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Abstract 
Purpose of review 
As a result of advances in DNA sequencing technology, molluscan genome research, which 

initially lagged behind that of many other animal groups, has recently seen a rapid succession of 

decoded genomes. Since molluscs are highly divergent, the subjects of genome projects have 

been highly variable, including evolution, neuroscience, and ecology. In this review, recent 

findings of molluscan genome projects are summarized, and their applications to aquaculture 

are discussed. 

 
 
Recent findings 
Recently 14 molluscan genomes have been published. All bivalve genomes show high 

heterozygosity rates, making genome assembly difficult. Unique gene expansions were evident 

in each species, corresponding to their specialized features, including shell formation, 

adaptation to the environment, and complex neural systems. To construct genetic maps and to 

explore quantitative trait loci (QTL) and genes of economic importance, genome-wide 

genotyping using massively parallel, targeted sequencing of cultured molluscs was employed. 

 
Summary 
Molluscan genomics provides information fundamental to both biology and industry. Modern 

genomic studies facilitate molluscan biology, genetics, and aquaculture.  
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Introduction 
The Mollusca is one of the most speciose animal phyla, including at least 70,000 described 

species [1]. They account for about one-quarter of all marine animal species, and their habitats 

include brackish water, freshwater, and land, as well as extreme environments such as deep-sea 

hydrothermal vents. Their abilities to adapt to various environments are of great interest in 

ecology and evolution. 

 

In the realm of aquaculture, molluscs are the second-largest resource after finfish, constituting 

22% of total global aquaculture production [2]. The production volume of molluscs reached 

16.1 million metric tons ($19 billion US) in 2014, roughly a 20% increase from 2004 [3]. 

Despite their immense diversity in nature, aquaculture development focuses on a limited 

number of species. According to FAO data, 104 molluscan species or species groups have been 

farmed, but 5 bivalve species comprise about 40% of all molluscan aquaculture production [2, 

4]. Since the majority of bivalves are filter-feeders, they can be cultured without feeding, so 

mollusc aquaculture is less costly and environmentally benign. 

 

Mollusc aquaculture has a long history. For example, in his book, “Naturalis Historia,” Pliny 

the Elder recorded that the ancient Roman merchant, Caius Sergius Orata, established artificial 

oyster beds in Lucrine Lake in 95 B.C. Scientific bivalve aquaculture has been investigated 

since the 1960’s and breeding programs have been conducted with the aim of genetically 

improving the strains (e.g. literature cited by [5]). However, most cultured molluscs still remain 

in a wild state, and they are not genetically improved, compared to domesticated vertebrates and 

plants. In other words, productivity and quality of molluscan aquaculture products could be 

considerably improved by selective breeding. In traditional breeding programs, prospective 

broodstocks are chosen based on their phenotypes and pedigrees, while recent breeding 

strategies in livestock production are transitioning to genomic selection, which uses 

genome-wide genetic markers to estimate breeding value [6, 7]. To this end, whole genome 

information is desired for mollusc species. 

 

Since the mid-2000s, revolutionary advances in DNA sequencing technology have decreased 

the cost and time required for whole genome sequencing. For example, massive parallel 

platforms produce 10 to 900 Giga bases (Gb) of data per run (single flow cell), costing tens of 

US$ per Gb [8]. This provides researchers with an unprecedented opportunity to decode 
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mollusc genomes, which have fallen far behind those of model organisms, livestock, and crop 

species. In 2012, draft genomes of the pearl oyster, Pinctada fucata, and the Pacific oyster, 

Crassostrea gigas, were the first molluscan genomes published [9, 10]. Since then, genomes of 

13 mollusc species in 3 classes (Bivalvia, Gastropoda, and Cephalopoda) have been published 

[11-22] (Figure 1). In addition, some molluscan genome assemblies, such as that of Aplysia 

californica, are publicly available, although I will not discuss them since the research results are 

not yet published. Molluscan genome research tends to focus on basic biology including animal 

evolution, environmental adaptation, neuroscience, and biomineralization. On the other hand, it 

is clear that genome information could contribute to development of effective breeding and 

sustainable mollusc aquaculture. 

 

In this review, I first discuss general aspects of molluscan genomes demonstrated by various 

sequencing projects. In particular, the issue of heterozygosity in bivalve genome assembly is 

addressed. Next, two bivalve genome projects, the pearl oyster, P. fucata, and the Pacific oyster, 

C. gigas, are discussed, having received much attention from the aquaculture industry. Other 

molluscan genome projects, including two major phyla, the Gastropoda and Cephalopoda, are 

also summarized, examining various aspects of molluscan biology. Finally, potential 

contributions of genome data to the aquaculture industry are discussed. 

 

Heterozygosity in bivalve genomes 
Although sequencing technology has drastically improved, constructing a high-quality de novo 

genome assembly is a major challenge for bivalves because the bivalve genome is very 

heterozygotic (i.e. there are many loci at which individuals have more than one allele). To date 

nine bivalve nuclear genome assemblies have been published (Figure 1), and all of them display 

high heterozygosity rates [9, 10, 13, 14, 17-21]. For instance, polymorphism percentages, 

including single-nucleotide polymorphisms (SNP) and short insertions/deletions (indels), in 

Patinopecten yessoensis and Crassostrea gigas genomes are 1.04% and 1.30% per individual, 

respectively. These rates are 7- to 9-fold higher than in humans (0.14%) [10, 23, 24]. On the 

other hand, the Octopus (cephalopod) genome has a much lower rate (0.08%) [12]. The high 

heterozygosity rate in bivalves may reflect their large population sizes and their expansive 

habitats in the open sea, or their enormous fecundity [25], which requires high rates of germline 

mitosis, causing high mutation rates [26]. In the case of cultured species, artificial admixtures 

between populations, with expected heterosis or hybrid vigor, may contribute to their high 
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heterozygosity rates.  

 

High heterozygosity is an obstacle to generating continuous genome assemblies. In contrast to 

conventional Sanger sequencing, recent high-throughput sequencers generate huge numbers of 

short-read sequences, typically ranging from 50 to 300 bases. In order to re-construct the 

original genomic DNA sequence, a computational process or assembly based on the de Bruijn 

graph framework with a short substring (k-mer) is generally performed [27-29]. This strategy is 

suitable for dealing with massive numbers of short reads, and this reduces the calculation cost. 

In general, however, it is difficult to assemble highly heterozygotic genomes. When a 

heterozygotic diploid genome is sequenced, two unique k-mers are generated from a 

polymorphic locus. This results in contigs that bifurcate at the variant nucleotide. Consequently, 

the assembly becomes fragmented, resulting in a considerable number of redundant sequences 

and mis-assembled duplications [30, 31].   

 

A fundamental solution is to generate an inbred line with reduced heterozygosity. For genome 

sequencing of C. gigas, four generations of full-sibling matings resulted in removal of about 

half the polymorphism [10]. In the scallop genome project, self-fertilizing progeny were 

generated from a single hermaphroditic parent, leading to a 50% reduction of polymorphism 

[18]. The inbreeding strategy reduces heterozygotic loci to some extent, although it seems 

unrealistic to establish a nearly homozygotic line, because of inbreeding depression [32]. 

 

The choice of sequencing and assembly strategy is critical to construct better assemblies. A 

fosmid-pooling strategy combined with whole-genome, shotgun sequencing was used for the 

Pacific oyster genome sequencing [10]. By this method, fosmid pools were sequenced 

separately and assembled, resulted in longer contigs and scaffolds, since each pool covers only 

0.57% of the genome, thereby reducing the possibility of co-occurrence of heterozygotes and 

repetitive sequences in each pool. For the pearl oyster genome assembly, redundant contigs 

caused by heterozygosity were removed in silico [13]. When raw reads are mapped to the 

assembly, sequence coverage depth of contigs derived from heterozygotic regions is one-half of 

that of homozygotic regions. Thus, if two contigs show high sequence similarity and low 

coverage depth, they may be haplotype copies so that one of them can be discarded so as to 

develop a non-redundant, haploid assembly. This strategy dramatically improved the subsequent 

scaffolding and final assembly of the pearl oyster genome [13]. Incorporating long-read 



 6 

sequences, such as those from PacBio or Nanopore may be a more effective strategy to 

overcome the obstacles of heterozygosity.   

 

Genome size and repetitive elements 
Based on records deposited in the Animal Genome Size Database 

(http://www.genomesize.com), genome sizes of molluscs range from 290 Mb (Aplacophora, 

Neomenia permagna [33]) to 7.6 Gb (Gastropoda, Diplommatina kiiensis kiiensis [34]). 

Cephalopods have larger genomes (3.8 Gb on average) than those of bivalves (1.6 Gb) and 

gastropods (2.2 Gb). Since the number of chromosomes is significantly increased, whole 

genome duplication at the base of cephalopod lineage was inferred [35, 36]. However, this 

hypothesis was not supported by the whole genome survey of Octopus bimaculoides [12].  

 

Varied genome sizes among molluscs reflect, in part, the number of repetitive sequences. In the 

O. bimaculoides genome, which is the largest molluscan genome decoded to date (2.68 Gb), 

repeat elements account for at least 45% of the genome [12]. SINE retrotransposons are one of 

the major components of repetitive elements (3.6%) in the octopus genome. Among bivalves, 

the proportion of repetitive elements varies from 62% in Modiolus philippinarum to 36% in C. 

gigas [10, 17]. A large proportion of the repetitive elements in molluscan genomes are 

dissimilar to those deposited in public databases such as Repbase [37].  For example, 27% of 

the repetitive elements in M. philippinarum were assigned as “unknown” [17]. This suggests 

that a considerable number of unidentified repetitive elements are present in mollusc genomes.  

 

The pearl oyster: a model for the study of biomineralization 
The pearl oyster, Pinctada fucata, has been cultured in eastern and southeastern Asia since pearl 

farming was established there at the end of 19th century [38]. Molecular mechanisms of pearl 

formation are substantially the same as those of calcareous shell formation. Epithelial cells in 

mantle tissue secrete an organic matrix and the matrix regulates construction of microstructure 

and crystallization of the shell or pearl. Therefore, identification and functional analysis of 

components in the organic matrix is a topic of major research interest, with the aim of 

improving pearl quality using genetic information and molecular biology techniques. The draft 

genome of P. fucata was decoded in 2012 [9], followed by an improved version of the genome 

assembly (version 2.0) in 2016 [13], providing substantial information for identifying various 
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biological mechanisms, including those involved in development [39-42], physiology [43], 

reproduction [44], and biomineralization [45]. The genome assembly of another strain of P. 

fucata martensii was published in 2017 [20]. Genes responsible for pearl and shell formation 

were thoroughly investigated in Pinctada species by transcriptomic and genomic approaches 

[46, 45]. Proteins in the shell called shell matrix proteins are considered key factors of shell 

formation. Their localization in the shell means that they can interact directly with the crystal 

phase and can control shell formation. In order to identify shell matrix proteins, organic 

fractions extracted from shells are analyzed by mass spectrometry, and retrieved peptide 

sequences are searched against the transcriptome or genome sequence. This proteomic analysis 

can identify tens or hundreds of shell matrix proteins [47, 48]. It should be emphasized that 

functional analysis with gene knockdown by RNA interference (RNAi) is applicable for P. 

fucata [20, 49, 50]. Genome-wide surveys of shell-forming genes combined with gene 

knockdown experiments will eventually reveal the entire shell or pearl formation process at the 

molecular level. In addition, comparative genomics and proteomics may reveal the evolutionary 

course of mollusc shell formation. Pinctada, Crassostrea, and Lottia, from which both the 

genome and shell proteome have been analyzed, have different gene repertoires of shell matrix 

proteins, while some conserved functional domains such as chitin-binding, VWA, and EGF 

domains are commonly utilized for mollusc shell formation [10, 48, 51-54]. The P. fucata 

genome revealed tandem duplications and rapid molecular evolution of shell-forming genes [13, 

45, 55]. These findings about the molecular basis of shell and pearl formation will be useful for 

selective breeding for high-quality pearl farming.   

 

The Pacific oyster: a cosmopolitan bivalve with remarkable 
adaptability 
The Pacific oyster, Crassostrea gigas, occurs naturally in the Northwest Pacific, and has 

become even more widespread after being introduced in many countries for commercial 

production [56-60]. It is now the second most widely produced mollusc species, behind the 

Japanese clam, Ruditapes philippinarum [61]. The sedentary lifestyle of oysters in the intertidal 

zone and estuaries, where they are exposed to dynamic environmental stresses including high 

temperatures, low salinity, and desiccation, necessitates great tolerance to fluctuating conditions. 

Oysters are suspension feeders, meaning that they have excellent innate immune systems in 

order to defend themselves against aquatic microbes. These adaptive capabilities enable C. 

gigas to colonize habitats worldwide. C. gigas is one of the most studied molluscs, and its 
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molecular mechanisms, especially gene expression responses to biotic and abiotic challenges, 

have been heavily investigated [24]. The C. gigas genome, decoded in 2012, showed expanded 

gene families, such as molecular chaperone heat shock proteins (HSPs), inhibitor of apoptosis 

proteins (IAPs), and superoxide dismutases (SODs). Their up-regulated gene expression 

represents a response to environmental stresses [10]. Gene families responsible for innate 

immunity, such as C1q and Toll-like receptors (TLR), are also expanded [62-64]. Notably, 

some genes in these families respond to abiotic changes (temperature, salinity, and air exposure), 

indicating that some of the duplicated “immune” genes have been co-opted to accommodate 

environmental stresses [63].  Understanding the physiology of oysters is essential to improve 

production and maintain food security of this important mollusc. 

 

Molluscan genomics for various biological issues 
Apart from their importance for the aquaculture industry, mollusc genomes have been studied to 

address diverse range of biological questions. The phylum Mollusca belongs to the 

Lophotrochozoa, which comprises one of major clades within the Bilateria. Since genomic 

information for lophotrochozoans is scarce, mollusc genomes are of particular value to study 

animal genome evolution. The genome of the owl limpet, Lottia gigantea, and two annelid 

genomes have been sequenced, allowing reconstruction of 17 bilaterian ancestral linkage groups 

(ALGs) [11]. The genome of the scallop, Patinopecten yessoensis, showed remarkable 

preservation of bilaterian ALGs, as well as intact Hox and ParaHox clusters, which together 

may represent the ancestral state of lophotrochozoans [18]. Expression of Hox and ParaHox 

genes showed subcluster-level temporal co-linearity, and this could be an ancestral pattern in 

bilaterians [18]. The genome of the deep sea mussel, Bathymodiolus platifrons, was compared 

with that of the shallow water mussel, Modiolus philippinarum, in order to study the genetic 

basis for adaptation to extreme environments [17]. In the B. platifrons genome, HSP70 and 

ABC transporter gene families are expanded and highly expressed in gill tissue, suggesting a 

role in resistance to physical stresses and toxic chemicals in the deep-sea environment. A 

molecular mechanism for acquiring methane oxidizing symbionts is also hypothesized from 

expanded gene families, such as Toll-like receptors, adhesion genes (syndecan and 

protocadherin), and apoptosis-related genes [17]. The freshwater snail, Biomphalaria glabrata, 

is an intermediate host of the blood fluke, Schistosoma mansoni, therefore it may be possible to 

interrupt snail-mediated parasite transmission. Genome analysis of B. glabrata provides basic 

information about its biological process such as interactions between the snail and the parasite 
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[15]. Cephalopods command special interest because of their specialized body plans and 

complex neural systems. The genome of the octopus, Octopus vulgaris, demonstrated a large 

number of protocadherin genes, which are responsible for neuronal development [12]. The 

C2H2 zinc finger transcription factor gene family is also expanded, and mRNAs of tandemly 

arranged C2H2 genes are expressed in adult brain, optic lobe, axial nerve cord, and in 

embryonic tissues. Extensive RNA editing in neural tissue is also evident, enabling complex 

neural excitability [12, 65].  

 

In addition to molluscan genome studies mentioned above, genomes of the mussel (Mytilus 

galloprovincialis), the clam (Ruditapes philippinarum), the scallop (Argopecten irradians), the 

freshwater snail (Radix auricularia), and the abalone (Haliotis discus hannai) have been 

published. These studies briefly report statistics of the assembly and predicted gene models [14, 

16, 19, 21, 22]. Rapidly accumulating whole genome data will contribute further understanding 

of the molecular biology of molluscs. 

 

Genome-wide studies for molluscan aquaculture 
Beside providing fundamental insights into biological features of molluscs, whole genome data 

are essential for the aquaculture industry to develop genetic markers for economically valuable 

traits. High-throughput sequencing technology is effective not only for whole genome shotgun 

sequencing, but also for genome-wide genetic marker discovery. Massive parallel, short read 

sequencing combined with a reduced representation library is an optimal strategy for this 

purpose. Various genotyping methods for reduced representation sequencing have been 

developed, such as restriction-site-associated DNA sequencing (RAD-seq) [66], genotyping by 

sequencing (GBS) [67], 2b-restriction site-associated DNA (2b-RAD) sequencing [68], and 

specific-locus amplified fragment sequencing (SLAF-seq) [69]. These techniques have become 

common for genotyping commercially valuable molluscs. In principle, all of these methods use 

one or more restriction enzymes to prepare DNA libraries for sequencing. Genomic DNA is 

fragmented with restriction enzymes and adapters containing sequencing-initiation sites are 

ligated at the cohesive ends. As a result, genomic regions close to the restriction enzyme 

recognition sites are selectively sequenced so that high sequence coverage sufficient for 

genotyping can be obtained. Furthermore, by adding sample-specific index sequences 

(barcodes) to the adapters, multiple individuals can be sequenced in a sequencing run. The 

reduced representation sequencing method discovers thousands of single-nucleotide 
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polymorphisms (SNP) within populations. In order to establish high-density linkage maps, 

1,000-10,000 SNP markers are identified from hundreds of individuals. Table 1 lists the 

high-density linkage map studies of commercial mollusc species [70-76]. For instance, 96 

full-sib progeny were sequenced and 3,806 markers were identified from the Chinese scallop, 

Chlamys farreri, using the 2b-RAD method [70]. Once a sufficient number of SNP markers 

have been established, an SNP array is an alternative method of genome-wide genotyping. 

Medium- to high-density SNP arrays for Crassostrea gigas, a Crassostrea gigas x Ostrea edulis, 

cross, and Pinctada maxima have been tested for genotyping [77-79]. 

 

Linkage maps are used to identify quantitative trait loci (QTLs). Genotypes in QTLs are 

correlated with particular phenotypes; therefore, they are used as markers for selection.   

Growth-related traits, such as shell size and body weight, are of major research interest for 

mollusc aquaculture [70-76]. The triangle sail mussel, Hyriopsis cumingii, which is cultured for 

fresh water pearl production, was analyzed for QTLs associated with nacre color [73, 80]. QTLs 

for shell color and resistance to disease in C. gigas have also been investigated [81, 82]. In cases 

where genome assemblies are available, QTL regions in the physical map or associated genes 

can be identified. In the C. farreri genome, the transcription factor gene, PROP1, that regulates 

animal growth, is associated with a growth QTL [70]. A shell matrix protein gene, N16, is also 

reported to be linked to a growth-related QTL in the Pinctada fucata genome [72]. These results 

of QTL analyses will provide genetic markers correlated with economically valuable traits. 

Then individuals can be efficiently selected for breeding programs using marker-assisted 

selection (MAS). MAS is efficient if the desired trait or phenotype is controlled by a small 

number of genes or QTLs. Genome-wide association studies (GWAS) may contribute 

significantly to mollusc aquaculture because GWA does not require family information. 

Therefore, individuals captured in the wild can be analyzed as potential genetic resources. 

Genomic selection (GS) based on GWA is a more powerful genetic tool when the trait of 

interest is weakly associated with a large number of QTLs. Although GWA combined with GS 

is more costly than QTL analysis, because in general, tens of thousands of SNPs and a ≥1,000 

individuals must be analyzed, this technology will become standard as sequencing costs 

continue to drop.  

 

Linkage maps are also used for anchoring genome scaffolds to linkage groups. Theoretically, if 

at least one genetic marker is mapped on each scaffold, the genome scaffolds can be clustered 
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into linkage groups or chromosomes. Using this method, genome assemblies of Patinopecten 

yessoensis, C. gigas, and P. fucata were enhanced to chromosome level assembly [18, 20]. 

Furthermore, linkage maps are available to assess assembly errors in genome scaffolds. Based 

on linkage maps generated from high-density genetic markers, about 40% of C. gigas genome 

scaffolds with more than one marker were mapped to different linkage groups, indicating that 

the scaffolds were misassembled [83]. Linkage analysis can correct and improve continuity of 

genome assemblies. 

 

Conclusion      
By virtue of fast-growing sequencing technology, molluscan genome sequencing projects are 

proceeding at an astonishing rate. Challenging issues still remain for decoding molluscan 

genomes, such as their huge genome sizes and the high heterozygosity of bivalve genomes. 

Therefore, sequencing strategies and assembly methods should be carefully considered. 

Constructing linkage maps is an efficient way to evaluate assembly errors and to construct 

chromosomal-level assemblies.    

 

Molluscan genomes provide fundamental molecular information to address their unique 

biological features. Lineage-specific, expanded gene families related to shell formation, 

immunity, the nervous system, etc. are evident. Functional analyses such as gene knockdown, 

RNA-Seq, and proteomics enrich our understanding of their significance. Genome sequence 

data can be used to develop genetic tools for aquaculture. Conventionally, in order to select 

individuals with valuable traits such as high growth rate and resistance to disease, costly 

long-term rearing or infectivity assays are necessary. Using DNA markers, characteristics of 

each individual can be estimated efficiently. Whole-genome assembly and gene annotation 

information can identify genes located near genetic markers correlated with specific traits. If 

gene functions are already known, biological evidence corroborates the selection program. 

Alternatively, function of unknown genes can be inferred based on the presence of markers 

associated with the research interest. Biological knowledge from molluscan genomics facilitates 

data-driven breeding programs, and accumulation of genotypic and phenotypic information can 

assist functional genomic studies. Modern genomic studies facilitate molluscan biology, 

genetics, and aquaculture.  
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Figure legend 

 

Figure 1. Published molluscan genome assemblies and their statistics. Evolutionary 

relationship of the molluscs is show at the left.  



Table1. Linkage map with high density SNPs

Class Species
Genotyping

method
Number of

linkage groups
Number of
markers

Total size (cM)
Average

distance (cM)
Reference

Bivalvia Chlamys farreri 2b-RAD 19 3,806 1543.36 0.41 Jiao et al. (2014) [70]

Pinctada fucata martensii 2b-RAD 14 3,117 990.74 0.39 Shi et al. (2014) [72]

Pinctada fucata RAD-seq 14 1373 1091.81 1.41 Li and He (2014) [71]

Pinctada fucata martensii RAD-seq 14 4,463 4287.61 0.96 Du et al. (2017) [20]

Crassostrea gigas x C. angulata GBS 10 1,695 1084.3 0.80 Wang et al. (2016) [76]

Hyriopsis cumingii SLAF-seq 19 4,920 2713.17 1.81 Bai et al. (2016) [80]

Ruditapes philippinarum GBS 18 9,658 1926.98 0.42 Nie et al. (2017) [75]

Patinopecten yessoensis 2b-RAD 19 7,489 1918.65 0.26 Wang et al. (2017) [18]

Gastropoda Haliotis diversicolor RAD-seq 16 3,717 2190.1 0.59 Ren et al. (2016) [74]
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