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ABSTRACT: Deoxyribozymes are catalytic DNA sequences
whose atomic structures are generally difficult to elucidate.
Mutational analysis remains a principal approach for under-
standing and engineering deoxyribozymes with diverse
catalytic activities. However, laborious preparation and
biochemical characterization of individual sequences severely
limit the number of mutants that can be studied biochemically.
Here, we applied deep sequencing to directly measure the
activities of self-hydrolyzing deoxyribozyme sequences in high throughput. First, all single and double mutants within the 15-base
catalytic core of the deoxyribozyme I-R3 were assayed to unambiguously determine the tolerated and untolerated mutations at
each position. Subsequently, 4096 deoxyribozyme variants with tolerated base substitutions at seven positions were kinetically
assayed in parallel. We identified 533 active mutants whose first-order rate constants and activation energies were determined.
The results indicate an isolated and narrow peak in the deoxyribozyme sequence space and provide a quantitative view of the
effects of multiple mutations on the deoxyribozyme activity for the first time.

Deoxyribozymes are single-stranded DNA with catalytic
function.1,2 Unlike their RNA counterparts (ribozymes),

deoxyribozymes have not been found in nature. However,
laboratory selection and evolution efforts have yielded
deoxyribozymes that can catalyze diverse chemical reactions
such as DNA/RNA cleavage,3,4 amide hydrolysis,5 and the
Diels−Alder reaction,6 prompting interests in their basic
chemistry as well as potential applications.7−9 On the other
hand, our structural and mechanistic understanding of
deoxyribozymes is still limited. For example, while 3D
structures of many ribozyme classes have been elucidated,
only one deoxyribozyme crystal structure has been reported to
date.10 In the absence of precise structural information,
biochemical methodologies remain a principal approach to
understand and engineer deoxyribozymes. In particular,
mutational analysis is indispensable for identifying catalytically
and structurally important nucleotides.11−15 However, conven-
tional mutational analysis requires design, preparation, and
evaluation of individual mutants, which is time-consuming and
costly. Therefore, only a small number of arbitrarily chosen
mutants are typically studied experimentally.
A significant advance in parallel mutational analysis of

deoxyribozymes was achieved when Höbartner and co-workers
reported a combinatorial scanning mutagenesis method that
was used to identify functionally critical nucleotides in
deoxyribozymes.16−19 While this method offers an important
advantage of allowing atomic mutagenesis,17 it requires
laborious combinatorial DNA synthesis, radiolabeling, and
single-nucleotide resolution gel electrophoresis. Moreover, the
assay can be applied to just single mutants and only affords
qualitative “interference” factors. Therefore, a new analytical

methodology that enables quantitative and high-throughput
characterization of deoxyribozyme mutants should greatly
contribute to fundamental investigations and applications of
deoxyribozymes.
Earlier efforts to infer the fitness landscapes of in vitro

selected nucleic acid enzymes relied on low-throughput Sanger
sequencing20 and targeted mutagenesis.21 Deep sequencing
technology has emerged as a powerful tool to unravel the
fitness landscape of functional nucleic acids. For example, deep
sequencing was used to analyze in vitro selection experiments
to gain insights into the fitness landscapes of ribozymes22−24

and aptamers.25 Niland et al. determined the substrate
sequence specificity of ribonuclease P by deep sequencing.26

We recently used deep sequencing for high-throughput assay of
ribozyme variants without selection.27−29

In the present work, we applied deep sequencing to perform
large scale mutational profiling of a deoxyribozyme, which
unambiguously identified catalytically essential nucleotides as
well as tolerated mutations at every position. Furthermore, we
demonstrated for the first time, a high-throughput kinetic
analysis in which 4096 deoxyribozyme reactions were
simultaneously assayed at multiple time points to calculate
observed rate constants (kobs) of 533 active deoxyribozyme
mutants. The rate constants were used to calculate the
activation energies (Ea) providing quantitative insights into
the mutational landscape of the deoxyribozyme. To our
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knowledge, such quantitative and high resolution mapping of
the mutational landscape of nucleic acid enzymes has not been
reported.
In this work, we focused on a Zn2+-dependent deoxyribo-

zyme called I-R3 that catalyzes DNA hydrolysis, discovered by
the Breaker group through in vitro selection.30 DNA hydrolysis
catalyzed by DNA was first reported by the Silverman group
while attempting to isolate deoxyribozymes with amide
hydrolysis activity.3 The distinct and compact catalytic core
of I-R3 was discovered by a unique selection method that
allows cleavage to occur at any position within the randomized
sequence. The catalytic core of I-R3 is characterized by an
asymmetric internal loop with 10 nucleotides on one side and 7
nucleotides on the other side of the position where hydrolysis
occurs (Figure 1). The small size and high speed (kobs = 1
min−1) of I-R3 have stimulated several applications.31−33 A
possible role of similar deoxyribozymes in sequence-specific
genomic instability has also been suggested.30 It has been
reported that 15 nucleotides of the 17-nt core were highly

conserved among the selected population. However, mutational
analysis of I-R3 reported by Gu et al. was limited to A7T
mutation, which abolished the activity, and that the substitution
of A15 to any of the three other nucleotides or its deletion,
which preserved catalytic function.30 Therefore, it is unclear
which nucleotides that constitute the 17-nt core of I-R3 tolerate
mutations and the quantitative impacts of mutations on the
catalytic activity.
We adapted the comprehensive mutational analysis of

ribozymes enabled by deep sequencing28 to the self-hydrolyzing
deoxyribozyme I-R3 to measure the activities of all possible
single and double mutants of I-R3 at the core nucleotide
positions 1 through 15 (Figure 1). As was the case with
ribozymes, the key process is the construction of the
sequencing library. A partially randomized deoxyribozyme
library (p_IR3_doped, Table S1) was prepared in which the
positions targeted for mutagenesis were synthesized by
coupling 79% of the original (wild-type) base doped with 7%
of each of the remaining three bases. As I-R3 is absolutely
dependent on Zn2+ for its activity, premature cleavage and
cleavage during library preparation were prevented by with-
holding Zn2+ or addition of excess EDTA. The resulting library
was subjected to self-hydrolysis reaction in the reaction buffer
(50 mM HEPES, pH 7.1, 2 mM ZnCl2, 20 mM MgCl2, 100
mM NaCl) at 37 °C for 1 h. Subsequently, an adapter
oligonucleotide (p_adapter, Table S1) was ligated to the 5′ end
of the reaction products (both cleaved and uncleaved) using T4
DNA ligase. The DNAs were then circularized by CircLigase
and PCR amplified to yield the final library for deep sequencing
(Figure 1). Deep sequencing requires attachment of fixed
adapter sequences to both 5′ and 3′ ends of the DNA. Because
the cleavage occurs on the 3′ side of the sequence that needs to
be read, the adapter oligonucleotide (p_adapter) was ligated to
the 5′ end, which is common to both cleaved and uncleaved
DNAs, using T4 DNA ligase and a splint oligonucleotide.
Because the 3′ ends of the DNAs are heterogeneous (due to
cleavage and randomization), circularization was deemed to be
more efficient34 compared to nontemplated ligation of single-
stranded DNAs.
Preservation of the relative yields of the cleaved and

uncleaved DNA fragments directly affects the quality of the
fraction cleaved (FC) values obtained by sequencing. There-
fore, each step in the library construction was carefully
monitored and optimized to minimize any bias introduced
prior to sequencing. For example, we used a high-fidelity DNA
polymerase and minimum number of thermal cycles (5 cycles)
during PCR to minimize PCR biases. We also deliberately
chose the 5′ end of the adapter (p_adapter, Table S1) to be
guanine based on the substrate preference of CircLigase
according to the manufacturer.
The raw reads from sequencing were filtered for quality using

NGS QC Toolkit35 and analyzed by custom Perl scripts. Each
sequencing read identifies the mutant sequence of the original
deoxyribozyme as well as its cleavage status. By counting the
numbers of cleaved and uncleaved reads (Nclv and + Nunclv,
respectively) for each mutant, fraction cleaved (FC) for each
mutant can be calculated:

= +N N NFC /( )clv clv unclv

Where appropriate, FC was further normalized by that of the
wild-type I-R3 (FCwt = 0.82) and expressed as relative activity
(RA). Deep sequencing yielded, on average, 24363 reads for
each of the 45 single mutants and 2118 reads for each of the

Figure 1. Sequence and structure of the deoxyribozyme I-R3 and
outline of the library preparation process. The nucleotides that
constitute the catalytic core are shown in red. The arrowhead indicates
the cleavage site and “p” denotes 5′-phosphate group. Light blue and
green lines indicate adapter sequences for deep sequencing. SP18
represents a hexa(ethylene glycol) spacer.
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945 double mutants. Of the 12285 triple mutants, 7375 variants
(60%) had at least 150 reads, which were sufficient for FC
calculation (Table S2). I-R3 and 15 variants with varying FC
values were chosen and individually assayed by conventional
polyacrylamide gel electrophoresis (PAGE) to determine their
activities (Table S3, Figure S1). FC values measured by the two
methods showed an excellent linear correlation (Figure S1),
validating the reliability of the sequencing based deoxyribozyme
assay. The slope of 0.92 correlating the FC values by the two
methods may be attributed to a minor bias introduced during
the sequencing library preparation.
RA values of the 45 single and 945 double mutants are

summarized in Figure 2, and the complete numerical data of
these and 7375 (out of 12285 possible) triple mutants for
which at least 150 reads were obtained are provided in
Supplementary Data set.
A closer inspection of the RA values of the 45 single mutants

(Figure 2A) reveals new observations regarding the sequence
requirements of I-R3. As reported by Gu et al.,30 A7T abolished
catalytic activity, and all A15 substitutions were tolerated. Our
results further revealed that G3, T5, G6, A7, G8, G11, T12, and

G14 are critical for catalysis, with any substitution at these
positions resulting in loss of activity. On the other hand, T4,
C9, T10, T13, and A15 tolerate mutations. Although T1G
retains activity, T1A results in a significant decrease in activity
(RA = 0.25) and T1C is completely inactive, possibly due to
base pairing with G17. A2G mutation is tolerated but not A2C
or A2T. Although our library did not include mutants at A16
and G17, single mutants at these positions were examined by
PAGE for completeness (Figure S2). Interestingly, all A16
mutants were active to some extent, while G17 mutants were all
inactive.
Analysis of double mutants sometimes reveals covariable base

pairs that are critical for structure and function. For example, if
two single mutants result in loss of function but the combined
double mutant restores function, it implies that those two bases
may engage in functionally critical interactions. Our analysis of
all 945 double mutants revealed no such potential interactions
(Figure 2B). All double mutants that include a mutation that by
itself inactivates the deoxyribozyme are inactive, except for
T12C. Although T12C is inactive, the second mutation C9T
partially restores activity (RA = 0.17, Figure 2B). Similarly, RA
values of 7375 triple mutants with at least 150 reads confirmed
that existence of one or more crippling mutations render the
DNA catalytically inactive with the exception of few C9T/
T12C mutants (Supplementary Data set).
The comprehensive mutational landscape of I-R3 based on

our doped library implies a sharp fitness peak surrounding the
wild-type (Figure S3). Our results indicate that the frequency of
active mutants drops rapidly as more mutations accumulate.
While 40% of single mutants retain RA > 0.2, 11.3% of all
double mutants and 1.1% of triple mutants analyzed stay above
the threshold (Table S4). The catalytically critical nucleotides
are clearly identified, and any multiple base mutants that
include one or more of the untolerated substitutions (Figure
2A) are likely to be inactive or marginally active. Therefore, we
decided to explore higher-order mutants with combinations of
tolerated single base substitutions according to Figure 2A. A
new library p_IR3_revised (Figure 3A) was synthesized with
the wild-type base, and where applicable, tolerated base
substitutions with RA > 0.5 at each position. Seven nucleotides
were varied with a total combination of 4096 sequences
including the wild-type I-R3. Moreover, FC and RA values
obtained from a reaction after a fixed time point are only
semiquantitative. In particular, these values cannot differentiate
reactions that are significantly faster than the sampling time
scale. To gain a more quantitative understanding of the
mutational landscape, the reaction of the new library was
sampled at multiple time points so that a complete kinetic
profile for each mutant could be acquired and be used to
calculate observed rate constants (kobs). Deep sequencing has
been used to measure the binding kinetics of peptide ligands
and a protein,36 but no direct kinetic measurement of nucleic
acid enzymes has been reported.
The library was analyzed similarly as described above with

the exception of sampling the reaction at 1, 3, 8, 15, 30, 60, and
120 min. Samples from each time point were processed
separately with unique barcodes but were combined prior to
deep sequencing analysis. The kinetic data obtained by deep
sequencing yielded sufficient read counts at each data point
(Table S5 and Supplementary Data set). Additionally, reaction
profiles of 11 deoxyribozymes were obtained by PAGE for
comparison (Figure S4). Again, FC values calculated from the
deep sequencing and PAGE assays showed an excellent

Figure 2. Relative activities (RAs) of single and double mutants of I-
R3. (A) RA of 45 single mutants. The underlined nucleotides do not
tolerate any mutations. (B) Two-dimensional RA matrix of all single
and double mutants. Boxed nucleotides indicate mutations that
inactive deoxyribozyme as single mutants. Single mutants appear on
the diagonal side. The full RA matrix with numerical RA data is
provided in Supplementary Data set.
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correlation (Figure S5A). Similarly, FC values of the single and
double mutants after 1 h reaction from this library were plotted
against the corresponding FC values from the original doped
library (Figure S5B). The strong agreement of the two data sets
obtained from two different libraries indicates good reprodu-
cibility of the deep sequencing assay.
Of the 4096 deoxyribozyme variants, 533 showed FC ≥ 0.20

after 2 h (Table S6) for which kobs were calculated by fitting the
reaction time course to the first-order kinetics (Figure 3B,
Figure S6, and Supplementary Data set). The kobs values
calculated from the sequencing data agree well with those of 11
deoxyribozymes obtained by PAGE (Figure 3C and Table S7).
For example, the kobs of the wild-type based on the sequencing
data is 0.57 min−1, which is in close agreement with the PAGE
based assay (0.64 min−1) as well as that of the unimolecular I-
R3 reported by Gu et al. (0.5 min−1).30 A closer look at the 17
single mutants revealed that while most variants showed RA ≈
1.0 except for the three mutants at T13 (RA > 0.5) (Figure
2A), their kobs values are significantly lower than the wild-type
(Figure 3D). Notable exceptions include C9T (0.53 min−1) and
C9G (0.45 min−1) whose kobs values are comparable to that of
the wild-type. Additionally, we found a large number of active
higher-order mutants with as many as five mutations (quintuple
mutants) with kobs ranging from 0.015 to 0.002 min−1, which
are approximately 38- to 285-fold lower than kobs of the wild-

type (Figure S6). However, with no active mutants harboring
more than five mutations identified, it is likely that we have
analyzed most, if not all, functional I-R3 mutants in the vicinity
of the wild-type sequence space. Based on the activity threshold
of the mutants we analyzed (FC ≥ 0.20 after 2 h), we should
have detected all variants with kobs > ∼0.002 min−1.
Our findings are consistent with the view that I-R3 and its

related functional mutants represent an isolated and narrow
peak in the deoxyribozyme sequence space (Figure S3). An
intriguing possibility suggested by Gu et al. of the small and
active DNA self-hydrolysis motif represented by I-R3 is that
there may be similar natural motifs in the genomes of
organisms that may be subject to genomic instability.30 They
identified and tested several natural motifs in vitro and
confirmed their activity. Although the biological relevance of
I-R3 related motifs remains inconclusive, comprehensive and
quantitative sequence requirements of deoxyribozymes that our
method affords should help identify potentially catalytic DNA
motifs in natural genomes.
Availability of kobs for a large set of mutants provides new

opportunities to understand the mutational effects of the
deoxyribozyme at a more quantitative level. Here, we consider
the kobs of a double mutant (kij) and those of the respective
single mutants (ki and kj). If the two mutations are
independent, that is, if each mutation affects the activation
energy (Ea) of the reaction in an additive manner, the
Arrhenius equation predicts that

= ·_ _ _k k kij i jrel rel rel

where ki_rel signifies relative kobs normalized by kobs of the wild-
type (Supporting Information, methods). Inequality of kij_rel
and ki_rel·kj_rel implies either positive or negative epistasis, or
coupling of the two mutations. For example, kij_rel > ki_rel·kj_rel
shows antagonistic epistasis in which the double mutant is more
active than if the two single mutations were to affect the activity
(Ea) in an additive manner. We plotted kij_rel vs ki_rel·kj_rel of all
105 double mutants for which measurable kobs were obtained
(Figure 4A). The plots indicate that most of the double
mutations appear to show weak or no epistasis, but it also
highlights exceptions that would have been difficult to detect
without such analysis. We identified only 9 mutants whose kij_rel
and ki_rel·kj_rel differ by 3-fold or more (Figure 4). The relative
magnitude of epistasis of each mutant can be more
quantitatively represented as follows (eq 12 in Methods):

ΔΔ = Δ + Δ − ΔE E E E( )ij i j ij

where ΔEi, ΔEj, and ΔEij are the increases in the activation
energy relative to the wild-type. These values can be calculated
from the relative rate constant ki_rel, etc.:

Δ = − _E RT klni i rel

Distribution of ΔΔEij values of the 105 double mutants
(Figure 4B,C) again shows that majority of the mutations show
weak or no epistasis. Few notable exceptions include T13C,
A15C showing the highest ΔΔEij and C9G, T10C with strong
synergistic epistasis (negative ΔΔEij) (Figure 4C). Although
based on single time-point assays, our recent mutational study
of a natural twister ribozyme indicated a number of epistatic
interactions consistent with the crystal structure as well as
mutational robustness.28 However, the size of the naturally
evolved ribozyme is significantly larger. The compactness of the

Figure 3. Kinetic analysis of I-R3 variants. (A) Targeted library of
4096 deoxyribozyme variants based on the tolerated substitutions in
single mutant analysis. (B) Kinetic profiles of I-R3 and selected
variants from the sequencing data. Values in parentheses represent kobs
derived from curve fit. (C) Correlation of kobs values measured by
conventional PAGE and sequencing assays. (D) Measured kobs of
single mutants by sequencing.
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catalytic core of I-R3 may have resulted in a more restrictive
sequence requirement and fewer epistatic interactions.
As demonstrated in this work, we used deep sequencing to

obtain a quantitative overview of the sequence−function
relationship of a deoxyribozyme that would not have been
possible using conventional assays. With appropriate mod-
ifications of the sequencing library preparation procedure, large
scale deoxyribozyme assay by deep sequencing should serve as
a powerful methodology to deepen our understanding of
various deoxyribozymes as well as to engineer them for
practical applications.
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