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A number of important industrial applications exploit the ability of small quantities of high molecular
weight polymer to suppress instabilities that arise in the equivalent flow of Newtonian fluids, a particular
example being turbulent drag reduction. However, it can be extremely difficult to probe exactly how the
polymer acts to, e.g., modify the streamwise near-wall eddies in a fully turbulent flow. Using a novel cross-
slot flow configuration, we exploit a flow instability in order to create and study a single steady-state
streamwise vortex. By quantitative experiment, we show how the addition of small quantities (parts per
million) of a flexible polymer to a Newtonian solvent dramatically affects both the onset conditions for this
instability and the subsequent growth of the axial vorticity. Complementary numerical simulations with a
finitely extensible nonlinear elastic dumbbell model show that these modifications are due to the growth of
polymeric stress within specific regions of the flow domain. Our data fill a significant gap in the literature
between the previously reported purely inertial and purely elastic flow regimes and provide a link between
the two by showing how the instability mode is transformed as the fluid elasticity is varied. Our results and
novel methods are relevant to understanding the mechanisms underlying industrial uses of weakly elastic
fluids and also to understanding inertioelastic instabilities in more confined flows through channels with
intersections and stagnation points.
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I. INTRODUCTION

The addition of high molecular weight polymers to a
simple Newtonian fluid at even extremely low concen-
trations (parts per million) imparts a small but important
degree of elasticity to the liquid, which can have a dramatic
effect on its macroscopic flow behavior. The effects of
polymer additives are exploited for the reduction of drag in
turbulent flows [1–6], for enhancing the pressure drop in
porous media flows [7], and for inhibiting jet breakup and
the atomization of sprays [8,9]. These effects are broadly
understood in terms of the generation of localized aniso-
tropic elastic stresses due to polymer stretching and
orientation in specific regions of the flow field. The
magnitude of the elastic stress (relative to the viscous
stress) is characterized by the ratio between the deformation
rate of the flow and the relaxation rate of the polymer, i.e.,
the Weissenberg number (Wi). However, detailed under-
standing of the mechanisms underlying the phenomena,
such as how exactly polymer stretching feeds back on the
flow field in order to suppress (or generate) instabilities, in
many instances remains vague. Systems designed to model
aspects of these flows, while avoiding their full complexity,

can play a pivotal role in filling the remaining knowledge
gaps. Such an approach is routine for porous media, where
cylinders or spheres can be used to model individual
elements of a porous array [10–13]. Aspects of jet or spray
breakup can likewise be approximated by capillary thin-
ning or drop pinch-off experiments [14–17]. However,
modeling an individual element of a turbulent flow (e.g., a
vortex) in a way that can be easily studied in detail is much
more challenging.
Here, we address this challenge by exploiting a recently

reported symmetry-breaking flow bifurcation that occurs
for Newtonian flow in the cross-slot geometry [Fig. 1(a)],
which results in the formation of a single three-dimensional
steady vortex, axially aligned along the outlet channels
[18]. The cross-slot geometry is formed by mutually
bisecting rectangular channels of constant width w and
depth d. When fluid is injected at equal rates into two
opposing inlet channels of the cross slot, and is withdrawn
at an equal and opposite rate from the two remaining
outlets, the symmetry of the flow field under creeping-flow
conditions results in the formation of a singular hyperbolic
point (a stagnation point) at the location x ¼ y ¼ 0. In the
vicinity of the stagnation point the flow field approximates
to pure planar elongation [19,20]. Instability occurs as the
Reynolds number (Re) (which is the ratio of inertial to
viscous forces) is increased above a critical value Rec ≈ 40
(for w ¼ d) [18]. The instability is initiated by random
imbalances between four cells of Dean vortices that form
in the cross section of the outlet channel, causing the
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introduction of an axial vorticity component at the stag-
nation point. Further vorticity growth is driven by vortex
stretching in the elongational flow field [18] and steady
state is reached when the vortex stretching becomes bal-
anced by viscous diffusion [18,21]. The resulting system
can then be considered as a steady-state proxy for an
important aspect of a turbulent flow, namely, a streamwise
stretched vortex [22–25]. Using a novel microfabrication
technique, we reconfigure the cross-slot geometry in a
unique way that allows us to quantitatively measure the
axial vorticity in the cross section of the outlet channel for
the first time [Figs. 1(b)–1(d)]. The device is then used to
conduct the first direct observations and quantitative
measurements of the effects of very small quantities of
polymer additives on a single steady streamwise vortex.
Apart from Wi and Re, a useful dimensionless parameter

for characterizing polymeric flows is the elasticity number
(El ≈Wi=Re, which quantifies the ratio of elastic to inertial
forces in the flow). For Newtonian flows, El≡ 0 and
instabilities are “purely inertial,” depending only on the
magnitude of Re. Flows of highly elastic fluids (El ≫ 1)
present distinct “purely elastic” instabilites that can arise
even for negligible inertia. Increasing evidence suggests the
generality of these instabilities being driven by the accu-
mulation of elastic stresses along curving streamlines

[26–29]. In the cross-slot device, purely elastic instability
modes are manifested as two-dimensional flow asymme-
tries, which can be steady or time dependent, depending on
particular fluid and geometric parameters [20,29–36]. At
higher Wi, these purely elastic instabilites can develop into
spatiotemporally disordered fluctuations described as
“elastic turbulence” [37–40]. High elasticity numbers are
characteristic of polymeric fluids with long relaxation
times, i.e., those with viscous solvents, high molecular
weights, and relatively high concentrations, at small geo-
metric length scales. However, for flows of highly dilute
polymer solutions in low viscosity solvents in larger length
scale flow configurations, typical of drag-reduced flows,
inertia is not negligible (0 < El≲ 1) and the flow can be
termed “inertioelastic” (or equivalently “elastoinertial”). In
this case there is a complex interaction and competition
between inertial and elastic effects that remains to be fully
described and understood.
For flow in a macroscale pipe, for which the transition

to sustained turbulence occurred at Re ≈ 2000 in the
Newtonian case, Samanta et al. showed that the transition
became delayed to progressively higher Re as the polymer
concentration was increased [4]. However, they observed a
new type of turbulent fluctuation termed elastoinertial
turbulence (EIT) due to the onset of an elastic instability
driven by polymeric stresses (though for non-negligible
inertia), for which the onset Re decreased significantly as
the polymer concentration increased. As Re was increased
beyond the onset of the instability, the measured friction
factor directly approached the maximum drag-reduction
asymptote [2], without any excursion towards the Blasius
friction factor scaling expected for Newtonian turbulence.
Furthermore, numerical simulations of the flow structures
and dynamics showed that as the maximum drag-reduction
asymptote was approached, streamwise-oriented vortices
characteristic of Newtonian turbulence were suppressed.
By using our cross-slot-based flow system to make direct

measurements of the axial vorticity as we systematically
vary both Re and El, we shed insights on possible
mechanisms for the vortex suppression observed in the
drag-reduced state of EITat the scale of a single streamwise
vortex. We manipulate El via control of the polymer
concentration and the solvent viscosity, and by character-
izing our model fluids in this way, rather than simply using
polymer concentration, we are able to collapse data for the
critical Re and Wi conditions in a highly generalized
dimensionless form. Complementary numerical simula-
tions using a finitely extensible nonlinear elastic (FENE)
dumbbell model provide near-quantitative agreement with
the experiments and furnish vital additional information not
available from the experiment on the spatial distribution of
elastic stress due to polymer stretching in the complex 3D
flow field. We are thus able to strengthen the links between,
and suggest clear potential mechanisms for, the onset of
inertioelastic instabilities and the suppression of stream-
wise vorticity observed in drag-reduced flows.

FIG. 1. The cross-slot geometry, where inflow is along the
y direction (indicated by the red arrows) and outflow is along the
x direction (indicated by the blue arrows). (a) Schematic diagramof
a cross-slot device showing the characteristic channel dimensions
and the coordinate system, with origin at the geometric center of
the crossing channels. A spiral vortex forms along the x axis for
Re > Rec. (b) A scheme illustrating a design for a microfluidic
cross-slot device allowing direct observation of the z-y plane at
x ¼ 0. The device is vertically mounted on an inverted microscope
with a long working distance lens, enabling a direct view of the
stagnation point region at the center of the geometry where the
spiral vortex instability forms. (c) A prototype microfluidic cross-
slot device for illustrative purposes (with channel dimensions
w ¼ d ¼ 1 mm), fabricated in fused silica using selective laser-
induced etching: scale bar 5 mm. (d) Photograph illustrating the
experimental setup with the cross slot mounted on an inverted
microscope.
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We note that apart from having potential to model
particular aspects of turbulence, cross-slot flows are also
of significant fundamental interest and practical importance
in their own right. The device has been instrumental to
furthering the understanding of polymer dynamics in strong
flows [41–45], and as a consequence has become widely
considered as a benchmark flow for the study of complex
fluids. The device is also a component of central impor-
tance in a range of both fundamental and applied micro-
fluidic technologies [19,46–52]. To ensure that such
experiments are conducted under well-defined conditions,
it is clearly of great importance to establish stability criteria
for cross-slot flows. Our new results fill a significant gap in
the literature between the purely inertial [18] and purely
elastic regimes (e.g., Ref. [29]) and link the two by showing
how the instability is transformed from an inertia-dominated
to an elasticity-dominatedmode asEl is increased. The cross-
slot device is considered a canonical planar intersecting
geometry with a free stagnation point and we expect our
results to have a wide relevance to more general flows of
weakly elastic fluids in geometries characterized by colliding
fluid streams and internal stagnation points (e.g., Refs. [53–
57]). Further, the experimental methods we present are
readily transferable to the study of 3D and time-dependent
flows and vortex dynamics in other geometries apart from the
cross slot, and so are expected to have wide interest and
applicability.

II. METHODS

A. Device fabrication

A microfluidic cross-slot device, with dimensions of
d ¼ w ¼ 440� 5 μm and an aspect ratio α ¼ w=d ¼ 1,
was fabricated using the state-of-the-art “LightFab” 3D
printer (LightFab GmbH, Germany), which utilizes the
technique of selective laser-induced etching [58]. Laser
writing is performed in bulk fused silica followed by
chemical etching in KOH (at 80 °C, in an ultrasonic bath).
The laser-modified glass is etched at a rate of 100 μm=h,
which is 1000 times faster than the etching rate of the
unmodified glass. The glass device [Fig. 1(c)] is made
within one piece of transparent, nonporous, nonflexible
substrate with high resolution [∼Oð1 μmÞ] and can endure
the use of organic solvents, high pressures, and high
temperatures, if required. The device inlet lengths are set
to be 13 mm, giving a high ratio (≈30) between the inlet
length and the channel width in order to allow flow to
become fully developed before the fluid arrives at the center
of the cross-slot geometry. The outlets are designed to be as
long as possible (6 mm), while still allowing imaging to be
performed in the y-z center plane (at x ¼ 0) with a long
working distance microscope objective.
Flow within the glass microfluidic device is driven using

four individually controlled servo-driven neMESYS syringe
pumps (Cetoni GmbH, Germany) fitted with Hamilton

Gastight syringes and operating at a minimum of 10×
(and typically > 50×) the specified lowest “pulsation-free”
dosing rate. Two of the pumps drive fluid into the two
opposed inlets, while the other two pumps withdraw fluid
simultaneously from the two outlets of the device (all at an
equal volumetric flow rate Q). In order to minimize system
compliance, connections between the syringes and the fluidic
device are made with rigid polyethylene tubing.

B. Flow field measurements

Quantitative measurements of the flow field are made in
the y-z center plane (x ¼ 0 plane) of the cross-slot device
(Fig. 1) using a microparticle image velocimetry (μ-PIV)
system (TSI Inc., MN) [59,60]. For this purpose, test fluids
are seeded with fluorescent particles (PS-FluoRed,
MicroParticles GmbH, Germany) of diameter dp ¼
2.08 μm with excitation and emission wavelengths of
530 and 607 nm, respectively. The microfluidic device is
mounted on the stage of an inverted microscope (Nikon
Eclipse Ti), and the x ¼ 0 plane is brought into focus using
a long working distance lens (Nikon Plan Fluor, 10×,
NA ¼ 0.3, Working Distance ¼ 16 mm); see Fig. 1(d).
With this combination of particle size and objective lens,
the measurement depth over which particles contribute to
the determination of the velocity field is δxm ≈ 40 μm
(δxm < 0.1w) [59].
The μ-PIV system is equipped with a 1280 × 800 pixel

high-speed CMOS camera (Phantom MIRO), which oper-
ates in frame-straddling mode and is synchronized with a
dual-pulsed Nd∶YLF laser light source with a wavelength
of 527 nm (Terra PIV, Continuum Inc., CA). The laser
illuminates the fluid with pulses of duration δt < 10 ns,
thus exciting the fluorescent particles, which emit at a
longer wavelength. Reflected laser light is filtered out by a
G-2A epifluorescent filter so that only the light emitted by
the fluorescing particles is detected by the CMOS imaging
sensor array. Images are captured in pairs (one image for
each laser pulse), where the time between pulses Δt is set
by the instrument operator such that the average particle
displacement between the two images in each pair is around
4 pixels. Image pairs are binned into interrogation areas of
32 × 32 pixels and cross-correlated using a standard μ-PIV
algorithm (TSI Inc.) to obtain velocity vectors spaced on a
square grid of 12.8 × 12.8 μm in y and z. The typical error
on individual velocity vector components is around
�0.05U, where U ¼ Q=wd is the average flow velocity in
the channel.

C. Experimental protocol

Initially, in order to identify the approximate value of Rec
for each test fluid, several images are captured for fixed Re
applied below and above the transition. Next, more detailed
quasistatic experiments are conducted over a range of
Reynolds numbers spanning Re < Rec to Re > Rec by
programing the syringe pumps to perform ramps up and
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down in Re with small step increases or decreases of
0.1 ≤ Re ≤ 0.4, depending on the precise fluid system
under study. Typically 5 s of steady flow is imposed at each
increment in Re. We point out that this is much longer than
the diffusion time scale of the least viscous sample (water)
tested in our device, which is given by td ¼ w2=ν ≈ 0.2 s.
We have also carried out dynamic experiments for both step
increases and step decreases in Re, showing that steady-
state conditions are achieved in either case within approx-
imately 0.5 s (results not shown here). All experiments are
carried out at 25� 1 °C.
Image pairs are captured at a rate of 5 Hz using the μ-PIV

system, typically yielding 25 velocity vector fields per step
in Re. Avoiding data captured during the transient at the
start of each Re step, velocity fields from each step are
averaged using the software Tecplot Focus (Tecplot Inc.,
WA) and further processed to obtain streamline projections
on the x ¼ 0 plane and the axial (x component) of the
vorticity, ωx ¼ ð∂vz=∂yÞ − ð∂vy=∂zÞ, where vz and vy are
the z and y components of the local flow velocity vectors,
respectively.
It is worthwhile to mention that for each test fluid the

range of Re we can examine in this way is restricted
fundamentally by limitations of the μ-PIV system, which
does not allow the value of Δt to be varied during a given
experiment. Given a fixed Δt, if the flow velocity (or Re)
during an experiment becomes too low, particles are
displaced insufficiently in the time between laser pulses
to obtain reliable vectors. Conversely, if the flow velocity
becomes too high, then too many particles can become
displaced into neighboring interrogation areas between
laser pulses and the cross-correlation algorithm again fails
to resolve vectors. Ideally, for optimal function of the
algorithm, the particle displacement between laser pulses
should be around 4 pixels. In our experiment Δt must
therefore be carefully selected in order that velocity fields
can be resolved reliably over a range of flow rates that spans
the onset of the flow instability.

D. Materials

The effects of increasing elasticity on the onset and
development of flow instability in the cross-slot device are
studied using solutions of a high molecular weight poly
(ethyleneoxide) (PEO) (Mw ¼ 4MDa, Sigma Aldrich) over
a range of concentrations 0.0001 ≤ c ≤ 0.3 wt% (i.e., 1 ≤
c ≤ 3000 parts per million by weight). Solutions are pre-
pared in two different solvents: deionized water and an
aqueous solution of 8 wt% of a low molecular weight poly
(ethyleneglycol) (PEG) (Mw ¼ 8 kDa, Sigma Aldrich).
At this molecular weight, 8 wt % aqueous PEG behaves
as a Newtonian fluid with a viscosity approximately 4 times
greater than water [61]. Stock PEO solutions are prepared by
dispersing a weighed quantity of the polymer powder in the
appropriate quantity of solvent. To assist dissolution while
avoiding mechanical degradation of the PEO, only low-
speed (30 rpm) magnetic stirring is applied. Dissolution is

allowed to proceed until no refractive index variations or
residual gels are visible in the fluid (typically 24–48 h).
Subsequently, the fluids are stored at 4 °C and are usedwithin
a maximum of 4 weeks. More dilute solutions are prepared
by dilution of the stock fluids in the appropriate quantity of
solvent.

E. Test fluid characterization

Steady flow curves of shear viscosity η as a function of
the imposed shear rate _γ are measured for the polymer
solutions and the solvents using a stress controlled rota-
tional rheometer (Anton Paar, MCR 502) with a 50-mm
diameter 1° cone-and-plate fixture. The results are pre-
sented in Fig. 2. Most of the fluids are essentially non-
shear-thinning over the imposed range of shear rates;
however, for the two highest concentrations of PEO in
water a mild reduction in viscosity is observed as the shear
rate increases. To estimate the viscosity of these shear-
thinning fluids at arbitrary shear rates imposed within the
microfluidic channel, the shear-thinning flow curves are
fitted with a Carreau-Yasuda generalized Newtonian fluid
(GNF) model [62]:

η ¼ η∞ þ η0 − η∞
½1þ ð_γ=_γ�Þa�ð1−nÞ=a ; ð1Þ

where η0 and η∞ are the zero and infinite shear rate
viscosities, _γ� is the characteristic shear rate for the onset
of shear thinning, n is the power-law index in the shear-
thinning region, and a is a parameter that controls
the sharpness of the transition to the power-law regime.

FIG. 2. Shear viscosity measurements with a stress-controlled
rotational rheometer (Anton Paar MCR 502) for PEO solutions of
various concentrations in two different solvents: water and 8 wt %
aqueous PEG. Curve fitting for the shear-thinning fluids is done
with the Carreau-Yasuda GNF model [Eq. (1)]. The diagonal
dashed line represents 10× the minimum sensitivity of the
rheometer.
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The values of these parameters for the two shear-thinning
fluids are provided in Table I.
As far as possible, the relaxation times λ of the test fluids

are measured using capillary breakup extensional rheom-
etry (CaBER, Thermo Scientific). For many of the more
dilute PEO solutions, the relaxation times are too low to be
measured accurately using the standard CaBER technique
and therefore the more sensitive slow retraction method
(SRM) is employed [63]. Two of the fluids (0.001 wt %
PEO in water and 0.0003 wt % PEO in PEG) are measured
using both techniques and we obtain good agreement. For
the lowest concentration (0.0003 wt %), PEO in water, λ
could not be reliably measured even by the SRM and
therefore we estimate the relaxation time of this fluid using
the Zimm formula:

λZimm ¼ F
½η�Mwηs
NAkBT

; ð2Þ

where Mw ¼ 4 × 106 g mol−1 is the quoted PEO molecu-
lar weight, NA is the Avogadro constant, kB is the
Boltzmann constant, T is the absolute temperature,
ηs ¼ 0.94 mPa s is the measured solvent viscosity, and
the front factor F ¼ 0.463 [64]. The intrinsic viscosity
½η� ¼ 1.323 m3 kg−1 is calculated according to the Mark-
Houwink-Sakurada correlation [65]. According to this
calculation the longest relaxation time of the PEO molecule
in water is λZimm ≈ 1 ms.
The characteristic relaxation times of all the test fluids

are summarized in Table II, along with their measured
zero shear viscosities and the “solvent-to-total viscosity
ratios” β¼ηs=η0, where η0¼ηsþηp and ηp is the polymer
contribution to the viscosity.
It is apparent by inspection of Fig. 2 and Table II that by

using the more viscous aqueous solvent containing 8 wt %
PEG, we are able to increase the relaxation time of the
fluid while maintaining the viscosity ratio close to 1 and
avoiding significant shear-thinning effects, which occur
for higher concentrations of PEO in water.
Also shown in Table II is the ratio of the polymer

concentration c to the overlap concentration c�. The over-
lap concentration for PEO in the aqueous-based solvents
used here is estimated based on space filling of polymer
coils with a radius of gyration Rg [66]:

c� ¼ 3Mw

4NAπR3
g
; ð3Þ

where the value of Rg ¼ 152 nm is estimated according to
previous results of light scattering experiments [67].
Equation (3) provides a value of c� ≈ 0.045 wt%.
The equilibrium root-mean-square end-to-end separation

of the PEO molecule is given by hr02i1=2 ¼
ffiffiffi
6

p
Rg ¼

372 nm. The contour length may be estimated by
Lc ¼ lMw=m ¼ 25.4 μm, where l ¼ 0.28 nm and m ¼
44 Da are the length and mass of the PEO repeat unit,
respectively [68]. The ratio L ¼ Lc=hr02i1=2 ≈ 70 indicates
the highly extensible nature of this high molecular weight
PEO sample. This estimate of L is used to compute an
appropriate extensibility parameter (L2 ¼ 5000) used for
subsequent numerical simulations; see Sec. II H.

F. Dimensionless numbers

Here, we define the dimensionless numbers that are used
to characterize the inertial, viscous, and elastic forces
throughout both the experiments and numerical simula-
tions. The Reynolds number Re describes the ratio of
inertial to viscous forces in the flow and is defined as

Re ¼ ρUw
ηð_γÞ ; ð4Þ

where ηð_γÞ is the shear-rate-dependent shear viscosity and
ρ is the fluid (solvent) density.
The Weissenberg number describes the relative impor-

tance of elastic to viscous forces in the flow and (in the
absence of a solvent viscosity) can be expressed as
Wi ¼ N1=τxy ¼ λ_γ. Here, N1 ¼ ðτxx − τyyÞ is the first
normal stress difference, τxy is the shear stress, and _γ ¼
U=w is the characteristic shear rate within the flow channel
[69]. In this work we use an “effective” Weissenberg
number Wieff, which is scaled using the solvent-to-total
viscosity ratio β in order to account for the solvent
contribution to τxy, but not to N1:

Wieff ¼ λ_γð1 − βÞ: ð5Þ

The elasticity number is given by the ratio between Wieff
and Re and therefore describes the relative importance of
elastic to inertial forces:

El ¼ ληð_γÞ
ρw2

ð1 − βÞ: ð6Þ

For constant viscosity fluids (such as the majority of our
test solutions and the simulations), El is independent of the
applied shear rate. Values of El for our test fluids in the
microfluidic cross-slot device are provided in Table II.

G. Data analysis using the Landau model

Velocity fields obtained in the x ¼ 0 plane of the cross-
slot device using μ-PIV are used to locally evaluate the

TABLE I. Parameters extracted by fitting the Carreau-Yasuda
GNF model [Eq. (1)] to the steady flow curves of the shear-
thinning solutions of PEO dissolved in water.

c [wt %] η0 [mPa s] η∞ [mPa s] _γ� [s−1] n a

0.1 3.9 1 22.7 0.83 1
0.3 25 1 12.1 0.71 1
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vorticity in the axial direction ωx ¼ ð∂vz=∂yÞ − ð∂vy=∂zÞ.
Although other possible parameters can be considered [18],
in this work we use the measurement of an increase in the
value of the center point axial vorticity ωxjx¼y¼z¼0 as an
indication of the onset of the inertia-dominated mode of
instability. We define a dimensionless order parameter ψ
for the instability as follows:

ψ ¼ w
U
ωx

���
x¼y¼z¼0

: ð7Þ

For low Re, ψ ¼ 0, but, as Re is increased above Rec, the
value of ψ can bifurcate to one of two stable solutions
(positive or negative) that are expressed by the handedness
of the spiral vortex that is formed. For Newtonian fluids,
this bifurcation can be described using a sixth-order
Landau-type polynomial potential minimized in the follow-
ing form [18]:

ε ¼ Re − Rec
Rec

¼ kψ4 þ gψ2 − hψ−1: ð8Þ

Here, ε is a normalized control parameter and the coef-
ficients g and k determine the shape and order of the
transition. When g > 0, the forward bifurcation is analo-
gous to a second-order phase transition. When g ¼ 0, the
bifurcation at ε ¼ 0 is tricritical, and for g < 0, the
bifurcation turns backwards, analogous to a first-order
hysteretic phase transition. The asymmetric term with
coefficient h accounts for system imperfections that lead
to the selection of a favored handedness of the spiral. In our
particular microfluidic cross-slot device, we believe slight
wall imperfections are responsible for spirals to form with
a favored positive vorticity (i.e., anticlockwise rotation in
our reference frame). In the numerical simulations the

handedness of the spiral is equally likely to occur in either
direction (i.e., the bifurcation is perfect).

H. Numerical method

The numerical investigation of the inertially driven flow
instability is achieved by performing three-dimensional
computational fluid dynamics simulations based on the
finite-volume technique [70]. The flow is considered to be
laminar, incompressible, and isothermal and is governed by
the equations of mass conservation and momentum:

∇ · u ¼ 0; ð9Þ

ρ

�∂u
∂t þ u ·∇u

�
¼ −∇pþ∇ · τ; ð10Þ

where u is the velocity vector, p is the pressure, and τ is the
stress tensor which contains the solvent τs and polymer τp
contributions. Therefore, the stress tensor in the momentum
equation is defined as τ ¼ τs þ τp, where the solvent
component is given by τs ¼ ηsð∇uþ∇uTÞ. To account
for the effects of elasticity, the set of governing equations is
completed with an appropriate constitutive equation for τp.
Here, the modified Chilcott-Rallison model, FENE-MCR,
is employed [71,72]:

τp þ
λ

gðτpÞ
τ∇p ¼ ηpð∇uþ∇uTÞ; ð11Þ

where τ▿p is the upper-convected derivative of the polymeric
component of the stress tensor and gðτpÞ is a function of the
stress tensor, defined as

gðτpÞ ¼
L2 þ ðλ=ηpÞTrðτpÞ

L2 − 3
: ð12Þ

TABLE II. Composition and material parameters of the experimental test fluids at 25 °C.

Solvent c [wt %] c=c� η0 [mPa s] λ [ms] β ¼ ηs=η0 El

Water 0.0003 0.007 0.95� 0.01 1.0a 0.99� 0.01 ð5� 5Þ × 10−5

ηs ¼ ð0.94� 0.01Þ mPa s 0.001 0.02 0.95� 0.01 3.6� 0.3b 0.99� 0.01 ð1.8� 1.8Þ × 10−4

ρ ¼ 997 kgm−3 0.003 0.07 1.02� 0.01 5.0� 0.4b 0.92� 0.01 ð2.1� 0.3Þ × 10−3

β ¼ 1 0.01 0.22 1.12� 0.02 12� 1
c

0.84� 0.02 ð1.1� 0.2Þ × 10−2

0.03 0.66 1.59� 0.02 23� 1 0.59� 0.01 ð7.8� 0.4Þ × 10−2

0.1 2.2 3.90� 0.05 44� 2 0.24� 0.00 0.68� 0.03d

0.3 6.6 25.0� 0.1 84� 4 0.04� 0.00 10.4� 0.5d

8 wt % PEG 0.0001 0.002 3.81� 0.02 2.2� 0.3b 0.97� 0.01 ð8.3� 0.4Þ × 10−4

ηs ¼ ð3.71� 0.01Þ mPa s 0.0003 0.007 3.92� 0.05 12� 1
c

0.95� 0.01 ð1.2� 0.5Þ × 10−2

ρ ¼ 1011 kgm−3 0.001 0.02 4.07� 0.02 28� 1 0.91� 0.01 ð5.2� 0.6Þ × 10−2

β ¼ 1 0.003 0.07 4.90� 0.04 57� 2 0.76� 0.01 0.34� 0.03
aRelaxation time estimated from the Zimm formula [Eq. (2)].
bRelaxation time measured using the slow retraction method (SRM) implemented on a capillary breakup extensional

rheometer (CaBER).
cRelaxation time measured using both standard CaBER and SRM techniques.
dRepresentative El for the fluid calculated based on the zero shear viscosity η0.
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In the above equation, TrðτpÞ refers to the trace operator of
the polymeric stress tensor and L2 is the extensibility
parameter. The latter is employed to relate the maximum
length of a fully extended dumbbell to its equilibrium
length, and here is set to L2 ¼ 5000 to match the molecular
weight of the polymer used in the experiments, as explained
in Sec. II E. This viscoelastic model, valid for dilute
polymer solutions, exhibits constant shear viscosity and
predicts a nonzero, shear-thinning, first normal-stress
coefficient which is controlled by the value of L2 [72].
Moreover, in steady-state extensional flow, as occurs at the
stagnation point in the cross-slot geometry that is examined
here, the extensional viscosity predicted by the model
exhibits a bounded behavior [72,73].
An in-house implicit, time-marching, finite-volume

solver [74,75] is employed in order to numerically solve
the governing equations [Eqs. (9)–(12)]. The solver is
appropriate for collocated numerical grids, with the con-
vective terms in both the momentum and the polymeric
constitutive equation discretized based on the CUBISTA

high-resolution scheme [76]. The diffusive terms are
discretized considering a central-difference scheme, while
the transient terms are evaluated using a first-order implicit
Euler scheme. It should be noted that, since we are
interested in only the steady-state solution, the first-order
accuracy discretization of the transient term is not restric-
tive, since the time derivative vanishes when steady state is
reached.
The bulk of our simulations are performed at constant

Wieff (fixed in the range 0.01 ≤ Wieff ≤ 0.12) on two fluids
described by high viscosity ratios (β ¼ 0.90 and β ¼ 0.95)
representative of the experimental samples. By progressive
reduction of the Reynolds number from an initially asym-
metric solution, a value is obtained for the lower critical
Reynolds number Re�c for which the flow regains symmetry.
Since Wieff is fixed while Re is varied, these simulations
involve a varying elasticity number El. In order to more
closely mimic some of the experimental (i.e., fixed El)
conditions, a few simulations are performedunder conditions
of constant elasticity number (El ¼ 0.00018 with β ¼ 0.99,
El ¼ 0.00083 with β ¼ 0.97, El ¼ 0.0021 with β ¼ 0.95,
and El ¼ 0.0042 with β ¼ 0.90). In these four cases, ramps
are performed both up and down in Re in order to examine
whether the hysteresis observed (or not) experimentally can
be reproduced by themodel.We reiterate for clarity that all of
the flow fields solved numerically are steady-state solutions.

III. RESULTS AND DISCUSSION

A. Initial experimental observations of inertial
and elastic instabilities

Before proceeding to conduct detailed flow velocimetry
experiments, we first perform visualizations of dye-
advection patterns as observed in the x-y center plane of
the cross slot at z ¼ 0. For this we employ a differential

spinning disk (DSD2) confocal microscope (Andor
Technology Ltd, Belfast, UK) and a range of aqueous
PEO solutions with various El. A solution containing the
fluorescent dye rhodamine B (10 μM) is introduced
through one inlet of the channel while an undyed solution
is introduced through the other inlet. We confirm that the
addition of dye at this concentration has a negligible effect
on the physical properties of the fluids.
As shown in Fig. 3(a), at low Re (<10) a straight and

symmetric interface is observed between the dyed and
undyed fluid streams entering the cross slot. Similar
symmetric flow patterns are observed for all the fluids
(Newtonian and polymeric) at this low Re. By contrast,
Fig. 3(b) shows what is observed for the Newtonian fluid
(water in this case) when a Reynolds number of Re ¼ 80 is
imposed. Here, a distinctive banded structure of alternating
bright (dyed) and dark (undyed) regions is observed.
This pattern results from the confocal microscope seeing
a slice taken along the z ¼ 0 plane through the spiral vortex
that has formed, as was similarly shown by Ait Mouheb
et al. [77]. For a PEO solution of c ¼ 0.001 wt% and El ¼
0.00018 at Re ¼ 79 [Fig. 3(c)], the dye-advection pattern is
similar to that of water at Re ¼ 80 [Fig. 3(b)]. As the PEO
concentration is increased to c ¼ 0.01 wt% (El ¼ 0.011),
the structure observed at Re ¼ 33 [Fig. 3(d)] is significantly

FIG. 3. Confocal microscope images of dye-advection patterns
taken in the x-y center plane (z ¼ 0 plane) of the cross-slot device
for aqueous PEO solutions of various El. Fluid dyed with
rhodamine B enters from the left-hand inlet channel and undyed
fluid enters through the right-hand inlet channel. (a) Stable flow
with a symmetric interface (Newtonian or viscoelastic, Re < 10).
(b) Inertial instability of Newtonian fluid (El ¼ 0, Re ¼ 80).
(c) Inertioelastic instability with 0.001 wt % PEO solution
(El ¼ 0.00018, Re ¼ 79). (d) Inertioelastic instability with
0.01 wt % PEO solution (El ¼ 0.011, Re ¼ 33). (e) Elastic
instability with 0.1 wt % PEO solution (El ¼ 0.68, Re ¼ 49).
(f) Elastic instability with 0.3 wt % PEO solution (El ¼ 10.4,
Re ¼ 15). See also the video corresponding to (f) contained in the
Supplemental Material [78].
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less clear compared with Figs. 3(b) and 3(c). This is an
indication that the flow has become unsteady under these
conditions, varying spatiotemporally on a time scale shorter
than the image acquisition. At still higher polymer
concentrations, c ¼ 0.1 wt% [El ¼ 0.68, Fig. 3(e)] and
c ¼ 0.3 wt% [El ¼ 10.4, Fig. 3(f)], the banded pattern
indicative of the vortex formation is not observed at all,
and instead a different mode of instability emerges. In these
images we see that most of the dyed fluid flows out through
the upper exit channel, while most of the undyed fluid flows
out through the lower exit channel. This flow asymmetry has
been reported before and it is considered to be an elasticity-
dominated flow instability [29,31,32,35,36]. We note for
completeness that the elastic mode observed in this case is
unsteady in time. A video showing this unsteadiness,
corresponding to the case shown in Fig. 3(f), is available
as Movie M1 in the Supplemental Material [78].

B. Experimental and numerical vorticity fields

Next, for more quantitative and detailed characterization
of the transition to the inertial flow instability, we conduct
μ-PIV measurements in the channel cross section at the
y-z center plane (x ¼ 0 plane). In order to validate our
technique against previous measurements, we first conduct
tests with water for increasing and decreasing Re ramps.
The results are shown in Fig. 4. Here, for increasing Re,

starting at Re ¼ 37.1 [Fig. 4(a)] the flow is steady and
symmetric. The two incoming fluid streams from positive
and negative y directions meet at y ¼ 0 and form an
essentially straight interface along the z axis. At this
Reynolds number, the four cells of Dean vortices previ-
ously reported in the numerical simulations of Haward
et al. [18] are already apparent in the four quadrants of the
channel cross section. In Fig. 4(a), the four Dean vortices
are relatively balanced and, hence, the interface is straight
and symmetric. As Re is increased [Figs. 4(b) and 4(c)] the
flow remains approximately symmetric, with perhaps some
tilt of the interface between incoming fluid streams with
respect to the y and z axes. This tilt results from an
imbalance between the two diagonally opposed pairs of
corotating Dean vortices and leads to a small nonzero value
of the center point axial vorticity. Finally, for Re > Rec ≈
40 a fully developed steady spiral vortex forms, centered on
y ¼ z ¼ 0 and rotating in the anticlockwise direction about
the x axis [Fig. 4(d)]. At this stage, the center point axial
vorticity jumps greatly in magnitude. As expected for a
Newtonian fluid in a cross-slot device of square cross
section (i.e., α ¼ 1) [18], hysteresis is observed in the
transition. When the Reynolds number is slowly decreased
[Figs. 4(e)–4(h)], we find that the flow recovers symmetry
only when Re < Re�c ¼ 38.8. In Movie M2 in the
Supplemental Material, we present a video depicting the
formation and disappearance of the vortex as Re is ramped

FIG. 4. Experimental μ-PIV images in the x ¼ 0 plane made using water seeded with fluorescent microparticles. Panels (a)–(d) show
results for progressive increases in Re from below the transition, while panels (e)–(h) show the results for progressively decreasing Re
from above the transition. (a),(e) Re ¼ 37.1; (b),(f) Re ¼ 39.2; (c),(g) Re ¼ 40.0; (d),(h) Re ¼ 41.2. The color scale indicates the local
value of the normalized axial vorticity.
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up and then down over the full range of Re tested [78].
These findings are in close agreement with experimental
and numerical observations made on a similar system by
Haward et al. [18]. However, we point out that in their work
hysteresis in the transition was elucidated from numerical
simulations only. In their experiments, which employed
laser-scanning confocal microscopy to visualize dye-
advection patterns in the channel cross section, performing
quasistatic variations in theRewas not possible and therefore
hysteresis could not be resolved [18]. Furthermore, compar-
isons between the results of the experiments and the
numerical simulations were made using different order
parameters: a specific local velocity component in the case
of the numerical simulations and a dilution-based mixing
parameter in the case of the experiments [18]. Here, not only
can we resolve the hysteresis experimentally, but we also
directly obtain quantitative spatially resolved information on
the velocity field, which can be directly compared with our
numerical simulations, as we demonstrate in the following.
After confirming that our new experimental setup is valid

in comparison with previous experiments with Newtonian
fluids, we test several aqueous PEO solutions of different
polymer concentrations with different El. Ourmeasurements
focus on theRe range that is slightly belowand slightly above
the flow transition from stable symmetric to asymmetric flow
and the formation of a central vortex. Figures 5(a)–5(c) show

a series of images for fluids of progressively increasing
El taken at a specific value of the dimensionless control
parameter, ε ¼ ðRe − RecÞ=Rec ¼ 0.15. From the images it
is strikingly clear that, under comparable flow conditions
beyond the onset of instability, the induced vorticity
decreases significantly as the fluid elasticity is increased.
In Figs. 5(d)–5(f), we present vorticity fields resulting from
numerical simulations with the FENE-MCR model under
conditions of constant El corresponding to Figs. 5(a)–5(c),
respectively. There is a remarkably good, near quantitative,
agreement between the experiment and the numerical
simulations.
In Fig. 6, we present experimental vorticity fields obtained

at ε ¼ 0.15 for two additional aqueous PEO solutions of
higher polymer concentration and elasticity (c ¼ 0.01 wt%,
El ¼ 0.011, and c ¼ 0.03 wt%, El ¼ 0.078). Under these
conditions there is unsteadiness in the flow; the position of
the vortex and the magnitude of the vorticity fluctuates
slightly in time. Since numerical simulations are restricted to
steady-state solutions (see Sec. II H), comparable numerical
results at these elasticity numbers are not available.
The images shown in Fig. 6 are in fact averages made of
15 individual vector fields captured at a rate of 5Hz over a 3-s
time interval. In Movies M3 and M4 in the Supplemental
Material,we present the respective sequences of 15 images in
video format [78]. Note that the spatiotemporal fluctuations

FIG. 5. A comparison between experimental measurements and numerical simulations of the dimensionless vorticity (ωxw=U) over
the x ¼ 0 plane for fluids of various elasticity number El. Top panels show experimental μ-PIV images obtained at the same value of the
dimensionless order parameter ε ¼ 0.15 [Eq. (8)]: (a) c ¼ 0 wt% PEO, Re ¼ 47.2; (b) c ¼ 0.001 wt% PEO, Re ¼ 37.0;
(c) c ¼ 0.003 wt% PEO, Re ¼ 28.3. Bottom panels show converged solutions obtained from constant El numerical simulations
with the FENE-MCR model and L2 ¼ 5000 at similar Reynolds numbers to the experiments: (d) β ¼ 1 (Newtonian), Re ¼ 47.0;
(e) β ¼ 0.99, Re ¼ 40.0; (f) β ¼ 0.95, Re ¼ 26.2. The color scale indicates the dimensionless vorticity. Superimposed streamline
projections exhibit the directionality of the secondary flow in the cross section.
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we report in these two fluids with El ≪ 1 are completely
absent in a Newtonian fluid at an equivalent value of
ε ¼ 0.15, for which both experiments and simulations
clearly show the flow remains steady and laminar.
In Fig. 7, we present the order parameter ψ [Eq. (7)] as

a function of the applied Reynolds number for a range
of aqueous PEO solutions with elasticity numbers
0 ≤ El ≤ 0.68. Here, closed symbols represent data
obtained by applying quasistatic increases in Re, while
open symbols represent data obtained from a subsequent
quasistatic decreasing ramp in Re. For each fluid, as Re is
progressively increased starting from a low value, ψ
initially adopts a value close to zero, indicating that the
flow field is symmetric. As a fluid-dependent critical value
Rec is reached, the flow field adopts an asymmetric state,
resulting in the measurement of a nonzero axial vorticity ωx
at the center point (y ¼ z ¼ 0) and, hence, a nonzero value
of the order parameter ψ. For subsequent further increases
in Re above Rec, the measured center point vorticity
continues to increase towards a plateau value as the central
spiral vortex develops. For subsequent quasistatic reduc-
tions in Re starting from a high value (i.e., Re > Rec), the
center point vorticity also reduces, following the same
curve defined by the data for quasistatic increases in Re.
For some of the experimental cases (though not all), there is
hysteresis in the transition and Re must be reduced to a
value Re�c < Rec before the flow field recovers symmetry.
The occurrence (or otherwise) of hysteresis appears to have
a complex nonmonotonic dependence on the concentration
of PEO in the polymer solution, or on the elasticity number
of the experiment. We return to this point in more detail in a
subsequent section of the discussion. We note that in the
numerical simulations hysteresis is always observed in the
transition, and that the value of Rec tends to be slightly
higher than what is observed in the experiments. We find
that the flow transition from symmetric to an asymmetric

state in the simulations for increasing Re depends on the
level of numerical noise (e.g., mesh size, times step).
However, for decreasing Re ramps, the value obtained
for Re�c is more reliable numerically and more consistent
with the experiments, as was also found in our previous
work [18]. For this reason, further comparison between the
experimental and the numerical results will be made on the
basis of decreasing Re ramps. Despite the aforementioned
minor differences, there is clearly a good general consis-
tency between the experimental and the numerical data
presented in Fig. 7. It is immediately obvious from both
data sets that, as El is increased, the value of Rec is
decreased. In addition, the normalized center point vorticity
tends to approach a reduced plateau value with increasing
El. In fact, in our experiments with a c ¼ 0.1 wt% PEO
solution (El ¼ 0.68) we do not observe any increase in the
center point vorticity before the onset of the elasticity-
dominated flow asymmetry [as illustrated by Fig. 3(e)].
Curve fitting of the data in Fig. 7 at each fixed value of El is
performed using the Landau model [Eq. (8)].
Additional μ-PIV measurements are performed using

solutions of PEO in the more viscous solvent composed of
8 wt % aqueous PEG. This allows us to formulate fluids
with relatively long relaxation times while avoiding the
effects of shear thinning, which occur in the purely aqueous
PEO solutions at higher concentrations. Thus, we are able
to clearly isolate the importance of fluid elasticity from
shear thinning in the polymer solutions. Figure 8(a) shows
a sequence of four images taken over a range of Re
spanning the onset of the transition for the flow of a c ¼
0.0001 wt% solution of PEO in the 8 wt % PEGNewtonian

FIG. 6. Experimental dimensionless vorticity fields in the x ¼ 0
plane at ε ¼ 0.15 for (a) c ¼ 0.01 wt% PEO in water
(El ¼ 0.011, Re ¼ 19.7) and (b) c ¼ 0.03 wt% PEO in water
(El ¼ 0.078, Re ¼ 17.2). Under these conditions the flow
exhibited mild unsteadiness and the images shown are averaged
over 15 individual fields. The color scale indicates the dimen-
sionless vorticity (ωxw=U). Superimposed streamlines exhibit the
directionality of the flow. See also the videos contained in the
Supplemental Material [78]. FIG. 7. Order parameter ψ as a function of Re for solutions of

PEO in water, with the viscosity ratio spanning 0.24 < β < 1 for
the experimental fluids. Closed symbols indicate data obtained
with increasing flow rates and open symbols indicate data
obtained with decreasing flow rates. Data are fitted with the
Landau model [Eq. (8), solid lines]. Numerical data are obtained
with the FENE-MCR model with L2 ¼ 5000 and constant El.
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solvent. Here, we only show data obtained for quasistatic
decreases in Re. This sequence can be compared with
Figs. 4(e)–4(h) for the flow of a Newtonian fluid, revealing
marked differences even at this low polymer concentration
(only 1 part per million). The flow field in the PEO solution
remains asymmetric down to a significantly lower Reynolds
number than for the Newtonian fluid, and the vorticity
intensification at higher Re is noticeably perturbed in the
weakly elastic fluid. Figure 8(b) shows a sequence of images
obtained from a numerical simulation designed to mimic the
experiment shown in Fig. 8(a) and, once again, results in
generally good qualitative agreement.
Differences between the low concentration PEO solu-

tions and the 8 wt % PEG Newtonian solvent are clearer to
see in Fig. 9, which shows the order parameter ψ measured
for increasing and decreasing Re and fitted using the
Landau model given in Eq. (8). The 8 wt % PEG solvent
behaves quite similarly to the pure water (Fig. 7), showing
subcritical behavior with a characteristic hysteresis in the
bifurcation. The critical Reynolds number for quasistatic
increases in Re is Rec ¼ 40.0, while for decreasing Re the
transition occurs for Re�c ¼ 38.0. Further, for Re > Rec the
dimensionless vorticity for both water and 8 wt % aqueous
PEG approach similar values. The encouraging self-similar
behavior displayed by the two Newtonian fluids gives good
confidence that we are correctly nondimensionalizing our
order and control parameters. Also (similarly to the experi-
ments performed using PEO solutions prepared in pure
water), as the elasticity number increases, the bifurcation
occurs at a progressively lower value of Re and a general

reduction in the maximum center point vorticity occurs.
At the highest concentration of PEO in the aqueous 8 wt %
PEG solvent that we measure (0.003 wt %, El ¼ 0.34), we
observe no clear increase in the value of ψ over the range of

FIG. 9. Order parameter ψ as a function of Re for solutions of
PEO in 8 wt % PEG, with the viscosity ratio spanning 0.91 <
β < 1 for the experimental fluids. Closed symbols indicate data
obtained with increasing flow rates and open symbols indicate
data obtained with decreasing flow rates. Data are fitted with the
Landau model [Eq. (8), solid lines]. Numerical data (decreasing
Re ramp only) are obtained with the FENE-MCR model with
L2 ¼ 5000 and constant El.

FIG. 8. A comparison between (a) experimental measurements with a c ¼ 0.0001 wt% solution of PEO in 8 wt % PEG ( β ¼ 0.97,
El ¼ 0.00083) and (b) numerical simulations with L2 ¼ 5000 and β ¼ 0.97 at constant El ¼ 0.00083. The color scale indicates the
dimensionless vorticityωxw=U in the x ¼ 0 plane. Projected streamlines show the directionality of the secondary flow in the cross section.
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Re we test. Instead, we observe the elasticity-dominated
mode of instability characterized by the asymmetric flow
state, as exemplified by Figs. 3(e) and 3(f) (data not shown).

C. Detailed analysis and phase diagrams

In this section, we summarize the results obtained from
both our experiments and our numerical simulations in the
form of phase diagrams in dimensionless parameter space.
In Fig. 10, we present the values of the lower critical
Reynolds numbers Re�c for the inertial flow transition as a
function of the elasticity number El. Over the full range of
El for which inertia-dominated transitions occur, the values
of Re�c obtained from both experimental fluid systems
(water and 8 wt % PEG solvents) collapse well onto a
single curve described by a strongly decaying exponential
function of El: Re�c ¼ 25 expð−250ElÞ þ 15. Furthermore,
at the low values of El < 0.01, which give rise to a steady
flow bifurcation, the critical Reynolds numbers obtained
from the numerical simulations also collapse onto the
same curve.
The exponential decay of Re�c with increasing El

indicates a system in which the sensitivity to elasticity
increases exponentially as El is reduced. This suggests the
potential utility of the system as a novel rheometer for
weakly elastic fluids. The concept has some analogy with
the microfluidic serpentine channel rheometer of Zilz et al.,
[79], but here exploiting an inertia-dominated as opposed to
a purely elastic instability.
We remark on the similarity between the form of Fig. 10

and the reduction in critical Reynolds number with increas-
ing polymer concentration reported for the onset of EIT by

Samanta et al. [4], although the onset Reynolds number for
vortex formation in the cross slot is around 2 orders of
magnitude smaller than that for EIT.
The critical Reynolds number for the onset of inertioe-

lastic flow instabilities in T-shaped intersecting channels
with two inlets of aspect ratio α ¼ 1 and one outlet of α ¼ 2
has also been found to be dependent on El [80]. In the
Newtonian case, flow in such channels becomes unstable,
resulting in the formation of vortices extending along the
outlet channel when the Reynolds number exceeds a critical
value Rec ≈ 100 [53,54,81]. There are rather few numerical
or experimental studies of non-Newtonian flows in
T channels [80,82–84]. However, using the upper-
convected Maxwell model, Poole et al. showed numerically
that low levels of fluid elasticity could cause a reduction
in Rec [80]. With highly elastic fluids (El ¼ 861), Soulages
et al. [83] reported flow asymmetries in microfluidic
T channels that appear closely related to the purely elastic
asymmetries seen in cross-slot devices [31,32]. These
limited reports suggest that the effects of increasing fluid
elasticity may be similar in various different types of
intersecting geometries containing stagnation points.
As we mention in Sec. III B in the discussion of Figs. 7

and 9, the Newtonian solvents and some of the polymeric
test fluids show hysteretic behavior with a critical Reynolds
number that depends on whether the flow rate is ramped up
or down quasistatically. Figure 11 summarizes the appear-
ance of hysteresis in the transition for all the experimental
test fluids as a function of the elasticity number. Here, we
examine the ratio of the parameters g and k obtained by
fitting the Landau model to the experimental data. The ratio
g=k has a negative value for Newtonian fluids (El ¼ 0),
indicating a subcritical transition with hysteresis. As El
increases, the size of the hysteresis loop decreases and the

FIG. 10. Lower critical Reynolds number Re�c as a function of
the elasticity number El for inertia-dominated flow instabilities of
low concentration PEO solutions in a cross-slot device with
α ¼ 1. For experimental data, closed symbols represent steady
instabilities, while half-closed symbols represent unsteady in-
stabilities. For numerical results, open symbols represent constant
Wieff , while closed symbols represent constant El simulations.

FIG. 11. The ratio of the parameters g and k as a function of El.
The dashed line indicates g ¼ 0, where the transition would be
tricritical. Above the line the transition is supercritical; below the
line the transition is subcritical with hysteresis.
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transition turns apparently supercritical. For a specific
intermediate value of El where g=k ¼ 0, the transition
would be tricritical. The transition remains supercritical up
to values of El ≈ 0.01. For fluids with elasticity values
between 0.01 < El < 0.09, certain fluids have slightly
negative values of g=k and show small hysteresis loops
(see, e.g., Fig. 7), but the general tendency is towards
tricritical behavior. Of course, the sensitivity of the experi-
ment to noise at different El levels may be masking any
underlying hysteretic behavior. In contrast, the numerical
simulations with the FENE-MCR model demonstrate
hysteretic transitions for all elasticity numbers and β values
tested.
Changes in the order of the transition through a tricritical

point have been reported in previous work with Newtonian
fluids in the cross-slot geometry when the parameter space
was changed geometrically by changing the aspect ratio α
[18]. Tricritical phenomena in Newtonian fluid mechanics
have also been reported for flow in low aspect ratio Taylor-
Couette flow cells [85–87].
Studying flow transitions in non-Newtonian fluids is

more complex compared with Newtonian fluids due to the
additional dimensions of the parameter space [88]. Non-
Newtonian transitions in the cross slot depend not only on
Re and α but also on Wi and β (and potentially other
groups, such as the ratio between first and second normal
stress coefficients). This additional parameter space is
accessed and explored by changing the El of the fluid.
Here, this is achieved through manipulation of the polymer
concentration and the solvent viscosity, but similar varia-
tions could be made via control of, e.g., the polymer
molecular weight, polymer flexibility, or solvent quality.
In this work, elastic effects in the fluids are characterized

using the effective Weissenberg number Wieff, Eq. (5)
(which factors out both λ and β), and the elasticity number
El, Eq. (6) (which additionally factors out Re, i.e., length
scale, viscosity, and density). In Fig. 12, we show the
values of the lower critical effective Weissenberg number
Wi�eff;c as a function of El for all the polymeric test fluids
listed in Table II. For fluids that display inertia-dominated
(or inertioelastic) instabilites, the lower critical effective
Weissenberg number is computed as Wi�eff;c ¼ Re�c × El.
For the fluids that show elasticity-dominated flow asym-
metries, Wi�eff;c is estimated from the results of the coarse
dye-advection experiments illustrated in Fig. 3. All of the
data collapse onto a power law with exponent 0.8, as shown
by the straight line through the experimental and numerical
data points on the log-log plot. We observe clearly that the
elastic mode of instability dominates as the elasticity number
approaches the value El ¼ 1, as might be expected [89].
Increasing El influences the inertial instability by

increasing the Wieff;c at which the transition occurs.
Higher El further reduces the relative importance of inertial
forces, and as El approaches the value 1, the inertial
instability is completely suppressed, giving rise instead

to the purely elastic time-dependent flow instability, as
demonstrated in Figs. 3(e) and 3(f).
In Fig. 13, we plot the critical conditions determined for

all the non-Newtonian test fluids in the form of a stability
diagram in Wieff − Re dimensionless state space. Here, we
represent three flow regimes: (1) a region of stable
symmetric flow at lower values of Wieff and Re; (2) a
region of inertially dominated spiral-vortex-type instabil-
ities, which dominate at higher Re but for El≲ 1; (3) a
region at lower Re and higher Wieff, where elastic asym-
metries dominate at El≳ 1. The results of numerical
simulations deviate somewhat from the experiments at
high Re and low Wieff (i.e., low El), but interestingly
approach the experimental trend for lower Re and higher
Wieff (i.e., as El increases). We note some similarity of the
stability diagrampresented in Fig. 13with those presented by
Joo and Shaqfeh [90], who demonstrated by linear stability
analysis on Dean and Taylor-Couette flows the destabiliza-
tion of inertial instability modes by increasing the elasticity,
and conversely the destabilization of elastic instabilitymodes
by the increase of inertia. We point out that the ranges of
Re≲ 50 and Wieff ≲ 50 covered in Fig. 7 can be routinely
achievedwith low viscosity aqueous viscoelastic fluids, even
inmicrofluidic channels. For thevalidity of such experiments
(e.g., cell sorting, immunoassays,DNA analysis), it is clearly
of great importance to be aware of the likelyhood of flow
instabilty onset beyond critical conditions and to limit the
dimensionless flowparameterswithin boundswhere the flow
field remains stable and well defined.

FIG. 12. Wi�eff;c as a function of El. For experiments, closed
symbols represent steady spiral instabilities, half-closed symbols
represent unsteady spiral vortex instabilities, and open symbols
represent elasticity-dominated asymmetries. For numerical results,
open symbols represent constant Wieff , while closed symbols
represent constant El simulations. The dashed line marks El ¼ 1.
Power-law fit through the data is Wi�eff;c ¼ 6El0.8. (Note that error
bars on the two lowest El experimental data points extend beyond
the boundaries of the plot.)

INERTIO-ELASTIC FLOW INSTABILITY AT A … PHYS. REV. X 7, 041039 (2017)

041039-13



In the cross slot, it has been shown that the instability of
Newtonian flows is a consequence of the introduction of a
center point axial vorticity due to imbalances between four
cells of Dean vortices that form due to centrifugal forces
around the corners of the cross slot as inertia becomes
significant [18]. For Re > Rec;Newt ≈ 40 (α ¼ 1), vortex
stretching drives the growth of the center point vorticity
until a steady state is reached. For the weakly elastic fluids
examined here, our numerical simulations give insight into
how the presence of the polymeric additive modifies the
Newtonian instability mechanism by showing the regions

of the flow field where the localized orientation of polymer
gives rise to increases in the first normal stress difference,
N1 ¼ ðτxx − τyyÞ. Such an in situ measurement of N1 is not
possible using currently available experimental techniques,
so the use of complementary simulations here provides a
great advantage. Figure 14 shows contours of N1 for the
case El ¼ 0.0042, β ¼ 0.90. At relatively lowRe [Fig. 14(a),
Wieff ¼ 0.02, Re ¼ 4.76), the first normal stress difference
exhibits the anticipated behavior of an extension-dominated
flow, where a thin strand of high stress is formed along the
flow centerline emanating from the stagnation point
[32,35,49,91]. This indicates that significant stretching
and orientation occurs at the region close to the stagnation
point, which has been demonstrated in previous experiments
by the observation of “birefringent strands” [89]. As Wieff
and, consequently, Re are increased, the flow field is
modified and the highest values of the first normal stress
difference are no longer located near the stagnation point, but
rather are shifted along the vertical direction (z) forming two
peaks close to the top and bottom walls of the channel, as
shown in Fig. 14(b). Although in both Figs. 14(a) and 14(b)
the flow field remains symmetric, the difference is that when
Wieff ¼ 0.08 there are Dean vortices present due to inertia.
Examining the superimposed streamlines in Fig. 14(a), it can
be seen that for Wieff ¼ 0.02 the fluid elements that pass
close to the stagnation point, which consequently exhibit the
higher stretching, are then almost immediately oriented
along the outlet streamwise direction. Thus, as they flow
far from the high stretching region they gradually relax and
the intensity of the birefringent strand slowly decays. In
contrast, for Wieff ¼ 0.08 the fluid elements along the inlet
flow centerline that pass close to the stagnation point are
initially stretched and are then oriented to flow towards the
z direction of the configuration. When flowing along this
path, the already stretched fluid elements experience some
additional stretching from the incoming streams, which
results in an accumulation of stress from the stagnation
point region towards the z direction and generates high-stress

FIG. 13. Stability diagram in dimensionless Wieff − Re param-
eter space. A stable region is indicated below the solid line, drawn
through the experimental data as a guide to the eye. For
experiments, closed symbols represent steady spiral vortex
instabilities, half-closed symbols represent unsteady spiral vortex
instabilities, and open symbols represent elasticity-dominated
asymmetries. For numerical results, open symbols represent
constant Wieff , while closed symbols represent constant El
simulations.

FIG. 14. Contours of the normalized first normal stress difference N1=ðη0U=wÞ (indicated by the color scale) with superimposed
streamlines along the center planes of the cross slot. Constant elasticity number simulations using the FENE-MCR model with
El ¼ 0.0042, β ¼ 0.90 and (a) Wieff ¼ 0.02, Re ¼ 4.76 (symmetric), (b) Wieff ¼ 0.08, Re ¼ 19.05 (symmetric), and (c) Wieff ¼ 0.125,
Re ¼ 29.76 (asymmetric).
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peaks located precisely between the pairs of counterrotating
Dean vortices. Flow feedback in the region of the Dean
vortices by these localized peaks in N1 is the likely cause of
the destabilization of the flow for Rec < Rec;Newt, as
observed both experimentally and numerically. Finally, once
the central spiral vortex has formed, the region of the highest
N1 relocates to the vortex core [see Fig. 14(c)]. It is already
well known that the polymer torque resulting in such a
situation acts counter to thevorticity [92–96], which explains
why the vorticity growth is suppressed in the weakly elastic
fluids compared with the Newtonian case as Re is increased
aboveRec. Such amechanism is thought to be responsible for
suppression of streamwise and hairpin vortices in polymer
drag-reduced flows [92,93]. These numerical results reveal a
complex interplay between inertia and elasticity, suggesting
that El alone is insufficient to fully capture the observed
phenomena, and highlighting that bothWi andRe or (Wi and
El) remain important.
For pipe flows at high Re (>1000), Samanta et al.

showed that the criticial Re for the onset of EIT decreased
as the polymer concentration was increased [4]. Using
pipes of various diameters, they also showed collapse of the
critical deformation rate for the onset EIT at different
polymer concentrations. The latter observation suggests the
importance of polymer deformation and elastic stresses on
driving the onset of instability. As Re was increased beyond
the onset of EIT, Samanta et al. showed that the friction
factor directly approached the maximum drag reduction
asymptote while streamwise vortices characteristic of
Newtonian turbulence were suppressed. Here, in a very
different flow configuration, we make highly analogous
observations in a single streamwise vortex as Re is
increased beyond the onset of inertioelastic instability:
i.e., a critical Re that decreases with increasing El, a
critical Wi that scales with El, and a suppression of vorticity
growth as the flow is driven beyond the onset of instability.
Combined with simulations that provide details of the
elastic stresses within the vortex, we can clearly rationalize
the drag reduction reported by Samanta et al. in terms of the
action of the polymer. By using a range of fluids with well-
characterized elasticity numbers, the collapsed data we
obtain for the critical values of Re andWieff show that these
effects have significant generality. In the cross-slot device,
following the onset of inertioelastic instability, the resulting
flow structures for very low elasticity fluids appear quali-
tatively similar to those obtained in unstable Newtonian
flows [see, e.g., Figs. 3(b), 3(c), 5(a), and 5(b)]. In this case,
the effect of the polymer may be interpreted as causing
modification to the inertial (Newtonian) flow state. However,
as the elasticity is increased, spatiotemporal fluctuations of
the flow structures (which are absent inNewtonian fluids) are
observed [see Figs. 3(d) and 6 and Supplemental Material
[78] ], and as El → 1, we see the emergence of a distinct
elasticity-dominated flow state [see Figs. 3(e) and 3(f) and
Supplemental Material [78] ]. The fluctuating inertioelastic

state shown in Figs. 3(d) and 6 may well be connected to the
distinct nature of the fluctuations observed in EIT compared
with traditional Newtonian turbulence, reported by Samanta
et al. [4]. However, further time-resolved investigations of
fluctuations arising at higher Re in Newtonian and inertioe-
lastic flows in the cross-slot geometry will be required in
order to confirm this likelihood.

IV. SUMMARY

In this work, we use state-of-the-art microfabrication
methods to reconfigure the canonical cross-slot geometry,
enabling the first quantitative measurements of velocity
components over a channel cross section, and thus to
resolve the axial vorticity in the outlet. This facilitates a
unique study on the interactions between an inertial flow
instability (that results in the formation of a streamwise
vortex along the outlet channel) and the elasticity intro-
duced through the addition of small quantities of a high
molecular weight polymer at concentrations relevant to
polymer drag reduction. For small increasing values of the
elasticity number El, the flow is destabilized at a lower
critical Reynolds number than in the Newtonian case.
However, following the onset of instability, the growth
of the axial vorticity with increasing Re is significantly
suppressed by the increase of El. In this regime of low El,
our experimental data are well matched by numerical
simulations using the constant viscosity FENE-MCR
model, which further allows us to locate the regions in
the flow domain where high polymer stretch and stress
occur. Feedback between localized regions of high poly-
meric stresses and the flow field are deemed responsible for
the destabilization of the flow at a lower critical Reynolds
number than seen in the Newtonian case. Suppression of
the subsequent vortex formation is most likely through the
action of polymer torque. These quantitative measurements
at the scale of a single vortex provide clear mechanisms for
(and a clear visual demonstration of) how polymer addi-
tives potentially act to reduce drag in turbulent flows. As
the elasticity is increased towards El ∼ 1, our experimental
results show how an inertia-dominated instability is trans-
formed into an elasticity-dominated mode as the vorticity
becomes completely suppressed by the action of the
polymer additive. Our experimental measurement methods
can be readily extended to study the dynamics of vortex
formation and interactions, and also to study similar 3D and
time-dependent flow phenomena in, for example, T- or
Y-shaped junctions [53,54,56,57] or L- and U-shaped
bends (e.g., Ref. [97]). Our data significantly add to the
literature on the stability of inertioelastic flows, which are
relevant to understanding a number of important practical
applications (e.g., jet breakup, drag reduction, enhanced oil
recovery). Our results and techniques are anticipated to
provide insight into the stability of weakly elastic fluid
flows through intersections and near stagnation points in
general.
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