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ABSTRACT: The rate of product formation is an important
measure of the speed of enzyme reactions. Classical studies of
enzyme reactions have been conducted in dilute solutions and
under conditions that justified the substrate abundance
assumption. However, such assumption is well-known to
break down in the context of cellular biochemistry. Instead, the
concentration of available substrate can become rate limiting.
Here we use the chemical master equation to obtain
expressions for the instantaneous and time averaged rate of
product formation without invoking the conventional substrate
abundance assumption. The expressions are derived for a
broad range of enzyme reaction mechanisms, including those
that involve one or many enzyme molecules, require multiple substrates, and exhibit cooperativity and substrate inhibition. Novel
results include: (i) the relationship between the average rate of product formation (calculated over the time it takes for the
reaction to finish) and the substrate concentration, for a Michaelis−Menten (MM) reaction with one enzyme molecule, is
approximately given by a logarithmically corrected MM form; (ii) intrinsic noise decreases the sharpness of cooperative switches
but enhances the filtering response of substrate inhibition; (iii) the relationship between the initial average rate of product
formation and the initial substrate concentration for a MM reaction with no reversible reaction and with any number of enzyme
and substrate molecules is a sum of Michaelis−Menten equations.

■ INTRODUCTION

A main aim of enzymology is the inference of the molecular
mechanisms underpinning enzyme catalysis and of the
associated rate constants characterizing the reaction. For over
a century the data utilized for such an endeavor has been time-
course data gathered from ensemble experiments.1 The classical
approach to infer the kinetic constants from such experiments
involves the proposal of a plausible mechanism and the
algebraic manipulation of the (deterministic) chemical rate
equations for this mechanism such that the kinetic parameters
can be inferred from suitable linear plots of the experimental
data. The most commonly proposed mechanism for single-
substrate kinetics is the Michaelis−Menten (MM) reaction
mechanism:
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where S, E, C, and P denote substrate, free enzyme, complex
and product species, respectively. The k’s denote the associated
rate constants. This mechanism was originated by Henri2 but
nowadays is commonly attributed to Michaelis and Menten.3

Writing the chemical rate equations and applying time scale
separation via the quasi-steady-state assumption (QSSA) (by
setting the time derivatives of the concentrations of E and C to
zero) one obtains the rate of product formation:
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where [X] denotes the concentration of species X, ET is the
total enzyme concentration and KM = (k1 + k2)/k0 is the MM
constant. Eq 2 is the well-known MM form.1 Strictly speaking,
this equation is valid if the transients in the substrate
concentration decay much slower than transients in the enzyme
concentration; it is a valid approximation for short times
provided the initial substrate concentration is much larger than
the enzyme concentration (more general validity conditions are
discussed here4). Hence [S] in the MM form is to be
interpreted as the initial substrate concentration and d[P]/dt as
the approximate rate of product formation for short times. In
what follows, we shall conveniently refer to this as the initial
rate of product formation with the understanding that we do
not mean the rate at t = 0 but rather the rate over a short time
interval). It is easy to see that eq 2 implies the kinetic
parameters (KM and k2) can be obtained from the y-intercept
and slope of a linear graph of the inverse rate of product
formation versus the inverse initial substrate concentration.
This so-called Lineweaver−Burk plot5 constitutes the most
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popular means of obtaining the kinetic parameters from
ensemble experimental data.
Recent years have seen the development of sophisticated

experimental techniques capable of following reactions at the
single molecule level using fluorescence correlation spectros-
copy and related optical methods (see ref 6 for a review). In
particular, Xie and collaborators have measured long time traces
of enzymatic turnover events for a reaction catalyzed by a single
enzyme molecule;7 they also showed that kinetic parameters
from this data can be obtained in the same way as from
ensemble experiments, namely using a Lineweaver−Burk plot
(see Figure 2b of ref 7). This is possible because it can be
shown using a chemical master equation approach that if the
number of substrate molecules is much larger than one and
provided there is no conformational current,8 the dependence
of the inverse time between successive product formation
events (the rate of the reaction) on the substrate concentration
is precisely given by the MM form eq 2 with ET = 1/Ω, where
Ω is the volume of the compartment.9−11 Similarly it has been
shown that when the substrate is much more abundant than
enzyme then one can write a reduced chemical master equation
in which the effective propensity function is of the MM type.12

The parallel between the analysis of single and ensemble
experiments and of deterministic and stochastic analysis is
remarkable given that the chemical rate equations from which
eq 2 was initially derived are strictly speaking only valid in the
limit of large numbers of molecules.13 A common feature,
however, of all these studies is (i) the assumption that the
substrate is available much more abundantly than the enzyme
and (ii) the enzyme reaction is described by the MM
mechanism. While the assumption of excess substrate is usually
valid in classical chemical kinetic studies that have been
performed in dilute aqueous solutions, it is in general invalid in
living cells where enzymatic systems often operate under excess
enzyme conditions.14−16 Even in some bioengineered systems,
which usually run in very controlled conditions, excess substrate
concentrations may not always be achieved.17 It is therefore
very important to study enzyme kinetics also under the
nonexcess substrate condition. That said, a number of recent
publications have reported stochastic rates of product
formation in single enzyme kinetics and under the assumption
of substrate abundance albeit for reaction schemes that differ
from those studied here (e.g., refs 18,19).
In this article we seek to go beyond the restrictions

mentioned above. For convenience we divide our results into
two sections. In The Single Enzyme Case Section we consider
the case of reactions catalyzed by a single enzyme molecule
whereas in The Many Enzyme Case Section we consider the
case of multiple enzyme molecules. In both cases, the number
of substrate molecules can be any integer and hence our
analysis covers all situations including those in which the
substrate concentration is comparable or even smaller than the
enzyme concentration. We take a mean first passage time
approach to estimate the average rate of product formation
(instantaneous or averaged over the time to make a certain
number of product molecules) from the chemical master
equation. The expressions are derived for a broad range of
enzyme reaction mechanisms, including those that involve one
or many enzyme molecules, which require multiple substrates
and exhibit cooperativity and substrate inhibition. Two novel
results which are of particular interest are (i) the relationship
between the average rate of product formation (calculated over
the time it takes for the reaction to finish) and the substrate

concentration, for a Michaelis−Menten (MM) reaction with
one enzyme molecule, is approximately given by a logarithmi-
cally corrected MM form. (ii) The relationship between the
initial average rate of product formation and the initial substrate
concentration for a MM reaction with no reversible reaction
and with any number of enzyme and substrate molecules is a
sum of Michaelis−Menten equations.

■ THE SINGLE ENZYME CASE
Single Substrate Enzyme Reaction. Consider the MM

reaction mechanism (eq 1) with one enzyme molecule confined
in a volume. The stochastic dynamics of this system has been
studied without the assumption of substrate abundance
previously by Aranyi and Toth,20 where they derived the
exact solution of the probability distribution for all times,
computed the time course of the mean substrate and enzyme
concentrations, and compared with those obtained by
numerical integration of the chemical rate equations. Here we
analyze the stochastic dynamics from a different perspective,
namely by studying the rate of product formation, which, as we
shall see, cannot be obtained from the probability distribution
but rather from the first passage time distribution.
We start by assuming that the enzymatic processes can be

modeled by a Markov process. This is a common assumption13

whose validity rests primarily on that of the well-mixing
condition. Let Tm be the time it takes for the enzyme reaction
to produce m product molecules. It then follows that

∑=
=

−T tm
i

m

i i
1

1,
(3)

where ti−1, i is the time for the number of product molecules to
change from i−1 to i given that there are already i−1 product
molecules. Tm is a stochastic quantity and we are interested in
obtaining its mean which is given by

∑τ = ⟨ ⟩ = ⟨ ⟩
=

−T tm m
i

m

i i
1

1,
(4)

where the angled brackets denote the statistical average.
Next we derive the probability distribution of ti−1, i from

which we can obtain the averages needed to explicitly evaluate
eq 4. Consider the case where initially we have N substrate
molecules and the enzyme is in its unbound (E) state. As the
reaction proceeds, the number of substrate molecules decreases
and the number of product molecules correspondingly
increases. After each product molecule is formed, the enzyme
returns to its unbound state and is ready for the next round of
catalysis.
Now consider the point in time at which the counter of the

number of product molecules turns to i−1. As a new product
molecule has just been formed, the enzyme is back in its
unbound state. Also the corresponding number of substrate
molecules is N − i + 1. In Table 1, we show the progression
from this state to the state in which the successive product
molecule is formed, i.e., the state in which we have i product

Table 1. Progression of the MM Mechanism

state S mols E mols C mols P mols

0 N − i + 1 1 0 i − 1
1 N − i 0 1 i − 1
2 N − i 1 0 i
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molecules. Note that “mols” is an acronym standing for
molecules.
Now we want to calculate the distribution of ti−1, i, i.e., the

time to move from state 0 to state 2, given that there are
already i−1 molecules of product. Let Pi be the probability that
the system is in state i at time t. Given that we are assuming
Markovian dynamics, we have to solve the following time
evolution equations (the master equations):

∂ = − + −
Ω

+t N i
k

t k tP ( ) ( 1 ) P ( ) P ( )t 0
0

0 1 1 (5)

∂ = + −
Ω

− +t N i
k

t k k tP ( ) ( 1 ) P ( ) ( )P ( )t 1
0

0 1 2 1 (6)

with the initial condition P0(0) = 1. The volume of the
compartment in which the reaction is confined is denoted by Ω.
The probability that ti−1, i = t, which we shall denote as πi(t), is
then given by the probability of entering the state 2 in the time
interval (t, t + dt) which is equal to the catalytic rate constant
multiplied by the probability of being in the previous state, i.e.,
k2P1(t). Solving eqs 5 and 6 simultaneously we obtain

π ̃ = ̃
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′ − − + − + +

s k s
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k i N k s s k k s

( ) P ( )
( 1)

( 1)( ) ( )

i 2 1

2
0
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where k0′ = k0/Ω and the tilde refers to the Laplace Transform
which is defined as P̃i(s) = ∫ 0

∞ Pi(t) e−st dt (the use of this
transform simplifies the calculations). Hence it follows that the
mean of ti−1, i = t is given by

π⟨ ⟩ = − ̃ = +
′

−

⎛
⎝⎜
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d
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2
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(8)

where KM′ = KM Ω and hi = 1−i + N. Note that this implies that
⟨ti−2, i−1⟩ < ⟨ti−1, i⟩, i.e., the mean first passage time to change
from i − 2 to i − 1 product molecules is less than the mean first
passage time to change from i − 1 to i product molecules. The
catalytic process thus becomes slower with time; this is because
as the reaction progresses, there is a monotonic decrease in the
number of substrate molecules which implies slower effective
association rates between enzyme and substrate.
Substituting eq 8 in eq 4 we obtain an expression for the

mean total time to make m product molecules:

τ = +
′⎛

⎝⎜
⎞
⎠⎟

m
k

K
z

1m
m2

M

(9)

where zm = m/∑j = 1+N−m
N j−1.

We next discuss in some detail the implications of this
equation and its relationship to special cases which are already
reported in the literature. The inverse of the quantity τm/m,
which appears on the left-hand side of eq 9, can be interpreted
as the average rate of change of the product numbers, calculated
over the average time period in which m turnovers are
observed. We shall refer to this as rm = m/τm. Hence it follows
that

=
+ ′

r
k z

z Km
m

m

2

M (10)

This result is particularly interesting because it has the form of
the conventional MM form (see eq 2) except that (i) our result
holds for all times not just short times and (ii) the substrate

concentration is now replaced by zm. The intuition for this is
that zm is the harmonic mean of the set {N, N−1, ..., N−m+1},
so it is a measure of the mean substrate concentration over the
time period in which m turnovers are observed. (iii) We did not
invoke any time scale separation arguments. (iv) Our analysis
takes into account the intrinsic stochasticity of reaction kinetics.
There are two special cases of eq 10 which are worth pointing
out:

= =
+ ′

m r
k N

N K
1, 1

2

M (11)

= ≃
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m N r
k N N

N N K
,

( /log )
( /log )N

2

M (12)

The first result, eq 11, is the so-called single molecule MM
form first reported by Xie and collaborators.11 This result holds
only when the reaction rate is measured shortly after the
reaction starts. More precisely, this is the rate after one product
molecule is formed. This is indeed consistent with the
derivation in11 which implicitly assumed that the substrate
concentration is constant (pseudo-first-order kinetics) and
which of course is a good approximation only for short times.
Note that r1/Ω is the initial rate of change of product
concentration and this equals exactly the QSSA result, eq 2,
with ET = 1/Ω and [S]= N/Ω; hence eq 11 is referred to as a
single-molecule MM form.
The second result, eq 12, is a logarithmically corrected MM

type of equation. Here we use the approximation zN ≃ (N/log
N), which is obtained by replacing the sum by an integral in the
definition of zm with m = N. This approximation is good for
large enough N; the relative error between N/log N and zN is
about 10% for N = 100. This curious, novel dependence
manifests when the rate of reaction is measured over the time it
takes for the reaction to finish, i.e, for all the substrate to be
converted into product. The inverse of the average rate from
start to finish provides an estimate of the time for the reaction
to finish, which is a physically relevant and measurable quantity.
This would for example be particularly useful when estimating
time scales for intracellular reactions characterized by very low
enzyme concentrations.
We test our theory by computing the mean time to make m

product molecules numerically via the matrix exponential
method (see Appendix A). Throughout the rest of this article
we refer to this method as the numerics. In particular, since the
main result eq 10 has the form of a MM form, we test it by
obtaining rm and zm from the numerics for several pairs of (m,
N) and then plotting a Lineweaver−Burk plot, i.e., a graph of
1/rm vs 1/zm. As shown in Figure 1 the plot is linear and agrees
perfectly with that given by the modified MM form eq 10
(where zm replaces the substrate concentration) derived from
stochastic theory. This result is particularly striking when one
considers that for the parameters used, the deterministic MM
form given by eq 2 is not expected to be a good approximation
since the condition KM/ET ≫ 1 is not met.4

Two Substrate Enzyme Reactions. Next we consider a
sequential ordered reaction1 in which two substrates S1 and S2
interact successively and in a specific order with enzyme leading
to the production of two products P1 and P2:
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This can also be seen as a chemical and gate since two inputs
(two substrates) are needed to have an output (the product).
Writing the deterministic rate equations and applying time

scale separation via the QSSA assumption (setting the time
derivatives of the concentrations of E, C1, C2, C* to zero) one
obtains the rates of product formation:

α
α α α α

= =
+ + +

d
dt

d
dt

[P ] [P ] [S ][S ]
[S ] [S ][S ] [S ]

1 2 0 1 2

1 2 1 3 1 2 4 2
(14)

where α0 = ETk0k2k4k5, α1 = k1k5 (k3+k4), α2 = k0k5 (k3+k4), α3
= k0k2 (k4+k5), α4 = k2k4k5, and ET is the total enzyme
concentration. As for the MM mechanism, in the above
equation the substrate concentrations are the initial ones and
the rates of product formation are for short times.
Next we consider the stochastic analysis of the dynamics for

the case where the initial number of the two substrates is the
same and equal to N while the number of enzyme molecules
equals one (the derivation which proceeds can be done for an

arbitrary number of the two types of substrates but here we
choose equal initial numbers to simplify the calculation). The
analysis proceeds analogously to that for the earlier case, i.e., we
use the master equation approach to calculate the quantity
⟨ti−1, i⟩. In Table 2, we show the progression from the state with
i−1 product molecules of P1 and P2 to the state in which the
successive product molecule is formed, i.e., the state in which
we have i product molecules of P1 and P2.
The master equations for the probability of being in each

state are given by

∂ = − − +
Ω

+t k
N i

t k tP ( )
1

P ( ) P ( )t 0 0 0 1 1 (15)

∂ = − +
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−

− − +
Ω
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t k
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t k t

k
N i

t k t
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1
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1
P ( ) P ( )

t 1 0 0 1 1

2 1 3 2 (16)

∂ = − +
Ω

− +t k
N i

t k k tP ( )
1

P ( ) ( )P ( )t 2 2 1 3 4 2 (17)

∂ = −t k t k tP ( ) P ( ) P ( )t 3 4 2 5 3 (18)

with initial condition P0(0) = 1. Note that this initial condition
is consistent with the fact that ⟨ti−1, i⟩ is defined conditional on
there being i−1 molecules initially (see previous section).
The probability πi(t) that ti−1, i = t is then given by the

probability of entering the state 4 in the time interval (t, t + dt)
which is equal to the catalytic rate constant multiplied by the
probability of being in the previous state, i.e., k5P3(t). The
above time-dependent equations can be solved using the
Laplace transform. Finally we can obtain an expression for the
mean time for the system to jump from state 0 to state 4:

π

α
α

α α
α

α
α
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−t
d
ds

i N i N
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2 4

0
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(19)

Substituting the above expression in eq 4 we obtain τm, the
average time to make m product molecules (of P1 and P2).
Thus, the rate of change of the product numbers calculated
over the average time period in which m turnovers are observed
is given by

τ
α

α α α α
= =

Ω
Ω + + Ω +

r
m z w

w z w z( )m
m

m m

m m m m

0

2 4 1
2

3 (20)

where zm is as defined earlier and wm = m/∑j = 1+N−m
N j−2. This is

the two substrate reaction analog of the one substrate reaction
result given by eq 10.
Again there are two special cases of particular interest:

Figure 1. Single substrate stochastic dynamics. Here, we plot the mean
time to make m product molecules (1/rm) as a function of the
parameter 1/zm which depends on m and N (the total number of
substrate molecules) for the reaction system (eq1). The theory is given
by eq 10 and the numerics by points. The parameters are Ω = 1, k0 =
k1 = k2 = 1.

Table 2. Progression of the Two Substrate Reaction

state S1 mols S2 mols E mols C1 mols C2 mols i − 1* mols P1 mols P2 mols

0 N−i+1 N − i + 1 1 0 0 0 i − 1 i − 1
1 N − i N − i + 1 0 1 0 0 i − 1 i − 1
2 N − i N − i 0 0 1 0 i − 1 i − 1
3 N − i N − i 0 0 0 1 i i − 1
4 N − i N − i 1 0 0 0 i i
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0
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In the last line, we used again that zN ≃ (N/log N) which
follows by replacing the sum by an integral in the definition of
zm, whereas wN ≃ 6N/π2 which follows from the approximation
that ∑j = 1

N j−2 ≃ π2/6 for large N.
Note that r1/Ω is the initial rate of change of product

concentration; this agrees with the deterministic result eq 14
with [S1] = [S2]= N/Ω (this agreement parallels that earlier
shown for the single substrate MM reaction). Note also that in
the limit of small volumes and large enough N, rN has the same
form as that obtained for the single substrate MM reaction
mechanism, namely the form of a MM form with variable (N/
log N).
Hence, a conclusion of our theory is that the stochastic

reaction dynamics, as described by the rate rm (the number of
product molecules divided by the mean time to produce them),
allows one to easily distinguish the single and two substrate
reactions at short times (compare eq 11 and eq 21); at longer
times it becomes progressively more difficult to tell the two
reaction dynamics apart as they both tend (in the limit of long
times, i.e., m ≃ N, and when N is large) to a logarithmically
corrected MM type of equation (compare eq 12 and eq 22).
We finally test our theory using numerics. In particular, the

main result, eq 20, implies a straight line graph if we plot 1/rm
versus the quantity (α2+α4)/(α0 zm) + α1 Ω/(α0 wm) + α3/(α0
Ω). This is verified in Figure 2 for several pairs of (m, N)
obtained from numerics.
Cooperativity and Substrate Inhibition. We now

consider two phenomena which are well studied using the
deterministic approach. These are cooperativity and substrate
inhibition.21

A set of reactions which is capable of displaying both
phenomena is

+ ⇌ → +S E C E P
k

k k

1

0 2

(23)

+ ⇌ * → +S C C C P
k

k k

4

3 5

(24)

Writing the deterministic rate equations and applying time scale
separation via the QSSA (setting the time derivatives of the
concentrations of E, C, C* to zero) one obtains the rate of
product formation:

=
+

+ +

( )d
dt

k[P]

1

E
K

k
K

K K

[S] [S])
2

[S] [S]
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M
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5

M
2

M
1

2

M (25)

where KM
1 = (k1+k2)/k0, KM

2 = (k4+k5)/k3, KM = KM
1 KM

2 , and ET
is the total enzyme concentration.
Next we consider the stochastic analysis of the enzyme

dynamics for the case where the initial number of substrate
molecules is equal to N. The analysis proceeds analogously as
for the earlier cases, though for this system we shall only
calculate the time to form the first product molecule as the
analysis gets considerably complicated for more product
molecules.
In Table 3, we show the progression from the initial state

with 0 product molecules of P to the state in which we have 1
product molecules of P.

The master equations for the probability of being in each
state are given by

∂ = −
Ω

+t k
N

t k tP ( ) P ( ) P ( )t 0 0 0 1 1 (26)

∂ =
Ω

− + − −
Ω

+t k N t k k t k N t k tP ( ) P ( ) ( )P ( )
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P ( ) P ( )t 1 0 0 1 2 1 3 1 4 3 (27)

∂ = −
Ω

− +t k
N

t k k tP ( )
1

P ( ) ( )P ( )t 3 3 1 4 5 3 (28)

with initial condition P0(0) = 1. The probability π0(t) that a
product molecule appears at time t is then equal to the sum of
the probability of entering the state 2 and the probability of
entering the state 4 in the time interval (t, t + dt), i.e., π0(t) = k2
P1(t) + k5P3(t). The above set of coupled equations can be
solved using the Laplace transform and the inverse mean time
to produce a product molecule is then given by

π
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Figure 2. Two substrate stochastic dynamics. We here plot the mean
time to make m product molecules (1/rm) as a function of the
parameter (α2+α4)/(α0 zm) + α1 Ω/(α0 wm) + α3/(α0 Ω) for the
reaction system (eq 13). The theory is given by eq 20 and the
numerics by points. The parameters are Ω = 1, k0 = k1 = k2 = k3 = k4 =
k5 = 1.

Table 3. Progression of the Cooperative or Substrate
Inhibited Reaction

state S mols E mols C mols C* mols P mols

0 N 1 0 0 0
1 N − 1 0 1 0 0
2 N − 1 1 0 0 1
3 N − 2 0 0 1 0
4 N − 2 0 1 0 1
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Note that the initial rate of change of the product concentration
according to the stochastic approach is given by r1/Ω. This
expression is different to the one given by the deterministic
QSSA approach eq 25 with ET = 1/Ω and [S]= N/Ω. This is
particularly interesting because for the previous cases of single
and two substrate enzyme kinetics, the stochastic and
deterministic approaches agreed.
Cooperativity. Positive cooperativity is obtained21 by

applying the limits KM
1 → ∞ and KM

2 → 0 at constant KM.
This implies that the affinity of the enzyme for the substrate
increases, after a substrate molecule binds the free enzyme. In
other words, the first enzyme reaction is slow to occur but,
once it does, it is very quickly succeeded by the second enzyme
reaction. In this cooperative limit, the deterministic expression
given by eq 25 reduces to

=
+

d
dt
[P]

1

k E
K

K

[S]

[S]

5 T
2

M
2

M (30)

which is a Hill function with Hill coefficient 2.

Similarly, by taking the same limit, the stochastic expression
given by eq 29 simplifies to

=
−

− + − +

Ω Ω Ω

Ω Ω Ω Ω( )
( ) ( )

( ) ( )
r

k1

k
K

N k
K

N

k
k K k K

k N
K

N1

2

1
5

1 2

5

M

5

M

5

0 M 0 M

0

M (31)

Again, r1/Ω evaluated using the above expression does not
agree with that given by the deterministic QSSA approach, eq
30 with ET = 1/Ω and [S]= N/Ω, except of course in the limits
of small and large substrate concentration. However, note that
both stochastic and deterministic approaches qualitatively agree
in the sense that in the cooperative limit both approaches
predict the initial rate of change of the product concentration
increases monotonically with substrate concentration.
In Figure 3 we use numerics to verify the differences between

the stochastic and deterministic results in the cooperative limit.
We also show that stochasticity causes the average rate of
product formation to always be less than that predicted by the
deterministic approach, i.e., intrinsic noise decreases the
sharpness of the enzyme switch. These differences between
the two approaches go to zero as KM increases.

Figure 3. Stochastic dynamics of positive cooperativity. We plot the initial rate of change of the product concentration (r1/Ω according to the
stochastic approach, and d[P]/dt according to the deterministic approach) as a function of the substrate concentrations [S]. The theory is given by
eq 31 for the stochastic approach (solid line) and by eq 30 for the deterministic approach (dashed lines) while the numerics (for the stochastic
approach) is given by points. The parameters are k0 = k5 = 1, Ω = 10, k1 = 1 × 107, k2 = k4 = 1, and (a) k3 = 2 × 107, KM = 1, (b) k3 = 2 × 106, KM =
10, and (c) k3 = 2 × 105, KM = 100.
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Substrate Inhibition. Substrate inhibition is obtained21 by
setting k5 = 0. This implies that C* is an inactive state of the
enzyme which results from high substrate concentrations. Thus,
here we expect that in both low and high substrate
concentrations the rate of product formation is very small
while it reaches a maximum at intermediate concentrations.
This is in clear contrast to the cooperative case where the rate
of product formation increases monotonically with substrate
concentration. Thus, while cooperativity leads to switch-like
behavior, substrate inhibition leads to a selective filter.21

Applying k5 = 0 to the deterministic approach eq 25 and to
the stochastic approach eq 29 leads to

=
+ +

d
dt
[P]

1

k E
K

K K

[S]

[S] [S]

2 T

M
1

M
1

2

M (32)

=
+ − +

Ω

Ω Ω Ω( )( ) ( )
r

1

k
K

N

K K
N

K
N

1
1 1 1 2

2

M
1

M
1

M M (33)

respectively. Note that the initial rate of change of the product
concentration according to the stochastic approach, r1/Ω, is
always larger than the deterministic prediction d[P]/dt (with
ET = 1/Ω and [S]= N/Ω.). These differences are pronounced
for small values of KM.
However, in both the deterministic and stochastic

approaches, the maximum rate of change of the product
concentration occurs at a substrate concentration of KM
(follows from finding the maxima of eqs 32 and 33). Therefore,
noise does not alter the critical substrate concentration at which
the filter works but instead it enhances its response. This is
confirmed by comparison to the numerics in Figure 4.

■ THE MANY ENZYME CASE
In this section we present an exact result for the case of many
enzymes. Due to the fact that there are many enzymes, the
paths connecting the initial and final states are numerous and
very complicated. Hence, unlike the single enzyme case, in
practice it is typically not possible to obtain compact
meaningful expressions for the mean first passage times.
The exception to this, as we now show, is the van-Slyke−

Cullen mechanism.22 This is a special case of the MM reaction
mechanism (eq 1), obtained by considering the bimolecular
reaction between substrate and enzyme to be irreversible:

+ → → +S E C E P
k k0 2 (34)

In what follows we shall define c1 = k0/Ω and c2 = k2, both of
which have units of inverse time. The approach will be to first
find a general expression for the first passage time distribution
(FPT) and then to use this to calculate the mean first passage
time to produce the first product molecule.
Let the number of substrate and enzyme molecules at time t

= 0 be N and M, respectively. We also assume that there is no
complex or product molecules initially. To calculate the FPT
we have to consider all intermediate states of the system which
connect the initial state with the states in which a single
product molecule has been formed. These relevant states are
schematically shown in Figure 5.

Defining n* = min (N, M), one finds that there are n*+ 2 of
these states, of which the first is the initial state of the system
and the last is the absorbing state, a lumped state consisting of
all those states with a single product molecule. The master
equation describing the stochastic dynamics of the system as it
moves from the initial state to the absorbing state is given by

∂ ′ = ′′ t A tP( ) P( )t (35)

where t′ is a dimensionless variable defined as t′ = c2 t (t is
time), P(t′) = (P1(t′), P2(t′), ..., Pn*+2(t′)) is a vector of
probabilities of the system to be in its allowed states, Pi(t′) is
the probability of the system being in state i at time t′ (refer to
Figure 1 for state classification) and A is a matrix with nonzero
entries

Figure 4. Stochastic dynamics of substrate inhibition. We here plot the
initial rate of change of the product concentration (r1/Ω according to
the stochastic approach, and d[P]/dt according to the deterministic
approach) as a function of the substrate concentrations [S]. The
theory is given by eq 33 for the stochastic approach (solid line) and by
eq 32 for the deterministic approach (dashed lines) while the numerics
(for the stochastic approach) is given by points. The parameters are Ω
= 5, k0 = 2, k1 = k2 = 1, k3 = 4, k4 = 1, and k5 = 0, implying K1

M = 1 and
KM = 0.25. The substrate concentration [S] = N/Ω where N = 1, 2, 3,
4, 5, 6.

Figure 5. Schematic showing the relevant state space for the
calculation of the FPT of the van-Slyke−Cullen mechanism (eq 34).
There are n* + 2 states where the initial state is labeled state 1 and the
final state n* + 2 is a lumped state consisting of all the absorbing states
of the system, i.e., those with one product molecule. The state of the
system is represented as (a, b, c, d) where a is the number of substrate
molecule, b is the number of enzyme molecules, c is the number of
complex molecules, and d is the number of product molecules. The
blue and red arrows show transitions between states due to the
bimolecular reaction E + S → C and due to the unimolecular reaction
C → E + P, respectively.
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= − Ω − + − + − −

= −

−A K N i M i i

i n

( ) ( 1)( 1) ( 1),

1, ..., 1

i i,
1

(36)

= Ω − + − +

= −
+

−A K N i M i

i n

( ) ( 1)( 1),

1, ..., 2

i i1,
1

(37)

= − = −A i i n( 1), 1, ..., 1,n i, (38)

and all other entries of the matrix are zero. Here we have
defined n = n* + 2 and K = k2/k0 for convenience; note that the
latter is the MM constant of the van-Slyke−Cullen reaction
mechanism. The initial condition is specified by requiring P1
(0) = 1 and Pi(0) = 0, ∀i ≠ 1. It then follows that the FPT is
given by

∑′ = ∂ ′ = − ′
=

−

f t t i t( ) P ( ) ( 1)P( )t n
i

n

i
2

1

(39)

Applying the Laplace transform to the master eq 35, we
obtain

̃ − = ̃s s A sP ( ) 1 P ( )1 1,1 1 (40)

̃ = ̃ + ̃ = −− −s s A s A s i nP( ) P ( ) P( ), 2, ..., 1i i i i i i i, 1 1 , (41)

This set of recurrence relations can be solved exactly, yielding

∏̃ =
− −=

−s
s A
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s A
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1
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j

i
j j

j j11 2

, 1

, (42)

It then follows from eq 39 that the Laplace transform of the
FPT is given by

∑ ∏̃ =
−

−
−=

−

=

−f s
s A

i
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s A
( )

1
( 1)

i

n

j

i
j j

j j11 2

1

2

, 1

, (43)

Applying the inverse Laplace transform yields the FPT
distribution, described by a sum of convolutions of
exponentials.23,24 However, as we shall now see, it is not
necessary to perform the inverse transform to obtain the mean
first passage time.
The mean first passage time is the first moment of the FPT

and hence given by

∫⟨ ′⟩ = ′ ′ ′ = − ̃ |
∞

=t t f t dt
d
ds

f s( ) ( ) s
0

0 (44)

It follows by substituting eq 43 in eq 44 that the general
expression for the mean first passage time is given by

∑ ∏⟨ ′⟩ = − −
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−

=
−t i A
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j j i
2

1

2
, 1

(45)

where rj(s) = ∏w = 1
j γw(s) and γw(s) = 1/(s − Aw, w). What

remains is to calculate d/ds ri(0) which is reported next. From
the definition of rj(s) we can obtain the recurrence relation

= − − ≥−
−

d
ds

r
r

A A
d
ds
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(0) 1
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where d/ds r1(0) = −A1,1
−2. This can be solved exactly yielding
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Hence the final expression for the mean first passage time is
given by substituting the latter in eq 45 leading to

∑ ∑⟨ ′⟩ = − − −
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(48)

Note that the f = M + 2 since A does not change either when
swapping the values for N and M: the terms Ar, r and Ar+1, r are
identical for (N, M) = (x, y) and (N, M) = (y, x). Obviously,
this no longer holds for n−th arrival times with n ≤ 2, when
swapping N and M for N ≠ M changes the state space and
hence the transition matrix A.
Due to its complex dependence on the elements of the

matrix A, the equation for the mean first passage time is difficult
to interpret, at first glance, for general number of enzyme and
substrate molecules. To gain insight, we proceed by considering
some specific cases. In particular, we consider the catalysis of N
substrate molecules by one, two, and three enzymes.
Substituting M = 1, 2, 3 in eq 48, and recalling t′ = c2 t
(where is t is time) one obtains the following results:

⟨ ⟩
=

′ +
=

t
c N

K N
M

1
, 12

(49)

⟨ ⟩
=

′ − +
′ ′ − + ′ − +

=
t

c N K N
K K K N N

M
1 2 (( 1) )

( 1) (3 1)
, 22

2
(50)

where K′ = KΩ is the nondimensional MM constant.
A special case of this result which is of particular interest is K′

= 1. Substituting this value in eqs 49−51 one finds the simple
result:

⟨ ⟩
=

+t
Mc N

N M
1 2

(52)

We have verified this law to be true for arbitrary values of M
(using Mathematica) though a general proof remains elusive.
Hence for K′ = 1, the inverse of the mean first passage time for
arbitrary number of enzyme molecules M is given by a MM
form. We confirm this result using numerics in Figure 6.
More generally note that the eqs 49−51 are all of the form

⟨ ⟩
=

∑

∑
=

=
t

a N

b N
1 i i

i

i i
i

1
M

0
M

(53)

where ai and bi are functions of c2 and K. Note that N is any
integer (greater than, equal to, or less than M). We have
explicitly verified (using Mathematica) that this form holds for
at least M ≤ 50 which strongly suggests that this form is general
for all M. Interestingly, one finds that eq 53 can always be
written as a sum of MM terms

∑
⟨ ⟩

=
+=t

d N
e N

1

i

i

i1

M

(54)

where di and ei are complicated functions of ai and bi. This
result can be seen as a generalization of the results presented in
ref 11, there it was shown that the inverse of the mean first
passage time for a reaction catalyzed by a single enzyme
molecule is a MM form, whereas here we show that generally,
for an arbitrary number of enzyme molecules M, the inverse of
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the mean first passage time is a sum of M Michaelis−Menten
equations.
The same approach can be used to obtain expressions for the

mean first passage time for the van-Slyke−Cullen mechanism
with two substrate reactions and with cooperative reactions. We
note that in these cases, due to the complexity involved, the
evaluation of the expressions might be as tedious as the actual
numerics and hence little intuition can likely be derived from
the theorythe results are reported in the Supporting
Information for completeness sake. Lastly, a comparison of
our results (eqs 49−51) with those obtained under the
substrate abundance assumption is provided in Appendix B.

■ CONCLUSION
In this article we have used the chemical master equation to
derive closed-form expressions for the instantaneous average
rate of product formation as well as for the rate of product
formation averaged over the time to make a specified number
of product molecules, without invoking the substrate
abundance assumption. Our results go beyond the bulk of
the existing stochastic enzyme kinetic results, which either
directly or implicitly invoke the substrate abundance
assumption,9−12,25,26 sometimes in the form of the QSSA.
Our main results can be summarized as follows: (i) For the

MM reaction mechanism with one enzyme molecule, we find
that the average rate of product formation, calculated over the
average time to produce m product molecules, follows a MM
form in which the initial substrate molecule number N is
replaced by another variable z (N, m). For the case m = 1 (the
average rate of product formation for the first turnover) this
reduces to the single-molecule MM form reported by Xie and
collaborators;11 for the case m = N this reduces to a novel
logarithmically corrected MM form when N is large. We find
that these corrections are present even when the reaction
dynamics are further complicated, for example by increasing the
number of substrates. (ii) While the expression for the average
rate of product formation for noncooperative reactions (one or
multiple substrate reactions with one enzyme molecule)

obtained from the stochastic model agrees with the
deterministic result obtained using the QSSA, this is not the
case for cooperative enzyme reactions. (iii) For a positively
cooperative enzyme reaction with one enzyme molecule,
intrinsic noise leads to a less sharp switch from low to high
rates of product formation (as the substrate concentration is
varied) than that predicted by the deterministic Hill equation.
(iv) For a single enzyme reaction capable of exhibiting substrate
inhibition, noise enhances the rate of product formation at the
critical substrate concentration relative to the deterministic
prediction using the QSSA. (v) For a MM reaction mechanism
with an arbitrary number M of enzyme molecules and with no
reversible reaction, the rate of initial product formation is
generally a sum ofMMichaelis−Menten equations. This can be
seen as a generalization of the result that for a single enzyme
molecule MM reaction mechanism, the rate of initial product
formation is a single MM form.11

■ OBTAINING m-TH PASSAGE TIMES VIA MATRIX
EXPONENTIALS OR CTMC-BASED APPROACHES

Let pi(t) = p(Si, t|S1,0) be the probability for a reaction system
to be in state Si at time t given it is in state S1 at time t = 0. We
denote with p(t) = [p1(t), p2(t), ..., pn(t), pn+1(t)]

T the
probability vector of n+ 1 states, namely the n states that the
system can be prior to reaching the absorbing state Sn+1. This
absorbing state is a lumped state consisting of all the states with
m product molecules, following directly from a state with m−1
product molecules.

To obtain p(Sn+1, t|S1,0) we solve =p t Ap t( ) ( )d
dt

, where A

denotes the matrix describing the transitions between the n+1
states. The solution of this differential equation is the matrix
exponential mapping the initial probability to the probability at
time t: p(t) = eAt p(0), where p(0) = [1 0··· 0]T. The last entry
of this solution corresponds then to the cumulative distribution
function (CDF) of the mean first passage time distribution to
produce m product molecules at time t.
We use Roger Sidje’s software Expokit27 for numerical

calculation of the matrix exponentials. The CDF is calculated
for a discrete number of equidistant time points, while we
ensure that the CDF takes value 1 for a large enough time point
T and that reducing the distance between time points does not
significantly change the outcome of the numerical differ-
entiation, which yields the pdf f(t). The mean first passage time
is then calculated as ∫ 0

T t f(t) which is numerically
approximated as a Riemann sum with very small step size.
Alternatively, one can use known results about finite state

continuous time Markov chains (CTMC) to obtain mean first
passage times. In the CTMC context, first passage times are
often referred to as hitting times, which follow a so-called phase
type distribution. Such distributions have known closed forms
for their moments while their PDFs and CDFs are usually
described using matrix exponentials. The mean hitting time
distribution for a m+1 state CTMC with one absorbing state
can be written in the form

− −v G 10
1

where v0 is the probability row vector describing the initial
probability of the process to start in each of the m non-
absorbing states, 1 is a m× 1 vector with all elements being 1,
and G is a m × m matrix known as the infinitesimal generator of
the Markov chain and closely related to the transition matrix A
described above. We obtain G from A by removing in A the

Figure 6. Stochastic dynamics of the van-Slyke−Cullen mechanism
with M enzyme molecules. We plot the mean time to make the first
product molecules ⟨t⟩ (multiplied by M) as a function of the initial
number of substrate molecules N for the reaction system (eq 34). The
theory is given by eq 52 and the numerics by points. The parameters
are Ω = 1, c1 = c2 = 1 such that K′ = 1.
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column and the row that refer to the absorbing state and by
taking the transpose of the resulting matrix. For instance, eq 8
is the expected hitting time of a three state (m = 2) CTMC,
where state 2 is the absorbing state (cf. Table 1). Assuming that
we start in state 0, i.e. v0 = (1,0) we can write down the mean
hitting time (of state 2) as

⟨ ⟩ = −
− * ′ * ′

− −−

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

h k h k

k k k
(1, 0) (1, 1)i i

i i T
1,

0 0

1 1 2

( 1)

(55)

We can use the same approach to obtain all other expressions
of mFPTs presented in this work.

■ COMPARISON WITH PSEUDO-FIRST ORDER
KINETICS FOR SUBSTRATE AND ENZYME
INTERACTION

As mentioned in the Introduction Section, it is common in the
literature to invoke the substrate abundance assumption. Here

we briefly investigate the differences between our expressions
eqs 49−51 and the ones obtained under the latter assumption.
If the substrate is much more abundant than enzyme then eq
34 reduces to

⎯ →⎯⎯⎯⎯⎯ → +
Ω

E C E P
k N k/0 2 (56)

where we replace the bimolecular reaction between enzyme and
substrate by a pseudo-first order reaction with an effective rate
constant. In this case the matrix entries for A in eq 35 change to

= − Ω − + − −

= −

−A K N M i i i

n

( ) ( 1) ( 1),

1, ..., 1

i i,
1

(57)

= Ω − + = −+
−A K N M i i n( ) ( 1), 1, ..., 2i i1,

1
(58)

= − = −A i i n( 1), 1, ..., 1n i, (59)

This leads to the following inverse mean first passage time for
the production of a product molecule:

⟨ ⟩
=

′ +
=

t
c N

K N
M

1
, 12

(60)

⟨ ⟩
=

′ +
′ + + ′

=
t

c N K N
K N K N

M
1 2 ( )
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2
(61)
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=

′ + ′ +
′ + ′ + ′ +

=
t

c N K N K N
K N K K N N

M
1 3 (2 )( 2 ))

( )(2 9 2 )
, 32

2 2
(62)

where K′ = KΩ is the non-dimensional MM constant.
Comparison of the above equations with eqs 49−51 shows
that the substrate abundance assumption leads to an average
rate of product formation which is always more than the true
value (except for the case of one enzyme molecule M = 1 in
which case the assumption leads to the correct value). This fact
is illustrated in Figure 7. In particular one finds that eqs 49−51
become equal to eqs 60−62 in the limit of K′ ≫ 1, i.e., the
error in the predictions of the substrate abundance assumption
increases with decreasing volumes Ω (at constant K).

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jpcb.6b08891.

van-Slyke−Cullen mechanism with two substrate reac-
tions (multiple enzyme molecule case) and van-Slyke−
Cullen with cooperative reactions (multiple enzyme
molecule case) (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: ramon.grima@ed.ac.uk.
*E-mail: leier.andre@gmail.com.
ORCID
Ramon Grima: 0000-0002-1266-8169
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Claudia Cianci, Stephen Smith, and Tatiana
Marquez-Lago for a careful reading of the manuscript. The
Okinawa Institute of Science and Technology is acknowledged
for providing funds for R.G. to visit the institute for 2 weeks.
R.G. acknowledges support from the Leverhulme Trust (RPG-
2013-171). A.L. was supported by funding from the Cabinet
Office of Japan.

■ REFERENCES
(1) Fersht, A. Structure and Mechanism in Protein Science: A Guide to
Enzyme Catalysis and Protein Folding; W. H. Freeman, 1999.
(2) Henri, V. Recherches sur la loi de l’action de la sucrase. C. R.
Hebd. Acad. Sci. 1901, 133, 891−899; Über das Gesetz der Wirkung
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