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SUMMARY

The Lord Howe Island stick insect, Dryococelus aus-
tralis, was once commonon the island but was driven
to extinction after the arrival of ship rats in the early
20th century [1, 2]. It was thought to be extinct for de-
cades, until a tiny population of similar-looking stick
insects was discovered 20 km away, on the islet of
Ball’s Pyramid, in 2001 [2]. Individuals from this pop-
ulation are currently being reared in Australia and
elsewhere in the world, with the eventual goal of re-
colonizing Lord Howe Island [3]. Recent surveys of
the wild population on Ball’s Pyramid suggest that
it is among the world’s rarest species. However,
there are significant morphological differences be-
tween Ball’s Pyramid and museum specimens, and
there has never been a genetic confirmation of the re-
discovered population’s species identity. Because
Dryococelus is monotypic, there are also no known
extant relatives for comparison. Using shotgun
genomic data from the Ball’s Pyramid population,
we assembled a draft genome and the complete
mitochondrial genome. We found that the genome
is massive, over 4 Gb in size, and is most likely hexa-
ploid. We re-sequenced mitochondrial genomes
from historic museum specimens collected on Lord
Howe Island before the extinction event. Sequence
divergence between the two populations is less
than 1%and is within the range of intraspecific differ-
ences between the museum specimens, suggesting
that they are conspecific and that D. australis has
successfully evaded extinction so far. This work
highlights the importance of museum collections
for taxonomic validation in the context of ongoing
conservation efforts.

RESULTS AND DISCUSSION

Worldwide, only around 60 insect species have been recorded

as recently extinct [4], but hundreds have disappeared, and
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populations of many more are in steep decline [5]. Reintroduc-

tion efforts aim to restore species to previously occupied habitat

or to reinforce numbers in existing populations, and these have

most commonly been applied to vertebrates and plants [6]. In

these cases, part of the risk management strategy is to deter-

mine whether the introduced populations or species are appro-

priate for translocation. However, such efforts are frequently

hindered by uncertain taxonomy, and novel methods relying

on museum specimens can be necessary to establish species

identity [7].

Although the discovery of giant stick insects on Ball’s Pyra-

mid made it probable that D. australis has indeed been redis-

covered [2], there are several compelling reasons why the spe-

cies identification needs to be verified genetically. First, in the

paper announcing the rediscovery, Priddel et al. [2] acknowl-

edged that Ball’s Pyramid specimens were morphologically

distinct from those found on Lord Howe Island (see Figure 1).

A later morphometric analysis of captive-reared and museum

insects likewise found significant differences, though it

remained unclear whether they were due to genetics or environ-

ment [8]. Second, surprisingly, the giant ‘‘tree lobster’’ pheno-

type, characterized by flightlessness and a stocky dorsoven-

trally flattened body with square-edged thoracic segments,

has evolved repeatedly, raising the possibility of morphological

convergence [9]. Finally, the Ball’s Pyramid population may

have had a common origin with that on Lord Howe but isolated

for an extended period of time. All of these scenarios could

potentially complicate conservation efforts planned on Lord

Howe Island.

Genome Sequencing and Resequencing
Unfortunately, no genetic resources existed for this species, and

species verification was technically challenging, given the

massive genome size of related stick insects [10] and the

absence of closely related genomic reference material [9]. To

remedy this situation, we used fresh material from the captive-

bred population at the Melbourne Zoo to assemble nuclear

and mitochondrial genomes for D. australis. The bioinformatic

nuclear genome size estimate was indeed massive, at 4.2 Gb,

and the assembly contained 3.4 Gb, with a contig N50 of

17,265 bp. The mitochondrial genome assembly was

16,604 bp long and was not substantially different from other

phasmid genomes in length or composition (Figure 2) [11]. We
23, 2017 Crown Copyright ª 2017 Published by Elsevier Ltd. 3157
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Figure 1. Morphological Differences between Males from Lord

Howe Island and Ball’s Pyramid

Museum specimens from Lord Howe Island are shown on the left, and captive-

reared specimens originally from Ball’s Pyramid are shown on the right.

Specimens from Lord Howe Island tend to be more robust (A) and have larger

femoral spines (C), as well as differences in cercal morphology (B). Although

coloration of the specimens also differs, this is most likely a consequence of

aging. Because no congeneric taxa exist, it is unclear whether these differ-

ences correspond to species-level differentiation or are merely a reflection of

environmental or ontogenetic differences, necessitating a genetic investiga-

tion of how the two populations relate to each other.

Figure 2. Mitochondrial Genome of D. australis and Variants Identi-

fied in the Historic Lord Howe Island Specimens

Variants that distinguish the Lord Howe Island specimens from the Ball’s

Pyramid mitochondrial genome sequence are shown by orange bars. The two

specimens had 100 and 62 variants different from the 16,604 bp reference

sequence from the Ball’s Pyramid population, corresponding to 0.60% and

0.37%divergence, respectively. The two historic Lord Howe Island specimens

differed by a comparable amount—92 variant sites (0.55% divergence). Major

features are color coded as follows: green, genes; red, mitochondrial ribo-

somal RNA; and purple, tRNAs. The low mitochondrial divergence between

Ball’s Pyramid and museum samples collected on Lord Howe Island suggests

that they are part of the same species, and, in fact, the two populations may

not have diverged significantly.

also found that D. australis is most likely hexaploid, though this

finding should be confirmed through future cytogenetic work

(Figure 3). Polyploidy is not uncommon in stick insects, particu-

larly in parthenogenetic lineages [12], and parthenogenesis may

occur in D. australis as well [3]. Polyploidy does pose challenges

for population genetic analysis, since many methods are specif-

ically developed for diploid data. Furthermore, any investigations

of nuclear genetic diversity should rely on methods capable of

detecting allelic ratios, which will require high sequencing

depths.

To mitigate difficulties posed by high ploidy and large nuclear

genome size, we leveraged low-coverage resequencing of

museum specimens to recover complete mitochondrial ge-

nomes in order to compare between- and within-island genetic

diversity between Lord Howe Island and Ball’s Pyramid. Mito-

chondrial genome coverage was high (at least 503) for all spec-

imens, allowing for accurate genotype calls and no missing

data (Table 1). High coverage also eliminates errors introduced

by DNA degradation [13], which can complicate population ge-

netic analyses [14]. None of the four pinned zoo-bred speci-

mens had detectable differences from the mitochondrial

genome reference, which is consistent with their being descen-

dants of the original female collected on Ball’s Pyramid. By

contrast, both museum specimens from Lord Howe Island
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had a number of genetic differences from the reference, though

within typical range of variation expected within a species (Fig-

ure 2). These within- and between-island differences were of

the same order, and less than 1% overall, suggesting that the

two populations most likely diverged after the origin of this spe-

cies and not long enough ago for speciation to have taken

place.

Conservation Implications
Both Lord Howe Island and Ball’s Pyramid were considerably

larger during the Last Glacial Maximum, though apparently not

in contact with each other [15], and could have harbored allo-

patric stick insect populations for an extended period of time.

Estimating the actual age of separation would require more

museum specimens from Lord Howe Island, and possibly

more of those from Ball’s Pyramid. In addition, accurate calibra-

tion of the mitochondrial clock would also be necessary. Current

studies investigating phasmid phylogenies have confidence in-

tervals at the tips that are far too wide to provide informative in-

sights into population-level splits [16]. Alternatively, more so-

phisticated approaches using methods such as approximate

Bayesian computation could be employed, but they would



Figure 3. Allele Frequency Distribution in the D. australis Genome
Suggests Hexaploidy

Most of the 1,900 loci analyzed were bi-allelic and had just two alleles, so only

the frequency of one allele is shown. The ratios between alleles occur largely as

fractions of six, consistent with there being this number gene copies present.

The average coverage in these regions was low 6.53 ± 6.2 (SD), and peaks

corresponding to fractions of four and five (highlighted with blue numbers)

most likely correspond to lower-coverage regions where the total number of

copies could not be correctly estimated. Indeed, the coverage at peaks 3/4

and 4/5 was significantly lower than that at peaks 4/6 and 5/6 (t test, n = 1,542,

p = 1.6 3 10�6). The high copy number of most alleles can make population

genomic analyses challenging, as it will require high read counts to estimate

allelic frequencies with confidence.

Table 1. Summary Statistics from Sequencing and Re-mapping

Reads to the Mitochondrial Reference Assembly

Sample ID Type

Total

Yield

(Gb)

Read

Length ±

SD

Mapped

Reads

Coverage ±

SD

15_000002 museum 6.3 38 ± 8 6,842,938 412 ± 301

15_000003 museum 13 42 ± 5 2,801,149 167 ± 117

15_000004 zoo 12.5 44 ± 2 9,073,150 548 ± 421

15_000005 zoo 10.8 40 ± 7 3,216,964 194 ± 143

15_000006 zoo 1.5 40 ± 6 935,265 56 ± 28

15_000007 zoo 9.7 43 ± 5 3,711,997 223 ± 94

Museum samples were collected on Lord Howe Island, and zoo samples

were related to the individual used to make the reference sequence, hav-

ing descended from the pair captured for captive breeding [2]. Although

the total yield was high, mapping rates to the genome reference were

relatively low, resulting in low overall coverage. By contrast, mitochon-

drial coverage was high enough to overcome stochastic errors intro-

duced by DNA degradation due to age [13] and to produce reliable geno-

types.
require developing an array of markers for the study of museum

specimens. The current reference genome and the captive-bred

population can be used to select suitable loci and to test them for

polymorphism. However, the observation that the difference be-

tween the two museum specimens is within the same range as

the divergence between populations (Figure 1) suggests that

Ball’s Pyramid was most likely colonized relatively recently and

that this population is suitable for reintroduction.

Potential Role of Polyploidy for D. australis Evolution
and Conservation
Polyploidy is relatively rare in animals [17], though it has been de-

tected in a variety of stick insects, particularly in parthenogenetic

lineages (reviewed by Scali [18]). It difficult to state with any de-

gree of certainty what role, if any, polyploidy may play in

D. australis. However, extensive work on plants allows us to pro-

pose two effects: a resistance to inbreeding and an explanation

for the large body size in this species.

Extensive research in plants has shown that polyploids are

overrepresented among invasive species [19, 20], and poly-

ploidy may help invasions by masking recessive mutations [21]

or slowing progression toward full homozygosity in inbred pop-

ulations [22]. Thus, polyploidymay be a reason for the successful

survival ofD. australis on themarginal habitat of Ball’s Pyramid. It

may also slow the onset of inbreeding depression in captive pop-

ulation, but not eliminate it. Consequently, we recommend that

genetic diversity in these captive populations be assessed and

actively maintained or enhanced through appropriate breeding

strategies, including the collection and integration of new foun-

ders from Ball’s Pyramid.

Another common outcome of polyploidy is an increase in body

size [23]. Though the mechanism underlying this relationship is
unclear and not alwaysmanifest, hexaploids are often the largest

size class in an autopolyploid plant series (reviewed by [24]).

Thus, polyploidy could be a mechanism underlying the repeated

evolution of the giant ‘‘tree lobster’’ form in stick insects [9] and,

even more generally, larger body sizes. If this is the case, we

make the easily testable prediction that other tree lobster genera

should have higher ploidy numbers.

Conclusions
Previous morphological assessment of the stick insects discov-

ered on Ball’s Pyramid suggested that they were a relic popu-

lation of D. australis [2]. This current study provides genetic

support for this conclusion and may help facilitate efforts to-

ward the recovery of this species. Pending final approvals, a ro-

dent eradication program is planned to commence on Lord

Howe Island in mid-2018 [25]. Although ship rat eradication is

challenging, and the resident human population on Lord

Howe Island will make it even more so, historically >80% of

tropical island eradication programs have succeeded [26, 27].

If successful, this will provide the first opportunity for the rein-

troduction of this species to its former range. However, had

our findings demonstrated that the Ball’s Pyramid population

was a distinct species, the release of these insects on Lord

Howe Island would be regarded as an introduction (the release

of a species outside its indigenous range [28]). Introductions

can be justified on the basis that a population or species faces

a high risk of extinction in its current range or that it would most

likely restore an important ecological function that has been lost

by the extinction of another species. Nevertheless, introduc-

tions generally require a greater level of scrutiny and sometimes

face legislative barriers because they can result in negative

ecological and/or economic impacts that may often be difficult

to foresee [28]. Consequently, the greater certainty provided by

this study that the insects from Ball’s Pyramid are indeed sur-

viving representatives of D. australis can only strengthen the

argument for reintroduction to Lord Howe Island should the op-

portunity arise.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

D. australis specimens This study ANIC Database # 15-000002 to 15-000007

Chemicals, Peptides, and Recombinant Proteins

SiMAG/FK-Silanol (100 mg/mL, Ø 1.0 mm) Chemicell Cat#1101

Dynabeads MyOneTM Carboxylic Acid ThermoFisher Scientific Cat#65012

Buffer PE QIAGEN Cat#19065

Buffer EB QIAGEN Cat#19086

UltraPure guanidine isothiocyanate Invitrogen Cat#15535016; CAS: 593-84-0

Trizma hydrochloride Sigma-Aldrich Cat#T5941; CAS: 1185-53-1

Ethylenediaminetetraacetic Acid Nacalai Tesque Cat#15105-35; CAS: 60-00-4

N-Lauroylsarcosine sodium salt Sigma-Aldrich Cat#L9150; CAS: 137-16-6

2-mercaptoethanol Sigma-Aldrich Cat#M6250; CAS: 60-24-2

Ethanol Nacalai Tesque Cat#14712-05; CAS: 64-17-5

Agarose -LE, Classic Type Nacalai Tesque Cat#01157-95; CAS: 9012-36-6

Polyethylene Glyco #6000 Nacalai Tesque Cat#28254-85; CAS: 25322-68-3

5mol/l-Sodium Chloride Solution Nacalai Tesque Cat#31334-51; CAS: 7647-14-5

FastAP Alkaline phosphatase ThermoFisher Scientific Cat#EF0651

NEBuffer 4 New England Biolabs Cat#B7004S

2.5mM CoCl2 New England Biolabs Cat#B0252S

Terminal Transferase New England Biolabs Cat#M0315L

100 mM GTP Takara Cat#4042

klenow fragment (30/50 exo-) New England Biolabs Cat#M0212M

10 mM dNTP mix Promega Cat#U151A

BSA New England Biolabs Cat#B9000S

T4 DNA polymerase New England Biolabs Cat#M0203S

Adenosine 50-Triphosphate (ATP) New England Biolabs Cat# P0756S

Calf Intestinal Alkaline Phosphatase ThermoFisher Scientific Cat# 18009-019

2x Quick Ligase Reaction Buffer New England Biolabs Cat#B2200S

T4 DNA ligase New England Biolabs Cat#M0202L, M0202M

5x Phusion HF Buffer ThermoFisher Scientific Cat#F-518

Phusion DNA polymerase ThermoFisher Scientific Cat#F-530L

2-Log DNA Ladder New England Biolabs Cat#N3200L

EZ-Vision one AMRESCO Cat#N472-KIT

Critical Commercial Assays

Truseq DNA LT sample Prep KIT Illumina Cat#FC-121-2002

MinElute Reaction Cleanup Kit QIAGEN Cat#28206

Quant-iT PicoGreen dsDNA Assay Kit ThermoFisher Scientific Cat#P7589

High Sensitivity DNA Kit Agilent Cat#5067-4626

KAPA SYBR FAST Universal qPCR kit KAPA Biosystems Cat#KK4601

Illumina DNA Standards and Primer Premix Kit KAPA Biosystems Cat#KK4808

Sequence assembly and raw data DDBJ/ENA/GenBank GenBank: PRJNA387351

Oligonucleotides

CCCCC_TS: GTGACTGGAGTTCAGACGTGTGCTCTTCC

GATCCCCC

This study N/A

Truseq PCR1: AATGATACGGCGACCACCGAGATCTACA This study N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

I7_D701 primer_long: 50-CAAGCAGAAGACGGCATACGAGAT

CGAGTAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGAT

This study N/A

I7_D702 primer_long: 50-CAAGCAGAAGACGGCATACGAGAT

TCTCCGGAGTGACTGGAGTTCAGACGTGTGCTCTTCCGAT

This study N/A

I7_D705 primer_long: 50-CAAGCAGAAGACGGCATACGAGATT

TCTGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGAT

This study N/A

I7 truseq upper:50-p-ATCGGAAGAGCACACGTCTGAACT

CCAGT*/ddC/ (* = phosphorothioate linkage)

[29] N/A

I7-D701 FL truseq lower:50-CAAGCAGAAGACGGCATACGA

GATCGAGTAATGTGACTGGAGTTCAGACGTGTGCTC

TTCCGAT*C*C*CCC (* = phosphorothioate linkage)

[29] N/A

I7-D703 FL truseq lower:50-CAAGCAGAAGACGGCATACGA

GATAATGAGCGGTGACTGGAGTTCAGACGTGTGCTCTTC

CGAT*C*C*CCC (* = phosphorothioate linkage)

[29] N/A

I7-D704 FL truseq lower:50-CAAGCAGAAGACGGCATACGAGA

TGGAATCTCGTGACTGGAGTTCAGACGTGTGCTCTTCCG

AT*C*C*CCC (* = phosphorothioate linkage)

[29] N/A

I5 truseq upper: CCCTACACGACGCTCTTCCGATCT/ddC/ [29] N/A

I5-D501 FL truseq lower: 50-p-GAGATCGGAAGAGCGTCGTGT

AGGGAAAGAGTGTAGGCTATAGTGTAGATCTCGGTGGTC

GCCGTATCATT

[29] N/A

I5-D502 FL truseq lower: 50-p-GAGATCGGAAGAGCGTCGTG

TAGGGAAAGAGTGTGCCTCTATGTGTAGATCTCGGTGGTC

GCCGTATCATT

[29] N/A

I5-D503 FL truseq lower: 50-p-GAGATCGGAAGAGCGTCGTG

TAGGGAAAGAGTGTAGGATAGGGTGTAGATCTCGGTGGT

CGCCGTATCATT

[29] N/A

I5-D504 FL truseq lower: 50-p-GAGATCGGAAGAGCGTCGTGT

AGGGAAAGAGTGTTCAGAGCCGTGTAGATCTCGGTGGTC

GCCGTATCATT

[29] N/A

I5-D506 FL truseq lower: 50-p-GAGATCGGAAGAGCGTCGTGT

AGGGAAAGAGTGTTAAGATTAGTGTAGATCTCGGTGGTCG

CCGTATCATT

[29] N/A

Software and Algorithms

Bowtie [30] http://bowtie-bio.sourceforge.net/

index.shtml

FreeBayes [31] https://github.com/ekg/freebayes

Geneious (R8.1) [32] https://www.geneious.com/

MITOBim [33] https://github.com/chrishah/MITObim

Newbler [34] http://www.roche.com/

NextGenMap [35] http://cibiv.github.io/NextGenMap/

ParDRe [36] https://sourceforge.net/projects/pardre/

PEAR [37] https://sco.h-its.org/exelixis/web/

software/pear/

ploidyNGS [38] https://github.com/diriano/ploidyNGS

Samtools [39] http://samtools.sourceforge.net/

VCFTools [40] http://vcftools.sourceforge.net/
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests may be directed to and will be fulfilled by the Lead Contact, Alexander S. Mikheyev (sasha@

homologo.us).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Amale (ANIC Database # 15-000002) and a female specimen (# 15-000003) ofD. australis in the Australian National Insect Collection

(ANIC) were sampled. These two specimens originated from Lord Howe Island proper and are part of the W. W. Froggatt collection;

the collecting dates are unknown. In addition to historical museum specimens, we included four more recent control individuals from

the Ball’s Pyramid, which were captive-reared specimens from the Melbourne Zoo deposited in the ANIC (# 15-000004 to 15-

000007).

METHOD DETAILS

Library preparation
A library from an ethanol-preserved zoo-bred specimen from Ball’s Pyramid was constructed using a Truseq DNA LT Sample Prep

Kit. The library was size-selected so that many of the forward and reverse reads would overlap to facilitate assembly.

Most libraries for the museum specimens were prepared using a PCR-free approach as described previously, while libraries for

samples 15-000002 and 15-000004 were amplified with a limited number of PCR cycles (less than eight cycles) [29, 41]. Libraries

were purified with 17% PEG-6000 [42], analyzed using a Bioanalyzer High Sensitivity Kit and then pooled together in equal amounts.

Sequencing and reference nuclear and mitochondrial genome assemblies
Reads for the genomic reference made from the ethanol-preserved Ball’s Pyramid specimen were sequenced on an Illumina Hi-

Seq2500 in PE250 mode, producing 97 million read pairs. PCR duplicates were removed using ParDRe [36], and were then stitched

together using PEAR with parameters–min-overlap 10–memory 48G–threads 10 -n 200 -m 600 -p 0.0001 [37]. This resulted in 18.9

Gb of data with an average read length of 428 ± 51 (SD). The resulting super-reads were assembled using Newbler with parameters

-large -m -cpu 10 -mi 95 -siom 450 -l 1000 -a 500 -urt -novs -a 1000 -minlen 45 -het [34]. The genome size estimate and was reported

by Newbler. Mitochondrial DNA was assembled separately using MITObim [33] after aligning reads to the Extatosoma tiaratummito-

chondrial genome (GenBank: NC_017748.1) [11] using NextGenMap [35]. MITObim had difficulties assembling the repetitive mito-

chondrial control region, resulting in a gap that was filled inmanually by identifying super-reads that mapped to both sides of the gap.

The D. australis mitochondrial assembly was annotated using the E. tiaratum sequence as a template in Geneious (r8.1), which was

also used for interactive exploration and visualization of the data [32].

Re-mapping museum specimens
Libraries were sequenced using a HiSeq 2000 in SE50 mode. Reads were trimmed to remove 30 adaptor sequences and mapped to

the D. australis mitochondrial genome assembly using bowtie [30]. Variants were then called using freebayes in diploid mode [31].

Diploid mode was used because a small number of sites in the alignment had apparent mixtures of genotypes, possibly from nuclear

copies or repetitive regions, making them difficult to resolve using short-read data frommuseum specimens. Therefore, 30 sites with

heterozygous genotype calls were filtered from the variant call file, along with sites having quality scores less than 40. The final anal-

ysis retained 161 total variant sites, all of them single nucleotide polymorphisms. Because divergence from the reference sequence

can cause poor mapping and variants to be missed, the mitochondrial read alignments were visually inspected for uniform coverage

and other abnormalities.

Assessment of ‘‘index hopping’’
Each sample was barcoded for sequencing using a unique combination Illumina adaptors, and sequenced in the same lanes. We

quantified the extent of molecular recombination between the indexes by dividing the total number of invalid index combinations

by the total number of valid index combinations (omitting indexes with any ambiguous calls). There was a low rate of index hopping

(0.361%). It was a substantially smaller value than the average percentage of mapped reads assigned to mitochondrial DNA (2.1% ±

1.4% (SD)), and should not have influenced the result.

Ploidy estimation
Analysis of several candidate microsatellite loci developed from the reference genome suggested the presence of more than two

alleles (L.Q. and A.S.M., unpublished data). However, since genetic variability in the captive population is limited, and microsatellites

can give additional peaks as a result of PCR artifacts, these data were inconclusive, and we decided to further investigate ploidy of

D. australis acrossmultiple loci. We used ploidyNGS, amodel-free approach for estimating ploidy [38], to calculate the frequencies of

alleles in the ten longest scaffolds (2,617,109 bp) of the nuclear genome assembly, using super-reads remapped to the reference.

This approach counts the relative frequencies of encountered alleles, which occur in predictable ratios that correspond to organismal

ploidy. For example, diploid individuals will have biallelic sites predominantly at frequencies of 0, ½ and 1, whereas triploids will have

0, 1/3 ,
2/3 and 1, etc.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted in R (version 3.4) (https://www.R-project.org/), using built-in functions (mean and sd) to compute

coverage means and standard deviations, respectively. Statistical differences in coverage were tested using the t.test function

(Figure 3).

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequences reported in this paper is GenBank: PRJNA387351.
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