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Exotic spin-multipolar ordering in spin transition metal insulators has so far eluded unambiguous experimental
observation. A less studied, but perhaps more feasible fingerprint of multipole character emerges in the excitation
spectrum in the form of quadrupolar transitions. Such multipolar excitations are desirable as they can be
manipulated with the use of light or electric field and can be captured by means of conventional experimental
techniques. Here we study single crystals of multiferroic Sr2CoGe2O7 and observe a two-magnon spin excitation
appearing above the saturation magnetic field in electron spin resonance (ESR) spectra. Our analysis of the
selection rules reveals that this spin excitation mode does not couple to the magnetic component of the light,
but it is excited by the electric field only, in full agreement with the theoretical calculations. Due to the nearly
isotropic nature of Sr2CoGe2O7, we identify this excitation as a purely spin-quadrupolar two-magnon mode.
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I. INTRODUCTION

The absence of spatial inversion and time reversal sym-
metries may lead to the magnetoelectric effect, where the
magnetization and the electric polarization of a material are
coupled, allowing for the mutual control of magnetization
by electric and polarization by magnetic fields, providing
new multiferroic materials for future technologies [1–4]. Well
known examples are vector spin chirality and exchange stric-
tion driven electricity [5–7], both involving more than one spin.
In the vector spin chirality mechanism, the noncollinearity
of the neighboring magnetic moments may induce electric
polarization, while in the exchange striction case the charged
magnetic ions move to optimize the Heisenberg exchange
energy between the neighbors with parallel and antiparallel
magnetic moments.

Remarkably, in åkermanites—where CoO4 tetrahedra form
diagonal square lattices, alternating with intervening layers
of alkaline earth metal ions along the c axis [Fig. 1]—the
electric polarization is not induced by correlations between
neighboring spins but is also present in the paramagnetic
phase [8]. These compounds represent an exceptional family
of magnetoelectric materials, in which the finite (on-site)
polarization emerges on the account of relativistic metal-ligand
hybridization [9]. For this mechanism at least two conditions
have to meet: The transition metal ion has to carry a spin
larger than 1/2 and the inversion symmetry on this site
needs to be broken. The spin-3/2 magnetic moment of Co2+

allows for spin-quadrupole operators, which are time reversal
invariant quadratic expressions of local spin. The lack of
inversion symmetry at the tetrahedrally coordinated Co sites
permits the magnetoelectric effect, with on-site polarization
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proportional to the quadrupole operators already at a level
of a single ion. The metal-ligand hybridization is believed to
act in Ba2CoGe2O7 [10,11], Sr2CoSi2O7 [8], and Ca2CoSi2O7

[12,13]. This mechanism is considered to be responsible for the
dynamical properties of these materials, as it couples the spin
degrees of freedom to the oscillating electric field component
of the light.

Åkermanites are usually characterized by large easy-plane
magnetic anisotropy and small exchange interaction. As a
consequence the spin dipole and quadrupole degrees of
freedom become mixed, and it is challenging to untangle
the different types of multipolar fluctuations in the excitation
spectra. This is well exemplified in the THz absorption spectra
by the observation of the ‘electromagnon’ in Ba2CoGe2O7, an
electrically active magnetic excitation having both dipolar and
quadrupolar characters [14–16].

Here we report on the properties of Sr2CoGe2O7 (SCGO), a
member of the åkermanite family with almost isotropic magne-
tization properties. When the magnetic anisotropies are small
or absent, mixing of the spin dipole and quadrupole degrees
of freedom is suppressed, reflecting the higher symmetry of
the system. Using electron spin resonance (ESR) technique
supported by theoretical calculations, we show that, due to
its isotropic nature, SCGO exhibits a purely quadrupolar two-
magnon mode in high magnetic fields. Measuring in different
geometries for both Faraday and Voigt configurations, we find
that this magnetically inactive excitation can only be excited
by specific components of the oscillating electromagnetic
field, in full agreement with the predictions of the relativistic
metal-ligand hybridization.

The paper is structured as follows: In Sec. II we give
details about the sample and experimental methods. In Sec. III
we introduce the spin quadrupoles and the magnetoelectric
coupling in åkermanites, and we present the model Hamilto-
nian for the SCGO. The static properties—magnetization and
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FIG. 1. The schematic crystal and magnetic structures of SCGO
projected onto the ab plane. The blue spheres represent the magnetic
Co2+ ions with S = 3/2 surrounded by four O2− ions in a tetrahedral
environment. The two tetrahedra in the unit cell (dashed square) are
rotated alternatively by an angle κ . The yellow arrows show the spin
directions in the ordered phase in the absence of external magnetic
field. On the right hand side we show the crystallographic coordinate
system with [100] and [010] axes, as well as the x and y coordinates,
following the convention of Ref. [15].

electric polarization—of the SCGO are discussed in Sec. IV,
while the dynamical properties are considered in Sec. V, both
experimentally and theoretically. Evidence for the quadrupolar
nature of the two-magnon excitations is presented in Sec. VI,
where the selection rules are examined. Finally, we conclude
with a summary of our results in Sec. VII.

II. SAMPLE CHARACTERIZATION,
EXPERIMENTAL DETAILS

We grew single crystalline samples of SCGO using the
floating zone method. Room temperature x-ray diffraction
measurements confirmed the tetragonal P 421m structure with
no impurity phases. All the samples used for the experiments
were cut along the crystallographic principal axes to make
samples with platelike shapes after checking by the x-ray
back-reflection Laue technique.

The magnetization was measured in static magnetic fields
of up to 7 T using a commercial SQUID magnetometer and by
the induction method, using a coaxial pick-up coil, in pulsed
fields of up to 55 T, with a pulse duration of 7 millisecond. The
electric polarization induced by magnetic fields was obtained
by integrating the polarization current as a function of time.
Since in åkermanite materials electric polarization emerges
even without applying poling electric fields, which is a unique
feature of their multiferroicity [8,11–13], we measured the
polarization current without poling electric fields.

Low-field ESR spectra up to 14 T at 1.5–1.6 K and for
frequencies below 500 GHz were taken using a homemade
transmission ESR cryostat in a superconducting magnet.
High-field ESR measurements at 1.4 K in pulsed magnetic
fields of up to 55 T were conducted by utilizing a far-infrared
laser and Gunn oscillators (75, 90, 95, 110, and 130 GHz)
coupled with a frequency doubler to generate submillimeter
and millimeter waves. We used an InSb bolometer as a detector.
All the experiments were carried out using unpolarized light.
Figure 2 shows the schematic experimental setup of the ESR
spectrometer in pulsed magnetic fields.
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FIG. 2. Schematic experimental setup for the high-field ESR
measurements, with different light configurations. Eω (Hω) shows
one of the electric (magnetic) component of the unpolarized light.

III. MAGNETOELECTRIC COUPLING
AND THE HAMILTONIAN IN ÅKERMANITES

A. Magnetoelectric coupling

In åkermanites the spin vector chirality Ŝi × Ŝj is negligible
and the exchange interaction is uniform for each bond
disabling the spin current or exchange striction as the origin
of spin induced polarization [11]. Instead, spin-dependent
metal-ligand hybridization has been put forward as the source
of finite polarization, induced by onsite second order spin
terms, in contrast to the aforementioned concepts which
involve two neighboring spins.

Since the polarization vector is odd and the magnetic
moment (spin) is even under spatial inversion, the spins can
induce polarization only if the inversion symmetry is absent.
For an ion in such a noncentrosymmetric site, the general form
for the α = x,y,z components of the electric polarization at
site r is

P α
r =

∑
β,γ∈x,y,z

cα
βγ Ŝβ

r Ŝγ
r , (1)

where the Ŝ
β
r and Ŝ

γ
r are the spin components at the same

site r, and cα
βγ = cα

γβ with
∑

β cα
ββ = 0 is a traceless 3×3×3

tensor symmetric in the lower two indices, effectively coupling
the polarization to a time reversal invariant spin-quadrupole
operator [17]. The symmetry properties of the crystal reflected
by the local environment of the magnetic ions determine
the explicit form of tensor cα

βγ resulting in the following
spin-induced polarization characteristic for the åkermanite
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family [11,18,19]:(
P x

j

P
y

j

)
∝

( − cos 2κ −(−1)j sin 2κ

−(−1)j sin 2κ cos 2κ

)
·
(

Q̂2xz
j

Q̂
2yz

j

)
,

(2a)

transforming as a two-dimensional irreducible representation
of the point group, and

P z
j = −Wz

[
cos 2κ Q̂

x2−y2

j + (−1)j sin 2κ Q̂
2xy

j

]
, (2b)

a one-dimensional irreducible representation. The Wz is a cou-
pling constant. The factor (−1)j accounts for the alternation of
the angle κ ≈ ±20.5◦ on the two sublattices and κ measures
the rotation of the oxygen tetrahedra around the cobalt ions
with respect to the [110] direction, as indicated in Fig. 1.

The Q̂ operators represent a symmetric combination of the
spin operators

Q̂
2αβ

j = Ŝα
j Ŝ

β

j + Ŝ
β

j Ŝα
j , (3a)

Q̂
x2−y2

j = (
Ŝx

j

)2 − (
Ŝ

y

j

)2
, (3b)

Q̂3z2−r2

j = 1√
3

[
3
(
Sz

j

)2 − Sj · Sj

]
, (3c)

where the last one does not appear in the expressions for the
polarization, Eqs. (2). We include it, since they form the five
spin-quadrupole operators [20], satisfying the∑

μ=x,y,z

[[
Q̂

η

j ,Ŝ
μ

j

]
,Ŝ

μ

j

] = k(k + 1)Q̂η

j (4)

property of a rank-k tensor operator with k = 2, where η ∈
{2yz,2xz,2xy,x2 − y2,3z2 − r2}. This classification is valid
for the systems with the O(3) symmetry. The external magnetic
field, however, lowers the O(3) symmetry of the space to
the C∞h + �σvC∞h magnetic point group, where the axis
of the C∞h axial group is parallel to the magnetic field, � is
the time reversal operator, and σv is a reflection to a plane that
includes the axis of the magnetic field [21]. When restricted
to spins, this symmetry group is equivalent to the SO(2). In
this case it is convenient to group the spin operators according
to their transformation under the remaining SO(2) rotations
about the direction of magnetic field—conventionally the z

axis, as shown in Table I, but the coordinates shall be rotated
according to the actual direction of the field. Each of the

TABLE I. Classification of tensor operators according to rota-
tional symmetry about a z axis defined by magnetic field, isomorphic
to SO(2). Each forms an irreducible representation transforming like
einφ , where n is an integer and φ is the polar angle in the xy plane.
These operators commute with an isotropic spin Hamiltonian.

Ired. repr. Dipole Quadrupole �Sz

e2iφ Qx2−y2 + iQxy +2

eiφ Sx + iSy Qxz + iQyz +1

1 Sz Q3z2−r2
0

e−iφ Sx − iSy Qxz − iQyz −1

e−2iφ Qx2−y2 − iQxy −2

separate irreps transforms like einφ—where φ is the polar angle
in the xy plane perpendicular to the magnetic field. Actually
the S = 3/2 spin is large enough to support rank-3 tensor
operators (octupoles), constructed by symmetric combinations
of three spin operators, but we will neglect them here. All these
operators commute with an isotropic spin Hamiltonian, and
since they belong to different irreducible representations, they
excite different modes which do not mix.

The spin-dipolar and spin-quadrupolar operators in the
e−iφ irreducible representation are ∝S−, and therefore they
create a single magnon with �Sz = −1. The spin-quadrupolar
operators in the e−2iφ irreducible representation are ∝S−S−
and excite two magnons with �Sz = −2 on a single site, and
we will be mostly interested in them in this paper. We shall
note that the possibility to create two magnons by quadrupolar
operators in Eqs. (2) is in contrast with the spin-current
mechanism, where the magnetoelectric coupling involves a
bilinear but spin-dipole operator only (a tensor operator with
k = 1), restricting the number of created magnons to one.

The metal-ligand hybridization mechanism has been pro-
posed as the microscopic origin of the polarization [9]
(see also Ref. [7]), leading to

Pj ∝
4∑

i=1

ei,j

[
3(ei,j · Ŝj )2 − Ŝ2

j

]
, (5)

where the sum is over the four oxygens surrounding the Co
magnetic ion at site j and ei,j denotes the unit vector pointing
from the central Co2+ ion to the ith O2− ion. Performing the
summation, we arrive at Eqs. (2). The Pj as defined above is a
traceless operator in the spin Hilbert space.

B. Model Hamiltonian

As indicated by magnetic studies [22] and neutron dis-
persion measurements [19,23], the cobalt planes are weakly
coupled in åkermanites. Therefore we consider the following
2D spin Hamiltonian as a minimal microscopic model for
SCGO [15,18],

H = J
∑
(i,j )

(
Ŝx

i Ŝx
j + Ŝ

y

i Ŝ
y

j

) + Jz

∑
(i,j )

Ŝz
i Ŝ

z
j + Jpz

∑
〈i,j〉

P z
i P z

j

+ �
∑

i

(
Ŝz

i

)2 − μB

∑
i

[
gab

(
HxŜ

x
i + HyŜ

y

i

)+ gcHzŜ
z
i

]
,

− gsμB

∑
i

(−1)i
(
HxS

y

i − HyS
x
i

)
, (6)

where J and Jz are the anisotropic exchange constants between
the nearest neighbor spins, � > 0 is the single ion anisotropy
constant of the form imposed by the tetragonal symmetry, and
Jpz is the antiferroelectric coupling constant. We neglect the
Dzyaloshinskii-Moriya interaction which is rather small even
in more anisotropic åkermanites and show that both static and
dynamical properties can be reproduced for isotropic exchange
interaction J ≈ Jz and with small single-ion anisotropy
� ∼ J ∼ 1 K. The staggered off-diagonal component of the
g tensor gs will play a role when we discuss the selection rules
for the magnetic transitions.

Without the Jpz term the Hamiltonian represents an easy
plane antiferromagnet with a Goldstone mode (�1 = 0). A
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FIG. 3. (a) Magnetic field dependence of magnetization in SCGO
at 1.4 K. Dashed lines indicate the saturation magnetization values
using gab = 2.28 and gc = 2.23, obtained from the ESR measure-
ments [see Eqs. (23c) and (23a)], for the in-plane and out-of-plane
components, respectively. (b) Magnetic field dependence of the
out-of-plane component of induced electric polarization (P z) at 1.4 K
in the case of H‖[110]. The in-plane polarization vanishes for this
direction of the field. Above saturation, both the polarization and the
magnetization become flat. Yellow and pink shaded areas mark the
phases below saturation for in-plane and out-of-plane magnetic fields,
respectively.

finite Jpz was introduced for Ba2CoGe2O7 to explain the
vanishing of electric polarization in zero field [18] and the
absence of Goldstone modes in the neutron scattering study
[19]. At zero magnetic field, the electric polarization is also
zero in SCGO [Fig. 3(b)], hence the ground state must be
an antiferroelectric state, selecting [100] as the magnetic easy
axis within the easy plane.

IV. STATIC PROPERTIES AND MAGNETIC ANISOTROPY

In order to obtain information about the magnetic
anisotropies, we measured the magnetization and the induced
electric polarization as a function of external magnetic field.
The results of our measurements, taken at 1.4 K, well below
the Néel temperature of 6.5 K [22], are displayed in Fig. 3.

A. Magnetization

The magnetization in the cobalt plane, (001), rises almost
linearly with magnetic field, reaching saturation at 3.42 μB/Co
just above 18 T. Along the perpendicular [001] direction, the
corresponding values are 3.3 μB/Co and 21.6 T, providing
gab ≈ 2.3 and gc ≈ 2.2 (we will get more precise values
from fitting the ESR spectra in Sec. V C). The magnetization
curves are nearly isotropic, and the difference in the saturation
fields is mainly explained by the g-tensor anisotropy. In other

åkermanite compounds, like Sr2CoSi2O7 [8] and Ba2CoGe2O7

[24], the slope of in-plane magnetization is almost twice the
slope of the magnetization measured perpendicular to the
cobalt plane. This large difference signals the presence of
large easy-plane anisotropy. Here, the discrepancy between
the slopes of in-plane and out-of-plane magnetization is small
and can be accounted for by a smaller g-tensor anisotropy and
a smaller easy-plane anisotropy.

To quantify how different the magnetic anisotropies are in
SCGO compared to the sister materials, let us take a look at the
saturation fields. As shown in the Appendix A 3 and A 4, the
saturation fields from a mean field approach can be expressed
as μBgabH

sat
xy = 12J and μBgcH

sat
z = 6J + 6Jz + 2� for the

in-plane and out-of-plane magnetic field directions. We can
easily utilize this discrepancy in the saturation fields to get an
estimate for the easy-plane and exchange anisotropies:

6(Jz − J ) + 2� = μBgcH
sat
z − μBgabH

sat
xy . (7)

Assuming a negligibly small exchange anisotropy (which will
be justified when we analyze the ESR data in Sec. V C), we
get � ≈ 2.2 K for SCGO, while for Ba2CoGe2O7 for example,
the difference in saturation fields in the easy plane, (001), and
hard axis direction, [001], is about 20 T, resulting in an order
of magnitude larger anisotropy of 13 K [25].

The ratio �/J is closely related to the size of the ordered
moment in the variational (mean field) approximation, larger
anisotropy results in greater spin reduction:

〈S〉 = 3

2

[
1 −

(
�

12J

)2]
. (8)

As in SCGO the �/J is an order of magnitude smaller than in
the other åkermanites [15,25], the projection of the spin length
along the field is nearly the maximal 3/2, and the dipole and
quadrupole characters of the excited modes are well separated.

The magnetization shown here is the measured one; the
van-Vleck term is not subtracted. The magnetization above
the saturation field is very flat; the van-Vleck paramagnetic
susceptibility is vanishingly small. This is in line with the
small anisotropies, as the level splitting of t2 orbital is small
and the CoO4 tetrahedra are weakly distorted [26].

B. Electric polarization

The behavior of electric polarization as a function of
magnetic field is nearly the same as in other åkermanites
[8,11]. However, subtle deviations provide additional proof of
a smaller easy-plane anisotropy. When the field is applied in
the ab cobalt plane, the polarization has only an out-of-plane
component, i.e., only P z is finite. The amplitude of the P z

changes as the magnetic field is rotated within the ab plane:
Its absolute value is maximal for the H ||[110] (and changes
sign for H ||[11̄0]), shown in Fig. 3(b) as a function of magnetic
field, and P z vanishes when the field is along the [100] or [010]
directions. This agrees with the behavior seen in Sr2CoSi2O7

[8] and Ba2CoGe2O7 [11] and is consistent with Eq. (2b). The
inflection point of the polarization curve at 18 T signals the
transition to the saturated phase. Before reaching the transition
point the spins are turning within the cobalt plane towards
the field direction, in this case towards [110]. Due to the
easy plane anisotropy, they are not fully grown 3/2 spins,

214406-4



DIRECT OBSERVATION OF SPIN-QUADRUPOLAR . . . PHYSICAL REVIEW B 96, 214406 (2017)

but somewhat shorter, see Eq. (8). As they turn towards the
field, the polarization changes, reaching its extrema when
the spins are parallel to one of the tetrahedron edges. Note
that if the tetrahedra were not rotated, i.e., if κ were zero,
the polarization would have its extrema when the spins are
aligned with [110] and [110]. At the transition field, the spins
do not rotate any further, but the magnetic field, now strong
enough to compete with the anisotropy, stretches them to
asymptotically reach their maximal 3/2 value. This behavior
can be nicely seen in magnetization measurements in the other
members of the åkermanite family, as the magnetization after
saturation is not a completely field independent constant but
further increases towards the full saturation value [8,24]. This
is also apparent in the polarization curve which decreases
slowly after the transition instead of becoming flat [8]. More
prominent changes of these observables after the saturation
indicate that the spins are further away from being fully
grown and consequently that the material has larger single-ion
anisotropy. In the case of SCGO, this decay in P z and the
climb in the magnetization is significantly smaller than those
in Sr2CoSi2O7 and Ba2CoGe2O7, further evidencing a smaller
anisotropy.

To conclude the experimental observations of the static
properties, the easy-plane single ion anisotropy in SCGO
supports a planar antiferromagnetic configuration of cobalt
spins in agreement with neutron powder diffraction mea-
surements [22], similarly to its sister compounds. However,
both magnetization and polarization data indicate that the
anisotropy is about an order of magnitude smaller than in
the previously studied compounds, and the spin lengths in the
ground state are much closer to the isotropic 3/2 value.

V. DYNAMIC PROPERTIES STUDIED BY ELECTRON
SPIN RESONANCE

We continue our study with the dynamical properties. The
ESR measurements have been performed for two configura-
tions. In the Faraday configuration, the exciting electromag-
netic wave propagates with wave vector k ∝ Eω × Hω in the
direction of the external magnetic field (H‖k), consequently
we can observe excitations driven by the components of
oscillating electromagnetic field which are perpendicular to
the external magnetic field. In the Voigt configuration, the
electromagnetic wave propagates in a perpendicular direction
with respect to the external magnetic field (H⊥k), and the
excitation spectrum contains electric and magnetic transitions
coming from the fields of the light oscillating both parallel
and perpendicular to the applied field. Therefore, above the
saturation, when the spins are aligned with the field, the
transitions induced by the perpendicular component (with
respect to the spin orientation) of the light are present in
both Faraday and Voigt configuration, while the transitions
induced by the parallel components are present in the Voigt
configuration only. In both configurations we measured the
ESR spectra for external magnetic fields parallel to [100],
[110], and [001] crystallographic directions using unpolarized
light, having in total six different geometries. Measurements
in different setups allow for the experimental verification of
selection rules and identification of the observed excitations.
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FIG. 4. Frequency-field diagrams of the ESR resonance fields
of Sr2CoGe2O7 for magnetic fields parallel to the (a) [100] and (b)
[110] directions. Open circles (plus) are strong (weak) resonance
signals obtained from the measurements in static fields at 1.6 K,
while solid circles (cross) show strong (weak) resonance signals in
pulsed fields at 1.4 K. The solid lines represent the dipolar resonance
modes from the multiboson spin-wave theory, using the following
set of parameters: gc = 2.23, gab = 2.28, J = 49.1 GHz, Jz =
45.0 GHz, � = 49.7 GHz, and W 2

z Jpz = 0.05 GHz (see Sec. V C
and Appendix A). The red dashed line in (a) indicates a resonance
mode with a slope twice larger than the others, corresponding to a
two-magnon excitation. Yellow shaded area marks the phase below
saturation for in-plane magnetic fields.

A. Frequency-magnetic field plots of the resonance fields

Figures 4 and 5(a) shows the frequency-magnetic field
plots of ESR resonance fields at 1.4–1.6 K in the Faraday
configuration (H‖k). Near zero field, three energy gaps are
clearly identified: �1 ≈ 30 GHz, �2 ≈ 220 GHz, and �3 ≈
700 GHz. The gaps close to �2 and �3 were also reported
in THz spectroscopy measurements of Ba2CoGe2O7 [14,25],
corresponding to transversal and longitudinal spin excitations,
respectively. We can trace the origin of �2 to the interplay of
exchange interaction and single-ion easy-plane anisotropy and
�3 to the exchange interaction [15,25,27].

The magnetic field dependence of the excitations below
500 GHz clearly resembles the usual ESR spectra for the
easy-plane antiferromagnets [28]. The only difference is the
emergence of the smallest gap, �1. This additional gap �1

is the result of a small anisotropy that fully breaks the
spin rotational symmetry—also breaking the remaining O(2)
symmetry within the easy plane—and can be explained by
introducing polarization-polarization interaction which is also
responsible for the vanishing of induced P z as the magnetic
field approaches zero [18]. A similar energy gap has been
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FIG. 5. Frequency-field diagrams of the ESR resonance fields of
Sr2CoGe2O7 for magnetic fields parallel to the [001] directions in
the (a) Faraday and (b) Voigt configuration, showing the two-magnon
absorptions (green dashed line). Open circles (plus) are strong (weak)
resonance signals obtained from the measurements in static fields
at 1.6 K, while solid circles (cross) show strong (weak) resonance
signals in pulsed fields at 1.4 K. The solid lines represent the dipolar
resonance modes calculated by the multiboson spin-wave theory with
the same set of parameters as in Fig. 4 (see Sec. V C and Appendix A).
The shaded area in red is the magnetic field range below the saturation
field.

observed in inelastic neutron diffraction measurements of
Ba2CoGe2O7 [19].

Above the saturation, the modes are linearly increasing with
the magnetic field, providing further evidence for a smaller
anisotropy. We can identify the conventional magnon modes,
D0 and D1 with the slopes corresponding to the g factors we
obtained from the magnetization measurements discussed in
Sec. IV A. In the case of H‖[100], however, an additional
mode, Q1, emerges at higher frequencies, its frequency
increasing twice as fast with magnetic field as the frequency
of the dipolar transitions, D0 and D1. This rapidly increasing
mode corresponds to the absorption of two magnons.

Such two-magnon excitation can be considered as a
quadrupolar fluctuation. As discussed in Sec. III A, the
polarization is expressed by spin-quadrupole operators which
may create two magnons on-site, a �Sz = 2 process. Here we
argue that the Q1 two-magnon mode becomes visible in the
ESR spectrum due to the quadrupole transitions driven by the
oscillating electric field of the light, even when Q1 does not
have a dipole component but is purely quadrupolar.

Figure 6 displays the ESR absorption spectra of SCGO at
1.4 K in Faraday configuration. The Q1 two-magnon mode
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FIG. 6. Frequency dependent ESR absorption spectra of SCGO
in Faraday configuration at 1.4 K for (a) H‖[100] and (b)
H‖[110]. Arrows mark the resonance fields of DPPH (2,2-diphenyl-
1-picrylhydrazyl, ESR marker with g = 2.0036). Open and solid
triangles mark the resonance fields of one-magnon (D1) and two-
magnon (Q1) resonance modes, respectively. For Faraday configura-
tion and the two in-plane static field direction, the D1 dipolar and Q1

quadrupolar transitions appear to be mutually exclusive.

is visible for H‖[100] only, as observed when comparing
Figs. 4(a) and 4(b). The signal intensities of the D1 mode show
a negligible absorption for H‖[100] and a strong absorption
for H‖[110]. It appears that the absorptions by the D1 and Q1

modes are mutually exclusive for these setups.

B. Calculation of the one- and two-magnon spectra
in high magnetic fields

The solid lines in Figs. 4 and 5 represent the resonance
modes obtained by the multiboson spin-wave theory, which
we discuss in details in Appendix A. This approach is
suitable to treat the dipole and quadrupole type of excitations
on an equal footing in the entire magnetic field regime,
reproducing the correct gaps. However, as we would like to
focus on the quadrupole excitation, we introduce a simpler,
more transparent model which works in the saturated phase,
where the quadrupole mode was observed. To exhaust the
possibilities of creating quadrupolar states, we calculate the
two-magnon spectrum, which allows for the creation of two
magnons at different sites. These magnons can then interact
with each other and even hop on the same site to form an onsite
two-magnon excitation. This calculation nicely complements
the multiboson spin wave approach, which can only capture the
onsite two-magnon excitations, and is necessary to understand
why the quadrupole mode coupling to the uniform polarization
(Q0) remains silent in the experiment.
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In what follows, we present our analytical results for
the excitation energies in high magnetic fields above the
saturation. For simplicity we neglect the Jpz and gs terms in
the Hamiltonian (6), since we expect them to be very small. We
note that the Supplemental Material [34] contains analytical
solutions of a variational approach and multiboson spin-wave
theory for the entire spectra, including the low field regime as
well.

1. Excitations for the magnetic field ‖[001]‖z

When the external magnetic field is parallel to the [001]
direction [i.e., perpendicular to the (001) easy plane], the
Hamiltonian shown in Eq. (6) conserves the number of
magnons. The |GS〉 ground state above the saturation is the
trivial product of the |Sz = 3/2〉 states over all the sites. We
need to invest gcμBHz − 2� − 6Jz diagonal energy to create
a single magnon, the |Sz = 1/2〉 spin state on a site j with the
Ŝ−

j operator. This spin state can then hop with amplitude 3J/2
to neighboring sites. The resulting state is described by the

|D(q)〉 =
∑

j

eiq·rj Ŝ−
j |GS〉 (9)

wave function, with energy

ω1(q) = μBgcHz − 2� − 6Jz + 6Jγq, (10)

where γq is the geometrical factor 1
2 (cos qx + cos qy). We

plot the dispersion above in Fig. 8(a) for a realistic ratio of
parameters J = Jz = �, which is very close to the one we
will get for SCGO below, in Sec. V C.

Due to the alternation of the tetrahedra, the unit cell is
doubled, so magnons at both q = (0,0) and q = (π,π ) wave
vectors in the extended Brillouin zone are excited in the ESR
spectrum (note that the unit cell of the Hamiltonian contains
only one spin), with energy

ωD0 ≡ ω1(0,0) = μBgcHz − 2� − 6Jz + 6J, (11)

ωD1 ≡ ω1(π,π ) = μBgcHz − 2� − 6Jz − 6J. (12)

The energy difference between these two modes is simply the
bandwidth of the magnons, equal to 12J .

Two magnons can propagate freely with the dispersion
given above, except when they meet at neighboring sites as
shown in Figs. 7(b) and 7(c). Furthermore, the two magnons
can hop onto each other, creating an |Sz = −1/2〉 spin state on

(d)(a) (b) (c)

FIG. 7. (a) A typical two-magnon configuration, short black
arrows show the Sz = 1/2 spins moving on the Sz = 3/2 spin
background (empty arrows). The q = (π,π ) linear combinations of
the neighboring Sz = 1/2 spin states shown in (b) and (c) are exact
eigenstates, and they make the twofold degenerate B1 bound state.
(d) The down-pointing short arrow represents a Sz = −1/2 state; the
q = (π,π ) linear combination of such states is the Q1 mode [see
Eq. (14)], which is also an eigenstate for the model with nearest
neighbor exchanges only.

FIG. 8. One- and two-magnon spectra in magnetic field above the
saturation for � = 1 and J = Jz = 1. (a) The dispersion of a single
magnon along a path in the two-dimensional Brillouin zone, following
Eq. (10). (b) In the two-magnon spectrum, the gray shaded area is
the two-magnon continuum, the red points outside the continuum are
the antibound states obtained from diagonalizing the two-magnon
problem on different size clusters. (c) and (d) show the magnified
part of the two magnon spectrum close to q = (π,π ). The field is
along the [001] direction in (a), (b), and (c), while it lies within the
easy (001) plane in (d). The circles show the energy of the D0 and D1

mode in (a) and the energy of the B1 and Q1 mode in (c) and (d).

a single site, Fig. 7(d). This leads to an interaction between the
magnons, and we need to solve the corresponding two-body
problem. While this can be done analytically [29–33], here
we resort to exact diagonalization in the two-magnon Hilbert
space and plot the spectrum for finite clusters. In Fig. 8(b),
we show the result compiled from different size clusters (up
to 3200 sites), which respect the full D4 symmetry of the
square lattice. The propagating magnons form a two magnon
continuum. The continuum is the broadest at the center of the
Brillouin zone, where its width of 24J is twice the bandwidth
of the magnons, and shrinks to a single, highly degenerate point
at the q = (π,π ) corner of the Brillouin zone, with energy

ωcont.
2 (π,π ) = 2μBgcHz − 4� − 12Jz. (13)
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We observe that close to q = (π,π ), three distinct states split
off from the two-magnon continuum due to the interaction. In
fact, at q = (π,π ) the

|Q1〉 =
∑

j

(−1)j Ŝ−
j Ŝ−

j |GS〉 (14)

state [shown in Fig. 7(d)], with energy

ωQ1 = 2μBgcHz − 2� − 12Jz, (15)

is decoupled from the other states [32]. So are decoupled the
configurations having two neighboring |+1/2〉 states in either
of the directions [Figs. 7(b) and 7(c)], with energy

ωB1 = 2μBgcHz − 4� − 11Jz. (16)

The twofold degeneracy of this state is lifted as we go away
from the q = (π,π ) point [29,30], as shown in Fig. 8(c).

2. Excitations for the external magnetic field in the (001)
easy plane (plane perpendicular to the z axis)

When the field is along the [100] or [110] direction, the
Zeeman term and the exchange term in Hamiltonian (6) do
not commute any more. Instead, we can resort to perturba-
tion expansion. Assuming a large magnetic field in the y

direction, we introduce a rotated basis for the spin operators
(Ŝx,Ŝy,Ŝz) → (S̃y,S̃z,S̃x), so that the quantization axis is
along the magnetic field. We can then rewrite the Hamiltonian
as H = H0 + H1, where H0 is diagonal in the rotated basis,

H0 = �

2

∑
i

(
15

4
− S̃z

i S̃
z
i

)
+ J

∑
(i,j )

S̃z
i S̃

z
j − μBHygab

∑
i

S̃z
i ,

(17)

and H1 contains the off-diagonal matrix elements,

H1 = Jz + J

4

∑
(i,j )

(S̃−
i S̃+

j + S̃+
i S̃−

j )

+ �

4

∑
i

(S̃−
i S̃−

i + S̃+
i S̃+

i )

+ Jz − J

4

∑
(i,j )

(S̃−
i S̃−

j + S̃+
i S̃+

j ). (18)

We note that the spectra do not depend on the actual direction
of the field in the xy plane, as the anisotropy has an O(2)
symmetry about the z axis when Jpz = 0.

Below we perform a first order degenerate perturbation
expansion using H1 as a perturbation operator. The ground
state of the H0 operator is a ferromagnetic state with all
the spins pointing along the field. The S̃−

i S̃−
i and S̃−

i S̃−
j

processes, which change the number of magnons, first appear
in the second order of perturbation expansion, and we neglect
them in the following, assuming a small single-ion anisotropy
and nearly isotropic exchange. Within this approximation,
the problem is equivalent to the one we discussed in the
previous subsection for H‖[001], but we need to replace J

by (J + Jz)/2, Jz by J , and the onsite anisotropy � by −�/2
in all of Eqs. (10)–(16). Most notably, the sign of the effective
anisotropy changes. The dispersion of single magnon then

becomes

ω1(q) = μBgabHy + � − 6J + (3J + 3Jz)γq + · · · , (19)

where the dots denote the neglected second and higher order
terms. Continuing the replacements, we get

ωD0 = μBgabHy + � − 3J + 3Jz + · · · , (20a)

ωD1 = μBgabHy + � − 9J − 3Jz + · · · , (20b)

ωcont.
2 (π,π ) = 2μBgabHy + 2� − 12J + · · · , (20c)

ωQ1 = 2μBgabHy + � − 12J + · · · , (20d)

ωB1 = 2μBgabHy + 2� − 11J + · · · . (20e)

The Q1 is now below the continuum (for � > 0), as shown
in Fig. 8(d), forming a bound state.

The difference between the dipolar and quadrupolar modes
is illustrated schematically in Fig. 9. Denoting the spin
component parallel to the external field by S|| and the two
orthogonal components by S⊥1 and S⊥2 , the expectation value
of the spin operators are

〈Ŝ⊥1〉 ∝ (−1)j sin(ωD1 t),〈
Ŝ

⊥2
j

〉 ∝ (−1)j cos(ωD1 t), (21)

〈Ŝ||
j 〉 ≈ 3

2

in the D1 dipolar mode. They describe the usual precession
of dipolar components of the spin [green arrows in Figs. 9(a)
and 9(c)] around the magnetization axes. In the Q1 quadrupolar
mode transversal components of the spin are 〈S⊥1〉 = 〈S⊥2〉 =
0, instead the 〈

Q̂
2⊥1⊥2
j

〉 ∝ (−1)j sin(ωQ1 t),〈
Q̂

⊥2
1−⊥2

2
j

〉 ∝ (−1)j cos(ωQ1 t) (22)

components of the quadrupolar moment [shown as a green
ellipse in Figs. 9(b) and 9(d)] rotate around the static dipolar
moment aligned with the external magnetic field.

C. Fitting the parameters

We will use the modes linear in magnetic field above satura-
tion in Figs. 4 and 5 to extract parameters of the Hamiltonian.
The ωD1 and ωQ1 modes show a narrow absorptions in Figs. 6
and 10, while the ωD0 resonance mode is broad, giving us a
natural choice of selecting the narrow ωD1 (solid circles in
Fig. 4(b) for H‖[110] and 5(a) for H‖[001]) and ωQ1 modes
(solid circles in Fig. 4(a) for H‖[100] and 5(b) for H‖[001]) to
determine the precise values of the �, J , Jz, and the g values.

Performing a standard multiple linear regression fit using
Eqs. (12), (15), (20b), and (20d) as a model, we get the
following parameters for the g values,

g
[001]
D1

= 2.23 ± 0.02, (23a)

g
[001]
Q1

= 4.42 ± 0.02, (23b)

g
[110]
D1

= 2.28 ± 0.01, (23c)

g
[100]
Q1

= 4.57 ± 0.02, (23d)
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P ||[110]
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P ||[100]

D1
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FIG. 9. Schematic plot of the dipolar [(a) and (c)] and quadrupolar [(b) and (d)] modes in different geometries, as seen from the direction
of the magnetic field. In the dipolar wave D1 for H‖[110] (c) and the quadrupolar mode Q1 for H‖[100] (b) the oscillating component of the
uniform electric polarization Pω (shown by red ellipse) is perpendicular to the external magnetic field H, therefore they are active in the Faraday
configuration. In the D1 for H‖[100] (a) and Q1 for H‖[110] (d) the Pω‖H (i.e., it oscillates in and out from the shown plane), so these modes
are active in Voigt configuration only. The green ellipse represents the rotating quadrupolar moments, while the green arrows the precessing
dipolar spins on the two sublattices. The red arrows show the electric polarization vectors which are excited by the oscillating electric field.
Animations of these modes are shown in the Supplemental Material [34].

where, instead of gab and gc, we left the g values of the
corresponding modes as free parameters which measure the
slope. The values of the exchange couplings and onsite

D1Q1 DPPH
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FIG. 10. ESR absorption spectra of Sr2CoGe2O7 at 846 GHz
in Faraday (k‖H) and Voigt (k ⊥ H) configuration for H‖[100],
H‖[110], and H‖[001]. Vertical dotted lines, from left to right,
indicate two-magnon resonance signal, signal of ESR standard DPPH,
and one-magnon resonance signal, respectively.

anisotropy are

J = 49.1 ± 0.8 GHz = 2.36 ± 0.04 K, (24a)

Jz = 45.0 ± 1.1 GHz = 2.16 ± 0.05 K, (24b)

� = 49.7 ± 4.2 GHz = 2.39 ± 0.20 K. (24c)

The exchange parameter J is in perfect agreement with
the measured shift between the two single-magnon modes,
ωD0 − ωD1 = 12J ≈ 600 GHz in Fig. 5 [35]. The fit gives
an ωD1 = 0 intercept at 16.6 ± 0.1 T, while for H‖[001]
the intercept 21.5 ± 0.3 T coincides with the saturation field,
21.5 T [Figs. 3(a) and 5].

Along the [100] the signal of the D1 mode is quite weak,
and the points are more scattered around the line. Consistently,
the error of a linear fit is larger, we get g

[100]
D1

= 2.27 ± 0.04
for the slope and −524 ± 23 GHz for the zero field intercept.
According to our theory, the dynamics of this weak mode is
governed by Eq. (20b), like for the ω

[110]
D1

mode. Replacing the
fitted values given by Eqs. (24a)–(24c), for the intercept we
get 527 GHz, which is well within the estimated error bars.
Similarly, we can conclude that g

[110]
D1

= g
[001]
D1

within error
bars, i.e., the slope of the two modes is equal and can be
identified with the gab. We choose the more precise gab =
g

[110]
D1

= 2.28 ± 0.01 value.
The fit supports the two-magnon origin of the Q1 excita-

tions, as g
[001]
Q1

≈ 2g
[001]
D1

, so we can associate g
[001]
D1

with gc and

g
[001]
Q1

with 2gc. Furthermore the g
[100]
Q1

is twice the g
[100]
D1

within
the error bars.

Finally, we numerically calculated the single-magnon
modes D0 and D1 from the multiboson spin-wave theory
[36] using the above set of parameters. Adding a small
W 2

z Jpz/kB = 2.4×10−3 K, the calculated and the measured
modes show an excellent agreement, even in the low field
regime, as shown in Figs. 4 and 5.
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Neglecting the small Jpz, we performed the multiboson
calculation analytically. We determined the energies of the D0

and D1 modes explicitly in Eqs. (A8) and (A16) of Appendix A.
For zero magnetic field, we obtain

�2 =
√

24J (3J − 3Jz + �) (25)

in the leading order in anisotropies. Inserting the fitted param-
eter values of Eqs. (24) we get �2 = 270 ± 30 GHz. This is
close to the experimentally observed gap, �2 ∼ 220 GHz. The
gap value for small anisotropies is very sensitive to the �/J

and (J − Jz)/J . Given that we have taken the �, J , and Jz

from the high field measurements, and the simplicity of the
model, the correspondence is reasonable.

Quite interestingly, the anisotropy gap from the multiboson
spin-wave theory, �2 = √

24J� in the leading order and
assuming J = Jz, is different from the standard linear spin
wave calculation providing �2 =

√
16J�S2 = √

36J�. In
fact, going beyond the linear spin wave theory quantum
corrections appear and the anisotropy gap becomes �2 =√

16J�S(S − 1/2) = √
24J� for S = 3/2 [37], coinciding

with the gap obtained from the multiboson spin-wave theory.

D. Comparison to Ba2CoGe2O7

The Ba2CoGe2O7 is a member of the åkermanite family,
where the onsite anisotropy is believed to be large, estimates
range from �/J = 5.8 [25] to �/J ≈ 8 [15]. The associated
spin shortening is 〈S〉 ≈ 1.3 to 1.35, about 10% of the full
spin value of 3/2—the magnetization at the saturation field
is about 10% smaller from the fully saturated value in very
high magnetic field [24]. In comparison, the spin shortening
in SCGO is 〈S〉 = 1.491, less than 1%. This is why the
magnetization curve shown in Fig. 3(a) is so flat above 18 T.

The far-infrared absorption spectra of the Ba2CoGe2O7

were studied in Ref. [25]. In comparison, the modes above
the saturation field have a finite curvature—the signature of
the stronger anisotropy. The multiboson spin wave described
the Ba2CoGe2O7 excitation spectrum with � = 13.4 K,
J = 2.3 K, Jz = 1.8 K—the values of the exchange coupling
are very similar; it is the single-ion anisotropy that is different
in the two materials.

VI. SELECTION RULES

To further characterize the high field excitations, we
compared the ESR spectra for the six geometries in Fig. 10. It
appears that all the modes are active in the Voigt configurations.
The only information about the matrix elements is provided
by absence of the light absorptions in Faraday configurations.
For example, in Fig. 10 the D1 is not present for the H||[100]
case, and the Q1 signal is missing when the external magnetic
field is along the [110] and [001] directions. Since in the
Faraday configuration the oscillating electric and magnetic
fields of the incoming light are perpendicular to the direction
of the external field, the missing absorption indicates that it
is not excited by these components. In other words, it has
no matrix elements with the perpendicular components of spin
and polarization operators. Therefore, a signal present in Voigt,
but absent in Faraday configuration, must be excited via the
oscillating magnetic and/or electric fields which are parallel to

the external field and thus parallel to the magnetic moments
above saturation.

A. Selection rules observed in the experiment

The situation discussed above happens in the case H‖[100],
as the D1 magnon (open triangle in Fig. 10) is missing in the
Faraday (dark green), but is present for the Voigt (light green)
configuration. This means that only the [100] components
of the light, Hω

[100] or Eω
[100], excite D1. The Q1 two-magnon

excitation (solid triangle in Fig. 10) is, however, present both
in the Faraday and Voigt configuration, therefore it is coupled
to the perpendicular [010] and/or [001] components.

Similarly, when H‖[110], the [1̄10] and/or [001] compo-
nents of the oscillating fields excite the D1 magnon present
in Faraday and Voigt configurations, and the [110] parallel
components create the Q1 two-magnon missing in the Faraday
configuration but observed in the Voigt spectrum. Since we
used unpolarized light, we cannot tell whether the Eω

[110]
or/and Hω

[110] excite the D1 magnon mode from the experiment.
Finally, when H‖[001], it is the Q1 mode which appears in the
Voigt configuration only, therefore it must couple to the parallel
components Hω

[001] and/or Eω
[001] and only to those components

of the incoming light.

B. Selection rules for the magnetic transitions

Here we calculate the selection rules coming from the
oscillating magnetic field Hω of the light, based on the Zeeman
coupling in the Hamiltonian, Eq. (6). Above saturation, all the
spins are parallel to the external field, making a translationally
invariant ground state with q = (0,0). The spin operator
component parallel to the field S‖ does not change the
number of magnons. The transversal fluctuations created by
the perpendicular components S⊥1 and S⊥2 excite one magnon
each. The uniform component of the magnetization

M(0,0) ∝ gS(0,0) (26)

for all directions of the fields. The M(0,0) couples to the D0

single magnon excitations.
The D1 couples to the staggered components of the

magnetization via gs . When the external field is H ||[001],
they are given as

M
⊥1
(π,π) ∝

∑
j

(−1)j S⊥2
j , M

⊥2
(π,π) ∝ −

∑
j

(−1)j S⊥1
j , (27)

so the D1 is present for both Faraday and Voigt configurations.
For the H ||[110] and H ||[100] field directions they are the
same,

M
‖
(π,π) ∝

∑
j

(−1)j S⊥1
j , M

⊥1
(π,π) ∝ −

∑
j

(−1)j S‖
j , (28)

and D1 is magnetically excited in the Voigt configuration only.
These selection rules are included into Table II.

C. Calculation of the selection rules above saturation
from the magnetoelectric coupling

The magnetic component of the light can induce dipolar
transitions only. It is the oscillating electric component Eω

of the light, coupled to polarization containing higher order
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TABLE II. The branches in the ESR spectrum to which the different components of the polarization and magnetization couple. Since we use
unpolarized light, the perpendicular components of the electric Eω

⊥, which couple to P ⊥, are present in both Voigt and Faraday configurations.
The electric field Eω

‖ , which couples to P ‖, is present in the Voigt configuration only. Similar considerations hold for the magnetic fields. An
absorption in the ESR spectrum present in the Voigt configuration, but absent in the Faraday configuration, indicates that it is excited only
by the Eω

‖ and/or Hω
‖ component of the light, such as the Q1 when H‖[001] and H‖[110], and D1 when H‖[100]—in agreement with the

experimental absorption spectra shown in Fig. 10. The Q0 quadrupolar excitations are silent in the experiment.

H P
‖
(0,0) M

‖
(0,0) P

‖
(π,π ) M

‖
(π,π ) ⊥ directions P ⊥

(0,0) M⊥
(0,0) P ⊥

(π,π ) M⊥
(π,π )

H‖[001] (Q0) D0 Q1 [100] and [010] D0 D1 D1

H‖[110] D0 D0 Q1 D1 [1̄10] and [001] (Q0) D1

H‖[100] (Q0) D0 D1 D1 [010] and [001] D0 Q1

spin-quadrupole operators, which can create the two-magnons.
To verify this theory, we need to analyze the selection rules in
different geometries in detail.

The two-magnon modes are created by the second order
combinations of the perpendicular components. Furthermore,
the polarization operators introduced in Eqs. (2) are the
sum of the uniform, q = (0,0), and the staggered, q = (π,π )
components in the extended Brillouin zone, which can help
further to classify excitations. The q = (0,0) components
of the polarizations correspond to the terms proportional to
cos 2κ , and the q = (π,π ) components are proportional to
sin 2κ in Eqs. (2). Below we examine the selection rules for
the different directions of the external magnetic field.

1. The case of H‖[001]‖z

This is the simplest case, as the parallel spin component is
Sz, and the perpendicular components S⊥1 and S⊥2 correspond
to Sx and Sy . From Eqs. (2) it is clear that only P z contains
second order terms in Sx and Sy—the Q̂2xy and Q̂x2−y2

,
therefore P z

q excites a two-magnons, both in the uniform
q = (0,0) and in staggered q = (π,π ) channels, which we
denoted by Q0 and Q1.

From Eqs. (2) it is apparent that the perpendicular compo-
nents P x

q and P
y
q are linear in Sx and Sy for both q = (0,0)

and q = (π,π ), therefore they can create electrically active
magnetic modes. The uniform polarization couples to the
D0 magnetic mode and the staggered polarization to the D1,
similar to the case of magnetic transitions.

2. The case of H‖[110]‖x

The uniform polarization is the largest when the magnetic
field is aligned with the [110] crystallographic direction, i.e.,
the x axis. Then, the parallel spin component is Sx and the
perpendicular ones are Sy and Sz. Observing Eqs. (2), we see
that Q̂2yz appears in P x

(π,π) and P
y

(0,0), and (Sy)2 is present
in P z

(0,0), so the quadrupolar Q0 mode can be excited via
the perpendicular components of the uniform polarization
operator P

y

(0,0) and P z
(0,0), and the Q1 mode is active for

the staggered parallel component P x
(π,π). To determine the

selection rules for the dipolar transitions, we need to find the
components of the polarization operator which are linear in
Sy and Sz. We get that the D0 dipolar mode is active for the
uniform parallel component P x

(0,0), while D1 can be excited via
the staggered perpendicular components P

y

(π,π) and P z
(π,π), as

summarized in the second row of Table II.

3. The case of H‖[100]

When the field is set between the x and y axes, along
the [100] direction, we choose the parallel and perpendicular
components the spin operators as

(
S

‖
j ,S

⊥1
j ,S

⊥2
j

) =
(

Sx
j − S

y

j√
2

,
Sx

j + S
y

j√
2

,Sz
j

)
(29)

and analogues for the polarization. Thus, the parallel compo-
nent of the polarization operator becomes

P
‖
(0,0) ∝

∑
j

Q̂
2⊥1⊥2
j and P

‖
(π,π) ∝

∑
j

(−1)j Q̂2‖⊥2
j ,

which can create a Q0 and a D1 excitation (last row of Table II),
respectively. We choose [010] as the ⊥1 and [001] as the ⊥2

(so P ⊥2
q ≡ P z

q ), the polarizations are

P
⊥1
(0,0) ∝

∑
j

Q̂
2‖⊥2
j , (30)

P
⊥2
(0,0) ∝

∑
j

Q̂
2‖⊥1
j , (31)

which couple to the D0, and

P
⊥1
(π,π) ∝

∑
j

(−1)j Q̂2⊥1⊥2
j , (32)

P
⊥2
(π,π) ∝

∑
j

(−1)j Q̂
⊥2

1−‖2

j , (33)

which couple to the Q1 modes.

D. Comparing to the experiment

Table II contains the central theoretical result of our paper:
The calculations based on the magnetoelectric coupling are
fully consistent with the experimental observations shown in
Fig. 10. Namely,

(i) For H‖[001] and H‖[110], the spin quadrupole operators
in the staggered components of polarizations P̂

‖
(π,π) create a

Q1 excitation with q = (π,π ) and energy Eq. (20d) leading to
the Q1 resonance mode in the Voigt, but absent in the Faraday
configuration.

(ii) For H‖[100], the spin quadrupole operator in the
staggered component in the corresponding P̂ ⊥

(π,π) creates a Q1

excitation visible in both Voigt and Faraday configurations.
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(iii) The D1 mode is absent (very week) in the Faraday
configuration when H‖[100] (topmost line in Fig. 10), as it is
coupled to the P̂

‖
(π,π) and M̂

‖
(π,π) only (lowest row in Table II).

(iv) The magnetoelectric effect via the P̂ ⊥
(π,π) makes the

D1 mode visible in the Faraday geometry for H‖[110], as the
magnetic coupling is in the ‖ channel only.

Let us also mention that the D1 magnon mode is usually not
observed in the ESR spectra, unless Dzyaloshinskii-Moriya
interaction or staggered g tensor is present [38]. In SCGO, not
only the staggered g tensor but also the staggered component
of the polarization can lead to absorption at q = (π,π ).

The uniform component of the polarizations can create
quadrupole excitations at q = (0,0) as well, which we denoted
as Q0. However, this mode is not seen in the experiment.
The onsite energy of the �Sz = −2 state is deep inside the
continuum at q = (0,0), and due to interactions with the
two-magnon continuum, it decays very quickly, making it
unobservable (only for very large anisotropy, �/J � 7.5, does
the quadrupolar mode Q0 split off from the continuum). This
is in sharp contrast to the case of the Q1, when the continuum
shrinks to a single point at q = (π,π ) with an energy
ωD0 + ωD1 different from ωQ1 . In addition, the Q1 state at
q = (π,π ) is fully decoupled from the two-magnon continuum
[32], resulting in a sharp absorption peak at ωQ1 . Multipole
fluctuations have long been theoretically proposed [39–42].
Here, we experimentally confirm the purely quadrupole nature
of the Q1 mode, emerging in the saturated state of SCGO.

VII. CONCLUSION

In conclusion, we studied multipole excitations in single
crystals of the magnetoelectric insulator, SCGO. The observa-
tion of two-magnons is not new, they have been first observed
in FeI2 [43], in the spin-1 chain compound, NiCl2-4SC(NH2)2

[44], as well as in the excitation spectrum of the other
åkermanites [25] and even in ultracold atomic systems [45].
However, in those materials the single-ion anisotropy is the
dominant term, reducing the spin length considerably and
mixing the dipolar and quadrupolar degrees of freedom. As a
result, magnon and two-magnon modes have both dipolar and
quadrupolar character and couple to both magnetic and electric
components of the exciting light in earlier experiments.

The nearly isotropic property of SCGO, on the other
hand, allows for the emergence of uniquely pure quadrupolar
excitations, appearing completely detached from magnetic
transitions. Using multifrequency ESR technique, supported
by theoretical investigation of transition matrix elements, we
clarified the quadrupolar nature of the two-magnon excitation.
Furthermore, based on analytical description of the excitations,
available in the high field regime, and utilizing the measured
saturation fields, we extracted the magnetic coupling values,
as well as the components of the g tensor with high precision.
The spin wave spectra with the extracted parameter values are
in excellent agreement with the measurements, throughout the
entire magnetic field regime and for each field direction.

It is the fortunate constellation of several properties found
in Sr2CoGe2O7 that made the observation of the quadrupolar
waves possible: (i) The noncentrosymmetric position of the
Co2+ ions allowing for the magnetoelectric coupling. (ii) This

coupling is realized on single sites, involving quadratic spin
operators, which are finite due to the large S = 3/2 spin of
Co2+ ion and can simultaneously excite two magnons on
one site. (iii) The two magnons form a bound state at the
momentum q = (π,π ) in the Brillouin zone, well separated
from the two-magnon continuum to prevent its decay and
to make it appear as a single mode. (iv) The alternating
local environment of the magnetic ions results in a finite
staggered polarization necessary to create this bound state of
two magnons, the two-magnon excitation Q1 we observed. (v)
Small anisotropy to ensure the separation of the spin dipolar
and quadrupolar degrees of freedom.

Our investigations provide a basis for further studies of
emerging multipolar excitations with the use of well-spread
experimental approaches, such as the ESR in the present work.
Detecting such modes could help designing magnetoelectric
devices, in which electrically active magnetic excitations may
carry and store information.

Furthermore, it may serve as a guide in the quest for nematic
and more exotic, otherwise ‘hidden’ orders. By observing
static properties such phases are usually experimentally un-
detectable due to the lack of magnetic ordering. An alternative
route to reveal nematic phases is probing the dynamical
properties and looking for the signatures of condensation of
quadrupolar excitations at high magnetic fields, a prerequisite
for the formation of spin nematic phase [33,46–49]. For
example, in LiCuVO4, a high field phase just below the
saturation is believed to be a spin nematic phase [50]. The
NMR spin relaxation measurements showed a decay coming
from excitations with twice as large slope as conventional
magnons above the saturation field, indirectly supporting the
condensation of such nematic waves [51]. The nonmagnetic
nature of those excitations was recently shown by another
NMR experiment [52], however without explicitly proving the
breaking of the O(2) symmetry, a defining property of the
nematic state.
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APPENDIX A: THE MULTIBOSON SPIN WAVE

In the next part we outline a simplified multiboson
approach, in which we take a small single-ion anisotropy (�)
limit. By comparing our analytical solution to the measured
spectrum we further prove the isotropic nature of this material.

1. Variational setup

Here we will consider the Hamiltonian (6) assuming Jpz=0
for simplicity. We closely follow the derivation presented
in Ref. [36]. Based on numerical calculations we need two
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variational parameters to characterize the ground state wave
function, and consequently the bosons representing the excited
states, for all values of magnetic field.

We rotate the usual |mz〉 basis, with mz = 〈Sz〉 = − 3
2 ,

. . . , 3
2 , to a new basis, in which one of the states corresponds to

the ground state. We perform such a rotation on both sublattices
in the following way

|ψ0〉A =
∣∣ 3

2

〉− i
√

3η
∣∣ 1

2

〉 − √
3η

∣∣−1
2

〉+ i
∣∣−3

2

〉
√

6η2 + 2
, (A1a)

|ψ1〉A = −i
√

3η
∣∣ 3

2

〉−(2η−1)
∣∣ 1

2

〉−i(2η−1)
∣∣−1

2

〉−√
3η

∣∣−3
2

〉
√

14η2 − 8η + 2
,

(A1b)

|ψ2〉A = −√
3η

∣∣ 3
2

〉 − i
∣∣ 1

2

〉 − ∣∣−1
2

〉 − i
√

3η
∣∣−3

2

〉
√

6η2 + 2
, (A1c)

|ψ3〉A = i(2η−1)
∣∣ 3

2

〉−√
3η

∣∣ 1
2

〉−i
√

3η
∣∣−1

2

〉+(2η−1)
∣∣−3

2

〉
√

14η2 − 8η + 2
.

(A1d)

The transformation on sublattice B corresponds to the
complex conjugate of Eqs. (A1). For η = 1 these states
represent the my = 3

2 , . . . , 3
2 basis, with |ψ0〉A = |my〉 = − 3

2
and |ψ0〉B = |my〉 = 3

2 . In other words, we changed the
quantization axis to y. The value of η affects the length of
the spin, which can be expressed as S = 3η(1+η)

1+3η2 . In fact, below
the saturation, due to the single-ion anisotropy term, η differs
from 1 and the spin length becomes shorter than 3

2 .
We consider two cases, when the field is in the xy plane

and when it is perpendicular to it. In the first case we set the
field along the x axis, that is along the [110] crystallographic
direction. As long as no (P z

i · P z
j ) terms are considered, all

in-plane directions are equivalent, and the spectrum looks
the same—as far as the energy levels are concerned—for the
directions [110] and [100].

To include the effect of magnetic field on the ground state,
we need to allow the spins to turn away from the y axis,
towards the direction of magnetic field. In the case of H‖[110],
therefore, we apply an additional rotation about the z axis with
the angles ±ϑ on sublattice A/B. The full variational setup
for H‖[110] then has the form of |�i〉A = e−iϑSz |ψi〉A, and
|�i〉B = eiϑSz |ψi〉B , (i = 0, . . . ,3).

For perpendicular field, H‖[001], we need a rotation about
the x axis with the angles ∓ϑ on sublattice A/B. The
variational setup for H‖[001] becomes |�i〉A = eiϑSx |ψi〉A,
and |�i〉B = e−iϑSx |ψi〉B , (i = 0, . . . ,3).

For both field directions the angle ϑ changes from 0
to π/2 as the spins tilt from the original y axes to-
wards the corresponding field direction. Evidently, when
the spins are saturated along the x(z) direction η be-
comes 1 and ϑ = π/2. In these simple cases, the new
basis corresponds to the states 〈Sx(z)〉 = − 3

2 , . . . , 3
2 on both

sublattices, the ground state becomes
∏

u.c. |�0〉A|�0〉B =∏
u.c. |mx(z) = 3

2 〉
A
|mx(z) = 3

2 〉
B

, and creating a state |�n〉 with
n = 1,2, or 3 on any of the sublattices corresponds to a

transition of �Sx(z) = n = 1,2, or 3, therefore, a dipolar,
quadrupolar, or octupolar transition. We determine the vari-
ational parameters η and ϑ by minimizing the ground state
energy 〈GS|H|GS〉 with |GS〉 = ∏

u.c. |�0〉A|�0〉B .

2. Static properties

To determine the magnetization and induced polarization
as a function of external magnetic field, we calculate the
expectation values of the spin and polarization operators in
the ground state. For in-plane magnetic field, the ground state
is |�0〉A = e−iϑSz |ψ0〉A, and |�0〉B = eiϑSz |ψ0〉B only P z is
finite, and takes the value:

P z = 6η cos (2(κ − ϕ))
1 + 3η2

. (A2)

Substituting the values for the variational parameters η from
Eq. (A5) and ϑ from Eq. (A4) we plotted the theoretical
induced polarization in Fig. 11. Of course, including the
polarization-polarization term would give a better agreement
with the experimentally measured polarization and would
reproduce the drop of P z to zero at small field [18].

FIG. 11. (a) Calculated magnetization using our variational setup
using the variational parameters determined below in Secs. A 3
and A 4 for in-plane and out-of-plane magnetic fields, respectively.
(b) Theoretically calculated induced polarization in the simplified
picture using Eq. (A2). We neglected the polarization-polarization
term in the Hamiltonian and use the small � expansion. If P z

i · P z
j

were kept, the polarization would drop to zero at zero field. For both
figures we used the g and interaction values from the linear fit in
Eqs. (23) and (24) in the main text.
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3. In-plane magnetic field

For fields lying in the xy plane the ground state energy has
the following form

E0 = −36J cos 2ϑ
(1 + η)2η2

(1 + 3η2)2
− 6gabH

x sin ϑ
η(1 + η)

1 + 3η2

+�
3(3 + η2)

2(1 + 3η2)
. (A3)

Although this can be minimized analytically, we restrict
ourselves to the limit, in which � is a small parameter. The
variational parameters take the following form:

ϑ =
{

arcsin gabH
x

12J
, gabH

x < 12J

π/2, gabH
x � 12J

(A4)

and

η =
{

1 + �
6J

, gabH
x < 12J

1 + �
gabHx−6J

, gabH
x � 12J

. (A5)

At zero field the spins are antiparallel along the y axis. In
finite field the spins start to tilt towards each other to align
themselves with the field direction. Hx

c = 12J/gab gives the
transition field at which the spins become parallel to each
other and Hx as well. Above Hx

c their length grows asymp-
totically approaching the maximal 3/2 value.

Taking the small � limit, we can continue our analysis
with the excitation spectrum, in which the different multipole
excitations decouple from each other and we get simple
equations of motion describing them separately. As the next
step, we express each operator in the Hamiltonian 6 in terms of
our new basis, using the transformation Û = (�0,�1,�2,�3),
in which the columns correspond to the component vectors of
the new states |�i〉, i = 0, . . . ,3.

We introduce a boson for each of the states a
†
i,L|0〉 = |�i〉L,

where i = 0, . . . ,3 and L = {A,B}. The mean-field ground
state is the product state

∏
u.c. |�0〉A|�0〉B in which the boson

a
†
0,L is condensed on both sublattices. Creating a boson a

†
n,L

with n = 1,2, or 3 corresponds to an excitation with dipole,
quadrupole, or octupole character, respectively.

Let us start with the dipole excitation. The spin-wave
Hamiltonian for these modes has the form

HD =

⎛
⎜⎜⎜⎜⎝

a
†
1,A

a
†
1,B

a1,A

a1,B

⎞
⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎝

ε0 f+ 0 f−
f+ ε0 f− 0

0 f− ε0 f+
f− 0 f+ ε0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a1,A

a1,B

a
†
1,A

a
†
1,B

⎞
⎟⎟⎟⎟⎠, (A6)

where ε0 = 6J cos 2ϑ + gabHx sin ϑ + � and f± =
3Jη cos(2ϑ) ± 3Jz(η − 2). Inserting the solutions Eqs. (A4)
and (A5) we get

ωD0 =
⎧⎨
⎩gabH

x

√
1 + �

6J

√
1 + Jz−J

2J

(
1 − �

6J

)
, gabH

x < 12J

gabH
x − 3J + 3Jz + �

(
J+Jz

2Jz
− 3(J−Jz)

gabHx

)
, gabH

x � 12J
(A7)

and

ωD1 =
⎧⎨
⎩(6J + �)

√
2
(
1 − (

gabHx

12J

)2)(
1 + Jz

J
− 12Jz

6J+λ

)
, gabH

x < 12J

gabH
x − 9J − 3Jz + �

(
1 − (J−Jz)(gabH

x−6Jz)
2Jz(gabHx−12Jz)

)
, gabH

x � 12J
. (A8)

The quadrupolar and octupolar modes are even more straight-
forward, as the Hamiltonian describing their dynamics is
diagonal and we can directly read off the energies.

The two quadrupole modes, a
†
2,A and a

†
2,B , are degenerate

and have the energies

ωQ = 12J cos 2ϑ + 2gabHx sin ϑ + �

2
(3η − 1). (A9)

Substituting the solutions Eqs. (A4) and (A5) we get

ωQ =
{

12J + �, gabH
x < 12J

2gabH
x − 12J + �, gabH

x � 12J
. (A10)

The octupole modes a
†
3,A and a

†
3,B are also degenerate with the

energy

ωO =
{

18J, gabH
x < 12J

3gabH
x − 18J, gabH

x � 12J
. (A11)

In Fig. 12 we plot the measured spectrum and the analytical
solutions (A7), (A8), (A10), and (A11) using the model param-
eters gab = 2.28 and Eqs. (24) determined from experimental
data as explained in the main text. We find an excellent

agreement between our simple model and the experiment,
further justifying our assumption for the large field limit and
the determined parameters.

4. Perpendicular field

For a magnetic field applied perpendicular to the layers, the
angle ϑ measures the canting from the y axis towards the z

axis, and the ground state energy becomes

E0 = −36
(1 + η)2η2

(1 + 3η2)2
(J cos2 ϑ − Jz sin2 ϑ)

+�
3(3 + η2)

2(1 + 3η2)
+ �

3(1 + η)(3η − 1)

(1 + 3η2)
sin2 ϑ

− 6gzH
z sin ϑ

η(1 + η)

1 + 3η2
. (A12)

We again look for the solution up to leading order in � and
obtain

ϑ =
{

arcsin δ, δ < 1

π/2, δ � 1
, (A13)
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FIG. 12. Simplified multiboson approach compared with the
measured ESR spectrum for field directions parallel to the H‖[110]
and H‖[100] crystallographic direction in (a) and (b), respectively.
The energy of dipole and quadrupole excitation is in very good
agreement with the experimental findings.

where we introduced the parameter δ = gzH
z

6J+6Jz+2�
which

gives the transition field upon becoming unity. For δ = 1 the

FIG. 13. Simplified multiboson approach compared with the
measured spectrum for a field parallel to the H‖[001] crystallographic
direction.

magnetic field reaches the value Hz = 6J+6Jz+2�

gz
at which the

spins become parallel to each other as well as the magnetic
field.

η =
{

1 + �
6J

(1 − δ2), δ < 1

1, δ � 1
(A14)

The spin-wave Hamiltonian describing the dynamics of dipole
excitations can be written in the same form as Eq. (A6)
with the parameters ε0 = −6Jz + 6(J + Jz) cos2 ϑ + �

2
(3 cos(2ϑ) − 1) + gcH

z sin ϑ , f± = 3Jη ± 3(J−Jz)(1− η

2 ) ∓
3(J + Jz) cos(2ϑ)(1 − η

2 ).
The energies of the dipolar excitations can be easily

calculated using Eqs. (A13)–(A14).

ωD1 =
{

0, δ < 1

−6J − 6Jz + gcH
z − 2�, δ � 1

and

ωD0 =
{√

6J + �(1 − δ2)
√

24J − 12(J + Jz)(1 − δ2)
(
1 − �(1−δ2)

6J

)
, δ < 1

6J − 6Jz + gcH
z − 2�, δ � 1

,

where η is the solution below the transition field (δ < 1).
The spin-wave Hamiltonian for quadrupole and octupole excitations become diagonal for H‖[001] too, and we can easily

read off the eigenvalues. Similarly to the in-plane field case, the modes are twofold degenerate.

ωQ =
{

12J + � + �2

4J
+ �δ2

(
1 − �

2J

)
, δ < 1

2gzH
z − 12Jz − 2�, δ � 1

(A15)

ωO =
{

18J + �2

4J
+ 6�δ2

(
1 − �

12J

)
, δ < 1

3gzH
z − 18Jz, δ � 1

(A16)

In Fig. 13 we plot the calculated energies together with the measured spectrum for H‖[001] and find excellent agreement between
our simple model and the observed spectrum.

[1] M. Fiebig, J. Phys. D 38, R123 (2005).
[2] Y. Tokura, S. Seki, and N. Nagaosa, Rep. Prog. Phys. 77, 076501

(2014).

[3] T. Arima, J. Phys. Soc. Jpn. 80, 052001 (2011).
[4] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y.

Tokura, Nature (London) 426, 55 (2003).

214406-15

https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1088/0022-3727/38/8/R01
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1088/0034-4885/77/7/076501
https://doi.org/10.1143/JPSJ.80.052001
https://doi.org/10.1143/JPSJ.80.052001
https://doi.org/10.1143/JPSJ.80.052001
https://doi.org/10.1143/JPSJ.80.052001
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018
https://doi.org/10.1038/nature02018


MITSURU AKAKI et al. PHYSICAL REVIEW B 96, 214406 (2017)

[5] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

[6] I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
[7] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 76,

144424 (2007).
[8] M. Akaki, H. Iwamoto, T. Kihara, M. Tokunaga, and H.

Kuwahara, Phys. Rev. B 86, 060413(R) (2012).
[9] T. Arima, J. Phys. Soc. Jpn. 76, 073702 (2007).

[10] H. Y. Yi, Y. J. Choi, S. Lee, and S.-W. Cheong, Appl. Phys. Lett.
92, 212904 (2008).

[11] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, and Y.
Tokura, Phys. Rev. Lett. 105, 137202 (2010).

[12] M. Akaki, J. Tozawa, D. Akahishi, and H. Kuwahara,
Appl. Phys. Lett. 94, 212904 (2009).

[13] M. Akaki, H. Kuwahara, A. Matsuo, K. Kindo, and M.
Tokunaga, J. Phys. Soc. Jpn. 83, 093704 (2014).

[14] I. Kézsmárki, N. Kida, H. Murakawa, S. Bordács, Y. Onose, and
Y. Tokura, Phys. Phys. Lett. 106, 057403 (2011).

[15] S. Miyahara and N. Furukawa, J. Phys. Soc. Jpn. 80, 073708
(2011).

[16] I. Kézsmárki, D. Szaller, S. Bordács, V. Kocsis, Y. Tokunaga,
Y. Taguchi, H. Murakawa, Y. Tokura, H. Engelkamp, T. Rõõm,
and U. Nagel, Nat. Commun. 5, 3203 (2014).

[17] A. S. Borovik-Romanov and H. Grimmer, in International
Tables for Crystallography (Springer, Dordrecht, 2006), Vol.
D, Chap. 1.5, pp. 105–149.

[18] J. Romhányi, M. Lajkó, and K. Penc, Phys. Rev. B 84, 224419
(2011).

[19] M. Soda, M. Matsumoto, M. Månsson, S. Ohira-Kawamura,
K. Nakajima, R. Shiina, and T. Masuda, Phys. Rev. Lett. 112,
127205 (2014).

[20] K. Penc and A. M. Läuchli, in Introduction to Frustrated
Magnetism: Materials, Experiments, Theory, edited by C.
Lacroix, P. Mendels, and F. Mila (Springer, Berlin, Heidelberg,
2011), p. 331.

[21] N. Shannon, K. Penc, and Y. Motome, Phys. Rev. B 81, 184409
(2010).

[22] T. Endo, Y. Doi, Y. Hinatsu, and K. Ohoyama, Inorg. Chem. 51,
3572 (2012).

[23] A. Zheludev, T. Sato, T. Masuda, K. Uchinokura, G. Shirane,
and B. Roessli, Phys. Rev. B 68, 024428 (2003).

[24] V. Hutanu, A. P. Sazonov, M. Meven, G. Roth, A. Gukasov,
H. Murakawa, Y. Tokura, D. Szaller, S. Bordács, I. Kézsmárki,
V. K. Guduru, L. C. J. M. Peters, U. Zeitler, J. Romhányi, and
B. Náfrádi, Phys. Rev. B 89, 064403 (2014).

[25] K. Penc, J. Romhányi, T. Rõõm, U. Nagel, Á. Antal, T. Fehér, A.
Jánossy, H. Engelkamp, H. Murakawa, Y. Tokura, D. Szaller, S.
Bordács, and I. Kézsmárki, Phys. Rev. Lett. 108, 257203 (2012).

[26] K. Yamauchi, P. Barone, and S. Picozzi, Phys. Rev. B 84, 165137
(2011).

[27] M. Matsumoto and M. Koga, J. Phys. Soc. Jpn. 76, 073709
(2007).

[28] T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955).
[29] M. Wortis, Phys. Rev. 132, 85 (1963).
[30] J. Hanus, Phys. Rev. Lett. 11, 336 (1963).
[31] D. C. Mattis, The Theory of Magnetism I (Springer, Berlin,

1988).

[32] R. Silberglitt and J. B. Torrance, Jr., Phys. Rev. B 2, 772 (1970).
[33] M. E. Zhitomirsky and H. Tsunetsugu, Europhys. Lett. 92, 37001

(2010).
[34] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.96.214406 for an animation of the D1 and
Q1 modes in the three different geometries. Green arrows
represent the expectation values of the spin operators, the
red arrows the spin-induced electric polarization, and blue
arrow the direction of the external magnetic field. The uniform
components are shown on the right side of the movies, together
with the coordinate system, and the modes active in the
Faraday and Voigt geometries are easily identified. The spins
are represented using the coherent state representation, see
Ref. [48].

[35] We use 1 THz = 48.0 K and μB = 0.6717 K T−1 =
13.996 GHz T−1 for unit conversion.

[36] J. Romhányi and K. Penc, Phys. Rev. B 86, 174428 (2012).
[37] P. A. Lindgard and A. Kowalska, J. Phys. C 9, 2081 (1976);

P. S. Riseborough, Solid State Commun. 48, 901 (1983).
[38] S. A. Zvyagin, D. Kamenskyi, M. Ozerov, J. Wosnitza, M. Ikeda,

T. Fujita, M. Hagiwara, A. I. Smirnov, T. A. Soldatov, A. Ya.
Shapiro, J. Krzystek, R. Hu, H. Ryu, C. Petrovic, and M. E.
Zhitomirsky, Phys. Rev. Lett. 112, 077206 (2014).

[39] A. V. Chubukov, J. Phys.: Condens. Matter 2, 1593 (1990).
[40] F. P. Onufrieva, Physica B 186-188, 837 (1993).
[41] R. Shiina, H. Shiba, P. Thalmeier, A. Takahashi, and O. Sakai,

J. Phys. Soc. Jpn. 72, 1216 (2003).
[42] M. Matsumoto, J. Phys. Soc. Jpn. 83, 084704 (2014).
[43] A. R. Fert, D. Bertrand, J. Leotin, and J. C. Ousset, Solid

State Commun. 26, 693 (1978); D. Petitgrand, A. Brun, and
P. Meyer, J. Magn. Magn. Mater. 15, 381 (1980); K. Katsumata,
H. Yamaguchi, M. Hagiwara, M. Tokunaga, H.-J. Mikeska, P.
Goy, and M. Gross, Phys. Rev. B 61, 11632 (2000).

[44] S. A. Zvyagin, J. Wosnitza, C. D. Batista, M. Tsukamoto, N.
Kawashima, J. Krzystek, V. S. Zapf, M. Jaime, N. F. Oliveira,
Jr., and A. Paduan-Filho, Phys. Rev. Lett. 98, 047205 (2007).

[45] T. Fukuhara, P. Schauß, M. Endres, S. Hild, M. Cheneau, I.
Bloch, and C. Gross, Nature (London) 502, 76 (2013).

[46] A. V. Chubukov, Phys. Rev. B 44, 4693 (1991); N. Shannon, T.
Momoi, and P. Sindzingre, Phys. Rev. Lett. 96, 027213 (2006).

[47] F. Heidrich-Meisner, A. Honecker, and T. Vekua, Phys. Rev. B
74, 020403(R) (2006); T. Hikihara, L. Kecke, T. Momoi, and A.
Furusaki, ibid. 78, 144404 (2008); J. Sudan, A. Lüscher, and A.
M. Läuchli, ibid. 80, 140402(R) (2009).

[48] A. M. Läuchli, F. Mila, and K. Penc, Phys. Rev. Lett. 97, 087205
(2006).

[49] M. Sato, T. Hikihara, and T. Momoi, Phys. Rev. Lett. 110,
077206 (2013).

[50] L. E. Svistov, T. Fujita, H. Yamaguchi, S. Kimura, K. Omura,
A. Prokofiev, A. I. Smirnov, Z. Honda, and M. Hagiwara,
JETP Lett. 93, 21 (2011).

[51] N. Büttgen, K. Nawa, T. Fujita, M. Hagiwara, P. Kuhns, A.
Prokofiev, A. P. Reyes, L. E. Svistov, K. Yoshimura, and M.
Takigawa, Phys. Rev. B 90, 134401 (2014).

[52] A. Orlova, E. L. Green, J. M. Law, D. I. Gorbunov, G. Chanda,
S. Kramer, M. Horvatic, R. K. Kremer, J. Wosnitza, and
G. L. J. A. Rikken, Phys. Rev. Lett. 118, 247201 (2017).

214406-16

https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.73.094434
https://doi.org/10.1103/PhysRevB.76.144424
https://doi.org/10.1103/PhysRevB.76.144424
https://doi.org/10.1103/PhysRevB.76.144424
https://doi.org/10.1103/PhysRevB.76.144424
https://doi.org/10.1103/PhysRevB.86.060413
https://doi.org/10.1103/PhysRevB.86.060413
https://doi.org/10.1103/PhysRevB.86.060413
https://doi.org/10.1103/PhysRevB.86.060413
https://doi.org/10.1143/JPSJ.76.073702
https://doi.org/10.1143/JPSJ.76.073702
https://doi.org/10.1143/JPSJ.76.073702
https://doi.org/10.1143/JPSJ.76.073702
https://doi.org/10.1063/1.2937110
https://doi.org/10.1063/1.2937110
https://doi.org/10.1063/1.2937110
https://doi.org/10.1063/1.2937110
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1103/PhysRevLett.105.137202
https://doi.org/10.1063/1.3147195
https://doi.org/10.1063/1.3147195
https://doi.org/10.1063/1.3147195
https://doi.org/10.1063/1.3147195
https://doi.org/10.7566/JPSJ.83.093704
https://doi.org/10.7566/JPSJ.83.093704
https://doi.org/10.7566/JPSJ.83.093704
https://doi.org/10.7566/JPSJ.83.093704
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1103/PhysRevLett.106.057403
https://doi.org/10.1143/JPSJ.80.073708
https://doi.org/10.1143/JPSJ.80.073708
https://doi.org/10.1143/JPSJ.80.073708
https://doi.org/10.1143/JPSJ.80.073708
https://doi.org/10.1038/ncomms4203
https://doi.org/10.1038/ncomms4203
https://doi.org/10.1038/ncomms4203
https://doi.org/10.1038/ncomms4203
https://doi.org/10.1103/PhysRevB.84.224419
https://doi.org/10.1103/PhysRevB.84.224419
https://doi.org/10.1103/PhysRevB.84.224419
https://doi.org/10.1103/PhysRevB.84.224419
https://doi.org/10.1103/PhysRevLett.112.127205
https://doi.org/10.1103/PhysRevLett.112.127205
https://doi.org/10.1103/PhysRevLett.112.127205
https://doi.org/10.1103/PhysRevLett.112.127205
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1103/PhysRevB.81.184409
https://doi.org/10.1021/ic202386h
https://doi.org/10.1021/ic202386h
https://doi.org/10.1021/ic202386h
https://doi.org/10.1021/ic202386h
https://doi.org/10.1103/PhysRevB.68.024428
https://doi.org/10.1103/PhysRevB.68.024428
https://doi.org/10.1103/PhysRevB.68.024428
https://doi.org/10.1103/PhysRevB.68.024428
https://doi.org/10.1103/PhysRevB.89.064403
https://doi.org/10.1103/PhysRevB.89.064403
https://doi.org/10.1103/PhysRevB.89.064403
https://doi.org/10.1103/PhysRevB.89.064403
https://doi.org/10.1103/PhysRevLett.108.257203
https://doi.org/10.1103/PhysRevLett.108.257203
https://doi.org/10.1103/PhysRevLett.108.257203
https://doi.org/10.1103/PhysRevLett.108.257203
https://doi.org/10.1103/PhysRevB.84.165137
https://doi.org/10.1103/PhysRevB.84.165137
https://doi.org/10.1103/PhysRevB.84.165137
https://doi.org/10.1103/PhysRevB.84.165137
https://doi.org/10.1143/JPSJ.76.073709
https://doi.org/10.1143/JPSJ.76.073709
https://doi.org/10.1143/JPSJ.76.073709
https://doi.org/10.1143/JPSJ.76.073709
https://doi.org/10.1080/00018735500101154
https://doi.org/10.1080/00018735500101154
https://doi.org/10.1080/00018735500101154
https://doi.org/10.1080/00018735500101154
https://doi.org/10.1103/PhysRev.132.85
https://doi.org/10.1103/PhysRev.132.85
https://doi.org/10.1103/PhysRev.132.85
https://doi.org/10.1103/PhysRev.132.85
https://doi.org/10.1103/PhysRevLett.11.336
https://doi.org/10.1103/PhysRevLett.11.336
https://doi.org/10.1103/PhysRevLett.11.336
https://doi.org/10.1103/PhysRevLett.11.336
https://doi.org/10.1103/PhysRevB.2.772
https://doi.org/10.1103/PhysRevB.2.772
https://doi.org/10.1103/PhysRevB.2.772
https://doi.org/10.1103/PhysRevB.2.772
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
https://doi.org/10.1209/0295-5075/92/37001
http://link.aps.org/supplemental/10.1103/PhysRevB.96.214406
https://doi.org/10.1103/PhysRevB.86.174428
https://doi.org/10.1103/PhysRevB.86.174428
https://doi.org/10.1103/PhysRevB.86.174428
https://doi.org/10.1103/PhysRevB.86.174428
https://doi.org/10.1088/0022-3719/9/11/016
https://doi.org/10.1088/0022-3719/9/11/016
https://doi.org/10.1088/0022-3719/9/11/016
https://doi.org/10.1088/0022-3719/9/11/016
https://doi.org/10.1016/0038-1098(83)90145-X
https://doi.org/10.1016/0038-1098(83)90145-X
https://doi.org/10.1016/0038-1098(83)90145-X
https://doi.org/10.1016/0038-1098(83)90145-X
https://doi.org/10.1103/PhysRevLett.112.077206
https://doi.org/10.1103/PhysRevLett.112.077206
https://doi.org/10.1103/PhysRevLett.112.077206
https://doi.org/10.1103/PhysRevLett.112.077206
https://doi.org/10.1088/0953-8984/2/6/018
https://doi.org/10.1088/0953-8984/2/6/018
https://doi.org/10.1088/0953-8984/2/6/018
https://doi.org/10.1088/0953-8984/2/6/018
https://doi.org/10.1016/0921-4526(93)90717-K
https://doi.org/10.1016/0921-4526(93)90717-K
https://doi.org/10.1016/0921-4526(93)90717-K
https://doi.org/10.1016/0921-4526(93)90717-K
https://doi.org/10.1143/JPSJ.72.1216
https://doi.org/10.1143/JPSJ.72.1216
https://doi.org/10.1143/JPSJ.72.1216
https://doi.org/10.1143/JPSJ.72.1216
https://doi.org/10.7566/JPSJ.83.084704
https://doi.org/10.7566/JPSJ.83.084704
https://doi.org/10.7566/JPSJ.83.084704
https://doi.org/10.7566/JPSJ.83.084704
https://doi.org/10.1016/0038-1098(78)90721-4
https://doi.org/10.1016/0038-1098(78)90721-4
https://doi.org/10.1016/0038-1098(78)90721-4
https://doi.org/10.1016/0038-1098(78)90721-4
https://doi.org/10.1016/0304-8853(80)91097-5
https://doi.org/10.1016/0304-8853(80)91097-5
https://doi.org/10.1016/0304-8853(80)91097-5
https://doi.org/10.1016/0304-8853(80)91097-5
https://doi.org/10.1103/PhysRevB.61.11632
https://doi.org/10.1103/PhysRevB.61.11632
https://doi.org/10.1103/PhysRevB.61.11632
https://doi.org/10.1103/PhysRevB.61.11632
https://doi.org/10.1103/PhysRevLett.98.047205
https://doi.org/10.1103/PhysRevLett.98.047205
https://doi.org/10.1103/PhysRevLett.98.047205
https://doi.org/10.1103/PhysRevLett.98.047205
https://doi.org/10.1038/nature12541
https://doi.org/10.1038/nature12541
https://doi.org/10.1038/nature12541
https://doi.org/10.1038/nature12541
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevB.44.4693
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevLett.96.027213
https://doi.org/10.1103/PhysRevB.74.020403
https://doi.org/10.1103/PhysRevB.74.020403
https://doi.org/10.1103/PhysRevB.74.020403
https://doi.org/10.1103/PhysRevB.74.020403
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.78.144404
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevB.80.140402
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.97.087205
https://doi.org/10.1103/PhysRevLett.110.077206
https://doi.org/10.1103/PhysRevLett.110.077206
https://doi.org/10.1103/PhysRevLett.110.077206
https://doi.org/10.1103/PhysRevLett.110.077206
https://doi.org/10.1134/S0021364011010073
https://doi.org/10.1134/S0021364011010073
https://doi.org/10.1134/S0021364011010073
https://doi.org/10.1134/S0021364011010073
https://doi.org/10.1103/PhysRevB.90.134401
https://doi.org/10.1103/PhysRevB.90.134401
https://doi.org/10.1103/PhysRevB.90.134401
https://doi.org/10.1103/PhysRevB.90.134401
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201
https://doi.org/10.1103/PhysRevLett.118.247201



