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Abstract

We propose a novel method for multiple clustering, which is useful for analysis of high-

dimensional data containing heterogeneous types of features. Our method is based on non-

parametric Bayesian mixture models in which features are automatically partitioned (into

views) for each clustering solution. This feature partition works as feature selection for a par-

ticular clustering solution, which screens out irrelevant features. To make our method appli-

cable to high-dimensional data, a co-clustering structure is newly introduced for each view.

Further, the outstanding novelty of our method is that we simultaneously model different dis-

tribution families, such as Gaussian, Poisson, and multinomial distributions in each cluster

block, which widens areas of application to real data. We apply the proposed method to syn-

thetic and real data, and show that our method outperforms other multiple clustering meth-

ods both in recovering true cluster structures and in computation time. Finally, we apply our

method to a depression dataset with no true cluster structure available, from which useful

inferences are drawn about possible clustering structures of the data.

Introduction

We consider a clustering problem for a data matrix that consists of objects in rows and features

(variables, or attributes) in columns. Clustering objects based on the data matrix is a basic data

mining approach, which groups objects with similar patterns of distribution. As an extension

of conventional clustering, a co-clustering model has been proposed which captures not only

object cluster structure, but also feature cluster structure [1–3]. A survey paper by [4] provides

a comprehensive picture of the concept of co-clustering. In principle, several types of co-

clustering structure can be considered in terms of the way how a particular matrix entry is rele-

vant for co-clustering structure: relevant only for a single co-cluster; relevant for more than

one co-cluster (overlapping); not relevant for any co-cluster. As regards algorithms for infer-

ring co-clustering structure, several approaches have been proposed, which can be categorized
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into model-based (assuming particular probabilistic distributions in each co-cluster) and non

model-based (not explicitly assuming probabilistic distribution). Those algorithms include

methods based on correlation coefficient [5] and factor analysis [6, 7].

In the present paper, we focus on a specific type of co-clustering, so called ‘check board’ [4]

where both objects and features are exclusively partitioned (features are partitioned based on

their distribution patterns, Fig 1A). This has an effect of reducing the number of parameters,

which enables the model to fit high-dimensional data. Yet, the co-clustering method (as well as

conventional clustering methods) does not always work well for real data, because real data

may have different ‘views’ that characterize multiple clustering solutions (Fig 1B; here we use a

terminology of ‘clustering’, meaning the whole set of clusters in a view) [8, 9].

Fig 1. Illustration of clustering structures. Panel (A) co-clustering; (B) multiple clustering (with full covariance of Gaussian); (C) multiple

clustering with a specific structure of co-clustering; (D) extension of the model (C) where different distribution families are mixed (two

distributions families in blue and red). Note that a rectangle surrounded by bold lines corresponds to a single co-clustering structure with a

single object cluster solution. In these panels, features and objects are sorted in the order of view, feature and object cluster indices (hence,

the order of objects differs among the co-clustering rectangles).

https://doi.org/10.1371/journal.pone.0186566.g001
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To detect multiple clustering solutions of objects, several methods have recently been pro-

posed [10]. Note that our purpose here is not to combine multiple views to generate a single

clustering solution [11, 12], but to find multiple clustering solutions without prior knowledge

of view structure. Relevant methods are mainly characterized by a guiding principle that

underlies relationships among multiple clustering solutions (Table 1).

A first batch of methods is based on dissimilarly between clustering solutions. In this group

of methods, we first obtain a cluster solution by an arbitrary clustering method, followed by

identifying a dissimilar clustering solution in a specific manner. COALA [13] aims to find a

dissimilar clustering solution by imposing the constraint that a pair of objects should not

belong to the same cluster in different clustering solutions (using a hierarchical clustering

method). In the same sprit, constrained optimization method by [14] uncovers another clus-

tering solution by transforming a data matrix while keeping balance between preservation of

the original data structure and elimination of the given cluster structure. Further, MAXIMUS

algorithm [15] identifies a dissimilar clustering solution based on spatial characteristics of a

given clustering solution and a targeted clustering solution.

A second batch of methods decomposes a generative model of data into independent sub-

models, aiming to simultaneously identify multiple clustering solutions. Decorrelated K-

means algorithm [16] aims to find multiple clustering solutions based on K-means algorithm

to minimize correlations among centroids. In the same sprit, convolutional EM algorithm [16]

identifies multiple clustering solutions by modeling a generative distribution as sum of inde-

pendent mixture models. CAMI [17] algorithm approaches this problem based on a probabi-

listic model to maximize log-likelihood of clustering solutions and minimize mutual

information between them.

A third batch of methods considers orthogonal subspace of features for clustering. Orthog-

onal view approach by [18] performs an iterative algorithm for this purpose. Given a clustering

solution, a next cluster solution is identified in orthogonal subspace of the current clustering

solution. Simultaneous version of this type of method is proposed by [19], which is based on

multivariate Gaussian mixture models (we discuss this method more in detail later).

Note that in this literature review, we did not include subspace clustering methods [20],

because subspace clustering differs from multiple view clustering in that each cluster is embed-

ded in different subspace. However, our interest in the present study is to find multiple cluster-

ing solutions in which each clustering solution identifies clusters embedded in the same

subspace of features. We further clarify differences between our approach and subspace clus-

tering in section of Simulation study on synthetic data.

For most of these multiple clustering methods, however, it is not straightforward to deter-

mine the number of views. A more promising approach is based on nonparametric mixture

models assuming multivariate Gaussian mixture models for each view (Fig 1B) [19]. In this

Table 1. Type of multiple clustering methods.

Principle Description Method

Dissimilarity Given a clustering solution, another clustering solution should be dissimilar. COALA [13]

Constrained optimization [14]

MAXIMUS [15]

Decomposition Decompose a generative model into independent sub-models that yields each clustering solution. Decorrelated K-means [16]

Convolutional EM [16]

CAMI [17]

Orthogonality Identify orthogonal subspace for clustering solutions. Orthogonal view approach [18]

Multivariate Gaussian mixture [19]

https://doi.org/10.1371/journal.pone.0186566.t001
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approach, the full Gaussian model for covariance matrices is considered, and the numbers of

views and of object clusters are inferred in a data-driven way via the Dirichlet process. Such a

method is quite useful to discover possible multiple cluster solutions by screening out irrele-

vant features, when these numbers are not known in advance. However, this method suffers

from the drawback that features need to belong to the same distribution family, which severely

limits its application, because real data often include both numerical and categorical features.

Further, its application is rather limited to low dimensional cases (p< n), because in high-

dimensional cases, the number of objects to infer posterior distribution for the full covariance

matrix of the Gaussian distribution may be insufficient, resulting in overfitting.

To address the aforementioned problems, we consider a multiple clustering framework in

which we can make the best use of co-clustering structure that is not prone to overfitting. Con-

cretely, we propose a novel multiple clustering method (referred to hereafter as the multiple

co-clustering method) based on the following extension of the co-clustering model. First, we

consider multiple views of co-clustering structure (Fig 1C), where a univariate distribution is

fitted to each cluster block [21]. Second, for each cluster block, the proposed method simulta-

neously deals with an ensemble of several types of distribution families such as Gaussian, Pois-

son, and multinomial distribution (Fig 1D). Obviously, the first extension enables our model

to fit high-dimensional data, while the second enables it to fit data that include different types

of features (numerical and categorical). In particular, the second extension is quite novel,

which allows one to simultaneously analyze a dataset of heterogeneous types of marginal distri-

butions. To the best of our knowledge, such a multiple clustering method does not exist.

As an alternative approach, one may consider a multiple clustering model by simply fitting a

univariate (mixture) distribution to each view (hereafter, we call it the ‘restricted multiple clus-

tering method’). However, such an approach has the drawback that it may replicate similar

object cluster solutions for different views. For instance, features that discriminate among

object clusters in the same manner would be allocated to different views, if these are negatively

correlated or if they have different scales (hence, redundant views). As a consequence, it would

not only complicate interpretation, but would also lose discriminative power relative to features.

In the present paper, we retain this method for performance comparisons with our method.

Method

As in [19], our method is based on nonparametric mixture models using the Dirichlet process

[22, 23]. However, unlike the conventional Dirichlet process, we employ a hierarchical struc-

ture, because in our model, the allocation of features is determined in two steps: the first alloca-

tion to a view, and the second to a feature cluster in that view. Moreover, we allow for mixing

of several types of features, such as mixtures of Gaussian, Poisson, and categorical/multinomial

distributions. Note that in this paper, we assume that types of features are pre-specified by the

user, and do not draw inferences about them from data. In the following section, we formulate

our method to capture these two aspects. To estimate model parameters, we rely on a varia-

tional Bayes EM (Expectation Maximization) algorithm, which provides (iterative) updating

equations of relevant parameters. In general, determining whether these updating equations

may be expressed in closed form is a subtle problem. However, this is the case in our model,

which provides an efficient algorithm to estimate views and feature-/object cluster solutions.

For notation used in this section, please refer to Table 2.

Multiple clustering model

We assume that a data matrix X consists of M distribution families that are known in advance.

We decompose X = {X(1), . . ., X(m), . . ., X(M)} with data size n × d(m) for X(m), where m is an
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indicator for a distribution family (m = 1, . . ., M). Further, we denote the number of views as

V (common to all distribution families), the number of feature clusters GðmÞv for view v and dis-

tribution family m, and the number of object clusters Kv for view v (common to all distribution

families). Moreover, for simplicity of notation, we use GðmÞ ¼ maxvGðmÞv and K = maxv Kv to

denote the number of features and the number of clusters, allowing for empty clusters.

With this notation, for i.i.d. d(m)-dimensional random vectors XðmÞ1 ; . . . ;XðmÞn for distribu-

tion family m, we consider a d(m) × V × G(m) feature-partition tensor (3rd-order) Y(m) in which

Y ðmÞj;v;g ¼ 1 if feature j of distribution family m belongs to feature cluster g in view v (0 otherwise).

Combining this for different distribution families, we let Y = {Y(m)}m. Similarly, we consider a

n × V × K object-partition (3rd-order) tensor Z in which Zi, v, k = 1 if object i belongs to object

Table 2. Notation for multiple clustering model.

Domain Notation Description

Data n Sample size

m mth distribution family (m = 1, . . ., M)

M Total number of distribution families

d(m) Number of features for distribution family m

X(m) Data matrix for distribution family m of size n × d(m)

XðmÞi ith sample for distribution family m of size 1 × d(m)

X All data matrix of size n�
PM

m¼1
dðmÞ

Cluster

Membership

V Number of views

GðmÞv Number of feature clusters for distribution family m in view v

Kv Number of object clusters in view v

G(m) maxv G
ðmÞ
v

K maxv Kv
Y(m) Feature-partition indicators of size d(m) × V × G(m)

Y ðmÞj:: Feature-partition indicators for feature j of distribution family m of size V ×
G(m)

Y ðmÞj;v;g
Element of Y(m): 1 if feature j of distribution family m belongs to cluster g in

view v, or 0 otherwise

Z Object-partition indicators of size n × V × K

Zi, v. Object-partition indicators for object i in view v of size 1 × K

Zi, v, k Element of Z: 1 if object i belongs to object cluster k in view v, or 0 otherwise

Dirichlet Process wv Probability of stick-breaking for view v

α1 Hypeparameter of a beta prior Beta(1, α1) for wv

πv Length of unit-stick (
P1

v¼1
pv ¼ 1) for view v

w0 ðmÞg;v Probability of stick-breaking for feature cluster g for distribution family m in

view v

α2 Hypeparameter of a beta prior Beta(1, α2) for w0 ðmÞg;v

p0
ðmÞ
g;v Length of unit-stick (

P1

g¼1
p0
ðmÞ
g;v ¼ 1) for feature cluster g of distribution family

m in view v

tðmÞg;v pvp
0 ðmÞ
g;v : Length of unit-stick (

P1

g;v tðmÞg;v ¼ 1) for feature cluster g of distribution

family m in view v

uk, v Probability of stick-breaking for object cluster k in view v

β Hypeparameter of a beta prior Beta(1, β) for uk, v

ηk, v Length of unit-stick (
P1

k¼1
Zk;v ¼ 1) for object cluster k in view v

Probability Model θðmÞv;g;k Parameter(s) of distribution family m for feature cluster g and object cluster

k in view v

https://doi.org/10.1371/journal.pone.0186566.t002
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cluster k in view v. Note that feature j belongs to one of the views (i.e.,
P

v;gY
ðmÞ
j;v;g ¼ 1) while

object i belongs to each view (i.e.,
P

kZ
ðmÞ
i;v;k ¼ 1). Further, Z is common to all distribution fami-

lies, which implies that our model estimates subject cluster solutions using information on all

distribution families.

For a prior generative model of Y, we consider a hierarchical structure of views and feature

clusters: views are first generated, followed by generation of feature clusters. Thus, features are

partitioned in terms of pairs of view and feature cluster memberships, which implies that the

allocation of feature is jointly determined by its view and feature cluster. On the other hand,

objects are partitioned into object clusters in each view, hence, we consider just a single struc-

ture of object clusters for Z. We assume that these generative models are all based on a stick-

breaking process as follows.

Generative model for feature clusters Y. We let Y ðmÞj�� denote a view/feature cluster mem-

bership vector for feature j of distribution family m, which is generated by a hierarchical stick-

breaking process:

wv � Betað�j1; a1Þ; v ¼ 1; 2; . . .

pv ¼ wv

Yv� 1

t¼1

ð1 � wtÞ;

w0ðmÞg;v � Betað�j1; a2Þ; g ¼ 1; 2; . . . ;m ¼ 1; . . . ;M

p0
ðmÞ
g;v ¼ w0ðmÞg;v

Yg� 1

t¼1

ð1 � w0ðmÞt;v Þ;

tðmÞg;v ¼ pvp
0ðmÞ
g;v

Y ðmÞj�� � Mulð�jtðmÞÞ;

where τ(m) denotes a 1 × GV vector ðt
ðmÞ
1;1 ; . . . ; t

ðmÞ
G;VÞ

T
(the superscript T denotes matrix transpo-

sition); Mul(�|π) is a multinomial distribution of one sample size with probability parameter π;

Beta(�|a, b) is a Beta distribution with prior sample size (a, b); Y ðmÞj�� is a 1 × GV vector

ðY ðmÞj;1;1; . . . ;Y ðmÞj;V;GÞ
T
. Note that we truncate the number of views with sufficient large V and the

number of feature clusters with G [24]. When Y ðmÞj;v;g ¼ 1, feature j belongs to feature cluster g at

view v. By default, we set the concentration parameters α1 and α2 to one.

Generative model for object clusters Z. A subject cluster membership vector of object i
in view v, denoted as Zi, v�, is generated by

uk;v � Betað�j1; bÞ; v ¼ 1; 2; . . . ; k ¼ 1; 2; . . .

Zk;v ¼ uk;v

Yk� 1

t¼1

ð1 � ut;vÞ;

Zi;v� � Mulð�jZvÞ;

where Zi, v� is a 1 × K (we take K sufficiently large) vector given by Zi, v� = (Zi, v, 1, . . ., Zi, v, K)T.

We set the concentration parameter β to one.

Our multiple clustering model is summarized in a graphical model of Fig 2. It clarifies

causal links among relevant parameters and a data matrix.

Multiple co-clustering for heterogeneous marginal distributions
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Likelihood and prior distribution

We assume that each instance XðmÞi;j independently follows a certain distribution, conditional

on Y and Z. We denote θðmÞv;g;k as parameters of distribution family m in the cluster block of view

v, feature cluster g and object cluster k. Further denoting Y ¼ fθðmÞv;g;kgv;g;k;m, the logarithm of

likelihood of X is given by

logpðXjY ;Z;ΘÞ ¼
X

m;v;g;k;j;i

IðY ðmÞj;v;g ¼ 1ÞIðZi;v;k ¼ 1Þ logpðXðmÞi;j jθ
ðmÞ
v;g;kÞ;

where IðxÞ is an indicator function, i.e, returning 1 if x is true, and 0 otherwise. Note that the

likelihood is not directly associated with w = {wv}v, w0 ¼ fw0ðmÞg;v gg;v and u = {uk, v}k, v. The joint

Fig 2. Graphical model of relevant parameters in our multiple co-clustering model. Feat- and obj-cluster denotes feature and object

cluster, respectively. Note that ξ denotes all hyperparameters for distributions of parametersΘ.

https://doi.org/10.1371/journal.pone.0186566.g002
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prior distribution of unknown variables ϕ = {Y, Z, w, w0, u, Θ} (i.e., class membership variables

and model parameters) is given by

pðwÞpðw0ÞpðYjw;w0ÞpðuÞpðZjuÞpðΘÞ:

Variational Inference

As in [19], we use variational Bayes EM for MAP (maximum a posteriori) estimation of Y and

Z. The logarithm of the marginal likelihood p(X) is approximated using Jensen’s inequality

[25]:

logpðXÞ �
R
qð�Þ log

pðX; �Þ
qð�Þ

d� ¼ Lðqð�ÞÞ; ð1Þ

where q(ϕ) is an arbitrary distribution for parameters ϕ. It can be shown that the difference

between the left and right sides is given by the Kullback-Leibler divergence between q(ϕ) and

p(ϕ|X), i.e.,KLðqðϕÞ; pðϕjXÞÞ. Hence, our approach of choosing q(ϕ) is to minimize

KLðqðϕÞ; pðϕjXÞÞ, which is tractable to evaluate. In our model, we choose q(ϕ) that is factor-

ized over different parameters (mean field approximation):

qð�Þ ¼ qwðwÞqw0 ðw0ÞqYðYÞquðuÞqZðZÞqΘðΘÞ;

where each q(�) is further factorized over subsets of parameters, wv, w0ðmÞg;v , Y ðmÞj�� , uk, v, Zi, v� and

θðmÞv;g;k.

In general, the distribution qi(ϕi) that minimizesKLð
QL

l¼1
qlð�lÞ; pðϕjXÞÞ is given by

qið�iÞ / exp fE� qið�Þ logpðX; �Þg;

where E� qið�Þ denotes averaging with respect to ∏l 6¼ i ql(ϕl) [26]. Applying this property to our

model, it can be shown that

qwðwÞ ¼
YV

v¼1

Betaðwvjgv;1; gv;2Þ

qw0 ðw0Þ ¼
YM

m¼1

YV

v¼1

YG

g¼1

BetaðwðmÞg;v jg
ðmÞ
g;v;1; g

ðmÞ
g;v;2Þ

qYðYÞ ¼
YM

m¼1

YdðmÞ

j¼1

MulðY ðmÞj�� jτ
ðmÞ
j Þ

quðuÞ ¼
YV

v¼1

YK

k¼1

Betaðug;vjgk;v;1; gk;v;2Þ

qZðZÞ ¼
YV

v¼1

Yn

i¼1

MulðZi;v�jηi;vÞ

logqΘðΘÞ ¼
X

m;v;g;k;j;i

t
ðmÞ
j;v;gZi;v;k log pðXðmÞi;j jθ

ðmÞ
v;g;kÞ þ

X

m;v;g;k

log pðθðmÞv;g;kÞ þ constant;
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PLOS ONE | https://doi.org/10.1371/journal.pone.0186566 October 19, 2017 8 / 29

https://doi.org/10.1371/journal.pone.0186566


where the hyperparameters except for qΘ(Θ) are given by

gv;1 ¼ 1þ
XM

m¼1

XG

g¼1

XdðmÞ

j¼1

t
ðmÞ
j;g;v

gv;2 ¼ a1 þ
XM

m¼1

XV

t¼vþ1

XG

g¼1

XdðmÞ

j¼1

t
ðmÞ
j;g;t

g
ðmÞ
g;v;1 ¼ 1þ

XdðmÞ

j¼1

t
ðmÞ
j;g;v

g
ðmÞ
g;v;2 ¼ a2 þ

XG

t¼gþ1

XdðmÞ

j¼1

t
ðmÞ
j;t;v

gk;v;1 ¼ 1þ
Xn

i¼1

Zi;v;k

gk;v;2 ¼ bþ
XK

t¼kþ1

Xn

i¼1

Zi;v;t

log t
ðmÞ
j;g;v ¼

XK

k¼1

Xn

i¼1

Zi;v;kEqðθÞ½ logpðXðmÞi;j jθ
ðmÞ
v;g;kÞ�

þcðgv;1Þ � cðgv;1 þ gv;2Þ

þ
Xv� 1

t¼1

fcðgt;2Þ � cðgt;1 þ gt;2Þg

þcðg
ðmÞ
g;v;1Þ � cðg

ðmÞ
g;v;1 þ g

ðmÞ
g;v;2Þ

þ
XG� 1

t¼1

fcðg
ðmÞ
t;v;2Þ � cðg

ðmÞ
t;v;1 þ g

ðmÞ
t;v;2Þg

þconstant

log Zi;v;k ¼
XM

m¼1

XG

g¼1

XdðmÞ

j¼1

t
ðmÞ
j;g;vEqðθÞ½ logpðXðmÞi;j jθ

ðmÞ
v;g;kÞ�

þcðgk;v;1Þ � cðgk;v;1 þ gk;v;2Þ

þ
XK� 1

t¼1

fcðgt;v;2Þ � cðgt;v;1 þ gt;v;2Þg

þconstant;

ð2Þ

where EqðθÞ denotes averaging with respect to the corresponding q(θ) of θðmÞv;g;k; ψ(�) denotes the

digamma function defined as the first derivative of logarithm of gamma function. Note that

t
ðmÞ
j;g;v is normalized over pairs (g, v) for each pair (j, m), while ηi, v, k normalized over k for each

pair of (i, v). Observation models and priors of parameters Θ are specified in the following

section.

Observation models

For observation models, we consider Gaussian, Poisson, and categorical/multinomial distribu-

tions. For each cluster block, we fit a univariate distribution of these families with the assump-

tion that features within the cluster block are independent. We assume conjugate priors for the
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parameters of these distribution families. Variational inference and updating equations are

basically the same as in [19] (See S1 Appendix).

Algorithm 1. Variational Bayes EM for multiple co-clustering
Input:data matricesX(1), . . ., X(M).
for s = 1 to S do
Randomlyinitialize{τ(m)}m and {ηv}v.
repeat
-Updatethe hyperparametersof relevantdistributionfamiliesfor

qΘ(Θ).
-Updatethe hyperparametersfor qw(w), qw0(w0), qY(Y), qu(u), and qZ(Z).

untillL in Eq (3) converges.
Keep L(s) = L

end for
s� = argmaxs L(s)
Output:MAP for Y and Z in the run s�.

Algorithm

With the updating equations of the hyperparameters, the variational Bayes EM proceeds as fol-

lows. First, we randomly initialize {τ(m)}m and {ηv}v, and then alternatively update the hyper-

parameters until the lower bound LðqðϕÞÞ in Eq (1) converges. This yields a locally optimal

distribution q(ϕ) in terms of LðqðϕÞÞ. We repeat this procedure a number of times, and choose

the best solution with the largest lower bound, as the approximated posterior distribution

q�(ϕ). The MAP estimates of Y and Z are then evaluated as argmaxY q�YðYÞ and argmaxY

q�ZðZÞ, respectively. The algorithm is outlined in Algorithm 1. Note that the lower bound

LðqðϕÞÞ is given by

Lðqð�ÞÞ ¼
R
qð�Þ log pðXj�Þd� � KL ðqð�Þ; pð�ÞÞ; ð3Þ

where both terms on the right side can be derived in closed form. It can be shown that this

monotonically increases as q(ϕ) is optimized.

We illustrate a workflow of application of the proposed method in Fig 3. First, a user identi-

fies a distribution family for each feature, generating a data matrix for the corresponding dis-

tribution family. Second, Algorithm 1 is applied to a set of these data matrices, which yields

MAP estimates of Y and Z. Third, using these estimates of Y and Z, one analyzes object/feature

cluster structures in each view.

Time complexity

For simplicity, we consider time complexity of our algorithm for a single run. If we assume

that the number of required iterations for convergence is the same, the time complexity of the

algorithm is equivalent to the number of operations for updating the relevant parameters. In

that case, as can be seen in the updating equations in Eq (2) and S1 Appendix, the time com-

plexity is just O(nd) where n and d are the number of objects and the number of features (we

fix the number of views and clusters). This enhances efficiency in applying our multiple co-

clustering method to high-dimensional data. We return to this point later to compare other

multiple clustering methods.

Model representation

Our multiple co-clustering model is sufficiently flexible to represent different clustering mod-

els because the number of views and the number of feature-/object clusters are derived in a

data-driven approach. For instance, when the number of views is one, the model coincides
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with a co-clustering model; when the number of feature clusters is one for all views, it matches

the restricted multiple clustering model. Furthermore, when the number of views is one and

the number of feature clusters is the same as the number of features, it matches conventional

mixture models with independent features. Moreover, our model can detect non-informative

features that do not discriminate between object clusters. In such a case, the model yields a

view in which the number of object clusters is one. The advantage of our model is to automati-

cally detect such underlying data structures.

Missing values

Our multiple co-clustering model can easily handle missing values. Suppose that the missing

entries occur at random, which may depend on the observed data, but not the missing ones

(i.e., MAR, missing at random). We can deal with such missing values in a conventional Bayes-

ian way, in which missing entries are considered as stochastic parameters [27]. In our model,

this procedure is simply reduced to ignoring these missing entries when we update the

Fig 3. Flowchart for the proposed method. A user is required to identify a distribution family for a feature. For each distribution family, a

data matrix is made. For Gaussian distribution, a feature is typically standardized. Application of the proposed method yields feature cluster

memberships and object cluster membership in each view. This provides useful information on interpretation of view-wise cluster structures.

https://doi.org/10.1371/journal.pone.0186566.g003
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hyperparameters. This is because (univariate) instances within a cluster block are assumed to

be independent; hence the log-likelihood in Eq (1) is given by

logpðXobsjY ;Z;ΘÞ

¼
X

m;v;g;k;j;i

IðY ðmÞj;v;g ¼ 1ÞIðZi;v;k ¼ 1ÞIðði; jÞðmÞ 2 oÞ logpðXðmÞi;j jy
ðmÞ
v;g;kÞ;

where Iðði; jÞðmÞ 2 oÞ is an indicator for the status of availability of the data cell of object i and

feature j for distribution family m (1 when it is available, and 0 otherwise); Xobs a subset of X
that consists of the observed data only.

Simulation study on synthetic data

In this section, we examine performance of our method in synthetic data. We consider both

conventional and non-conventional settings of view structures.

Conventional setting

In this subsection, we report on a simulation study to evaluate the performance of our method

in a conventional setting. To the best of our knowledge, there is no algorithm in the literature

that allows mixing of different types of features, as we have so far modeled. Hence, we compare

the performance of our multiple co-clustering method only with co-clustering and restricted

multiple clustering methods, which we model to accommodate different types of features. We

set the hyperparameters α1, α2, and β relevant for generating views, feature clusters, and sam-

ple clusters to one, and the hyperparameters relevant for observations models to those speci-

fied in S1 Appendix. Note that we use this setting for further application of our method in the

following sections. For data generation, we fixed the number of views to three and the number

of object clusters to two, three, and four in views 1–3, respectively. The number of feature clus-

ters was set to two in all views (Fig 4A). We manipulated the number of features (per view and
distribution family) (10, 50, 100), the number of objects (20, 50, 100), and the proportion of

(uniformly randomly generated) missing entries (0, 0.1, 0.2). We included three types of mix-

tures of distributions: Gaussian, Poisson, and Categorical. Memberships of views were evenly

assigned to features for each distribution family, and the feature and object cluster member-

ships were uniformly randomly allocated. The distribution parameters for each cluster block

were fixed as in the caption of Fig 4. We generated 100 datasets for each setting, which resulted

in 100 × 27 = 2700 datasets.

We evaluated the performance of recovering the true cluster structure by means of an

adjusted Rand index (ARI) [28]: When ARI is one, recovery of the true cluster structure is per-

fect. When ARI is close to zero, recovery is almost random. Specifically, we focused on recov-

ery of memberships of views, and memberships of object clusters. Since the numbering of

views is arbitrary, it is not straightforward to evaluate recovery of the true object cluster solu-

tions (the correspondence between the yielded and the true object cluster solutions is not

clear). Hence, to evaluate the performance of object cluster solutions, we first evaluated ARIs

for all combinations of the true object clusters and yielded object cluster solutions, and then

found the maximum ARI for each true object cluster solution. Lastly, we averaged the ARIs

over views. In this manner, we evaluated the performance for the multiple co-clustering

method and the restricted multiple clustering. The co-clustering method yields only a single

object cluster solution; hence we averaged ARIs between the true object cluster solutions and

this solution.
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The performance of the multiple co-clustering method is reasonably good: performance of

the recovery of views (red dashed line) and object clusters (red solid line) solutions improves

as the number of objects increases (Table 3 and Fig 4B). Regarding the number of features, the

performance improves as the number of features increases from 20 to 50, but there is no

improvement from 50 to 100 (Fig 4C). This is possibly because in our simulation setting, each

feature does not clearly discriminate between object clusters; hence, adding more features does

not necessarily improve the recovery of views (hence, the recovery of object cluster solutions).

Lastly, when the ratio of missing entries increases, the performance just becomes slightly

worse, which suggests that our method is relatively robust to missing entries (Fig 4D).

Fig 4. Data structure and results of simulation study on synthetic data in a conventional setting. Panel (A): Data structure for the

simulation study. Each view has two feature clusters (separated by a dashed line) for each type of features of Gaussian, Poisson and

Categorical. For Gaussian, means are set to (0, 4; 1, 3) ((0, 4) for top left and right cluster blocks, (1, 3) for bottom left and right cluster

blocks) for view 1; (0, 5; 1, 4; 2, 3) for view 2; (0, 6; 1, 5; 2, 4; 3, 3) for view 3. The standard deviation is fixed to one. Similarly, for Poisson, the

parameter λ is set to (1, 2; 2, 1), (1, 3; 2, 2; 3, 1), (1, 4; 2, 3; 3, 2; 4, 1). For categorical (binary), probability for success is (0.1, 0.9; 0.1, 0.9),

(0.1, 0.9; 0.5, 0.5; 0.9, 0.1), (0.1, 0.9; 0.4, 0.6; 0.6, 0.4; 0.9, 0.1). Panels (B)-(D): Performance of the multiple co-clustering method (’Mul’,

red), the co-clustering method (’Co’, green), and the restricted multiple clustering method (’rMul’, blue). Solid lines are for recovery of object

cluster solutions, while dashed lines are for recovery of views. The results are summarized with respect to the number of objects (B), the

number of features (C) and the proportions of missing entries (D).

https://doi.org/10.1371/journal.pone.0186566.g004
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As a whole, the multiple co-clustering method outperforms the co-clustering and the

restricted multiple clustering methods (Table 3; we carried out Friedman test and Nemenyi

test to statistically examine differences of performance among these methods [29]). The per-

formance of the co-clustering method is poor because it does not fit the multiple clustering

structure. On the other hand, the restricted multiple clustering method can potentially fit each

object cluster structure; hence, it performs somewhat well in this regard (but, not for recovery

of the true memberships of views).

Non-conventional setting

In this subsection, we carry out simulation studies, which shed light on capability of our

method in a non-conventional setting of data. First, we illustrate an example of application of

our method to a dataset with a large number of views. Second, we illustrate an example of

application for subspace clustering.

Large number of views. In this experiment, we consider synthetic data in which the true

number of views is 20. The sample size of this data is 30 with 2000 features (each view consists

of 100 features). For view v (v = 1, . . ., 19), two-object-cluster structure is assumed where one

cluster consists of 15 samples. We generated the first 15 samples from a normal distribution

with mean (2v − 1) and standard deviation 0.1, while the remainder of 15 samples from a nor-

mal distribution with mean 2v and standard deviation 0.1. In this way, we independently gen-

erated samples for 100 features in each view. To differentiate object-cluster membership for

each view, we randomized the order of samples for each view. For the 20th view, we generated

all samples from the standard normal distribution. To make obvious differences among views,

we did not standardize a dataset. We randomly generated 100 datasets of this kind, which were

subsequently applied by our method.

To evaluate the performance, we focus on the number of perfectly recovered views

(Table 4). It is shown that view memberships in six to twelve views were correctly identified

without errors. However, taking into account that the true views are clearly separated, the per-

formance is not necessarily impressive. A possible reason for the insufficient performance of

Table 3. Summary of results of simulation study on synthetic data. Recovery of true object cluster structure and views evaluated in terms of mean values

of adjusted Rand Index.

Object clustering Views

Factors Mul Co rMul Mul Co rMul

Number of objects 20 0.30 0.21 0.13 0.05 0.28 0.11

50 0.81 0.23 0.51 0.75 0.48 0.37

100 0.83 0.22 0.69 0.78 0.54 0.43

Number of features 10 0.47 0.21 0.26 0.30 0.33 0.22

50 0.75 0.22 0.49 0.66 0.47 0.32

100 0.74 0.22 0.58 0.63 0.50 0.37

Ratio of missings 0 0.71 0.22 0.49 0.58 0.46 0.33

0.1 0.66 0.22 0.44 0.53 0.44 0.30

0.2 0.60 0.22 0.40 0.48 0.41 0.28

(a) Mul, Co, and rMul denote our multiple co-clustering, co-clustering and restricted multiple clustering methods.

(b) Digits denotes mean values of adjusted Rand Index over 9 × 100 = 900 datasets for a corresponding factor.

(c) To evaluate performance among three methods, we applied Friedman test, which is non-parametric equivalent of ANOVA. For significant cases at level

of 0.01, we subsequently carried out Nemenyi test, which is non-parametric equivalent of the Tukey test. If the best performance among three methods is

significant at level of 0.01 for this test, the corresponding digits are shown in bold.

https://doi.org/10.1371/journal.pone.0186566.t003
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our method is that search space for cluster solutions is considerably large, which reveals limita-

tions of our method.

Nevertheless, further application of our method to a subset of data may correctly recover all

views. In all datasets, it was found that a couple of the true views were simply merged into a

single view yielded by our method. This suggests a possibility that we may recover the true

views by re-applying our method to a subset of data consisting of the selected features in each

view. A desired scenario is that in the re-application, the merged view splits into the true views

while non-merged view does not.

Subspace clustering. Next, we consider an experiment for subspace clustering. In this set-

ting, clusters are embedded in different feature-subspace (Fig 5A) [30–32]. On the other hand,

our proposed algorithm assumes that object clusters are in the same subspace of a given view

(Fig 5B). Hence, our method does not suit the assumption of subspace clustering. Nonetheless,

it is an interesting question how our method works in such a non-conventional setting.

We compare performance of our method with a benchmark method in this domain: An

entropy weighting K-means algorithm (Erwk) [33]. This algorithm was specifically designed

for subspace clustering, hence, it is expected that Erwk may outperform our method. On the

other hand, for datasets in which clusters are embedded in the same subspace, our method

may outperform Erwk.

In this simulation study, we consider two types of datasets. One is a typical subspace struc-

ture (Type 1) in which clusters are embedded in different subspace (Fig 5A). On the other

hand, we also consider a special subspace structure (Type 2) in which clusters are embedded in

the same subspace (Fig 5B). Type 2 data can be considered as a two-view structure: a first view

discriminates between clusters; a second view does not (i.e., consisting of background fea-

tures). In both cases, we set data size to 300 × 12 (sample size 300 and the number of features

12); the number of clusters to three with cluster size 100; the number of relevant features to

four for each cluster. Samples are generated from normal distributions where we fixed means

for three clusters to 0, 2, and 3 while manipulating precision (reciprocal of variance) to 1, 4,

100 and 10000. For background features, each entry is generated by the standard normal distri-

bution. For each setting, we generated 100 datasets. So, the total number of datasets is 2(types)
× 4(precision) × 100 = 800.

We evaluated the performance of the recovering of the true object cluster structure by

means of Adjusted Rand Index. The simulation study suggests that our method outperforms

Erwk (Fig 6, Table 5) both in Type 1 and Type 2 configurations.

A close analysis on the clustering results reveals a possible reason for the unexpected good

performance of our method in Type 1 datasets. The key of success lies in feature clusters.

Though any feature does not perfectly discriminate the given three clusters, a combination of

them does so. For instance, feature 1–3 distinguishes cluster 1 from the remainder, while

Table 4. Results on recovery of views for data with a large number of views.

Number of perfectly recovered views (out of 20) Proportion of datasets

6 4%

7 6%

8 14%

9 31%

10 13%

11 26%

12 6%

https://doi.org/10.1371/journal.pone.0186566.t004
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feature 10–12 does cluster 3. So, a view that contains both features 1–3 and 10–12 can poten-

tially discriminate three clusters. Though it may be too optimistic to expect our method to

always work in this way, this experiment shows some workability of our method in subspace

clustering.

Application to real data

To test our multiple co-clustering method on real data, we consider three datasets: facial image

data, cardiac arrhythmia data, and depression data. For facial image and cardiac arrhythmia

data, the (possible) true sample clustering label is available, which enables us to evaluate clus-

tering performance of our multiple co-clustering method. We compare the performance with

the restricted multiple clustering method and two state-of-the-art multiple clustering methods:

the constrained orthogonal average link algorithm (COALA, [13]) and the decorrelated

Fig 5. Configurations of data matrix. In these illustrations, the horizontal axis denotes features while the vertical axis objects. Cluster

blocks are denoted by Cluster 1, 2, and 3, while background entries are denoted by B.G. For panel (A), clusters are embedded in different

subspace (Type 1), while for panel (B), clusters are in the same subspace (Type 2).

https://doi.org/10.1371/journal.pone.0186566.g005
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Fig 6. Results of simulation study of our method and Ewkm (we used R package ‘wskm’) on subspace clustering. Recovering of the

true cluster structure measured by average Adjusted Rand Index.

https://doi.org/10.1371/journal.pone.0186566.g006

Table 5. Results of simulation study of our method and Ewkm (we used R package ‘wskm’) on subspace clustering. Recovering of the true cluster

structure measured by average Adjusted Rand Index. Bold digits denote significance at 0.01 level by Wilcoxon signed-rank test on differences of performance

between two methods.

Type of datasets Precision Methods

Multiple co-clustering Ewkm

Type 1

(Subspace str.)

1 0.86 0.07

4 0.93 0.28

100 0.99 0.70

10000 0.99 0.91

Type 2

(Non-subspace str.)

1 0.77 0.02

4 0.98 0.41

100 0.99 0.64

10000 0.99 0.67

https://doi.org/10.1371/journal.pone.0186566.t005
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K-means algorithm [16]. These state-of-the-art methods aim to detect dissimilar multiple sam-

ple clustering solutions without partitioning of features. COALA is based on a hierarchical

clustering algorithm, while decorrelated K-means is based on a K-means algorithm. The two

methods also differ in the way to detect views: COALA iteratively identifies views while dec-

orrelated K-means simultaneously does so. For both methods, we need to set the number of

views and the number of sample clusters. In this experiment, we set these to the (possible) true

numbers. For the depression data, no information is available on true cluster structure. Hence,

we focus mainly on implications drawn from the data by our multiple co-clustering method,

rather than evaluating the performance of recovery of true cluster structure.

Facial image data

The first dataset contains facial image data from the UCI KDD repository (http://archive.ics.

uci.edu/ml/datasets.html), which consists of black and white images of 20 different persons

with varying configurations (Fig 7): eyes (wearing sunglasses or not), pose (straight, left, right,

up), and expression (neutral, happy, sad, angry). This dataset served as a benchmark for multi-

ple clustering in several papers [13, 19]. Here, we focus on the quarter-resolution images

(32 × 30) of this dataset, which results in 960 features. For simplicity, we consider two subsets

of these images: data 1 consisting of a single person (named ‘an2i’) with varying eyes, pose and

expression (data size: 32 × 960); data 2 consisting of two persons (in addition to ‘an2i’, we

include person ‘at33’, data size: 64 × 960). We use these datasets without pre-processing.

The facial image data has multiple clustering structures that can be characterized by all of

the features (global) or some of the features (local). Identification of persons (hereafter, useid)

may be related to global information of the image (all features), while eyes, pose and expression

Fig 7. Samples from the facial image data. The first row represents person ‘an2i’ with configurations of (no sunglasses, straight pose and

neutral expression), (sunglasses, straight pose, angry expression) and (no sunglasses, left pose, happy expression) from left to right

columns. The second row for person ‘at33’ with the same patterns of configuration.

https://doi.org/10.1371/journal.pone.0186566.g007
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are based on local information (a subset of features). Here, we focus only on pose, which is a

relatively easy aspect to detect [34]. Since COALA and decorrelated K-means methods do not

explicitly model relevant features for sample clustering, they can potentially capture a multiple

clustering structure based on either global or local information of such a dataset. On the other

hand, our multiple co-clustering model is based on a partition of features, which implicitly

assumes that a possible sample clustering structure is based on non-overlapping local informa-

tion. Our interest in this application is to examine the performance of our multiple clustering

method using such data.

To evaluate performance, we focus only on sample clustering solutions. We base our evalu-

ation criterion on recovery of structures of useid and pose (useid is applicable only for Data 2),

which is measured by the maximum value of an adjusted Rand Index between the true sample

structure in question and resulting sample clustering solutions. We discuss the results for each

data in the following sub-sections.

Results: Data 1. Our multiple co-clustering method yielded nine sample clusterings (i.e.,

nine views), one of which is closely related to pose with an adjusted Rand Index of 0.84

(Fig 8A, p<0.001 by permutation test, and Table 6 for the contingency table between true clus-

ters and resultant sample clusters). Our method outperforms COALA and decorrelated

K-means methods (the performance of both methods is similar), and performs slightly better

than the restricted multiple clustering method.

Next, we analyze features that are relevant to the sample clustering based upon pose. Note

that our multiple co-clustering method yields information about features relevant to a particu-

lar sample clustering solution in an explicit manner while COALA and decorrelated K-means

do not. Our method yielded the pixels (features) relevant to the cluster assignment, concentrat-

ing around subregions in the right part of head and the left part of face (Fig 9). This allows us

to conclude that these subregions are very sensitive to different poses.

Results: Data 2. Our multiple co-clustering method yielded ten sample clusterings, three

of which were closely related to useid (identification of person) and pose with adjusted Rand

Indices of 0.82 (p<0.001) and 0.26 (p<0.001), respectively (Fig 8B, and Tables 7 and 8 for the

contingency tables for useid and pose, respectively). To compare with COALA, our multiple

co-clustering method performed a bit poorly for detecting useid, while it performed better for

pose. On the other hand, the performance of our method is comparable to the decorrelated

K-means method. Further, it performed slightly better than the restricted multiple clustering

method.

The most relevant pixels for useid concentrate near the right part of face, and the back-

ground (Fig 10). This can be interpreted to mean that the difference in hair style may be an

important factor to distinguish between these two persons. In addition, an apparent difference

in their rooms (background) also serves as a discriminating factor.

Cardiac arrhythmia data

Next, we apply our multiple co-clustering method to Cardiac Arrhythmia data (UCI KDD

repository). Unlike the facial image data in the previous section, this dataset does not necessar-

ily have multiple sample clustering structures (indeed, such information is not available).

However, the multiple co-clustering method should be able to automatically select relevant

features.

The original dataset consisted of 452 samples (subjects) and 279 features that comprise vari-

ous cardiac measurements and personal information such as sex, age, height, and weight (See

more detail in [35]). Some of these features are numerical (206 features) and others are cate-

gorical (73 features). Further, there are a number of missing entries in this dataset. Beside
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these features, a classification label is available, which classifies the subjects into one of 16 types

of arrhythmia. For simplicity, we focus only on three types of arrhythmia of similar sample

size: Old Anterior Myocardial infarction (sample size 15), Old Inferior Myocardial Infarction
(15) and Sinus Tachycardia (13). The objective in this section is to examine recovery perfor-

mance among these three types of arrhythmia and identify relevant features for these subtypes.

Application of COALA and decorrelated K-means methods to this dataset is problematic

because these methods do not allow for categorical features nor missing entries. Hence, we use

the following heuristic procedure to pre-process the data: Re-code a binary categorical feature

using a numerical feature (taking values 0 or 1); replace missing entries with mean values of

features. Recall that these problems do not arise with our multiple co-clustering method.

Results. Our multiple co-clustering method yielded nine sample clusterings (i.e., nine

views). The maximum adjusted Rand Index between the true labels and resultant clusters is

Fig 8. Performance on sample clusterings for the facial image data. Panel (A) for the subset (Data 1) of a single person (‘an2i’).

Performance on pose for four clustering methods, i.e., multiple co-clustering (Mul), COALA, decorrelated K-means (DecK), and restricted

multiple clustering (rMul) are evaluated by adjusted Rand Index of sample clustering solutions. Panel (B) for the subset (Data 2) of two

persons (‘an2i’ and ‘at33’). Performance is evaluated on useid and pose. Note that to match true and yielded views, we evaluated the

maximum value of adjusted Rand index between the true sample clustering in question and the yielded sample cluster solutions. The

number of initializations is 500 for the multiple co-clustering, decorrelated K-means and the restricted multiple clustering. Panel (C) for

computation time (seconds) per single run of each clustering method.

https://doi.org/10.1371/journal.pone.0186566.g008
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0.56 (p<0.001, Fig 11). On the other hand, the maximum Rand Index for COALA, decorated

K-means and restricted multiple clustering methods are 0.02, 0.49 and 0.39, respectively.

Further, we examine subject clustering results more in detail. For our multiple co-clustering

method, the subject clusters C1, C2, and C3 distinguish the three symptoms well (correspond-

ing to T2, T1, and T3, respectively, Table 9). On the other hand, such a distinction is totally or

partially ambiguous for the other methods. In the case of COALA, clustering results seem to

be degenerate, yielding two tiny clusters (C2 and C3). For decorrelated K-means, the distinc-

tion among T1, T2, and T3 is partially ambiguous. There is a clear correspondence between

C1 and T1, but C2 is a tiny cluster, and C3 does not distinguish between T2 and T3. A similar

observation is made for the restricted multiple clustering method.

Finally, we examine selected features for the relevant clustering solution by our multiple co-

clustering method. For the numerical features, 98 out of 205 features were selected while all

categorical features were selected. Detailed analysis on these selected features may require

medical expertise on electrocardiogram, which is beyond the scope of this paper. On the other

hand, for non electrocardiogram features such as sex, age, height, weight and heart rate (the

number of heart beats per minute), only sex was selected. In particular, the result that heart

rate was not selected for these subtypes of heart disease suggests that these symptoms were not

distinguishable simply by heart rate. Hence, clinical examination of electrical activity of the

heart becomes essential. Note that other methods such as COALA and decorrelated K-means

methods do not select features, hence, feature analysis is not possible for these methods.

Table 6. Results of sample clustering for data 1 of the facial image data. Contingency table of the true labels (pose) and yielded clusters of multiple co-

clustering (Mul), COALA, decorrelated K-means (DecK), and restricted multiple (rMul) method from (a) to (d). T1, T2, T3 and T4 are true classes of pose

(straight, left, right and up); C1, C2, C3, C4 and C5 are yielded clusters for each method.

(a) Mul (b) COALA

T1 T2 T3 T4 T1 T2 T3 T4

C1 8 0 0 2 C1 2 0 6 1

C2 0 8 0 0 C2 6 0 1 7

C3 0 0 8 0 C3 0 5 1 0

C4 0 0 0 6 C4 0 3 0 0

(c) DecK (d) rMul

T1 T2 T3 T4 T1 T2 T3 T4

C1 0 0 2 2 C1 0 8 0 0

C2 2 3 1 2 C2 0 0 8 0

C3 4 4 4 3 C3 1 0 0 5

C4 2 1 1 1 C4 4 0 0 2

C5 3 0 0 1

https://doi.org/10.1371/journal.pone.0186566.t006

Fig 9. Selected features by our multiple co-clustering method for person ‘an2i’ in the facial image data. Pixels surrounded by color

boxes are the selected features that yielded the relevant sample clustering to pose. Color denotes a particular feature cluster.

https://doi.org/10.1371/journal.pone.0186566.g009
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Depression data

Lastly, we apply our multiple co-clustering method to depression data, which consists of clini-

cal questionnaires and bio-markers for healthy and depressive subjects. This study was

approved by the Research Ethics Committee at the Okinawa Institute of Science of Technology

as well as the Research Ethics Committee of Hiroshima University (permission nr. 172). Writ-

ten consent was obtained from all subjects participating in the study (approved by the

Research Ethics Committee of the Okinawa Institute of Science and Technology and the

Research Ethics Committee of Hiroshima University).

The objective here is to explore ways of analyzing the results from our multiple co-

clustering method in a real situation where the true subject-cluster structures are unknown.

The depression data comprise 125 subjects (66 healthy and 59 depressive) and 243 features

Table 7. Results for data 2 of the facial image data. Contingency table of the true labels (useid) and yielded

clustering of the multiple co-clustering (Mul), COALA, decorrelated K-means (DecK), and restricted multiple

(rMul) method from (a) to (d). T1 and T2 are true classifications (an2i, at33); C1, C2, C3 and C4 are yielded

clusters.

(a) Mul (b) COALA

T1 T2 T1 T2

C1 32 0 C1 32 0

C2 0 25 C2 0 32

C3 0 7

(c) DecK (d) rMul

T1 T2 T1 T2

C1 3 32 C1 32 0

C2 29 0 C2 0 15

C3 0 13

C4 0 4

https://doi.org/10.1371/journal.pone.0186566.t007

Table 8. Results of sampling-clustering for data 2 of the facial image data. Contingency table of the true labels (pose) and yielded clustering of the multi-

ple co-clustering (Mul), COALA, decorrelated K-means (DecK), and restricted multiple (rMul) method from (a) to (d). T1, T2, T3 and T4 are true classes of

pose (straight, left, right and up); C1, . . ., C7 are yielded results for each method.

(a) Mul (b) COALA

T1 T2 T3 T4 T1 T2 T3 T4

C1 7 8 0 8 C1 8 1 1 6

C2 1 0 0 8 C2 0 7 0 0

C3 0 1 7 0 C3 0 0 9 0

C4 0 7 1 0 C4 8 8 6 10

C5 7 0 0 0

C6 0 0 5 0

C7 1 0 3 0

(c) DecK (d) rMul

T1 T2 T3 T4 T1 T2 T3 T4

C1 7 4 0 2 C1 5 3 2 4

C2 0 3 14 3 C2 5 0 8 0

C3 6 3 0 10 C3 0 0 6 4

C4 3 6 2 1 C4 1 1 0 8

C5 2 7 0 0

C6 3 5 0 0

https://doi.org/10.1371/journal.pone.0186566.t008

Multiple co-clustering for heterogeneous marginal distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0186566 October 19, 2017 22 / 29

https://doi.org/10.1371/journal.pone.0186566.t007
https://doi.org/10.1371/journal.pone.0186566.t008
https://doi.org/10.1371/journal.pone.0186566


(S1 Table) that were collected at a collaborating university. Among these features, there are

129 numerical (e.g., age, severity scores of psychiatric disorders) and 114 categorical features

(e.g., sex, genotype) with a number of missing entries. Importantly, these data were collected

from subjects in three different phases. The first phase was when depressive subjects visited a

hospital for the first time. The second phase was 6 weeks after subjects started medical treat-

ment. The third phase was 6 months after the onset of the treatment. For healthy subjects,

Fig 10. Samples from image datasets for person ‘an2i’ and ‘at33’. Pixels surrounded by color boxes are selected features that yielded

relevant sample clustering to useid in data2. Image configurations are (‘an2i’, non sunglass, straight), (‘at33’, non sunglass, straight), ‘an2i’,

sunglass, left), and (‘at33’, sunglass, left), respectively. Expression is neutral for all samples. In these examples, the multiple clustering

method correctly identified these persons.

https://doi.org/10.1371/journal.pone.0186566.g010

Fig 11. Results of multiple clustering for the cardiac arrhythmia data. Comparison of performance on subject clustering in terms of

adjusted Rand Index among multiple co-clustering, COALA, decorrelated K-means and restricted multiple clustering methods.

https://doi.org/10.1371/journal.pone.0186566.g011
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relevant data for the second and the third phases were not available (dealt as missing entries in

the data matrix). To distinguish between these phase differences, we denote features in the sec-

ond and the third phases with endings of 6w and 6m, respectively. Further, we did not include

the label of health/depression status for clustering. We used it only for interpretation of results.

We assumed that numerical features follow mixtures of Gaussian distributions in our model.

To pre-process numerical features, we standardized each of them using means and standard

deviations of available (i.e., non-missing) entries.

Results. Our multiple co-clustering method yielded seven views. The majority of features

are allocated to two views (view 1 and view 2 in Fig 12A). The number of subject clusters

ranges from one to five (Fig 12B). We analyze these cluster results more in detail, focusing on

view 1 and view 2. View 1 has two feature clusters for numerical features, in which the majority

Table 9. Results of sample clustering for the cardiac arrhythmia data. Contingency table of the true

labels and yielded clustering of the multiple co-clustering (Mul), decorrelated K-means (DecK), and restricted

multiple (rMul) method from (a) to (d). T1, T2, and T3 are true classes of arrhythmia (Old Anterior Myocardial

Infarction, Old Inferior Myocardial infarction, and Sinus Bradycardy, respectively); C1, C2, C3 and C4 are

yielded results for each method.

(a) Mul (b) COALA

T1 T2 T3 T1 T2 T3

C1 0 14 6 C1 15 15 10

C2 14 0 0 C2 0 0 2

C3 1 1 5 C3 0 0 1

C4 0 0 2

(c) DecK (d) rMul

T1 T2 T3 T1 T2 T3

C1 14 0 0 C1 14 0 2

C2 0 0 1 C2 1 5 4

C3 1 15 12 C3 0 3 6

C4 0 7 1

https://doi.org/10.1371/journal.pone.0186566.t009

Fig 12. Results of the multiple co-clustering method for clinical data of depression. Panel (A): Number of features (in black) in each

view with numerical features in blue and categorical features in red. Panel (B): cluster size (percentage of subjects) for subject clusters in

each view.

https://doi.org/10.1371/journal.pone.0186566.g012
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of features are related to DNA methylation of CpG sites of the trkb and htr2c genes with a

number of missing entries (Fig 13A). For better visualization of this view, we remove methyla-

tion-related features (Fig 13B). Among these two (numerical) feature clusters, feature cluster 1

does not discriminate well between the yielded subject clusters (Fig 14A), while feature cluster

2 does well (Fig 14B). Hence, subject clustering in this views is largely characterized by features

in feature cluster 2 (BDI26w, BDI26m, PHQ96w, PHQ96m, HRSD176w, HRSD216w, CATS:

total, CATS:N, and CATS:E). The first six features are related to psychiatric disorder scores at

six weeks (features ending with -6w) and six months (features ending with -6m) after the onset

of depression treatment. Hence, we can interpret this to reflect treatment effects. On the other

Fig 13. Visualizations of views yielded by our multiple co-clustering method. Panels (A)-(B): Heatmaps of views 1. The x-axis denotes

numerical features, and the y-axis denotes subjects. A depressive subject is indicated by a hyphen in left. The subject clusters are sorted in

the order of cluster size. Panel (B) is a copy of panel (A) after removing methylation related features (those having a large number of missing

entries). Panels (C)-(D): Heatmaps of views 2. Panel (C) contains numerical features while panel (D) contains categorical ones. The subject

clusters are sorted in the descending order of the proportion of depressive subjects. For these panels, the subjects within a subject cluster

are sorted in the order of healthy and depressive subjects. On the other hand, feature clusters are sorted in the order of feature clusters in

the order of feature cluster size. Note that for categorical features the color is arbitrary and that missing entries are in gray.

https://doi.org/10.1371/journal.pone.0186566.g013
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hand, CATS:total, CATS:N, and CATS:E are related to abusive experiences in the subject’s

childhood. Hence, these features are available before the onset of treatment. These data attri-

butes suggest that it is possible to predict treatment effect by using features related to child

abuse experiences. In particular, the distribution pattern in subject cluster 3 (Fig 13B) is

remarkably different from those in the remaining subject clusters (Fig 14B).

In view 2, healthy and depressive subjects are well separated. The first subject cluster is for

healthy subjects. The second is intermediate, and the third and fourth are for depressive sub-

jects (Fig 13C). Relevant numerical features are: JART, GAF, GAF6w, PANASP, PANASP6w,

LES:total, LES:N, BAS, E, O, A, C, and Rep. in feature cluster 1 and BDI2, PHQ9, SHAPS,

PANASN, and STAI in feature cluster 2. This result is quite reasonable, because the majority

of these features are scores from clinical questionnaires that evaluate depressive disorders

either negatively (smaller values in feature cluster 1) or positively (larger values in feature clus-

ter 2). The result for categorical features is displayed in Fig 13D. We do not go into detail anal-

ysis, but it is observed that clear differences of distributions between subject clusters are

observed in feature cluster 1 and 2.

Comparison of time complexity

Finally, we briefly discuss complexity of the clustering methods. Except for COALA, we need

to run clustering methods (i.e., multiple co-clustering, decorrelated K-means, and restricted

multiple clustering) with a number of random initializations for their parameters, and choose

the optimal solution. Hence, computation time depends on the number of initializations. To

compare complexity of computation, we make several assumptions. First, we focus on a single

run of each method. Second, we assume the same number of iterations for convergence.

Third, we assume that the numbers of views and clusters are fixed. In such a setting, time com-

plexity for our multiple clustering method (as well as the restricted multiple clustering) is O
(nd), where n and d are the number of samples and the number of features, respectively. This

suggests that the complexity is just linear when either n or d is fixed. On the other hand, the

complexities of COALA and decorrelated K-means are O(n2 log n + n2 d) and O(nd + d3),

respectively, based on their typical algorithms [13, 16]. These results imply that the complexity

Fig 14. Distributions of the standardized data. Panel (A) for feature cluster 1 Panel (B) for feature cluster 2. X-axis denotes subject

cluster index. All relevant entries except for missing ones are accommodated in each box.

https://doi.org/10.1371/journal.pone.0186566.g014
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of our multiple co-clustering is generally less than those of COALA and decorrelated K-means,

suggesting superior efficiency of the present method. Indeed, in the simulation of facial image

data, our multiple clustering method requires less time per run than COALA and decorrelated

K-means (Fig 8C).

Discussion

We proposed a novel method of multiple clustering in which each view comprises a co-cluster-

ing structure, and each cluster block fits a (heterogeneous) univariate distribution. Though

our method assumes a somewhat complicated cluster structure (multiple views of co-cluster-

ing structures), it effectively detects multiple cluster solutions by clustering relevant features

within a view, based on their distributional patterns. In contrast with our multiple co-cluster-

ing method, the restricted multiple clustering method is simple and straightforward for imple-

mentation. However, from a factor-analytical perspective, fitting a single distribution to all

features in a view implies the dimensional reduction of that view by a single factor, which may

be too restrictive for high-dimensional data. On the other hand, our method relaxes this con-

straint, allowing possible factors to be inferred in a data-driven approach. Practically, if there is

prior knowledge that each view consists of a single factor, then we may use the restricted multi-

ple clustering method. Otherwise, it is preferable to use our multiple co-clustering method, as

demonstrated in both synthetic and real data applications above.

In comparisons with COALA and decorrelated K-means methods, our multiple co-cluster-

ing method outperforms other state-of-the-art methods using facial image and cardiac

arrhythmia data. Beyond its better performance in sample clustering, our multiple co-cluster-

ing method has several advantages over other methods. It can infer the number of views/clus-

ters. It is applicable to datasets comprising different types of features, and it can identify

relevant features. Furthermore, our method is computationally efficient. The reason for this

efficiency is the fitting of a univariate distribution to each cluster block. It is notable that

despite using only a univariate distribution, our multiple co-clustering method can flexibly fit

a dataset by adapting the number of views/clusters by means of a Dirichlet process.

It is also worth noting that the multiple co-clustering method is not only useful to recover

multiple cluster structures of data, but also a single-cluster structure. In the case of single clus-

tering, our method works by selecting relevant features for possible sample clustering. This

may be the main reason that our method performs better with the cardiac arrhythmia data

than COALA and decorrelated K means, which use the data without feature selection.

Finally, we discuss limitations of the proposed method. First, the optimization algorithm

laid out in Algorithm 1 may not be efficient for a dataset of large size. The optimization algo-

rithm ensures only local optimization: Lower bound L of likelihood in Eq (3) monotonously

increases as the hyperparameters are updated. However, it does not guarantee the global opti-

mization. Hence, to obtain a better solution, we need a large number of runs of the algorithm

with different initializations. To improve efficiency of searching the global optimized solution,

it will be useful to perform parallel computation with different initializations, and/or to com-

bine our algorithm with stochastic search algorithm, which widens the scope of search space

without being trapped in a local model. Second, our method does not capture relationships

among feature clusters. Hence, negatively correlated features are allocated to different feature

clusters, which requires careful interpretations of feature clusters. It is recommended to visual-

ize feature cluster solutions or evaluating correlation coefficients among features in different

feature clusters. Third, as has been illustrated in the simulation study on a large number of

views, our method may not be able to detect a large number views even when these views are

clearly distinguishable. Nonetheless, the simulation study suggested that different views
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merged into a single view. Hence, it is recommended to re-run our method for a particular

view if the object-cluster structure in the view does not clearly show up.

Supporting information

S1 Appendix. Observation models for Gaussian, Poisson and multinomial. Observation

models for Gaussian, Poisson and multinomial distributions with priors, the expectation of

log-likelihood and the updating equations.

(PDF)

S1 Table. List of features for clinical data. List of all features used in Depression Data.

(PDF)

Acknowledgments

This research is supported by the Strategic Research Program for Brain Sciences from Japan

Agency for Medical Research and development, AMED. We would like to thank Dr. Steve D.

Aird at Okinawa Institute of Science and Technology Graduate University for his proof-read-

ing of this article.

Author Contributions

Conceptualization: Tomoki Tokuda, Junichiro Yoshimoto, Yu Shimizu, Kenji Doya.

Data curation: Go Okada, Masahiro Takamura, Yasumasa Okamoto, Shigeto Yamawaki.

References
1. Cheng Y, Church GM. Biclustering of expression data. In: Ismb. vol. 8; 2000. p. 93–103.

2. Lazzeroni L, Owen A. Plaid models for gene expression data. Statistica sinica. 2002; p. 61–86.

3. Gu Q, Zhou J. Co-clustering on manifolds. In: Proceedings of the 15th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM; 2009. p. 359–368.

4. Madeira SC, Oliveira AL. Biclustering algorithms for biological data analysis: a survey. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB). 2004; 1(1):24–45. https://doi.org/

10.1109/TCBB.2004.2

5. BozdağD, Parvin JD, Catalyurek UV. A biclustering method to discover co-regulated genes using

diverse gene expression datasets. In: Bioinformatics and Computational Biology. Springer; 2009. p.

151–163.

6. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, et al. FABIA: factor analysis for

bicluster acquisition. Bioinformatics. 2010; 26(12):1520–1527. https://doi.org/10.1093/bioinformatics/

btq227 PMID: 20418340
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35. Güvenir H, Acar B, Demiröz G, et al. A supervised machine learning algorithm for arrhythmia analysis.

In: Computers in Cardiology 1997. IEEE; 1997. p. 433–436.

Multiple co-clustering for heterogeneous marginal distributions

PLOS ONE | https://doi.org/10.1371/journal.pone.0186566 October 19, 2017 29 / 29

https://doi.org/10.1007/s10618-009-0164-z
https://doi.org/10.1002/sam.10007
https://doi.org/10.1002/sam.10007
https://doi.org/10.1016/j.ins.2016.01.101
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1080/01621459.1995.10476550
https://doi.org/10.1214/06-BA104
https://doi.org/10.1007/BF02418571
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.1109/TPAMI.2005.95
https://doi.org/10.1109/TPAMI.2005.95
http://www.ncbi.nlm.nih.gov/pubmed/15875789
https://doi.org/10.1016/j.patcog.2015.10.018
https://doi.org/10.1016/j.patcog.2015.10.018
https://doi.org/10.1109/TKDE.2007.1048
https://doi.org/10.1109/TKDE.2007.1048
https://doi.org/10.1371/journal.pone.0186566

