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We study the third-order longitudinal structure function, S3(r), in two-dimensional turbulence. In
three dimensions, there is considerable theoretical, experimental, and numerical consensus regarding
the validity of Kolmogorov’s arch-famous “ 4

5 th law” for S3(r). By contrast, in two dimensions, two
disparate cascades, changed dissipation anomalies, a large-scale drag, and other factors conspire to
create several versions of the S3(r) “law.” This single quantity can vary considerably when viewed
from different perspectives, reminiscent of the “Rashomon effect” in anthropology. After review-
ing the history and usage of S3(r) in two-dimensional turbulence, we show that S3(r) generically
embodies a mixture of energy and enstrophy fluxes. Building on this result, we derive S3(r) laws for
freely decaying and forced two-dimensional turbulent flows, where we also account for the effects of
a large-scale drag, an inextricable feature of quasi two-dimensional turbulence in experimental and
atmospheric flows. We draw attention to the caution needed in interpreting S3(r) in two-dimensional
turbulence. © 2017 Author(s). All article content, except where otherwise noted, is licensed under
a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5003399

I. INTRODUCTION

The beginning of the modern theory of turbulence may
arguably be Kolmogorov’s landmark paper1 from 1941 in
which he furnished a mathematical framework for the cascade
of energy from large to small scales. Building on Richardson’s
intuition2,3 and focusing on homogeneous and isotropic flows,
Kolmogorov characterized the statistics of turbulent fluctua-
tions at different spatial scales by introducing the longitudinal
velocity differences, δu ≡ (~u(~x + ~r) − ~u(~x)) · ~r/r, where ~u is
the velocity measured at positions ~x +~r and ~x, and r = |~r |.

Dimensionally, one may naively expect that the third
moment of these velocity differences—kinetic energy per unit
mass, δu2, times velocity, δu—should be related to the flux
of energy into or out of a volume ∝ r3. Starting from the
Karman–Howarth equation4 and focusing on the inertial range,
Kolmogorov, in another remarkable paper5 from 1941, derived
an exact relation for the third moment 〈δu3〉 ≡ S3(r) = − 4

5 εr,
where ε is the average energy dissipation rate per unit mass and
the angular brackets denote the spatial average. This so-called
“4/5th law,” a cornerstone of turbulence theory, encapsulates
the main features of three-dimensional turbulence. The minus
sign indicates the flux of energy from large to small scales,
which is now called a direct cascade. The power-law depen-
dence on r is a signature of the self-similarity of the veloc-
ity field. The independence from any large forcing scale L
embodies the universality of this result. Finally, the indepen-
dence from viscosity hints at the energy dissipation anomaly,1,6

where ε , 0 in the inviscid limit. Commenting on the

a)Electronic mail: rory.cerbus@oist.jp
b)Electronic mail: pinaki@oist.jp

importance of the 4/5th law, Frisch7 notes the following: “[this
law] constitutes a kind of ‘boundary condition’ on theories of
turbulence: such theories, to be acceptable, must either satisfy
the four-fifths law, or explicitly violate the assumptions made
in deriving it.”

Given the foundational role S3(r) has played in three-
dimensional (3D) turbulence, it may come as a surprise to
find that the first mention (to our knowledge) of S3(r) for
two-dimensional (2D) turbulence is in the appendix of a 1992
paper,8 a quarter century after Kraichnan’s seminal contribu-
tion in 2D turbulence,9 and nearly 40 years after Fjørtoft10 and
Batchelor11 first proposed that energy goes from small to large
scales in 2D turbulence. An examination of the early years of
research in 2D turbulence provides some hints for the reasons
behind this neglect.

Kraichnan’s work in 2D turbulence appears to have been
exclusively in spectral space,12–16 and other early researchers
in the field followed suit.17–19 In his pioneering 1967 paper9 on
the inertial ranges in 2D turbulence, Kraichnan analyzed the
transfer of energy in spectral space using T (k, p, q), where T
measures the energy transfer rate out of wavenumber k, and ~k,
~p, and ~q are three wavenumbers in a triad (~k = ~p + ~q; k = |~k |,
p = |~p|, and q = |~q|). Kraichnan laid the theoretical basis for
two distinct inertial ranges, one with a flux of enstrophy (the
norm of vorticity) to small scales and another with a flux of
energy to large scales.9 Much of the work that came after him
built on this framework and tested its predictions,13,14,17,19,20

and so we hazard to speculate that Kraichnan’s influence
helped to keep 2D turbulence out of real space.

Another reason for this preference for spectral space might
have been that for many years, studies of turbulence in flat-
land existed only in silico.21,22,59 Simulations with periodic
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boundary conditions naturally lend themselves to discrete
Fourier analysis. Indeed, most simulations were carried out
using a pseudo-spectral code,23 where the governing Navier–
Stokes equations are first transformed and then evolved in
spectral space. A few authors gave a curt nod to real space
in early work,19 but with the advent of laboratory quasi-2D
flows,24,25 Babiano et al.26 advocated a shift to real space and
structure functions (statistical moments of δu). Experiments
appear to have been the main reason for a renewed interest in
real space, as structure functions are easier to calculate directly
from experimental data than, say, T (p, q, k).

Over the last two decades, S3(r) has been extensively used
for another purpose. As Kraichnan pointed out,9 “A princi-
pal reason for exploring two-dimensional turbulence has been
the possible application to intermediate-scale meteorological
flows.” For such flows, the large aspect ratios involved sug-
gest, but do not prove, two-dimensionality. The atmospheric
energy spectrum,27 E(k), appears to show scaling consistent
with the phenomenology of 2D turbulence, but with a puz-
zling twist. At small k, E(k) ∝ k−3, whereas at larger k,
E(k) ∝ k−5/3. If the spectral exponents are interpreted in the
framework of 2D turbulence, this is the inversion of the the-
oretical picture of the dual cascade (the cascade of energy
to large scales and enstrophy to small scales9,17,18). There is
considerable debate over what kind of cascade, if any, cor-
responds to these spectral exponents. The k�5/3 portion, for
example, is consistent with both the 3D direct energy cascade
and the 2D inverse energy cascade. A second-order quantity
like E(k) cannot distinguish between these two. Lindborg28

suggested that a third-order quantity proportional to energy or
enstrophy flux might be useful to settle the issue and submit-
ted S3(r) as a candidate to determine the flux directions. The
ability of S3(r) to indicate the direction of energy or enstro-
phy flux brought it to the forefront of the debate, where it still
remains.29–31

Because of its essential function in interpreting atmo-
spheric turbulence data, as well as for its inherent funda-
mental interest, we study S3(r) laws in the inertial ranges
of 2D turbulence, with particular focus on the energy and
enstrophy fluxes. We restrict attention to the idealized the-
ory of isotropic and homogeneous turbulence in an unbounded
domain and in the limit of infinite Reynolds number (the invis-
cid limit), but we also consider the effects of a large-scale
drag, an inextricable factor in experimental and atmospheric
flows.

II. HISTORY OF S3(r) IN 2D TURBULENCE

It is common to cite a turbulence textbook, such as by
Frisch,7 by Monin and Yaglom,32 and by Landau and Lif-
shitz,33 and state that applying Kolmogorov’s derivation5 to
2D yields S3(r) > 0. However, as pointed out by Paret and
Tabeling,34 if the same assumptions and conditions are used as
in Kolmogorov’s derivation, we will again be led to S3(r) < 0,
just as in 3D.

The first derivation (to our knowledge) of S3(r) serves as a
useful example of Paret and Tabeling’s point. The derivation is
by Grossmann and Mertens,8 who, like Babiano et al.,26 were
interested in shifting to real space. Although their work was

devoted almost entirely to the second-order structure functions
for velocity and vorticity, in an appendix, they derived a scal-
ing law for S3(r) in arbitrary dimensions. Exactly paralleling
the case in 3D (including considering the energy dissipa-
tion anomaly), their result for 2D reads as S3(r) = − 3

2 εr,
where the new factor of 3

2 is a consequence of the differ-
ent dimensionality, but the minus sign is the same as in
3D. The cascade is apparently a direct energy cascade. If an
inverse energy cascade is to be inferred from S3(r), it is clear
that assumptions appropriate to 2D will have to be explicitly
invoked.

After Grossmann and Mertens,8 there was a short hiatus
until an annus mirabilis for the S3(r) laws in 2D occurred
in 1999, which saw four independent studies of the laws for
different flow conditions.28,35–37 We turn next to the salient
features of these four studies.

Belmonte et al.35 closely followed the traditional Kol-
mogorov derivation. However, based on their experiments—
perhaps the first experiments to measure S3(r) in 2D—they
questioned one of the oft-used simplifying assumptions. In
freely decaying 3D turbulence, on account of local equilib-
rium,11 the contribution of the unsteady term for the small
scales is assumed to be negligible. Belmonte et al. found exper-
imentally that the unsteady term, ∂

∂t S2(r) (where t is the time),
is not negligible in 2D freely decaying turbulence, consistent
with phenomenological considerations.38 Although they did
not obtain an S3(r) law, by computing the contribution of the
unsteady term from the experimental data, they determined
the shape of S3(r) and drew attention to the fact that the sign
of S3(r) can be affected by the magnitude of the unsteady
term.

Lindborg28 derived S3(r) laws in detail, intending to
apprehend the directions of energy and enstrophy fluxes in
atmospheric flows. For turbulence sustained by a single forcing
scale, he derived the S3(r) law for the inverse energy cas-
cade, S3(r) = 3

2 Pr (where P is the average energy injection
rate per unit mass), and the S3(r) law for the direct enstro-
phy cascade, S3(r) = 1

8 βr3 (where β is the average enstrophy

dissipation rate). [Davidson51 later adapted Lindborg’s deriva-
tion to the freely decaying case and found the same S3(r) law
for the direct enstrophy cascade.] For the k�3 region in the
atmospheric energy spectrum, he found S3(r) ∝ r3, corre-
sponding to the direct enstrophy cascade. For the k�5/3 region,
his results for S3(r) did not provide clear answers. Later, Lind-
borg and Cho39,40 reanalyzed the atmospheric data and found
S3(r) ∝ −r for the k�5/3 region, leading them to interpret this
region as corresponding to the direct energy cascade, thereby
suggesting 3D turbulence.

Bernard36 considered the 2D Navier–Stokes equations
subject to a smooth-in-space and white-in-time forcing. With-
out a large-scale drag, he noted that the total kinetic energy of
the flow grew linearly in time as Pt. Assuming local equilib-
rium for the structure functions and accounting for the lack of
an energy dissipation anomaly and the presence of an enstro-
phy dissipation anomaly, he derived S3(r) = 1

8 βr3 for the
region of the direct enstrophy cascade and S3(r) = 3

2 Pr for the
region of the inverse energy cascade. (We discuss the anoma-
lies in Sec. IV.) Including a large-scale drag, Bernard found
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that the S3(r) law for the direct enstrophy cascade remained
unaffected (with the caveat that the law is expressed with the
enstrophy dissipation rate, β, which is not equal to the enstro-
phy production rate; we return to this issue in Sec. IV D).
For the inverse energy cascade, he found that the S3(r) law
remained linear in r, but he did not determine the prefactor.

Yakhot37 considered essentially the same conditions
(except including a large-scale drag) as Bernard36 (their papers
were even published in the same issue of Physical Review
E). He developed generating functions of the velocity differ-
ences and used them to derive the 2D “Kolmogorov relation”
1
r3

∂
∂r r3S3(r) − 6P = 0, wherein he accounted for the lack of

an energy dissipation anomaly. Although he did not compute
an S3(r) law (because he was interested in this relation only as
a step to find general scaling relations for the structure func-
tions), the Kolmogorov relation can easily be integrated to find
the S3(r) law for the inverse energy cascade, S3(r) = 3

2 Pr.
Hereafter, for 2D forced turbulence, we refer to the S3(r)

law for the inverse energy cascade, S3(r) = 3
2 Pr, and the S3(r)

law for the direct enstrophy cascade, S3(r) = 1
8 βr3, as canon-

ical S3(r) laws. Notable in most of the derivations discussed
above is the absence of a large-scale drag, which is necessary
to establish a steady-state inverse energy cascade.41 Boffetta
et al.42 included such a drag term in their high-resolution sim-
ulations of 2D forced turbulence. They numerically verified
the canonical S3(r) law for the inverse energy cascade. This
seems to be the first clear confirmation of this law. Later, Bof-
fetta and Musacchio41 numerically verified the canonical S3(r)
law for the direct enstrophy cascade. Note that these results
suggest that the presence of a large-scale drag does not influ-
ence the canonical S3(r) laws, which were derived without any
reference to such a term.

The influence of a large-scale drag as well as of lateral
boundaries was carefully studied experimentally in a series
of papers by Shats and co-workers.29,43–45 They performed
experiments in an electromagnetically driven double salt layer,
where the flow in the top layer, which is immiscible with the
bottom lubricating layer, is quasi-2D. Under these circum-
stances, the presence of lateral boundaries can lead to the
development of a large-scale coherent flow, as was predicted
by Kraichnan.9 This coherent flow can suppress43 or inter-
act with the “background” turbulence.29,44,45 In some cases,
S3(r) calculated from the experimental data was reduced in
magnitude;43 more notably, in some cases, S3(r) changed sign
to become negative.44,45 Interestingly, if one subtracts out the
coherent flow, the underlying inverse energy cascade can be
revealed via S3(r) ∝ r. Finally, using S3(r) as an experimental
probe, they showed how a large-scale coherent flow can make
an ostensibly 3D flow into a 2D flow and produce inverse trans-
fer of energy.45 An important message from these studies is that
even when an inverse cascade of energy is present, the coher-
ent flow may change the sign of S3(r), thereby rendering S3(r)
unsuitable for revealing the cascade. This finding has brought
about a renewed interest29–31 in the proper interpretation of
atmospheric data and S3(r).

This brief review is not intended to be exhaustive, but
we have attempted to illustrate the complexity of S3(r) in 2D
turbulence. (For additional discussion, see Refs. 46–48.) In
2D turbulence, various factors, such as the presence of two

disparate cascades, the unclear justification of local equilib-
rium in decaying turbulence, the influence of a large-scale drag,
and the formation of a large-scale coherent flow, can all work
to make this deceptively simple quantity much more complex,
each factor adding its own imprint on S3(r). This multitude of
storylines is reminiscent of Kurosawa’s49 Rashomon,50 where
varied perspectives combine to give a richer picture of reality.
Each story is interesting in its own right, but at the same time,
it is only one aspect of 2D turbulence as a whole.

III. WHY IS S3(r) RELATED TO ENERGY FLUX
OR ENSTROPHY FLUX?

Here we seek to establish a mathematical relationship
between S3(r) and the fluxes of energy and enstrophy. Follow-
ing Kraichnan’s lead, we begin our considerations in spectral
space. In contrast to real space,51 spectral space affords a
spatially localized measure of energy and enstrophy, thereby
permitting one to directly compute the attendant fluxes.

For 2D turbulence, the dynamical equation of the energy
spectrum, E(k), reads as51

∂E(k, t)
∂t

= T (k, t) − 2νΩ(k, t), (1)

where Ω(k, t)= k2E(k, t) is the enstrophy spectrum.
Equation (1) is the spectral equivalent of the 2D Karman–
Howarth equation. It shows that the change in E(k, t) with
t is the sum of two terms. The first,52 T (k, t), is the trans-
fer function, which stems from the non-linear terms in the
Navier–Stokes equations, and the other is the viscous dis-
sipation, where ν is the kinematic viscosity. [Hereafter, for
the sake of brevity, we drop the explicit dependence on t
from E(k, t) and T (k, t).] Note that ∫

∞
0 T (k)dk = 0, which

means the nonlinear terms serve only to move energy from
wavenumber to wavenumber.21,51 This establishes a con-
crete connection between T (k) and the transfer of energy,
and we define T (k) as the rate of energy transfer out of k
to larger wavenumbers (smaller scales). Also note that21,51

∫
∞

0 k2T (k)dk = 0, where k2T (k, t) is the rate of enstrophy
transfer out of k. Often one works instead with the energy flux
function, Π(k) = − ∫

k
0 T (k ′)dk ′, which is the net energy trans-

ferred downscale through k, and the enstrophy flux function,
Z(k) = − ∫

k
0 k ′2T (k ′)dk ′, which is the net enstrophy trans-

ferred downscale through k. We regard the flux functions in
spectral space as accurate representations of the energy and
the enstrophy fluxes.

To relate the flux functions with S3(r), we manipulate
the 2D Karman–Howarth equation and obtain the following
relation between S3(r) and T (k) (see Appendix A):

S3(r) =
3
2

r
∫ a/r

0
T (k)dk −

1
8

r3
∫ a/r

0
k2T (k)dk + · · ·, (2)

where a is an O(1) constant. Written in terms of the flux
functions, we arrive at a key result,

S3(r) = −
3
2
Π(

a
r

)r +
1
8

Z(
a
r

)r3 + · · · . (3)

This equation mathematically demonstrates how S3(r) embod-
ies a mixture of the energy and enstrophy fluxes. The sign of
S3(r) is affected by values of both fluxes—S3(r) > 0 need not
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imply an inverse transfer of energy. To our knowledge, Eq. (3)
is a new result. It will play a central role in our derivations of
the S3(r) laws.

If the flux functions are known, using Eq. (3), we can
easily calculate the canonical S3(r) laws in 2D turbulence. For
the inertial range of an inverse energy cascade,9 if we impose
Π(k ∼ a

r ) = −P and Z(k ∼ a
r ) = 0, we find S3(r) = 3

2 Pr.
For the inertial range of a direct enstrophy cascade,9,18 if we
impose Π(k ∼ a

r ) = 0 and Z(k ∼ a
r ) = β, we find S3(r) =

1
8 βr3. [Note that the exact value of a plays no role in the S3(r)
laws because the fluxes in the inertial range are independent
of k.] While the values of these fluxes are consistent with our
notions of inertial ranges in the inverse energy cascade and
the direct enstrophy cascade, here we have not provided any
physical justification for the values. We simply posited them
and obtained the S3(r) laws. In Sec. IV, we will compute the
fluxes using physical arguments concerning the dynamics of
energy and enstrophy.

A general remark on the sign of S3(r) may be in order.
One is tempted, for example, when analyzing experimental or
atmospheric data, to look only at the sign of S3(r) and inter-
pret it as an indicator of the energy flux direction. However,
in the inertial range of the direct enstrophy cascade, S3(r) is
positive even though there is no energy flux. Knowing this,
others have made careful comparisons28,39,40,45 of not only the
sign but also how S3(r) scales with r. Note, however, that even
the scaling may be affected by non-ideal influences (see, e.g.,
Sec. IV D).

Finally, we note that Eq. (3) points to a severe difficulty
with S3(r) in 2D flows. If the inertial ranges of the inverse
energy and direct enstrophy cascades are not widely separated
in r (or k), then S3(r) will represent a mixture of energy and
enstrophy fluxes. For turbulence sustained by a single forcing
scale, Kraichnan9 and Leith17 argued that spatially concurrent
cascades of energy and enstrophy cannot occur. When there
are two forcing scales, however, Lindborg showed that such
a mixture is possible.28 Further, as we will see in Sec. IV D,
forced turbulence with a large-scale drag also allows for such
a mixture.

IV. S3(r) LAWS IN 2D TURBULENCE

We now turn to our derivations of the S3(r) laws in 2D
turbulence. Starting in spectral space, we first compute the
flux functions Π(k) and Z(k) in the inertial range and then
transform to real space by invoking Eq. (3). This yields S3(r).

To compute Π(k), we analyze the dynamical equation for
E(k), Eq. (1), which reads as

∂E(k)
∂t

= T (k) − 2νΩ(k).

In both 2D and 3D, the viscous dissipation term is 2νΩ(k) and
ε = 2ν ∫

∞
0 Ω(k)dk. Because viscosity is the ultimate source of

the energy dissipation, it may seem that in the limit ν → 0,
we get ε → 0. Note, however, that this limit highlights a
key difference between 2D and 3D. In 3D flows, the “vortex
stretching term” in the vorticity equation furnishes a mecha-
nism by which vorticity can be amplified without bound, akin
to the increased rotational speed of an ice skater who pulls

in their appendages. Consequently, Ω(k) has no upper bound,
thereby permitting, as was first noted by Taylor,6 the energy
dissipation anomaly, limν→0 ε = limν→0 2ν ∫

∞
0 Ω(k)dk , 0. In

2D flows, by contrast, the vortex stretching term is absent—
the mechanism for vorticity amplification is gone and Ω(k) is
bounded from above. Thus, the energy dissipation anomaly is
gone, limν→0 2ν ∫

∞
0 Ω(k)dk = 0. We will invoke the lack of an

energy dissipation anomaly in our derivations.
To compute Z(k), we analyze the dynamical equation for

Ω(k), which reads as

∂Ω(k)
∂t

= k2T (k) − 2νk2
Ω(k). (4)

Note that the palinstrophy term, k2Ω(k), which dissipates the
enstrophy, is not bounded from above, and so 2ν ∫

∞
0 k2Ω(k)dk

may remain finite as ν → 0, just as 2ν ∫
∞

0 Ω(k)dk does in 3D.
As noted by Batchelor:18

“It may plausibly be supposed that the large value of
[∫
∞

0 k2Ω(k)dk] produced in this way, at times not close to
the initial generation of turbulence, is such that, as ν → 0,[

2ν
∫ ∞

0
k2
Ω(k)→ β , 0

]
.

We have no actual proof that material lines are extended (on
average) in two-dimensional turbulence, just as we lack a
proof that material lines are extended in three-dimensional
turbulence. However, the heuristic arguments leading to
this conclusion are of the same nature in the two cases,
and empirically there is no doubt that material lines are
extended in three-dimensional turbulence. If material lines
were not extended in two-dimensional turbulence, the time
required for the concentration of some conserved quantity
such as salt dissolved in water to become uniform would
be inversely proportional to the diffusivity, which does not
seem credible even though we have so little experience with
two-dimensional stirring. I propose to adopt the hypothe-
ses that material lines are extended in two-dimensional
turbulence, that there is a cascade process of transfer of
mean-square vorticity to higher wavenumbers, and that the
limiting value of the rate of dissipation of mean-square
vorticity as ν → 0 is nonzero.”

Thus, in 2D, we have the enstrophy dissipation anomaly,
limν→0 β = limν→0 2ν ∫

∞
0 k2Ω(k) , 0. We will also invoke

the enstrophy dissipation anomaly in our derivations. As an
aside, note that in the quote above Batchelor uses the lan-
guage of “material lines” to refer to iso-vorticity lines that are
stretched such that the vorticity remains constant but its gra-
dient increases. This is a prevalent picture of the mechanism
of the 2D direct enstrophy cascade.51

Armed with Eq. (1) (coupled with no energy dissipa-
tion anomaly) and Eq. (4) (coupled with enstrophy dissipation
anomaly), we proceed to deriving S3(r) laws for four cases.

A. Freely decaying turbulence

Kolmogorov’s derivation5 of the 4/5th law concerned 3D
freely decaying turbulence. Here we consider its 2D analog.

To computeΠ(k), we integrate the dynamical equation for
E(k), Eq. (1), and find the following:
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∂

∂t

∫ ∞
k

E(k ′)dk ′ =
∫ ∞

k
T (k ′)dk ′ − 2ν

∫ ∞
k
Ω(k ′)dk ′, (5)

where, to focus attention on the small scales, we consider
k � 1/L(t) [L(t) is a characteristic large scale, e.g., the inte-
gral length scale; the region k � 1/L(t) corresponds to the
inertial range, which extends to arbitrarily large k in the limit
ν → 0]. Analyzing the rhs, we note ∫

∞
k T (k ′)dk ′ = Π(k) by

definition and 2ν ∫
∞

k Ω(k ′)dk ′ → 0 for ν → 0 due to the lack of
an energy dissipation anomaly. For the lhs, if we invoke local
equilibrium for k � 1/L(t), then the term becomes negligible.
Thus, for k � 1/L(t), ν → 0, and under local equilibrium,
Eq. (5) yields

Π(k) = 0. (6)

That is, in the limit of infinite Reynolds number (ν → 0), 2D
freely decaying turbulence has no energy cascade, inverse or
otherwise, a result that has already been noted by Kraichnan9

and Batchelor.18

To compute Z(k), we integrate the dynamical equation for
Ω(k), Eq. (4), and find

∂

∂t

∫ ∞
k
Ω(k ′)dk ′ =

∫ ∞
k

k ′2T (k ′)dk ′ − 2ν
∫ ∞

k
k ′2Ω(k ′)dk ′.

(7)

Analyzing the lhs, we again invoke local equilibrium for k �
1/L(t) and render its magnitude negligible. For the rhs, we note
the first term is ∫

∞
k k ′2T (k ′)dk ′ = Z(k) and write the second

term as

2ν
∫ ∞

k
k ′2Ω(k ′)dk ′ = 2ν

∫ ∞
0

k ′2Ω(k ′)dk ′

−2ν
∫ k

0
k ′2Ω(k ′)dk ′. (8)

In the limit ν → 0, the first term on the rhs→ β (because of
the enstrophy dissipation anomaly) and the second term→ 0
(because the integral is bounded for any finite value of k). Thus,
for k � 1/L(t), ν → 0, and under local equilibrium, Eq. (7)
yields

Z(k) = β. (9)

Substituting Π(k) = 0 and Z(k) = β in Eq. (3), we obtain
the S3(r) law for the direct enstrophy cascade in 2D freely
decaying turbulence,

S3(r) =
1
8
βr3. (10)

The law, it turns out, is the same as the canonical S3(r) law for
the direct enstrophy cascade in forced turbulence (cf. Sec. II).
This is analogous to the case in 3D turbulence where the 4/5th
law is independent of whether the flow is freely decaying5 or
is forced.7

Note that our derivation of the S3(r) law is predicated on
local equilibrium, which, as discussed in Sec. II, may be a ques-
tionable assumption, at least on phenomenological grounds.38

We are not aware of any experiments or simulations that have
tested this law for 2D freely decaying turbulence.

B. Freely decaying turbulence with a large-scale drag

We now consider a non-ideal effect. In experimental or
atmospheric flows that are approximately 2D, 3D effects are
invariably present. In a salt-layer experiment, for example,

there is drag with the bottom boundary.44,53 In atmospheric
flows, too, the bottom boundary engenders drag.54 In a soap
film, there is drag between the film and the surrounding air.55

The drag, in all these cases, typically acts at the large scales.
To compute the effect of a spatially localized, large-scale

drag, we include it in the dynamical equations for E(k) and
Ω(k). The equation for E(k) now reads as

∂E(k)
∂t

= T (k) − 2νΩ(k) − D(k), (11)

where D(k) is the drag term localized at k ∼ 1/l [l is the large
scale where the drag acts; for simplicity, we restrict attention
to l ≥ L(t)]. Integrating, we find

∂

∂t

∫ ∞
k

E(k ′)dk ′ =
∫ ∞

k
T (k ′)dk ′ − 2ν

∫ ∞
k
Ω(k ′)dk ′

−

∫ ∞
k

D(k ′)dk ′. (12)

Invoking the same considerations as we used in obtaining
Eq. (6) from Eq. (5), the unsteady term → 0 for k � 1/L(t)
(local equilibrium), ∫

∞
k T (k ′)dk ′ = Π(k) (definition), and the

viscous term→ 0 for ν → 0 (no energy dissipation anomaly).
Because the drag term is localized at k ∼ 1/l, for k � 1/L(t)
(which ensures k � 1/l), ∫

∞
k D(k ′)dk ′ → 0. Thus, just as in

the aforementioned case without a large-scale drag, Π(k) = 0.
Now consider Ω(k). Including the large-scale drag, the

dynamical equation for Ω(k) reads as

∂Ω(k)
∂t

= k2T (k) − 2νk2
Ω(k) − k2D(k). (13)

Integrating, we find

∂

∂t

∫ ∞
k
Ω(k ′)dk ′ =

∫ ∞
k

k ′2T (k ′)dk ′ − 2ν
∫ ∞

k
k ′2Ω(k ′)dk ′

−

∫ ∞
k

k ′2D(k ′)dk ′. (14)

Again, except for the drag term, all considerations remain the
same as we used in obtaining Eq. (9) from Eq. (7). For the
drag term, we note that for k � 1/L(t), ∫

∞
k k ′2D(k ′)dk ′ → 0.

[Here, we have assumed that like D(k), k2D(k) is also localized
at k ∼ 1/l.] Thus, just as in the case without a large-scale drag,
Z(k) = β.

Because Π(k) = 0 and Z(k) = β, the S3(r) law remains
unchanged in the presence of the large-scale drag. That is,
S3(r) = 1

8 βr3. To our knowledge, this is the first derivation
of an S3(r) law in 2D freely decaying turbulence with a large-
scale drag. As in the case without drag, we are not aware of
any experiments or simulations that have tested this law.

Although the drag does not affect the fluxes partaking in
the cascade, it does affect the form of E(k) and Ω(k) at low k,
which host the majority of energy and enstrophy, respectively.
This can be seen by integrating Eqs. (11) and (13) from ∫

∞
0 dk;

in the limit ν → 0, we find

d
dt

∫ ∞
0

E(k)dk = −
∫ ∞

0
D(k)dk, (15)

d
dt

∫ ∞
0
Ω(k)dk = −β − βl, (16)

where βl ≡ ∫
∞

0 k2D(k)dk is the enstrophy dissipation rate
due to the large-scale drag. This suggests that one must be
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careful when trying to determine the fluxes Π(k) or Z(k) from
the time derivatives41 − ∂

∂t ∫
k

0 E(k ′)dk ′ or − ∂
∂t ∫

k
0 Ω(k ′)dk ′,

respectively—these time derivatives include contributions
from the large-scale drag.

C. Forced turbulence

Next we turn to forced turbulence. We will assume that
the forcing term ~f in the Navier–Stokes equations acts locally
at a scale lf . Note that 〈~f ·~u〉 = P, the energy injection rate per
unit mass.

The dynamical equation for E(k) reads as

∂E(k)
∂t

= T (k) − 2νΩ(k) + F(k), (17)

where F(k), the Fourier transform of 〈~f · ~u〉, is localized at
k ∼ 1/lf . Integrating, we note that in the limit ν → 0, the total
energy continuously grows at a rate

∂

∂t

∫ ∞
0

E(k)dk =
∫ ∞

0
F(k)dk = P, (18)

where we have invoked the lack of an energy dissipation
anomaly. Correspondingly, the large scale L(t) also contin-
uously grows with time; we limit attention to L(t) � lf .

The dynamical equation for Ω(k) reads as

∂Ω(k)
∂t

= k2T (k) − 2νk2
Ω(k) + k2F(k). (19)

Integrating, we note that in the limit ν → 0, the rate of
enstrophy is determined by

∂

∂t

∫ ∞
0
Ω(k)dk = −β + Q, (20)

where we have invoked the enstrophy dissipation anomaly to
get β and Q ≡ ∫

∞
0 k2F(k)dk is the enstrophy injection rate.

To proceed, we note that although the flow is always unsteady
at the large scales, at scales � L(t), the flow at long times
reaches a steady state.9 Here, the enstrophy is carried by the
scales ∼ lf � L(t). Thus, we neglect the unsteady term in
Eq. (20) and find Q = β. That is, the enstrophy injected by the
forcing is balanced by the viscous dissipation.36

In deriving the S3(r) laws for forced turbulence, we con-
sider the scales larger than lf and smaller than lf separately.
First, consider 1/L(t) � k � 1/lf . To compute Π(k), we
integrate Eq. (17) and find

0 =
∫ ∞

k
T (k ′)dk ′ − 2ν

∫ ∞
k
Ω(k ′)dk ′ +

∫ ∞
k

F(k ′)dk ′, (21)

where we have dropped the unsteady term because k � 1/L(t).
(Although we integrate until k → ∞, we will shortly bring in
the restriction k � 1/lf .) Analyzing the rhs, the first term
equals Π(k) (definition), the second term→ 0 for ν → 0 (no
energy dissipation anomaly), and the last term ∫

∞
k F(k ′)dk ′ →

P for k � 1/lf . Thus, we find Π(k) = −P.
To compute Z(k), we integrate Eq. (19) and find

0 =
∫ ∞

k
k ′2T (k ′)dk ′ − 2ν

∫ ∞
k

k ′2Ω(k ′)dk ′

+
∫ ∞

k
k ′2F(k ′)dk ′, (22)

where, again, we have dropped the unsteady term because
k � 1/L(t). Analyzing the rhs, the first term equals Z(k) (defi-
nition), the second term→ β for ν → 0 (enstrophy dissipation
anomaly), and the last term ∫

∞
k k ′2F(k ′)dk ′ → Q for k � 1/lf

[where we have assumed that like F(k), k2F(k) is also local-
ized at k ∼ 1/lf ]. Thus, we find Z(k) = β − Q, which is equal
to 0 because β = Q.

SubstitutingΠ(k) = −P and Z(k) = 0 in Eq. (3), we obtain
the canonical S3(r) law for the inverse energy cascade in forced
turbulence (cf. Sec. II),

S3(r) =
3
2

Pr. (23)

Now consider k � 1/lf . To compute Π(k), like before,
we consider Eq. (21), but for the region k � 1/lf . Again, the
first term on the rhs equals Π(k) and the second term→ 0 for
ν → 0. But the last term now is different—∫

∞
k F(k ′)dk ′ → 0

for k � 1/lf . Thus, we find Π(k) = 0. Next, to compute Z(k),
we consider Eq. (22), but for the region k � 1/lf . Again, the
first term on the rhs equals Z(k) and the second term→ β for
ν → 0. The last term, again, is different—∫

∞
k k ′2F(k ′)dk ′ → 0

for k � 1/lf . Thus, we find Z(k) = β. Substituting Π(k) = 0
and Z(k) = β in Eq. (3), we obtain the canonical S3(r)
law for the direct enstrophy cascade in forced turbulence (cf.
Sec. II), which is the same law as in the freely decaying case
[Eq. (10)].

Finally, we comment on the energy flux and the enstro-
phy flux for 2D forced turbulence. Our analysis yielded
Π(k) = −P and Z(k) = 0 [for large scales, 1/L(t) � k � 1/lf ]
andΠ(k) = 0 and Z(k) = β (for small scales, k � 1/lf ). These
results are consistent with Kraichnan’s9 analysis and Leith’s17

analysis which showed that, for turbulence forced at a single
scale, spatially concurrent cascades of energy and enstrophy
cannot occur.

D. Forced turbulence with a large-scale drag

Unlike the previous case, 2D forced turbulence with a
large-scale drag reaches a steady state41 for all scales, large as
well as small. Including a large-scale drag that acts locally at a
scale l � lf (cf. Sec. IV B), the steady-state equation for E(k)
reads as

0 = T (k) − 2νΩ(k) + F(k) − D(k). (24)

Integrating ∫
∞

0 dk, in the limit ν → 0, we find the equation of
energy balance,

P =
∫ ∞

0
D(k)dk. (25)

The energy injected by the forcing at the scale lf is dissipated
by the drag at the scale l. Integrating Eq. (24) ∫

k
0 dk ′, we find

0 =
∫ ∞

k
T (k ′)dk ′ − 2ν

∫ ∞
k
Ω(k ′)dk ′

+
∫ ∞

k
F(k ′)dk ′ −

∫ ∞
k

D(k ′)dk ′, (26)

which we will analyze shortly to compute Π(k).
Including the large-scale drag, the steady-state equation

for Ω(k) reads as

0 = k2T (k) − 2νk2
Ω(k) + k2F(k) − k2D(k). (27)
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Integrating ∫
∞

0 dk, in the limit ν → 0, we find the equation of
enstrophy balance,

Q = β + βl. (28)

The enstrophy injected by the forcing is dissipated by the large-
scale drag as well as by viscosity (which acts at the small
scales). Integrating Eq. (27) ∫

k
0 dk ′, we find

0 =
∫ ∞

k
k ′2T (k ′)dk ′ − 2ν

∫ ∞
k

k ′2Ω(k ′)dk ′

+
∫ ∞

k
k ′2F(k ′)dk ′ −

∫ ∞
k

k ′2D(k ′)dk ′, (29)

which we will analyze shortly to compute Z(k).
First, consider 1/l � k � 1/lf . To compute Π(k), we

invoke the same considerations for the first three terms on the
rhs of Eq. (26) as we did for Eq. (21) in the region 1/L(t) �
k � 1/lf . For the last term, we note that ∫

∞
k D(k ′)dk ′ → 0

for k � 1/l. Thus, we again find Π(k) = −P. Similarly, to
compute Z(k), we invoke the same considerations for the first
three terms on the rhs of Eq. (29) as we did for Eq. (22) in
the region 1/L(t) � k � 1/lf . For the last term, we note
that ∫

∞
k k ′2D(k ′)dk ′ → 0 for k � 1/l. Thus, we again find

Z(k) = β − Q, but now β , Q, so Z(k) , 0; instead, from
Eq. (28), we find Z(k) = −βl.

Substituting Π(k) = −P and Z(k) = −βl in Eq. (3), we
obtain the S3(r) law for the region 1/l � k � 1/lf of forced
turbulence with a large-scale drag,

S3(r) =
3
2

Pr −
1
8
βlr

3, (30)

which represents a mixture of energy and enstrophy fluxes.
To our knowledge, this law is a new result. Note that unlike
the case of freely decaying turbulence with a large-scale drag,
here the S3(r) law is modified by the drag. More importantly,
unlike any other S3(r) law in 2D turbulence, Eq. (30) allows
for S3(r) < 0. This suggests that one must be cautious in
interpreting the sign of S3(r) in flows, e.g., atmospheric flows,
where a large-scale drag is present.

Now consider k � 1/lf . Following our usual proce-
dure, to compute Π(k), we invoke the same considerations
for the first three terms on the rhs of Eq. (26) as we did
for Eq. (21) in the region k � 1/lf . For the last term, we
note that ∫

∞
k D(k ′)dk ′ → 0 for k � 1/lf . Thus, we again

find Π(k) = 0. Similarly, to compute Z(k), we invoke the
same considerations for the first three terms on the rhs of
Eq. (29) as we did for Eq. (22) in the region k � 1/lf . For
the last term, we note that ∫

∞
k k ′2D(k ′)dk ′ → 0 for k � 1/lf .

Thus, we again find Z(k) = β. Substituting Π(k) = 0 and
Z(k) = β in Eq. (3), we find that the S3(r) law for the region
k � 1/lf of forced turbulence with a large-scale drag is unaf-
fected by the drag, as was seen by Bernard.36 This S3(r) law is
the same as the canonical S3(r) law for direct enstrophy cas-
cade in forced turbulence. The difference, however, is that in
the case without the drag, Q and β are equal to each other,
and thus they can be used interchangeably in the S3(r) law.
In the case with drag, however, Q and β are not equal—the
injected Q is dissipated by viscosity (β) as well as drag (βl),
as can be seen from the enstrophy balance [Eq. (28)] and from
simulations.41

V. CONCLUDING REMARKS

We have discussed S3(r) laws in 2D turbulence.
Approaching S3(r) from spectral space, we established that it
generally embodies a mixture of energy and enstrophy fluxes.
We determined the fluxes by analyzing the dynamical equa-
tions of energy spectrum and enstrophy spectrum, where we
invoked the lack of an energy dissipation anomaly and the pres-
ence of an enstrophy dissipation anomaly. This yielded S3(r)
laws for freely decaying and forced turbulence, with and with-
out a large-scale drag. For the canonical cases—S3(r) laws for
the direct enstrophy cascade and the inverse energy cascade
in forced turbulence—we have attempted to provide simpler
derivations than those found elsewhere. For the freely decay-
ing case without a large-scale drag, our result is in accord with
a previous study,51 and for the freely decaying case with a
large-scale drag, our result is new. Also, for the case of forced
turbulence with a large-scale drag, our result for the large scales
is new and our result for the small scales is in accord with a
previous study.36

We have found that the canonical S3(r) law for the direct
enstrophy cascade is a robust result. The law remains the
same for forced turbulence and for freely decaying turbu-
lence, analogous to the 4/5th law in 3D turbulence. Further,
the law remains unaffected by the presence of a large-scale
drag.

On the other hand, the canonical S3(r) law for the inverse
energy cascade, which is only seen for the forced cases, is
affected by the presence of a large-scale drag. In fact, in con-
trast to all the other cases in 2D where S3(r) is positive, for
this case, the drag can engender S3(r) < 0. Further, the scaling
of S3(r) contains both r and r3 terms, signifying a mixture of
energy and enstrophy fluxes.

A general remark on our derivation may be in order. In
deriving the S3(r) laws, we transformed from spectral space to
real space via Eq. (3), which expresses the result as a power-
series expansion in r. For the laws corresponding to the direct
cascades, the limit ν → 0 extends the inertial range to r → 0,
which, with the proviso that the higher-order terms are not
singular, makes Eq. (3) an exact result. But, the inertial range of
an inverse cascade starts at r & lf and extends to larger values
of r. Thus, unless the higher-order terms are all negligible, we
urge caution in interpreting S3(r) data for a large r using an
S3(r) law.

In closing we note that, unlike 3D turbulence, which has
only one S3(r) law, 2D turbulence has many laws, which cor-
respond to different flow conditions. Using the framework of
the idealized theory (albeit expanding its scope by including a
large-scale drag), we have derived some of these laws. When
interpreting experimental, numerical, or atmospheric data in
light of the S3(r) laws, it is worth recalling a remark from
Kraichnan and Montgomery:21 “In some cases the ideali[z]ed
theory may be more valid in providing a language for discus-
sion rather than a true explanation.” Beyond the idealized the-
ory, the non-ideal factor we analyzed, a large-scale drag, is but
a simplified model of the drag present in real flows. More real-
istic models of the drag may affect S3(r) differently. Further,
other non-ideal factors—e.g., mean shear (see Appendix B),
finite Reynolds number23—may drastically affect S3(r).
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The complexities may be daunting, but the possibilities are
rich. So it is with the Rashomon effect.
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APPENDIX A: SPECTRAL PERSPECTIVE
ON S3(r) IN 2D

Here we derive Eq. (3). Our derivation is similar to how
Davidson51 relates S2(r) with E(k). We find that S3(r) in 2D
embodies contributions from both the energy flux and the
enstrophy flux.

Manipulating the Karman–Howarth equation in 2D yields
the following relation51 between T (k) and S3(r):

T (k) =
k3

6

∫ ∞
0

∂

∂r

(
r3S3(r)

) J1(kr)
2kr

dr, (A1)

where J1(kr) is the 1st Bessel function of the first kind.56

(Note that the above equation remains unchanged when
additional terms, e.g., a large-scale drag, are added to the
Karman–Howarth equation.) Integrating by parts, we get

T (k) =
k4

6

∫ ∞
0

r3S3(r)
J2(kr)

2kr
dr, (A2)

where J2(kr) is the 2nd Bessel function of the first kind.56

Taking advantage of the orthogonality condition for Bessel
functions, ∫ ∞

0
Jm(ax)Jm(bx)xdx =

δ(a − b)
a

, (A3)

where δ(a − b) is the delta function, we multiply Eq. (A2) by
J2(kr)

k2 and integrate over k to get

S3(r) =
3
2

r
∫ ∞

0
T (k)

8J2(kr)

(kr)2
dk. (A4)

Noting that 8J2(kr)
(kr)2 decays to zero as kr increases from zero to

an O(1) value, we approximate

8J2(kr)

(kr)2
=

{
1 − (kr)2

12 + · · ·, kr < a,
0, kr > a,

(A5)

where these are the first two terms in the Taylor-series
expansion56 and a is an O(1) constant. Thus, we find

S3(r) =
3
2

r
∫ a/r

0
T (k)dk −

1
8

r3
∫ a/r

0
k2T (k)dk + · · ·, (A6)

which leads to Eq. (3). We note that for any homogeneous
and isotropic 2D turbulent flow, S3(r) equals 3

2 r times the net
energy transfer through r, minus 1

8 r3 times the net enstrophy
transfer through r. For the case of 2D turbulence forced at two
scales, Lindborg28 also found that S3(r) contains a mixture of
energy and enstrophy fluxes.

APPENDIX B: A NOTE ON THE EFFECT
OF MEAN SHEAR

Stepping beyond the realm of the idealized theory, we have
considered the effect of a large-scale drag. Another non-ideal

effect present in real 2D flows is the shear in the mean flow. For
example, in atmospheric flows and in soap-film flows, the tur-
bulent fluctuations are often embedded in a strongly sheared
mean flow. Although we have not included any derivations
on how the mean shear affects S3(r), we note that simula-
tions57,58 of 2D turbulence in the presence of mean shear
reveal that Π(k) and Z(k) are affected by the mean shear,
which, via Eq. (3), affects S3(r). The overall effect will depend
on the strength of the mean shear, but this reveals further
complications for interpreting experimental and atmospheric
data.59
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