of partner potentials and deriving values
such as the revival time. The ISW is also a potential that has been well studied in
the realm of nonequilibrium dynamics and wavefunction revival and fractional revival
dynamics alike. It is, however, interesting to compare the results obtained for the
ISW to other supersymmetric potentials. While we do not have the convenience of
having an analytical expression for the ground state available for every potential we



4.6 Remarks 39

can start by choosing a superpotential that will ensure the two potentials produce the
same eigenspectra. I will do this for two different superpotentials, W(x) = x3 and
W(x) = A tanh(x/a).

4.6.1 W(x) = x3

To start I choose a system for which no analytical solutions exist. I specify a super-
potential and create two potentials which, as usual, have identical eigenspectra, with
one potential containing an extra state below the ground state of the higher order one.
My system of choice is

W(x) = x3 , (4.35)

as this leads to potentials that have normalizable ground state wavefunctions given by

V (1) = x6 − 3√
2
x2 and V (2) = x6 +

3√
2
x2 . (4.36)

For these potentials the eigenspectra are not known analytically, but for a general
power-law trap (i.e. V (x) = xk), the state dependence of the energy spectra is known
to be [145–147]

En ∝ n2k/(k+2). (4.37)

For the harmonic oscillator where k = 2, this leads to the expected linear spectrum,
while for k = 6 the dependence is n3/2. Using this relationship it can be inferred
that the revival time and the classical period for a particle evolving in a potential
constructed from W(x) = x3 will have some sort of state dependence. To demonstrate
this I consider a Fermi-gas quenched from V (1) −→ V (2) at T = 0 for different particle
numbers as seen in Fig. 4.2. One can see that the survival probability contains a clear
beating pattern and also revivals of the initial state [148, 149]. While the shape of
this beating is consistent throughout all quenches, increasing the number of particles
decreases the period of the beating pattern. At finite temperature one can see that
the structure of the survival probability changes dramatically and no more revivals
occur. Furthermore, for larger particle numbers the survival probability goes to zero
quickly, indicating that signs of the orthogonality catastrophe can also be found in
SUSY quenches.

4.6.2 W(x) = A tanh(x/a)

Another interesting superpotential is that of the inverse sech2 potential. Potentials that
incorporate hyperbolic functions have in the past shown to have interesting properties
[63] with, for example, the Pöschl-Teller potential and its partner potentials, possessing
reflectionless states [65]. Potentials of this nature are also ingrained with relationships
between one another using point canonical transformations and projections [64]. To
develop a reasoning for choosing this potential, consider the inverse sech2 potential of
the form

V (x) = −ℏ2ν(ν + 1)

2ma2
sech2 (x/a) , (4.38)
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Figure 4.2: Survival probability for a quench between partner potentials constructed
using a superpotential W(x) = x3. The particle numbers for each panel are N=10
(top), N=20 (middle) and N=30 (bottom), for temperatures at T = 0 (blue) and
T = Tf/10 (red).

where the parameters a and ν determine the width of the potential and the depth
respectively. The eigenspectrum is similar to the infinite box in that it has an n2

dependence

En = −ℏ2(ν − n)2

2ma2
(4.39)

for n = 1, 2, 3..., ν [150]. However, compared to the ISW, here the largest energy gap
is between the ground state and the first excited state. The sech2 potential also only
contains a finite number of states, where the highest excited state occurs when n = ν.
This imposes some constraints on a SUSY quench for such a potential, limiting the
number of fermions that can be used for a given depth. It also puts a hard limit on
the number of excitations that can occur from the quench dynamics. Nevertheless we
can still find that the revival time of a state in the inverse sech2 is also independent of
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Figure 4.3: Survival probability of a quench using W(x) = A tanh(x/a) at T = 0 (a)
and T/TF = 0.25 (b). (c) The WPD distribution at T = 0

the state, with a revival time calculated from the energy in Eq. (4.39) as

tr =
4πma2

ℏ2
. (4.40)

Rearranging the equation for the revival time and saying ℏ2
2ma2

= 2π
tr

I can derive an
expression similar to the ISW in Eqs (4.34) and (4.33). For revivals at t = tr/4 one can
find a difference in phase of π mod 2π for unlike phases (differences between even and
odd or odd and even wavefunctions) or 0 mod 2π for like phases (differences between
even and even or odd and odd wavefunctions). At t = tr/2 on the other hand all phase
differences are simply 0 mod 2π. In my work for the ISW supersymmetric quench I
noted that revivals in a many-body system post quench occur at finite temperature if
the phases of the overlaps at T = 0 are at 0 mod 2π. With similar results emerging
from the inverse sech2 potential quench we would also expect to find revival retention.

For simplicity we consider arbitrary constants in the construction of our two partner
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potentials. For an inverse sech2 potential the corresponding superpotential is

W = A tanh(x/a) , (4.41)

where a = 1 modulates the trap width and A is the trap depth large enough to hold a
small system of fermions. The potentials resulting from this superpotential are

V (1) = (1− sech2(x/a))A2 − A

a
√
2
sech2(x/a) (4.42)

V (2) = (1− sech2(x/a))A2 +
A

a
√
2
sech2(x/a) . (4.43)

In Figure 4.3 I show the results obtained by quenching a Fermi gas of five particles
between V (1) and V (2). In panel a) when T = 0 the survival probability remains high
with revivals appearing at t = tr/4. Not only that when finite temperature is introduced
half of the revivals also survive for temperatures of T = Tf/4. The retention of revivals
is consistent with the analysis for the ISW and shows that the retention of revivals are
purely an effect dictated by the structure of the eigenspectrum. The WPD shown in
panel c) shows that the ground state transition (marked by a black star) is the most
probable excitation after a quench.

4.7 Conclusion

In this Chapter I have laid out the tools we have used for calculating the nonequilibirum
dynamics in a non-interacting gas quenched between two supersymmetric potentials.
In the publication presented I used the ISW as an example to highlight the advantages
of using a degenerate eigenspectra, as intrinsic properties such as the classical period
and the revival time of a wavefunction carry over between potentials. I also present
an analytical derivation of the survival probability in the picture of supersymmetric
quenches for any family of potentials which present a hierarchy developed using the
factorization methods of supersymmetry. I have shown that quenching between SUSY
potentials offers a unique advantage in some cases. Specific to the ISW, high survival
probabilities can be achieved at zero temperature for both SUSY quenching and generic
changes in the length of the box itself. However in the finite temperature regime the
SUSY ISW quenches retain their periods of high revivals where as the infinite box does
not. This is due to the retention of the original eigenspectra of the ISW during the
quenching process. By observing the phase of the overlaps during each of the revivals
we can see that overlaps at 0 mod 2π are unaffected by changes in temperature, where
as for all other phases of the overlaps there is a shift away from the complex unit circle.

Using different SUSY quenches it can be shown that this is an effect that is directly
dependent on the eigenspectrum of the quenching potentials. When this model is
applied to potentials with a superpotential such as W(x) = x3 it can be approximated
that the revival time is now state dependent. This can be seen in Figure 4.2, where for
different values of particle numbers the survival probability exhibits a beating pattern
and regularly approaches one. At finite temperature this beating pattern is destroyed,
despite both systems still having the same eigenspectrum. On the other hand, when the
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quench is between potentials related to the superpotential (W(x) = A tanh(x/a)), the
revivals are retained at finite temperature, see Figure 4.3. This is a result of the sech
potential also having n2 dependence on the quantum number for the eigenspectrum
and as a result the revival time does not have any state dependence. For this reason
we can say that the revival retention in SUSY quenches is an effect derived from the
structure of the eigenspectrum and quenches between certain potentials with the same
spectrum can give additional insight into nonequilibrium many-body dynamics.





Chapter 5

Quantum control and quantum speed
limits in supersymmetric potentials

5.1 Introduction

While quenching a gas allows one to push a system far away from equilibrium almost
instantaneously, it is equally as important to explore the controlled dynamics of a
quantum system for the purposes of engineering quantum devices. An important figure
of merit for this is the fidelity between the obtained state at the end of the evolution
and the desired one, which is given by the overlap between these two wavefunctions.
It is worth noting that this is similar to the survival probability discussed in Chapter
4, where the reference wavefunction was instead the initial state of the system. The
fidelity therefore serves as an identifier of the likelihood of excitations appearing during
a dynamical process, with a quench being the fastest method to induce these quickly
[151]. In many cases however excitations are not desired during the evolution, especially
in applications for quantum simulation and sensing.

To prevent excitations from being generated in a quantum system the most obvious
solution is to change it at a slow enough speed so that it stays in a single eigenstate at
all times, i.e. adiabatically. For a system subjected to some perturbation of its Hamil-
tonian, whether it be a translation [152, 153], a transformation of the functional form of
the external potential [154], or a tuning of the interactions in an ultracold gas [155–157],
the adiabatic theorem says that so long as the perturbation acts slowly on a system,
the system will remain in an instantaneous eigenstate of the Hamiltonian [158, 159].
While such a level of high fidelity is achievable and has been demonstrated, it is equally
as important to search for protocols that achieve the same high level over the short-
est time interval possible. Without such protocols, advances in quantum technologies
might be hampered by the effects of accumulating external noise and decoherence [5].
Luckily, methods which speed up the dynamics whilst inhibiting excitations are stud-
ied extensively, the most common of which being Shortcuts to Adiabaticity (STAs).
Before being named STA, the idea of fast optimal population control of a quantum
system was proposed by Demirplak and Rice [160], expanded upon by Berry [161], and
in 2010 Chen et al. coined the term STA for the first time [162]. Since then many STA
protocols have been studied and have been applied to a wide range of systems [163].

45
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Such techniques are also important in the context of quantum heat engines, where
fast adiabatic dynamics is important in cyclic process of expansion and compression
of a system [164–166]. In the following sections I will go into detail on the different
quantities and functions used to characterize STAs, such as the quantum speed limit,
counterdiabatic driving and the associated costs.

5.2 Quantum Speed Limits

Unfortunately, there is no such thing as a free lunch [167] and while achieving a high
fidelity in short amounts of time is possible, there is a natural fundamental limit on
the speed with which quantum systems can evolve. The quantum speed limit (QSL)
is a bound on the length of time over which a pure initial state can evolve into a final
target state. Mandelstam and Tamm realised that the energy time relationship derived
from the Heisenberg uncertainty principle

∆E∆t ≥ ℏ , (5.1)

was actually a description for identifying an intrinsic timescale of quantum dynamics
[168]. The derivation for the speed limit starts with the following inequality

∆H∆A ≥ ℏ
2

∣∣∣∣〈∂A∂t
〉∣∣∣∣ , (5.2)

where ∆H and ∆A are the variances of the Hamiltonian and a chosen observable A.
If A is chosen as a projector of an initial state |ψ(0)⟩⟨ψ(0)|, then the inequality can be
integrated over time such that

1

ℏ
∆Ht ≥ π

2
− arcsin

√
⟨A⟩t. (5.3)

If we consider a final time τ such that the time evolved state is orthogonal to the initial
state ⟨ψ(0)|ψ(τ)⟩ = 0, then a bound on the minimal time for a quantum system to
travel between two orthogonal states is given by

t ≥ τQSL ≡ π

2

ℏ
∆H

. (5.4)

This was the first proposal of a QSL time, τQSL. Later, Margolus and Levitin proposed
an alternative derivation based on the overlap of the time-dependent Schrödinger equa-
tion [169]. Consider a time-evolved wavefunction such that the overlap can be written
as

⟨ψ(0)|ψ(t)⟩ = ν(t) =
∑
n

|cn|2e(−iEnℏ/t) . (5.5)

The real and imaginary parts of the overlap can be separated such that

Re ν(t) =
∑
n

|cn|2 cos(Ent/ℏ) . (5.6)
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Using trigonometric inequalities this real part of the overlap can be written as

Re ν(t) ≥ 1− 2

π

⟨H⟩
ℏ
t+

2

π
Im ν(t) . (5.7)

Similar to before, a time τ at which the time evolved state and the initial state are
orthogonal to each other, ν(t) = 0, is considered. In this case the lower bound for this
evolution is described by the average energy ⟨H⟩ and is given by

t ≥ τQSL ≡ π

2

ℏ
⟨H⟩

. (5.8)

While the two quantities are based on two different properties of the system, both hold
true and Levitin and Toffoli [170] later showed that they can be combined to set the
fundamental limit on the evolution of a quantum state.

Since then these limits have been studied for a variety of different systems and a
comprehensive review of quantum speed limit is given in a recent review by Campbell
and Deffner [171]. QSLs have also been derived for non-orthogonal states and for
dynamics driven by time-dependent Hamiltonians H(t). To facilitate this a measure to
quantify the distance between the initial and target state is required to find the actual
speed limit of the system. For this it is common to use the Bures angle L which is the
smallest geometric distance between an initial state at time t = 0 and the driven state
at t = τ , written as

L = arccos(|⟨ψ(x, 0)|ψ(x, τ)⟩|) . (5.9)

It was shown by Deffner and Lutz [172] that the maximal rate of change of the Bures
angle is bounded by

∂tL ≤ E

2 cos(L) sin(L)
, (5.10)

where E = ⟨H(t)⟩ is average energy of the time dependent Hamiltonian. Integrating
this over time yields the QSL time for the driven dynamics

τ ≥ τQSL ≡ ℏ
2⟨E⟩τ

[sin(L)]2, (5.11)

where the time averaged energy is

⟨E⟩τ =
1

τ

∫ τ

0

dt ⟨H(t)⟩ , (5.12)

and τ is the duration of the driving. This QSL time is then analogous to the Margolis-
Levitin bound for driven systems [172]. Driving protocols for time-dependent Hamil-
tonians that can work at the speed limit can, for example, be obtained using the
techniques known in the field of STAs and will be introduced below.

Studying STAs and QSLs in supersymmetric systems allows one to explore the effect
of different Hamiltonians, which all have the same eigenspectrum. In my work I have
focused on studying STAs for two different classes of wavefunctions: one is a group
of ground state wavefunctions of a hierarchy of supersymmetric Hamiltonians and the
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other are a set of energetically degenerate states within the same hierarchy. Since
the ground states all have the same functional form, but different energies, and the
degenerate states have different functional forms, but the same energy, this approach
allows one to distinguish between the effects coming from the distance in Hilbert or in
energy space.

5.3 Shortcuts to Adiabaticity

In this section I will focus on STAs and specifically deriving counterdiabatic driving
terms. I will motivate the use of counterdiabatic driving starting from Berry’s for-
mulation of the counterdiabatic term followed by a derivation of this term using the
Jarzynski derivation for an ISW. I will then extend the properties of intertwining the
supersymmetric Hamiltonians and include the counterdiabatic driving term.

5.3.1 Counterdiabatic Driving

One way to maintain perfect fidelity for a single-particle state that evolves during a
time-interval τ in any time-dependent Hamiltonian is to apply an auxiliary field that
can counteract the fluctuations arising from excitations. To facilitate this an additional,
counterdiabatic Hamiltonian HCD can be added to the single particle Hamiltonian H0,
which ensures that adiabaticity is maintained [161] so that the overall Hamiltonian
looks like H(t) = H0(t)+HCD(t). To find such a counterdiabatic Hamiltonian, consider
the single particle Hamiltonian with instantaneous eigenstates and energies

H0(t)|m(t)⟩ = Em(t)|m(t)⟩ . (5.13)

To obtain adiabaticity, the evolved state can be written using the instantaneous eigen-
states as

|ψm(t)⟩ = eiαm(t)|m(t)⟩, (5.14)

where the exponential term is the adiabatic phase given by

αm(t) = −1

ℏ

∫ t

0

dt′Em(t′) + i

∫ t

0

dt′⟨m(t′)|∂t′m(t′)⟩ . (5.15)

One can see that a geometric phase is induced by the changing of the instantaneous
eigenstates over time as ⟨m(t′)|∂t′m(t′)⟩.

As the wavefunction evolves over time we note that the wavefunction must follow
the instantaneous eigenstates |m(t)⟩. This ensures that there are no transitions over
all times for the evolving state,

iℏ∂t|ψm(t)⟩ = H(t)|ψm(t)⟩ . (5.16)

H(t) can then be constructed using unitary evolution operators such that the operator
U(t) is a solution to iℏ∂tU(t) = H(t)U(t), allowing the Hamiltonian to be written as

H(t) = iℏ(∂tU(t))U(t) . (5.17)
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By choosing U(t) =
∑

m e
iαm(t)|m(t)⟩⟨m(0)| and differentiating with respect to time,

the time dependent Hamiltonian can be constructed as

H(t) = H0(t) +HCD(t)

= H0(t) + iℏ
∑
m

(|∂tm(t)⟩⟨m(t)| − ⟨m(t)|∂tm(t)⟩|m(t)⟩⟨m(t)|) , (5.18)

where H0 =
∑N

m=1 Em(t)|m(t)⟩⟨m(t)|. The time-dependent Hamiltonian then effec-
tively nullifies nonadiabtaic excitations such as the geometric phase ⟨∂tm(t)|m(t)⟩ = 0
and ensures that the driven state always follows the instantaneous eigenstate ψm(x, t) =

e−i
∫ t
0 Em(t′)dt′ |m(t)⟩, realizing adiabatic dynamics for any value of τ . This reduces the

counterdiabatic driving term to [160, 173, 174]

HCD,m(t) = iℏ|∂tm(t)⟩⟨m(t)| . (5.19)

Over the past couple of years, many counterdiabatic protocols have been developed
for different situations with different external potentials [163]. To highlight the use of
supersymmetry in counterdiabatic driving we once again choose the infinite square well
as our potential.

5.3.2 Scale Invariant Driving, Generating Functions

The generation of the CD term has been generalized by Jarzynski [175] who showed that
a generator of adiabatic transport, ξ(t), can be used to obtain the CD term necessary
to implement a shortcut. Conveniently, Jarzynski illustrates the construction of this
using an expanding ISW potential, similarly to the situation I will discuss in my work.
In this section I will therefore present this derivation of the generator of adiabatic
transport to understand how the CD term modulates the wavefunction. To start the
CD Hamiltonian can be written in the form

H(t) = H0(L(t)) + L̇(t) · ξ(L(t)) (5.20)

where L(t) is the time dependent length of the ISW in H0 and ξ(t) replaces the gen-
eralized form of the counterdiabatic term in Eq. (5.18). ξ acts as the generator that
converts infinitesimal displacements in space, L −→ L + δL to displacements in the
Hilbert space |ψ⟩ −→ |ψ⟩+ |δψ⟩, which when applied to the eigenstates of Hamiltonian
H0(L(t)) generates

|m(L)⟩ −→
(
1 +

1

iℏ
δL · ξ

)
|m(L)⟩ = eiδLAn |m(L+ δL)⟩, (5.21)

where An is a phase imparted on a wavefunction [176]. The task now is to find a
solution for the generator ξ. In his derivation, Jarzynski compares the aforementioned
displacement in Hilbert space to that of a classical example where the displacement
takes place in phase space, (z = [q, p]). The generator then serves as a converter
between the changes of the time dependent parameters (L) and phase space. Over time
as the length of the potential increases, the mapping betweenH0(z;L) andH0(z;L+δL)
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can be used in order to construct the generator. Starting with the Hamiltonian for an
ISW with walls at q = 0 and L

H0(z;L) =
p2

2m
+ Vbox(q;L), (5.22)

and increasing the length of the box from L to L(1 + δL/L), the coordinates in phase
space transform linearly

q −→ q (1 + δL/L) , p −→ p (1 + δL/L) . (5.23)

Classically a solution for the generator can be found by taking the change in phase
space as (

δL

L
q,−δL

L
p

)
≡ δz = δL{z, ξ}, (5.24)

where {·, ·} are the Poisson brackets. Solving for this transformation produces the
equations p/L = ∂ξ/∂q and q/L = ∂ξ/∂p. The solution for the generator is then of
the form ξ = qp

L
and from Eq. (5.20) the full Hamiltonian reads

H(z;L) = H0(z;L) +
L̇

L
qp (5.25)

By finding a classical solution to the generator ξ a quantum solution can be motivated.
Since q and p do not commute, one instead arrives to the solution

ξ =
qp+ pq

2L
. (5.26)

It so happens that this can be applied to the infinite box and the displacement condition
Eq. (5.21) producing the wavefunction(

1 +
1

iℏ
δL ξ

)
ψ(q, L) =

√
2

L+ δL
sin

(
nπq

L+ δL

)
. (5.27)

Plugging the parameters of the length of the box and the generator into Eq. (5.20),
the full Hamiltonain can then be written as

H0(z;L) =
p2

2m
+ Vbox(q;L) +

L̇

2L
(qp+ pq) , (5.28)

where the counterdiabatic modulation of the Hamiltonian is proportional to L̇(t)
L(t)

. Mod-
ulations such as this have been identified in a large class of potentials found in [163],
even identifying that the these hold true for supersymmertic potentials as well.

5.3.3 Driving of SUSY partner Potentials

Now that the counterdiabatic term is defined for the ISW we need a way to modulate the
length of the box between t = {0, τ}. In previous studies the most suitable modulation
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of the length of the box has been found to be a smooth function of the form [174, 177]

L(t) = Li + (Lf − Li)

(
t

τ

)3(
10− 15

t

τ
+ 6

t2

τ 2

)
, (5.29)

for which the following boundary conditions are fulfilled

L(0) = Li , L(τ) = Lf (5.30)

L̇(0) = L̇(τ) = 0 . (5.31)

These boundary conditions ensure that the time-dependent Hamiltonian at the start
and the end of the ramping is equal to the single particle Hamiltonians, i.e. H(0) =
H0(0) and H(τ) = H0(τ), see Eq. (5.28), and therefore the state is a stationary eigen-
state. For other potentials and perturbations to a Hamiltonian, parameters of the
Hamiltonian can be subjected to different ramps which ultimately optimize the trans-
port of a dynamic system [178, 179]. The next task is now to incorporate the time-
dependent length of the box into the SUSY description of the ISW.

Typically for STAs in an ISW, the length of the box is modulated using Eq. 5.29.
This can be done either symmetrically around the center of the potential or by allowing
only one wall to move [105]. In my work I focus on a symmetric expansion of the
potential around the center of the potential, similar to the situation of the quenches
discussed in Chapter 4. During the expansion of the ISW the instantaneous ground
state is therefore time dependent such that

ψ1(x, t) =

√
2

L(t)
cos

(
xπ

L(t)

)
. (5.32)

As a consequence of this the calculation of the superpotential in Eq. (2.6) also becomes
time dependent, as well as the SUSY operators. Using Eq. (2.6), the superpotential
can be calculated at every time step producing

W(α)(x, t) = α
ℏπ√

2mL(t)
tan
(
xπ

L(t)

)
. (5.33)

The resulting potentials are then written as

V (α)(x, t) = W(α)(x, t)2 − ℏW(α)(x, t)′√
2m

V (α+1)(x, t) = W(α)(x, t)2 +
ℏW(α)(x, t)′√

2m
.

This preserves one of the main features of SUSY potentials: using a time dependent
superpotential ensures that two potentials will expand at a rate at which degeneracy
between all potentials is maintained throughout the ramping. The intertwining prop-
erties are also preserved during the ramping as the time dependent operators A(α)(x, t)
and A(α)†(x, t) can act on the wavefunctions for all of t. For these reasons its also
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Figure 5.1: The first three partner potentials of the infinite square plotted with the
probability density of their eigenfunctions. Blue: Set one, highlighting differences in the
ground states. Yellow: Set two, highlighting differences in iso-spectral wavefunctions.
In this schematic I have set ℏ = m = 1 so that En = (n+ α− 1)2.

important to define the energy in terms the order of the potential α and the principle
quantum number of the state n. The energy spectrum for any potential in a SUSY
hierarchy of the ISW can then be written as

E (α)
n (t) =

(n+ α− 1)2π2ℏ2

2mL(t)2
. (5.34)

The degeneracy from SUSY QM still holds such that E (α)
n = E (α+1)

n−1 .
In this work I want to compare the QSL time, fidelity and the cost of two different

sets of wavefunctions that are related in to each other in either energy, which is the
isospectral case, or in shape, which is a set of ground state wavefunctions. For this
reason I have chosen the three neighbouring partner potentials, α = 2, 3, 4, and have
used their ground states as one set of wavefunctions (|ψ(4)

1 ⟩, |ψ(3)
1 ⟩, |ψ(2)

1 ⟩) with energies
of E (α) = α2π2ℏ2

2mL(t)2
(labelled in blue in Figure 5.1 ), and the three states isospectral with

one another (|ψ(4)
1 ⟩, |ψ(3)

2 ⟩, |ψ(2)
3 ⟩), with energies of E (α) = 16π2ℏ2

2mL(t)2
(labelled in yellow in

Figure 5.1). This will allow me to explore the QSL time under two different constraints.
The set of ground state wavefunctions have almost identical Bures angles (in Eq. (5.9)),
which is not the case for the isospectral wavefunctions. This means that the dominating
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contribution to the QSL time come from the time averaged energy difference at the
start and end of the ramp

∆E (α)
1 =

α2π2ℏ2

2m

(
1

L2
i

− 1

L2
f

)
, (5.35)

which can be seen to increase with α2. This differs from the isospectral case, where
the degeneracy means that the energetics are similar, however the Bures angles differ
significantly as more nodes are added to the wavefunction with increasing α. In the
publication I show that, despite the large degeneracies between the different settings,
the average energies required for short ramp times differ greatly and are due to ei-
ther the Bures angle or the differences in spectrum, but for larger ramp times at the
adiabatic limit the average energies become comparable to each other as

⟨En⟩AD =

∫ τ

0

dt E (α)
n (t) . (5.36)

It is therefore interesting to explore the cost of driving the system, which requires first
to study the intertwining properties of the counterdiabatic driving terms.

5.4 Intertwining of the Counterdiabatic Term

In Eq. (2.11) the intertwining relationship using the creation and annihilation operators
between sets of partner Hamiltonians created using factorization techniques was given.
As a result of this, the degeneracy between the eigenspectra could be derived, which
allowed wavefunction transformations between the different Hilbert spaces. When a hi-
erarchy of supersymmetric Hamiltonians is considered, wavefunction transformations
can be facilitated recursively, as long as an annihilation operator does not act on a
ground state wavefunction. Consequently, the properties and values that are depen-
dent on the eigenspectra transfer between Hamiltonians. This was explored in Chapter
4 where I took advantage of the fact that the revival time for a wavefunction in a su-
persymmetric ISW hierarchy is dependent on the eigenspectrum of the original Hamil-
tonian. In this section we will explore an extension of these intertwining properties on
the counterdiabatic driving term.

To start, recall that for all ground states the general form of the ground state
wavefunction in the ISW is

ψ
(α)
1 =

1√
L(t)

[√
πΓ(α + 1)

Γ(α + 1
2
)

] 1
2

cos

(
xπ

L(t)

)α

, (5.37)

where α identifies the order of the potential. Following this the time derivative of the
wavefunction is

∂tψ
(α)
1 = ψ

(α)
1

[
−1

2
+
πxα

L(t)
tan

(
πx

L(t)

)]
L̇(t)

L(t)
. (5.38)
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Inserting these two expressions into the definition of the counterdiabatic term, one can
explicitly see that the modulation of the length, L̇(t)/L(t), calculated in Eq. (5.28), is
present for all groundstates of the supersymmetric ISW hierarchy [163, 175].

For the isospectral wavefunctions, the counterdiabatic terms do in fact have an
intertwining relationship. To see this, recall that for an isospectral set of wavefunc-
tions the transformation between two different Hilbert spaces requires the use of a
specific SUSY operator, which has to be normalized using the energy difference of the
ground state of the lower potential and the energy of the transformed wavefunction,
see Eqs. (2.16) and (2.15). The counterdiabatic term can therefore be written in terms
of its partner term by rewriting the wavefunctions using the aforementioned transfor-
mations. Using |ψ(α+1)

n ⟩ as the instantaneous eigenstate of H(α+1), the counterdiabatic
term can be written as

H
(α+1)
CD,n =iℏ∂t|ψ(α+1)

n ⟩⟨ψ(α+1)
n |

=
iℏ

∆E (α)
n+1

∂t

(
A(α)|ψ(α)

n+1⟩
)
⟨ψ(α)

n+1|A(α)† . (5.39)

Using the quotient rule, the time derivative can be expanded as the operator A(α)(t)

is also time-dependent, giving us ∂t
(
A(α)|ψ(α)

n+1⟩
)
= ∂t

(
A(α)

)
|ψ(α)

n+1⟩+A(α)
(
|∂tψ(α)

n+1⟩
)
.

This leaves the final equation for the adjacent CD term as

H
(α+1)
CD,n =

1

∆E (α)
n+1

A(α)H
(α)
CD,n+1A

(α)† +
iℏ

∆E (α)
n+1

(∂tA
(α))|ψ(α)

n+1⟩⟨ψ
(α)
n+1|A(α)† , (5.40)

where H(α)
CD,n+1 = iℏ|∂tψ(α)

n+1⟩⟨ψ
(α)
n+1| is the CD Hamiltonian for the state |ψ(α)

n+1⟩ and the
second term arises due to the time-dependence of the supersymmetric operator A(α).
Alternatively, in the opposite direction (from α to α + 1), the counterdiabatic terms
can be related in a similar way

H
(α)
CD,n+1 =

1

∆E (α)
n

A(α)†H
(α+1)
CD,n A

(α) +
iℏ

∆E (α)
n

(∂tA
(α)†)|ψ(α+1)

n ⟩⟨ψ(α+1)
n |A(α) , (5.41)

While this expression for the intertwining relations of the CD Hamiltonian is not as
simple as for the single particle Hamiltonian alone, it shows that the CD term for
the next higher supersymmetric Hamiltonian can be constructed with only knowledge
of the adjacent Hamiltonians and its eigenstates [22]. This has an effect on different
values associated with the counterdiabatic term, in particular to the cost of driving a
system.

5.4.1 Cost to Counterdiabatic Driving

Let us now look at the relationship between the QSL time and the energetic cost of
the counterdiabatic term [167]. The cost is defined as the energy required to achieve
adiabatic dynamics of a state for a specific change to a potential, in our case this is an
expansion stroke. A common way to quantify this is given by the trace norm of the
counterdiabatic driving term C

(α)
n =

∫ τ

0
dt||H(α)

CD,n||tr [180] where the integrand can be
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written in terms of the time derivative of the instantaneous eigenstates as

∂tC
(α)
n =

√
⟨∂tψ(α)

n |∂tψ(α)
n ⟩ . (5.42)

From our example of the ISW, since the eigenstates of the full hierarchy of the super-
symmetric Hamiltonians related can be written in terms of Chebyshev polynomials of
the second kind, it can be exactly evaluated. However these general expressions can
become unwieldy for excited states in higher order Hamiltonians very quickly. Thanks
to the analysis of the ISW by Gutierrez et al. [60], we can write the ground state and
the first excited state in a much simpler general form. This will assist us here to illus-
trate the effect of the intertwining of the counterdiabatic term due to the associated
intertwining of the ground state and first excited state of H(α) and H(α−1) respectively.
Using the time derivative of the generalized ground state for a H(α), the cost of driving
the system can be written as

∂tC
(α)
1 =

L̇(t)

L(t)

[
−1

4
+

∫ L(t)/2

−L(t)/2

ψ
(α)
1 ψ

(α)∗
1

(
πxα

L(t)
tan

(
xπ

L(t)

))2

dx

] 1
2

, (5.43)

where it is worth noting that the leading term is independent of α, while the integral
is order dependent.

Moving one order down from from ψ
(α)
1 to ψ(α−1)

2 , we want to find the CD term for
the first excited state of the Hamiltonian H(α−1). From our derivation of the CD term
in Eq. (5.41) we can expect to find some relationship with the cost ∂tC

(α)
1 . To start

we write the generalized form of the first excited state for all potentials and its time
derivative as we did for the ground state

ψ
(α)
2 =

1√
L(t)

[
2
√
πΓ(α + 2)

Γ(α + 1
2
)

] 1
2

sin

(
xπ

L(t)

)
cos

(
xπ

L(t)

)α

, (5.44)

∂tψ
(α)
2 = ψ

(α)
2

[
−1

2
− πx

L(t)
tan−1

(xπ
L

)
+
xπα

L(t)
tan
(xπ
L

)] L̇(t)
L(t)

, (5.45)

Once again, similar to the ground state cost in Eq (5.43) we can calculate the integral
of the time derivative overlap. With some rearranging of the integrals we find that the
cost of the first excited state of the ISW can be written in terms of the ground state
of the adjacent potential,

∂tC
(α−1)
2 =

L̇(t)

L(t)

[
−1

4
+ (2α− 1)

∫ L(t)/2

−L(t)/2

ψ
(α)∗
1 ψ

(α)
1

(
xπ

L(t)

)2

×

(
1 + (1− α) tan

(
xπ

L(t)

)2
)2

dx

] 1
2

.

(5.46)

Comparing the equations of the two costs we notice a few similarities. To start the cost
has a dependence of the length L̇(t)

L(t)
which is expected for all states. The leading term
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for both is again not dependent on α. Furthermore, the ingredients for the construction
of the ground state cost are also present with the addition of other terms.

We can further confirm the relationship of the costs by calculating the average cost
of the system ⟨∂tC(α)

n ⟩τ = 1
τ

∫ τ

0
∂tC

(α)
n for each set of eigenstates, shown in Figure 3. of

the publication [2]. We can see how the analytical equations of the cost correspond to
one another for both the general ground state case in Eq. (5.43) and for an isospectral
counterpart. For the ground states, there is very little difference between the costs as
the integral for the cost is only dependent on the order of the potential α. That being
said we can still see that the lowest cost to drive the system is the ground state of
potential α = 4. The isospectral case however shows a clear difference in the average
cost of driving a system whilst maintaining the same trend of converging for longer
times. Comparing the average cost of ψ(4)

1 to ψ(3)
2 as an example, the analytical cost

of driving tells us that the cost of ψ(3)
2 will include the cost of the integrand of ψ(4)

1

with some additional terms added to it as calculated above. This goes one step further
between ψ(3)

2 and ψ(2)
3 as the amount of terms added to the cost increases.

This is an important result since the cost of driving the system can be incorporated
into the QSL time for a given quantum state. Once the cost is incorporated the
time averaged energy then becomes a summation of the instantaneous energy with the
associated cost [167], written as

τQSL =
ℏτ [sin(L(α)

n )]2

2
∫ τ

0
dt

√
E2
n + (∂tC

(α)
n )2

. (5.47)

From the comparison of the ground states, the cost to drive the system is just as similar
as the Bures angle, and therefore the difference in the instantaneous energy ultimately
affects the varying differences in the QSL time. Conversely in the isospectral case, the
instantaneous energy does not vary between all three states due to the implementation
of the expansion through the tuning of the superpotential. For this reason the cost and
the Bures angle have the greatest affect on the QSL time.

5.5 Publication

The results of Chapter 5 are published as:

Christopher Campbell, Jing Li, Thomas Busch and Thomás Fogarty
Quantum control and quantum speed limits in supersymmetric potentials

New J. Phys. 24, 095001 (2022) [2]

I conducted all numerical simulations and analytical calculations related to the fidelity,
cost, quantum speed limit and energy functional. I also derived the analytical ex-
pressions for the extended intertwining properties of the counterdiabatic driving terms
specific to the infinite square well. I wrote the first draft of the paper and all other
authors contributed to the discussions, interpretation of results, suggestions of im-
provements toward presentation of the analytical results and the final production of
the material published.
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5.6 Remarks

In Chapter 4 I quenched a Fermi gas prepared in an ISW to one of its partner potentials,
while in this Chapter I have considered an STA in one superpotential of the ISW.
The next step would to incorporate the two projects to implement a shortcut of the
ISW, or a different partner potential, to a higher order potential, i.e driving from
from V (α)(x, t = 0) to V (α+1)(x, t = tf ). Theoretically this is easy to implement
between partner potentials as they use the same SUSY operators. Recall that for
the construction of the Hamiltonians H(1) and H(2) in Chapter 2, the main difference
between the Hamiltonians can be found in the expression for the potentials, specifically

V (1)(x) = W(1)(x)2 − W(1)(x)′√
2

, (5.48)

V (2)(x) = W(1)(x)2 +
W(1)(x)′√

2
. (5.49)

Its clear from the two expressions above that the two potentials differ by 2W(1)(x)′√
2

. This
can be generalized however for any set of partner Hamiltonians α and (α+1). Because
of this difference we can use a time-dependent parameter which gradually changes the
potential between V (α) and V (α+1) and which can be optimized using concepts from
shortcuts to adiabaticity. The difference between SUSY partner potentials is dictated
by the spatial derivative of the superpotential. While a physical interpretation of this
is not known theoretically the following time-dependent potential can be written as

V (x, t) = W(x)2 + β(t)
1√
2

d

dx
W(x), (5.50)

where β is in the range of β ∈ [−1, 1]. While the change in energy can be found for the
system during the ramping the wavefunctions in between the two partner potentials
are not known between −1 < β < 1. To remedy this for the ISW partner potentials
as an example, one can start with the initial and final states of the potentials and
a variational ansatz can be engineered in a way that follows the same ramping as
the potentials [181–183]. For intermediate times between the initial and final SUSY
potentials the following ansatz can be used

ψ̃(x, t) = N
[(

1

2
− β(t)

2

)
ψ(x, 0) +

(
1

2
+
β(t)

2

)
ψ(x, τ)

]
(5.51)

where N is a normalization constant, ψ(x, 0) = ψ
(α)
n and ψ(x, τ) = ψ

(α+1)
n−1 . This ansatz

is then an appropriate place to start to derive the shortcut between partner potentials
using inverse engineering [183]. Further extensions to controlled SUSY dynamics can
also be made using optimal control techniques [184] which could realize robust shortcuts
to higher order SUSY potentials.
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5.7 Conclusion
In this work I have used the supersymmetric partner potentials as a platform to study
STA protocols using scale-invariant driving. This is achieved by implementing a ramp
of the length of the box via the superpotentials, ensuring that the spectral degeneracy
is maintained during the expansion. The degenerate eigenspectra between partner
potentials allow for the calculations of different values such as the fidelity, QSL time
and cost of driving different sets of eigenstates to be compared. For example, by using
eigenstates from supersymmetric partner potentials, different values used to calculate
the QSL time such as the Bures angle and the average energy can be constrained
depending on the states used. In the publication I have used the ISW as an example
and I have compared these values for two sets of eigenstates. One set consists of only
the ground states of three adjacent potentials and the other contains three eigenstates
adjacent to each other which have the same energy. In the first set of eigenstates it
can be seen that the Bures angle is loosely constrained and as a result the average
energy of the system ultimately determines the QSL time. In the isospectral case,
the instantaneous energy of the eigenstates are constant which constrains the average
energy at the adiabatic limit. As a consequence the Bures angle directly affects the
value in which QSL time converges.

In the next step I considered counterdiabatic driving of the Hamiltonian. By in-
cluding the CD term we have to consider the cost to drive a system to perfect fidelity
in our calculations, changing the QSL time which is now calculated using a sum of
the instantaneous energies and the cost rather than the average energy of the system.
When calculating the cost for the ISW and its partner potentials, simplifications and
generalizations can be made for both sets of wavefunctions. For the cost associated
with the ground state, due to the general formula of the ISW ground state [60], we
find that the cost is dependent on α with all other parameters remaining the same.
By calculating the average cost we can see that the difference between higher order
potentials is marginal, echoing that the only difference in the QSL time is dependent
on the energy difference between the initial and target states. For the isospectral case
on the other hand, intertwining relationships can be exploited and we find that the cost
of driving can be written in terms of adjacent wavefunctions. As an example I have an-
alytically calculated the cost of driving between the first excited state of one potential
and found that this can be written in terms of the ground state that is isopectral to
the first excited. I have also found that the cost of driving is simply the cost of driving
the ground state with the addition of other integrals which can still be calculated only
from the knowledge of the wavefunctions of the partner potential. The result is rein-
forced by the calculation of the average cost where the difference in cost for different
eigenstates is much larger than in the case of the ground state.



Chapter 6

Summary and Conclusions

In this thesis I have have investigated the advantages of incorporating supersymmetric
quantum mechanics in the description of quantum control protocols. Using two dif-
ferent protocols, a quench and a shortcut to adiabaticity via counterdiabatic driving,
I have developed a general description of the supersymmetric treatment of these pro-
tocols and how the intertwining properties of supersymmetry can be used to describe
different processes.

My work resulted in two publications in peer-reviewed journals that are the basis
for Chapters 4 and 5. These publications are embedded in the manuscript before the
conclusions and final remarks of each section and I will briefly summarize the main
results of each Chapter. For future directions specific to topic I ask the readers to
please refer to the remarks section of each chapter.

6.1 Chapter 4: Non-equilibrium many-body dynam-
ics in supersymmetric systems

In this work I used supersymmetric partner potentials in quenching protocols in order
to study an out-of-equilibrium Fermi gases and observed the dynamics that follow post
quench. In general by using supersymmetric partner potentials for the purposes of
quenching, calculations such as the survival probability and work probability distribu-
tion can be simplified due to the degeneracy of the eigenspectra between potentials.
This is accomplished by taking advantage of the intertwining properties between the
Hamiltonians constructed using the factorization methods of supersymmetry. As a
case example I have shown that for the infinite square well, this leads to interesting
dynamics such as the preservation of quantum revivals at finite temperature. In this
particular quench, the preservation of the n2 eigenspectrum from the initial potential
are the central cause of this phenomenon. This was carefully shown by studying the
time dependent exponential term of the survival probability where at the times when
all wavefunctions possess a phase factor of 0 mod 2π a revival will occur. This refo-
cusing of the phase, however, is not universal for supersymmetric quenches between
arbitrary potentials and should be investigated on a case by case basis depending on
the eigenspectra of the initial potential. As an example I presented a supersymmetric
quench that also contains an n2 dependence in its eigenspectrum however the revival

59



60 Summary and Conclusions

retention is doubled compared to the ISW partner potential quench. The main results
highlighting the methods used for the ISW can be found at Phys. Rev. Research 4,
033014 (2022) [1].

6.2 Chapter 5: Quantum control and quantum speed
limits in supersymmetric potentials

In this work I incorporated supersymmetric quantum mechanics into STA protocols,
most notably for counterdiabatic driving. This is motivated by the construction of the
counterdiabatic driving term where in order to keep an eigenstate of a time-dependent
Hamiltonian at perfect fidelity over time the instantaneous eigenstates and eigenspec-
tra need to be known at all times. Using the ISW to test this concept, I have shown
that by moving to higher order potentials, values such as the fidelity, cost of driving
and QSL time improve. This is tested for two sets of wavefunctions over three neigh-
bouring potentials, the ground state wavefunctions and three wavefunctions isospectral
to one another. I have also presented a method in which the intertwining properties
of supersymmetry can be incorporated into counterdiabatic driving. Starting with the
construction of partner Hamiltonians via the factorization methods of supersymmetry,
I have shown that the operators can be used to construct an intertwining property
between isospectral counterdiabatic driving Hamiltonians. As a consequence of these
extensions of the intertwining properties, relationships in values such as the cost of
driving a system were presented. The main results of this work can be found at New
J. Phys. 24, 095001 (2022) [2].
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