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Creating superfluid vortex rings in artificial magnetic fields
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Artificial gauge fields are versatile tools that allow the dynamics of ultracold atoms in Bose-Einstein
condensates to be influenced. Here we discuss a method of artificial gauge field generation stemming from the
evanescent fields of the curved surface of an optical nanofiber. The exponential decay of the evanescent fields
leads to large gradients in the generalized Rabi frequency and therefore to the presence of geometric vector and
scalar potentials. By solving the Gross-Pitaevskii equation in the presence of the artificial gauge fields originating
from the fundamental Hybrid mode (HE11) mode of the fiber, we show that vortex rings can be created in
a controlled manner. We also calculate the magnetic fields resulting from the higher order HE21, Transverse
electric mode (TE01), and Transverse magnetic mode (TM01) and compare them to the fundamental HE11 mode.
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I. INTRODUCTION

Ultracold atomic condensates have emerged as suitable
and flexible systems to study a variety of effects relating to
condensed matter physics [1,2]. These effects include many
connected to the periodicity found in solid state systems by
using gases trapped in optical lattices, but more recently also
ones relating to the application of gauge fields.

Among them a particularly interesting one is the appearance
of vortex structures in magnetic fields above a critical field
strength, similar to the physics exhibited by type-II super-
conductor systems [3]. However, atomic Bose-Einstein con-
densates (BECs) are charge neutral, and hence real magnetic
fields have no gauge-field-like effects. Nevertheless, one can
rely on methods that apply magnetic field to such neutral
systems in an artificial manner. Many proposals to generate
artificial gauge fields for BECs have been put forward in recent
years, and several have been successfully implemented [1,4].
A conceptually convenient way is to rotate a BEC [5], which
mimics the Lorentz force experienced by a charged particle
in a magnetic field and shows the quantization of circulation
in BECs by forming vortices and vortex lattices. Another way
to generate artificial gauge fields is through Raman lasers [6],
which allow generation of highly stable artificial magnetic
fields of large amplitude.

While vortex systems in BECs have been thoroughly
studied, vortex rings, which are three-dimensional structures
with a closed loop core (i.e., a vortex line that loops back
into itself) [7], have been harder to experimentally create
and control. Experimental observation of vortex rings has
been achieved dynamically, in superfluid helium [8] as well
as for BEC systems through the decay of dark solitons in
two-component BECs [9], direct density engineering [10,11],
in the evolution of colliding symmetric defects [12], and very
recently in the time evolution of superfluid Fermi gases [13].
Theoretical proposals for the creation of vortex rings in a
stationary state include interfering two-component BECs [14],
using a spatially dependent Feshbach resonance [15], and
direct phase imprinting methods [16]. For inhomogeneously
trapped BECs, however, vortex ring structures are known to be
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unstable, which results in very short lifetimes and significant
difficulties for experimental observation. The vortex rings
either decay into elementary excitations by drifting towards the
edge of the condensate [14] or annihilate within the condensate
bulk.

Motivated by the large interest in the study of vortex
ring structures in BECs, we propose here a way to engineer
artificial gauge fields for a BEC such that vortex rings form
naturally. For this we study a system in which an atomic BEC is
coupled to an optical nanofiber [17] and show that the detailed
control over the evanescent field outside the fiber allows us
to obtain control over the creation of stable vortex rings. In
time-dependent gauge fields, this can also be used to study
vortex ring dynamics in a controlled way.

Optical nanofibers have in recent years emerged as versatile
tools for tailoring optical near-field potentials that can interface
with other quantum systems, as they offer controlled propa-
gation of light inside and outside the fiber surface [18–20].
For this reason, experiments are currently carried out in many
laboratories worldwide that explore the possibility of trapping
and manipulating cold atomic gases using optical nanofibers
[21–29]. Using two-color evanescent fields around nanofibers,
an optical dipole trap for laser cooled atoms near to the fiber
surface has already been realized [17], which proves that
tapered optical fibers are excellent candidates for realizing
versatile light-matter interfaces.

In this work, we consider the adiabatic motion of trapped
Bose-Einstein condensed atoms around an optical nanofiber
and show that the presence of the evanescent fields around
the fiber realises interesting artificial gauge fields for the BEC
system. Because of the large gradient in the generalized Rabi
frequency, geometric vector and scalar potentials are created,
which are related to Berry phases and have similar effects
on the neutral atoms as the magnetic and electric fields have
on charged systems [30]. In particular we show that for the
fundamental mode of the fiber the artificial magnetic field lines
can go solely along the azimuthal direction and therefore allow
for the creation of vortex rings. Similar studies to generate
artificial gauge fields atop a flat surface, such as above a prism,
have recently been presented as well [31,32].

The paper is organized as follows. In Sec. II, we briefly
discuss the background for our work by first reviewing the
general model for the adiabatic motion of atoms in an external
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electromagnetic field and describing how an artificial vector
potential is generated outside of a dielectric surface. We
also review the explicit forms of the evanescent fields. In
Sec. III we calculate the expressions for the effective magnetic
field profiles resulting from the combination of different
polarizations of fundamental Hybrid mode (HE11) of the fiber
and describe their effect on Bose-condensed atoms trapped
around the fiber in Sec. IV. In Sec. V we discuss different
magnetic field profiles that can be obtained from higher order
modes, and in Sec. VI we conclude.

II. BACKGROUND

A. Adiabatic motion of atoms in evanescent fields

Let us start by considering a two-level atom at position r,
which interacts with an external laser field [33]. Within the
rotating wave approximation its eigenstates are called dressed
states and are given by

|�1(r)〉 =
(

cos[�(r)/2]

sin[�(r)/2]eiφ(z)

)
, (1)

|�2(r)〉 =
(− sin[�(r)/2]e−iφ(z)

cos[�(r)/2]

)
. (2)

Here φ(z) is the running phase of the optical field and �(r) =
arctan(|κ(r)|/�), where

κ(r) = d · E(r)/h̄ (3)

is the system’s Rabi frequency with d and E(r) being the atomic
dipole moment and the electric field vector, respectively. The
detuning of the light field from the resonance frequency ω0

is given by � = ω0 − ω. The states are split in energy by
ε1(r) − ε2(r) = h̄	(r), where 	(r) =

√
�2 + |κ(r)|2 is the

generalized Rabi frequency.
Assuming that the atom is initially prepared in state |�1(r)〉

and moves adiabatically in the external light field, its internal
state will also adiabatically follow the dressed state. This leads
to the appearance of a geometrical Berry phase, and hence a
vector potential of the form

A = ih̄〈�1|∇�1〉, (4)

= h̄

2
{cos[�(r)] − 1}∇φ(r). (5)

This represents an artificial gauge potential which is
geometric in nature, since it arises from the spatial variation of
the dressed state. The system can therefore mimic the dynamics
of a charged particle in the presence of magnetic field, given
by B = ∇ × A.

In the following, we will use the properties of evanescent
fields outside of optical nanofibers to generate artificial
magnetic fields for adiabatically moving ultracold atoms.
We will show that these fields can have different profiles,
depending on the mode characteristic of the light traveling
through the fiber.

If we assume that the field travels freely along the fiber, we
can choose φ(z) = k0nz, with k0 as the wave number and n as
the refractive index, and straightforwardly calculate the vector

potential as

A(r) = −ẑ
h̄k0n

2

⎡
⎣1 − 1√

1 + ( |d·E|
h̄�

)2

⎤
⎦, (6)

from which the artificial magnetic field follows as

B(r) = h̄k0n

4

(d/h̄�)2

[
1 + { |d·E|

h̄�

}2] 3
2

[
ϕ̂

∂

∂r
|E|2 − r̂

1

r

∂

∂ϕ
|E|2

]
.

(7)

Since we have evaluated this expression in cylindrical polar
coordinates, one can immediately see that the resulting B field
has components pointing along the ϕ̂ and the r̂ direction. While
evanescent field modes have inevitably an r dependence, for
modes of the nanofiber which have no azimuthal dependence
(for example, the ones with circular polarization), only the
magnetic ϕ̂ component exists. This is the basis for the ability
to generate vortex rings around the fiber.

As can be seen from Eq. (5), atoms interacting with fields
that have large gradients are subject to stronger artificial
gauge fields. Evanescent fields outside of optical nanofibers
are known to have very large field gradients, and hence these
systems are of experimental interest. Since the gradients also
depend on the refractive index and the diameter of the fiber, as
well as the parameters of the input light field, a large number
of valuable control parameters exist with which the strength
and spatial structure of the artificial magnetic fields can be
changed.

B. Form of the evanescent fields

Optical nanofibers can be thought of as consisting of an
extremely thin cylindrical silica core and an infinite vacuum
clad. They can be created by heating and pulling a standard
commercial grade optical fiber so that its waist diameter
reduces from a few hundred micrometers to a few hundred
nanometers [18,26,34]. Since the fiber diameter is smaller than
the wavelength of the input light, a major fraction of power
propagates outside the surface in the form of an evanescent
field.

Trapping of atoms around the fiber can be achieved using
a setup that relies on two evanescent fields [17,21–25]. The
first field is red detuned with respect to atomic transition
frequency and provides a potential that attracts atoms towards
the fiber. The second field is blue detuned with respect to
atomic transition frequency, leading to a potential that repulses
the atoms from the surface. Since both fields have different
evanescent decay lengths, it is possible to create a potential
minimum in the radial direction at a finite distance (∼200 nm)
away from the fiber surface.

In this work we will explicitly consider the effects of
light propagating in the fundamental HE11 mode of the
nanofiber, where the frequency, the free space wave number,
and the wavelength are denoted by ω, k0 = ω/c, and λ =
2π/k0, respectively. To ensure that only this fundamental
mode propagates in the fiber, the single-mode condition
V = k0a

√
n2

1 − n2
2 < Vc ≈ 2.405 needs to be fulfilled, where

a is the radius of the fiber and n1 and n2 are the refractive
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indices inside and outside of the fiber. This can be easily
achieved for typical nanofiber diameters.

For a circularly polarized light field, the components of the
electric field vector for the fundamental HE11 mode outside
the fiber are given by

Er = iA[(1 − s)K0(qr) + (1 + s)K2(qr)]ei(ωt−βz),

Eϕ = −A[(1 − s)K0(qr) − (1 + s)K2(qr)]ei(ωt−βz),

Ez = 2A(q/β)K1(qr)ei(ωt−βz), (8)

where s is a dimensionless parameter given by

s = 1/h2a2 + 1/q2a2

J ′
1(ha)/[haJ1(ha)] + K ′

1(qa)/[qaK1(qa)]
. (9)

The normalization constant A is defined as

A = β

2q

J1(ha)/K1(qa)√
2πa2

(
n2

1N1 + n2
2N2

) , (10)

where

N1 = β2

4h2

[
(1 − s)2

[
J 2

0 (ha) + J 2
1 (ha)

]

+ (1 + s)2
[
J 2

2 (ha) − J1(ha)J3(ha)
]]

+ 1

2

[
J 2

1 (ha) − J0(ha)J2(ha)
]
,

N2 = J 2
1 (ha)

2K2
1 (qa)

{
β2

4q2

[
(1 − s)2

[
K2

1 (qa) − K2
0 (qa)

]

− (1 + s)2
[
K2

2 (qa) − K1(qa)K3(qa)
]]

− K2
1 (qa) + K0(qa)K2(qa)

}
. (11)

In the above expressions, Jm(x) and Km(x) are Bessel
functions of the first kind and modified Bessel functions of the
second kind, respectively, and β is the longitudinal propagation
constant for the fiber’s fundamental mode. The parameter
q =

√
β2 − n2

2k
2
0 characterizes the decay of the field outside

the nanofiber and h =
√

n2
1k

2
0 − β2 .

When the input light field is linearly polarized, the com-
ponents of the electric field vector of the evanescent field are
given by

Ex =
√

2A[(1 − s)K0(qr)cosϕ0

+ (1 + s)K2(qr)cos(2ϕ − ϕ0)]ei(ωt−βz),

Ey =
√

2A[(1 − s)K0(qr)sinϕ0

+ (1 + s)K2(qr)sin(2ϕ − ϕ0)]ei(ωt−βz),

Ez = 2
√

2iA(q/β)K1(qr)cos(ϕ − ϕ0)ei(ωt−βz). (12)

Here the angle ϕ0 determines the orientation of the polariza-
tion, with ϕ0 = 0 and π/2 being aligned along the x and y

axes, respectively. From these expressions one can see that for
circularly polarized light fields, the atoms can be trapped in
a cylindrical shell which surrounds the nanofiber. However,
when either one or both of the input light fields (red and
blue detuned) are linearly polarized, the trapping potential

possesses minima at specific spatial points in the transverse
plane of the optical fiber.

III. ARTIFICIAL GAUGE FIELDS FOR COLD ATOMS
TRAPPED OUTSIDE THE NANOFIBER

To calculate the gauge fields stemming from the evanescent
fields, one can see from Eq. (7) that smaller detunings lead to
larger fields. However, smaller detunings also lead to higher
scattering rates and therefore higher losses [22]. To avoid the
latter, detunings used for atom traps are usually chosen to
be quite large (order of THz), to ensure low scattering rates,
giving coherence times of ∼50 ms and trap lifetimes of up to
∼100 s [17]. This, however, leads to unobservably small gauge
fields.

To overcome this limitation, an alternative arrangement was
recently suggested by Mochol and Sacha [31], which does not
depend explicitly on the detuning of the input light field. This
scheme can be implemented for multilevel alkali-metal atoms
such as 87Rb, which are a commonly used species in cold atom
experiments and takes advantage of the (quasi)degeneracy of
the electronic ground-state level. In the dressed state picture
dark and bright states exist, which are linear combinations
of the degenerate ground states, and which have negligible
contributions from the excited state. The required coupling
uses two light fields, the first propagating inside the fiber
and the second propagating outside and parallel to the fiber
surface. Both beams are assumed to have the same wave
vector, k1 ≈ k2 = k0, and their respective Rabi frequencies are
given by κ1(r,ϕ,z) and κ2(z). The values are chosen such that
they can induce Raman transitions between two degenerate
internal states of the atoms and we assume that the atoms
follow adiabatically the coupled dressed state given by

|D1〉 = |1〉 + ξ |2〉√
1 + |ξ |2

. (13)

Here

ξ = − κ∗
1

κ∗
2

= −|d1 · E1|
|d2 · E2|

= − s̃(drEr + dϕEϕ + dzEz)e
−ik0(n1+1)z (14)

with d1 = d01(dr r̂ + dϕϕ̂ + dzẑ) and E1 = E01(Er r̂ + Eϕϕ̂ +
Ezẑ), hence s̃ = d01E01/|d2 · E2|. Using Eq. (5), one can
determine the effective vector potential and hence the magnetic
field as

A(r) = − ẑh̄k0(n1 + 1)s̃2 |drEr + dϕEϕ + dzEz|2
1 + s̃2|drEr + dϕEϕ + dzEz|2 ,

(15)

B(r) = h̄k0s̃
2(n1 + 1)

(1 + s̃2|drEr + dϕEϕ + dzEz|2)2

×
[
ϕ̂

∂

∂r
|drEr + dϕEϕ + dzEz|2

− r̂
1

r

∂

∂ϕ
|drEr + dϕEϕ + dzEz|2

]
. (16)
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FIG. 1. Magnetic fields strength B(x,y) stemming from a linearly
polarized HE11 mode in units of B0 = h̄k2

0/2. (a) r̂ and (b) ϕ̂

components for polarization in the x direction; (c) r̂ and (d) ϕ̂

components for polarization along y. The wavelength and power of
the blue-detuned light field are chosen as λB = 700 nm and PB = 30
mW, and the components of the dipole moment are dr = 1,dϕ = 0,
and dz = 0. Note that the axes in panels (c) and (d) are adjusted.

One can see that this expression is independent of the detuning
and a significant magnetic field can be achieved by making
the parameter s̃ at least of order unity or greater, which is
experimentally achievable.

Again we note that the expression for the magnetic field
has components along the r̂ and the ϕ̂ directions and in Fig. 1
we show the spatial distribution of the different components
for a blue-detuned light field that is linearly polarized along
the x (ϕ0 = 0) and the y (ϕ0 = π/2) direction [cf. Eq. (8)].
As before, for circularly polarized fields no radial component
exists.

For traps relying on two color light fields, the resulting
magnetic field strength profiles in the transverse xy plane for
different combinations of the polarizations states of the input
fields are shown in Fig. 2. They are based on the assumption
that the two beams required for the trapping are propagating
through the fiber in the fundamental HE11 mode and for each
a second beam to overcome the dependence on the detuning
is added. The trapping wavelengths and powers chosen are
compatible with trapping Cs atoms in a deep optical potential
outside the fiber, but this method for artificial magnetic fields
can be used for many atomic species by appropriately adapting
the trapping wavelengths and the nanofiber diameter.

One can see that when both of the input light fields are
circularly polarized [Fig. 2(a)], the resulting magnetic field is
uniformly distributed around the fiber. However, when either
one or both of the input light fields are linearly polarized,
the azimuthal symmetry is broken and the magnetic field
profiles become nonuniform around the fiber, as shown in
Figs. 2(b)–2(d). This simple example already demonstrates
that the magnetic field profiles outside the fiber can in principle
be continuously and time dependently tuned by controlling

FIG. 2. Magnetic field strength B(x,y), in units of B0 = h̄k2
0/2,

for atoms trapped outside a fiber of radius a = 200 nm. The
wavelength and power of blue- and red-detuned light fields are
λB = 700 nm, PB = 30 mW, and λR = 1060 nm, PR = 20 mW. The
components of the dipole moment are chosen to be dr = 1,dϕ = 0
and dz = 0. The polarizations of the input light fields are (a) both
circular, (b) red circular and blue linear along x, (c) red linear along
y and blue linear along x, and (d) red linear along y and blue linear
along y. Note that the axes in panel (d) are adjusted.

the polarization state of the two input light fields. From
now onwards, we will focus on the azimuthally symmetric
situation and therefore consider both light fields to be circularly
polarized modes as given by Eq. (8).

From Fig. 2(a) it can also be seen that the magnetic field
possess a maximum at a finite distance away from the fiber
surface and decreases rapidly beyond that. The exact position
and value of this maximum is a function of the parameter
s̃ of the two input light fields and of the dipole moment
components dr,dϕ,dz. Shifting the maximum of the magnetic
field away from the fiber to achieve a better overlap with
an atomic cloud, however, requires a compromise with the
maximum value of the magnetic field, which reduces with
increasing distance from the fiber; see Fig. 3. The inset of this
figure shows the magnitude, Bmax, and the position, rmax, of
the maximum of the magnetic field as a function of parameter
s̃. One can see that with increasing values of s̃, the maximum
moves further away from the fiber surface, but decreases in
magnitude. In the next section we show what the effect of these
artificial magnetic fields is on a typical BEC trapped around the
nanofiber.

IV. BOSE EINSTEIN CONDENSATES IN ARTIFICIAL
MAGNETIC FIELDS AROUND THE NANOFIBER

The fact that the trapping potentials and the artificial mag-
netic fields arising from the circularly polarised HE11 modes
are azimuthally symmetric allows us to restrict our calculations
for the effects of the gauge fields on the BEC to the xz plane,
which significantly reduces the required numerical resources.
Furthermore, to constrain the extent of the condensate in
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FIG. 3. Magnetic field B(r) scaled in units of B0 = h̄k2
0/2 outside

a fiber with radius a = 200 nm for different values of the parameter
s̃. Blue (with asterisk) curve: s̃ = 0.3; red (with dots) curve: s̃ = 1.
For both values the components of the dipole moment are chosen to
be dr = 1,dϕ = 0, and dz = 0. The inset (left axis) shows the change
of the magnitude of the field maximum (Bmax/B0) as a function of s̃

(black dashed line). The right axis of the inset shows the location rmax

of maximum of the magnetic field (green solid line). The wavelengths
and powers of the blue- and red-detuned light fields are the same as
in Fig. 2.

the z direction, and since the exact shape of the trapping
potential does not play a role in describing the physics, we will
approximate it by a harmonic shape, choosing the harmonic
potential in the radial direction to have a minimum at the same
location as that of the two-color trapping potential.

We use the total artificial magnetic field created by the
red- and blue-detuned input light fields and, assuming that the
condensate dynamics can be described within the mean field
approximation, solve the time-independent Gross Pitaevskii
equation given by

− 1
2 (∇ + iA)2ψ + Vtrapψ + g|ψ |2ψ = μψ, (17)

where Vtrap is the harmonic trapping potential. The interaction
between the atoms is characterized by g and μ is the chemical
potential of the system. The ground state of this equation can be
easily found using a fast fourier transform (fft)/split-operator
method in imaginary time, and results for two different
strengths of the artificial magnetic field are shown in Figs. 4
and 5.

The magnetic field strength in the radial direction away
from the fiber for s̃ = 0.7 is shown in the upper part of Fig. 4
and the lower part shows the density profile of the condensate
on the left- and right-hand sides of the fiber. The surface of the
fiber is indicated in the middle of both plots. One can see that
a single vortex appears on each side of the fiber, close to the
position where the gauge field is maximal.

Calculating the circulation of the two vortices shows that
they have equal and opposite values, which is due to the fact
that the magnetic field lines circulate around the fiber in the

FIG. 4. (a) Magnetic field strength as a function of distance from
the nanofiber surface. (b) Density profile for a BEC trapped in the
harmonic potential on left and right sides outside an optical nanofiber.
The vortices visible are the result of the presence of the artificial
magnetic field created by the evanescent field outside the fiber. The
artificial magnetic field used in the calculations corresponds to the
laser parameters used in Fig. 2(a) with s̃ = 0.7 and dr = 1,dφ = 0,

dz = 0.

azimuthal direction. They therefore act perpendicularly to the
xz plane on both sides, but in opposite directions, which results
in a vortex on the left-hand side of the fiber and an antivortex on
the right-hand side. By restoring the azimuthal symmetry, the

FIG. 5. Same as Fig. 4, but for s̃ = 0.85. One can see that the
broader magnetic field distribution leads to the appearance of multiple
vortices.
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two vortices become slices through a vortex ring that is created
around the fiber. The specific geometry of a condensate trapped
around a nanofiber therefore allows us to create vortex rings
in a deterministic manner.

Increasing the value of the parameter s̃ leads to a decrease
of the magnitude of the artificial gauge field, but also to
an increase in the width of the magnetic field profile. This
increases the overlap with the trapped condensate, and one can
see in Fig. 5 that this results in the generation of multiple vortex
rings around the fiber. It is worth noting that these solutions
are only stable in the presence of the gauge field, i.e., when
light is propagating through the fiber. However, the field inside
the fiber can be changed time dependently, and typical time
scales required for changing the detuning, the power, or the
polarization of the input light fields are of the order of milli- to
microseconds, which is a lot shorter than the typical lifetimes
of atomic BECs. It is worth noting that a particularly interesting
situation is the one where the fields are switched off after the
vortex rings have formed. The topologically stable rings can
then evolve freely inside the condensate, which would allow
us to study the dynamics of vortex ring interactions starting
from a well-defined initial state. To account for all possible
effects, which include oscillations along the vortex ring as
well as reconnections, such work needs to be carried out in
fully three-dimensional simulations [35].

V. ARTIFICIAL MAGNETIC FIELD DUE TO EVANESCENT
FIELDS FROM HIGHER ORDER MODES

So far we have focused on the effects of the fundamental
HE11 mode, which can be separated from the remaining
optical modes by a proper cutoff condition. However, higher-
order mode transmission in nanofibers has recently been
achieved [28], which has numerous applications, for example,
in engineering new trapping geometries for atoms based
on the different evanescent field shapes [24,25,27]. These
higher order modes bring with them additional degrees of
freedom, which allow for more flexible artificial magnetic
field profiles, and we show in Fig. 6 the respective profiles
resulting from the three higher-order modes Transverse electric
mode (TE01), Transverse magnetic mode (TM01), and HE21,
which are the ones closest to the fundamental mode HE11. The
explicit expressions for their evanescent fields are given in the
appendix. In order to allow the higher order modes to travel
through the nanofiber, a larger fiber radius is required and we
focus on a single, blue-detuned input light field of wavelength
λB = 780 nm and power PB = 30 mW for a fiber of radius
a = 400 nm. From Fig. 6 one can see that the magnitude is
highest for the HE11 mode and is decreased for the TE01, TM01,
and HE21 modes. At the same time, the width of these higher
order modes increases, which is consistent with the fact that
their evanescent fields have larger decay lengths. As before,
these magnetic field profiles can also be tuned by changing
the parameter s̃ and the dipole moment components dr , dϕ ,
and dz.

Furthermore, it is in principle possible to interfere different
order modes and thereby engineer nontrivial evanescent field
profiles [24,25], which in turn will lead to complex magnetic
field geometries and potentially new structures inside the
BEC [35].

FIG. 6. Magnetic fields B(r), scaled in units of B0 = h̄k2
0/2, for

the higher order modes HE21 (red line with dots), TE01 (green line
with cross), and TM01 (black line with triangles), and compared to
the fundamental HE11 mode (blue line with asterisk). The wavelength
of blue-detuned light field is λB = 780 nm and dipole moment
components are dr = 1,dφ = 1,dz = 1 respectively, with parameter
s̃ = 5. The fiber radius is chosen as a = 400 nm.

VI. SUMMARY AND OUTLOOK

In this work we have described the artificial magnetic fields
stemming from the evanescent fields of an optical nanofiber
and their effects on cold atoms trapped around such fibers.
The strong gradient of the fields combined with the adiabatic
motion of the atoms leads to a geometrical Berry phases that
can be represented by vector and scalar potentials experienced
by the atoms. We have shown that the vector potential can
lead to a magnetic field that has components in the radial and
the azimuthal direction, and that the component in the radial
direction can be removed. If a Bose-Einstein condensate is
placed in such an evanescent field, the synthetic magnetic field
can induce vorticity in the condensate, and due to the geometry
of the setup, this can lead to the controlled formation of vortex
rings.

While in this work we have only examined the stationary
states inside the artificial magnetic field, it is of larger interest
to also consider possible dynamical scenarios. As the magnetic
field is purely based on optical fields, and since these can be
changed in a time-dependent manner, the system presented
above suggests itself for dynamical studies as well. Fast
changes of the detuning, the power, or the polarization of the
input light fields would allow us to study quenched systems,
whereas a controlled reduction of the field strength would
allow us to unpin the vortex rings and study free vortex
ring dynamics starting from a well-defined initial state. In
addition to this, a large number of structures resulting from
modes that do not have azimuthal symmetry exist and can be
characterized. However, all of these studies will require a fully
three-dimensional treatment and we are currently preparing
for this.
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APPENDIX: HIGHER ORDER MODES

In this appendix we give the explicit expressions for
the evanescent fields of the higher order modes used in
Sec. V.

1. HE21 mode

The electric field components outside the fiber core for the
HE21 mode are given by

Er = iA21[(1 − u)K1(qr) + (1 + u)K3(qr)]ei(ωt−βz),

Eϕ = −A21[(1 − u)K1(qr) − (1 + u)K3(qr)]ei(ωt−βz),

Ez = 2A21(q/β)K2(qr)ei(ωt−βz), (A1)

where u is the dimensionless parameter

u = 2(1/h2a2 + 1/q2a2)

J ′
2(ha)/haJ2(ha) + K ′

2(qa)/qaK2(ha)
. (A2)

The normalization constant A21 is defined as

A = β

2q

J2(ha)/K2(ha)
√

πa

√(
n2

1R1 + n2
2R2

) , (A3)

where

R1 = β2

2h2

[
(1 − u)2

[
J 2

1 (ha) − J0(ha)J2(ha)
]

+ (1 + u)2[J 2
3 (ha) − J2(ha)J4(ha)

]]
+ [

J 2
2 (ha) − J1(ha)J3(ha)

]
,

R2 = J 2
2 (ha)

K2
2 (qa)

{
β2

2q2

[
(1 − u)2

[
K0(qa)K2(qa) − K2

1 (qa)
]

+ (1 + u)2
[
K2(qa)K4(qa) − K2

3 (qa)
]]

− K2
2 (qa) + K1(qa)K3(qa)

}
. (A4)

2. TE01 mode

The electric field components outside the fiber core for the
TE01 mode are given by

Er = 0, Eϕ = − i√
πqa2

1√
n2

1P1 + n2
2P2

K1(qr),

Ez = 0, (A5)

where

P1 = 1

a2h2

K2
0 (qa)

J 2
0 (ha)

[
J 2

1 (ha) − J0(ha)J2(ha)
]
,

P2 = 1

a2q2

[
K0(qa)K2(qa) − K2

1 (qa)
]
. (A6)

3. TM01 mode

The electric field components outside the fiber core for the
TM01 mode are given by

Er = iβ√
πqa

√
n2

1Q1 + n2
2Q2K1(qr), Eϕ = 0,

Ez = 1√
πa

√
n2

1Q1 + n2
2Q2K0(qr), (A7)

where

Q1 = K2
0 (qa)

J 2
0 (ha)

[
J 2

0 (ha) + n2
1k

2
0

h2
J 2

1 (ha) − β2

h2
J0(ha)J2(ha)

]
,

Q2 = β2

q2
K0(qa)K2(qa) − K2

0 (qa) − n2
2k

2
0

q2
K2

1 (qa). (A8)
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