
PHYSICAL REVIEW A 96, 043859 (2017)

Channeling of spontaneous emission from an atom into the fundamental and higher-order
modes of a vacuum-clad ultrathin optical fiber
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We study spontaneous emission from a rubidium atom into the fundamental and higher-order modes of a
vacuum-clad ultrathin optical fiber. We show that the spontaneous emission rate depends on the magnetic sublevel,
the type of modes, the orientation of the quantization axis, the position of the atom, and the fiber radius. We find
that the rate of spontaneous emission into the TE modes is always symmetric with respect to the propagation
directions. Directional asymmetry of spontaneous emission into other modes may appear when the quantization
axis does not lie in the meridional plane containing the position of the atom. When the fiber radius is in the
range from 330 to 450 nm, the spontaneous emission from an atom on the fiber surface into the HE21 modes is
stronger than into the HE11, TE01, and TM01 modes. At the cutoff for higher-order modes, the rates of spontaneous
emission into guided and radiation modes undergo steep variations, which are caused by the changes in the mode
structure. We show that the spontaneous emission from the upper level of the cyclic transition into the TM modes
is unidirectional when the quantization axis lies at an appropriate azimuthal angle in the fiber transverse plane.
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I. INTRODUCTION

Optical fibers can be tapered to a diameter comparable to or
smaller than the wavelength of light [1–3]. Due to the tapering,
the original core almost vanishes and the refractive indices that
determine the guiding properties of the tapered fiber are those
of the original silica cladding and the surrounding vacuum.
Since the diameters of such tapered fibers are in the range of
a few hundred nanometers, they are usually called nanofibers.
When the radius of the fiber is small enough, it can support
only a single mode in the optical region of frequency.

In a vacuum-clad nanofiber, the guided field penetrates
an appreciable distance into the surrounding medium and
appears as an evanescent wave carrying a significant fraction
of the power and having a complex polarization pattern [4–6].
Nanofibers are therefore versatile tools for coupling light and
matter and have a wide range of potential practical applications
[7,8]. For example, they have been used for trapping atoms
[9–11], for probing atoms [12–20], molecules [21], quantum
dots [22], and color centers in nanodiamonds [23,24], and for
mechanical manipulation of small particles [25–27].

Tapered fibers can also be fabricated with slightly larger
diameters or larger refractive indices so that they can support
not only the fundamental HE11 mode but also several higher-
order modes. Compared to the HE11 mode, the higher-order
modes have larger cutoff size parameters and more complex
intensity, phase, and polarization distributions. For ease of
reference, the vacuum-clad tapered fibers that can support the
fundamental mode and several higher-order modes are called
ultrathin optical fibers in this paper.
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It has been shown that ultrathin optical fibers with higher-
order modes can be used to trap, probe, and manipulate
atoms, molecules, and particles [28–34]. The excitation of
higher-order modes has been studied [35,36]. The production
of ultrathin fibers with higher-order modes [37–39] and the
experimental studies on the interaction with atoms [40] or
particles [41,42] have been reported. The possibility to control
and manipulate individual atoms near an ultrathin fiber can
also find applications for quantum information.

The interaction between guided light and atoms is of
academic and practical interest. Many applications require a
deep understanding and an effective control of spontaneous
emission of atoms near an ultrathin optical fiber. Radiative
decay of an atom in the vicinity of a nanofiber has been studied
in the context of a two-level atom [43–45] as well as a realistic
multilevel atom with a hyperfine structure of energy levels
[46,47]. The parameters for the decay of populations [43–47]
and cross-level coherences [46–48] have been calculated.

Recently, emission of particles with circularly polarized
dipoles began to attract much attention [49–57]. It has been
shown that the near-field interference of a circularly polarized
dipole coupled to a dielectric or metallic object leads to
unidirectional excitation of guided modes or surface plasmon
polariton modes [49–55]. This effect has been experimentally
demonstrated by shining circularly polarized light onto a
nanoslit [49,51] or closely spaced subwavelength apertures
[50] in a metal film and by exciting a nanoparticle on a dielec-
tric interface with a tightly focused vector light beam [54,55].

It has been shown that spontaneous emission and scattering
from an atom with a circular dipole near a nanofiber can be
asymmetric with respect to the opposite axial propagation
directions [58–63]. These directional effects are the signatures
of spin-orbit coupling of light [64–68] carrying transverse spin
angular momentum [66,69]. They are due to the existence of a
nonzero longitudinal component of the nanofiber guided field,
which oscillates in phase quadrature with respect to the radial
transverse component. The possibility of directional emission

2469-9926/2017/96(4)/043859(19) 043859-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevA.96.043859
https://creativecommons.org/licenses/by/4.0/


LE KIEN, HEJAZI, BUSCH, TRUONG, AND NIC CHORMAIC PHYSICAL REVIEW A 96, 043859 (2017)

from an atom into propagating radiation modes of a nanofiber
and the possibility of generation of a lateral force on the atom
have been reported [62]. The direction-dependent emission
and absorption of photons lead to chiral quantum optics [70].

Spontaneous emission from a multilevel atom into the
fundamental and higher-order modes of an ultrathin fiber
has been studied by Masalov and Minogin [71]. They have
found that the decay rates into the higher-order modes can
be significantly larger than into the fundamental mode. Their
calculations were limited to atomic transitions with a single
type of dipole polarizations. However, all types of atomic
transitions and dipole polarizations must be accounted for
in a realistic situation. In addition, in Ref. [71] the fiber
axis was used as the quantization axis and consequently
no direction dependencies of the rates could be observed.
Moreover, emission into radiation modes was not considered
in Ref. [71].

The aim of this paper is to investigate spontaneous emission
from a multilevel atom with an arbitrary quantization axis
into an ultrathin fiber. We calculate the rates of spontaneous
emission into the fundamental and higher-order guided modes.
We also calculate the rate of spontaneous emission into
radiation modes.

The paper is organized as follows. In Sec. II, we describe the
interaction of an alkali-metal atom with the electromagnetic
field in the presence of an ultrathin optical fiber. Section III is
devoted to the basic characteristics of spontaneous emission of
the multilevel atom. In Sec. IV, we present numerical results.
Our conclusions are given in Sec. V.

II. MODEL AND HAMILTONIAN

We consider a multilevel alkali-metal atom trapped in
the vicinity of a vacuum-clad ultrathin optical fiber [see
Fig. 1(a)]. We use Cartesian coordinates {x,y,z}, where z is the
coordinate along the fiber axis, and also cylindrical coordinates
{r,ϕ,z}, where r and ϕ are the polar coordinates in the fiber
transverse plane xy. The energy levels of the atom are specified
in a Cartesian coordinate system {xQ,yQ,zQ}, where zQ is the
direction of the quantization axis. For simplicity, we neglect
the effect of the surface-induced potential on the atomic energy
levels. This approximation is valid when the atom is not too
close to the fiber surface [72].

To be concrete, we assume that the atom is 87Rb. We work
with the D2 line of the rubidium atom, which corresponds to
the electric dipole transition from the excited state 5P3/2 to
the ground state 5S1/2 [see Fig. 1(b)] [73]. We introduce the
notations |e〉 = |J ′F ′M ′〉 and |g〉 = |JFM〉 for the magnetic
sublevels of the hyperfine-structure (hfs) levels of the excited
state and the ground state, respectively. Here, J and J ′ are the
total electronic angular momenta, F and F ′ are the total atomic
angular momenta, and M and M ′ are the magnetic quantum
numbers. We denote the energies of these sublevels as h̄ωe

and h̄ωg . The schematic of the hfs levels of the D2 line of the
rubidium-87 atom is illustrated in Fig. 1(b). We note that the hfs
splitting is small compared to the optical transition frequency
and, therefore, does not affect significantly the spontaneous
emission of the atom. We neglect the hfs splitting in our
calculations for the characteristics of this process.
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FIG. 1. (a) An atom interacting with guided and radiation modes
of an ultrathin optical fiber. The fiber-based Cartesian coordinate
system {x,y,z}, the corresponding cylindrical coordinate system
{r,ϕ,z}, and the quantization coordinate system {xQ,yQ,zQ} are used.
(b) Schematic of the hfs levels of the 5P3/2 and 5S1/2 states of a
rubidium-87 atom. These levels are specified with respect to the
quantization axis zQ.

We introduce the notation deg = 〈e|D|g〉 for the dipole
matrix element of the transition |e〉 ↔ |g〉, where D is the
electric dipole operator. In the atomic quantization coordinate
system {xQ,yQ,zQ}, the spherical components q = 0, ± 1 of
the dipole matrix element deg are given by the expression [74]

dqQ
= (−1)I+J ′−M ′ 〈J ′‖D‖J 〉

√
(2F + 1)(2F ′ + 1)

×
{
J ′ F ′ I

F J 1

}(
F 1 F ′
M q −M ′

)
. (1)

Here, the array in the curly braces is a 6j symbol, the array
in the parentheses is a 3j symbol, I is the nuclear spin, and
〈J ′‖D‖J 〉 is the reduced electric dipole matrix element in the J

basis. Note that dqQ
is nonzero only for M ′ − M = q = 0, ± 1.

We assume that the fiber has a cylindrical silica core
of radius a and refractive index n1 and an infinite vacuum
cladding of refractive index n2 = 1. We retain the silica
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dispersion and at the frequency of the rubidium D2 line
the refractive index n1 of the fiber is taken as 1.4537. The
positive-frequency part E(+) of the electric component of the
field can be decomposed into the contributions E(+)

g and E(+)
r

from guided and radiation modes, respectively, as

E(+) = E(+)
g + E(+)

r . (2)

In view of the very low losses of silica in the wavelength range
of interest, we neglect material absorption.

We follow the continuum field quantization procedures
presented in [75]. Regarding the guided modes, we assume
that the fiber supports the fundamental HE11 mode and a
few higher-order modes [76] in a finite bandwidth around the
central frequency ω0 = ωe − ωg of the rubidium-87 D2 line.
We label each guided mode in this bandwidth by an index
μ = (ω,N,f,p). Here, ω is the mode frequency, the notation
N = HElm, EHlm, TE0m, or TM0m stands for the mode type,
with l = 1,2, . . . and m = 1,2, . . . being the azimuthal and
radial mode orders, respectively, the index f = +1 or −1
denotes, respectively, the forward or backward propagation
direction along the fiber axis z, and p is the polarization
index. The HElm and EHlm modes are hybrid modes. For these
modes, the azimuthal order is l �= 0, and the index p is equal
to +1 or −1, indicating the counterclockwise or clockwise
circulation direction of the helical phase front. The TE0m and
TM0m modes are transverse electric and magnetic modes. For
these modes, the azimuthal mode order is l = 0 and, hence,
the mode polarization is single and the polarization index p

can take an arbitrary value. For convenience, we assign the
value p = 0 to the polarization index p for TE0m and TM0m

modes. In the interaction picture, the quantum expression for
the positive-frequency part E(+)

g of the electric component of
the field in guided modes is [46]

E(+)
g = i

∑
μ

√
h̄ωβ ′

4πε0
aμe(μ)e−i(ωt−fβz−plϕ). (3)

Here, e(μ) = e(μ)(r,ϕ) is the profile function of the guided mode
μ in the classical problem, aμ is the corresponding photon
annihilation operator,

∑
μ = ∑

Nfp

∫ ∞
0 dω is the generalized

summation over the guided modes, β is the longitudinal
propagation constant, and β ′ is the derivative of β with
respect to ω. The constant β is determined by the fiber
eigenvalue equation [76]. The operators aμ and a†

μ satisfy

the continuous-mode bosonic commutation rules [aμ,a
†
μ′] =

δ(ω − ω′)δNN ′δff ′δpp′ . In deriving Eq. (3), we have used the
normalization condition∫ 2π

0
dϕ

∫ ∞

0
n2

ref |e(μ)|2r dr = 1, (4)

where nref(r) = n1 for r < a and n2 for r > a.
The explicit expressions for the profile functions e(μ) of

guided modes are given in Refs. [76,77] and are summarized
in Appendix A. For a quasicircularly polarized hybrid mode
N = HElm and EHlm with the propagation direction f and the
phase circulation direction p, the profile function is given in
the cylindrical coordinates as

e(ωNfp)
∣∣
N=HElm,EHlm

= er r̂ + peϕϕ̂ + f ezẑ, (5)

where er , eϕ , and ez are given by Eqs. (A10) and (A11) for β >

0 and l > 0. For a TE0m mode with the propagation direction
f , the profile function can be written as

e(ωTE0mf ) = e(ωTE0mfp)
∣∣
p=0 = eϕϕ̂, (6)

where the only nonzero cylindrical component eϕ is given by
the second expressions in Eqs. (A17) and (A18). For a TM
mode with the propagation direction f , we have

e(ωTM0mf ) = e(ωTM0mfp)
∣∣
p=0 = er r̂ + f ezẑ, (7)

where the components er and ez are given by the first and third
expressions in Eqs. (A22) and (A23) for β > 0. An important
property of the mode functions of hybrid and TM modes is
that the longitudinal component ez is nonvanishing and in
quadrature (π/2 out of phase) with the radial component er .

In the case of radiation modes, the longitudinal propagation
constant β for each value of the frequency ω can vary contin-
uously, from −k to k (with k = ω/c). We label each radiation
mode by an index ν = (ω,β,l,p), where l = 0, ± 1, ± 2, . . .

is the mode order and p = +,− is the mode polarization.
In the interaction picture, the quantum expression for the
positive-frequency part E(+)

r of the electric component of the
field in radiation modes is [46]

E(+)
r = i

∑
ν

√
h̄ω

4πε0
aνe(ν)e−i(ωt−βz−lϕ). (8)

Here, e(ν) = e(ν)(r,ϕ) is the profile function of the radiation
mode ν in the classical problem, aν is the corresponding
photon annihilation operator, and

∑
ν = ∑

lp

∫ ∞
0 dω

∫ k

−k
dβ

is the generalized summation over the radiation modes. The
operators aν and a†

ν satisfy the continuous-mode bosonic
commutation rules [aν,a

†
ν ′ ] = δ(ω − ω′)δ(β − β ′)δll′δpp′ . In

deriving Eq. (8), we have used the normalization condition∫ 2π

0
dϕ

∫ ∞

0
n2

ref

[
e(ν)e(ν ′)∗]

β=β ′,l=l′,p=p′r dr = δ(ω − ω′).

(9)

The explicit expressions for the mode functions e(ν) are given
in Refs. [76,77] and are summarized in Appendix B.

Assume that the atom is positioned at a point (r,ϕ,z). The
Hamiltonian for the atom-field interaction in the dipole and
rotating-wave approximations is given by

Hint = −ih̄
∑
αeg

Gαegσ
†
geaαe−i(ω−ωeg )t + H.c., (10)

where the notations α = μ,ν and
∑

α = ∑
μ +∑

ν stand for
the general mode index and the complete mode summation,
respectively, and the operators σge = |g〉〈e| and σ

†
ge = σeg =

|e〉〈g| describe the downward and upward transitions, respec-
tively. The coefficients

Gμeg =
√

ωβ ′

4πε0h̄

(
deg · e(μ)

)
ei(fβz+plϕ),

Gνeg =
√

ω

4πε0h̄

(
deg · e(ν)

)
ei(βz+lϕ) (11)
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characterize the coupling of the atomic transition e ↔ g with
the guided mode μ and the radiation mode ν. The notation
ωeg = ωe − ωg stands for the atomic transition frequency.

We note that, for |e〉 = |J ′F ′M ′〉 and |g〉 = |JFM〉, the
scalar product of the atomic dipole vector deg and the field vec-
tor e(α) can be expressed as deg · e(α) = (−1)qdqQ

e
(α)
−qQ

|q=M ′−M ,
where dqQ

is given by Eq. (1) and e(α)
qQ

is the correspond-
ing spherical tensor component of the field in the atomic
quantization coordinate system {xQ,yQ,zQ}. The components
e(α)
qQ

with q = 0, ± 1 are defined as e
(α)
−1Q

= (e(α)
xQ

− ie(α)
yQ

)/
√

2,

e
(α)
0Q

= e(α)
zQ

, and e
(α)
1Q

= −(e(α)
xQ

+ ie(α)
yQ

)/
√

2. Let θQ be the angle
between the quantization axis zQ and the fiber axis z [see
Fig. 1(a)]. Assume that the plane (z,zQ) intersects with the
fiber transverse plane xy at a line ζ . Let ϕQ be the azimuthal
angle between ζ and x. We choose the axes xQ and yQ such
that xQ is in the plane (zQ,z) and yQ is in the plane (x,y). Then,
the transformation for the field vector e(α) from the coordinate
system {x,y,z} to the coordinate system {xQ,yQ,zQ} is given
by the equations

e(α)
xQ

= (
e(α)
x cos ϕQ + e(α)

y sin ϕQ

)
cos θQ − e(α)

z sin θQ,

e(α)
yQ

= −e(α)
x sin ϕQ + e(α)

y cos ϕQ,

e(α)
zQ

= (
e(α)
x cos ϕQ + e(α)

y sin ϕQ

)
sin θQ + e(α)

z cos θQ.

(12)

The relations between the Cartesian-coordinate vector com-
ponents e(α)

x and e(α)
y and the cylindrical-coordinate vector

components e(α)
r and e(α)

ϕ are e(α)
x = e(α)

r cos ϕ − e(α)
ϕ sin ϕ and

e(α)
y = e(α)

r sin ϕ + e(α)
ϕ cos ϕ.

III. SPONTANEOUS EMISSION OF THE ATOM

In this section, we study spontaneous emission of the
multilevel atom. We assume that the field is initially in the
vacuum state |0〉. In this case, the time evolution of the reduced
density operator ρ of the atom is governed by the equations
[46]

ρ̇ee′ = −1

2

∑
e′′

(γee′′ρe′′e′ + γe′′e′ρee′′ ),

ρ̇gg′ =
∑
ee′

γe′eg′gρee′ ,

ρ̇eg = −1

2

∑
e′

γee′ρe′g, (13)

where the coefficients

γee′gg′ = γ
(g)
ee′gg′ + γ

(r)
ee′gg′ ,

γee′ =
∑

g

γee′gg = γ
(g)
ee′ + γ

(r)
ee′ (14)

characterize the spontaneous emission process. In Eqs. (14),
the set of coefficients γ

(g)
ee′gg′ and γ

(g)
ee′ describes spontaneous

emission into guided modes, and the set of coefficients γ
(r)
ee′gg′

and γ
(r)
ee′ describes spontaneous emission into radiation modes.

The expressions for these coefficients are given as [46]

γ
(g)
ee′gg′ = 2π

∑
Nfp

GNfpegG
∗
Nfpe′g′ ,

γ
(g)
ee′ =

∑
g

γ
(g)
ee′gg (15)

and

γ
(r)
ee′gg′ = 2π

∑
lp

∫ k0n2

−k0n2

dβ GβlpegG
∗
βlpe′g′ ,

γ
(r)
ee′ =

∑
g

γ
(r)
ee′gg, (16)

where GNfpeg ≡ Gω0Nfpeg and Gβlpeg ≡ Gω0βlpeg are the
coupling coefficients for the resonant guided and radiation
modes, respectively.

The diagonal decay coefficients γ
(g)
e ≡ γ

(g)
ee and γ (r)

e = γ (r)
ee

are the rates of spontaneous emission from the magnetic
sublevel |e〉 of the atom into guided and radiation modes,
respectively. The total decay rate for the population of the
sublevel |e〉 is

γe ≡ γee = γ (g)
e + γ (r)

e . (17)

The rate of spontaneous emission from the magnetic sublevel
|e〉 of the atom into the guided modes N = HElm, EHlm, TE0m,
or TM0m is given by

γ (N)
e = 2π

∑
fpg

|GNfpeg|2. (18)

We have

γ (g)
e =

∑
N

γ (N)
e = 2π

∑
Nfpg

|GNfpeg|2. (19)

It is clear that the spontaneous emission rates γ (N)
e , γ

(g)
e ,

and γ (r)
e depend on the quantum numbers F ′ and M ′ and other

characteristics of the atomic states and transitions. These rates
also depend on the orientation of the quantization axis zQ. In
order to get a view of the general behavior of the decay rates
from a broader perspective, we introduce the notation

γ̄ (... ) = 1

2F ′ + 1

F ′∑
M ′=−F ′

γ (... )
e , (20)

which is the average of the rate γ (... )
e = γ (N)

e , γ
(g)
e , and γ (r)

e

over the set of the magnetic sublevels M ′ of a hfs level F ′ of
the excited state. With the help of the summation formulas for
3j and 6j symbols [74], we find

γ̄ (N) = γ0
πc3β ′

0

2ω2
0

∑
fp

|e(ω0Nfp)|2,

γ̄ (g) = γ0
πc3β ′

0

2ω2
0

∑
Nfp

|e(ω0Nfp)|2,

γ̄ (r) = γ0
πc3

2ω2
0

∑
lp

∫ k0n2

−k0n2

|e(ω0βlp)|2dβ, (21)
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where γ0 = (ω3
0/3πε0h̄c3)|〈J ′‖D‖J 〉|2/(2J ′ + 1) is the spon-

taneous emission rate of the atom in free space. It is clear
from Eqs. (21) that the average rates γ̄ (N), γ̄ (g), and γ̄ (r) do
not depend on the quantum number F ′ and the orientation
of the quantization axis zQ. Moreover, the normalized rates
γ̄ (N)/γ0, γ̄ (g)/γ0, and γ̄ (r)/γ0, and, consequently, the average
fractional rates η̄(N) = γ̄ (N)/(γ̄ (g) + γ̄ (r)) do not depend on
any specific characteristics of the atomic states except for the
atomic transition frequency ω0. These ratios are determined by
the absolute values of the normalized mode profile functions
e(ω0Nfp) and e(ω0βlp) at the frequency ω0. It is interesting to note
that expressions (21) coincide with the results for the average
decay rates of a statistical ensemble of two-level emitters with
randomly oriented dipoles. The reason for this coincidence is
that the averaging over the magnetic sublevels of an atomic
energy level is effectively equivalent to the averaging over the
direction of the dipole.

We note that the density-matrix equations (13) are in
agreement with those used in the treatments for the excitation
of a multilevel atom by light of arbitrary polarization [48,78–
83]. Equations (13) can, in principle, be used for an arbitrary
(degenerate and nondegenerate) multilevel atom. The tensor
nature of the Zeeman sublevels and the hfs levels of a realistic
alkali-metal atom is expressed by Eq. (1) for the spherical
tensor components of the atomic dipole matrix elements deg .
These quantities enter Eqs. (13) through expressions (11) for
the coupling coefficients Gμeg and Gνeg . Unlike the case of
the atom-field system in free space [48], the presence of
the nanofiber modifies the decay rates γe and leads to the
appearance of the cross-level decay coefficients γee′ with
e �= e′ in Eqs. (13) (see [46]). These nondiagonal decay
coefficients describe the surface-induced interference between
the sublevels of the excited states. The interference occurs
when ρe′e is not zero, that is, when the atom is in a superposition
of the sublevels |e〉 and |e′〉.

In the framework of the model of ideal cylindrical step-
index fibers, there is no coupling between the fundamental and
higher-order modes in the absence of atoms. In the presence
of an atom, incident photons can be scattered from one mode
to the other modes by the atom. However, this effect cannot
happen in the case of spontaneous emission where the field
is initially in the vacuum state. In other words, the atom-
mediated coupling between the modes does not affect the rates
of spontaneous emission. Scattering of guided light from one
mode to the others by an atom can be studied by adding to
Eqs. (13) appropriate terms for the interaction between the
atom and the incident guided field [58]. The atom-mediated
mode coupling depends on the Rabi frequency, the detuning of
the incident field, and the spontaneous emission coefficients.

Due to the dispersive interaction between the atom and the
fiber, the atomic energy levels are shifted and so are the atomic
transition frequencies. The fiber-induced transition frequency
shift depends on the distance from the atom to the fiber and
the orientation of the atomic dipole with respect to the fiber
axis. In Eqs. (13), we have neglected the terms that describe
the fiber-induced shifts of the energy levels and transition
frequencies. These terms are proportional to the difference
between the surface-induced potentials for different energy
levels. When the atom is not too close to the fiber surface, the
fiber-induced transition frequency shifts are small compared

to the central transition frequency ω0 of the atom in free space.
In this case, the fiber-induced transition frequency shifts do
not affect significantly the rates of spontaneous emission.

We introduce the notation

γ (Nfp)
eg = 2π |GNfpeg|2, (22)

which stands for the rate of spontaneous emission into the
guided modes Nfp via the transition |e〉 → |g〉. The rate of
spontaneous emission from the sublevel |e〉 of the atom into
the guided modes N with the propagation direction f is given
by

γ (Nf )
e =

∑
pg

γ (Nfp)
eg . (23)

The rate of spontaneous emission into all types of guided
modes propagating in the direction f is given by

γ (gf )
e =

∑
N

γ (Nf )
e . (24)

For TE modes, the profile function for the electric part
of the field does not depend on the propagation direction f

[see Eq. (6)]. Therefore, the rates γ
(Nf )
e for N = TE modes is

symmetric with respect to f . For hybrid and TM modes, the
longitudinal component e

(ωNfp)
z of the field is nonvanishing

and has opposite signs for opposite propagation directions
[see Eqs. (5) and (7)]. Therefore, the rates γ

(Nf )
e for N = HE,

EH, and TM modes and the rate γ
(gf )
e for all guided modes

may depend on f .
The rates γ

(Nf )
e and hence γ

(gf )
e do not depend on f

when the quantization axis zQ coincides with the fiber axis z.
Indeed, in this case, we have e

(ωNfp)
qQ

= e
(ωNfp)
q for q = 0, ± 1,

where e
(ωNfp)
q are the spherical tensor components of the mode

function e(ωNfp) in the fiber coordinate system {x,y,z}. These
components satisfy the relation

e(ωNfp)
q = (−1)1+qe(ωNf̄ p)

q , (25)

where f̄ = −f . Hence, we find the relation

GNfpeg = (−1)1+M ′−MGNf̄ pege
2ifβz, (26)

which yields γ
(Nfp)
eg = γ

(Nf̄ p)
eg and, hence, γ (N+)

e = γ (N−)
e and

γ
(g+)
e = γ

(g−)
e .

More generally, we find that γ
(Nf )
e and hence γ

(gf )
e do

not depend on f when the quantization axis zQ lies in the
meridional plane containing the position of the atom. In order
to show this directional independence, we assume that the
atom is on the x axis and the quantization axis zQ lies in the zx

plane, that is, ϕQ = 0. Then, for hybrid and TM modes with
the profile functions (5) and (7), Eqs. (12) yield

e(μ)
xQ

= er cos θQ − f ez sin θQ,

e(μ)
yQ

= peϕ,

e(μ)
zQ

= er sin θQ + f ez cos θQ. (27)

According to Appendix A, for an appropriate choice of the
normalization constant, ez and eϕ are real numbers and er is
an imaginary number. Hence, we can show that the absolute
values |e(μ)

qQ
| of the spherical tensor components of the field in
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the coordinate system {xQ,yQ,zQ} do not depend on f . On the
other hand, the dipole matrix element deg has a single nonzero
spherical tensor component dqQ

, which is a real number.
Consequently, the absolute value of the scalar product deg · e(μ)

is |deg · e(μ)| = |dqQ
||e(μ)

−qQ
|. This quantity is independent of f

and, hence, so are the rates γ
(Nf )
e and γ

(gf )
e .

It is worth noting that the rates γ (N)
e , γ

(g)
e , γ (r)

e , and γe are
symmetric with respect to the magnetic quantum number M ′

of the sublevel |e〉 = |F ′M ′〉 = |J ′F ′M ′〉, that is, γ (N)
e = γ

(N)
ē ,

γ
(g)
e = γ

(g)
ē , γ (r)

e = γ
(r)
ē , and γe = γē, where the index ē labels

the sublevel |ē〉 = |F ′, − M ′〉 with the opposite magnetic
quantum number −M ′. This symmetry is a consequence of
the properties

e(ω,N,f,p) = −e(ω,N,−f,−p)∗,

e(ω,β,l,p) = (−1)le(ω,−β,−l,p)∗, (28)

and

deg = (−1)F
′−F+M ′−M+1d∗

ēḡ , (29)

where |ḡ〉 = |F, − M〉. With the help of the relations (28) and
(29), we can also show that

γ (Nf )
e = γ

(Nf̄ )
ē , γ (gf )

e = γ
(gf̄ )
ē . (30)

Thus, the rates γ
(Nf )
e and γ

(gf )
e of spontaneous emission into

guided modes propagating in a given direction f do not change
when both the propagation direction f and the magnetic
quantum number M ′ are reversed. It is clear that if γ

(Nf )
e and

γ
(gf )
e depend on f , then they also depend on the sign of M ′

and vice versa.
In order to get insight into the direction dependencies of

the spontaneous emission rates, we consider the rate γ
(Nf )
eg ≡∑

p γ
(Nfp)
eg for a given transition |e〉 → |g〉. When we follow

the procedure of Ref. [84], we can decompose this rate as

γ (Nf )
eg = γ

(f )
0 + γ

(f )
1 + γ

(f )
2 , (31)

where

γ
(f )
0 = ω0β

′
0

6ε0h̄
|deg|2

∑
p

∣∣e(ω0Nfp)
∣∣2

,

γ
(f )
1 = ω0β

′
0

4ε0h̄
[d∗

eg × deg] ·
∑

p

[
e(ω0Nfp)∗ × e(ω0Nfp)

]
,

γ
(f )
2 = ω0β

′
0

2ε0h̄
{d∗

eg ⊗ deg}2 ·
∑

p

{
e(ω0Nfp)∗ ⊗ e(ω0Nfp)

}
2. (32)

Here, the notation {A ⊗ B}2 stands for the irreducible tensor
product of rank 2 of arbitrary complex vectors A and B. The
quantities γ

(f )
0 , γ (f )

1 , and γ
(f )
2 are called the scalar, vector, and

tensor components of the rate γ
(Nf )
eg , respectively.

With the help of the first relation in Eqs. (28), we can show
that γ

(f )
0 = γ

(f̄ )
0 , γ

(f )
1 = −γ

(f̄ )
1 , and γ

(f )
2 = γ

(f̄ )
2 . Thus, the

direction dependence of the rate γ
(Nf )
eg occurs when the vector

term γ
(f )
1 is nonvanishing.

According to the second expression in Eqs. (32), the vector
term γ

(f )
1 depends on the overlap between the vectors i[d∗

eg ×

deg] and −i[e(ω0Nfp)∗ × e(ω0Nfp)], which are proportional to
the ellipticity vector of the atomic electric dipole polarization
and the ellipticity vector of the electric field polarization,
respectively. The vector i[d∗

eg × deg] characterizes an effective
magnetic dipole produced by the rotation of the electric dipole,
and is responsible for the vector polarizability of the atom.
The vector −i[e(ω0Nfp)∗ × e(ω0Nfp)] characterizes an effective
magnetic field and is responsible for the local electric spin
density of light. The vector component γ

(f )
1 of the rate can

be considered as a result of the interaction between the
effective magnetic dipole and the effective magnetic field.
Due to spin-orbit coupling of light [64–68], a reverse of the
propagation direction leads to a reverse of the spin density of
light and, consequently, to a reverse of the vector component
γ

(f )
1 of the spontaneous emission rate γ

(Nf )
eg .

We can show that
∑

p[e(ω0Nfp)∗ × e(ω0Nfp)] ∝ f ezer ϕ̂,

which leads to γ
(f )
1 ∝ f ezer ([d∗

eg × deg] · ϕ̂). Hence, the

spontaneous emission rate γ
(Nf )
eg depends on f only when

the ellipticity vector i[d∗
eg × deg] of the atomic dipole has a

nonvanishing azimuthal component i[d∗
eg × deg]ϕ . It is clear

that the direction dependence of γ
(Nf )
eg is a consequence of the

fact that the longitudinal component ez of the guided field is
not zero.

IV. NUMERICAL RESULTS

In this section, we demonstrate the results of numerical
calculations for the decay characteristics of the magnetic
sublevels of the excited state 5P3/2 of a rubidium-87 atom in
the presence of an ultrathin optical fiber. The atomic transitions
between this state and the ground state 5S1/2 correspond to the
D2 line and have a wavelength λ0 = 780 nm. For simplicity,
we show only the results of calculations for the spontaneous
emission rates γe of the sublevels |e〉 = |F ′M ′〉 = |J ′F ′M ′〉
and their components.

A. Dependencies of the rates on the radial distance

In this section, we study the dependencies of the rates on the
radial distance r . For simplicity, we consider the case where
the fiber axis z is used as the quantization axis. In this case,
none of the rates depend on the azimuthal angle ϕ. In addition,
the decay rates of the sublevels with the magnetic quantum
numbers M ′ and −M ′ are the same.

We show in Fig. 2 the radial dependencies of the rates γ (N)
e

of spontaneous emission from different magnetic sublevels of
the hfs level 5P3/2F

′ = 3 of the rubidium atom into different
guided modes. The fiber radius is chosen to be a = 400 nm.
For the wavelength λ0 = 780 nm, this fiber can support the
HE11, TE01, TM01, and HE21 modes. According to Fig. 2,
the presence of the fiber leads to substantial decay rates into
guided modes. Comparison between the different parts of the
figure shows that the emission into the HE21 modes is stronger
than into the HE11, TE01, and TM01 modes. We observe that
different magnetic sublevels have different decay rates, unlike
the case of alkali-metal atoms in free space. The rates of
spontaneous emission from the outermost magnetic sublevels
|F ′ = 3,M ′ = ±3〉 (solid red lines) into guided modes are
larger than those from the other sublevels. This indicates
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r/a

(a)

(b)

(c)

(d)

HE11

TE01

TM01

HE21

γ e
   

 /γ
0

(N
)

+-1
0+-2

+-3M’=

FIG. 2. Radial dependencies of the rates γ (N)
e of spontaneous

emission from different magnetic sublevels of the hfs level 5P3/2F
′ =

3 of a rubidium-87 atom into different guided modes of an ultrathin
optical fiber. The quantization axis zQ coincides with the fiber axis
z. The fiber radius is a = 400 nm. The wavelength of the atomic
transition is λ0 = 780 nm. The refractive indices of the fiber and the
vacuum cladding are n1 = 1.4537 and n2 = 1, respectively. The rates
are normalized to the free-space decay rate γ0 of the atom.

that the polarization profiles of the guided modes are more
favorable to the σ± transitions than the π transition. The rates
of spontaneous emission into guided modes are largest when
the atom is positioned on the fiber surface. When the atom is far
away from the fiber, γ (N)

e reduces to zero. Since the decay rates
of the sublevels M ′ and −M ′ are the same in the case where
the quantization axis is the fiber axis, the maximum number of
lines in each part of Fig. 2 is four. Since the difference between
the decay rates for M ′ = 0 and M ′ = ±1 is very small, we can
clearly distinguish only three lines in Figs. 2(a) and 2(d).

We note that our results presented in Fig. 2 do not agree
quantitatively with the results of Masalov and Minogin [71].
Indeed, the ratio between the rates of emission from the
outermost levels into the HE21 and HE11 modes at the distance
r/a = 1 is equal to about 3 in Fig. 2 but is equal to about
8 in the calculations of Ref. [71]. One of the reasons for the

r/a

(a)

(b)

(c)

+-1
0+-2

+-3M’=

γ e
   

/γ
0

(g
)

γ e
   

/γ
0

(r)
γ e

 / γ
0

FIG. 3. Radial dependencies of the rates γ
(g)
e , γ (r)

e , and γe of
spontaneous emission from different magnetic sublevels of the hfs
level 5P3/2F

′ = 3 into (a) guided modes, (b) radiation modes, and (c)
both types of modes. The parameters used are the same as for Fig. 2.
The rates are normalized to the free-space decay rate γ0 of the atom.
The thin dotted black lines in parts (b) and (c) stand for unity and are
guides to the eye.

discrepancy is that they considered 85Rb, while we study 87Rb.
Another reason is that they limited their calculations to atomic
transitions and guided modes with a single type of polarization,
while we include all atomic transitions and field modes in our
treatment. The most important reason for the discrepancy is
that Eq. (16) of Ref. [71] is not accurate. In addition, Eqs. (A10)
of Ref. [71] contain mistakes in the normalization constant.

We show in Fig. 3 the radial dependencies of the sponta-
neous emission rates γ

(g)
e , γ (r)

e , and γe from different magnetic
sublevels of the hfs level 5P3/2F

′ = 3 into guided modes,
radiation modes, and both types of modes, respectively. We
observe from Fig. 3(a) that the rates γ

(g)
e for the outermost

sublevels M ′ = ±3 (solid red lines) are larger than for the
other sublevels. When the radial distance r is not too large,
the rates γ (r)

e and γe for the sublevels M ′ = ±3 are also larger
than for the other sublevels [see Figs. 3(b) and 3(c)]. When
the atom is far away from the fiber, γ

(g)
e reduces to zero [see

Fig. 3(a)], while γ (r)
e and γe approach the free-space limiting

value γ0 [see Figs. 3(b) and 3(c)]. The small oscillations around
the value of unity in Fig. 3(b) for γ (r)

e /γ0 can be ascribed to
the constructive and destructive interference due to reflections
from the fiber surface [45]. Due to the interference, the total
rate γe can become slightly smaller than γ0 in some regions
outside the fiber [see Fig. 3(c)].

We show in Fig. 4 the radial dependencies of the fractional
rates η(N)

e = γ (N)
e /γe of spontaneous emission from different

magnetic sublevels of the hfs level 5P3/2F
′ = 3 into different

guided modes. The figure shows that the fractional rates η(N)
e
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r/a

(a)

(b)

(c)

(d)

HE11
TE01

TM01
HE21

+-3M’=

M’= 0

+-2M’=

+-1M’=

η
e(N

)

FIG. 4. Radial dependencies of the fractional rates η(N)
e =

γ (N)
e /γe of spontaneous emission from different magnetic sublevels of

the hfs level 5P3/2F
′ = 3 into different guided modes. The parameters

used are the same as for Fig. 2.

of emission from the sublevels into the HE21 modes are larger
than those into the HE11, TE01, and TM01 modes.

We show in Fig. 5 the radial dependencies of the fractional
rates ηe = γ

(g)
e /γe = ∑

N η(N)
e of spontaneous emission from

different magnetic sublevels of the hfs level 5P3/2F
′ = 3 into

all types of guided modes. The figure shows that the outermost

r/a

η
e

+-1
0+-2

+-3M’=

FIG. 5. Radial dependencies of the fractional rates ηe = γ
(g)
e /γe

of spontaneous emission from different magnetic sublevels of the hfs
level 5P3/2F

′ = 3 into all types of guided modes. The parameters
used are the same as for Fig. 2.

TE01

TM01

HE21

all guided modes

r/a

(a)

(b)

(c)

γ e
   

   
 /γ

0
(g

, N
)

γ e
   

/γ
0

(r)
γ e

  /
γ 0

HE11

F’ = 0 and M ’= 0

FIG. 6. Radial dependencies of the rates γ
(g)
e , γ (r)

e , and γe of
spontaneous emission from the singlet state |F ′ = 0,M ′ = 0〉 of the
hfs level 5P3/2F

′ = 0 into (a) guided modes, (b) radiation modes,
and (c) both types of modes. The components γ (N)

e of the rate γ
(g)
e

are also shown in part (a). The parameters used are the same as for
Fig. 2. The rates are normalized to the free-space decay rate γ0 of the
atom. The thin dotted black lines in parts (b) and (c) stand for unity
and are guides to the eye.

sublevels M ′ = ±3 have the largest fractional rate. At the fiber
surface, the fractional rates are largest. Their magnitudes are
substantial, in the range from 0.17 to 0.21, depending on the
magnetic quantum number M ′.

Note that the hfs level 5P3/2F
′ = 0 corresponds to a

singlet state |F ′ = 0,M ′ = 0〉, which is equally coupled to
the sublevels |F = 1,M = 0, ± 1〉 of the hfs level F = 1
of the ground state 5S1/2. Therefore, the decay rate of the
state |F ′ = 0,M ′ = 0〉 is equal to the average decay rate of
a statistical ensemble of two-level emitters with randomly
oriented dipoles. The decay rate of this singlet state is also
equal to the average decay rate of the set of the magnetic
sublevels M ′ of a hfs level F ′ of the excited state 5P3/2 [see
Eqs. (21)]. We show in Fig. 6 the radial dependencies of the
spontaneous emission rates γ

(g)
e , γ (r)

e , and γe from the singlet
state |F ′ = 0,M ′ = 0〉 of the hfs level 5P3/2F

′ = 0 into guided
modes, radiation modes, and both types of modes.

Unlike the levels F ′ = 3 and 0 of the excited state 5P3/2,
the levels F ′ = 2 and 1 of this state can decay into the both
levels F = 2 and 1 of the ground state 5S1/2. We plot in Fig. 7
the radial dependencies of the spontaneous emission rates γ

(g)
e

from different magnetic sublevels of the levels F ′ = 2 and 1
of the excited state into guided modes. Comparison between
Figs. 7 and 3(a), which represents the case of F ′ = 3, and
between these figures and the solid curve of Fig. 6(a), which
represents the case of F ′ = 0, shows that the spontaneous
emission rates depend on F ′ but the differences between them
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r/a

(a)

(b)γ e
   

 /γ
0

(g
)

F’ = 2

F’ = 1

+-1, 0+-2,M’=

+-1M’=

0M’=

FIG. 7. Radial dependencies of the rates γ
(g)
e of spontaneous

emission from different magnetic sublevels of the hfs levels (a)
5P3/2F

′ = 2 and (b) 5P3/2F
′ = 1 into guided modes. The parameters

used are the same as for Fig. 2. The rates are normalized to the
free-space decay rate γ0 of the atom.

are not dramatic. It is interesting to note from Fig. 7(a) that
all the magnetic sublevels of the level F ′ = 2 of the excited
state have the same spontaneous emission rate. Our additional
calculations, which are not plotted here, show that this feature
occurs not only in emission into guided modes but also in
emission into radiation modes. It is a consequence of the
relationship between the oscillator strengths of the transitions
from the different sublevels of the level 5P3/2F

′ = 2 to the
sublevels of the ground state.

B. Dependencies of the rates on the fiber radius

In this section, we study the dependencies of the decay rates
on the fiber radius a. We consider the case where the atom is
positioned on the fiber surface. We again use the fiber axis z

as the quantization axis.
In Fig. 8, we show the rates γ (N)

e of spontaneous emission
from different magnetic sublevels of the hfs level 5P3/2F

′ = 3
into different guided modes as functions of the fiber radius a.
We observe from the figure that the rates γ (N)

e have maxima,
whose positions and magnitudes strongly depend on the mode
type N . The emission from the atom into the fundamental
HE11 modes is strongest when a is around 180 nm. For a given
fiber radius a in the range from 330 to 450 nm (the sizes that
are typically achieved experimentally), the emission into the
HE21 modes is stronger than into the TM01, TE01, and HE11

modes. Figure 8 shows that the rates γ (N)
e for the outermost

sublevels M ′ = ±3 are larger than for the other sublevels.
It is known that the rate of spontaneous emission into a

field mode is inversely proportional to the effective mode
volume. Meanwhile, the effective radius reff of a guided
mode has a minimum in the dependence on the fiber radius
a [77]. Indeed, when the fiber radius a is large compared
to the light wavelength λ, the mode area of a guided mode
is mainly determined by the fiber cross-sectional area and,
consequently, reff increases with increasing a. When a is

a (nm)

(a)

(b)

(c)

(d)

HE11

TE01

TM01

HE21

γ e
   

 /γ
0

(N
)

+-1
0

+-3
+-2

M’=

FIG. 8. Rates γ (N)
e of spontaneous emission from different mag-

netic sublevels of the hfs level 5P3/2F
′ = 3 into different guided

modes as functions of the fiber radius a. The atom is positioned on
the fiber surface. Other parameters are as for Fig. 2. The rates are
normalized to the free-space decay rate γ0 of the atom. The vertical
dotted lines indicate the positions of the cutoffs for higher-order
modes.

small compared to λ, the field in the guided mode penetrates
deeply into the surrounding medium and, consequently, reff

increases with decreasing a [77]. These opposite behaviors in
two different limits lead to the formation of a minimum of reff .
The maximum of the decay rate γ (N)

e appears as a signature
of the minimum of the effective radius of the guided mode N .
The position of the minimum depends on the fiber refractive
index and the light wavelength.

We plot in Fig. 9 the rates γ
(g)
e , γ (r)

e , and γe of spontaneous
emission from different magnetic sublevels of the hfs level
5P3/2F

′ = 3 into guided modes, radiation modes, and both
types of modes as functions of the fiber radius a. We observe
from the figure that the rates γ

(g)
e , γ (r)

e , and γe for the outermost
magnetic sublevels M ′ = ±3 are larger than for the other
sublevels. The dependencies of γ

(g)
e and γ (r)

e on the fiber radius
a are stronger than that of γe. The rates γ

(g)
e and γ (r)

e undergo
steep variations at the point a � 283 nm, which corresponds
to the cutoff for the TE01 and TM01 modes, and at the point
a � 325 nm, which corresponds to the cutoff for the HE21

modes. Such abrupt changes are due to the changes of the
mode structure at the cutoffs. It is interesting to note that the
signs of the slopes of the changes of γ

(g)
e and γ (r)

e at the cutoffs
are opposite to each other. Due to the mutual compensation of
these changes, the variations of the total decay rates γe at the
cutoffs are smooth [see Fig. 9(c)]. We note from Fig. 9(a) that
the rate γ

(g)
e of spontaneous emission into guided modes has
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(b)

(c)

+-1
0

+-3
+-2

M’=

γ e
   

/γ
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γ e
   

/γ
0

(r)
γ e

  /
γ 0

FIG. 9. Rates γ
(g)
e , γ (r)

e , and γe of spontaneous emission from
different magnetic sublevels of the hfs level 5P3/2F

′ = 3 into (a)
guided modes, (b) radiation modes, and (c) both types of modes as
functions of the fiber radius a. The atom is positioned on the fiber
surface. Other parameters are as for Fig. 2. The rates are normalized
to the free-space decay rate γ0 of the atom.

several maxima, which correspond to the maxima of the rates
γ (N)

e of spontaneous emission into the individual types N of
guided modes.

We plot in Fig. 10 the fractional rates η(N)
e = γ (N)

e /γe of
spontaneous emission from different magnetic sublevels of

a (nm)

(a)

(b)

(c)

(d)

HE11
TE01

TM01
HE21

η
e(N

)

M’= ±3

M’= 0

M’= ±2

M’= ±1

FIG. 10. Fractional rates η(N)
e = γ (N)

e /γe of spontaneous emission
from different magnetic sublevels of the hfs level 5P3/2F

′ = 3 into
different guided modes as functions of the fiber radius a. The atom is
positioned on the fiber surface. Other parameters are as for Fig. 2.

a (nm)

η
e

+-1
0

+-3
+-2

M’=

FIG. 11. Fractional rates ηe = γ
(g)
e /γe of spontaneous emission

from different magnetic sublevels of the hfs level 5P3/2F
′ = 3 into

guided modes as functions of the fiber radius a. The atom is positioned
on the fiber surface. Other parameters are as for Fig. 2. The vertical
dotted lines indicate the positions of the cutoffs for higher-order
modes.

the hfs level 5P3/2F
′ = 3 into different guided modes as

functions of the fiber radius a. The figure shows clearly that
the maximum value of η(N)

e for the HE11 modes is larger than
for the TE01, TM01, and HE21 modes. For a given fiber radius
in the range from 330 to 450 nm, the value of η(N)

e for the HE21

modes is larger than that for the other guided modes.
We plot in Fig. 11 the fractional rates ηe = γ

(g)
e /γe =∑

N η(N)
e of spontaneous emission from different magnetic

sublevels of the hfs level 5P3/2F
′ = 3 into all types of guided

a (nm)

(a)

(b)

(c)

γ e
   

  /γ
0

(g,
 N

)
γ e

   
/γ
0

(r)
γ e

  /
γ 0

all guided modesF’=0 and M’=0

HE11
TE01
TM01
HE21

FIG. 12. Rates γ
(g)
e , γ (r)

e , and γe of spontaneous emission from
the singlet state |F ′ = 0,M ′ = 0〉 of the hfs level 5P3/2F

′ = 0 into
(a) guided modes, (b) radiation modes, and (c) both types of modes
as functions of the fiber radius a. The components γ (N)

e of the rate
γ

(g)
e are also shown in part (a). The atom is positioned on the fiber

surface. Other parameters are as for Fig. 2. The rates are normalized
to the free-space decay rate γ0 of the atom.
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FIG. 13. Rates γ
(g)
e of spontaneous emission from different mag-

netic sublevels of the hfs levels (a) 5P3/2F
′ = 2 and (b) 5P3/2F

′ = 1
into guided modes as functions of the fiber radius a. The atom is
positioned on the fiber surface. Other parameters are as for Fig. 2.
The rates are normalized to the free-space decay rate γ0 of the atom.

modes as functions of the fiber radius a. The figure shows that
the outermost magnetic sublevels M ′ = ±3 have the largest
fractional rate. The fractional rates are most substantial when
the fiber radius a is around 180 and 340 nm. Note that, for
a � 180 nm, the fiber supports only the fundamental HE11

modes, whereas, for a � 340 nm, the fiber supports not only
the HE11 modes but also the TE01, TM01, and HE21 modes.

We show in Fig. 12 the spontaneous emission rates γ
(g)
e , γ (r)

e ,
and γe from the singlet state |F ′ = 0,M ′ = 0〉 of the hfs level
5P3/2F

′ = 0 into guided modes, radiation modes, and both
types of modes as functions of the fiber radius. As already
noted in the previous subsection, the decay rate for this hfs
level is equal to the average decay rate of a statistical ensemble
of two-level emitters with randomly oriented dipoles, and also
equal to the average decay rate of the set of the magnetic
sublevels M ′ of a hfs level F ′ of the excited state 5P3/2 [see
Eqs. (21)]. Figure 12 shows clearly that γ

(g)
e and γ (r)

e vary
significantly and steeply at the cutoffs, while the variations of
γe are small and smooth.

We plot in Fig. 13 the spontaneous emission rates γ
(g)
e from

different magnetic sublevels of the levels F ′ = 2 and 1 of
the excited state into guided modes as functions of the fiber
radius. It is clear that the spontaneous emission rates depend
on F ′ but the differences between them are not dramatic. We
observe again that all the magnetic sublevels of the hfs level
5P3/2F

′ = 2 have the same spontaneous emission rate.

C. Dependencies of the rates on the orientation
of the quantization axis

The dipole matrix element deg is a vector whose spherical
tensor components are specified by Eq. (1) in the quantization
coordinate system {xQ,yQ,zQ}. It is clear that deg depends
on the orientation of the quantization axis zQ and so do the
scalar product deg · e(α) and, hence, the spontaneous emission
rate for the transition between the sublevels |e〉 and |g〉. In the

+-3

r/a

η
e

+-1

0+-2
M’=

zQ=x

zQ=y

(a)

(b)

FIG. 14. Radial dependencies of the fractional rates ηe = γ
(g)
e /γe

of spontaneous emission into guided modes for the quantization axis
zQ = x (a) and y (b). The atom is positioned on the axis x. Other
parameters are as for Fig. 2.

previous two subsections, we have studied the case where the
quantization axis zQ coincides with the fiber axis z. In this
subsection, we examine the dependencies of the rates on the
orientation of the quantization axis. For certainty, we assume
that the atom is positioned on the axis x.

We plot in Figs. 14 and 15 the dependencies of the fractional
rates ηe on the radial distance and the fiber radius for the
quantization axis zQ = x and y. Comparison between parts
(a) and (b) of these figures and between these parts and
Figs. 5 and 11 shows that the rates of spontaneous emission
significantly depend on the orientation of the quantization axis.
We observe that the spread of the rates with respect to the
magnetic quantum number M ′ for zQ = y [see Figs. 14(b) and
15(b)] is smaller than for zQ = x [see Figs. 14(a) and 15(a)].

We plot in Figs. 16 and 17 the fractional rates ηe as
functions of the azimuthal angle ϕQ and the zenithal angle
θQ of the quantization axis zQ. The figures show that the
rates for the magnetic sublevels |F ′ = 3,M ′ �= ±2〉 depend
on the orientation of the quantization axis. It is interesting
to note that the rate ηe for the sublevels |F ′ = 3,M ′ =
±2〉 (see the dashed green curves) does not depend on ϕQ

and θQ. This independence is a consequence of the 1/2/0
ratio of the oscillatory strengths of the π/σ±/σ∓ transitions
from the magnetic sublevels |F ′ = 3,M ′ = ±2〉 [73]. The
symmetry properties of the profile functions with respect to
opposite propagation directions and opposite phase circulation
directions also play an important role.
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a (nm)

η
e

+-1

0+-2

+-3M’=

zQ=x

zQ=y

(a)

(b)

FIG. 15. Fractional rates ηe = γ
(g)
e /γe of spontaneous emission

into guided modes for the quantization axis zQ = x (a) and y (b) as
functions of the fiber radius a. The atom is positioned at the crossing
between the fiber surface and the axis x. Other parameters are as for
Fig. 2. The vertical dotted lines indicate the positions of the cutoffs
for higher-order modes.

η
e

+-1
0+-2

+-3M’=

ϕQ

π 2π3π/2π/20

FIG. 16. Fractional rates ηe = γ
(g)
e /γe of spontaneous emission

into guided modes as functions of the azimuthal angle ϕQ of the
quantization axis zQ. The zenithal angle of the axis zQ is θQ = π/2.
The atom is positioned at the crossing between the fiber surface and
the axis x. Other parameters are as for Fig. 2.

η
e

+-1
0+-2

+-3M’=

θQ

π3π/4π/20 π/4

ϕQ=0

ϕQ=π/2

(a)

(b)

FIG. 17. Fractional rates ηe = γ
(g)
e /γe of spontaneous emission

into guided modes as functions of the zenithal angle θQ of the
quantization axis zQ. The azimuthal angle of the axis zQ is ϕQ = 0
(a) and π/2 (b). The atom is positioned at the crossing between the
fiber surface and the axis x. Other parameters are as for Fig. 2.

D. Directional spontaneous emission rates

It has been shown in Sec. III that, when the quantization
axis zQ coincides with the fiber axis z or, more generally, lies
in the meridional plane containing the position of the atom, the
spontaneous emission rates γ

(Nf )
e and γ

(gf )
e are symmetric with

respect to the propagation direction f , that is, γ (N+)
e = γ (N−)

e

and γ
(g+)
e = γ

(g−)
e [58]. However, when the quantization axis

does not lie in the meridional plane containing the position
of the atom, the decay rates γ

(Nf )
e and γ

(gf )
e may depend

on the propagation direction f . In this section, we study the
directional spontaneous emission rates for different choices of
the quantization axis zQ.

The directional fractional rates η
(f )
e = γ

(gf )
e /γe for the

positive (f = +) and negative (f = −) propagation directions
are shown in Figs. 18 and 19 as functions of the radial distance
and the fiber radius. In the calculations of these figures, we have
assumed that the atom is positioned on the positive side of the
axis x and the quantization axis zQ coincides with the axis y.
In Figs. 18 and 19, we do not show the factor η

(f )
e for M ′ < 0

because it is equal to η
(f̄ )
ē [see Eq. (26)]. Comparison between

parts (a) and (b) of the figures shows that the directional factor
η

(f )
e has different values for different propagation directions

except for the case M ′ = 0 (see the dashed-dotted magenta
curves).

The asymmetry between the directional rates of sponta-
neous emission into the positive and negative directions of the
fiber axis can be characterized by the factors

ζ (N)
e = γ (N+)

e − γ (N−)
e

γ
(N+)
e + γ

(N−)
e

, ζe = γ
(g+)
e − γ

(g−)
e

γ
(g+)
e + γ

(g−)
e

. (33)

We note that ζ
(N)
ē = −ζ (N)

e and ζē = −ζe. Hence, for the
sublevel with M ′ = 0, we have ζ (N)

e = ζe = 0.
We calculate numerically ζ (N)

e for |e〉 with M ′ > 0. We
show in Figs. 20 and 21 the asymmetry factors ζ (N)

e for
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r/a

(a)

(b)

M’=3
2 0

1

η
e(+

)
η

e(-
)

FIG. 18. Radial dependencies of the directional fractional rates
η(f )

e = γ
(gf )
e /γe of spontaneous emission into guided modes in the

(a) positive and (b) negative propagation directions. The atom is
positioned on the positive side of the axis x. The quantization axis zQ

coincides with the axis y. Other parameters are as for Fig. 2.

directional spontaneous emission into different guided modes
as functions of the radial distance and the fiber radius. The
atom is positioned on the positive side of the axis x and the
quantization axis zQ coincides with the axis y. We observe
from Fig. 20 that ζ (N)

e varies very slowly with increasing
distance r . We see from Fig. 21 that ζ (N)

e tends to reach a
stationary value when the fiber radius a is large enough. It
is interesting to note that ζ (N)

e = 0 for the TE01 modes. The
reason is that, since the longitudinal component e

(μ)
z of the

electric part of a TE mode is zero, the profile function e(μ) of

(a)

(b)

M’=3
2 0

1

η
e(+

)
η

e(-
)

a (nm)

FIG. 19. Directional fractional rates η(f )
e = γ

(gf )
e /γe of sponta-

neous emission into guided modes in the (a) positive and (b) negative
propagation directions as functions of the fiber radius a. The atom
is positioned at the point (r = a, ϕ = 0). The quantization axis
zQ coincides with the axis y. Other parameters are as for Fig. 2.
The vertical dotted lines indicate the positions of the cutoffs for
higher-order modes.

r/a

(a)

(b)

(c)

M’= 3

M’= 2

M’= 1

HE11
TE01

TM01
HE21

ζ e
(N

)

FIG. 20. Radial dependencies of the asymmetry factors ζ (N)
e for

directional spontaneous emission from different magnetic sublevels
of the hfs level 5P3/2F

′ = 3 into different guided modes. The atom
is positioned on the positive side of the axis x and the quantization
axis zQ coincides with the axis y. Other parameters are as for Fig. 2.

this mode does not depend on the propagation direction and,
hence, neither does the rate for the corresponding channel of
spontaneous emission.

The asymmetry between the rates of spontaneous emission
into the positive and negative directions of the fiber axis

a (nm)

HE11
TE01

(a)
M’= 3

(b)
M’= 2

(c)
M’= 1

TM01
HE21

ζ e
(N

)

FIG. 21. Asymmetry factors ζ (N)
e for directional spontaneous

emission from different magnetic sublevels of the hfs level 5P3/2F
′ =

3 into different guided modes as functions of the fiber radius a. The
atom is positioned at the point (r = a, ϕ = 0). The quantization axis
zQ coincides with the axis y. Other parameters are as for Fig. 2.
The vertical dotted lines indicate the positions of the cutoffs for
higher-order modes.
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(a)

(b)

(c)

M’= 3

M’= 2

M’= 1

HE11
TE01

TM01
HE21

ζ e
(N

)

ϕQ

π 2π3π/2π/20

FIG. 22. Asymmetry factors ζ (N)
e for directional spontaneous

emission from different magnetic sublevels of the hfs level 5P3/2F
′ =

3 into different guided modes as functions of the azimuthal angle ϕQ

of the quantization axis zQ. The zenithal angle of the axis zQ is
θQ = π/2. The atom is positioned at the point (r = a, ϕ = 0). Other
parameters are as for Fig. 2.

depends on the orientation of the quantization axis with respect
to the position of the atom. We show in Figs. 22 and 23 the
directional asymmetry factors ζ (N)

e of spontaneous emission
into different guided modes as functions of the azimuthal angle
ϕQ and the zenithal angle θQ of the quantization axis zQ. In
these calculations, we assumed that the atom is positioned at
the point (r = a, ϕ = 0).

We observe from Figs. 22 and 23 that, except for the
case of M ′ = 3 and N = TM01, the absolute values of ζ (N)

e

are maximal when ϕQ = π/2 or 3π/2 and θQ = π/2. These
angles correspond to the situation where the quantization axis
zQ coincides with the axis y. This axis is perpendicular to the
meridional plane containing the position of the atom.

The dotted blue curve in Fig. 22(a), which corresponds to
M ′ = 3, N = TM01, and θQ = π/2, indicates that the absolute
value of the asymmetry factor ζ (N)

e is equal to 1 at four
values ϕQ = ϕ0, π − ϕ0, π + ϕ0, or 2π − ϕ0, where ϕ0 �
0.108π � 19◦. This means that the spontaneous emission
from the outermost sublevel |F ′ = 3,M ′ = 3〉 of the hfs level
5P3/2F

′ = 3 into the TM modes is unidirectional when the
quantization axis zQ lies at an appropriate azimuthal angle ϕQ

in the fiber transverse plane xy. This interesting feature arises
as a consequence of the properties of the cyclic transition
and the TM modes. Indeed, the only allowed electric dipole
transition from the sublevel |F ′ = 3,M ′ = 3〉 of the excited
state 5P3/2 is the σ+ transition to the sublevel |F = 2,M = 2〉
of the ground state 5S1/2. The dipole of this transition is
coupled to the counterclockwise circular component of the
projection of the electric part of the field onto the plane xQyQ,

M’= 3

M’= 2

M’= 1

HE11
TE01

TM01
HE21

ζ e
(N

)
θQ

π3π/4π/20 π/4

(b)

(c)

(a)

FIG. 23. Asymmetry factors ζ (N)
e for directional spontaneous

emission from different magnetic sublevels of the hfs level 5P3/2F
′ =

3 into different guided modes as functions of the zenithal angle θQ

of the quantization axis zQ. The azimuthal angle of the axis zQ is
ϕQ = π/2. The atom is positioned at the point (r = a, ϕ = 0). Other
parameters are as for Fig. 2.

which is perpendicular to the quantization axis zQ. When the
quantization axis lies in the fiber transverse plane xy and
is oriented at an azimuthal angle ϕQ = ϕ0, π − ϕ0, π + ϕ0,
or 2π − ϕ0, where ϕ0 = arcsin(|ez|/|er |), the polarization of
the projection of the electric part of a TM mode onto the
plane xQyQ is exactly circular at the position of the atom.
The rotation direction of this polarization depends on the
propagation direction f . Consequently, spontaneous emission
from the sublevel |F ′ = 3,M ′ = 3〉 into the TM modes is
unidirectional.

V. SUMMARY

In this work, we have studied spontaneous emission from
a rubidium-87 atom into the fundamental and higher-order
modes of a vacuum-clad ultrathin optical fiber. We have shown
that the spontaneous emission rate depends on the magnetic
sublevel, the type of modes, the orientation of the quantization
axis, the position of the atom, and the fiber radius. We have
found that the rate of spontaneous emission into the TE modes
is always symmetric with respect to the propagation directions.
Meanwhile, the rates of spontaneous emission into other
guided modes do not depend on the propagation direction when
the quantization axis lies in the meridional plane containing
the position of the atom. Asymmetry of spontaneous emission
with respect to the propagation directions may appear when
the output modes are not TE modes and the quantization axis
does not lie in the meridional plane containing the position
of the atom. We have shown that the rate of spontaneous
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emission into guided modes propagating in a given direction
does not change when both the propagation direction and the
magnetic quantum number are reversed. This result means
that asymmetry of spontaneous emission with respect to the
propagation directions leads to asymmetry with respect to
the magnetic quantum numbers and vice versa. When the
quantization axis coincides with the fiber axis and the radial
distance is not too large, the rates of spontaneous emission
from the outermost magnetic sublevels into guided modes
are larger than those from the other sublevels. For the fiber
radius in the range from 330 to 450 nm, the spontaneous
emission from an atom on the fiber surface into the HE21

modes is stronger than into the HE11, TE01, and TM01 modes.
At the cutoff for higher-order modes, the rates of spontaneous
emission into guided and radiation modes undergo steep
variations, which are caused by the changes of the mode
structure. Due to the mutual compensation of these changes,
the variations of the total rate of spontaneous emission into
both types of modes are smooth. The total fractional rate
of emission into guided modes is most substantial when
the fiber radius is around 180 nm, where the fiber supports
only the fundamental HE11 modes, or 340 nm, where the
fiber supports not only the HE11 modes but also the TE01,
TM01, and HE21 modes. We have shown that the spontaneous
emission from the upper level of the cyclic transition into
the TM modes is unidirectional when the quantization axis
lies at an appropriate azimuthal angle in the fiber transverse
plane. We note that the fractional rates depend on the atomic
transition wavelength and the quantum numbers of the atomic
states. Therefore, the fractional rates would depend on the
type of the atom. However, the differences are not dramatic.
In addition, the average fractional rates do not depend on
any specific characteristics of the atomic states except for the
atomic transition frequency. Our results lay the foundations for
future research on manipulating and controlling the coupling
of atoms, molecules, and dielectric particles to higher-order
modes of ultrathin optical fibers.
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APPENDIX A: GUIDED MODES OF A STEP-INDEX FIBER

Consider the model of a step-index fiber that is a dielectric
cylinder of radius a and refractive index n1 and is surrounded
by an infinite background medium of refractive index n2, where
n2 < n1. We use the Cartesian coordinates {x,y,z}, where z is
the coordinate along the fiber axis. We also use the cylindrical
coordinates {r,ϕ,z}, where r and ϕ are the polar coordinates
in the fiber transverse plane xy.

For a guided light field of frequency ω (free-space wave-
length λ = 2πc/ω and free-space wave number k = ω/c), the
propagation constant β is determined by the fiber eigenvalue

equation [76][
J ′

l (ha)

haJl(ha)
+ K ′

l (qa)

qaKl(qa)

][
n2

1J
′
l (ha)

haJl(ha)
+ n2

2K
′
l (qa)

qaKl(qa)

]

= l2

(
1

h2a2
+ 1

q2a2

)2
β2

k2
. (A1)

Here, we have introduced the parameters h = (n2
1k

2 − β2)1/2

and q = (β2 − n2
2k

2)1/2, which characterize the scales of the
spatial variations of the field inside and outside the fiber,
respectively. The integer index l = 0,1,2, . . . is the azimuthal
mode order, which determines the helical phase front and the
associated phase gradient in the fiber transverse plane. The
notations Jl and Kl stand for the Bessel functions of the
first kind and the modified Bessel functions of the second
kind, respectively. The notations J ′

l (x) and K ′
l (x) stand for the

derivatives of Jl(x) and Kl(x) with respect to the argument x.
We note that the fiber eigenvalue equation (A1) remains the
same when we replace β by −β or l by −l.

For l � 1, the eigenvalue equation (A1) leads to hybrid HE
and EH modes [76]. The eigenvalue equation is given, for HE
modes, as

Jl−1(ha)

haJl(ha)
= −n2

1 + n2
2

2n2
1

K ′
l (qa)

qaKl(qa)
+ l

h2a2
− R (A2)

and, for EH modes, as

Jl−1(ha)

haJl(ha)
= −n2

1 + n2
2

2n2
1

K ′
l (qa)

qaKl(qa)
+ l

h2a2
+ R. (A3)

Here, we have introduced the notation

R =
{(

n2
1 − n2

2

2n2
1

)2[
K ′

l (qa)

qaKl(qa)

]2

+
(

lβ

n1k

)2( 1

q2a2
+ 1

h2a2

)2}1/2

. (A4)

We label HE and EH modes as HElm and EHlm, respectively,
where l = 1,2, . . . and m = 1,2, . . . are the azimuthal and
radial mode orders, respectively. Here, the radial mode order
m implies that the HElm or EHlm mode is the mth solution to the
corresponding eigenvalue equation (A2) or (A3), respectively.

For l = 0, the eigenvalue equation (A1) leads to TE and TM
modes [76]. The eigenvalue equation is given, for TE modes,
as

J1(ha)

haJ0(ha)
= − K1(qa)

qaK0(qa)
(A5)

and, for TM modes, as

J1(ha)

haJ0(ha)
= −n2

2

n2
1

K1(qa)

qaK0(qa)
. (A6)

We label TE and TM modes as TE0m and TM0m, respectively,
where m = 1,2, . . . is the radial mode order. The subscript 0
implies that the azimuthal mode order of TE and TM modes is
l = 0. The radial mode order m implies that the TE0m or TM0m

mode is the mth solution to the corresponding eigenvalue
equation (A5) or (A6), respectively.

According to [76], the fiber size parameter V is defined

as V = ka

√
n2

1 − n2
2. The cutoff values Vc for HE1m modes
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are determined as solutions to the equation J1(Vc) = 0.
For HElm modes with l = 2,3, . . . , the cutoff values are
obtained as nonzero solutions to the equation (n2

1/n2
2 + 1)(l −

1)Jl−1(Vc) = VcJl(Vc). The cutoff values Vc for EHlm modes,
where l = 1,2, . . . , are determined as nonzero solutions to the
equation Jl(Vc) = 0. For TE0m and TM0m modes, the cutoff
values Vc are obtained as solutions to the equation J0(Vc) = 0.

The electric component of the field can be presented in the
form

E = 1
2Ee−iωt + c.c., (A7)

where E is the envelope. For a guided mode with a propagation
constant β and an azimuthal mode order l, we can write

E = eeiβz+ilϕ, (A8)

where e is the mode profile function. In order to construct the
profile functions of a complete set of guided modes, we allow
β and l in Eq. (A8) to take not only positive but also negative
values. We decompose the vectorial function e into the radial,
azimuthal, and axial components denoted by the subscripts r ,
ϕ, and z, respectively. We summarize the expressions for the
mode functions of quasicircularly polarized hybrid modes, TE
modes, and TM modes in the following [76].

1. Hybrid modes

We consider quasicircularly polarized hybrid modes N =
HElm or EHlm. It is convenient to introduce the parameter

s = l

(
1

h2a2
+ 1

q2a2

)[
J ′

l (ha)

haJl(ha)
+ K ′

l (qa)

qaKl(qa)

]−1

. (A9)

Then, we find, for r < a,

er = iA
β

2h
[(1 − s)Jl−1(hr) − (1 + s)Jl+1(hr)],

eϕ = −A
β

2h
[(1 − s)Jl−1(hr) + (1 + s)Jl+1(hr)],

ez = AJl(hr), (A10)

and, for r > a,

er = iA
β

2q

Jl(ha)

Kl(qa)
[(1 − s)Kl−1(qr) + (1 + s)Kl+1(qr)],

eϕ = −A
β

2q

Jl(ha)

Kl(qa)
[(1 − s)Kl−1(qr) − (1 + s)Kl+1(qr)],

ez = A
Jl(ha)

Kl(qa)
Kl(qr). (A11)

Here, the parameter A is a constant that can be determined from
the propagating power of the field. Without loss of generality,
we take A to be a real number.

In the cylindrical coordinates, the mode profile function of
the electric component of a quasicircularly polarized hybrid
mode N with a propagation direction f = ± and a phase
circulation direction p = ± is given by

e(ωNfp) = r̂er + pϕ̂eϕ + f ẑez, (A12)

where the mode function components er , eϕ , and ez are
given by Eqs. (A10) and (A11) for β > 0 and l > 0. These
components depend explicitly on the azimuthal mode order

l and implicitly on the radial mode order m. An important
property of the mode functions of hybrid modes is that the
longitudinal component ez is nonvanishing and in quadrature
(π/2 out of phase) with the radial component er . In addition,
the azimuthal component eϕ is also nonvanishing and in
quadrature with the radial component er . We note that the full
mode function of the quasicircularly polarized hybrid mode is
E (ωNfp) = e(ωNfp)eifβz+iplϕ , where β > 0 and l > 0.

We have the following symmetry relations:

e(ωNfp)
r = e(ωNf̄ p)

r = e(ωNf p̄)
r ,

e(ωNfp)
ϕ = e(ωNf̄ p)

ϕ = −e(ωNf p̄)
ϕ ,

e(ωNfp)
z = −e(ωNf̄ p)

z = e(ωNf p̄)
z , (A13)

and

e(μ)∗
r = −e(μ)

r , e(μ)∗
ϕ = e(μ)

ϕ , e(μ)∗
z = e(μ)

z , (A14)

where f̄ = −f and p̄ = −p. From Eqs. (A13) and (A14), we
obtain the formulas

e(ωNfp)
r = −e(ωNf̄ p̄)∗

r ,

e(ωNfp)
ϕ = −e(ωNf̄ p̄)∗

ϕ ,

e(ωNfp)
z = −e(ωNf̄ p̄)∗

z , (A15)

which yield

e(ωNfp) = −e(ωNf̄ p̄)∗. (A16)

Equation (A16) is a consequence of the time-reversal symme-
try of the field.

2. TE modes

We consider transverse electric modes N = TE0m. For
r < a, we have

er = 0, eϕ = i
ωμ0

h
AJ1(hr), ez = 0. (A17)

For r > a, we have

er = 0, eϕ = −i
ωμ0

q

J0(ha)

K0(qa)
AK1(qr), ez = 0. (A18)

Without loss of generality, we take A to be a real number.
The mode profile function of the electric component of a

TE0m mode with a propagation direction f = ± can be written
as

e(ωTE0mf ) = ϕ̂eϕ, (A19)

where the only nonzero cylindrical component eϕ is given
by the second expressions in Eqs. (A17) and (A18). The
mode function depends implicitly on the radial mode order
m. The full mode function of the TE mode is E (ωTE0mf ) =
e(ωTE0mf )eifβz, where β > 0.

We find the relations

e(ωTE0mf )
ϕ = e(ωTE0mf̄ )

ϕ = −e(ωTE0mf )∗
ϕ , (A20)

which yield

e(ωTE0mf ) = −e(ωTE0mf̄ )∗. (A21)
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3. TM modes

We consider transverse magnetic modes N = TM0m. For
r < a, we have

er = −i
β

h
AJ1(hr),

eϕ = 0,

ez = AJ0(hr). (A22)

For r > a, we have

er = i
β

q

J0(ha)

K0(qa)
AK1(qr),

eϕ = 0,

ez = J0(ha)

K0(qa)
AK0(qr). (A23)

Without loss of generality, we take A to be a real number.
The mode profile function of the electric component of a

TM mode with a propagation direction f = ± can be written
as

e(ωTM0mf ) = r̂er + f ẑez, (A24)

where the components er and ez are given by the first and third
expressions in Eqs. (A22) and (A23) for β > 0. The mode
function depends implicitly on the radial mode order m. Like
the case of hybrid modes, the longitudinal component ez of
a TM mode is nonvanishing and in quadrature (π/2 out of
phase) with the radial component er . The full mode function
of the TM mode is E (ωTM0mf ) = e(ωTM0mf )eifβz, where β > 0.

We find the relations

e(ωTM0mf )
r = e(ωTM0mf̄ )

r = −e(ωTM0mf )∗
r ,

e(ωTM0mf )
z = −e(ωTM0mf̄ )

z = e(ωTM0mf )∗
z , (A25)

which yield

e(ωTM0mf ) = −e(ωTM0mf̄ )∗. (A26)

APPENDIX B: RADIATION MODES OF A NANOFIBER

We present the electric component of the field in the form
E = (1/2)(Ee−iωt + c.c.), where E is the envelope. For a
radiation mode with a propagation constant β in the range
−kn2 < β < kn2 and a mode order l = 0, ± 1, ± 2, . . . , we
can write E = eeiβz+ilϕ , where e is the mode profile function.
The characteristic parameters for the field in the inside and

outside of the fiber are h =
√

k2n2
1 − β2 and q =

√
k2n2

2 − β2,
respectively.

The mode functions of the electric parts of the radiation
modes ν = (ωβlp) [76] are given, for r < a, by

e(ν)
r = i

h2

[
βhAJ ′

l (hr) + il
ωμ0

r
BJl(hr)

]
,

e(ν)
ϕ = i

h2

[
il

β

r
AJl(hr) − hωμ0BJ ′

l (hr)

]
,

e(ν)
z = AJl(hr), (B1)

and, for r > a, by

e(ν)
r = i

q2

∑
j=1,2

[
βqCjH

(j )′
l (qr) + il

ωμ0

r
DjH

(j )
l (qr)

]
,

e(ν)
ϕ = i

q2

∑
j=1,2

[
il

β

r
CjH

(j )
l (qr) − qωμ0DjH

(j )′
l (qr)

]
,

e(ν)
z =

∑
j=1,2

CjH
(j )
l (qr). (B2)

Here, A and B as well as Cj and Dj with j = 1,2 are
coefficients. The coefficients Cj and Dj are related to the
coefficients A and B as [45]

Cj = (−1)j
iπq2a

4n2
2

(ALj + iμ0cBVj ),

Dj = (−1)j−1 iπq2a

4
(iε0cAVj − BMj ), (B3)

where

Vj = lkβ

ah2q2

(
n2

2 − n2
1

)
Jl(ha)H (j )∗

l (qa),

Mj = 1

h
J ′

l (ha)H (j )∗
l (qa) − 1

q
Jl(ha)H (j )∗′

l (qa),

Lj = n2
1

h
J ′

l (ha)H (j )∗
l (qa) − n2

2

q
Jl(ha)H (j )∗′

l (qa). (B4)

We specify two polarizations by choosing B = iηA and −iηA

for p = + and −, respectively. We take A to be a real number.
The orthogonality of the modes requires∫ 2π

0
dϕ

∫ ∞

0
n2

ref

[
e(ν)e(ν ′)∗]

β=β ′,l=l′ r dr = Nνδpp′δ(ω − ω′).

(B5)

This leads to

η = ε0c

√
n2

2|Vj |2 + |Lj |2
|Vj |2 + n2

2|Mj |2
. (B6)

The constant Nν is given by

Nν = 8πω

q2

(
n2

2|Cj |2 + μ0

ε0
|Dj |2

)
. (B7)

We introduce the notations β̄ = −β, l̄ = −l, and p̄ = −p.
We find the symmetry relations

e(ωβlp)
r = −e(ωβ̄lp̄)

r ,

e(ωβlp)
ϕ = −e(ωβ̄lp̄)

ϕ ,

e(ωβlp)
z = e(ωβ̄lp̄)

z , (B8)

e(ωβlp)
r = (−1)le(ωβl̄p̄)

r ,

e(ωβlp)
ϕ = (−1)l+1e(ωβl̄p̄)

ϕ ,

e(ωβlp)
z = (−1)le(ωβl̄p̄)

z , (B9)
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and

e(ν)∗
r = −e(ν)

r , e(ν)∗
ϕ = e(ν)

ϕ , e(ν)∗
z = e(ν)

z , (B10)

which yield

e(ωβlp) = (−1)le(ωβ̄l̄p)∗. (B11)

For the spherical tensor components e
(ω,β,l,p)
q , with the

index q = 0, ± 1, of the radiation mode functions, we find

the relations

e(ωβlp)
q = (−1)qe(ωβ̄lp̄)

q , (B12)

e(ωβlp)
q = (−1)l+qe2iqϕe

(ωβl̄p̄)
−q , (B13)

and

e(ωβlp)
q = (−1)qe2iqϕe(ωβlp)∗

q . (B14)
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