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We experimentally study steady Marangoni-driven surfactant transport on the interface of a deep
water layer. Using hydrodynamic measurements, and without using any knowledge of the surfactant
physicochemical properties, we show that sodium dodecyl sulphate and Tergitol 15-S-9 introduced in low
concentrations result in a flow driven by adsorbed surfactant. At higher surfactant concentration, the flow is
dominated by the dissolved surfactant. Using camphoric acid, whose properties are a priori unknown, we
demonstrate this method’s efficacy by showing its spreading is adsorption dominated.
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Surfactants introduced at liquid interfaces give rise to
Marangoni stresses that drive a flow [1]. The fundamental
process of surfactant spreading, governed by its diffusion
and transport via self-induced flow has many applications,
from materials chemistry to biomechanics [2–10]. Many
surfactants are soluble in the fluid and could be transported in
a phase dissolved in the bulk or adsorbed at the interface
[11,12]. A complete description of the resulting flow is
hindered by the complexity of surfactant dynamics, which
includes characterizing the equilibrium adsorption charac-
teristics, the adsorption-desorption kinetics, and the trans-
port by the flow [13,14]. Whereas methods based on
molecular [15] or radiometric [16–18] markers can measure
surface excess during a flow [19], low surfactant diffusivity
into bulk fluid renders bulk concentration measurements at
the interface difficult during flow. Direct Marangoni stress
measurements via in situ surface tension gradient measure-
ments are equally challenging. Simultaneous access to bulk
and surface concentrations, Marangoni stress, sorption
kinetics, and their subsequent correlation with one another
to deduce the surfactant dynamics remains a formidable task.
In a recent study [11], for example, surfactant was

introduced on the air-water interface through a steady
point source. Simple scaling laws for surfactant spreading
were derived by assuming the sorption kinetics to be much
faster than the hydrodynamics, so that the dynamics were
dominated by the dissolved phase. Verification of this
assumption was not possible owing to the aforementioned
difficulties. A possible alternative is that the sorption
kinetics are too slow compared to the hydrodynamics, so
that the dynamics are governed by the adsorbed phase.
Either of these assumptions reduces the complexity of the

problem by enabling semianalytical steady solutions to the
governing equations [20]. Our objective in this setting is an
experimental validation of these assumptions using hydro-
dynamic measurements alone.
Consider a surfactant released steadily on the interface

through a source much smaller in radial extent than the
container size (see Fig. 1), such that a steady axisymmetric
flow is established (see movie M1 in the Supplemental
Material [21] for visualization). In a region much larger
than the source but much smaller than the container, the
source may be idealized as a point and the container
assumed to be infinite. Furthermore, we consider the fluid
viscosity and surfactant diffusivity to be small enough that
most of the flow and surfactant concentration is established
within a boundary layer near the surface. These approx-
imations, along with the assumption of adsorption- or
dissolution-dominated surfactant dynamics, render the
governing physical description scale invariant.
Consequently, the fluid radial uðr; zÞ velocity components
in cylindrical coordinates (r, z) exhibit a self-similar
structure [20]. Three experimentally measured invariant
characteristics of this self-similar flow serve as hydro-
dynamic signatures of the simplified surfactant transport.
In this Letter, we present experimental verification

of these flow signatures using two generic surfactants in

FIG. 1. Schematic of the experimental setup.
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water—sodium dodecyl sulphate (SDS) and Tergitol 15-S-9
(Tergitol). Both these surfactants are water soluble (solu-
bility 0.2 and 0.7 kg=l, respectively) and span a range of
critical micellar concentration (CMC) from 8 × 10−5 mM
for Tergitol to 8 × 10−3 mM for SDS. SDS is ionic in
nature, while Tergitol is nonionic. Without using any
knowledge of the surfactant physicochemical parameters,
we show that for concentrations less than 15% CMC, both
surfactants exhibit flows dominated by adsorbed surfactant.
In the same manner, mixture concentrations between 24%
and 50% CMC exhibit flow dominated by the dissolved
surfactant. Finally, we also determine which of the two
processes dominate the dynamics of a third surfactant,
camphoric acid (CA), released at the interface from a gel
tablet at unknown rates and concentrations.
A solution of SDS or Tergitol was introduced on an

air-water interface via a borosilicate capillary (tip inner
diameter of 3–5 μm) by Marangoni suction, a procedure
empirically determined to minimize forcing a radial jet
due to hydrodynamic pumping [22–24]. Four different
concentrations for SDS and Tergitol ranging from about
0.05 CMC to 0.5 CMC (labeledC1–C8 in Fig. 2) were used
to span the range of surfactant dynamics from adsorption
dominated to dissolution dominated. CAwas introduced on
the interface through an agarose gel tablet (diameter 3 mm,
thickness 1 mm) infused with CA (case C9 in Fig. 2). The
gel tablet was mounted on a vertical motion stage and
brought in contact with the interface. In our experiments, the
velocity boundary layer was minimally influenced by the
dish bottom. The velocity profiles uðr; 0Þ and uðr ¼ r1; zÞ,
and the surface shear uzðr; z ¼ 0Þ of the axisymmetric flow
that developed due to the Marangoni flow, were measured
using laser doppler velocimetry (LDV).
The reproducibility required for the experiment and the

measurement precision in velocity up to the fourth decimal
place to ascertain the power laws and the boundary layer
profile reported here require a tight protocol (for full exper-
imental details, please see the Supplemental Material [21]).
Signature 1.—The measured surface radial velocity

uðr; 0Þ is shown on a logarithmic scale in Fig. 2(a). A
correction to account for higher-order effects due to
finite size of the CA tablet is applied, as detailed in the
Supplemental Material. For all the nine cases considered,
uðr; 0Þ reaches a maximum umax at r ¼ rmax (about 1 mm)
and decays approximately as a power law in the range of
radii 1 < r=rmax < 20. For r=rmax ≳ 20, uðr; 0Þ decreases
much faster than the power-law decay.
The exponent of the power-law decay in the intermediate

range of radii is the first hydrodynamic signature of the
surfactant dynamics. In this range, five of the nine cases
(C1, C2, C5, C6, and C9), those with surfactant concen-
trations <0.15 CMC and the one with CA, exhibit an
approximate decay of uðr; 0Þ as r−3=5. (For enhanced
visibility, cool colors depict these cases in Figs. 2
and 5.) The remaining four cases (C3, C4, C7, and C8),

which include surfactant concentration >0.24 CMC
(shown in warm colors), exhibit decay as r−1.
To confirm the measured slopes, Fig. 2(b) plots the log

derivative (Selke’s method [25]) n ¼ d logu=d log r as a
function of r. The differentiation is performed using finite
differences between neighboring experimentally measured
data points. For the lowest concentrations of the SDS
(0.049 CMC) and Tergitol (0.046 CMC), and in the range
1 < r=rmax < 10, the value of n lies between −0.565 and
−0.618. For the next lowest concentration (0.146 CMC for
SDS and 0.138 CMC for Tergitol), n departs from this range
at r=rmax ≳ 8. As the concentration is increased further
(0.243 CMC for SDS and 0.25 CMC for Tergitol), n lies in
the range −0.87 to −1.04, with a systematic departure from
≈ − 1 occurring in the range 1<r=rmax≲4. And finally,
for the largest concentration (0.5 CMC for SDS and
0.46 CMC for Tergitol), n lies in the range −0.98 to
−1.03. For the flow driven by CA, n lies in the range −0.60
to −0.63. Based on these observations, we posit two values
for the power-law exponents, n ≈ −0.6 and n ≈ −1, with the
random variation attributed to measurement noise and the
systematic deviations to departures from the asymptotic
regimes of validity.

FIG. 2. (a) Radial velocity component uðr; 0Þ at the fluid
surface as a function of distance from the source center for three
surfactants. Also plotted are power laws (1) and (2) expected for
the dissolution-dominated (solid black line) and adsorption-
dominated (dashed black line) cases. The velocity is rescaled
by its maximum value umax on the interface, and r is rescaled by
rmax, the location where the maximum velocity occurs. (b) Same
data as (a), but presented in the form of power-law exponent
n ¼ dðlog uÞ=dðlog rÞ.
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These power laws can be understood in terms of the
competing fluid and surfactant-induced stresses as follows.
Due to self-similar nature of the flow, the length scale in the
radial and depthwise directions are r and the boundary
layer thickness δðrÞ, respectively. Fluid inertia scales as
ρu2=r (ρ is fluid density), while viscous forces scale as
μu=δ2 (μ is dynamic viscosity). A balance between the two
is expected in the boundary layer, which furnishes one
relation, δ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μr=ρu
p

. Imposing the Marangoni stress,
which scales as Δσ=r (Δσ being the reduction in surface
tension) to be equal to the scale of the fluid’s shear stress,
μu=δ, leads to δ ¼ μur=Δσ. The two cases are distin-
guished by the relation between Δσ and the surfactant
concentration, and how the surfactant is transported.
When the surfactant dynamics are dominated by

the adsorbed phase, surfactant conservation implies
2πurc2 ¼ q2, where c2 is the surface concentration of
the surfactant and q2 is its surface flux. Here we neglect the
diffusion of surfactant. The surface tension depends on
surfactant concentration as Δσ ¼ −Γ2c2, where Γ2 is a
proportionality constant. Eliminating c2 and Δσ leads to

uðr;z¼0Þ¼f0ð0ÞCar−3=5; δaðrÞ¼ r4=5
ffiffiffiffiffiffiffiffiffiffi

ν=Ca

p

; ð1Þ
where Ca ¼ ½Γ2

2q
2
2ν=ð4π2μ2Þ�1=5, f0ð0Þ is a dimensionless

proportionality constant to be determined, and ν ¼ μ=ρ.
When surfactant dynamics are dominated by the dis-

solved phase, surfactant bulk concentration c3ðr; zÞ obeys
an advection-diffusion equation with diffusivity D and
Δσ ¼ −Γ3c3, where Γ3 is a material-dependent constant.
The surfactant diffuses in a boundary layer of thickness
δc ¼

ffiffiffiffiffiffiffiffiffiffiffi

Dr=u
p

, and hence surfactant conservation implies
2πruc3δc ∝ q3, where q3 is the volumetric surfactant
release rate, which yields c3 ∝ q3=

ffiffiffiffiffiffiffiffiffiffiffi

ur3D
p

. The resulting
Marangoni stress scales as Γ3c3=r ∝ Γ3q3=

ffiffiffiffiffiffiffiffiffiffiffi

ur5D
p

, which
balances the fluid viscous shear stress. The shear stress at
the surface, due to a peculiarity in the boundary layer flow
structure, does not scale as μu=δ, but scales 1 order weaker
in the small parameter δ=r, as μu=r. Balancing the scales
for Marangoni stress and shear stress yields

uðr; z ¼ 0Þ ¼ Cdr−1; δdðrÞ ¼ r
ffiffiffiffiffiffiffiffiffiffi

ν=Cd

p

; ð2Þ
where Cd ¼ ½Γ2

3q
2
3=ð8π3μ2DÞ�1=3. These scaling estimates

and the appropriate dimensionless proportionality constant
are determined from an exact similarity solution by
Bratukhin and Maurin [26] (for details, see Ref. [20]).
Signature 2.—To ensure that the power-law exponents

arise due to the fluid dynamics presented here, and not due
to any unexpected coincidences, we compare the depthwise
profile uðr1; zÞ with theoretical expectations. In the case of
adsorption-dominated surfactant dynamics, the solution
may be expressed as

uðr; zÞ ¼ Car−3=5f0ðξÞ; ð3Þ

in terms of a similarity coordinate ξ ¼ z=δaðrÞ and a self-
similar profile fðξÞ. Here f satisfies [20]

f000ðξÞ þ 3

5
f0ðξÞ2 þ 6

5
fðξÞf00ðξÞ ¼ 0; ð4Þ

where fð0Þ ¼ 0, f00ð0Þf0ð0Þ ¼ 2
5
, and f0ð−∞Þ ¼ 0. This

third-order ordinary differential equation is solved using a
shooting method to obtain f, and the uðr; zÞ is recon-
structed using (3). The proportionality constant, f0ð0Þ ≈
0.9943 in (1), is obtained as part of this solution.
Similarly, a leading-order approximation to the boundary

layer flow profile driven by the surfactant whose dynamics
are dominated by the dissolved phase [20] is

uðr;zÞ¼Cdr−1sech2
�

z

δdðrÞ
ffiffiffi

2
p

�

þO

�

δdðrÞ
r

�

: ð5Þ

Figures 3 and 4 show a comparison of experimentally
measured depthwise profiles uðr ¼ r1; zÞ for the cases
exhibiting power-law exponents of −3=5 and −1, respec-
tively. The values of Ca and Cd are determined using
the relations uðr1;0Þ¼Caf0ð0Þr−3=51 and uðr1; 0Þ ¼ Cd=r1,
which are subsequently used to determine the boundary
layer thickness δa;dðr1Þ for that profile. When the profiles
are rescaled according to (3) or (5), and plotted against
the similarity coordinate, they collapse close to universal
curves. The theoretical profiles f0ðξÞ and sech2ðξ= ffiffiffi

2
p Þ,

respectively, well approximate these universal curves.
Apart from random measurement noise, systematic depar-
ture of the data from these curves occurs due to two
reasons: the return flow in the region outside the boundary
layer, and departures from the power-law behavior at the
measurement location r ¼ r1. This collapse validates the

FIG. 3. The radial velocity profile in the boundary layer for
flow dominated by adsorbed surfactant. The experimentally
measured radial velocity profile (symbols) is normalized accord-
ing to (3) and plotted against the similarity coordinate. Also
plotted (solid curve) is the self-similar profile derived theoreti-
cally by solving (4).
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thickness of the boundary layer arising from the adsorption-
and dissolution-dominated regimes.
Signature 3.—The combination of radial decay as r−3=5

and depthwise profiles shown in Fig. 3 is only possible
when driven by an adsorbed layer of surfactant spreading
as 2πruðr; 0Þc2ðrÞ ¼ q2, or a small perturbation thereof.
However, the agreement in Fig. 4 of the measured velocity
profile with the leading order of (5) is not conclusive proof
of the flow being driven by a dissolved surfactant. It is so
because, as explained in Ref. [20], Squire’s radial jet [27]
forced by a momentum source at the origin also exhibits r−1

decay and the velocity profile (5) to leading order. Only
higher-order corrections to the flow in the small parameter
δd=r distinguish between Squire’s radial jet and the
complete solution (5). The shear rate uzðr; z ¼ 0Þ is such
a quantity; uz ¼ 0 for Squire’s radial jet, and uz ¼ 2u=r
from the exact solution for dissolved surfactant-driven flow
by Bratukhin and Maurin [26]. Based on this argument, we
define the third hydrodynamic signature to be ζ ¼ uzl=u at
z ¼ 0, where l ¼ δaðrÞ if the surface velocity decays as
r−3=5, and l ¼ r if it decays as r−1.
Figure 5 shows the experimentally measured values

of ζ for all the nine cases. As expected, for cases C1
and C5 where adsorbed surfactant dominates the dynamics,
ζ is scattered around the theoretically expected value
f00ð0Þ=f0ð0Þ ≈ 0.404. For the cases C2 and C6, the reduc-
tion of ζ for r≳ 8rmax coincides with the departure of n
from −3=5. For the remaining cases, ζ is scattered around 2
and not around 0, implying that the flow is driven by
Bratukhin and Maurin’s surfactant mechanism and not a
localized momentum source near the origin.
Conclusion.—The agreement of the power-law exponent

in Fig. 2, the depthwise profile in Figs. 3–4, and the
dimensionless shear ratewith the theoretically expected ones
prove that the flow is driven by a surface stress caused by an
agent transported in a manner homologous to the restrictive

assumptions underlying the theoretical derivation. Since our
experimental protocol has carefully eliminated all other
sources of surface stress, we are left with the unavoidable
conclusion that the stress is caused by surfactant alone.
Therefore, the surfactant dynamics within the power-law
region in these cases must be as assumed in the theoretical
model. In particular, for SDS and Tergitol released on the
interface at concentrations <0.14 CMC, the adsorbed sur-
factant governs the resulting dynamics, while for concen-
trations >0.25 CMC, the dissolved surfactant dynamics
dominates. A transition between the two behaviors is
expected for intermediate concentrations, as suggested by
the systematic deviations of n. For both surfactants, the
deviation of n from−3=5 towards−1 at r=rmax ≳ 8 for cases
C2 and C6 suggests the beginning of transition, and in the
cases C3 and C7 at r=rmax ≲ 4 suggests the end of the
transition. Given that the transition occurs within this
range, it implies that the surfactant and hydrodynamic time
scales approximately overlap, rendering simple order-of-
magnitude estimates unreliable to distinguish between the
two regimes. Furthermore, there is no convenient indepen-
dent way tomeasure a pivotal parameter in characterizing the
dynamics—the fraction of the surfactant flux that is trans-
ported in an adsorbed phase. Therefore, using invariant
hydrodynamic signatures to determine the validity of the
assumptions about surfactant dynamics without a priori
knowledge of the physicochemical parameters represents a
fundamental advance on the topic.
Our result is quite robust, as we demonstrated for two

surfactants varying in their CMC values by a factor of 100,
and can be used with other surfactants. We used these
signatures to determine that CA released from a gel tablet
spreads in an adsorbed phase, a result that bears upon
Marangoni-driven self-assembly [28–33] and propulsion
[34–37]. Assumptions about surfactant dynamics, such as
those made in Ref. [11], can also be verified using the
hydrodynamic signatures. A theoretical description of the
transition between the two behaviors and its dependence on
the physicochemical parameters remains to be developed.

FIG. 4. The radial velocity profile in the boundary layer
dominated by dissolved surfactant. The experimentally measured
radial velocity profile (symbols), normalized by the scaling
according to (5), is plotted against the similarity coordinate.
Also plotted (solid curve) is the self-similar profile from (5).

FIG. 5. Distribution of dimensionless shear stress on the
interface. Legend is the same as Fig. 2.
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In closing, we note a vast majority of studies [38–45] to
date have focused on transient Marangoni-driven surfactant
spreading dynamics, where the flow ceases once the sur-
factant saturates the available interface area. Here, we have
explored themuch less studied class of statistically stationary
Marangoni-driven flows [11,26,46,47] which arise when a
mechanism for surfactant outflux balances its influx rate
onto the interface, thus achieving a steady-state balance.
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